Sample records for capsaicin

  1. Capsaicin-loaded nanolipoidal carriers for topical application: design, characterization, and in vitro/in vivo evaluation.

    PubMed

    Wang, Xia-Rong; Gao, Si-Qian; Niu, Xiao-Qian; Li, Long-Jian; Ying, Xiao-Ying; Hu, Zhong-Jie; Gao, Jian-Qing

    2017-01-01

    Capsaicin has been used in clinical applications for the treatment of pain disorders and inflammatory diseases. Given the strong pungency and high oil/water partition coefficient of capsaicin, capsaicin-loaded nanolipoidal carriers (NLCs) were designed to increase permeation and achieve the analgesic, anti-inflammatory effect with lower skin irritation. Capsaicin-loaded NLCs were prepared and later optimized by the Box-Behnken design. The physicochemical characterizations, morphology, and encapsulation of the capsaicin-loaded NLCs were subsequently confirmed. Capsaicin-loaded NLCs and capsaicin-loaded NLCs gel exhibited sustained release and no cytotoxicity properties. Also, they could significantly enhance the penetration amount, permeation flux, and skin retention amounts of capsaicin due to the application of NLCs. To study the topical permeation mechanism of capsaicin, 3,3'-dioctadecyloxacarbocyanine perchlorate (Dio) was used as a fluorescent dye. Dio-loaded NLCs and Dio-loaded NLCs gel could effectively deliver Dio up to a skin depth of 260 and 210 μm, respectively, primarily through the appendage route on the basis of version skin sections compared with Dio solution, which only delivered Dio up to 150 μm. In vivo therapeutic experiments demonstrated that capsaicin-loaded NLCs and capsaicin-loaded NLCs gel could improve the pain threshold in a dose-dependent manner and inhibit inflammation, primarily by reducing the prostaglandin E2 levels in the tissue compared with capsaicin cream and capsaicin solution. Meanwhile, skin irritation was reduced, indicating that application of NLCs could decrease the irritation caused by capsaicin. Overall, NLCs may be a potential carrier for topical delivery of capsaicin for useful pain and inflammation therapy.

  2. Orally given gastroprotective capsaicin does not modify aspirin-induced platelet aggregation in healthy male volunteers (human phase I examination).

    PubMed

    Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas

    2014-12-01

    Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 μg capsaicin, 800 μg capsaicin, 500 mg ASA, 400 μg capsaicin+500 mg ASA and 800 μg capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ≤ 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin.

  3. In vitro and in vivo evaluation of capsaicin-loaded microemulsion for enhanced oral bioavailability.

    PubMed

    Zhu, Yuan; Zhang, Jiajia; Zheng, Qianfeng; Wang, Miaomiao; Deng, Wenwen; Li, Qiang; Firempong, Caleb Kesse; Wang, Shengli; Tong, Shanshan; Xu, Ximing; Yu, Jiangnan

    2015-10-01

    Capsaicin, as a food additive, has attracted worldwide concern owing to its pungency and multiple pharmacological effects. However, poor water solubility and low bioavailability have limited its application. This study aims to develop a capsaicin-loaded microemulsion to enhance the oral bioavailability of the anti-neuropathic-pain component, capsaicin, which is poorly water soluble. In this study, the microemulsion consisting of Cremophor EL, ethanol, medium-chain triglycerides (oil phase) and water (external phase) was prepared and characterized (particle size, morphology, stability and encapsulation efficiency). The gastric mucosa irritation test of formulated capsaicin was performed in rats to evaluate its oral feasibility, followed by the pharmacokinetic study in vivo. Under these conditions, the encapsulated capsaicin revealed a faster capsaicin release in vitro coupled with a greater absorption in vivo when compared to the free capsaicin. The oral bioavailability of the formulated capsaicin-loaded microemulsions was 2.64-fold faster than that of free capsaicin. No significant irritation was observed on the mucosa from the pathological section of capsaicin-loaded microemulsion treated stomach. These results indicate that the developed microemulsion represents a safe and orally effective carrier for poorly soluble substances. The formulation could be used for clinical trials and expand the application of capsaicin. © 2014 Society of Chemical Industry.

  4. CAPSAICIN: ITS BIOLOGICAL ACTIVITIES AND IN SILICO TARGET FISHING.

    PubMed

    Akhtar, Fahad; Muhammad Sharif, Hajra; Arshad Mallick, Muhammad; Zahoor, Fareeha; Abdulmalik, Attiya; Baig, Warda; Shujaat, Nodia; Gul, Sundas; Bibi, Gulfam; Ramzan, Rahdia; Murtaza, Ghulam

    2017-03-01

    Capsicum annuum L. is a rich source of capsaicin, an alkaloid, which is a very pungent compound. Due to ever growing need of capsaicin, an extensive research on its efficient cultivation as well as chemical synthesis is underway. Owing to the pungent nature of capsaicin, its analogous molecules without pungent effect are being explored. The objective of this descriptive review is to comprehensively present the updates on the bioactivities of capsaicin. Additionally, the in silico target fishing approach has been used to identify the possible protein targets of capsaicin. This article will definitely provide future perspectives of research on capsaicin.

  5. Detection and modulation of capsaicin perception in the human oral cavity.

    PubMed

    Smutzer, Gregory; Jacob, Jeswin C; Tran, Joseph T; Shah, Darshan I; Gambhir, Shilpa; Devassy, Roni K; Tran, Eric B; Hoang, Brian T; McCune, Joseph F

    2018-05-09

    Capsaicin causes a burning or spicy sensation when this vanilloid compound comes in contact with trigeminal neurons of the tongue. This compound has low solubility in water, which presents difficulties in examining the psychophysical properties of capsaicin by standard aqueous chemosensory tests. This report describes a new approach that utilizes edible strips for delivering precise amounts of capsaicin to the human oral cavity for examining threshold and suprathreshold amounts of this irritant. When incorporated into pullulan-based edible strips, recognition thresholds for capsaicin occurred over a narrow range, with a mean value near 1 nmol. When incorporated into edible strips at suprathreshold amounts, capsaicin yielded robust intensity values that were readily measured in our subject population. Maximal capsaicin intensity was observed 20 s after strips dissolved on the tongue surface, and then decreased in intensity. Suprathreshold studies showed that complete blockage of nasal airflow diminished capsaicin perception in the oral cavity. Oral rinses with vanillin-linoleic acid emulsions decreased mean intensity values for capsaicin by approximately 75%, but only modestly affected recognition threshold values. Also, oral rinses with isointense amounts of aqueous sucrose and sucralose solutions decreased mean intensity values for capsaicin by approximately 50%. In addition, this decrease in capsaicin intensity following an oral rinse with sucrose was partially reversed by the sweet taste inhibitor lactisole. These results suggest that blockage of nasal airflow, vanillin, sucrose, and sucralose modulate capsaicin perception in the human oral cavity. The results further suggest a chemosensory link between receptor cells that detect sweet taste stimuli and trigeminal neurons that detect capsaicin. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.)

    PubMed Central

    Prasad, B. C. Narasimha; Kumar, Vinod; Gururaj, H. B.; Parimalan, R.; Giridhar, P.; Ravishankar, G. A.

    2006-01-01

    Capsaicin is a unique alkaloid of the plant kingdom restricted to the genus Capsicum. Capsaicin is the pungency factor, a bioactive molecule of food and of medicinal importance. Capsaicin is useful as a counterirritant, antiarthritic, analgesic, antioxidant, and anticancer agent. Capsaicin biosynthesis involves condensation of vanillylamine and 8-methyl nonenoic acid, brought about by capsaicin synthase (CS). We found that CS activity correlated with genotype-specific capsaicin levels. We purified and characterized CS (≈35 kDa). Immunolocalization studies confirmed that CS is specifically localized to the placental tissues of Capsicum fruits. Western blot analysis revealed concomitant enhancement of CS levels and capsaicin accumulation during fruit development. We determined the N-terminal amino acid sequence of purified CS, cloned the CS gene (csy1) and sequenced full-length cDNA (981 bp). The deduced amino acid sequence of CS from full-length cDNA was 38 kDa. Functionality of csy1 through heterologous expression in recombinant Escherichia coli was also demonstrated. Here we report the gene responsible for capsaicin biosynthesis, which is unique to Capsicum spp. With this information on the CS gene, speculation on the gene for pungency is unequivocally resolved. Our findings have implications in the regulation of capsaicin levels in Capsicum genotypes. PMID:16938870

  7. Bioconversion of Capsaicin by Aspergillus oryzae.

    PubMed

    Lee, Minji; Cho, Jeong-Yong; Lee, Yu Geon; Lee, Hyoung Jae; Lim, Seong-Il; Park, So-Lim; Moon, Jae-Hak

    2015-07-08

    This study identified metabolites of capsaicin bioconverted by Aspergillus oryzae, which is generally used for mass production of gochujang prepared by fermenting red pepper powder in Korea. A. oryzae was incubated with capsaicin in potato dextrose broth. Capsaicin decreased depending on the incubation period, but new metabolites increased. Five capsaicin metabolites purified from the ethyl acetate fraction of the capsaicin culture were identified as N-vanillylcarbamoylbutyric acid, N-vanillyl-9-hydroxy-8-methyloctanamide, ω-hydroxycapsaicin, 8-methyl-N-vanillylcarbamoyl-6(E)-octenoic acid, and 2-methyl-N-vanillylcarbamoyl-6(Z)-octenoic acid by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The capsaicin metabolites in gochujang were confirmed and quantitated by selective multiple reaction monitoring detection after liquid chromatography electrospray ionization MS using the isolated compounds as external standards. On the basis of the structures of the capsaicin metabolites, it is proposed that capsaicin metabolites were converted by A. oryzae by ω-hydroxylation, alcohol oxidation, hydrogenation, isomerization, and α- and/or β-oxidation.

  8. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    PubMed

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral capsaicin effect at one remote site. There was an accompanying decrease and an increase in the proportion of body fat in visceral and subcutaenous compartments, respectively. Taken together, if oral capsaicin could regulate adipose tissue distribution, the process might involve the effect of intestinal mucosal afferent nerves in modulating intestinal and visceral adipose tissue blood flow. The hypothesis that the intestinal mucosal afferent mechanism is a plausible therapeutic target for abating visceral obesity deserves to be further evaluated.

  9. Involvement of the phosphoinositide 3-kinase/Akt pathway in apoptosis induced by capsaicin in the human pancreatic cancer cell line PANC-1.

    PubMed

    Zhang, Jian-Hong; Lai, Fu-Ji; Chen, Hui; Luo, Jiang; Zhang, Ri-Yuan; Bu, He-Qi; Wang, Zhao-Hong; Lin, Hong-Hai; Lin, Sheng-Zhang

    2013-01-01

    Capsaicin, one of the major pungent ingredients found in red peppers, has been recently demonstrated to induce apoptosis in various malignant cell lines through an unclear mechanism. In this study, the effect of capsaicin on proliferation and apoptosis in the human pancreatic cancer cell line PANC-1 and its possible mechanism(s) of action were investigated. The results of a Cell Counting Kit-8 (CCK-8) assay revealed that capsaicin significantly decreased the viability of PANC-1 cells in a dose-dependent manner. Capsaicin induced G0/G1 phase cell cycle arrest and apoptosis in PANC-1 cells as demonstrated by a flow cytometric assessment. Caspase-3 expression at both the protein and mRNA level was promoted following capsaicin treatment. Furthermore, we revealed that phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473) in PANC-1 cells were downregulated in response to capsaicin. Moreover, capsaicin gavage significantly inhibited the growth of pancreatic cancer PANC-1 cell xenografts in athymic nude mice. An increased number of TUNEL-positive cells and cleaved caspase-3 were observed in capsaicin-treated mice. In vivo, capsaicin downregulated the expression of phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473). In conclusion, we have demonstrated that capsaicin is an inhibitor of growth of PANC-1 cells, and downregulation of the phosphoinositide 3-kinase/Akt pathway may be involved in capsaicin-induced apoptosis in vitro and in vivo.

  10. Manipulation of culture strategies to enhance capsaicin biosynthesis in suspension and immobilized cell cultures of Capsicum chinense Jacq. cv. Naga King Chili.

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2014-06-01

    Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 μg g(-1) f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 μg g(-1) f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 μg g(-1) f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 μg g(-1) f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 μM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 μg g(-1) f.wt on day 20 and 1,315.3 ± 10 μg g(-1) f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells.

  11. Incorporation of capsaicin in silicone coatings for enhanced antifouling performance

    NASA Astrophysics Data System (ADS)

    Reddy Jaggari, Karunakar; Zhang Newby, Bi-Min

    2002-03-01

    Successful use of capsaicin as insect and animal repellant propelled us to use it as a possible antifouling agent. Its non-toxic, non-biocidal, non-leaching properties make it a viable alternative to organotin compounds. In order to optimize the anti-fouling performance of the coating, silicone, the most effective foul-release marine coating, was chosen as the carrier. We have incorporated capsaicin into silicone coating, by both bulk entrapment and surface immobilization. Contact angle measurements on capsaicin-incorporated silicone exhibited an increase in wettability, owing to the presence of capsaicin. FTIR study further confirmed the incorporation of capsaicin in silicone. Bacterial attachment studies were conducted using lake Erie water. While bacteria liberally inhabited the control coating, their presence on the capsaicin-incorporated coating was found to be minimal. These preliminary studies indicate that capsaicin incorporated silicone could be a viable environment friendly alternative to currently used antifouling coatings.

  12. Capsaicin Interaction with TRPV1 Channels in a Lipid Bilayer: Molecular Dynamics Simulation

    PubMed Central

    Hanson, Sonya M.; Newstead, Simon; Swartz, Kenton J.; Sansom, Mark S.P.

    2015-01-01

    Transient receptor potential vanilloid subtype 1 (TRPV1) is a heat-sensitive ion channel also involved in pain sensation, and is the receptor for capsaicin, the active ingredient of hot chili peppers. The recent structures of TRPV1 revealed putative ligand density within the S1 to S4 voltage-sensor-like domain of the protein. However, questions remain regarding the dynamic role of the lipid bilayer in ligand binding to TRPV1. Molecular dynamics simulations were used to explore behavior of capsaicin in a 1-palmitoyl-2-oleoyl phosphatidylcholine bilayer and with the target S1–S4 transmembrane helices of TRPV1. Equilibrium simulations reveal a preferred interfacial localization for capsaicin. We also observed a capsaicin molecule flipping from the extracellular to the intracellular leaflet, and subsequently able to access the intracellular TRPV1 binding site. Calculation of the potential of mean force (i.e., free energy profile) of capsaicin along the bilayer normal confirms that it prefers an interfacial localization. The free energy profile indicates that there is a nontrivial but surmountable barrier to the flipping of capsaicin between opposing leaflets of the bilayer. Molecular dynamics of the S1–S4 transmembrane helices of the TRPV1 in a lipid bilayer confirm that Y511, known to be crucial to capsaicin binding, has a distribution along the bilayer normal similar to that of the aromatic group of capsaicin. Simulations were conducted of the TRPV1 S1–S4 transmembrane helices in the presence of capsaicin placed in the aqueous phase, in the lipid, or docked to the protein. No stable interaction between ligand and protein was seen for simulations initiated with capsaicin in the bilayer. However, interactions were seen between TRPV1 and capsaicin starting from the cytosolic aqueous phase, and capsaicin remained stable in the majority of simulations from the docked pose. We discuss the significance of capsaicin flipping from the extracellular to the intracellular leaflet and mechanisms of binding site access by capsaicin. PMID:25809255

  13. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch

    PubMed Central

    Anand, P.; Bley, K.

    2011-01-01

    Summary Topical capsaicin formulations are used for pain management. Safety and modest efficacy of low-concentration capsaicin formulations, which require repeated daily self-administration, are supported by meta-analyses of numerous studies. A high-concentration capsaicin 8% patch (Qutenza™) was recently approved in the EU and USA. A single 60-min application in patients with neuropathic pain produced effective pain relief for up to 12 weeks. Advantages of the high-concentration capsaicin patch include longer duration of effect, patient compliance, and low risk for systemic effects or drug–drug interactions. The mechanism of action of topical capsaicin has been ascribed to depletion of substance P. However, experimental and clinical studies show that depletion of substance P from nociceptors is only a correlate of capsaicin treatment and has little, if any, causative role in pain relief. Rather, topical capsaicin acts in the skin to attenuate cutaneous hypersensitivity and reduce pain by a process best described as ‘defunctionalization’ of nociceptor fibres. Defunctionalization is due to a number of effects that include temporary loss of membrane potential, inability to transport neurotrophic factors leading to altered phenotype, and reversible retraction of epidermal and dermal nerve fibre terminals. Peripheral neuropathic hypersensitivity is mediated by diverse mechanisms, including altered expression of the capsaicin receptor TRPV1 or other key ion channels in affected or intact adjacent peripheral nociceptive nerve fibres, aberrant re-innervation, and collateral sprouting, all of which are defunctionalized by topical capsaicin. Evidence suggests that the utility of topical capsaicin may extend beyond painful peripheral neuropathies. PMID:21852280

  14. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  15. Environmental risk assessment on capsaicin used as active substance for antifouling system on ships.

    PubMed

    Wang, Jianbing; Shi, Ting; Yang, Xiaoling; Han, Wenya; Zhou, Yunrui

    2014-06-01

    Biodegradation experiments were carried out with capsaicin to evaluate its degradability. The results show that capsaicin was readily biodegradable under aerobic conditions. The values of Kow and the calculated bioconcentration factor indicate that capsaicin have a low potential for bioconcentration. The fish acute toxicity tests conducted with Brachydanio rerio show LC50 for capsaicin was 5.98 mg L(-1). The tests of alga growth inhibition conducted with Selenastrum capricornutum suggest EC50 for capsaicin was 114 mg L(-1). The calculated PNEC (Predicted No Effect Concentration) was 4.9×10(-4) mg L(-1). The average PEC (Predicted Environmental Concentration) for OECD-EU commercial harbor and marina were 3.99×10(-6) and 2.49×10(-5) mg L(-1), respectively. These indicate that the PEC was much less than the PNEC for capsaicin. The low Kp value of capsaicin suggests the data about the risk of capsaicin to sediment organisms can be waived. According to the results from the analysis of the degradation, bioaccumulation, toxicity and accumulation in sediment, it can be concluded that capsaicin used as active substance for antifouling system on ships poses relatively low risk to marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells

    PubMed Central

    Lee, Seong-Ho; Richardson, Raphael L.; Dashwood, Roderick H.; Baek, Seung Joon

    2011-01-01

    Capsaicin is a pungent ingredient in chili red peppers and has been linked to suppression of growth in various cancer cells. However, the underlying mechanism(s) by which capsaicin induces growth arrest and apoptosis of cancer cells is not completely understood. In the present study, we investigated whether capsaicin alters β-catenin-dependent signaling in human colorectal cancer cells in vitro. Exposure of SW480, LoVo, and HCT-116 cells to capsaicin suppressed cell proliferation. Transient transfection with a β-catenin/T-cell factor (TCF)-responsive reporter indicated that capsaicin suppressed the transcriptional activity of β-catenin/TCF. Capsaicin treatment resulted in a decrease of intracellular β-catenin levels and a reduction of transcripts from the β-catenin gene (CTNNB1). These results were confirmed by a reduced luciferase reporter activity driven by promoter-reporter construct containing the promoter region of the Catnb gene. In addition, capsaicin destabilized β-catenin through enhancement of proteosomal-dependent degradation. Western blot and immunoprecipitation studies indicated that capsaicin treatment suppressed TCF-4 expression and disrupted the interaction of TCF-4 and β-catenin. This study identifies a role for the β-catenin/TCF-dependent pathway that potentially contributes to the anti-cancer activity of capsaicin in human colorectal cancer cells. PMID:21764279

  17. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review.

    PubMed

    Srinivasan, Krishnapura

    2016-07-03

    Capsaicin, the pungent alkaloid of red pepper (Capsicum annuum) has been extensively studied for its biological effects which are of pharmacological relevance. These include: cardio protective influence, antilithogenic effect, antiinflammatory, and analgesia, thermogenic influence, and beneficial effects on gastrointestinal system. Therefore, capsaicinoids may have the potential clinical value for pain relief, cancer prevention and weight loss. It has been shown that capsaicinoids are potential agonists of capsaicin receptor (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. The involvement of neuropeptide Substance P, serotonin, and somatostatin in the pharmacological actions of capsaicin has been extensively investigated. Topical application of capsaicin is proved to alleviate pain in arthritis, postoperative neuralgia, diabetic neuropathy, psoriasis, etc. Toxicological studies on capsaicin administered by different routes are documented. Capsaicin inhibits acid secretion, stimulates alkali and mucus secretion and particularly gastric mucosal blood flow which helps in prevention and healing of gastric ulcers. Antioxidant and antiinflammatory properties of capsaicin are established in a number of studies. Chemopreventive potential of capsaicin is evidenced in cell line studies. The health beneficial hypocholesterolemic influence of capsaicin besides being cardio protective has other implications, viz., prevention of cholesterol gallstones and protection of the structural integrity of erythrocytes under conditions of hypercholesterolemia. Beneficial influences of capsaicin on gastrointestinal system include digestive stimulant action and modulation of intestinal ultrastructure so as to enhance permeability to micronutrients.

  18. The pepper's natural ingredient capsaicin induces autophagy blockage in prostate cancer cells

    PubMed Central

    Ramos-Torres, Ágata; Bort, Alicia; Morell, Cecilia; Rodríguez-Henche, Nieves; Díaz-Laviada, Inés

    2016-01-01

    Capsaicin, the pungent ingredient of red hot chili peepers, has been shown to have anti-cancer activities in several cancer cells, including prostate cancer. Several molecular mechanisms have been proposed on its chemopreventive action, including ceramide accumulation, endoplasmic reticulum stress induction and NFκB inhibition. However, the precise mechanisms by which capsaicin exerts its anti-proliferative effect in prostate cancer cells remain questionable. Herein, we have tested the involvement of autophagy on the capsaicin mechanism of action on prostate cancer LNCaP and PC-3 cells. The results showed that capsaicin induced prostate cancer cell death in a time- and concentration-dependent manner, increased the levels of microtubule-associated protein light chain 3-II (LC3-II, a marker of autophagy) and the accumulation of the cargo protein p62 suggesting an autophagy blockage. Moreover, confocal microscopy revealed that capsaicin treatment increased lysosomes which co-localized with LC3 positive vesicles in a similar extent to that produced by the lysosomal protease inhibitors E64 and pepstatin pointing to an autophagolysosomes breakdown inhibition. Furthermore, we found that capsaicin triggered ROS generation in cells, while the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Co-treatment of cells with NAC and capsaicin abrogated the effects of capsaicin on autophagy and cell death. Normal prostate PNT2 and RWPE-1 cells were more resistant to capsaicin-induced cytotoxicity and did not accumulate p62 protein. Taken together, these results suggest that ROS-mediated capsaicin-induced autophagy blockage contributes to antiproliferation in prostate cancer cells, which provides new insights into the anticancer molecular mechanism of capsaicin. PMID:26625315

  19. Ca2+ and calpain mediate capsaicin-induced ablation of axonal terminals expressing transient receptor potential vanilloid 1.

    PubMed

    Wang, Sheng; Wang, Sen; Asgar, Jamila; Joseph, John; Ro, Jin Y; Wei, Feng; Campbell, James N; Chung, Man-Kyo

    2017-05-19

    Capsaicin is an ingredient in spicy peppers that produces burning pain by activating transient receptor potential vanilloid 1 (TRPV1), a Ca 2+ -permeable ion channel in nociceptors. Capsaicin has also been used as an analgesic, and its topical administration is approved for the treatment of certain pain conditions. The mechanisms underlying capsaicin-induced analgesia likely involve reversible ablation of nociceptor terminals. However, the mechanisms underlying these effects are not well understood. To visualize TRPV1-lineage axons, a genetically engineered mouse model was used in which a fluorophore is expressed under the TRPV1 promoter. Using a combination of these TRPV1-lineage reporter mice and primary afferent cultures, we monitored capsaicin-induced effects on afferent terminals in real time. We found that Ca 2+ influx through TRPV1 is necessary for capsaicin-induced ablation of nociceptive terminals. Although capsaicin-induced mitochondrial Ca 2+ uptake was TRPV1-dependent, dissipation of the mitochondrial membrane potential, inhibition of the mitochondrial transition permeability pore, and scavengers of reactive oxygen species did not attenuate capsaicin-induced ablation. In contrast, MDL28170, an inhibitor of the Ca 2+ -dependent protease calpain, diminished ablation. Furthermore, overexpression of calpastatin, an endogenous inhibitor of calpain, or knockdown of calpain 2 also decreased ablation. Quantitative assessment of TRPV1-lineage afferents in the epidermis of the hind paws of the reporter mice showed that EGTA and MDL28170 diminished capsaicin-induced ablation. Moreover, MDL28170 prevented capsaicin-induced thermal hypoalgesia. These results suggest that TRPV1/Ca 2+ /calpain-dependent signaling plays a dominant role in capsaicin-induced ablation of nociceptive terminals and further our understanding of the molecular mechanisms underlying the effects of capsaicin on nociceptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Capsaicin Displays Anti-Proliferative Activity against Human Small Cell Lung Cancer in Cell Culture and Nude Mice Models via the E2F Pathway

    PubMed Central

    Hardman, W. Elaine; Luo, Haitao; Chen, Yi C.; Carpenter, A. Betts; Lau, Jamie K.; Dasgupta, Piyali

    2010-01-01

    Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs. PMID:20421925

  1. Treatment of Neuropathic Pain with the Capsaicin 8% Patch: Is Pretreatment with Lidocaine Necessary?

    PubMed Central

    Kern, Kai-Uwe; Nowack, Walburga; Poole, Chris

    2014-01-01

    The capsaicin 8% patch can effectively treat neuropathic pain, but application can cause discomfort or a burning sensation. Until March 2013, it was recommended that patients be pretreated with a topical anesthetic, for example lidocaine, before capsaicin patch application. However, speculation existed over the need for pretreatment and its effectiveness in alleviating treatment-associated discomfort. This article compares tolerability to and efficacy of the capsaicin patch in pretreated and non-pretreated patients. All patients received a single capsaicin patch application. Pretreated patients received a lidocaine plaster before and intravenous lidocaine and metamizole infusions during capsaicin patch application. Pain levels, assessed using a Numeric Rating Scale (NRS), were used to determine tolerability and efficacy. All patients (pretreated n = 32; non-pretreated n = 26) completed 100% of the intended capsaicin patch application duration. At the time of capsaicin patch removal, 69% of pretreated and 88% of non-pretreated patients reported an NRS score increase, which returned to baseline by 6 hours post-treatment. There was no significant difference in mean NRS score between patient groups at any time during or after capsaicin patch treatment. Response was similar between patient groups; capsaicin patch treatment provided rapid and significant pain reductions that were sustained over 12 weeks. The same proportion of pretreated and non-pretreated patients reported willingness to receive retreatment with the capsaicin patch. This analysis shows that the capsaicin 8% patch is generally tolerable, and the small discomfort associated with patch application is short-lived. Lidocaine pretreatment does not have a significant effect on tolerability, efficacy, or patient willingness to receive retreatment. PMID:24289500

  2. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck

    2012-02-15

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5more » expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.« less

  4. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus.

    PubMed

    Kalia, Nitin Pal; Mahajan, Priya; Mehra, Rukmankesh; Nargotra, Amit; Sharma, Jai Parkash; Koul, Surrinder; Khan, Inshad Ali

    2012-10-01

    To delineate the role of capsaicin (8-methyl-N-vanillyl-6-nonenamide) as an inhibitor of the NorA efflux pump and its impact on invasion of macrophages by Staphylococcus aureus. Capsaicin in combination with ciprofloxacin was tested for activity against S. aureus SA-1199B (NorA overproducing), SA-1199 (wild-type) and SA-K1758 (norA knockout). The role of NorA in the intracellular invasion of S. aureus and the ability of capsaicin to inhibit this invasion was established in J774 macrophage cell lines. The three-dimensional structure of NorA was predicted using an in silico approach and docking studies of capsaicin were performed. Capsaicin significantly reduced the MIC of ciprofloxacin for S. aureus SA-1199 and SA-1199B. Furthermore, capsaicin also extended the post-antibiotic effect of ciprofloxacin by 1.1 h at MIC concentration. There was a decrease in mutation prevention concentration of ciprofloxacin when combined with capsaicin. Inhibition of ethidium bromide efflux by NorA-overproducing S. aureus SA-1199B confirmed the role of capsaicin as a NorA efflux pump inhibitor (EPI). The most significant finding of this study was the ability of capsaicin to reduce the intracellular invasion of S. aureus SA-1199B (NorA overproducing) in J774 macrophage cell lines by 2 log(10). This study, for the first time, has shown that capsaicin, a novel EPI, not only inhibits the NorA efflux pump of S. aureus but also reduces the invasiveness of S. aureus, thereby reducing its virulence.

  5. Influence of capsaicin infusion on secondary peristalsis in patients with gastroesophageal reflux disease

    PubMed Central

    Yi, Chih-Hsun; Lei, Wei-Yi; Hung, Jui-Sheng; Liu, Tso-Tsai; Chen, Chien-Lin; Pace, Fabio

    2016-01-01

    AIM To determine whether capsaicin infusion could influence heartburn perception and secondary peristalsis in patients with gastroesophageal reflux disease (GERD). METHODS Secondary peristalsis was performed with slow and rapid mid-esophageal injections of air in 10 patients with GERD. In a first protocol, saline and capsaicin-containing red pepper sauce infusions were randomly performed, whereas 2 consecutive sessions of capsaicin-containing red pepper sauce infusions were performed in a second protocol. Tested solutions including 5 mL of red pepper sauce diluted with 15 mL of saline and 20 mL of 0.9% saline were infused into the mid-esophagus via the manometric catheter at a rate of 10 mL/min with a randomized and double-blind fashion. During each study protocol, perception of heartburn, threshold volumes and peristaltic parameters for secondary peristalsis were analyzed and compared between different stimuli. RESULTS Infusion of capsaicin significantly increased heartburn perception in patients with GERD (P < 0.001), whereas repeated capsaicin infusion significantly reduced heartburn perception (P = 0.003). Acute capsaicin infusion decreased threshold volume of secondary peristalsis (P = 0.001) and increased its frequency (P = 0.01) during rapid air injection. The prevalence of GERD patients with successive secondary peristalsis during slow air injection significantly increased after capsaicin infusion (P = 0.001). Repeated capsaicin infusion increased threshold volume of secondary peristalsis (P = 0.002) and reduced the frequency of secondary peristalsis (P = 0.02) during rapid air injection. CONCLUSION Acute esophageal exposure to capsaicin enhances heartburn sensation and promotes secondary peristalsis in gastroesophageal reflux disease, but repetitive capsaicin infusion reverses these effects. PMID:28018112

  6. Diversity effect of capsaicin on different types of skeletal muscle.

    PubMed

    Zhou, Gan; Wang, Lina; Xu, Yaqiong; Yang, Kelin; Luo, Lv; Wang, Leshan; Li, Yongxiang; Wang, Jiawen; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Jiang, Qingyan

    2018-06-01

    Capsaicin is a major pungent content in green and red peppers which are widely used as spice, and capsaicin may activate different receptors. To determine whether capsaicin has different effects on different types of skeletal muscle, we applied different concentrations (0, 0.01, and 0.02%) of capsaicin in the normal diet and conducted a four-week experiment on Sprague-Dawley rats. The fiber type composition, glucose metabolism enzyme activity, and different signaling molecules' expressions of receptors were detected. Our results suggested that capsaicin reduced the body fat deposition, while promoting the slow muscle-related gene expression and increasing the enzyme activity in the gastrocnemius and soleus muscles. However, fatty acid metabolism was significantly increased only in the soleus muscle. The study of intracellular signaling suggested that the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptors in the soleus muscle were more sensitive to capsaicin. In conclusion, the distribution of TRPV1 and cannabinoid receptors differs in different types of muscle, and the different roles of capsaicin in different types of muscle may be related to the different degrees of activation of receptors.

  7. Tachykinin-independent activity of capsaicin on in-vitro lamb detrusor.

    PubMed

    Tucci, Paolo; Evandri, Maria Grazia; Bolle, Paola

    2002-08-01

    The capsicum alkaloid capsaicin is an afferent fibre exciter. In the vesical bladder, capsaicin acts by releasing peptides stored in afferent fibres. The aim of this work was to verify the activity of capsaicin on in-vitro lamb urinary bladder and to ascertain whether this alkaloid evokes peptide release. Capsaicin relaxed about 80% of the lamb detrusor muscle preparations tested and contracted about 20%. Whereas neurokinin A and substance P antagonists, administered alone or together, left the contractile responses to capsaicin unchanged, atropine and tetrodotoxin totally inhibited contraction. Ruthenium red and indometacin abolished contractions and relaxation. The substance P and neurokinin A antagonists and the NO-synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) left relaxation unchanged; conversely, the calcitonin gene-related peptide antagonist alpha h-CGRP (8-37) abolished this response. These results suggest that capsaicin relaxes lamb detrusor muscle not through tachykinins but by releasing CGRP from afferent fibres. Our observation that indometacin blocks the capsaicin response in in-vitro lamb urinary bladder also suggests a role of prostanoids.

  8. An Amperometric Biosensor Utilizing a Ferrocene-Mediated Horseradish Peroxidase Reaction for the Determination of Capsaicin (Chili Hotness)

    PubMed Central

    Mohammad, Rosmawani; Ahmad, Musa; Heng, Lee Yook

    2013-01-01

    Chili hotness is very much dependent on the concentration of capsaicin present in the chili fruit. A new biosensor based on a horseradish peroxidase enzyme-capsaicin reaction mediated by ferrocene has been successfully developed for the amperometric determination of chili hotness. The amperometric biosensor is fabricated based on a single-step immobilization of both ferrocene and horseradish peroxidase in a photocurable hydrogel membrane, poly(2-hydroxyethyl methacrylate). With mediation by ferrocene, the biosensor could measure capsaicin concentrations at a potential 0.22 V (vs. Ag/AgCl), which prevented potential interference from other electroactive species in the sample. Thus a good selectivity towards capsaicin was demonstrated. The linear response range of the biosensor towards capsaicin was from 2.5–99.0 μM with detection limit of 1.94 μM. A good relative standard deviation (RSD) for reproducibility of 6.4%–9.9% was obtained. The capsaicin biosensor demonstrated long-term stability for up to seven months. The performance of the biosensor has been validated using a standard method for the analysis of capsaicin based on HPLC. PMID:23921830

  9. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    PubMed Central

    Smutzer, Gregory; Devassy, Roni K.

    2016-01-01

    Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition. PMID:26884754

  10. Intracolonic capsaicin stimulates colonic motility and defecation in conscious dogs.

    PubMed

    Hayashi, Keiichi; Shibata, Chikashi; Nagao, Munenori; Sato, Manabu; Kakyo, Masayuki; Kinouchi, Makoto; Saijo, Fumito; Miura, Koh; Ogawa, Hitoshi; Sasaki, Iwao

    2010-06-01

    The aim of this study was to investigate the effects of intracolonic capsaicin on colonic motility and defecation. The effects of capsaicin (1, 2, 5, and 10 mg) administrated into the proximal colon on ileocolonic motility and defecation were studied in neurally intact dogs with or without various antagonists (atropine, hexamethonium, ondansetron, propranolol, and FK224), dogs with extrinsic denervation of an ileocolonic segment, and dogs with enterically isolated ileocolonic loops equipped with strain gauge force transducers. Capsaicin at 5 and 10 mg evoked giant migrating contractions in a dose-independent manner, and it induced defecations with more than 90% probability in neurally intact dogs. These effects of capsaicin were abolished by atropine and hexamethonium. Ondansetron inhibited the capsaicin-induced increase in colonic motility but did not affect the induction of defecation. The other antagonists had no effect. In dogs with extrinsic denervation, capsaicin did not evoke giant migrating contractions in the colon but still induced defecation in 30-40% of experiments. In dogs with ileocolonic loops, capsaicin did not stimulate colonic motility nor induce defecation. These results indicate that intracolonic capsaicin causes giant migrating contractions and defecation. Intact extrinsic innervation, continuity of the colon, and intraluminal contents were considered necessary for this effect. Copyright 2010 Mosby, Inc. All rights reserved.

  11. Extraction and purification of capsaicin from capsicum oleoresin using an aqueous two-phase system combined with chromatography.

    PubMed

    Fan, Yong; Lu, Yan-Min; Yu, Bin; Tan, Cong-Ping; Cui, Bo

    2017-09-15

    Capsaicin was extracted from capsicum oleoresin using an aqueous two-phase system (ATPS) composed of an ethylene oxide-propylene oxide (EOPO) copolymer, salt and ethanol. Capsaicin was concentrated in the top polymer-rich phase. To determine the optimal conditions, the partitioning of capsaicin in the ATPS was investigated, considering a single-factor experiment including the salt concentration, polymer concentration, buffer pH, ethanol concentration, sample loading and extraction duration. Response surface methodology was applied to investigate the effects of the polymer concentration, buffer pH and sample loading on capsaicin partitioning. A capsaicin yield of 95.5% was obtained using the optimal extraction system, which consisted of 16.3% UCON 50-HB-5100/10% K 2 HPO 4 /1% ethanol, a buffer pH of 4.35 and 0.24g of capsicum oleoresin. Capsaicin was purified from the capsaicinoid extract using a two-step macroporous adsorption resin (MAR) method. After purification using non-polar MAR ADS-17, the recovery and purity of capsaicin were 83.7% and 50.3%, respectively. After purification using weakly polar MAR AB-8, the recovery and purity of capsaicin were 88.0% and 85.1%, respectively. Copyright © 2017. Published by Elsevier B.V.

  12. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures.

  13. Distinct Modulations of Human Capsaicin Receptor by Protons and Magnesium through Different Domains*

    PubMed Central

    Wang, Shu; Poon, Kinning; Oswald, Robert E.; Chuang, Huai-hu

    2010-01-01

    The capsaicin receptor (TRPV1) is a nonselective cation channel that integrates multiple painful stimuli, including capsaicin, protons, and heat. Protons facilitate the capsaicin- and heat-induced currents by decreasing thermal threshold or increasing agonist potency for TRPV1 activation (Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. (1998) Neuron 21, 531–543). In the presence of saturating capsaicin, rat TRPV1 (rTRPV1) reaches full activation, with no further stimulation by protons. Human TRPV1 (hTRPV1), a species ortholog with high homology to rTRPV1, is potentiated by extracellular protons and magnesium, even at saturating capsaicin. We investigated the structural basis for protons and magnesium modulation of fully capsaicin-bound human receptors. By analysis of chimeric channels between hTRPV1 and rTRPV1, we found that transmembrane domain 1–4 (TM1–4) of TRPV1 determines whether protons can further open the fully capsaicin-bound receptors. Mutational analysis identified a titratable glutamate residue (Glu-536) in the linker between TM3 and TM4 critical for further stimulation of fully liganded hTRPV1. In contrast, hTRPV1 TM5–6 is required for magnesium augmentation of capsaicin efficacy. Our results demonstrate that capsaicin efficacy of hTRPV1 correlates with the extracellular ion milieu and unravel the relevant structural basis of modulation by protons and magnesium. PMID:20145248

  14. Tacrolimus hydrate ointment inhibits skin plasma extravasation in rats induced by topical m-xylene but not capsaicin.

    PubMed

    Goto, Shiho; Kondo, Fumio; Ikai, Yoshitomo; Miyake, Mio; Futamura, Masaki; Ito, Komei; Sakamoto, Tatsuo

    2009-04-17

    Tacrolimus ointment is used to treat various chronic inflammatory skin diseases. However, the effect of this ointment on acute neurogenic inflammation in the skin remains to be fully elucidated. Topical capsaicin and m-xylene produce tachykinin release from sensory nerves in the skin, resulting in skin plasma leakage. We investigated the effect of tacrolimus ointment (0.1%) on skin microvascular leakage induced by topical capsaicin (10 mM) and m-xylene (neat), and intracutaneous compound 48/80 (c48/80) (10 microg/ml, 50 microl/site) in two groups of rats pretreated with excessive capsaicin or its vehicle. The amount of leaked Evans blue dye reflected skin plasma leakage. Capsaicin, m-xylene or c48/80 was applied to the shaved abdomens of rats 8 h after topical application of tacrolimus ointment or its base. Desensitization with capsaicin reduced the skin response to capsaicin and m-xylene by 100% and 65%, respectively, but not to c48/80. Tacrolimus ointment significantly inhibited the skin response induced by m-xylene and c48/80, regardless of pretreatment with capsaicin. However, topical tacrolimus did not influence the skin response induced by capsaicin. We also evaluated whether topical capsaicin and m-xylene, and intracutaneous c48/80 cause mast cell degranulation in skin treated with tacrolimus. Mast cell degranulation was microscopically assessed. Topical tacrolimus only significantly suppressed degranulation induced by m-xylene and c48/80. Our data shows that tacrolimus ointment partially inhibits plasma leakage and mast cell degranulation in rat skin induced by m-xylene and c48/80 but not capsaicin, suggesting that the inhibitory effect is not associated with a reduction in neurogenic-mediated mechanisms.

  15. Behavioral characteristics of capsaicin mediated cutaneous, myogenic, and arthrogenic orofacial nociception in rats.

    PubMed

    Rohrs, Eric L; Neubert, John K; Caudle, Robert M; Allen, Kyle D

    2018-04-30

    To assess changes in orofacial tactile sensitivity and gnawing related to capsaicin-mediated cutaneous, myogenic, and arthrogenic nociception in the rat. After recovery from anesthesia, orofacial tactile sensitivity and gnawing were assessed using operant testing methods following capsaicin application. Twenty female CD-Hairless rats were tested with bilateral capsaicin cream application to the cheek or with isoflurane anesthesia alone. Following several weeks of recovery, animals (n = 20) received either 10 μL unilateral masseter injections of vehicle, or phosphate buffered saline (PBS) to assess injection sensitization. After several weeks, masseter capsaicin (1.0%) injections (10 μL) were assessed compared to vehicle and PBS (n = 13). Weeks later capsaicin TMJ injections were evaluated. Animals (n = 11) received either 10 μL unilateral TMJ injections of capsaicin solution (1%) or vehicle. Capsaicin cream to the skin significantly altered gnawing activity (increased puncture time by 248 s (p = 0.0002)) and tactile sensitivity (decreased tolerated bottle distance by 0.980 cm compared to isoflurane only (p = 0.0001)). Similarly, capsaicin masseter injection increased puncture time (339.6 s, p = 0.07) and decreased tolerated bottle distance (1.04 cm, p = 0.005) compared to vehicle. However, intra-articular capsaicin in the TMJ only modified gnawing (increased puncture time by 133 s), with no changes found in tactile sensitivity compared to vehicle. Application of capsaicin to the skin and masseter had similar behavioral effects; however, intra-articular injections to the TMJ only affected gnawing. These data indicate the behavioral changes in rodent models of myogenic and cutaneous pain may be markedly different than models of arthrogenic pain originating from the TMJ. Copyright © 2018. Published by Elsevier Ltd.

  16. Influence of repeated infusion of capsaicin-contained red pepper sauce on esophageal secondary peristalsis in humans.

    PubMed

    Liu, T T; Yi, C H; Lei, W Y; Hung, X S; Yu, H C; Chen, C L

    2014-10-01

    The transient receptor potential vanilloid 1 has been implicated as a target mediator for heartburn perception and modulation of esophageal secondary peristalsis. Our aim was to determine the effect of repeated esophageal infusion of capsaicin-contained red pepper sauce on heartburn perception and secondary peristalsis in healthy adults. Secondary peristalsis was performed with mid-esophageal injections of air in 15 healthy adults. Two separate protocols including esophageal infusion with saline and capsaicin-contained red pepper sauce and 2 consecutive sessions of capsaicin-contained red pepper sauce were randomly performed. After repeated infusion of capsaicin-contained red pepper sauce, the threshold volume to activate secondary peristalsis was significantly increased during slow (p < 0.001) and rapid air injections (p = 0.004). Acute infusion of capsaicin-contained red pepper sauce enhanced heartburn perception (p < 0.001), but the intensity of heartburn perception was significantly reduced after repeated capsaicin-contained red pepper sauce infusion (p = 0.007). Acute infusion of capsaicin-contained red pepper sauce significantly increased pressure wave amplitudes of distal esophagus during slow (p = 0.003) and rapid air injections (p = 0.01), but repeated infusion of capsaicin-contained red pepper sauce significantly decreased pressure wave amplitude of distal esophagus during slow (p = 0.0005) and rapid air injections (p = 0.003). Repeated esophageal infusion of capsaicin appears to attenuate heartburn perception and inhibit distension-induced secondary peristalsis in healthy adults. These results suggest capsaicin-sensitive afferents in modulating sensorimotor function of secondary peristalsis in human esophagus. © 2014 John Wiley & Sons Ltd.

  17. Mechanisms underlying capsaicin effects in canine coronary artery: implications for coronary spasm

    PubMed Central

    Hiett, S. Christopher; Owen, Meredith K.; Li, Wennan; Chen, Xingjuan; Riley, Ashley; Noblet, Jillian; Flores, Sarah; Sturek, Michael; Tune, Johnathan D.; Obukhov, Alexander G.

    2014-01-01

    Aims The TRPV1, transient receptor potential vanilloid type 1, agonist capsaicin is considered to be beneficial for cardiovascular health because it dilates coronary arteries through an endothelial-dependent mechanism and may slow atheroma progression. However, recent reports indicate that high doses of capsaicin may constrict coronary arterioles and even provoke myocardial infarction. Thus far, the mechanisms by which TRPV1 activation modulates coronary vascular tone remain poorly understood. This investigation examined whether there is a synergistic interplay between locally acting vasoconstrictive pro-inflammatory hormones (autacoids) and capsaicin effects in the coronary circulation. Methods and results Experiments were performed in canine conduit coronary artery rings and isolated smooth muscle cells (CASMCs). Isometric tension measurements revealed that 1–10 μM capsaicin alone did not affect resting tension of coronary artery rings. In contrast, in endothelium-intact rings pre-contracted with a Gq/11-coupled FP/TP (prostaglandin F/thromboxane) receptor agonist, prostaglandin F2α (PGF2α; 10 μM), capsaicin first induced transient dilation that was followed by sustained contraction. In endothelium-denuded rings pre-contracted with PGF2α or thromboxane analogue U46619 (1 μM, a TP receptor agonist), capsaicin induced only sustained contraction. Blockers of the TP receptor or TRPV1 significantly inhibited capsaicin effects, but these were still observed in the presence of 50 μM nifedipine and 70 mM KCl. Capsaicin also potentiated 20 mM KCl-induced contractions. Fluorescence imaging experiments in CASMCs revealed that the Gq/11-phospholipase C (PLC)-protein kinase C (PKC) and Ca2+-PLC-PKC pathways are likely involved in sensitizing CASMC TRPV1 channels. Conclusion Capsaicin alone does not cause contractions in conduit canine coronary artery; however, pre-treatment with pro-inflammatory prostaglandin–thromboxane agonists may unmask capsaicin's vasoconstrictive potential. PMID:24935430

  18. Current Understanding of Antiobesity Property of Capsaicin

    PubMed Central

    Narang, Nithida; Jiraungkoorskul, Wannee; Jamrus, Parinda

    2017-01-01

    The capsaicin is an ingredient that we normally mix in food in many cultural cuisines even in fresh and dried production. Because of its anticancer, anticholesterolemic, antidiabetic, antihypertensive, anti-inflammatory, antimicrobial, and antioxidant properties, capsaicin is used worldwide. Moreover, capsaicin is also used for the protection of cardiovascular and hepatic diseases. The electronic databases PubMed, Scopus, Web of Science, Google Scholar, and ScienceDirect were searched since 2000 to present for antiobesity term. This review article is provided the update information about the antiobesity property and mechanism of capsaicin for further researches. PMID:28503049

  19. Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model

    DTIC Science & Technology

    2012-10-01

    W81XWH-10-2-0093 TITLE: Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model...2. REPORT TYPE Final 3. DATES COVERED (From - To) 30September2010-29September2012 4. TITLE AND SUBTITLE Use of the TRPV1 Agonist Capsaicin to...capsaicin around the fracture site. 15. SUBJECT TERMS Femur fracture, Rat Model, Pain, Capsaicin, Trauma, TRPV1 16. SECURITY CLASSIFICATION OF

  20. Anxiolytic efficacy of repeated oral capsaicin in rats with partial aberration of oral sensory relay to brain.

    PubMed

    Choi, Young-Jun; Kim, Jin Young; Jin, Wei-Peng; Kim, Yoon-Tae; Lee, Jong-Ho; Jahng, Jeong Won

    2015-07-01

    This study was conducted to examine if taste over load with oral capsaicin improves the adverse behavioural effects induced by partial aberration of oral sensory relays to brain with bilateral transections of the lingual and chorda tympani nerves. Male Sprague-Dawley rats received daily 1 ml of 0.02% capsaicin or water drop by drop into the oral cavity following the bilateral transections of the lingual and chorda tympani nerves. Rats were subjected to ambulatory activity, elevated plus maze and forced swim tests after 11th, 14th and 17th daily administration of capsaicin or water, respectively. The basal and stress-induced plasma corticosterone levels were examined after the end of behavioural tests. Ambulatory counts, distance travelled, centre zone activities and rearing were increased, and rostral grooming decreased, during the activity test in capsaicin treated rats. Behavioural scores of capsaicin rats during elevated plus maze test did not differ from control rats. Immobility during the swim test was decreased in capsaicin rats with near significance (P = 0.0547). Repeated oral capsaicin increased both the basal level and stress-induced elevation of plasma corticosterone in rats with bilateral transections of the lingual and chorda tympani nerves. It is concluded that repeated oral administration of capsaicin reduces anxiety-like behaviours in rats that received bilateral transections of the lingual and chorda tympani nerves, and that the increased corticosterone response, possibly modulating the hippocampal neural plasticity, may be implicated in the anxiolytic efficacy of oral capsaicin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    PubMed

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    PubMed

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  3. Tachykinin antagonists and capsaicin-induced contraction of the rat isolated urinary bladder: evidence for tachykinin-mediated cotransmission.

    PubMed

    Maggi, C A; Patacchini, R; Santicioli, P; Giuliani, S

    1991-06-01

    1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA. The response to bombesin was not affected by spantide, L-659,877 or MEN 10,376. 7 P2. purinoceptor desensitization by repeated administration of alpha,betal-methylene ATP depressed the twitch response to electrical stimulation of postganglionic nerves but did not affect the peak or the late response to capsaicin. 8. We conclude that multiple TKs are coreleased by capsaicin in the rat bladder and mediate the capsaicin-induced contraction by activating both NKI and NK2 receptors. Endogenous TK with preferential affinity for the NK, receptor (putatively SP) are selectively involved in the peak response to capsaicin while endogenous TK with preferential affinity for the NK2 receptor (putatively NKA) are selectively involved in the late response to capsaicin and partly contribute to the peak response. These findings provide pharmacological evidence for tachykinin-mediated cotransmission in the rat urinary bladder. ATP is unlikely to be involved in the efferent function of capsaicin-sensitive sensory nerves in the rat bladder.

  4. Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs.

    PubMed

    Lundberg, J M; Brodin, E; Saria, A

    1983-11-01

    The origin of substance P (SP)-immunoreactive neurons in the lower respiratory tract, esophagus and heart of guinea-pigs was demonstrated by surgical denervation or capsaicin pretreatment with subsequent determination of the tissue levels of SP by radioimmunoassay. In other experiments the effect of vagal nerve stimulation on the SP levels in these tissues was studied. The effects of capsaicin-sensitive afferents in the respiratory tract mucosa and bronchial smooth muscle was also studied by analysis of vascular permeability to Evans blue and insufflation-pressure changes. Our present data indicate that all SP nerves in the trachea and lung are afferent and capsaicin-sensitive. The trachea and stem bronchi receive SP afferents mainly from the right vagus nerve with cell bodies located in both the nodose and jugular ganglia. The SP innervation of the lung seems to have a dual origin: 1. Afferents from both vagal nerves with a crossed type of innervation pattern. 2. A non-vagal source which consists of about 40% of the SP nerves in the lung. These nerves probably originate from thoracic spinal ganglia. The effects of ether and capsaicin on insufflation pressure and increase in vascular permeability were dependent on the integrity of capsaicin-sensitive afferents of both vagal and non-vagal origin. In the guinea pig, systemic capsaicin pretreatment to adult animals seemed to result in irreversible changes in the respiratory tract, while in the rat a successive recovery of the functional response of capsaicin-sensitive afferents occurred. Different regimes of systemic capsaicin pretreatment induced different effects on the cholinergic (atropine-sensitive) insufflation-pressure response. Capsaicin pretreatment, using multiple injections over two days, depressed the cholinergic insufflation-pressure increase, while the cholinergic vagal component was unaffected in animals which received a single dose of capsaicin or local pretreatment with capsaicin on the vagal nerves. The local treatment was more effective with regard to SP depletion in target areas when using alcohol as solvent than when capsaicin was dissolved in paraffin oil, while the functional deficits were similar. The SP nerves in the esophagus were mainly of vagal afferent origin, while the heart atrium seemed to have a dual innervation by both vagal and non-vagal SP nerves.

  5. Glutamate Receptor GluA1 Subunit Is Implicated in Capsaicin Induced Modulation of Amygdala LTP but Not LTD

    ERIC Educational Resources Information Center

    Gebhardt, Christine; Albrecht, Doris

    2018-01-01

    Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by…

  6. The time course of brief and prolonged topical 8% capsaicin-induced desensitization in healthy volunteers evaluated by quantitative sensory testing and vasomotor imaging.

    PubMed

    Lo Vecchio, Silvia; Andersen, Hjalte Holm; Arendt-Nielsen, Lars

    2018-05-29

    Topically applied high-concentration capsaicin induces reversible dermo-epidermal denervation and depletion of capsaicin-sensitive nociceptors. This causes desensitization of distinct sensory modalities and is used to treat peripheral neuropathic pain and itch. For high-concentration capsaicin, the selectivity of loss of function and functional recovery rates of various afferent fibers subpopulations are unknown. This study used comprehensive quantitative sensory testing and vasomotor imaging to assess effectiveness, duration and sensory selectivity of high-concentration 8% capsaicin-ablation. Skin areas in 14 healthy volunteers were randomized to treatment with 8% capsaicin/vehicle patches for 1 and 24 h and underwent comprehensive sensory and vasomotor testing at 1, 7 and 21 days postpatch removal. Tests consisted of thermal detection and pain thresholds, tactile and vibration detection thresholds, mechanical pain threshold and mechanical pain sensitivity as well as micro-vascular and itch reactivity to histamine provocations. The 24 h capsaicin drastically inhibited warmth detection (P < 0.001), heat pain (P < 0.001) as well as histamine-induced itch (P < 0.05) and neurogenic flare (P < 0.001), but had no impact on tactile sensitivity, cold detection and cold pain. A marginal decrease in mechanical pain sensitivity was observed (P < 0.05). Capsaicin for 1 h had limited and transient sensory effects only affecting warmth and heat sensations. Time-dependent functional recovery was almost complete 21 days after the 24 h capsaicin exposure, while recovery of neurogenic inflammatory responsiveness remained partial. The psychophysically assessed sensory deficiencies induced by the used 8% capsaicin-ablation correspond well with a predominant effect on TRPV1 + -cutaneous fibers. The method is easy to apply, well tolerated, and utilizable for studies on, e.g., interactions between skin barrier, inflammation and capsaicin-sensitive afferents.

  7. The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice.

    PubMed

    Kadekawa, Katsumi; Majima, Tsuyoshi; Shimizu, Takahiro; Wada, Naoki; de Groat, William C; Kanai, Anthony J; Goto, Momokazu; Yoshiyama, Mitsuharu; Sugaya, Kimio; Yoshimura, Naoki

    2017-09-01

    We examined bladder and urethral sphincter activity in mice with or without spinal cord injury (SCI) after C-fiber afferent desensitization induced by capsaicin pretreatment and changes in electrophysiological properties of mouse bladder afferent neurons 4 wk after SCI. Female C57BL/6N mice were divided into four groups: 1 ) spinal intact (SI)-control, 2 ) SI-capsaicin pretreatment (Cap), 3 ) SCI-control, and 4 ) SCI-Cap groups. Continuous cystometry and external urethral sphincter (EUS)-electromyogram (EMG) were conducted under an awake condition. In the Cap groups, capsaicin (25, 50, or 100 mg/kg) was injected subcutaneously 4 days before the experiments. In the SI-Cap group, 100 mg/kg capsaicin pretreatment significantly increased bladder capacity and decreased the silent period duration of EUS/EMG compared with the SI-control group. In the SCI-Cap group, 50 and 100 mg/kg capsaicin pretreatment decreased the number of nonvoiding contractions (NVCs) and the duration of reduced EUS activity during voiding, respectively, compared with the SCI-control group. In SCI mice, hexamethonium, a ganglionic blocker, almost completely blocked NVCs, suggesting that they are of neurogenic origin. Patch-clamp recordings in capsaicin-sensitive bladder afferent neurons from SCI mice showed hyperexcitability, which was evidenced by decreased spike thresholds and increased firing rate compared with SI mice. These results indicate that capsaicin-sensitive C-fiber afferent pathways, which become hyperexcitable after SCI, can modulate bladder and urethral sphincter activity in awake SI and SCI mice. Detrusor overactivity as shown by NVCs in SCI mice is significantly but partially dependent on capsaicin-sensitive C-fiber afferents, whereas the EUS relaxation during voiding is enhanced by capsaicin-sensitive C-fiber bladder afferents in SI and SCI mice. Copyright © 2017 the American Physiological Society.

  8. Role of the NH2-terminus of substance P in the inhibition by capsaicin of behavioral sensitization to kainic acid-induced activity in the adult mouse.

    PubMed

    Larson, A A; Sun, X

    1994-01-01

    Activation of primary afferent C-fibers by repeated intrathecal injection of kainic acid (KA) in mice is inhibited after pretreatment with capsaicin. The increased behavioral response to multiple injections of KA is thought to be brought about by an action of the NH2-terminus of substance P (SP). In light of our recent observation that the antinociceptive effect of capsaicin may also involve an action of the NH2-terminus of SP, we tested the hypothesis that capsaicin inhibits behavioral sensitization to KA by a desensitization to the action of the NH2-terminus of SP. Using adult mice, pretreatment (24 hr) with either capsaicin (0.8 micrograms) or SP(1-7) (1 and 10 nmol) attenuated sensitization of the behavioral response to four injections of 25 pmol of KA at 2-min intervals. Pretreatment with 10 nmol of the COOH-terminal SP fragment, SP(5-11), had no effect. [D-Pro2,D-Phe7]-SP(1-7), a SP NH2-terminal antagonist, injected 5 min before capsaicin or SP(1-7), inhibited the effects of both capsaicin and SP(1-7) on KA sensitization whereas the COOH-terminal neurokinin antagonist, [D-Pro2,D-Trp7,9]-SP, did not. The similarities in behavioral responses after treatment with SP(1-7) or capsaicin, together with the sensitivity of these effects to D-SP(1-7), suggest that SP released in response to capsaicin may inhibit subsequent KA-induced activity 24 hr later. This action of SP appears to be brought about by its NH2-terminus and/or an accumulation of its NH2-terminal metabolites after capsaicin treatment.

  9. Unravelling the Mystery of Capsaicin: A Tool to Understand and Treat Pain

    PubMed Central

    Brock, Christina; Olesen, Anne Estrup; Andresen, Trine; Nilsson, Matias; Dickenson, Anthony H.

    2012-01-01

    A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes. PMID:23023032

  10. Capsicum and capsaicin--a review: case report of the use of hot peppers in child abuse.

    PubMed

    Tominack, R L; Spyker, D A

    1987-01-01

    Capsaicin, the active principle of hot peppers of the genus Capsicum, exhibits broad bioactivity. It targets neuronal structures which contain substance P, clinically seen as gastrointestinal and dermatologic irritation, bronchospasm and fibrinolysis. As a research tool, capsaicin profoundly alters neurologic anatomy and function. We review the toxicity of capsaicin and comment briefly on the use of hot peppers in child abuse.

  11. Effects of Capsaicin on Older Patients with Oropharyngeal Dysphagia: A Double-Blind, Placebo-Controlled, Crossover Study.

    PubMed

    Nakato, Rui; Manabe, Noriaki; Shimizu, Sayako; Hanayama, Kozo; Shiotani, Akiko; Hata, Jiro; Haruma, Ken

    2017-01-01

    The standard of care for older patients with oropharyngeal dysphagia (OD) is poor. Stimulation of transient receptor potential vanilloid 1 might become a pharmacological strategy for these patients. This study aimed to compare the therapeutic effect of film food containing 0.75 µg of capsaicin in these patients. In a crossover, randomized trial, 49 patients with OD were provided capsaicin or identical placebo at least 7 days apart. Patients' reported symptoms during repeated swallowing, the volume, pH and substance P (SP) concentrations in saliva, and cervical esophageal wall motion evaluated by ultrasonographic tissue Doppler imaging were obtained before and after capsaicin or placebo administration. Significantly more patients with OD who took capsaicin experienced improvement in symptoms than those who took placebo. Salivary SP levels were significantly increased after capsaicin administration compared with placebo in the effective group. The duration of cervical esophageal wall opening was significantly shorter in capsaicin administration in the effective group. Furthermore, a significant negative correlation was found between the duration of cervical esophageal wall opening and salivary SP levels. Elevated salivary SP concentrations stimulated by capsaicin greatly improve the safety and efficacy of swallowing, and shorten the swallow response in older patients with OD. © 2017 S. Karger AG, Basel.

  12. Early experience of intra-ureteric capsaicin infusion in loin pain haematuria syndrome.

    PubMed

    Armstrong, T; McLean, A D; Hayes, M; Morgans, B T; Tulloch, D N

    2000-02-01

    To evaluate early results of the intra-ureteric instillation of capsaicin for the treatment of loin pain haematuria syndrome (LPHS). Ten patients with LPHS were treated using intra-ureteric capsaicin instillation. A solution of capsaicin was infused into the affected ureter through an embolectomy catheter, under anaesthesia. The success of the treatment was assessed using patient questionnaires and the quantitative reduction in the patients' analgesic requirements measured. During a mean follow-up of 6 months, six of the 10 patients had short- to medium-term symptomatic relief after one or more treatments; four had no relief from their symptoms. One patient had a mucosal ulceration in the bladder after extravasation of the capsaicin solution. Two patients subsequently underwent simple nephrectomy for symptomatic nonfunctioning kidneys. These results are consistent with other preliminary reports of the efficacy of capsaicin treatment in LPHS and such treatment therefore has a definite therapeutic role in this difficult condition. We are uncertain if the treatment contributed to the deterioration of the excised kidneys. This early experience suggests a need for careful consideration when contemplating this treatment, with attention directed to both the initial diagnosis and possibly the technique of capsaicin/instillation. We include a protocol to follow when preparing patients for capsaicin treatment.

  13. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.

    PubMed

    Jeong, Keun-Yeong; Seong, Jinsil

    2014-06-15

    The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Capsaicin pre- and post-treatment on rat monocrotaline pneumotoxicity.

    PubMed

    Katzman, N J; Lai, Y L

    2000-12-31

    Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.

  15. Capsaicin in Metabolic Syndrome

    PubMed Central

    Bliss, Edward

    2018-01-01

    Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major components of metabolic syndrome, increase the risk for the development of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as browning of adipocytes, and activation of metabolic modulators including AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1), and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function. Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical use through the activation of TRPV1. This review highlights the mechanistic options to improve metabolic syndrome with capsaicin. PMID:29772784

  16. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    PubMed Central

    Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures. PMID:26053297

  17. Capsaicin in Metabolic Syndrome.

    PubMed

    Panchal, Sunil K; Bliss, Edward; Brown, Lindsay

    2018-05-17

    Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major components of metabolic syndrome, increase the risk for the development of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as browning of adipocytes, and activation of metabolic modulators including AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1), and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function. Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical use through the activation of TRPV1. This review highlights the mechanistic options to improve metabolic syndrome with capsaicin.

  18. Contribution of capsaicin-sensitive primary afferents to mechanical hyperalgesia induced by ventral root transection in rats: the possible role of BDNF.

    PubMed

    Li, Wei; Wang, Jian-Xiu; Zhou, Zhong-He; Lu, Yao; Li, Xiao-Qiu; Liu, Bao-Jun; Chen, Hui-Sheng

    2016-01-01

    A recent study showed that brain-derived neurotrophic factor (BDNF) may play a role in the development of the neuropathic pain resulting from injury to motor efferent fibres, such as that in the ventral root transection (VRT) model. Capsaicin stimulation of afferent fibres was also shown to result in the release of BDNF into the spinal cord. Here, the effects of ablation of capsaicin-sensitive primary afferents (CSPAs) by local application of capsaicin on the sciatic nerve on VRT-induced mechanical hyperalgesia were observed. The paw withdrawal mechanical threshold (PWMT) was measured before and then 1 and 3 days and 1, 2, 3, 4 and 6 weeks after VRT. The results showed that local application of capsaicin significantly inhibited the decrease in the PWMT induced by VRT, suggesting the inhibitory effect of locally delivered capsaicin. Furthermore, intrathecal administration of exogenous BDNF not only produced mechanical hyperalgesia but also significantly blocked the inhibitory effect of capsaicin. Taken together, the results of this study suggest that CSPA fibres may contribute to mechanical hyperalgesia in the VRT model.

  19. The effect of capsaicin application on mast cells in normal human skin.

    PubMed

    Bunker, C B; Cerio, R; Bull, H A; Evans, J; Dowd, P M; Foreman, J C

    1991-05-01

    Peptides released from sensory nerves during an axon reflex are thought to cause mast cell degranulation, histamine (Hi) release and Hi-induced vasodilatation leading to the flare of the triple response. Capsaicin stimulates peptide release from sensory neurones and causes flare in vivo but does not cause Hi release from mast cells in vitro. The effects of capsaicin on mast cell degranulation in human skin in vivo has been studied by histological examination of skin biopsies after topical capsicin (1%) treatment of stratum corneum-denuded forearm in four volunteers. The results show a significant reduction in the visible numbers of mast cells and the appearance of degranulated mast cells ghosts in the skin six hours after capsaicin application. Since capsaicin itself does not release Hi from mast cells, these data suggest that capsaicin-induced release of peptides from neurones could cause mast cell degranulation.

  20. Capsaicin-enriched diet ameliorates autoimmune neuritis in rats.

    PubMed

    Motte, Jeremias; Ambrosius, Björn; Grüter, Thomas; Bachir, Hussein; Sgodzai, Melissa; Pedreiturria, Xiomara; Pitarokoili, Kalliopi; Gold, Ralf

    2018-04-24

    Autoimmune neuropathies are common PNS disorders and effective treatment is challenging. Environmental influence and dietary components are known to affect the course of autoimmune diseases. Capsaicin as pungent component of chili-peppers is common in human nutrition. An influence of capsaicin on autoimmune diseases has been postulated. We tested capsaicin in the animal model of experimental autoimmune neuritis (EAN) in Lewis rat. Rats were immunized with P2-peptide and were treated with capsaicin in different preventive settings. Electrophysiological, histological, and molecular biological analyses of the sciatic nerve were performed to analyze T-cell and macrophage cell count, TRPV1, and cytokine expression. Moreover, FACS analyses including the intestinal immune system were executed. We observed an immunomodulatory effect of an early preventive diet-concept, where a physiological dosage of oral capsaicin was given 10 days before immunization in EAN. A reduced inflammation of the sciatic nerve was significant detectable clinically, electrophysiologically (CMAPs reduced in control group p < 0.01; increase of nerve conduction blocks in control group p < 0.05), histologically (significant reduction of T-cells, macrophages and demyelination), and at cytokine level. In contrast, this therapeutic effect was missing with capsaicin given from the day of immunization onwards. As possible underlying mechanism, we were able to show changes in the expression of the capsaicin receptor in the sciatic nerve and the small intestine, as well as altered immune cell populations in the small intestine. This is the first report about the immunomodulatory effect of the common nutrient, capsaicin, in an experimental model for autoimmune neuropathies.

  1. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations

    PubMed Central

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir

    2012-01-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate. PMID:22412190

  2. Novel Approaches to Extraction Methods in Recovery of Capsaicin from Habanero Pepper (CNPH 15.192).

    PubMed

    Martins, Frederico S; Borges, Leonardo L; Ribeiro, Claudia S C; Reifschneider, Francisco J B; Conceição, Edemilson C

    2017-07-01

    The objective of this study was to compare three capsaicin extraction methods: Shoxlet, Ultrasound-assisted Extraction (UAE), and Shaker-assisted Extraction (SAE) from Habanero pepper, CNPH 15.192. The different parameters evaluated were alcohol degree, time extraction, and solid-solvent ratio using response surface methodology (RSM). The three parameters found significant ( p < 0.05) were for UAE and solvent concentration and extraction time for SAE. The optimum conditions for the capsaicin UAE and SAE were similar 95% alcohol degree, 30 minutes and solid-liquid ratio 2 mg/mL. The Soxhlet increased the extraction in 10-25%; however, long extraction times (45 minutes) degraded 2% capsaicin. The extraction of capsaicin was influenced by extraction method and by the operating conditions chosen. The optimized conditions provided savings of time, solvent, and herbal material. Prudent choice of the extraction method is essential to ensure optimal yield of extract, thereby making the study relevant and the knowledge gained useful for further exploitation and application of this resource. Habanero pepper , line CNPH 15.192, possess capsaicin in higher levels when compared with others speciesHigher levels of ethanolic strength are more suitable to obtain a higher levels of capsaicinBox-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction of capsaicin. Abbreviations used: Nomenclature UAE: Ultrasound-assisted Extraction; SAE: Shaker-assisted Extraction.

  3. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice.

    PubMed

    Luo, Zhidan; Ma, Liqun; Zhao, Zhigang; He, Hongbo; Yang, Dachun; Feng, Xiaoli; Ma, Shuangtao; Chen, Xiaoping; Zhu, Tianqi; Cao, Tingbing; Liu, Daoyan; Nilius, Bernd; Huang, Yu; Yan, Zhencheng; Zhu, Zhiming

    2012-03-01

    Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance.

  4. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway.

    PubMed

    Lin, Yu-Tsai; Wang, Hung-Chen; Hsu, Yi-Chiang; Cho, Chung-Lung; Yang, Ming-Yu; Chien, Chih-Yen

    2017-06-23

    Capsaicin is a potential chemotherapeutic agent for different human cancers. In Southeast China, nasopharyngeal carcinoma (NPC) has the highest incidence of all cancers, but final treatment outcomes are unsatisfactory. However, there is a lack of information regarding the anticancer activity of capsaicin in NPC cells, and its effects on the signaling transduction pathways related to apoptosis and autophagy remain unclear. In the present study, the precise mechanisms by which capsaicin exerts anti-proliferative effects, cell cycle arrest, autophagy and apoptosis were investigated in NPC-TW01 cells. Exposure to capsaicin inhibited cancer cell growth and increased G1 phase cell cycle arrest. Western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to measure capsaicin-induced autophagy via involvement of the class III PI3K/Beclin-1/Bcl-2 signaling pathway. Capsaicin induced autophagy by increasing levels of the autophagy markers LC3-II and Atg5, enhancing p62 and Fap-1 degradation and increasing caspase-3 activity to induce apoptosis, suggesting a correlation of blocking the PI3K/Akt/mTOR pathway with the above-mentioned anticancer activities. Taken together, these data confirm that capsaicin inhibited the growth of human NPC cells and induced autophagy, supporting its potential as a therapeutic agent for cancer.

  5. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells.

    PubMed

    Kim, Young Min; Hwang, Jin-Taek; Kwak, Dong Wook; Lee, Yun Kyung; Park, Ock Jin

    2007-01-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is activated during ATP-depleting metabolic states, such as hypoxia, heat shock, oxidative stress, and exercise. As a highly conserved heterotrimeric kinase that functions as a major metabolic switch to maintain energy homeostasis, AMPK has been shown to exert as an intrinsic regulator of mammalian cell cycle. Moreover, AMPK cascade has emerged as an important pathway implicated in cancer control. In this article, we have investigated the effects of capsaicin on apoptosis in relation to AMPK activation in colon cancer cell. Capsaicin-induced apoptosis was revealed by the presence of nucleobodies in the capsaicin-treated HT-29 colon cancer cells. Concomitantly, the activation of AMPK and the increased expression of the inactive form of acetyl-CoA carboxylase (ACC) were detected in capsaicin-treated colon cancer cells. We showed that both capsaicin and 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an AMPK activator possess the AMPK-activating capacity as well as apoptosis-inducing properties. Evidence of the association between AMPK activation and the increased apoptosis in HT-29 colon cancer cells by capsaicin treatment, and further findings of the correlation of the activated AMPK and the elevated apoptosis by cotreatment of AICAR and capsaicin support AMPK as an important component of apoptosis, as well as a possible target of cancer control.

  6. The Effects of Pregabalin and the Glial Attenuator Minocycline on the Response to Intradermal Capsaicin in Patients with Unilateral Sciatica

    PubMed Central

    Sumracki, Nicole M.; Hutchinson, Mark R.; Gentgall, Melanie; Briggs, Nancy; Williams, Desmond B.; Rolan, Paul

    2012-01-01

    Background Patients with unilateral sciatica have heightened responses to intradermal capsaicin compared to pain-free volunteers. No studies have investigated whether this pain model can screen for novel anti-neuropathic agents in patients with pre-existing neuropathic pain syndromes. Aim This study compared the effects of pregabalin (300 mg) and the tetracycline antibiotic and glial attenuator minocycline (400 mg) on capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia in patients with unilateral sciatica on both their affected and unaffected leg. Methods/Results Eighteen patients with unilateral sciatica completed this randomised, double-blind, placebo-controlled, three-way cross-over study. Participants received a 10 µg dose of capsaicin into the middle section of their calf on both their affected and unaffected leg, separated by an interval of 75 min. Capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were recorded pre-injection and at 5, 20, 40, 60 and 90 min post-injection. Minocycline tended to reduce pre-capsaicin injection values of hyperalgesia in the affected leg by 28% (95% CI 0% to 56%). The area under the effect time curves for capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were not affected by either treatment compared to placebo. Significant limb differences were observed for flare (AUC) (−38% in affected leg, 95% CI for difference −19% to −52%). Both hand dominance and sex were significant covariates of response to capsaicin. Conclusions It cannot be concluded that minocycline is unsuitable for further evaluation as an anti-neuropathic pain drug as pregabalin, our positive control, failed to reduce capsaicin-induced neuropathic pain. However, the anti-hyperalgesic effect of minocycline observed pre-capsaicin injection is promising pilot information to support ongoing research into glial-mediated treatments for neuropathic pain. The differences in flare response between limbs may represent a useful biomarker to further investigate neuropathic pain. Inclusion of a positive control is imperative for the assessment of novel therapies for neuropathic pain. PMID:22685578

  7. The Effects of Capsaicin and Capsiate on Energy Balance: Critical Review and Meta-analyses of Studies in Humans

    PubMed Central

    Ludy, Mary-Jon; Moore, George E.

    2012-01-01

    Consumption of spicy foods containing capsaicin, the major pungent principle in hot peppers, reportedly promotes negative energy balance. However, many individuals abstain from spicy foods due to the sensory burn and pain elicited by the capsaicin molecule. A potential alternative for nonusers of spicy foods who wish to exploit this energy balance property is consumption of nonpungent peppers rich in capsiate, a recently identified nonpungent capsaicin analog contained in CH-19 Sweet peppers. Capsiate activates transient receptor potential vanilloid subtype 1 (TRPV1) receptors in the gut but not in the oral cavity. This paper critically evaluates current knowledge on the thermogenic and appetitive effects of capsaicin and capsiate from foods and in supplemental form. Meta-analyses were performed on thermogenic outcomes, with a systematic review conducted for both thermogenic and appetitive outcomes. Evidence indicates that capsaicin and capsiate both augment energy expenditure and enhance fat oxidation, especially at high doses. Furthermore, the balance of the literature suggests that capsaicin and capsiate suppress orexigenic sensations. The magnitude of these effects is small. Purposeful inclusion of these compounds in the diet may aid weight management, albeit modestly. PMID:22038945

  8. The capsaicin cough reflex in eczema patients with respiratory symptoms elicited by perfume.

    PubMed

    Elberling, Jesper; Dirksen, Asger; Johansen, Jeanne Duus; Mosbech, Holger

    2006-03-01

    Respiratory symptoms elicited by perfume are common in the population but have unclear pathophysiology. Increased capsaicin cough responsiveness has been associated with the symptoms, but it is unknown whether the site of the symptoms in the airways influences this association. The aim of this study was to investigate the association between the site of airway symptoms elicited by perfume and cough responsiveness to bronchial challenge with capsaicin. 21 eczema patients with respiratory symptoms elicited by perfume were compared with 21 healthy volunteers in a sex- and age-matched case control study. The participants completed a symptom questionnaire and underwent a bronchial challenge with capsaicin. Lower, but not upper, respiratory symptoms elicited by perfume were associated with increased capsaicin cough responsiveness. Having severe symptoms to perfume (n=11) did not relate to the site of the symptoms in the airways and was not associated with increased capsaicin cough responsiveness. In conclusion, respiratory symptoms elicited by perfume may reflect local hyperreactivity related to defensive reflexes in the airways, and measurements of the capsaicin cough reflex are relevant when patients with lower respiratory symptoms related to environmental perfume exposures are investigated.

  9. Supercritical CO2 as a reaction medium for synthesis of capsaicin analogues by lipase-catalyzed transacylation of capsaicin.

    PubMed

    Kobata, Kenji; Kobayashi, Mamiko; Kinpara, Sachiyo; Watanabe, Tatsuo

    2003-09-01

    Capsaicin analogues having different acyl moiety were synthesized by lipase-catalyzed transacylation of capsaicin with a corresponding acyl donor in supercritical CO2 as a reaction medium. Transacylation with methyl tetradecanoate using Novozym 435 as a catalyst gave vanillyl tetradecanamide in a 54% yield at 80 degrees C and 19 MPa over 72 h. Vanillyl (Z)-9-octadecenamide, olvanil, was synthesized from triolein in a 21% yield over 7 d.

  10. Psychophysical and vasomotor evidence for interdependency of TRPA1 and TRPV1 nociceptive responses in human skin: an experimental study.

    PubMed

    Nielsen, Thomas Arendt; Eriksen, Matilde Alida; Gazerani, Parisa; Andersen, Hjalte Holm

    2018-05-25

    The TRPA1 and TRPV1 receptors are important pharmaceutical targets for antipruritic and analgesic therapy. Obtaining further knowledge on their roles and inter-relationship in humans is therefore crucial. Preclinical results are contradictory concerning co-expression and functional interdependency of TRPV1 and TRPA1 but no human evidence exists. This human experimental study investigated whether functional responses from the subpopulation of TRPA1-nociceptors could be evoked following defunctionalization of TRPV1-nociceptors by cutaneous application of high-concentration capsaicin. Two quadratic areas on each forearm were randomized to pretreatment with an 8% topical capsaicin patch or vehicle for 24h. Subsequently, areas were provoked by transdermal 1% topical capsaicin (TRPV1 agonist) or 10% topical allyl-isothiocyanate ('AITC', a TRPA1-agonist), delivered by 12mm Finn chambers. Evoked pain intensities were recorded during pretreatments and chemical provocations. Quantitative sensory tests were performed before and after provocations to assess changes of heat pain sensitivity. Imaging of vasomotor responses was used to assess neurogenic inflammation after the chemical provocations. In the capsaicin-pretreated areas both the subsequent 1% capsaicin- and 10% AITC-provoked pain intensities were inhibited by 92.9±2.5% and 86.9±5.0% (both: P<0.001), respectively. The capsaicin-ablated skin areas showed significant heat hypoalgesia at baseline (P<0.001) as well as heat antihyperalgesia, and inhibition of neurogenic inflammation evoked by both 1% capsaicin- and 10% AITC provocations (both: P<0.001). Ablation of capsaicin-sensitive afferents caused consistent and equal inhibition of both TRPV1 and TRPA1-provoked responses assessed psychophysically and by imaging of vasomotor responses. The present study suggests that TRPA1 nociceptive responses in human skin strongly depend on intact capsaicin-sensitive, TPRV1 fibers.

  11. Capsaicin affects brain function in a model of hepatic encephalopathy associated with fulminant hepatic failure in mice

    PubMed Central

    Avraham, Y; Grigoriadis, NC; Magen, I; Poutahidis, T; Vorobiav, L; Zolotarev, O; Ilan, Y; Mechoulam, R; Berry, EM

    2009-01-01

    Background and purpose: Hepatic encephalopathy is a neuropsychiatric syndrome caused by liver failure. In view of the effects of cannabinoids in a thioacetamide-induced model of hepatic encephalopathy and liver disease and the beneficial effect of capsaicin (a TRPV1 agonist) in liver disease, we assumed that capsaicin may also affect hepatic encephalopathy. Experimental approach: Fulminant hepatic failure was induced in mice by thioacetamide and 24 h later, the animals were injected with one of the following compound(s): 2-arachidonoylglycerol (CB1, CB2 and TRPV1 receptor agonist); HU308 (CB2 receptor agonist), SR141716A (CB1 receptor antagonist); SR141716A+2-arachidonoylglycerol; SR144528 (CB2 receptor antagonist); capsaicin; and capsazepine (TRPV1 receptor agonist and antagonist respectively). Their neurological effects were evaluated on the basis of activity in the open field, cognitive function in an eight-arm maze and a neurological severity score. The mice were killed 3 or 14 days after thioacetamide administration. 2-arachidonoylglycerol and 5-hydroxytryptamine (5-HT) levels were determined by gas chromatography-mass spectrometry and high-performance liquid chromatography with electrochemical detection, respectively. Results: Capsaicin had a neuroprotective effect in this animal model as shown by the neurological score, activity and cognitive function. The effect of capsaicin was blocked by capsazepine. Thioacetamide induced astrogliosis in the hippocampus and the cerebellum and raised brain 5-hydroxytryptamine levels, which were decreased by capsaicin, SR141716A and HU-308. Thioacetamide lowered brain 2-arachidonoylglycerol levels, an effect reversed by capsaicin. Conclusions: Capsaicin improved both liver and brain dysfunction caused by thioacetamide, suggesting that both the endocannabinoid and the vanilloid systems play important roles in hepatic encephalopathy. Modulation of these systems may have therapeutic value. PMID:19764982

  12. Tachykinin antagonists and capsaicin-induced contraction of the rat isolated urinary bladder: evidence for tachykinin-mediated cotransmission.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Santicioli, P.; Giuliani, S.

    1991-01-01

    1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1715797

  13. Identifying the integrated neural networks involved in capsaicin-induced pain using fMRI in awake TRPV1 knockout and wild-type rats

    PubMed Central

    Yee, Jason R.; Kenkel, William; Caccaviello, John C.; Gamber, Kevin; Simmons, Phil; Nedelman, Mark; Kulkarni, Praveen; Ferris, Craig F.

    2015-01-01

    In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1). Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type vs. knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain. PMID:25745388

  14. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.

    PubMed

    Yamakawa, Kazuya; Matsuo, Junji; Okubo, Torahiko; Nakamura, Shinji; Yamaguchi, Hiroyuki

    2018-02-01

    Chlamydia trachomatis is the leading cause of sexually transmitted infections worldwide. Capsaicin, a component of chili pepper, which can stimulate actin remodeling via capsaicin receptor TRPV1 (transient receptor potential vanilloid 1) and anti-inflammatory effects via PPARγ (peroxisome proliferator-activated receptor-γ) and LXRα (liver X receptor α), is a potential candidate to control chlamydial growth in host cells. We examined whether capsaicin could inhibit C. trachomatis growth in immortal human epithelial HeLa cells. Inclusion forming unit and quantitative PCR assays showed that capsaicin significantly inhibited bacterial growth in cells in a dose-dependent manner, even in the presence of cycloheximide, a eukaryotic protein synthesis inhibitor. Confocal microscopic and transmission electron microscopic observations revealed an obvious decrease in bacterial numbers to inclusions bodies formed in the cells. Although capsaicin can stimulate the apoptosis of cells, no increase in cleaved PARP (poly (ADP-ribose) polymerase), an apoptotic indicator, was observed at a working concentration. All of the drugs tested (capsazepine, a TRPV1 antagonist; 5CPPSS-50, an LXRα inhibitor; and T0070907, a PPARγ inhibitor) had no effect on chlamydial inhibition in the presence of capsaicin. In addition, we also confirmed that capsaicin inhibited Chlamydia pneumoniae growth, indicating a phenomena not specific to C. trachomatis. Thus, we conclude that capsaicin can block chlamydial growth without the requirement of host cell protein synthesis, but by another, yet to be defined, mechanism. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Altered respiratory response to substance P in capsaicin-treated rats.

    PubMed

    Towle, A C; Mueller, R A; Breese, G R; Lauder, J

    1985-01-01

    The present investigation sought to examine the importance of substance P in the altered respiratory activity after neonatal capsaicin administration. Halothane-anesthetized adult rats given capsaicin neonatally exhibit a decreased basal minute ventilation with PaCO2 equal to and PaO2 greater than vehicle injected controls. In addition, the minute ventilation-PaCO2 curve was displaced to the right. Acute bilateral cervical vagotomy severely blunted the minute ventilation response to PaCO2 and abolished the differences in ventilation between capsaicin treated and control rats. Neonatal capsaicin significantly reduced pons-medulla substance P content but not TRH, serotonin or 5-hydroxyindole acetic acid. Immunohistochemical studies revealed that substance P fibers of the trigeminal spinal nucleus were the most severely affected in the brain stem and that substance P fibers in the lung were totally absent. The intracerebroventricular administration of substance P increased minute ventilation similarly in both control and capsaicin treated rats, largely as a result of increases in tidal volume. The minute ventilation-PaCO2 curve was similar in both groups after substance P administration. Simultaneous administration of the peptidase inhibitor captopril with substance P increased the respiratory response to substance P in normal rats. Administration of captopril to capsaicin treated rats restored the ventilation-PaCO2 curve to the position observed in normal rats. The hypotensive response to intracerebroventricular captopril alone in control rats was less profound in rats given neonatal capsaicin. These results are consistent with the thesis that respiratory depression after capsaicin treatment is at least in part due to the loss of substance P primary afferent nerve terminals in the brain stem, suggesting that substance P fibers in the brain stem may participate in the normal modulation of respiratory activity.

  16. Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs

    PubMed Central

    Mazzone, Stuart B; Mori, Nanako; Canning, Brendan J

    2005-01-01

    Cough initiated from the trachea and larynx in anaesthetized guinea-pigs is mediated by capsaicin-insensitive, mechanically sensitive vagal afferent neurones. Tachykinin-containing, capsaicin-sensitive C-fibres also innervate the airways and have been implicated in the cough reflex. Capsaicin-sensitive nerves act centrally and synergistically to modify reflex bronchospasm initiated by airway mechanoreceptor stimulation. The hypothesis that polymodal mechanoreceptors and capsaicin-sensitive afferent nerves similarly interact centrally to regulate coughing was addressed in this study. Cough was evoked from the tracheal mucosa either electrically (16 Hz, 10 s trains, 1–10 V) or by citric acid (0.001–2 m). Neither capsaicin nor bradykinin evoked a cough when applied to the trachea of anaesthetized guinea-pigs, but they substantially reduced the electrical threshold for initiating the cough reflex. The TRPV1 receptor antagonist capsazepine prevented the increased cough sensitivity induced by capsaicin. These effects of topically applied capsaicin and bradykinin were not due to interactions between afferent nerve subtypes within the tracheal wall or a direct effect on the cough receptors, as they were mimicked by nebulizing 1 mg ml−1 bradykinin into the lower airways and by microinjecting 0.5 nmol capsaicin into nucleus of the solitary tract (nTS). Citric acid-induced coughing was also potentiated by inhalation of bradykinin. The effects of tracheal capsaicin challenge on cough were mimicked by microinjecting substance P (0.5–5 nmol) into the nTS and prevented by intracerebroventricular administration (20 nmol h−1) of the neurokinin receptor antagonists CP99994 or SB223412. Tracheal application of these antagonists was without effect. C-fibre activation may thus sensitize the cough reflex via central mechanisms. PMID:16051625

  17. Capsaicin pretreatment enhanced the bioavailability of fexofenadine in rats by P-glycoprotein modulation: in vitro, in situ and in vivo evaluation.

    PubMed

    Bedada, Satish Kumar; Appani, Ramgopal; Boga, Praveen Kumar

    2017-06-01

    Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats. The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats. The intestinal transport and apparent permeability (P app ) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (K a ), fraction absorbed (F ab ) and effective permeability (P eff ) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (C max ) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats. Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.

  18. Capsaicin: Friend or Foe in Skin Cancer and Other Related Malignancies?

    PubMed

    Georgescu, Simona-Roxana; Sârbu, Maria-Isabela; Matei, Clara; Ilie, Mihaela Adriana; Caruntu, Constantin; Constantin, Carolina; Neagu, Monica; Tampa, Mircea

    2017-12-16

    Capsaicin is the main pungent in chili peppers, one of the most commonly used spices in the world; its analgesic and anti-inflammatory properties have been proven in various cultures for centuries. It is a lipophilic substance belonging to the class of vanilloids and an agonist of the transient receptor potential vanilloid 1 receptor. Taking into consideration the complex neuro-immune impact of capsaicin and the potential link between inflammation and carcinogenesis, the effect of capsaicin on muco-cutaneous cancer has aroused a growing interest. The aim of this review is to look over the most recent data regarding the connection between capsaicin and muco-cutaneous cancers, with emphasis on melanoma and muco-cutaneous squamous cell carcinoma.

  19. Resolution of cannabis hyperemesis syndrome with topical capsaicin in the emergency department: a case series.

    PubMed

    Dezieck, Laurel; Hafez, Zachary; Conicella, Albert; Blohm, Eike; O'Connor, Mark J; Schwarz, Evan S; Mullins, Michael E

    2017-09-01

    Cannabinoid hyperemesis syndrome (CHS) is characterized by symptoms of cyclic abdominal pain, nausea, and vomiting in the setting of prolonged cannabis use. The transient receptor potential vanilloid 1 (TRPV1) receptor may be involved in this syndrome. Topical capsaicin is a proposed treatment for CHS; it binds TRPV1 with high specificity, impairing substance P signaling in the area postrema and nucleus tractus solitarius via overstimulation of TRPV1. This may explain its apparent antiemetic effect in this syndrome. We describe a series of thirteen cases of suspected cannabis hyperemesis syndrome treated with capsaicin in the emergency departments of two academic medical centers. A query of the electronic health record at both centers identified thirteen patients with documented daily cannabis use and symptoms consistent with CHS who were administered topical capsaicin cream for symptom management. All 13 patients experienced symptom relief after administration of capsaicin cream. Topical capsaicin was associated with improvement in symptoms of CHS after other treatments failed.

  20. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    PubMed Central

    Bond, S. M.; Cervero, F.; McQueen, D. S.

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938

  1. Capsaicin and arterial hypertensive crisis.

    PubMed

    Patanè, Salvatore; Marte, Filippo; La Rosa, Felice Carmelo; La Rocca, Roberto

    2010-10-08

    Chili peppers are rich in capsaicin. The potent vasodilator calcitonin gene-related peptide (CGRP) is stored in a population of C-fiber afferents that are sensitive to capsaicin. CGRP and peptides released from cardiac C fibers have a beneficial effect in myocardial ischemia and reperfusion. It has been reported that capsaicin pretreatment can deplete cardiac C-fiber peptide stores. Furthermore, it has also been reported that capsaicin-treated pigs have significantly increased mean arterial blood pressure compared with controls, and that the decrease in CGRP synthesis and release contributes to the elevated blood pressure. A case has also been reported of an arterial hypertensive crisis in a patient with a large ingestion of peppers and chili peppers the day before. We present a case of an arterial hypertensive crisis in a 19-year-old Italian man with an abundant ingestion of peppers and of chili peppers the preceding day. This case describes an unusual pattern of arterial hypertensive crisis due to capsaicin. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.

  2. Novel Approaches to Extraction Methods in Recovery of Capsaicin from Habanero Pepper (CNPH 15.192)

    PubMed Central

    Martins, Frederico S.; Borges, Leonardo L.; Ribeiro, Claudia S. C.; Reifschneider, Francisco J. B.; Conceição, Edemilson C.

    2017-01-01

    Introduction: The objective of this study was to compare three capsaicin extraction methods: Shoxlet, Ultrasound-assisted Extraction (UAE), and Shaker-assisted Extraction (SAE) from Habanero pepper, CNPH 15.192. Materials and Methods: The different parameters evaluated were alcohol degree, time extraction, and solid–solvent ratio using response surface methodology (RSM). Results: The three parameters found significant (p < 0.05) were for UAE and solvent concentration and extraction time for SAE. The optimum conditions for the capsaicin UAE and SAE were similar 95% alcohol degree, 30 minutes and solid–liquid ratio 2 mg/mL. The Soxhlet increased the extraction in 10–25%; however, long extraction times (45 minutes) degraded 2% capsaicin. Conclusion: The extraction of capsaicin was influenced by extraction method and by the operating conditions chosen. The optimized conditions provided savings of time, solvent, and herbal material. Prudent choice of the extraction method is essential to ensure optimal yield of extract, thereby making the study relevant and the knowledge gained useful for further exploitation and application of this resource. SUMMARY Habanero pepper, line CNPH 15.192, possess capsaicin in higher levels when compared with others speciesHigher levels of ethanolic strength are more suitable to obtain a higher levels of capsaicinBox-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction of capsaicin. Abbreviations used: Nomenclature UAE: Ultrasound-assisted Extraction; SAE: Shaker-assisted Extraction. PMID:28808409

  3. Development of 68Ga-SCN-DOTA-Capsaicin as an Imaging Agent Targeting Apoptosis and Cell Cycle Arrest in Breast Cancer.

    PubMed

    Lee, Jun Young; Lee, Sang-Yeun; Kim, Gun Gyun; Hur, Min Goo; Yang, Seung Dae; Park, Jeong-Hoon; Kim, Sang Wook

    2017-06-01

    68 Ga-labeled capsaicin using a DOTA (1,4,7,10-tetraazocyclododecane-N,N',N″,N'″-tetraacetic acid) derivative [ 68 Ga-SCN-Benzyl(Bn)-DOTA-capsaicin] was studied for the diagnosis of breast cancers, such as MCF-7 and SK-BR-3. The standard compound, 69 Ga-SCN-Bn-DOTA-capsaicin, was also prepared and characterized by spectroscopic analysis. The binding affinity of 68 Ga-SCN-Bn-DOTA-capsaicin was evaluated by using breast cancer cell lines (MCF-7, SK-BR-3) and colon cancer cell (CT-26); the biodistribution was carried out by using MCF-7-bearing nude mice, after which the positron emission tomography (PET) images were obtained at different time intervals (15-120 minutes). 68 Ga-SCN-Bn-DOTA-capsaicin showed a cellular uptake of 0.93% Injected Dose (ID) after 30 minutes of incubation, whereas 68 Ga-SCN-Bn-DOTA showed a lower uptake of 0.25% ID. The tumor-to-blood ID/g% ratios increased and were found to be 0.49, 0.22, and 0.77 for 15, 30, and 60 minutes, respectively. The small-animal PET study showed that the uptake of 68 Ga-SCN-Bn-DOTA-capsaicin was higher in the tumor regions even at 30 minutes after injection. These results suggest that 68 Ga-SCN-Bn-DOTA-capsaicin is a potential targeting agent for PET imaging of MCF-7.

  4. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice

    PubMed Central

    Luo, Zhidan; Ma, Liqun; Zhao, Zhigang; He, Hongbo; Yang, Dachun; Feng, Xiaoli; Ma, Shuangtao; Chen, Xiaoping; Zhu, Tianqi; Cao, Tingbing; Liu, Daoyan; Nilius, Bernd; Huang, Yu; Yan, Zhencheng; Zhu, Zhiming

    2012-01-01

    Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance. PMID:22184011

  5. The Effectiveness and Safety of Topical Capsaicin in Postherpetic Neuralgia: A Systematic Review and Meta-analysis

    PubMed Central

    Yong, Yi Lai; Tan, Loh Teng-Hern; Ming, Long Chiau; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing; Khan, Tahir Mehmood

    2017-01-01

    In particular, neuropathic pain is a major form of chronic pain. This type of pain results from dysfunction or lesions in the central and peripheral nervous system. Capsaicin has been traditionally utilized as a medicine to remedy pain. However, the effectiveness and safety of this practice is still elusive. Therefore, this systematic review aimed to investigate the effect of topical capsaicin as a pain-relieving agent that is frequently used in pain management. In brief, all the double-blinded, randomized placebo- or vehicle-controlled trials that were published in English addressing postherpetic neuralgia were included. Meta-analysis was performed using Revman® version 5.3. Upon application of the inclusion and exclusion criteria, only six trials fulfilled all the criteria and were included in the review for qualitative analysis. The difference in mean percentage change in numeric pain rating scale score ranges from -31 to -4.3. This demonstrated high efficacy of topical capsaicin application and implies that capsaicin could result in pain reduction. Furthermore, meta-analysis was performed on five of the included studies. All the results of studies are in favor of the treatment using capsaicin. The incidence of side effects from using topical capsaicin is consistently higher in all included studies, but the significance of safety data cannot be quantified due to a lack of p-values in the original studies. Nevertheless, topical capsaicin is a promising treatment option for specific patient groups or certain neuropathic pain conditions such as postherpetic neuralgia. PMID:28119613

  6. Comparison of topical capsaicin and betamethasone in the treatment of chronic skin lesions due to sulfur mustard exposure.

    PubMed

    Panahi, Yunes; Davoudi, Seyyed Masoud; Moharamzad, Yashar; Beiraghdar, Fatemeh; Naghizadeh, Mohammad Mehdi

    2008-01-01

    Chronic pruritic skin lesions are considered to be one of the late complications of sulfur mustard exposure. The purpose of this study was to compare the efficacy of topical capsaicin with that of betamethasone in the treatment of these lesions. In this investigator-blinded, randomized clinical trial, patients applied capsaicin cream 0.025% (n=32) or betamethasone cream 0.1% (n=32) 2 times a day for 6 weeks. Efficacy was based on a dermatologist assessment. The severity of the pruritus was assessed by pruritic score questionnaire and a visual analog scale before and after treatment. All patients complained of pruritus. Both groups showed a significant decrease in pruritus, scaling, and skin dryness (p<0.05), but burning sensation was not improved significantly in the capsaicin group. The mean (+/- standard deviation [SD]) baseline pruritic scores in the capsaicin and betamethasone groups were 29.4 (13.1) and 33.6 (7.2), respectively (p=0.1). The mean (SD) pruritus score change from baseline to after the treatment was significantly higher (p<0.001) in the betamethasone group than in the capsaicin group, 12.7 (6.4) vs. 6.9 (5.6). Fourteen (35%) patients in the capsaicin group reported a burning sensation and intolerable odor, but these effects were not serious enough to necessitate discontinuing the treatment. Topical capsaicin cream 0.025% was much less well tolerated than betamethasone and inferior to betamethasone in reducing chronic skin lesions and symptoms from sulfur mustard exposure.

  7. Tolerability of the capsaicin 8% patch following pretreatment with lidocaine or tramadol in patients with peripheral neuropathic pain: A multicentre, randomized, assessor-blinded study

    PubMed Central

    Jensen, TS; Høye, K; Fricová, J; Vanelderen, P; Ernault, E; Siciliano, T; Marques, S

    2014-01-01

    Background Application of the capsaicin 8% patch is associated with treatment-related discomfort. Consequently, pretreatment for 60 min with anaesthetic cream is recommended; however, this may be uncomfortable and time consuming. Methods We conducted a multicentre, randomized (1:1), assessor-blinded study in patients with peripheral neuropathic pain to assess tolerability of the capsaicin patch following topical lidocaine (4%) or oral tramadol (50 mg) pretreatment. The primary endpoint was the proportion of patients tolerating capsaicin patch application (ability to receive ≥90% of a 60-min application). Numeric Pain Rating Scale (NPRS) scores were assessed before, during and after treatment. Results Overall, 122 patients were included (61 per arm). The capsaicin patch was tolerated by 121 patients. Tolerability of the capsaicin patch was similar following pretreatment with lidocaine and tramadol. Following patch application, pain levels increased up to 55 min (change from baseline of 1.3 for lidocaine and 1.4 for tramadol). After patch removal, tramadol-treated patients experienced greater pain relief up to the end of day 1; in the evening, mean changes in NPRS scores from baseline were 0 for lidocaine and −1 for tramadol. Proportions of patients reporting increases of ≥2 NPRS points or >33% from baseline at one or more time point(s) on the day of treatment were similar between arms. Adverse event incidence was comparable between arms. Conclusions Capsaicin 8% patch tolerability was similar in the two arms, with comparable results for most secondary endpoints. Tramadol given 30 min before patch application should be considered as an alternative pretreatment option in patients receiving capsaicin patch treatment. What's already known about this topic? Application of topical capsaicin, a treatment for peripheral neuropathic pain conditions associated with allodynia, can cause painful discomfort. Therefore, a 60-min application of local anaesthetic cream before capsaicin 8% patch treatment was originally recommended. What does this study add? Oral analgesic pretreatment may reduce overall capsaicin patch treatment time and potential unpleasantness associated with applying a topical agent to an allodynic area. Based on LIFT data showing similar tolerability to capsaicin patch regardless of pretreatment method, the European Medicines Agency has issued a type II variation stating: treatment area may be pretreated with a topical anaesthetic or an oral analgesic may be given prior to patch application. PMID:24664539

  8. Capsaicin stimulates the non-store-operated Ca{sup 2+} entry but inhibits the store-operated Ca{sup 2+} entry in neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.-P.; Tseng, C.-S.; Sun, S.-P.

    2005-12-01

    Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) V1. However, capsaicin-stimulated [Ca{sup 2+}]{sub i} elevation occurred only at high concentrations ({>=}100 {mu}M). This response was substantially decreased in a Ca{sup 2+}-free medium. Vanilloids displayed similar patterns of Ca{sup 2+} response with the rank order of potency as follows: scutigeral>resiniferatoxin>capsazepine>capsaicin=olvanil>isovelleral. Arachidonyl dopamine (AAD), an endogenous ligand for TRPV1, failed to desensitize the subsequent capsaicin challenge. Capsaicin-induced Ca{sup 2+} response was not affected by 8-bromo-cyclic ADP-ribose (8-Br-cADPR), the ryanodine receptor blocker, but was slightly attenuated by 1-[6-[17{beta}-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,= 5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, 1-[{beta}-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), the blockermore » of receptor-gated and store-operated Ca{sup 2+} (SOC) channels, 2-aminoethyldiphenyl borate (2-APB), the blocker of D-myo-inositol 1,4,5-trisphospahte (IP{sub 3}) receptor and Ca{sup 2+} influx, and by ruthenium red, a blocker of TRPV channels, and enhanced by the Ca{sup 2+} channels blocker, cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12330A) and Na{sup +}-deprivation. In addition, capsaicin had no effect on the plasma membrane Ca{sup 2+}-ATPase activity or the production of nitric oxide (NO) and reactive oxygen intermediates (ROI) or on the total thiols content. Capsaicin ({>=}100 {mu}M) inhibited the cyclopiazonic acid (CPA)-induced store-operated Ca{sup 2+} entry (SOCE). In the absence of external Ca{sup 2+}, the robust Ca{sup 2+} entry after subsequent addition of Ca{sup 2+} was decreased by capsaicin in CPA-activated cells. Capsaicin alone increased the actin cytoskeleton, and also increased the actin filament content in cell activation with CPA. These results indicate that capsaicin activates a TRPV1-independent non-SOCE pathway in neutrophils. The reorganization of the actin cytoskeleton is probably involved in the capsaicin inhibition of SOCE.« less

  9. Effect of capsaicin on thermoregulation: an update with new aspects

    PubMed Central

    Szolcsányi, János

    2015-01-01

    Capsaicin, a selective activator of the chemo- and heat-sensitive transient receptor potential (TRP) V1 cation channel, has characteristic feature of causing long-term functional and structural impairment of neural elements supplied by TRPV1/capsaicin receptor. In mammals, systemic application of capsaicin induces complex heat-loss response characteristic for each species and avoidance of warm environment. Capsaicin activates cutaneous warm receptors and polymodal nociceptors but has no effect on cold receptors or mechanoreceptors. In this review, thermoregulatory features of capsaicin-pretreated rodents and TRPV1-mediated neural elements with innocuous heat sensitivity are summarized. Recent data support a novel hypothesis for the role of visceral warmth sensors in monitoring core body temperature. Furthermore, strong evidence suggests that central presynaptic nerve terminals of TRPV1-expressing cutaneous, thoracic and abdominal visceral receptors are activated by innocuous warmth stimuli and capsaicin. These responses are absent in TRPV1 knockout mice. Thermoregulatory disturbance induced by systemic capsaicin pretreatment lasts for months and is characterized by a normal body temperature at cool environment up to a total dose of 150 mg/kg s.c. Upward differential shift of set points for activation vasodilation, other heat-loss effectors and thermopreference develops. Avoidance of warm ambient temperature (35°C, 40°C) is severely impaired but thermopreference at cool ambient temperatures (Tas) are not altered. TRPV1 knockout or knockdown and genetically altered TRPV1, TRPV2 and TRPM8 knockout mice have normal core temperature in thermoneutral or cool environments, but the combined mutant mice have impaired regulation in warm or cold (4°C) environments. Several lines of evidence support that in the preoptic area warmth sensitive neurons are activated and desensitized by capsaicin, but morphological evidence for it is controversial. It is suggested that these neurons have also integrator function. Fever is enhanced in capsaicin-desensitized rats and the inhibition observed after pretreatment with low i.p. doses does not support in the light of their warmth sensitivity the concept that abdominal TRPV1-expressing nerve terminals serve as nonthermal chemosensors for reference signals in thermoregulation. PMID:27227029

  10. Identification of Cytokines and Signaling Proteins Differentially Regulated by Sumatriptan/Naproxen

    PubMed Central

    Vause, Carrie V; Durham, Paul L

    2011-01-01

    Summary Objectives The goal of this study was to use protein array analysis to investigate temporal regulation of stimulated cytokine expression in trigeminal ganglia and spinal trigeminal nuclei in response to cotreatment of sumatriptan and naproxen sodium or individual drug. Background Activation of neurons and glia in trigeminal ganglia and spinal trigeminal nuclei leads to increased levels of cytokines that promote peripheral and central sensitization, which are key events in migraine pathology. While recent clinical studies have provided evidence that a combination of sumatriptan and naproxen sodium is more efficacious in treating migraine than either drug alone, it is not well understood why the combination therapy is superior to monotherapy. Methods Male Sprague Dawley rats were left untreated (control), injected with capsaicin, or pre-treated with sumatriptan/naproxen, sumatriptan, or naproxen for 1 hour prior to capsaicin. Trigeminal ganglia and spinal trigeminal nuclei were isolated 2 and 24 hours after capsaicin or drug treatment and levels of 90 proteins were determined using a RayBio® Label-Based Rat Antibody Array. Results Capsaicin stimulated a >3-fold increase in expression of the majority of cytokines in trigeminal ganglia at 2 hours that was sustained at 24 hours. Significantly, treatment with sumatriptan/naproxen almost completely abolished the stimulatory effects of capsaicin at 2 and 24 hours. Capsaicin stimulated >3-fold expression of more proteins in spinal trigeminal nuclei at 24 hours when compared to 2 hours. Similarly, sumatriptan/naproxen abolished capsaicin stimulation of proteins in spinal trigeminal nuclei at 2 hours and greatly suppressed protein expression 24 hours post capsaicin injection. Interestingly, treatment with sumatriptan alone suppressed expression of different cytokines in trigeminal ganglia and spinal trigeminal nuclei than repressed by naproxen sodium. Conclusion We found that the combination of sumatriptan/naproxen was effective in blocking capsaicin stimulation of pro-inflammatory proteins implicated in the development of peripheral and central sensitization in response to capsaicin activation of trigeminal neurons. Based on our findings that sumatriptan and naproxen regulate expression of different proteins in trigeminal ganglia and spinal trigeminal nuclei, we propose that these drugs function on therapeutically distinct cellular targets to suppress inflammation and pain associated with migraine. PMID:22150557

  11. Vascular and Psychophysical Effects of Topical Capsaicin Application to Orofacial Tissues

    PubMed Central

    Boudreau, Shellie A.; Wang, Kelun; Svensson, Peter; Sessle, Barry J.; Arendt-Nielsen, Lars

    2011-01-01

    Aims To characterize and contrast human sensory and vascular changes produced by topical application of the algesic chemical capsaicin to the glabrous lips and tongue. Methods Applications of 1% capsaicin or vehicle cream to the glabrous lips and tongue were randomized between two two-trial sessions. The capsaicin trial followed the vehicle trial for each session. Before and 5, 15, and 30 minutes after capsaicin or vehicle cream application, six parameters were recorded from the glabrous lips or the tongue dorsum: (1) burning pain intensity, as measured on a visual analog scale; (2) burning pain area, as indicated by subjects on an orofacial drawing; (3) mechanical sensitivity, as measured by a von Frey filament; (4) visual flare; (5) blood flow and temperature, as measured by laser-Doppler imaging and thermography, respectively; and (6) areas of increased temperature (hot spots), as calculated by a digital tracer from the thermographs. Data were analyzed by ANOVAs and Pearson’s correlations. Results Compared to vehicle application, capsaicin elicited burning pain, increases in blood flow and temperature, but no change in mechanical sensitivity in the glabrous lips or tongue. Greater increases in blood flow and temperature paralleled more intense burning pain and larger areas of perceived pain for the lips compared to the tongue. The location of distinct areas of increased temperature within the orofacial area differed between the capsaicin-lip and capsaicin-tongue trials. Conclusion The several differences between these responses to noxious stimulation of the glabrous lips and tongue may have implications for examinations of orofacial somatosensory functions. PMID:19639105

  12. Capsaicin-induced glutamate release is implicated in nociceptive processing through activation of ionotropic glutamate receptors and group I metabotropic glutamate receptor in primary afferent fibers.

    PubMed

    Jin, You-Hong; Yamaki, Fumiko; Takemura, Motohide; Koike, Yuichi; Furuyama, Akira; Yonehara, Norifumi

    2009-02-01

    Glutamate (Glu) is the major excitatory neurotransmitter in the central nervous system. The role of peripheral Glu and Glu receptors (GluRs) in nociceptive transmission is, however, still unclear. In the present study, we examined Glu levels released in the subcutaneous perfusate of the rat hind instep using a microdialysis catheter and the thermal withdrawal latency using the Plantar Test following injection of drugs associated with GluRs with/without capsaicin into the hindpaw. The injection of capsaicin into the rat hind instep caused an increase of Glu level in the s.c. perfusate. Capsaicin also significantly decreased withdrawal latency to irradiation. These effects of capsaicin were inhibited by pretreatment with capsazepine, a transient receptor potential vanilloid receptor 1 (TRPV1) competitive antagonist. Capsaicin-induced Glu release was also suppressed by combination with each antagonist of ionotropic GluRs (iGluRs: NMDA/AMPA receptors) and group I metabotropic GluR (mGluR), but not group II and group III mGluRs. Furthermore, these GluRs antagonists showed remarkable inhibition against capsaicin-induced thermal hyperalgesia. These results suggest that Glu is released from the peripheral endings of small-diameter afferent fibers by noxious stimulation and then activates peripheral iGluRs and group I mGluR in development and/or maintenance of nociception. Furthermore, the activation of peripheral NMDA/AMPA receptors and group I mGluR may be important in mechanisms whereby capsaicin evokes nociceptive responses.

  13. Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance to schizophrenia

    PubMed Central

    Newson, Penny; Lynch-Frame, Ann; Roach, Rebecca; Bennett, Sarah; Carr, Vaughan; Chahl, Loris A

    2005-01-01

    Schizophrenia is considered to be a neurodevelopmental disorder with origins in the prenatal or neonatal period. Brains from subjects with schizophrenia have enlarged ventricles, reduced cortical thickness (CT) and increased neuronal density in the prefrontal cortex compared with those from normal subjects. Subjects with schizophrenia have reduced pain sensitivity and niacin skin flare responses, suggesting that capsaicin-sensitive primary afferent neurons might be abnormal in schizophrenia. This study tested the hypothesis that intrinsic somatosensory deprivation, induced by neonatal capsaicin treatment, causes changes in the brains of rats similar to those found in schizophrenia. Wistar rats were treated with capsaicin, 50 mg kg−1 subcutaneously, or vehicle (control) at 24–36 h of life. At 5–7 weeks behavioural observations were made, and brains removed, fixed and sectioned. The mean body weight of capsaicin-treated rats was not significantly different from control, but the mean brain weight of male, but not female, rats, was significantly lower than control. Capsaicin-treated rats were hyperactive compared with controls. The hyperactivity was abolished by haloperidol. Coronal brain sections of capsaicin-treated rats had smaller cross-sectional areas, reduced CT, larger ventricles and aqueduct, smaller hippocampal area and reduced corpus callosum thickness, than brain sections from control rats. Neuronal density was increased in several cortical areas and the caudate putamen, but not in the visual cortex. It is concluded that neonatal capsaicin treatment of rats produces brain changes that are similar to those found in brains of subjects with schizophrenia. PMID:16041396

  14. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model.

    PubMed

    Geng, Shengnan; Zheng, Yaqiu; Meng, Mingjing; Guo, Zhenzhen; Cao, Ning; Ma, Xiaofang; Du, Zhenhua; Li, Jiahuan; Duan, Yongjian; Du, Gangjun

    2016-08-10

    Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.

  15. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1.

    PubMed

    Kim, Sangsung; Kang, Changjoong; Shin, Chan Young; Hwang, Sun Wook; Yang, Young Duk; Shim, Won Sik; Park, Min-Young; Kim, Eunhee; Kim, Misook; Kim, Byung-Moon; Cho, Hawon; Shin, Youngki; Oh, Uhtaek

    2006-03-01

    TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.

  16. Neonatal capsaicin treatment impairs vasopressin-mediated blood pressure recovery following acute hypotension.

    PubMed Central

    Bennett, T.; Gardiner, S. M.

    1984-01-01

    Rats were treated with a single injection of either capsaicin (50 mg kg-1 s.c.) or vehicle on day 2 after birth. When the animals were adult, they were challenged with osmotic (water deprivation) and haemodynamic (acute hypotension) stimuli that normally evoke vasopressin release. Capsaicin-treated and vehicle-injected rats showed similar body weight losses and plasma osmolalities following 48 h of water deprivation. Thus it appears that neonatal treatment with capsaicin does not impair the antidiuretic response to plasma hyperosmolality. Following acute ganglion blockade in the presence of angiotensin converting enzyme inhibition, there was some recovery of blood pressure in the vehicle-injected rats, but recovery was significantly (P less than 0.001) less in the capsaicin-treated animals. The recovery may be attributed to vasopressin since it was abolished by an antagonist selective for the pressor action of the peptide (d(CH2)5DAVP). These results suggest that neonatal treatment with capsaicin impairs vasopressin-mediated recovery of blood pressure following acute hypotension. The possible involvement of baro- or chemoreceptor afferents is discussed. PMID:6704593

  17. Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay

    NASA Astrophysics Data System (ADS)

    Amruthraj, Nagoth Joseph; Preetam Raj, John Poonga; Lebel, Antoine

    2015-04-01

    Capsaicin was used as a bio-reductant for the reduction of silver nitrate to form silver nanoparticles. The formation of the silver nanoparticles was initially confirmed by color change and Tyndall effect of light scattering. It was characterized with UV-visible spectroscopy, FTIR and TEM. Hemagglutination (H) test and H-inhibition assay were performed in the presence of AgNPs-capsaicin conjugates. The silver colloid solution after complete reduction turned into pale gray color. The characteristic surface plasmon resonance of silver nanoparticles (SNPs) was observed at 450 nm. Time taken for complete bio-reduction of silver nitrate and capping was found to be 16 hours. The amount of capsaicin required to reduce 20 ml of 1 mM silver nitrate solution was found to be 40 μg approximately. The FTIR results confirmed the capping of capsaicin on the silver metal. The particle size was within the range of 20-30 nm. The hemagglutination and H-inhibition test was negative for all the blood groups. The capsaicin-capped silver nanoparticles were compatible with blood cells in hemagglutination test implying biocompatibility as future therapeutic drug.

  18. Beneficial effect of a novel pentadecapeptide BPC 157 on gastric lesions induced by restraint stress, ethanol, indomethacin, and capsaicin neurotoxicity.

    PubMed

    Sikirić, P; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Gjurasin, M; Konjevoda, P; Separović, J; Ljubanović, D; Artuković, B; Bratulić, M; Tisljar, M; Jurina, L; Buljat, G; Miklić, P; Marović, A

    1996-08-01

    Very recently, the integrity of capsaicin somatosensory neurons and their protection were suggested to be related to the activity in nociception of a newly discovered 15-amino acid peptide, BPC 157, shown to have strong beneficial effect on intestinal and liver lesions. Therefore, from this viewpoint, we have studied the gastroprotective effect of the pentadecapeptide BPC 157, on gastric lesions produced in rats by 96% ethanol, restraint stress, and indomethacin. The possible involvement of sensory neurons in the salutary actions of BPC 157 (10 micrograms/kg, 10 ng/kg intraperitoneally) was studied with capsaicin, which has differential effects on sensory neurons: a high dose in adult (125 mg/kg subcutaneously, 3 months old) or administration (50 mg/kg subcutaneously) to neonatal animals (age of the 7 days) destroys sensory fibers, whereas a low dose (500 micrograms/kg intraperitoneally) activates neurotransmitter release and protective effects on the mucosa. In the absence of capsaicin, BPC 157 protected gastric mucosa against ethanol, restraint, and indomethacin application. In the presence of neurotoxic doses of capsaicin, the negative influence of capsaicin on restraint, ethanol, or indomethacin lesions consistently affected salutary activity of BPC 157. However, BPC 157 protection was still evident in the capsaicin-treated rats (either treated as adults or as newborns) in all of these assays. Interestingly, after neonatal capsaicin treatment, a complete abolition of BPC gastroprotection was noted if BPC 157 was applied as a single nanogram-regimen, but the mucosal protection was fully reversed when the same dose was used daily. In line with the excitatory dose of capsaicin the beneficial effectiveness of BPC 157 appears to be increased as well. Taken together, these data provide evidence for complex synergistic interaction between the beneficial effectiveness of BPC 157 and peptidergic sensory afferent neuron activity.

  19. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

    PubMed Central

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L.; Derbyshire, Stuart W. G.; Chin, Chih-Liang

    2016-01-01

    Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics. PMID:27309348

  20. Facilitation and inhibition by capsaicin of cholinergic neurotransmission in the guinea-pig small intestine.

    PubMed

    Geber, Christian; Mang, Christian F; Kilbinger, Heinz

    2006-01-01

    The effects of capsaicin on [3H]acetylcholine release and muscle contraction were studied on the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum preincubated with [3H]choline. Capsaicin concentration-dependently increased both basal [3H]acetylcholine release (pEC50 7.0) and muscle tone (pEC50 6.1). The facilitatory effects of capsaicin were antagonized by 1 microM capsazepine (pK (B) 7.0 and 7.6), and by the combined blockade of NK1 and NK3 tachykinin receptors with the antagonists CP99994 plus SR142801 (each 0.1 microM). This suggests that stimulation by capsaicin of TRPV1 receptors on primary afferent fibres causes a release of tachykinins which, in turn, mediate via NK1 and NK3 receptors an increase in acetylcholine release. The capsaicin-induced acetylcholine release was significantly enhanced by the NO synthase inhibitor L-NG-nitroarginine (100 microM). This indicates that tachykinins released from sensory neurons also stimulate nitrergic neurons and thus lead, via NO release, to inhibition of acetylcholine release. Capsaicin concentration-dependently reduced the electrically-evoked [3H]acetylcholine release (pEC50 6.4) and twitch contractions (pEC50 5.9). The inhibitory effects were not affected by either capsazepine, NK1 and NK3 receptor antagonists, the cannabinoid CB1 antagonist SR141716A or by L-NG-nitroarginine. Desensitization of TRPV1 receptors by a short exposure to 3 microM capsaicin abolished the facilitatory responses to a subsequent administration, but did not modify the inhibitory effects. In summary, capsaicin has a dual effect on cholinergic neurotransmission. The facilitatory effect is indirect and involves tachykinin release and excitation of NK1 and NK3 receptors on cholinergic neurons. The inhibition of acetylcholine release may be due to a decrease of Ca2+ influx into cholinergic neurons.

  1. Induction of abnormal respiratory sounds by capsaicin in rats previously infected with Bordetella pertussis.

    PubMed

    Parton, R; Hall, E; Wardlaw, A C

    1998-02-01

    Sprague Dawley rats, previously infected with Phase-I Bordetella pertussis, developed more severe abnormal respiratory sounds than normal animals, but not coughing, when exposed to aerosolized capsaicin, one of several cough-inducing agents tested. Stethoscope examination suggested that greater production of pulmonary mucus might be occurring after capsaicin challenge of the infected animals, compared to the uninfected controls. Rats of three other strains gave characteristically different responses from the Sprague Dawleys. The administration of capsaicin to B. pertussis-infected rats may provide useful insights into the pathophysiology of excess mucus secretion in human pertussis.

  2. Potency and Stability of Intradermal Capsaicin: Implications for Use as a Human Model of Pain in Multicenter Clinical Trials

    PubMed Central

    Balabathula, Pavan; Bhattacharjee, Himanshu; Thoma, Laura A; Nolly, Robert J; Horton, Frank P; Stornes, Gwendolyn D; Wan, Jim Y; Brooks, Ian M; Bachmann, Gloria A; Foster, David C; Brown, Candace S

    2014-01-01

    Intradermally injected capsaicin has been used extensively both as a human pain model and to assess analgesic efficacy. Factors such as dose, formulation, route, and site are known to affect its sensitivity. We determined whether potency and stability of capsaicin solutions were further sources of variability when following strict manufacturing guidelines. Capsaicin solution (1.0 mg/mL) was prepared according to Current Good Manufacturing Practice (cGMP) guidelines and aseptically filled into sterile amber borosilicate vials and stored at 5°C, 25°C, and 30°C. All samples were analyzed at one, three, six, and twelve months. Chemical stability was determined using HPLC and physical stability was evaluated by visual inspection of color changes, clarity, particulate matter, and product/ container closure abnormalities during each sampling time. Capsaicin intradermal injection was found to be sterile and retained 95% of the initial concentration for at least one year, regardless of studied storage temperatures (P<0.0001). Visual inspection indicated no changes in color, clarity, particulate matter, and product/ container closure abnormalities in all samples. These data show that capsaicin solutions (1.0 mg/mL) maintain their potency and stability over one year when manufactured according to cGMP guidelines. These results suggest that in clinical trials manufacturing of capsaicin solutions is recommended over extemporaneous compounding. PMID:25105064

  3. Subthreshold concentration of endothelin-1-enhanced, capsaicin-induced bronchoconstriction in anaesthetized guinea-pigs.

    PubMed

    Kanazawa, H; Fujiwara, H; Hirata, K; Yoshikawa, J

    1998-12-01

    An increasing number of studies have been performed to address a possible role for endothelin-1 (ET-1) as a significant mediator in asthma. However, the effects of subthreshold concentrations of ET-1, which cannot elicit bronchial smooth muscle contraction itself, in asthma has yet to be determined. This study determined these effects of ET-1 on capsaicin-induced bronchoconstriction in anaesthetized guinea-pigs. Aerosolized ET-1 administered at doses of 10(-9) M and higher induced a dose-dependent increase in pulmonary resistance, but ET-1 at 10(-10) M did not have any bronchoconstrictive effect. However, this subthreshold concentration of ET-1 potentiated capsaicin-induced bronchoconstriction. In addition, the potentiation of capsaicin-induced bronchoconstriction by this subthreshold concentration of ET-1 was completely abolished by BQ788 (ET(B) receptor antagonist), but not BQ123 (ET(A) receptor antagonists). Immunoreactive substance P (SP) levels in bronchoalveolar lavage fluid after capsaicin administration were significantly higher than those after solvent administration. However, ET-1 alone did not significantly stimulate immunoreactive SP release and ET-1 (10(-10) M) did not potentiate capsaicin-induced immunoreactive SP release. In contrast, ET-1 (10(-10) M) potentiated exogenous neurokinin A- and SP-induced bronchoconstriction. These findings suggest that a subthreshold concentration of endothelin-1 does not potentiate the tachykinin release induced by capsaicin but the airway smooth muscle contraction through endothelin-B receptors.

  4. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    1. We recently described a capsaicin-sensitive vagal pathway mediating non-adrenergic, non-cholinergic (NANC) relaxations of an isolated, innervated rostral guinea-pig tracheal preparation. These afferent fibres are carried by the superior laryngeal nerves and relaxations elicited by their activation are insensitive to autonomic ganglion blockers such as hexamethonium. In the present study this vagal relaxant pathway was further characterized. 2. Relaxations of the trachealis elicited by electrical stimulation of capsaicin-sensitive vagal afferents were mimicked by bath application of capsaicin. Relaxations elicited by both methods were abolished when the tissue between the trachea and the adjacent oesophagus was disrupted. Indeed, separating the trachea from the oesophagus uncovered a contractile effect of capsaicin administration on the trachealis. 3. Capsaicin-induced, oesophagus-dependent relaxations of the trachealis were blocked by pretreatment with the fast sodium channel blocker tetrodotoxin (TTX). By contrast, capsaicin-induced contractions of the trachealis (obtained in the absence of the oesophagus) were unaffected by tetrodotoxin. 4. Substance P, neurokinin A (NKA) and neurokinin B (NKB) also elicited NANC relaxations of precontracted trachealis that were abolished by separating the trachea from the oesophagus or by TTX pretreatment. Like capsaicin, the tachykinins elicited only contractions of the trachealis following TTX pretreatment or separation of the trachea from the adjacent oesophagus. 5. Relaxations elicited by stimulation of the capsaicin-sensitive nerves were unaffected by a concentration of the tachykinin NK2 receptor-selective antagonist, SR 48968, that is selective for NK2 receptor blockade and were not mimicked by the NK2 receptor-selective agonist [beta-Ala8]-NKA(4-10). This suggests that NK2 receptors are not responsible for these relaxations. By contrast, the NK3 receptor-selective agonist, senktide analogue, and the NK1 receptor-selective agonist, acetyl-[Arg6, Sar9, Met (O2)11]-SP(6-11), elicited oesophagus-dependent relaxations of the trachealis that were abolished by oesophagus removal. Furthermore, pretreatment with the NK1-selective antagonists, CP 96345 and CP 99994, or pretreatment with a concentration of SR 48968 that also blocks NK3 receptors, markedly attenuated relaxations elicited by stimulation of the capsaicin-sensitive vagal pathways. 6. The data are consistent with the hypothesis that relaxations elicited by stimulation of capsaicin-sensitive vagal afferents involve tachykinin-mediated activation of peripheral NANC inhibitory neurones that are in some way associated with the oesophagus. The data also indicate that airway smooth muscle tone might be regulated by peripheral reflexes initiated by activation of capsaicin-sensitive afferent fibres. PMID:7869272

  5. Tolerability of the capsaicin 8% patch following pretreatment with lidocaine or tramadol in patients with peripheral neuropathic pain: a multicentre, randomized, assessor-blinded study.

    PubMed

    Jensen, T S; Høye, K; Fricová, J; Vanelderen, P; Ernault, E; Siciliano, T; Marques, S

    2014-10-01

    Application of the capsaicin 8% patch is associated with treatment-related discomfort. Consequently, pretreatment for 60 min with anaesthetic cream is recommended; however, this may be uncomfortable and time consuming. We conducted a multicentre, randomized (1:1), assessor-blinded study in patients with peripheral neuropathic pain to assess tolerability of the capsaicin patch following topical lidocaine (4%) or oral tramadol (50 mg) pretreatment. The primary endpoint was the proportion of patients tolerating capsaicin patch application (ability to receive ≥90% of a 60-min application). Numeric Pain Rating Scale (NPRS) scores were assessed before, during and after treatment. Overall, 122 patients were included (61 per arm). The capsaicin patch was tolerated by 121 patients. Tolerability of the capsaicin patch was similar following pretreatment with lidocaine and tramadol. Following patch application, pain levels increased up to 55 min (change from baseline of 1.3 for lidocaine and 1.4 for tramadol). After patch removal, tramadol-treated patients experienced greater pain relief up to the end of day 1; in the evening, mean changes in NPRS scores from baseline were 0 for lidocaine and -1 for tramadol. Proportions of patients reporting increases of ≥2 NPRS points or >33% from baseline at one or more time point(s) on the day of treatment were similar between arms. Adverse event incidence was comparable between arms. Capsaicin 8% patch tolerability was similar in the two arms, with comparable results for most secondary endpoints. Tramadol given 30 min before patch application should be considered as an alternative pretreatment option in patients receiving capsaicin patch treatment. © 2014 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.

  6. The detection of capsaicin and dihydrocapsaicin in horse serum following long-term local administration.

    PubMed

    Zak, A; Siwinska, N; Slowikowska, M; Borowicz, H; Szpot, P; Zawadzki, M; Niedzwiedz, A

    2018-06-19

    Capsaicin and dihydrocapsaicin are alkaloids with analgesic effects in humans and animals. When used locally, both of them minimalise pain sensation by defunctionalising nerve endings. According to the Federation Equestrian International Prohibited Substances List, these are substance banned in horse competitions. The aim of the study was to determine the detection time of capsaicin in both plasma and serum after long-term use of a gel recommended for commercial use and applied as intended. The objective of the study was to select the best material for the detection of capsaicin as a doping substance in horses. Nine healthy mature horses were administered 0.1% capsaicin topically in the form of a commercial analgesic gel (15 g of the gel per limb) to the front limbs every 24 hours for five days with a polar fleece bandage. Blood serum and plasma were collected prior to gel application and in the 12th, 18th, 24th, 36th, 42nd, 48th, 60th, 84th, 108th, 132nd, 156th hour after the gel application. Qualitative and quantitative analysis was performed using ultra-high performance liquid chromatography coupled with a triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). The concentration of capsaicin in the serum samples did not exceed the lower limit of quantification. Capsaicin was not detected in the plasma samples during the entire study period. Dihydrocapsaicin was not detected in blood serum or plasma. The presented results suggest that capsaicin is not detected in horse serum in the 24-hour-periodfollowing its last application according to the dosage regimen used by owners and veterinarians for therapy rather than doping, based on a five day gel application and a polar bandage.

  7. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel‐dependent mechanisms

    PubMed Central

    Baskaran, Padmamalini; Krishnan, Vivek; Ren, Jun

    2016-01-01

    Background and Purpose The growing epidemic of obesity and metabolic diseases necessitates the development of novel strategies to prevent and treat such diseases. Current research suggests that browning of white adipose tissue (WAT) promotes energy expenditure to counter obesity. Recent research suggests that activation of the TRPV1 channels counters obesity. However, the mechanism by which activation of TRPV1 channels counters obesity still remains unclear. Experimental Approach We evaluated the effect of dietary capsaicin to induce a browning program in WAT by activating TRPV1 channels to prevent diet‐induced obesity using wild‐type and TRPV1−/− mouse models. We performed experiments using preadipocytes and fat pads from these mice. Key Results Capsaicin stimulated the expression of brown fat‐specific thermogenic uncoupling protein‐1 and bone morphogenetic protein‐8b in WAT. Capsaicin triggered browning of WAT by promoting sirtuin‐1 expression and activity via TRPV1 channel‐dependent elevation of intracellular Ca2 + and phosphorylation of Ca2 +/calmodulin‐activated protein kinase II and AMP‐activated kinase. Capsaicin increased the expression of PPARγ 1 coactivator α and enhanced metabolic and ambulatory activity. Further, capsaicin stimulated sirtuin‐1‐dependent deacetylation of PPARγ and the transcription factor PRDM‐16 and facilitated PPARγ–PRDM‐16 interaction to induce browning of WAT. Dietary capsaicin did not protect TRPV1−/− mice from obesity. Conclusions and Interpretations Our results show for the first time that activation of TRPV1 channels by dietary capsaicin triggers browning of WAT to counteract obesity. Our results suggest that activation of TRPV1 channels is a promising strategy to counter obesity. PMID:27174467

  8. Capsaicin, from Hot to Not; Can New Pain-Relieving Drugs Be Derived from This Substance Known to Cause Pain?

    ERIC Educational Resources Information Center

    Rusterholz, David B.

    2006-01-01

    The systematic developments of synthetically modified structures related to capsaicin known to have pungent properties found in chili peppers that could be useful as analgesic drug are described. It is found that identification of the receptor for capsaicin and the mechanism of its action greatly contributed to an understanding of the role…

  9. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats.

    PubMed

    Zhou, Y; Zhou, Z S; Zhao, Z Q

    2001-10-01

    Capsaicin activates a non-specific cation conductance in a subset of dorsal root ganglion (DRG) neurons. The inward current and membrane potential of acutely isolated DRG neurons were examined using whole-cell patch recording methods. We report here that the current and voltage responses activated by capsaicin were markedly increased by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). The mean current, after application of 0.3 microM PMA, was 153.5+/-5.7% of control (n=32) in Ca(2+)-free external solution and 181.6+/-6.8% of control (n=15) in standard external solution. Under current-clamp conditions, 0.3 microM PMA facilitated capsaicin-induced depolarization and action potential generation. Bindolylmaleimide I (BIM), a specific inhibitor of PKC activity, abolished the effect of PMA. In addition, capsaicin-evoked current was attenuated to 68.3+/-5.0% of control (n=13) by individual administration of 1 microM BIM in standard external solution, while 0.3 microM BIM did not have this effect. These data suggest that PKC can directly regulate the capsaicin response in DRG neurons, which could increase nociceptive sensory transmission and contribute to hyperalgesia.

  10. TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin.

    PubMed

    Kanda, Yusuke; Yamasaki, Youhei; Sasaki-Yamaguchi, Yoshie; Ida-Koga, Noriko; Kamisuki, Shinji; Sugawara, Fumio; Nagumo, Yoko; Usui, Takeo

    2018-02-02

    The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca 2+ influx, we first screened the compounds that induce Ca 2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca 2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.

  11. Dietary capsaicin and antibiotics act synergistically to reduce non-alcoholic fatty liver disease induced by high fat diet in mice.

    PubMed

    Hu, Jingjuan; Luo, Haihua; Jiang, Yong; Chen, Peng

    2017-06-13

    The prevalence of non-alcoholic fatty liver disease is increasing rapidly worldwide. However, effective strategies for combating high-fat diet (HFD) induced obesity, fatty liver and metabolic disorder are still limited, and outcomes remain poor. In the present study, we evaluated the combined actions of dietary capsaicin and antibiotics on HFD-induced physiological abnormalities in mice. C57BL/6 male mice were fed with HFD (60% calories from fat) for 17 weeks, and the resultant pathophysiological effects were examined. Antibiotic treatment markedly attenuated gut inflammation and leakiness induced by HFD, whereas capsaicin showed limited effects on the gut. However, dietary capsaicin significantly increased PPAR-α expression in adipose tissue, while antibiotics had no such effect. Animals treated with a combination of capsaicin and antibiotics had the smallest body weight gain and fat pad index, as well as the lowest hepatic fat accumulation. Combination treatment also maximally improved insulin responsiveness, as indicated by insulin tolerance tests. These results suggest the co-treatment of capsaicin and antibiotics, a novel combination strategy, would play synergistically to attenuate the HFD-induced obesity, fatty liver and metabolic disorder.

  12. The Effects of Inflammatory Tooth Pain on Anxiety in Adult Male Rats

    PubMed Central

    Raoof, Maryam; Ebrahimnejad, Hamed; Abbasnejad, Mehdi; Amirkhosravi, Ladan; Raoof, Ramin; Esmaeili Mahani, Saeed; Ramazani, Mohsen; Shokouhinejad, Noushin; Khoshkhounejad, Mehrfam

    2016-01-01

    Introduction: This study aimed to examine the effects of induced inflammatory tooth pain on anxiety level in adult male rats. Methods: The mandibular incisors of 56 adult male rats were cut off and prefabricated crowns were fixed on the teeth. Formalin and capsaicin were injected intradentally to induce inflammatory tooth pain. Diazepam treated group received diazepam 30 minutes before intradental injection. The anxiety-related behavior was evaluated with elevated plus maze test. Results: Intradental application of chemical noxious stimuli, capsaicin and formalin, significantly affected nociceptive behaviors (P<0.001). Capsaicin (P<0.001) and formalin (P<0.01) significantly increased the anxiety levels in rats by decrease in the duration of time spent in open arm and increase in the duration of time spent in closed arm. Rats that received capsaicin made fewer open arm entries compared to the control animals (P<0.05). Capsaicin (P<0.001) and formalin (P<0.01) treated rats showed more stretch attend postures compared to the control and sham operated animals. In diazepampretreated rats, capsaicin induced algesic effect was prevented (P<0.001). Conclusion: Inflammatory pulpal pain has anxiogenic effect on rats, whereas diazepam premedication showed both anxiolytic and pain reducing effects. PMID:27563419

  13. Acute administration of capsaicin increases resting energy expenditure in young obese subjects without affecting energy intake, appetite, and circulating levels of orexigenic/anorexigenic peptides.

    PubMed

    Rigamonti, Antonello E; Casnici, Claudia; Marelli, Ornella; De Col, Alessandra; Tamini, Sofia; Lucchetti, Elisa; Tringali, Gabriella; De Micheli, Roberta; Abbruzzese, Laura; Bortolotti, Mauro; Cella, Silvano G; Sartorio, Alessandro

    2018-04-01

    Although capsaicin has been reported to reduce energy intake and increase energy expenditure in an adult (normal weight or overweight) population, thus resulting in a net negative energy balance and weight loss, these beneficial effects have not been investigated in young obese subjects. We hypothesize that capsaicin acutely administered in young obese subjects exerts the same effects on energy balance and that these effects are mediated by changes in gastrointestinal peptides regulating appetite. Thus, the aim of the present study was to evaluate the acute effects of capsaicin (2 mg) or placebo on energy intake, hunger, and satiety in obese adolescents and young adults (female-male ratio: 4:6, age: 21.0 ± 5.8 years; body mass index: 41.5 ± 4.3 kg/m 2 ) provided an ad libitum dinner. Furthermore, circulating levels of some orexigenic (ghrelin) and anorexigenic (glucagon-like peptide 1 and peptide YY) peptides were measured after a meal completely consumed (lunch), together with the evaluation of hunger and satiety and assessment of resting energy expenditure (REE) through indirect computerized calorimetry. When compared to placebo, capsaicin did not significantly change either energy intake or hunger/satiety 6 hours after its administration (dinner). No differences in circulating levels of ghrelin, glucagon-like peptide 1, and peptide YY and in hunger/satiety were found in the 3 hours immediately after food ingestion among obese subjects treated with capsaicin or placebo (lunch). By contrast, the meal significantly increased REE in the capsaicin- but not placebo-treated group (capsaicin: from 1957.2 ± 455.1 kcal/d up to 2342.3 ± 562.1 kcal/d, P < .05; placebo: from 2060.1 ± 483.4 kcal/d up to 2296.0 ± 484.5 kcal/d). The pre-post meal difference in REE after capsaicin administration was significantly higher than that observed after placebo (385.1 ± 164.4 kcal/d vs 235.9 ± 166.1 kcal/d, P < .05). In conclusion, although capsaicin does not exert hypophagic effects, these preliminary data demonstrate its ability as a metabolic activator in young obese subjects. Copyright © 2018. Published by Elsevier Inc.

  14. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    PubMed Central

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-01-01

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction. PMID:27120617

  15. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Largent-Milnes, Tally M; Aicher, Sue A

    2014-11-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Aural stimulation with capsaicin ointment improved swallowing function in elderly patients with dysphagia: a randomized, placebo-controlled, double-blind, comparative study.

    PubMed

    Kondo, Eiji; Jinnouchi, Osamu; Nakano, Seiichi; Ohnishi, Hiroki; Kawata, Ikuji; Okamoto, Hidehiko; Takeda, Noriaki

    2017-01-01

    The aim of this study was to assess whether aural stimulation with ointment containing capsaicin improves swallowing function in elderly patients with dysphagia. A randomized, placebo-controlled, double-blind, comparative study. Secondary hospital. Twenty elderly dysphagic patients with a history of cerebrovascular disorder or Parkinson's disease were randomly divided into two groups: 10 receiving aural stimulation with 0.025% capsaicin ointment and 10 stimulated with placebo. The ointments were applied to the external auditory canal with a cotton swab. Then, swallowing of a bolus of blue-dyed water was recorded using transnasal videoendoscopy, and the swallowing function was evaluated according to both endoscopic swallowing scoring and Sensory-Motor-Reflex-Clearance (SMRC) scale. The sum of endoscopic swallowing scores was significantly decreased 30 and 60 min after a single administration in patients treated with capsaicin, but not with placebo. Reflex score, but not Sensory, Motion and Clearance scores, of the SMRC scale was significantly increased 5, 30 and 60 min after single administration in patients treated with capsaicin, but not with placebo. No patient showed signs of adverse effects. As capsaicin is an agonist of the transient receptor potential vanilloid 1 (TRPV1), these findings suggest that improvement of the swallowing function, especially glottal closure and cough reflexes, in elderly dysphagic patients was due to TRPV1-mediated aural stimulation of vagal Arnold's nerve with capsaicin, but not with a nonspecific mechanical stimulation with a cotton swab.

  17. Enkephalinase inhibitor potentiates substance P- and capsaicin-induced bronchial smooth muscle contractions in humans.

    PubMed

    Honda, I; Kohrogi, H; Yamaguchi, T; Ando, M; Araki, S

    1991-06-01

    To determine the roles of endogenously released tachykinins (substance P, neurokinins A and B) in human bronchial tissues, and to determine the roles of enkephalinase (neutral endopeptidase, E.C. 3.4.24.11) in regulating the effects of the tachykinins, we studied the effects of substance P and capsaicin, which releases tachykinins, on human bronchial smooth muscle contraction in the presence or absence of enkephalinase inhibitor phosphoramidon in vitro. Substance P alone caused human bronchial smooth muscle contraction at 10(-6) M or more. Phosphoramidon (10(-7) to 10(-5) M) potentiated the substance P-induced contraction in a dose-dependent fashion, and phosphoramidon shifted the dose-response curve to lower concentrations. Capsaicin (10(-5) or 10(-4) M) alone caused bronchial smooth muscle contraction in four tissues from nine patients. After the contraction by capsaicin reached a plateau, phosphoramidon (10(-5) M) increased and prolonged the contraction significantly. Furthermore, pretreatment of bronchial tissues with phosphoramidon (10(-5) M) potentiated capsaicin-induced contraction in all tissues from five patients. Phosphoramidon (10(-5) M) shifted the dose-response curve to capsaicin to lower concentrations more than 1 log unit. Captopril did not alter the contractile response to substance P, suggesting that angiotensin-converting enzyme does not regulate the contractile response to substance P in human bronchial smooth muscle in vitro. These results suggest that enkephalinase regulates the contractile effects of exogenous substance P and endogenous substances, probably tachykinins, released by capsaicin in the human bronchus.

  18. XEN-D0501, a Novel Transient Receptor Potential Vanilloid 1 Antagonist, Does Not Reduce Cough in Patients with Refractory Cough.

    PubMed

    Belvisi, Maria G; Birrell, Mark A; Wortley, Michael A; Maher, Sarah A; Satia, Imran; Badri, Huda; Holt, Kimberley; Round, Patrick; McGarvey, Lorcan; Ford, John; Smith, Jaclyn A

    2017-11-15

    Heightened cough responses to inhaled capsaicin, a transient receptor potential vanilloid 1 (TRPV1) agonist, are characteristic of patients with chronic cough. However, previously, a TRPV1 antagonist (SB-705498) failed to improve spontaneous cough frequency in these patients, despite small reductions in capsaicin-evoked cough. XEN-D0501 (a potent TRPV1 antagonist) was compared with SB-705498 in preclinical studies to establish whether an improved efficacy profile would support a further clinical trial of XEN-D0501 in refractory chronic cough. XEN-D0501 and SB-705498 were profiled against capsaicin in a sensory nerve activation assay and in vivo potency established against capsaicin-induced cough in the guinea pig. Twenty patients with refractory chronic cough participated in a double-blind, randomized, placebo-controlled crossover study evaluating the effect of 14 days of XEN-D0501 (oral, 4 mg twice daily) versus placebo on awake cough frequency (primary outcome), capsaicin-evoked cough, and patient-reported outcomes. XEN-D0501 was more efficacious and 1,000-fold more potent than SB-705498 at inhibiting capsaicin-induced depolarization of guinea pig and human isolated vagus nerve. In vivo XEN-D0501 completely inhibited capsaicin-induced cough, whereas 100 times more SB-705498 was required to achieve the same effect. In patients, XEN-D0501 substantially reduced maximal cough responses to capsaicin (mean change from baseline, XEN-D0501, -19.3 ± 16.4) coughs; placebo, -1.8 ± 5.8 coughs; P < 0.0001), but not spontaneous awake cough frequency (mean change from baseline, XEN-D0501, 6.7  ± 16.9 coughs/h; placebo, 0.4 ± 13.7 coughs/h; P = 0.41). XEN-D0501 demonstrated superior efficacy and potency in preclinical and clinical capsaicin challenge studies; despite this improved pharmacodynamic profile, spontaneous cough frequency did not improve, ruling out TRPV1 as an effective therapeutic target for refractory cough. Clinical trial registered with www.clinicaltrialsregister.eu (2014-000306-36).

  19. Neuronal activity related to spontaneous and capsaicin-induced rhythmical jaw movements in the rat.

    PubMed

    Ohta, M; Sasamoto, K; Kobayashi, J

    1998-02-01

    Intraoral capsaicin induced rhythmical jaw movements (RJM) in anesthetized rats. Neurons in the trigeminal spinal nucleus caudalis or the cortico-peduncular (CP) axons were extracellularly recorded. Capsaicin excited dose-dependently most caudalis neurons, which were activated by stimulation of the oral cavity and/or the tooth pulp and activated during spontaneous or induced RJM. Ten of 55 CP axons were antidromically activated by stimulation of the contralateral trigeminal motor nucleus. All antidromic and 29 other CP axons discharged prior to the spontaneous RJM, but most of them did not during capsaicin-induced RJM. These neuronal activities possibly initiate spontaneous RJM although the activities of caudalis neurons are necessary for capsicin-induced RJM.

  20. Application of the capsaicin 8% cutaneous patch in neuropathic pain of the head and face: A case series.

    PubMed

    Gaul, Charly; Resch, Sonja

    2015-05-01

    Treatment of neuropathic or neuralgic head and facial pain due to dental, traumatic or surgical nerve lesions or post-herpetic neuropathy is often challenging. We are reporting on four patients with neuropathic pain syndromes successfully treated with a capsaicin 8% patch in the affected area of the head or face. Treatment with the capsaicin 8% patch seems to be effective and safe for application to the facial and head region. The capsaicin 8% patch might be an additional treatment option if first-line treatment with anticonvulsants or antidepressants was ineffective or limited by side effects. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirakawa, Hisashi; Yamaoka, Tomoko; Sanpei, Kazuaki

    2008-12-26

    Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca{sup 2+} influx. Interestingly, nifedipine, a specific L-type Ca{sup 2+} channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 andmore » several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca{sup 2+} channel opening, Ca{sup 2+} influx, ERK phosphorylation, and reactive oxygen species production.« less

  2. Effects of capsaicin in the motor nerve.

    PubMed

    Pettorossi, V E; Bortolami, R; Della Torre, G; Brunetti, O

    1994-08-01

    The injection of capsaicin into the lateral gastrocnemius (LG) muscle of the rat induced an immediate and sustained reduction in the A delta and C components of the compound action potential (CAP) of the LG motor nerve. Conversely, the drug did not immediately affect the CAP wave belonging to fast-conducting fibers or the motor responses to LG nerve stimulation. It seems that capsaicin only affects the group III and IV afferents of LG nerve. However, a week after the injection the capsaicin also altered the motor responses, as shown by the threshold enhancement and amplitude reduction of the muscle twitch and by the decrease of the A alpha-beta CAP components. This late motor impairment was attributed to a central depression following a reduction of capsaicin-sensitive neuron input into the CNS. However, this motor effect was transient since the LG nerve regained the preinjection excitability level in a week and the muscle twitch amplitude reached the control value in a month.

  3. Topical capsaicin for pain in osteoarthritis: A literature review.

    PubMed

    Guedes, Vânia; Castro, João Paulo; Brito, Iva

    Osteoarthritis is the most common joint disorder worldwide. The predominant symptom, pain, is usually treated with acetaminophen or oral non-steroidal anti-inflammatory drugs, although they are associated with a significant risk of side effects. Topical capsaicin may represent an effective and safe alternative. The aim of this review is to examine the evidence for the efficacy and safety profile of topical capsaicin in the management of pain caused by osteoarthritis. Databases were searched for articles published between 2004 and 2016, in Portuguese, English or Spanish, using the search terms "capsaicin" and "osteoarthritis". When compared to placebo, it was found that topical capsaicin has a good safety profile and efficacy in reducing osteoarthritis pain of the hand, knee, hip or shoulder. However, the studies have significant limitations, the most important the difficulty of blinding. It is attributed to this review the strength of recommendation B. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  4. A screening test for capsaicin-stimulated salivary flow using filter paper: a study for diagnosis of hyposalivation with a complaint of dry mouth.

    PubMed

    Kanehira, Takashi; Yamaguchi, Tomotaka; Asano, Kozo; Morita, Manabu; Maeshima, Etsuko; Matsuda, Akemi; Fujii, Yoshihiro; Sakamoto, Wataru

    2011-07-01

    The purpose of this study was to develop a simple screening technique for diagnosis of hyposalivation with dry mouth by estimation of capsaicin-stimulated salivary flow using filter paper. An assay system comprising 5 spots containing starch and potassium iodide on filter paper incorporating or without capsaicin and a coloring reagent was designed. We investigated whether the number of colored spots using the filter paper incorporating capsaicin could distinguish between healthy subjects and subjects with hyposalivation and dry mouth. In the healthy group (>200 μL/min; n = 33), the capsaicin-stimulated salivary flow significantly increased as compared with the resting salivary flow, from 1.2 ± 1.4 to 2.9 ± 1.3 colored spots (P < .05). In contrast, the hyposalivation group with dry mouth (<100 μL/min; n = 32) hardly changed (4.4 ± 1.0 vs 4.9 ± 0.2), except for 3 subjects who had considerable elevated secretion on capsaicin stimulation. By measuring resting and stimulated salivary flows, this method should be useful for evaluating retained functional ability of salivary glands and screening of hyposalivation with dry mouth. Copyright © 2011 Mosby, Inc. All rights reserved.

  5. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes.

    PubMed

    Nolden, Alissa A; McGeary, John E; Hayes, John E

    2016-03-15

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. Copyright © 2016. Published by Elsevier Inc.

  6. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes

    PubMed Central

    Nolden, Alissa A.; McGeary, John E.; Hayes, John E.

    2016-01-01

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. PMID:26785164

  7. Inhibitory effect of chronic oral treatment with fluoxetine on capsaicin-induced external carotid vasodilatation in anaesthetised dogs.

    PubMed

    Muñoz-Islas, Enriqueta; González-Hernández, Abimael; Lozano-Cuenca, Jair; Ramírez-Rosas, Martha Beatríz; Medina-Santillán, Roberto; Centurión, David; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2015-10-01

    During migraine, capsaicin-sensitive trigeminal sensory nerves release calcitonin gene-related peptide (CGRP), resulting in cranial vasodilatation and central nociception. Moreover, 5-HT is involved in the pathophysiology of migraine and depression. Interestingly, some limited lines of evidence suggest that fluoxetine may be effective in migraine prophylaxis, but the underlying mechanisms are uncertain. Hence, this study investigated the canine external carotid vasodilator responses to capsaicin, α-CGRP and acetylcholine before and after acute and chronic oral treatment with fluoxetine. Forty-eight vagosympathectomised male mongrel dogs were prepared to measure blood pressure, heart rate and external carotid blood flow. The thyroid artery was cannulated for infusions of agonists. In 16 of these dogs, a spinal cannula was inserted (C1-C3) for infusions of 5-HT. The external carotid vasodilator responses to capsaicin, α-CGRP and acetylcholine remained unaffected after intracarotid or i.v. fluoxetine. In contrast, the vasodilator responses to capsaicin, but not those to α-CGRP or acetylcholine, were inhibited after chronic oral treatment with fluoxetine (300 µg/kg; for 90 days) or intrathecal 5-HT. Chronic oral fluoxetine inhibited capsaicin-induced external carotid vasodilatation, and this inhibition could partly explain its potential prophylactic antimigraine action. © International Headache Society 2015.

  8. Chronic Oral Capsaicin Exposure During Development Leads to Adult Rats with Reduced Taste Bud Volumes.

    PubMed

    Omelian, Jacquelyn M; Samson, Kaeli K; Sollars, Suzanne I

    2016-09-01

    Cross-sensory interaction between gustatory and trigeminal nerves occurs in the anterior tongue. Surgical manipulations have demonstrated that the strength of this relationship varies across development. Capsaicin is a neurotoxin that affects fibers of the somatosensory lingual nerve surrounding taste buds, but not fibers of the gustatory chorda tympani nerve which synapse with taste receptor cells. Since capsaicin is commonly consumed by many species, including humans, experimental use of this neurotoxin provides a naturalistic perturbation of the lingual trigeminal system. Neonatal or adults rats consumed oral capsaicin for 40 days and we examined the cross-sensory effect on the morphology of taste buds across development. Rats received moderate doses of oral capsaicin, with chronic treatments occurring either before or after taste system maturation. Tongue morphology was examined either 2 or 50 days after treatment cessation. Edema, which has been previously suggested as a cause of changes in capsaicin-related gustatory function, was also assessed. Reductions in taste bud volume occurred 50 days, but not 2 days post-treatment for rats treated as neonates. Adult rats at either time post-treatment were unaffected. Edema was not found to occur with the 5 ppm concentration of capsaicin we used. Results further elucidate the cooperative relationship between these discrete sensory systems and highlight the developmentally mediated aspect of this interaction. Chronic exposure to even moderate levels of noxious stimuli during development has the ability to impact the orosensory environment, and these changes may not be evident until long after exposure has ceased.

  9. The effects of juvenile capsaicin desensitization in rats: behavioral impairments.

    PubMed

    Petrovszki, Zita; Adam, Gábor; Kekesi, Gabriella; Tuboly, Gábor; Morvay, Zita; Nagy, Endre; Benedek, György; Horvath, Gyöngyi

    2014-02-10

    Capsaicin desensitization leads to behavioral changes, some of which are related to schizophrenia, but investigations into these effects have been scarce. The goal of this study was to characterize the consequences of juvenile capsaicin desensitization on different functions: acute and inflammation-induced thermal and mechanical sensitivity, urinary bladder capacity and thermoregulation, and also on the potentially schizophrenia-related impairments in sensory-motor gating, motor activity and cognitive functioning. Male Wistar rats desensitized with increasing doses of subcutaneous capsaicin after weaning were investigated. Heat and mechanical pain sensitivity did not change significantly; however, morphine produced a prolonged decrease in the nociceptive response to inflammation in desensitized animals. Ultrasound examination of the bladder revealed enhanced bladder volume in treated animals. Capsaicin-treated animals had higher body temperature at 22 °C in both dark and light periods, and they also showed prolonged hyperthermia in new environmental circumstances. Warm environment induced a profound impairment of thermoregulation in desensitized animals. The treated animals also showed higher levels of activity during the active phase and at both cool and warm temperatures. The amplitude of the responses to auditory stimuli and prepulse inhibition did not differ between the two groups, but the desensitized animals showed learning impairments in the novel object recognition test. These results suggest that juvenile capsaicin desensitization leads to sustained changes in several functions that may be related to schizophrenia. We propose that capsaicin desensitization, together with other interventions, may lead to an improved chronic animal model of schizophrenia. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Topical capsaicin (high concentration) for chronic neuropathic pain in adults.

    PubMed

    Derry, Sheena; Rice, Andrew Sc; Cole, Peter; Tan, Toni; Moore, R Andrew

    2017-01-13

    This review is an update of 'Topical capsaicin (high concentration) for chronic neuropathic pain in adults' last updated in Issue 2, 2013. Topical creams with capsaicin are used to treat peripheral neuropathic pain. Following application to the skin, capsaicin causes enhanced sensitivity, followed by a period with reduced sensitivity and, after repeated applications, persistent desensitisation. High-concentration (8%) capsaicin patches were developed to increase the amount of capsaicin delivered; rapid delivery was thought to improve tolerability because cutaneous nociceptors are 'defunctionalised' quickly. The single application avoids noncompliance. Only the 8% patch formulation of capsaicin is available, with a capsaicin concentration about 100 times greater than conventional creams. High-concentration topical capsaicin is given as a single patch application to the affected part. It must be applied under highly controlled conditions, often following local anaesthetic, due to the initial intense burning sensation it causes. The benefits are expected to last for about 12 weeks, when another application might be made. To review the evidence from controlled trials on the efficacy and tolerability of topically applied, high-concentration (8%) capsaicin in chronic neuropathic pain in adults. For this update, we searched CENTRAL, MEDLINE, Embase, two clinical trials registries, and a pharmaceutical company's website to 10 June 2016. Randomised, double-blind, placebo-controlled studies of at least 6 weeks' duration, using high-concentration (5% or more) topical capsaicin to treat neuropathic pain. Two review authors independently searched for studies, extracted efficacy and adverse event data, and examined issues of study quality and potential bias. Where pooled analysis was possible, we used dichotomous data to calculate risk ratio and numbers needed to treat for one additional event, using standard methods.Efficacy outcomes reflecting long-duration pain relief after a single drug application were from the Patient Global Impression of Change (PGIC) at specific points, usually 8 and 12 weeks. We also assessed average pain scores over weeks 2 to 8 and 2 to 12 and the number of participants with pain intensity reduction of at least 30% or at least 50% over baseline, and information on adverse events and withdrawals.We assessed the quality of the evidence using GRADE and created a 'Summary of findings' table. We included eight studies, involving 2488 participants, two more studies and 415 more participants than the previous version of this review. Studies were of generally good methodological quality; we judged only one study at high risk of bias, due to small size. Two studies used a placebo control and six used 0.04% topical capsaicin as an 'active' placebo to help maintain blinding. Efficacy outcomes were inconsistently reported, resulting in analyses for most outcomes being based on less than complete data.For postherpetic neuralgia, we found four studies (1272 participants). At both 8 and 12 weeks about 10% more participants reported themselves much or very much improved with high-concentration capsaicin than with 'active' placebo, with point estimates of numbers needed to treat for an additional beneficial outcome (NNTs) of 8.8 (95% confidence interval (CI) 5.3 to 26) with high-concentration capsaicin and 7.0 (95% CI 4.6 to 15) with 'active' placebo (2 studies, 571 participants; moderate quality evidence). More participants (about 10%) had average 2 to 8-week and 2 to 12-week pain intensity reductions over baseline of at least 30% and at least 50% with capsaicin than control, with NNT values between 10 and 12 (2 to 4 studies, 571 to 1272 participants; very low quality evidence).For painful HIV-neuropathy, we found two studies (801 participants). One study reported the proportion of participants who were much or very much improved at 12 weeks (27% with high-concentration capsaicin and 10% with 'active' placebo). For both studies, more participants (about 10%) had average 2 to 12-week pain intensity reductions over baseline of at least 30% with capsaicin than control, with an NNT of 11 (very low quality evidence).For peripheral diabetic neuropathy, we found one study (369 participants). It reported about 10% more participants who were much or very much improved at 8 and 12 weeks. One small study of 46 participants with persistent pain following inguinal herniorrhaphy did not show a difference between capsaicin and placebo for pain reduction (very low quality evidence).We downgraded the quality of the evidence for efficacy outcomes by one to three levels due to sparse data, imprecision, possible effects of imputation methods, and susceptibility to publication bias.Local adverse events were common, but not consistently reported. Serious adverse events were no more common with active treatment (3.5%) than control (3.2%). Adverse event withdrawals did not differ between groups, but lack of efficacy withdrawals were somewhat more common with control than active treatment, based on small numbers of events (six to eight studies, 21 to 67 events; moderate quality evidence, downgraded due to few events). No deaths were judged to be related to study medication. High-concentration topical capsaicin used to treat postherpetic neuralgia, HIV-neuropathy, and painful diabetic neuropathy generated more participants with moderate or substantial levels of pain relief than control treatment using a much lower concentration of capsaicin. These results should be interpreted with caution as the quality of the evidence was moderate or very low. The additional proportion who benefited over control was not large, but for those who did obtain high levels of pain relief, there were usually additional improvements in sleep, fatigue, depression, and quality of life. High-concentration topical capsaicin is similar in its effects to other therapies for chronic pain.

  11. Capsaicin-sensitive sensory neurons are involved in the plasma catecholamine response of rats to selective stressors.

    PubMed Central

    Zhou, X F; Livett, B G

    1991-01-01

    1. The effect of capsaicin pre-treatment on adrenal catecholamine (CA) secretion in response to stress is controversial. In earlier experiments performed under pentobarbitone anaesthesia, the release of CA in response to stress was complicated by the effects of the barbiturate anaesthesia. 2. In the present study we have used conscious freely moving rats with indwelling cannulae to study the effect of neonatal capsaicin pre-treatment on the plasma CA response to different types of stressors (swimming stress, hypovolaemic stress, immobilization stress and cold stress). 3. After swimming for 20 min, plasma noradrenaline (NA) levels increased by 8-fold and adrenaline by 2-fold in control rats. The increase in plasma NA levels in the capsaicin group was attenuated at 10 min of swimming compared with the vehicle group (P < 0.05). 4. With hypovolaemic stress, there were no differences in plasma CA levels, blood pressure and heart rate between the capsaicin group and the vehicle group. There were also no differences in plasma CA levels after immobilization stress between the two groups. 5. With cold stress, plasma NA levels increased 5-fold and adrenaline levels by 3-fold over basal at 45 min in the vehicle pre-treated rats. This increase was not observed in the capsaicin group. 6. Immunoreactive substance P was depleted by only 68% in the splanchnic nerve following capsaicin pre-treatment. If the remaining 32% was biologically active substance P then it could account for the maintenance of the response to hypovolaemic and immobilization stress. However, it might be possible that the responses to hypovolaemic and immobilization stresses could be attenuated if a more complete depletion were achieved. 7. These results in conscious rats indicate that capsaicin-sensitive sensory neurons are required for plasma CA response to selective stressors. They are required for CA output in response to cold stress and to the early phase of swimming stress, but not to hypovolaemic stress and immobilization stress. PMID:1841948

  12. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats.

    PubMed

    Márquez-Ibarra, Adriana; Huerta, Miguel; Villalpando-Hernández, Salvador; Ríos-Silva, Mónica; Díaz-Reval, María I; Cruzblanca, Humberto; Mancilla, Evelyn; Trujillo, Xóchitl

    2016-01-01

    Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.

  13. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    PubMed

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide

    PubMed Central

    Vellani, Vittorio; Mapplebeck, Sarah; Moriondo, Andrea; Davis, John B; McNaughton, Peter A

    2001-01-01

    The effects of activation of protein kinase C (PKC) on membrane currents gated by capsaicin, protons, heat and anandamide were investigated in primary sensory neurones from neonatal rat dorsal root ganglia (DRG) and in HEK293 cells (human embryonic kidney cell line) transiently or stably expressing the human vanilloid receptor hVR1. Maximal activation of PKC by a brief application of phorbol 12-myristate 13-acetate (PMA) increased the mean membrane current activated by a low concentration of capsaicin by 1.65-fold in DRG neurones and 2.18-fold in stably transfected HEK293 cells. Bradykinin, which activates PKC, also enhanced the response to capsaicin in DRG neurones. The specific PKC inhibitor RO31-8220 prevented the enhancement caused by PMA. Activation of PKC did not enhance the membrane current at high concentrations of capsaicin, showing that PKC activation increases the probability of channel opening rather than unmasking channels. Application of PMA alone activated an inward current in HEK293 cells transiently transfected with VR1. The current was suppressed by the VR1 antagonist capsazepine. PMA did not, however, activate a current in the large majority of DRG neurones nor in HEK293 cells stably transfected with VR1. Removing external Ca2+ enhanced the response to a low concentration of capsaicin 2.40-fold in DRG neurones and 3.42-fold in HEK293 cells. Activation of PKC in zero Ca2+ produced no further enhancement of the response to capsaicin in either DRG neurones or HEK293 cells stably transfected with VR1. The effects of PKC activation on the membrane current gated by heat, anandamide and low pH were qualitatively similar to those on the capsaicin-gated current. The absence of a current activated by PMA in most DRG neurones or in stably transfected HEK293 cells suggests that activation of PKC does not directly open VR1 channels, but instead increases the probability that they will be activated by capsaicin, heat, low pH or anandamide. Removal of calcium also potentiates activation, and PKC activation then has no further effect. The results are consistent with a model in which phosphorylation of VR1 by PKC increases the probability of channel gating by agonists, and in which dephosphorylation occurs by a calcium-dependent process. PMID:11483711

  15. Personality factors predict spicy food liking and intake

    PubMed Central

    Byrnes, Nadia K.; Hayes, John E.

    2012-01-01

    A number of factors likely affect the liking of capsaicin-containing foods such as social influences, repeated exposure to capsaicin, physiological differences in chemosensation, and personality. For example, it is well known that repeated exposure to capsaicin and chilies can result in chronic desensitization. Here, we explore the relationship between multiple personality variables – body awareness/consciousness, sensation seeking, and sensitivity to punishment, and sensitivity to reward – and the liking and consumption of capsaicin-containing foods. As expected, a strong relationship was found between liking of spicy foods and frequency of chili consumption. However, no association was observed between frequency of chili consumption and the perceived burn/sting of sampled capsaicin. Nor was there any association between perceived burn/sting of capsaicin and any of the personality measures. Private Body Consciousness did not relate to any of the measures used in the current study. Sensation Seeking showed positive correlations with the liking of spicy foods, but not non-spicy control foods. Sensitivity to Punishment showed no relation with frequency of chili consumption, and nonsignificant negative trends with liking of spicy foods. Conversely, Sensitivity to Reward was weakly though significantly correlated with the liking of a spicy meal, and similar nonsignificant trends were seen for other spicy foods. Frequency of chili consumption was positively associated with Sensation Seeking and Sensitivity to Reward. Present data indicate individuals who enjoy spicy foods exhibit higher Sensation Seeking and Sensitivity to Reward traits. Rather than merely showing reduced response to the irritating qualities of capsaicin as might be expected under the chronic desensitization hypothesis, these findings support the hypothesis that personality differences may drive differences in spicy food liking and intake. PMID:23538555

  16. Autonomic Nervous Activity and Lipid Oxidation Postexercise with Capsaicin in the Humans

    PubMed Central

    Yeo, Nam Hwoeh; Kang, Sunghwun

    2010-01-01

    This study evaluated the synergistic effects of acute exercise with capsaicin (200mg) upon the restoration of cardiac autonomic functions and depolarization- repolarization interval as well as substrate oxidation. Nine healthy males [21.9(0.8) yrs] volunteered for this study. Cardiac autonomic activity, metabolic responses, and the ECG QT intervals were continuously measured during 5 min at rest and postexercise recovery after 30 min exercise at 50% VO2max on a stationary ergometer with placebo (ECON) or capsaicin intake (ECAP), and no exercise control (NCON) were randomized. Results indicated that the HF power reflecting parasympathetic activity significantly returned to the baseline much faster during ECAP than ECON trial during postexercise [122.1 (23.2) vs. 60.2 (11.7) %, p < 0.05]. The ECAP trial significantly decreased RQ [0.79(0.02) vs. 0.85 (0.03), p < 0.05] with significantly greater fat oxidation [69.3 (6.0) vs. 49.4 (10.8) %, p < 0.05] in comparison to NCON trial during 120 min postexercise recovery without any adverse effects on cardiac electrical stability as determined by trigger-averaged ECG QT interval analyses. We suggest that capsaicin before the exercise may contribute to the improvement of cardio-protective functions and metabolic responses as one of the beneficial supplements accelerating faster restoration of autonomic activity and enhanced lipolysis during postexercise recovery without any adverse effects on cardiac electrical stability. Key points Capsaicin before exercise may contribute to the improvement of cardio-protective functions as one of the beneficial supplements accelerating faster restoration of autonomic activity Capsaicin before exercise enhanced lipolysis during postexercise recovery period Capsaicin intake does not influence cardiac electrical stability during recovery period. PMID:24149693

  17. Phα1β toxin prevents capsaicin-induced nociceptive behavior and mechanical hypersensitivity without acting on TRPV1 channels.

    PubMed

    Castro-Junior, Celio J; Milano, Julie; Souza, Alessandra H; Silva, Juliana F; Rigo, Flávia K; Dalmolin, Geruza; Cordeiro, Marta N; Richardson, Michael; Barros, Alexandre G A; Gomez, Renato S; Silva, Marco A R; Kushmerick, Christopher; Ferreira, Juliano; Gomez, Marcus V

    2013-08-01

    Phα1β toxin is a peptide purified from the venom of the armed spider Phoneutria nigriventer, with markedly antinociceptive action in models of acute and persistent pain in rats. Similarly to ziconotide, its analgesic action is related to inhibition of high voltage activated calcium channels with more selectivity for N-type. In this study we evaluated the effect of Phα1β when injected peripherally or intrathecally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of Phα1β on Ca²⁺ transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor. Intraplantar or intrathecal administered Phα1β reduced both nocifensive behavior and mechanical hypersensitivity induced by capsaicin similarly to that observed with SB366791, a specific TRPV1 antagonist. Peripheral nifedipine and mibefradil did also decrease nociceptive behavior induced by intraplantar capsaicin. In contrast, ω-conotoxin MVIIA (a selective N-type Ca²⁺ channel blocker) was effective only when administered intrathecally. Phα1β, MVIIA and SB366791 inhibited, with similar potency, the capsaicin-induced Ca²⁺ transients in DRG neurons. The simultaneous administration of Phα1β and SB366791 inhibited the capsaicin-induced Ca²⁺ transients that were additive suggesting that they act through different targets. Moreover, Phα1β did not inhibit capsaicin-activated currents in patch-clamp recordings of HEK293 cells that expressed TRPV1 receptors. Our results show that Phα1β may be effective as a therapeutic strategy for pain and this effect is not related to the inhibition of TRPV1 receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Physiological and pathological characterization of capsaicin-induced reversible nerve degeneration and hyperalgesia.

    PubMed

    Chiang, H; Chang, K-C; Kan, H-W; Wu, S-W; Tseng, M-T; Hsueh, H-W; Lin, Y-H; Chao, C-C; Hsieh, S-T

    2018-07-01

    The study aimed to investigate the physiology, psychophysics, pathology and their relationship in reversible nociceptive nerve degeneration, and the physiology of acute hyperalgesia. We enrolled 15 normal subjects to investigate intraepidermal nerve fibre (IENF) density, contact heat-evoked potential (CHEP) and thermal thresholds during the capsaicin-induced skin nerve degeneration-regeneration; and CHEP and thermal thresholds at capsaicin-induced acute hyperalgesia. After 2-week capsaicin treatment, IENF density of skin was markedly reduced with reduced amplitude and prolonged latency of CHEP, and increased warm and heat pain thresholds. The time courses of skin nerve regeneration and reversal of physiology and psychophysics were different: IENF density was still lower at 10 weeks after capsaicin treatment than that at baseline, whereas CHEP amplitude and warm threshold became normalized within 3 weeks after capsaicin treatment. Although CHEP amplitude and IENF density were best correlated in a multiple linear regression model, a one-phase exponential association model showed better fit than a simple linear one, that is in the regeneration phase, the slope of the regression line between CHEP amplitude and IENF density was steeper in the subgroup with lower IENF densities than in the one with higher IENF densities. During capsaicin-induced hyperalgesia, recordable rate of CHEP to 43 °C heat stimulation was higher with enhanced CHEP amplitude and pain perception compared to baseline. There were differential restoration of IENF density, CHEP and thermal thresholds, and changed CHEP-IENF relationships during skin reinnervation. CHEP can be a physiological signature of acute hyperalgesia. These observations suggested the relationship between nociceptive nerve terminals and brain responses to thermal stimuli changed during different degree of skin denervation, and CHEP to low-intensity heat stimulus can reflect the physiology of hyperalgesia. © 2018 European Pain Federation - EFIC®.

  19. Carboxyl-terminal Domain of Transient Receptor Potential Vanilloid 1 Contains Distinct Segments Differentially Involved in Capsaicin- and Heat-induced Desensitization*

    PubMed Central

    Joseph, John; Wang, Sen; Lee, Jongseok; Ro, Jin Y.; Chung, Man-Kyo

    2013-01-01

    Multiple Ca2+-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca2+, although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys155, both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli. PMID:24174527

  20. Capsaicin Cough Sensitivity and the Association with Clinical Parameters in Bronchiectasis

    PubMed Central

    Lin, Zhi-ya; Tang, Yan; Li, Hui-min; Lin, Zhi-min; Zheng, Jin-ping; Chen, Rong-chang; Zhong, Nan-shan

    2014-01-01

    Background Cough hypersensitivity has been common among respiratory diseases. Objective To determine associations of capsaicin cough sensitivity and clinical parameters in adults with clinically stable bronchiectasis. Methods We recruited 135 consecutive adult bronchiectasis patients and 22 healthy subjects. History inquiry, sputum culture, spirometry, chest high-resolution computed tomography (HRCT), Leicester Cough Questionnaire scoring, Bronchiectasis Severity Index (BSI) assessment and capsaicin inhalation challenge were performed. Cough sensitivity was measured as the capsaicin concentration eliciting at least 2 (C2) and 5 coughs (C5). Results Despite significant overlap between healthy subjects and bronchiectasis patients, both C2 and C5 were significantly lower in the latter group (all P<0.01). Lower levels of C5 were associated with a longer duration of bronchiectasis symptoms, worse HRCT score, higher 24-hour sputum volume, BSI and sputum purulence score, and sputum culture positive for P. aeruginosa. Determinants associated with increased capsaicin cough sensitivity, defined as C5 being 62.5 µmol/L or less, encompassed female gender (OR: 3.25, 95%CI: 1.35–7.83, P<0.01), HRCT total score between 7–12 (OR: 2.57, 95%CI: 1.07–6.173, P = 0.04), BSI between 5–8 (OR: 4.05, 95%CI: 1.48–11.06, P<0.01) and 9 or greater (OR: 4.38, 95%CI: 1.48–12.93, P<0.01). Conclusion Capsaicin cough sensitivity is heightened in a subgroup of bronchiectasis patients and associated with the disease severity. Gender and disease severity, but not sputum purulence, are independent determinants of heightened capsaicin cough sensitivity. Current testing for cough sensitivity diagnosis may be limited because of overlap with healthy subjects but might provide an objective index for assessment of cough in future clinical trials. PMID:25409316

  1. Sensitization of TRPV1 by protein kinase C in rats with mono-iodoacetate-induced joint pain.

    PubMed

    Koda, K; Hyakkoku, K; Ogawa, K; Takasu, K; Imai, S; Sakurai, Y; Fujita, M; Ono, H; Yamamoto, M; Fukuda, I; Yamane, S; Morita, A; Asaki, T; Kanemasa, T; Sakaguchi, G; Morioka, Y

    2016-07-01

    To assess the functional changes of Transient receptor potential vanilloid 1 (TRPV1) receptor and to clarify its mechanism in a rat mono-iodoacetate (MIA)-induced joint pain model (MIA rats), which has joint degeneration with cartilage loss similar to osteoarthritis. Sensitization of TRPV1 in MIA rats was assessed by transient spontaneous pain behavior induced by capsaicin injection in knee joints and electrophysiological changes of dorsal root ganglion (DRG) neurons innervating knee joints in response to capsaicin. Mechanisms of TRPV1 sensitization were analyzed by a newly developed sandwich enzyme-linked immunosorbent assay that detects phosphorylated TRPV1, followed by functional and expression analyses of protein kinase C (PKC) in vivo and in vitro, which involves TRPV1 phosphorylation. Pain-related behavior induced by intra-articular injection of capsaicin was significantly increased in MIA rats compared with sham rats. In addition, capsaicin sensitivity, evaluated by capsaicin-induced inward currents, was significantly increased in DRG neurons of MIA rats. Protein levels of TRPV1 remained unchanged, but phosphorylated TRPV1 at Ser800 increased in DRG neurons of MIA rats. Phosphorylated-PKCɛ (p-PKCɛ) increased and co-localized with TRPV1 in DRG neurons of MIA rats. Capsaicin-induced pain-related behavior in MIA rats was inhibited by intra-articular pretreatment of the PKC inhibitor bisindolylmaleimide I. In addition, intra-articular injection of the PKC activator phorbol 12-myristate 13-acetate increased capsaicin-induced pain-related behavior in normal rats. TRPV1 was sensitized at the knee joint and at DRG neurons of MIA rats through PKC activation. Thus, TRPV1 sensitization might be involved in chronic pain caused by osteoarthritis. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Antilithogenic influence of dietary capsaicin and curcumin during experimental induction of cholesterol gallstone in mice.

    PubMed

    Shubha, Malenahalli C; Reddy, Raghunatha R L; Srinivasan, Krishnapura

    2011-04-01

    Spice bioactive compounds, capsaicin and curcumin, were both individually and in combination examined for antilithogenic potential during experimental induction of cholesterol gallstones in mice. Cholesterol gallstones were induced by feeding mice a high-cholesterol (0.5%) diet for 10 weeks. Groups of mice were maintained on a lithogenic diet that was supplemented with 0.015% capsaicin/0.2% curcumin/0.015% capsaicin + 0.2% curcumin. The lithogenic diet that contained capsaicin, curcumin, or their combination reduced the incidence of cholesterol gallstones by 50%, 66%, and 56%, respectively, compared with lithogenic control. This was accompanied by reduced biliary cholesterol and a marginal increase in phospholipid in these spice-fed groups. Increased cholesterol saturation index and cholesterol : phospholipid ratio in the bile caused by the lithogenic diet was countered by the dietary spice compounds. The antilithogenic influence of spice compounds was attributable to the cholesterol-lowering effect of these dietary spices in blood and liver, as well as a moderate increase in phospholipids. Decreased activities of hepatic glutathione reductase and glutathione-S-transferase caused by the lithogenic diet were countered by the combination of capsaicin and curcumin. The increased lipid peroxidation and the decreased concentration of ascorbic acid in the liver that was caused by the lithogenic diet was countered by the dietary spice compounds, individually or in combination. Thus, while the capsaicin and curcumin combination did not have an additive influence in reducing the incidence of cholesterol gallstones in mice, their combination nevertheless was more beneficial in enhancing the activity of hepatic antioxidant enzyme ─ glutathione reductase in the lithogenic situation. The antioxidant effects of dietary spice compounds are consistent with the observed reduction in cholesterol gallstones formed under lithogenic condition.

  3. Bronchodilatation by tachykinins and capsaicin in the mouse main bronchus.

    PubMed Central

    Manzini, S.

    1992-01-01

    1. The effect of sensory neuropeptides and capsaicin on basal and stimulated tone of mouse bronchial smooth muscle has been evaluated. 2. In basal conditions neither sensory neuropeptides (substance P, neurokinin A or calcitonin gene-related peptide (CGRP) nor capsaicin exerted any contractile effects. However, when a tonic contraction was induced with carbachol (1 microM) a prompt relaxation was induced by substance P (1- 100 nM) and by neurokinin A (1- 100 nM), with substance P being more potent. A second application of substance P was without effect. CGRP (10 nM) produced only a very small and erratic relaxation. Relaxation was also induced by capsaicin (1 microM), and this response could be evoked only once in each preparation. In 4 out of 6 preparations a cross-desensitization between substance P and capsaicin was observed. 3. The selective NK1 tachykinin agonist, [Pro9]-SP sulphone (1 microM), exerted potent bronchodilator actions on carbachol-contracted mouse bronchial preparations. In contrast, neither [beta Ala8]-NKA (4-10) nor [MePhe7]-NKB (both at a concentration of 1 microM), selective synthetic agonists for NK2 and NK3 receptors, exerted significant relaxant effects. Furthermore, the selective NK1 tachykinin antagonist, (+/-)-CP 96,345 (1 microM), abolished substance P (1 nM)- but not isoprenaline (0.1 microM)-induced relaxations. 4. Application of electrical field stimulation (EFS) (20 Hz, supramaximal voltage, 0.5 ms for 10 s) to carbachol-contracted preparations evoked a transient contraction followed by a relaxation. The tetrodotoxin-sensitive slow component of this relaxation was reduced following capsaicin desensitization. 5. In the presence of indomethacin (5 microM) the relaxation induced by substance P, capsaicin or EFS was suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1380376

  4. Mass-spectrometric identification of T-kininogen I/thiostatin as an acute-phase inflammatory protein suppressed by curcumin and capsaicin.

    PubMed

    Joe, Bina; Nagaraju, Anitha; Gowda, Lalitha R; Basrur, Venkatesha; Lokesh, Belur R

    2014-01-01

    Curcumin and capsaicin are dietary xenobiotics with well-documented anti-inflammatory properties. Previously, the beneficial effect of these spice principles in lowering chronic inflammation was demonstrated using a rat experimental model for arthritis. The extent of lowering of arthritic index by the spice principles was associated with a significant shift in macrophage function favoring the reduction of pro-inflammatory molecules such as reactive oxygen species and production and release of anti-inflammatory metabolites of arachidonic acid. Beyond the cellular effects on macrophage function, oral administration of curcumin and capsaicin caused alterations in serum protein profiles of rats injected with adjuvant to develop arthritis. Specifically, a 72 kDa acidic glycoprotein, GpA72, which was elevated in pre-arthritic rats, was significantly lowered by feeding either curcumin or capsaicin to the rats. Employing the tandem mass spectrometric approach for direct sequencing of peptides, here we report the identification of GpA72 as T-kininogen I also known as Thiostatin. Since T-kininogen I is an early acute-phase protein, we additionally tested the efficiency of curcumin and capsaicin to mediate the inflammatory response in an acute phase model. The results demonstrate that curcumin and capsaicin lower the acute-phase inflammatory response, the molecular mechanism for which is, in part, mediated by pathways associated with the lowering of T-kininogen I.

  5. Cough reflex testing with inhaled capsaicin and TRPV1 activation in asthma and comorbid conditions.

    PubMed

    Couto, M; de Diego, A; Perpiñi, M; Delgado, L; Moreira, A

    2013-01-01

    A high parasympathetic tone leading to bronchoconstriction and neurogenic inflammation is thought to have a major role in the pathogenesis of asthma. Transient receptor potential vanilloid 1 (TRPV1) is the hub of almost all neuronal inflammatory signaling pathways. A critical determinant of neurogenic inflammation, TRPV1 functions as a sensor for detecting irritants in the lung by transmitting noxious stimuli to the central nervous system and inducing the release of a variety of proinflammatory neuropeptides at the peripheral terminals. Challenge with inhaled capsaicin, an exogenous agonist of TRPV1, has been used to measure the sensitivity of the cough reflex. However, inhalation of capsaicin is also associated with parasympathetic bronchoconstriction, mucus hypersecretion, vasodilatation, and the sensation of dyspnea. Therefore, inhaled capsaicin challenge is expected to have other potential applications in asthma and comorbid conditions, such as rhinitis and gastroesophageal reflux disease, both of which produce cough. Capsaicin challenge has established itself as a useful objective method for evaluating airway hypersensitivity; however, it is potentially valuable in many other situations, which will be reviewed in this paper.

  6. Peripheral Inflammation Undermines the Plasticity of the Isolated Spinal Cord

    PubMed Central

    Huie, John R.; Grau, James W.

    2009-01-01

    Peripheral capsaicin treatment induces molecular changes that sensitize the responses of nociceptive neurons in the spinal dorsal horn. The current studies demonstrate that capsaicin also undermines the adaptive plasticity of the spinal cord, rendering the system incapable of learning a simple instrumental task. In these studies, male rats are transected at the second thoracic vertebra and are tested 24 to 48 hours later. During testing, subjects receive shock to one hindleg when it is extended (controllable stimulation). Rats quickly learn to maintain the leg in a flexed position. Rats that have been injected with capsaicin (1% or 3%) in the hindpaw fail to learn, even when tested on the leg contralateral to the injection. This learning deficit lasts at least 24 hours. Interestingly, training with controllable electrical stimulation prior to capsaicin administration protects the spinal cord against the maladaptive effects. Rats pretrained with controllable stimulation do not display a learning deficit or tactile allodynia. Moreover, controllable stimulation, combined with naltrexone, reverses the capsaicin-induced deficit. These data suggest that peripheral inflammation, accompanying spinal cord injuries, might have an adverse effect on recovery. PMID:18298266

  7. Depletion of substance P and glutamate by capsaicin blocks respiratory rhythm in neonatal rat in vitro

    PubMed Central

    Morgado-Valle, Consuelo; Feldman, Jack L

    2004-01-01

    The specific role of the neuromodulator substance P (SP) and its target, the neurokinin 1 receptor (NK1R), in the generation and regulation of respiratory activity is not known. The preBötzinger complex (preBötC), an essential site for respiratory rhythm generation, contains glutamatergic NK1R-expressing neurones that are strongly modulated by exogenously applied SP or acute pharmacological blockade of NK1Rs. We investigated the effects of capsaicin, which depletes neuropeptides (including SP) and glutamate from presynaptic terminals, on respiratory motor output in medullary slice preparations of neonatal rat that generate respiratory-related activity. Bath application of capsaicin slowed respiratory motor output in a dose- and time-dependent manner. Respiratory rhythm could be restored by bath application of SP or glutamate transporter blockers. Capsaicin also evoked dose-dependent glutamate release and depleted SP in fibres within the preBötC. Our results suggest that depletion of SP (or other peptides) and/or glutamate by capsaicin causes a cessation of respiratory rhythm in neonatal rat slices. PMID:14724197

  8. Depletion of substance P and glutamate by capsaicin blocks respiratory rhythm in neonatal rat in vitro.

    PubMed

    Morgado-Valle, Consuelo; Feldman, Jack L

    2004-03-16

    The specific role of the neuromodulator substance P (SP) and its target, the neurokinin 1 receptor (NK1R), in the generation and regulation of respiratory activity is not known. The preBötzinger complex (preBötC), an essential site for respiratory rhythm generation, contains glutamatergic NK1R-expressing neurones that are strongly modulated by exogenously applied SP or acute pharmacological blockade of NK1Rs. We investigated the effects of capsaicin, which depletes neuropeptides (including SP) and glutamate from presynaptic terminals, on respiratory motor output in medullary slice preparations of neonatal rat that generate respiratory-related activity. Bath application of capsaicin slowed respiratory motor output in a dose- and time-dependent manner. Respiratory rhythm could be restored by bath application of SP or glutamate transporter blockers. Capsaicin also evoked dose-dependent glutamate release and depleted SP in fibres within the preBötC. Our results suggest that depletion of SP (or other peptides) and/or glutamate by capsaicin causes a cessation of respiratory rhythm in neonatal rat slices.

  9. Dose-dependent protective effect of BPC 157 on capsaicin-induced rhinitis in rats.

    PubMed

    Kalogjera, L; Ries, M; Baudoin, T; Ferencic, Z; Trotic, R; Pegan, B

    1997-01-01

    Protection of BPC 157 on capsaicin-induced rhinitis was studied in Wistar rats for its effect on mastocyte infiltration, degranulation and inflammatory cell infiltration. Animals were pretreated with 10 microg/kg, 10 ng/kg or 2 ml saline i.p. and capsaicin (0.05 ml/nostril of 1750 nmol/l sol.) was applied intranasally. They were then euthanized at 1, 3 and 12 h after capsaicin provocation. Nasal mucosa was analyzed and scored for mastocyte infiltration, degranulation and inflammatory cell infiltration. BPC 157 pretreatment significantly prevented mastocyte infiltration at 1 h. Polymorphonuclear leukocyte infiltration was significantly reduced in rats pretreated with 10 microg/kg BPC 157. A dose-dependent effect of BPC 157 pretreatment was demonstrated only for polymorphonuclear leukocyte infiltration at 12 h.

  10. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment.

    PubMed

    Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo

    2018-01-01

    Cannabinoid hyperemesis syndrome is a clinical disorder that has become more prevalent with increasing use of cannabis and synthetic cannabinoids, and which is difficult to treat. Standard antiemetics commonly fail to alleviate the severe nausea and vomiting characteristic of the syndrome. Curiously, cannabinoid hyperemesis syndrome patients often report dramatic relief of symptoms with hot showers and baths, and topical capsaicin. In this review, we detail the pharmacokinetics and pharmacodynamics of capsaicin and explore possible mechanisms for its beneficial effect, including activation of transient receptor potential vanilloid 1 and neurohumoral regulation. Putative mechanisms responsible for the benefit of hot water hydrotherapy are also investigated. An extensive search of PubMed, OpenGrey, and Google Scholar from inception to April 2017 was performed to identify known and theoretical thermoregulatory mechanisms associated with the endocannabinoid system. The searches resulted in 2417 articles. These articles were screened for relevant mechanisms behind capsaicin and heat activation having potential antiemetic effects. References from the selected articles were also hand-searched. A total of 137 articles were considered relevant and included. Capsaicin: Topical capsaicin is primarily used for treatment of neuropathic pain, but it has also been used successfully in some 20 cases of cannabinoid hyperemesis syndrome. The pharmacokinetics and pharmacodynamics of capsaicin as a transient receptor potential vanilloid 1 agonist may explain this effect. Topical capsaicin has a longer half-life than oral administration, thus its potential duration of benefit is longer. Capsaicin and transient receptor potential vanilloid 1: Topical capsaicin binds and activates the transient receptor potential vanilloid 1 receptor, triggering influx of calcium and sodium, as well as release of inflammatory neuropeptides leading to transient burning, stinging, and itching. This elicits a novel type of desensitization analgesia. Transient receptor potential vanilloid 1 receptors also respond to noxious stimuli, such as heat (>43 °C), acids (pH <6), pain, change in osmolarity, and endovanilloids. The action of topical capsaicin may mimic the effect of heat-activation of transient receptor potential vanilloid 1. Endocannabinoid system and transient receptor potential vanilloid 1: Cannabinoid hyperemesis syndrome may result from a derangement in the endocannabinoid system secondary to chronic exogenous stimulation. The relief of cannabinoid hyperemesis syndrome symptoms from heat and use of transient receptor potential vanilloid 1 agonists suggests a complex interrelation between the endocannabinoid system and transient receptor potential vanilloid 1. Temperature regulation: Hot water hydrotherapy is a mainstay of self-treatment for cannabinoid hyperemesis syndrome patients. This may be explained by heat-induced transient receptor potential vanilloid 1 activation. "Sensocrine" antiemetic effects: Transient receptor potential vanilloid 1 activation by heat or capsaicin results in modulation of tachykinins, somatostatin, pituitary adenylate-cyclase activating polypeptide, and calcitonin gene-related peptide as well as histaminergic, cholinergic, and serotonergic transmission. These downstream effects represent further possible explanations for transient receptor potential vanilloid 1-associated antiemesis. These complex interactions between the endocannabinoid systems and transient receptor potential vanilloid 1, in the setting of cannabinoid receptor desensitization, may yield important clues into the pathophysiology and treatment of cannabinoid hyperemesis syndrome. This knowledge can provide clinicians caring for these patients with additional treatment options that may reduce length of stay, avoid unnecessary imaging and laboratory testing, and decrease the use of potentially harmful medications such as opioids.

  11. Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-2-0093 TITLE: Use of the TRPV1 Agonist Capsaicin to...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair...Trauma, TRPV1 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a

  12. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2013-10-01

    mechanical loading (months 6-18): 2a. Strain gage analysis of bone strain during tibial compression (months 6-7) 2b. Capsaicin or vehicle treatment...of neonatal mice (months 6-8) 2c. Tibial compression of capsaicin- and vehicle-injected mice (months 8-10) 2d. Micro-computed tomography of mouse...the endosteal and periosteal surfaces. Capsaicin treatment altered bone formation rate parameters in the tibias of treated mice (Table 2). There

  13. Topical Mannitol Reduces Capsaicin-Induced Pain: Results of a Pilot-Level, Double-Blind, Randomized Controlled Trial.

    PubMed

    Bertrand, Helene; Kyriazis, Marylene; Reeves, K Dean; Lyftogt, John; Rabago, David

    2015-11-01

    Capsaicin specifically activates, and then gradually exhausts, the transient receptor potential vanilloid type 1 (TRPV1) receptor, a key receptor in neuropathic pain. Activation of the TRPV-1 receptor is accompanied by burning pain. A natural substance or medication that can reduce the burning pain resulting from capsaicin application may have therapeutic potential in neuropathic pain. To assess the pain-relieving effects of a mannitol-containing cream in a capsaicin-based pain model. Randomized, placebo-controlled, double-blind clinical trial. Outpatient pain clinic. Twenty-five adults with pain-free lips. Capsaicin .075% cream was applied to both halves of each participant's upper lip, inducing pain via stimulation of the transient receptor potential vanilloid 1 (TRPV1, capsaicin) receptor, then removed after 5 minutes or when participants reported a burning pain of 8/10, whichever came first. A cream containing mannitol and the same cream without mannitol (control) were then immediately applied, 1 on each side of the lip, in an allocation-masked manner. Participants self-recorded a numeric rating scale (NRS, 0-10) pain score for each side of the lip per minute for 10 minutes. A t-test was performed to evaluate the pain score change from baseline between each side of the lip at each recording. Area under the curve (AUC) analysis was used to determine the overall difference between groups. Participants reached a capsaicin-induced pain level of 7.8 ± 1.0 points in 3.3 ± 1.6 minutes that was equal on both sides of the lip. Both groups reported progressive diminution of pain over the 10-minute study period. However, participants reported significantly reduced pain scores on the mannitol cream half-lip compared to control at 3 through 10 minutes (P < .05) and in AUC analysis (P < .001). Mannitol cream reduced self-reported pain scores in a capsaicin pain model more rapidly than a control cream, potentially via a TRPV1 receptor effect. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Cost-effectiveness analysis of a new 8% capsaicin patch compared to existing therapies for postherpetic neuralgia.

    PubMed

    Armstrong, Edward P; Malone, Daniel C; McCarberg, Bill; Panarites, Christopher J; Pham, Sissi V

    2011-05-01

    The purpose of this study was to compare the cost effectiveness of a new 8% capsaicin patch, compared to the current treatments for postherpetic neuralgia (PHN), including tricyclic antidepressants (TCAs), topical lidocaine patches, duloxetine, gabapentin, and pregabalin. A 1-year Markov model was constructed for PHN with monthly cycles, including dose titration and management of adverse events. The perspective of the analysis was from a payer perspective, managed-care organization. Clinical trials were used to determine the proportion of patients achieving at least a 30% improvement in PHN pain, the efficacy parameter. The outcome was cost per quality-adjusted life-year (QALY); second-order probabilistic sensitivity analyses were conducted. The effectiveness results indicated that 8% capsaicin patch and topical lidocaine patch were significantly more effective than the oral PHN products. TCAs were least costly and significantly less costly than duloxetine, pregabalin, topical lidocaine patch, 8% capsaicin patch, but not gabapentin. The incremental cost-effectiveness ratio for the 8% capsaicin patch overlapped with the topical lidocaine patch and was within the accepted threshold of cost per QALY gained compared to TCAs, duloxetine, gabapentin, and pregablin. The frequency of the 8% capsaicin patch retreatment assumption significantly impacts its cost-effectiveness results. There are several limitations to this analysis. Since no head-to-head studies were identified, this model used inputs from multiple clinical trials. Also, a last observation carried forward process was assumed to have continued for the duration of the model. Additionally, the trials with duloxetine may have over-predicted its efficacy in PHN. Although a 30% improvement in pain is often an endpoint in clinical trials, some patients may require greater or less improvement in pain to be considered a clinical success. The effectiveness results demonstrated that 8% capsaicin and topical lidocaine patches had significantly higher effectiveness rates than the oral agents used to treat PHN. In addition, this cost-effectiveness analysis found that the 8% capsaicin patch was similar to topical lidocaine patch and within an accepted cost per QALY gained threshold compared to the oral products.

  15. Bronchodilatation by tachykinins and capsaicin in the mouse main bronchus.

    PubMed

    Manzini, S

    1992-04-01

    1. The effect of sensory neuropeptides and capsaicin on basal and stimulated tone of mouse bronchial smooth muscle has been evaluated. 2. In basal conditions neither sensory neuropeptides (substance P, neurokinin A or calcitonin gene-related peptide (CGRP) nor capsaicin exerted any contractile effects. However, when a tonic contraction was induced with carbachol (1 microM) a prompt relaxation was induced by substance P (1- 100 nM) and by neurokinin A (1- 100 nM), with substance P being more potent. A second application of substance P was without effect. CGRP (10 nM) produced only a very small and erratic relaxation. Relaxation was also induced by capsaicin (1 microM), and this response could be evoked only once in each preparation. In 4 out of 6 preparations a cross-desensitization between substance P and capsaicin was observed. 3. The selective NK1 tachykinin agonist, [Pro9]-SP sulphone (1 microM), exerted potent bronchodilator actions on carbachol-contracted mouse bronchial preparations. In contrast, neither [beta Ala8]-NKA (4-10) nor [MePhe7]-NKB (both at a concentration of 1 microM), selective synthetic agonists for NK2 and NK3 receptors, exerted significant relaxant effects. Furthermore, the selective NK1 tachykinin antagonist, (+/-)-CP 96,345 (1 microM), abolished substance P (1 nM)- but not isoprenaline (0.1 microM)-induced relaxations. 4. Application of electrical field stimulation (EFS) (20 Hz, supramaximal voltage, 0.5 ms for 10 s) to carbachol-contracted preparations evoked a transient contraction followed by a relaxation. The tetrodotoxin-sensitive slow component of this relaxation was reduced following capsaicin desensitization. 5. In the presence of indomethacin (5 microM) the relaxation induced by substance P, capsaicin or EFS was suppressed.6. In conclusion, the mouse main bronchus appears to be a monoreceptorial tissue containing only NK, receptors which subserve bronchodilator functions. Such receptors could be activated by exogenous or endogenously (capsaicin or EFS) released tachykinins and the consequent relaxation is probably mediated by the generation of prostanoids.

  16. Topical Pain Relievers May Cause Burns

    MedlinePlus

    ... and joint pain relievers containing the active ingredients menthol, methyl salicylate and capsaicin. These cases were uncovered ... of people who purchase these products, Tan notes. Menthol, methyl salicylate and capsaicin create sensations of local ...

  17. Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists.

    PubMed

    Kim, Changhoon; Ann, Jihyae; Lee, Sunho; Sun, Wei; Blumberg, Peter M; Frank-Foltyn, Robert; Bahrenberg, Gregor; Stockhausen, Hannelore; Christoph, Thomas; Lee, Jeewoo

    2018-05-23

    A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capsaicin

    NASA Astrophysics Data System (ADS)

    Huang, Jiping; Mabury, Scott A.; Sagebiel, John C.

    2000-12-01

    Capsaicin, the pungent ingredient of the red pepper or Capsicum annuum, is widely used in food preparation. The purpose of this experiment was to acquaint students with the active ingredients of hot chili pepper (capsaicin and dihydrocapsaicin), the extraction, cleanup, and analysis of these chemicals, as a fun and informative analytical exercise. Fresh peppers were prepared and extracted with acetonitrile, removing plant co-extractives by addition to a C-18 solid-phase extraction cartridge. Elution of the capsaicinoids was accomplished with a methanol-acetic acid solution. Analysis was completed by reverse-phase HPLC with diode-array or variable wavelength detection and calibration with external standards. Levels of capsaicin and dihydrocapsaicin were typically found to correlate with literature values for a specific hot pepper variety. Students particularly enjoyed relating concentrations of capsaicinoids to their perceived valuation of "hotness".

  19. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    PubMed

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  20. Application of a capsaicin rinse in the treatment of burning mouth syndrome

    PubMed Central

    Silvestre-Rangil, Javier; Tamarit-Santafé, Carmen; Bautista, Daniel

    2012-01-01

    Objective: To examine the efficacy of a new topical capsaicin presentation as an oral rinse in improving the symptoms of burning mouth syndrome (BMS). Study design: A prospective, double-blind, cross-over study was made of 30 patients with BMS. There were 7 dropouts; the final study series thus comprised 23 individuals. The patients were randomized to two groups: (A) capsaicin rinse (0.02%) or (B) placebo rinse, administered during one week. After a one-week washout period, the patients were then assigned to the opposite group. Burning discomfort was scored using a visual analog scale (VAS): in the morning before starting the treatment, in the afternoon on the first day of treatment, and at the end of the week of treatment in the morning and in the afternoon. The same scoring sequence was again applied one week later with the opposite rinse. Results: The mean patient age was 72.65 ± 12.10 years, and the duration of BMS was 5.43 ± 3.23 years on average. Significant differences in VAS score were recorded in the capsaicin group between baseline in the morning (AM1) or afternoon (AA1) and the end of the week of treatment (AA7)(p=0.003 and p=0.002, respectively). Conclusion: The topical application of capsaicin may be useful in treating the discomfort of BMS, but has some limitations. Key words: Burning mouth syndrome, stomatodynia, capsaicin, treatment, clinical management. PMID:21743415

  1. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin.

    PubMed

    2007-01-01

    Capsicum-derived ingredients function as skin-conditioning agents--miscellaneous, external analgesics, flavoring agents, or fragrance components in cosmetics. These ingredients are used in 19 cosmetic products at concentrations as high as 5%. Cosmetic-grade material may be extracted using hexane, ethanol, or vegetable oil and contain the full range of phytocompounds that are found in the Capsicum annuum or Capsicum frutescens plant (aka red chiles), including Capsaicin. Aflatoxin and N-nitroso compounds (N-nitrosodimethylamine and N-nitrosopyrrolidine) have been detected as contaminants. The ultraviolet (UV) absorption spectrum for Capsicum Annuum Fruit Extract indicates a small peak at approximately 275 nm, and a gradual increase in absorbance, beginning at approximately 400 nm. Capsicum and paprika are generally recognized as safe by the U.S. Food and Drug Administration for use in food. Hexane, chloroform, and ethyl acetate extracts of Capsicum Frutescens Fruit at 200 mg/kg resulted in death of all mice. In a short-term inhalation toxicity study using rats, no difference was found between vehicle control and a 7% Capsicum Oleoresin solution. In a 4-week feeding study, red chilli (Capsicum annuum) in the diet at concentrations up to 10% was relatively nontoxic in groups of male mice. In an 8-week feeding study using rats, intestinal exfoliation, cytoplasmic fatty vacuolation and centrilobular necrosis of hepatocytes, and aggregation of lymphocytes in the portal areas were seen at 10% Capsicum Frutescens Fruit, but not 2%. Rats fed 0.5 g/kg day-1 crude Capsicum Fruit Extract for 60 days exhibited no significant gross pathology at necropsy, but slight hyperemia of the liver and reddening of the gastric mucosa were observed. Weanling rats fed basal diets supplemented with whole red pepper at concentrations up to 5.0% for up to 8 weeks had no pathology of the large intestines, livers, and kidneys, but destruction of the taste buds and keratinization and erosion of the gastrointestinal (GI) tract were noted in groups fed 0.5% to 5.0% red pepper. The results of 9-and 12-month extension of this study showed normal large intestines and kidneys. In rabbits fed Capsicum Annuum Powder at 5 mg/kg day-1 in the diet daily for 12 months damage to the liver and spleen was noted. A rabbit skin irritation test of Capsicum Annuum Fruit Extract at concentrations ranging from 0.1% to 1.0% produced no irritation, but Capsicum Frutescens Fruit Extract induced concentration-dependent (at 25 to 500 microg/ml) cytotoxicity in a human buccal mucosa fibroblast cell line. An ethanol extract of red chili was mutagenic in Salmonella typhimurium TA98, but not in TA100, or in Escherichia coli. Other genotoxicity assays gave a similar pattern of mixed results. Adenocarcinoma of the abdomen was observed in 7/20 mice fed 100 mg red chilies per day for 12 months; no tumors were seen in control animals. Neoplastic changes in the liver and intestinal tumors were observed in rats fed red chili powder at 80 mg/kg day-1 for 30 days, intestinal and colon tumors were seen in rats fed red chili powder and 1,2-dimethyl hydrazine, but no tumors were observed in controls. In another study in rats, however, red chile pepper in the diet at the same dose decreased the number of tumors seen with 1,2-dimethylhydrazine. Other feeding studies evaluated the effect of red chili peppers on the incidence of stomach tumors produced by N-methyl-N'-nitro-N-nitrosoguanidine, finding that red pepper had a promoting effect. Capsicum Frutescens Fruit Extract promoted the carcinogenic effect of methyl(acetoxymethyl)nitrosamine (carcinogen) or benzene hexachloride (hepatocarcinogen) in inbred male and female Balb/c mice dosed orally (tongue application). Clinical findings include symptoms of cough, sneezing, and runny nose in chili factory workers. Human respiratory responses to Capsicum Oleoresin spray include burning of the throat, wheezing, dry cough, shortness of breath, gagging, gasping, inability to breathe or speak, and, rarely, cyanosis, apnea, and respiratory arrest. A trade name mixture containing 1% to 5% Capsicum Frutescens Fruit Extract induced very slight erythema in 1 of 10 volunteers patch tested for 48 h. Capsicum Frutescens Fruit Extract at 0.025% in a repeated-insult patch test using 103 subjects resulted in no clinically meaningful irritation or allergic contact dermatitis. One epidemiological study indicated that chili pepper consumption may be a strong risk factor for gastric cancer in populations with high intakes of chili pepper; however, other studies did not find this association. Capsaicin functions as an external analgesic, a fragrance ingredient, and as a skin-conditioning agent--miscellaneous in cosmetic products, but is not in current use. Capsaicin is not generally recognized as safe and effective by the U.S. Food and Drug Administration for fever blister and cold sore treatment, but is considered to be safe and effective as an external analgesic counterirritant. Ingested Capsaicin is rapidly absorbed from the stomach and small intestine in animal studies. Subcutaneous injection of Capsaicin in rats resulted in a rise in the blood concentration, reaching a maximum at 5 h; the highest tissue concentrations were in the kidney and lowest in the liver. In vitro percutaneous absorption of Capsaicin has been demonstrated in human, rat, mouse, rabbit, and pig skin. Enhancement of the skin permeation of naproxen (nonsteroidal anti-inflammatory agent) in the presence of Capsaicin has also been demonstrated. Pharmacological and physiological studies demonstrated that Capsaicin, which contains a vanillyl moiety, produces its sensory effects by activating a Ca2 +-permeable ion channel on sensory neurons. Capsaicin is a known activator of vanilloid receptor 1. Capsaicin-induced stimulation of prostaglandin biosynthesis has been shown using bull seminal vesicles and rheumatoid arthritis synoviocytes. Capsaicin inhibits protein synthesis in Vero kidney cells and human neuroblastoma SHSY-5Y cells in vitro, and inhibits growth of E. coli, Pseudomonas solanacearum, and Bacillus subtilis bacterial cultures, but not Saccharomyces cerevisiae. Oral LD50 values as low as 161.2 mg/kg (rats) and 118.8 mg/kg (mice) have been reported for Capsaicin in acute oral toxicity studies, with hemorrhage of the gastric fundus observed in some of the animals that died. Intravenous, intraperitoneal, and subcutaneous LD50 values were lower. In subchronic oral toxicity studies using mice, Capsaicin produced statistically significant differences in the growth rate and liver/body weight increases. Capsaicin is an ocular irritant in mice, rats, and rabbits. Dose-related edema was observed in animals receiving Capsaicin injections into the hindpaw (rats) or application to the ear (mice). In guinea pigs, dinitrochlorobenzene contact dermatitis was enhanced in the presence of Capsaicin, injected subcutaneously, whereas dermal application inhibited sensitization in mice. Immune system effects have been observed in neonatal rats injected subcutaneously with Capsaicin. Capsaicin produced mixed results in S. typhimurium micronucleus and sister-chromatid exchange genotoxicity assays. Positive results for Capsaicin were reported in DNA damage assays. Carcinogenic, cocarcinogenic, anticarcinogenic, antitumorigenic, tumor promotion, and anti-tumor promotion effects of Capsaicin have been reported in animal studies. Except for a significant reduction in crown-rump length in day 18 rats injected subcutaneously with Capsaicin (50 mg/kg) on gestation days 14, 16, 18, or 20, no reproductive or developmental toxicity was noted. In pregnant mice dosed subcutaneously with Capsaicin, depletion of substance P in the spinal cord and peripheral nerves of pregnant females and fetuses was noted. In clinical tests, nerve degeneration of intracutaneous nerve fibers and a decrease in pain sensation induced by heat and mechanical stimuli were evident in subjects injected intradermally with Capsaicin. An increase in mean inspiratory flow was reported for eight normal subjects who inhaled nebulized 10(-7) M Capsaicin. The results of provocative and predictive tests involving human subjects indicated that Capsaicin is a skin irritant. Overall, studies suggested that these ingredients can be irritating at low concentrations. Although the genotoxicity, carcinogenicity, and tumor promotion potential of Capsaicin have been demonstrated, so have opposite effects. Skin irritation and other tumor-promoting effects of Capsaicin appear to be mediated through interaction with the same vanilloid receptor. Given this mechanism of action and the observation that many tumor promoters are irritating to the skin, the Panel considered it likely that a potent tumor promoter may also be a moderate to severe skin irritant. Thus, a limitation on Capsaicin content that would significantly reduce its skin irritation potential is expected to, in effect, lessen any concerns relating to tumor promotion potential. Because Capsaicin enhanced the penetration of an anti-inflammatory agent through human skin, the Panel recommends that care should be exercised in using ingredients that contain Capsaicin in cosmetic products. The Panel advised industry that the total polychlorinated biphenyl (PCB)/pesticide contamination should be limited to not more than 40 ppm, with not more than 10 ppm for any specific residue, and agreed on the following limitations for other impurities: arsenic (3 mg/kg max), heavy metals (0.002% max), and lead (5 mg/kg max). Industry was also advised that aflatoxin should not be present in these ingredients (the Panel adopted < or =15 ppb as corresponding to "negative" aflatoxin content), and that ingredients derived from Capsicum annuum and Capsicum Frutescens Plant species should not be used in products where N-nitroso compounds may be formed. (ABSTRACT TRUNCATED)

  2. Effect of experimental diabetes on cholinergic, purinergic and peptidergic motor responses of the isolated rat bladder to electrical field stimulation or capsaicin.

    PubMed

    Benkó, Rita; Lázár, Zsófia; Pórszász, Róbert; Somogyi, George T; Barthó, Loránd

    2003-09-30

    An attempt has been made to pharmacologically isolate cholinergic, P(2) purinoceptor-mediated and peptidergic (capsaicin-sensitive, tachykinin-mediated) contraction of the guanethidine-treated rat bladder detrusor preparation, in vitro. The effect of experimental diabetes was assessed on these types of contraction. Responses were evoked by electrical field stimulation (single shocks or 1 Hz for 30 s or 10 Hz for 40 s). Single shocks and 1-Hz stimulation were applied in the presence of (a). atropine (1 microM) or (b). P(2) purinoceptor antagonists (50 microM pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid) [PPADS] plus 100 microM suramin. Long-term electrical field stimulation (10 Hz for 40 s) (c). was applied with both atropine and the P(2) purinoceptor antagonists present in the organ bath. The effects of capsaicin (d). and ATP (e). were also studied. Three groups of experimental animals were used: streptozotocin-treated (50 mg.kg(-1) i.p., 8 weeks before the experiment), parallel solvent-treated and untreated rats. (a). Responses to electrical field stimulation in the presence of atropine were reduced by half by PPADS plus suramin, but were resistant to capsaicin tachyphylaxis. They were enhanced in preparations taken from diabetic rats. (b). Contractions to electrical field stimulation in the presence of PPADS plus suramin were reduced by 2/3 by atropine, but were left unchanged by capsaicin or diabetes. (c). Contractions to long-term stimulation had a quick and a sustained phase. Especially the latter was inhibited by capsaicin tachypyhlaxis; it was also strongly reduced in preparations taken from diabetic rats. (d). Contractions to capsaicin (30 nM and 1 microM) were resistant to tetrodotoxin, strongly reduced by a combination of tachykinin NK(1) and NK(2) receptor antagonists, and slightly reduced in preparations from diabetic animals. Capsaicin (1 microM) had no acute inhibitory action on cholinergic or purinergic responses, nor did it cause relaxation in precontracted preparations treated with tachykinin receptor antagonists. (e) ATP-induced contractions were strongly reduced by PPADS plus suramin (50 plus 100 microM) and to a similar degree by 100 plus 200 microM, respectively. It is concluded that experimental diabetes selectively impairs peptidergic, capsaicin-sensitive responses (especially those that involve impulse conduction) in the rat detrusor preparation. The contractile response to electrical field stimulation that remains after atropine plus the P(2) purinoceptor antagonists has a yet unknown transmitter background.

  3. A Human Model of Small Fiber Neuropathy to Study Wound Healing

    PubMed Central

    Illigens, Ben M. W.; Gibbons, Christopher H.

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001) and day 14 (P<0.001). Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01). In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy. PMID:23382960

  4. The color and size of chili peppers (Capsicum annuum) influence Hep-G2 cell growth.

    PubMed

    Popovich, David G; Sia, Sharon Y; Zhang, Wei; Lim, Mon L

    2014-11-01

    Four types of chili (Capsicum annuum) extracts, categorized according to color; green and red, and size; small and large were studied in Hep-G2 cells. Red small (RS) chili had an LC50 value of 0.378 ± 0.029 compared to green big (GB) 1.034 ± 0.061 and green small (GS) 1.070 ± 0.21 mg/mL. Red big (RB) was not cytotoxic. Capsaicin content was highest in RS and produced a greater percentage sub-G1 cells (6.47 ± 1.8%) after 24 h compared to GS (2.96 ± 1.3%) and control (1.29 ± 0.8%) cells. G2/M phase was reduced by GS compared to RS and control cells. RS at the LC50 concentration contained 1.6 times the amount of pure capsaicin LC50 to achieve the same effect of capsaicin alone. GS and GB capsaicin content at the LC50 value was lower (0.2 and 0.66, respectively) compared to the amount of capsaicin to achieve a similar reduction in cell growth.

  5. Preparative separation of capsaicin and dihydrocapsaicin from Capsicum frutescens by high-speed counter-current chromatography.

    PubMed

    Peng, Aihua; Ye, Haoyu; Li, Xia; Chen, Lijuan

    2009-09-01

    Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal-phase thin-layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high-speed counter-current chromatography (HSCCC) with a solvent system composed of n-hexane-ethyl acetate-methanol-water-acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high-performance liquid chromatography (HPLC) and their structures were identified by (1)H nuclear magnetic resonance (NMR) and (13)C NMR analysis.

  6. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    NASA Astrophysics Data System (ADS)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  7. A human model of small fiber neuropathy to study wound healing.

    PubMed

    Illigens, Ben M W; Gibbons, Christopher H

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001) and day 14 (P<0.001). Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01). In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  8. Effects of omega-conotoxin GVIA on the activation of capsaicin-sensitive afferent sensory nerves in guinea pig airway tissues.

    PubMed

    Morimoto, H; Matsuda, A; Ohori, M; Fujii, T

    1996-06-01

    We examined the effects of Ca2+ channel antagonists on various respiratory reactions induced by the activation of capsaicin-sensitive afferent sensory nerves. Intravenous (i.v.) injection of the N-type Ca2+ channel antagonist omega-conotoxin GVIA (CgTX) (1-20 micrograms/kg) dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, whereas i.v. administration of the L-type antagonist nicardipine (100 micrograms/kg), the P-type antagonist omega-agatoxin IVA (AgaTX) (20 micrograms/kg) or the OPQ family-type antagonist omega-conotoxin MVIIC (CmTX) (20 micrograms/kg) had no effect. However, CgTX (20 micrograms/kg) failed to inhibit substance P-induced guinea pig bronchoconstriction. CgTX (20 micrograms/kg) significantly inhibited cigarette smoke-induced guinea pig tracheal plasma extravasation, but not the substance P-induced reaction. CgTX also reduced electrical field stimulation-induced guinea pig bronchial smooth muscle contraction (0.01-10 microM) and capsaicin-induced substance P-like immunoreactivity release from guinea pig lung (0.14 microM). This evidence suggests that N-type Ca2+ channels modulate tachykinin release from capsaicin-sensitive afferent sensory nerve endings in guinea pig airway tissue.

  9. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938

    PubMed Central

    Perez-Burgos, Azucena; Wang, Lu; McVey Neufeld, Karen-Anne; Mao, Yu-Kang; Ahmadzai, Mustafa; Janssen, Luke J; Stanisz, Andrew M; Bienenstock, John; Kunze, Wolfgang A

    2015-01-01

    Abstract Certain bacteria exert visceral antinociceptive activity, but the mechanisms involved are not determined. Lactobacillus reuteri DSM 17938 was examined since it may be antinociceptive in children. Since transient receptor potential vanilloid 1 (TRPV1) channel activity may mediate nociceptive signals, we hypothesized that TRPV1 current is inhibited by DSM. We tested this by examining the effect of DSM on the firing frequency of spinal nerve fibres in murine jejunal mesenteric nerve bundles following serosal application of capsaicin. We also measured the effects of DSM on capsaicin-evoked increase in intracellular Ca2+ or ionic current in dorsal root ganglion (DRG) neurons. Furthermore, we tested the in vivo antinociceptive effects of oral DSM on gastric distension in rats. Live DSM reduced the response of capsaicin- and distension-evoked firing of spinal nerve action potentials (238 ± 27.5% vs. 129 ± 17%). DSM also reduced the capsaicin-evoked TRPV1 ionic current in DRG neuronal primary culture from 83 ± 11% to 41 ± 8% of the initial response to capsaicin only. Another lactobacillus (Lactobacillus rhamnosus JB-1) with known visceral anti-nociceptive activity did not have these effects. DSM also inhibited capsaicin-evoked Ca2+ increase in DRG neurons; an increase in Ca2+ fluorescence intensity ratio of 2.36 ± 0.31 evoked by capsaicin was reduced to 1.25 ± 0.04. DSM releasable products (conditioned medium) mimicked DSM inhibition of capsaicin-evoked excitability. The TRPV1 antagonist 6-iodonordihydrocapsaicin or the use of TRPV1 knock-out mice revealed that TRPV1 channels mediate about 80% of the inhibitory effect of DSM on mesenteric nerve response to high intensity gut distension. Finally, feeding with DSM inhibited perception in rats of painful gastric distension. Our results identify a specific target channel for a probiotic with potential therapeutic properties. Key points Certain probiotic bacteria have been shown to reduce distension-dependent gut pain, but the mechanisms involved remain obscure. Live luminal Lactobacillus reuteri (DSM 17938) and its conditioned medium dose dependently reduced jejunal spinal nerve firing evoked by distension or capsaicin, and 80% of this response was blocked by a specific TRPV1 channel antagonist or in TRPV1 knockout mice. The specificity of DSM action on TRPV1 was further confirmed by its inhibition of capsaicin-induced intracellular calcium increases in dorsal root ganglion neurons. Another lactobacillus with ability to reduce gut pain did not modify this response. Prior feeding of rats with DSM inhibited the bradycardia induced by painful gastric distension. These results offer a system for the screening of new and improved candidate bacteria that may be useful as novel therapeutic adjuncts in gut pain. PMID:26084409

  10. 1H NMR studies of molecular interaction of D-glucosamine and N-acetyl-D-glucosamine with capsaicin in aqueous and non-aqueous media.

    PubMed

    Higuera-Ciapara, Inocencio; Virués, Claudia; Jiménez-Chávez, Marcela; Martínez-Benavidez, Evelin; Hernández, Javier; Domínguez, Zaira; López-Rendón, Roberto; Velázquez, Enrique F; Inoue, Motomichi

    2017-11-27

    Complex formation of D-glucosamine (Gl) and N-acetyl-D-glucosamine (AGl) with capsaicin (Cp) were studied by 1 H NMR titrations in H 2 O-d 2 and DMSO-d 6 ; capsaicin is the major bioactive component of chili peppers. Every titration curve has been interpreted by formulating a suitable model for the reaction equilibrium, to elucidate intermolecular interactions. In DMSO, glucosamine cations associate with each other to yield linear aggregates, and undergo pseudo-1:1-complexation with capsaicin, the formation constant being ca. 30 M -1 . N-Acetylglucosamine, without self-association, forms a 2:1-complex AGl 2 Cp with the stability of ca. 70 M -2 . These complexations are achieved by intermolecular hydrogen bonds. In D 2 O, glucosamine undergoes reversible protonation equilibrium between Gl 0 and GlH + with the logarithmic protonation constants log K D  = 8.63 for α-glucosamine and 8.20 for β-isomer. Both anomeric isomers of deprotonated glucosamine form Gl 0 Cp-type complexes of capsaicin, in a competitive manner, with a formation constant of 1040 M -1 for the α-glucosamine complex and 830 M -1 for the β-complex; the anomeric carbons result in the difference in thermodynamic stability. The reactant molecules are closed up by the solvent-exclusion effect and/or the van der Waals interaction; the resulting pair is stabilized by intermolecular hydrogen bonding within a local water-free space between the component molecules. By contrast, neither protonated glucosamine (GlH + ) nor N-acetylglucosamine yields a capsaicin complex with the definite stoichiometry. The monosaccharides recognize capsaicin under only a controlled condition; the same phenomena are predicted for biological systems and nanocarriers based on polysaccharides such as chitosan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Fen; Yang, Shuang; Zhao, Dan

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pHmore » 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.« less

  12. Capsicum

    MedlinePlus

    ... is an herb. The fruit of the capsicum plant is used to make medicine. Capsicum is taken ... The fruit of the capsicum plant contains a chemical called capsaicin. Capsaicin seems to reduce pain sensations when applied to the skin. It might also reduce swelling.

  13. Neutral endopeptidase inhibitors potentiate substance P- and capsaicin-induced cough in awake guinea pigs.

    PubMed Central

    Kohrogi, H; Graf, P D; Sekizawa, K; Borson, D B; Nadel, J A

    1988-01-01

    To study the roles of substance P and endogenous neutral endopeptidase in mediating cough, we measured cough responses in awake guinea pigs in response to exogenous substance P and capsaicin aerosols in the presence and absence of the neutral endopeptidase inhibitors leucine-thiorphan and phosphoramidon. Substance P stimulated cough in very low concentrations (10(-17)-10(-16) M). In a second study where the investigator did not know whether substance P or diluent alone was aerosolized, substance P (10(-16) M) caused cough. Leucine-thiorphan (10(-5) M) and phosphoramidon (10(-5) M) potentiated substance P-induced cough; NEP inhibitors also potentiated capsaicin-induced cough significantly. These findings suggest that substance P is a potent stimulator of cough responses, that capsaicin-induced cough is mediated by substance P or another similar neuropeptide, and that cough responses are modulated by endogenous neutral endopeptidase. PMID:2461967

  14. Neutral endopeptidase inhibitors potentiate substance P- and capsaicin-induced cough in awake guinea pigs.

    PubMed

    Kohrogi, H; Graf, P D; Sekizawa, K; Borson, D B; Nadel, J A

    1988-12-01

    To study the roles of substance P and endogenous neutral endopeptidase in mediating cough, we measured cough responses in awake guinea pigs in response to exogenous substance P and capsaicin aerosols in the presence and absence of the neutral endopeptidase inhibitors leucine-thiorphan and phosphoramidon. Substance P stimulated cough in very low concentrations (10(-17)-10(-16) M). In a second study where the investigator did not know whether substance P or diluent alone was aerosolized, substance P (10(-16) M) caused cough. Leucine-thiorphan (10(-5) M) and phosphoramidon (10(-5) M) potentiated substance P-induced cough; NEP inhibitors also potentiated capsaicin-induced cough significantly. These findings suggest that substance P is a potent stimulator of cough responses, that capsaicin-induced cough is mediated by substance P or another similar neuropeptide, and that cough responses are modulated by endogenous neutral endopeptidase.

  15. Deconvoluting physical and chemical heat: Temperature and spiciness influence flavor differently.

    PubMed

    Kapaun, Camille L; Dando, Robin

    2017-03-01

    Flavor is an essential, rich and rewarding part of human life. We refer to both physical and chemical heat in similar terms; elevated temperature and capsaicin are both termed hot. Both influence our perception of flavor, however little research exists into the possibly divergent effect of chemical and physical heat on flavor. A human sensory panel was recruited to determine the equivalent level of capsaicin to match the heat of several physical temperatures. In a subsequent session, the intensities of multiple concentrations of tastant solutions were scaled by the same panel. Finally, panelists evaluated tastants plus equivalent chemical or physical "heat". All basic tastes aside from umami were influenced by heat, capsaicin, or both. Interestingly, capsaicin blocked bitter taste input much more powerfully than elevated temperature. This suggests that despite converging percepts, chemical and physical heat have a fundamentally different effect on the perception of flavor. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of frusemide on bradykinin- and capsaicin-induced contraction of the guinea-pig trachea.

    PubMed

    Molimard, M; Advenier, C

    1993-03-01

    Frusemide, a loop diuretic, inhibits the bronchial response to various bronchoconstrictor stimuli in asthmatic subjects. The underlying mechanisms remain unclear. In order to determine whether frusemide inhibits pharmacologically induced C-fibre stimulation, we investigated the effect of frusemide on bradykinin-, capsaicin-, neurokinin A-, and substance P-induced contraction of the guinea-pig isolated trachea. Frusemide 10(-5) and 10(-4) M produced a significant inhibition of concentration-response curves to bradykinin, which was markedly reduced by indomethacin 10(-6) M. Frusemide significantly reduced capsaicin-induced contraction only in the presence of indomethacin 10(-6) M. Neurokinin A- and substance P-induced contractions were not affected by frusemide and/or indomethacin. Our data suggest that a cyclo-oxygenase pathway is involved in the inhibition by frusemide of the bradykinin-induced contraction, but not in the inhibition of the capsaicin-induced contraction.

  17. Knee joint mobilization reduces secondary mechanical hyperalgesia induced by capsaicin injection into the ankle joint.

    PubMed

    Sluka, K A; Wright, A

    2001-01-01

    Joint mobilization is a treatment approach commonly used by physical therapists for the management of a variety of painful conditions. However, the clinical effectiveness when compared to placebo and the neurophysiological mechanism of action are not known. The purpose of this study was to establish that application of a manual therapy technique will produce antihyperalgesia in an animal model of joint inflammation and that the antihyperalgesia produced by joint mobilization depends on the time of treatment application. Capsaicin (0.2%, 50 microl) was injected into the lateral aspect of the left ankle joint and mechanical withdrawal threshold assessed before and after capsaicin injection in Sprague-Dawley rats. Joint mobilization of the ipsilateral knee joint was performed 2 h after capsaicin injection for a total of 3 min, 9 min or 15 min under halothane anaesthesia. Control groups included animals that received halothane for the same time as the group that received joint mobilization and those whose limbs were held for the same duration as the mobilization (no halothane). Capsaicin resulted in a decreased mechanical withdrawal threshold by 2 h after injection that was maintained through 4 h. Both 9 and 15 min of mobilization, but not 3 min of mobilization, increased the withdrawal threshold to mechanical stimuli to baseline values when compared with control groups. The antihyperalgesic effect of joint mobilization lasted 30 min. Thus, joint mobilization (9 or 15 min duration) produces a significant reversal of secondary mechanical hyperalgesia induced by intra-articular injection of capsaicin. Copyright 2001 European Federation of Chapters of the International Association for the Study of Pain.

  18. Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography.

    PubMed

    Kamshilin, Alexei A; Volynsky, Maxim A; Khayrutdinova, Olga; Nurkhametova, Dilyara; Babayan, Laura; Amelin, Alexander V; Mamontov, Oleg V; Giniatullin, Rashid

    2018-06-18

    The non-invasive biomarkers of migraine can help to develop the personalized medication of this disorder. In testing of the antimigraine drugs the capsaicin-induced skin redness with activated TRPV1 receptors in sensory neurons associated with the release of the migraine mediator CGRP has already been widely used. Fourteen migraine patients (mean age 34.6 ± 10.2 years) and 14 healthy volunteers (mean age 29.9 ± 9.7 years) participated in the experiment. A new arrangement of imaging photoplethysmography recently developed by us was used here to discover novel sensitive parameters of dermal blood flow during capsaicin applications in migraine patients. Blood pulsation amplitude (BPA) observed as optical-intensity waveform varying synchronously with heartbeat was used for detailed exploration of microcirculatory perfusion induced by capsicum patch application. The BPA signals, once having appeared after certain latent period, were progressively rising until being saturated. Capsaicin-induced high BPA areas were distributed unevenly under the patch, forming "hot spots." Interestingly the hot spots were much more variable in migraine patients than in the control group. In contrast to BPA, a slow component of waveforms related to the skin redness changed significantly less than BPA highlighting the latter parameter as the potential sensitive biomarker of capsaicin-induced activation of the blood flow. Thus, in migraine patients, there is a non-uniform (both in space and in time) reaction to capsaicin, resulting in highly variable openings of skin capillaries. BPA dynamics measured by imaging photoplethysmography could serve as a novel sensitive non-invasive biomarker of migraine-associated changes in microcirculation.

  19. Quality of Life and Capsaicin Sensitivity in Patients with Airway Symptoms Induced by Chemicals and Scents: A Longitudinal Study

    PubMed Central

    Ternesten-Hasséus, Ewa; Lowhagen, Olle; Millqvist, Eva

    2007-01-01

    Objective It is common in asthma and allergy clinics to see patients presenting with upper and lower airway symptoms that are induced by chemicals and scents and not explained by allergic or asthmatic reactions. Previous studies have shown that these patients often have increased cough sensitivity to inhaled capsaicin; such sensitivity is known to reflect the airway sensory reactivity. The aim of this study was to evaluate the duration of symptoms induced by chemicals and scents and to measure health-related quality of life (HRQL) in patients with chemically induced airway symptoms. We also wished to determine and compare repeatability of the cough response to capsaicin inhalation, and to evaluate the patients’ airway sensory reactivity in a long-term perspective. Participants Seventeen patients with a history of at least 12 months of airway symptoms induced by chemicals and scents were followed over 5 years with repeated questionnaires, measurements of HRQL, and capsaicin inhalation tests. Results The symptoms persisted and did not change significantly over time, and the patients had a reduced HRQL that did not change during the 5-year period. The capsaicin sensitivity was increased at the start of the study, the cough sensitivity was long-lasting, and the repeatability of the capsaicin inhalation test was considered to be good in a long-term perspective. Conclusions Upper and lower airway symptoms induced by chemicals and scents represent an entity of chronic diseases, different from asthma or chronic obstructive pulmonary disease, with persistent symptoms, a reduced HRQL, and unchanged sensory hyperreactivity. PMID:17431493

  20. A “burning” therapy for burning mouth syndrome: preliminary results with the administration of topical capsaicin.

    PubMed

    Azzi, L; Croveri, F; Pasina, L; Porrini, M; Vinci, R; Manfredini, M; Tettamanti, L; Tagliabue, A; Silvestre-Rangil, J; Spadari, F

    2017-01-01

    Burning mouth syndrome is defined as an intraoral burning sensation for which no medical or dental cause can be found. Recently, researchers have demonstrated an altered trophism of the small nerve fibres and alterations in the numbers of TRPV-1 vanilloid receptors. Capsaicin is a molecule that is contained in hot peppers and is specifically detected by TRPV-1 vanilloid receptors that are distributed in the oral mucosae. We aimed at verifying if topical capsaicin could prove to be an effective treatment of Burning Mouth Syndrome. A group of 99 BMS patients were recruited. We subdivided the BMS patients into two groups: the collaborative patients, who expressed a predominantly neuropathic pattern of symptoms, and the non-collaborative patients, who were characterised by stronger psychogenic patterns of the syndrome. Both groups underwent topical therapy with capsaicin in the form of a mouth rinse 3 times a day for a long period. After 1 year of treatment, the final overall success rate was approximately 78%, but with a significant difference in the success rates of the two groups of patients (87% and 20% among the collaborative and non-collaborative patients, respectively; p=0.000). The use of topical capsaicin can improve the oral discomfort of BMS patients, especially during the first month of therapy, but it is more effective for those patients in which the neuropathic component of the syndrome is predominant. Our hypothesis is that chronic stimulation with capsaicin leads to decreases in burning symptoms. This phenomenon is called desensitisation and is accompanied by substantial improvements in oral symptoms.

  1. Tachykinin substance P depletion by capsaicin exacerbates inflammatory response to sidestream cigarette smoke in rats.

    PubMed

    Sun, Nina N; Wong, Simon S; Keith, Ingegerd; Witten, Mark L

    2004-09-01

    To evaluate the role of substance P (SP)-containing C-fiber nerves in the development of the inflammatory responses to sidestream cigarette smoke (SSCS), female Fischer 344 rats were randomly assigned into vehicle and capsaicin groups, respectively. Then, half the number in each group (N = 24) was nose-only exposed to air or 0.4 mg/m3 total particulate matter of SSCS for 4 h/day for 7 days. Exposure of the vehicle rats to SSCS induced obvious pulmonary neurogenic inflammation as indicated by elevations in plasma extravasation and proinflammatory cytokine secretions [interieukin (IL)-1beta and IL-12]. In addition, except for SP release, SSCS exposure significantly induced the tachykininergic toxicities at the gene level: upregulation of beta-preprotachykinin-I (beta-PPT-I) mRNA. However, neither SSCS exposure nor capsaicin pretreatment affects the immunolabeling density of neurokinin-1 receptor (NK-1R) in airway epithelium. SSCS also significantly inactivated pulmonary neutral endopeptidase (NEP) in lung tissue. Moreover, pretreatment with capsaicin significantly exacerbated the SSCS-induced inflammatory responses mentioned above as well as the release of plasma protein. Considering that capsaicin did not affect the normal control baselines of these parameters except for a decrease in NK-1R mRNA, we conclude that the degree of SSCS-induced inflammatory response was exacerbated because of the depletion of stored SP and/or inactivation of capsaicin-sensitive C-fiber nerves. Our data suggest the loss of afferent tachykinin SP signaling may lead to dysfunction of the sensory C-fiber nerve reflexes during exposure to SSCS, suggesting that SP serves a protective role.

  2. Effects of Phytochemical P-Glycoprotein Modulators on the Pharmacokinetics and Tissue Distribution of Doxorubicin in Mice.

    PubMed

    Kim, Tae Hwan; Shin, Soyoung; Yoo, Sun Dong; Shin, Beom Soo

    2018-02-07

    Pungent spice constituents such as piperine, capsaicin and [6]-gingerol consumed via daily diet or traditional Chinese medicine, have been reported to possess various pharmacological activities. These dietary phytochemicals have also been reported to inhibit P-glycoprotein (P-gp) in vitro and act as an alternative to synthetic P-gp modulators. However, the in vivo effects on P-gp inhibition are currently unknown. This study aimed to test the hypothesis that phytochemical P-gp inhibitors, i.e., piperine, capsaicin and [6]-gingerol, modulate the in vivo tissue distribution of doxorubicin, a representative P-gp substrate. Mice were divided into four groups and each group was pretreated with intraperitoneal injections of control vehicle, piperine, capsaicin, or [6]-gingerol and doxorubicin (1 mg/kg) was administered via the penile vein. The concentrations of the phytochemicals and doxorubicin in the plasma and tissues were determined by LC-MS/MS. The overall plasma concentration-time profiles of doxorubicin were not significantly affected by piperine, capsaicin, or [6]-gingerol. In contrast, doxorubicin accumulation was observed in tissues pretreated with piperine or capsaicin. The tissue to plasma partition coefficients, K p , for the liver and kidney were higher in the piperine-pretreated group, while the K p for kidney, brain and liver were higher in the capsaicin-pretreated group. [6]-Gingerol did not affect doxorubicin tissue distribution. The data demonstrated that the phytochemicals modulated doxorubicin tissue distribution, which suggested their potential to induce food-drug interactions and act as a strategy for the delivery of P-gp substrate drugs to target tissues and tumors.

  3. Effects of Capsaicin and Carbachol on Secretion From Transplanted Submandibular Glands and Prevention of Duct Obstruction.

    PubMed

    Su, Jia-Zeng; Liu, Xiao-Jing; Wang, Yang; Cai, Zhi-Gang; Zhang, Lei; Lv, Lan; Wang, Zhen; Hong, Xia; Yu, Guang-Yan

    2016-04-01

    To investigate whether capsaicin and carbachol promote secretion from and prevent duct obstruction in transplanted submandibular glands (SMGs). This retrospective cohort study included consecutive patients with severe keratoconjunctivitis sicca and successful SMG transplantation. Patients were divided into 2 groups: an exposed group receiving both capsaicin and carbachol after surgery and an unexposed group receiving neither. Secretion changes in response to capsaicin and carbachol administration were recorded in the exposed group. The main outcome measures were the secretory flow rate and duct obstruction rate in the transplanted SMGs. Forty-four patients (44 eyes) in the unexposed group and 115 patients (128 eyes) in the exposed group were followed up for more than 3 months postoperatively. The baseline characteristics were similar between the groups. The secretory flow rate before and 5, 25, 55 minutes after administration was 1 mm (0-2 mm) (median with interquartile range), 3 mm (1-5 mm), 4 mm (2-5 mm), 1 mm (0-2.5 mm), respectively, for capsaicin and 1 mm (0-3 mm), 1050 mm (450-1500 mm), 375 mm (150-600 mm), 0 mm (0-150 mm), respectively, for carbachol (P < 0.001 for both). In the exposed group, 6.2% of eyes had duct obstruction, whereas 18.2% of eyes in the unexposed group had duct obstruction (P = 0.031) (odds ratio = 0.3, 95% confidence interval, 0.105-0.856). This study provides evidence that capsaicin and carbachol effectively promote secretion from and prevent duct obstruction in transplanted SMGs during at least 3 months after transplantation.

  4. Capsaicin did not evoke pain from human hand vein segments but did so after injections into the paravascular tissue.

    PubMed

    Arndt, J O; Kindgen-Milles, D; Klement, W

    1993-04-01

    1. To see if pain from veins is mediated by C fibre endings, the C fibre stimulant capsaicin was applied intravenously, and, for comparison, paravenously and intracutaneously. 2. Capsaicin, dissolved in the fat emulsion Intralipid, was applied intravenously by continuous perfusion of vascularly isolated hand vein segments as well as by injections into occluded finger veins. Using the latter approach chemicals reach the paravascular space. 3. Pain intensities were recorded continuously with an electronically controlled visual analogue scale for deriving capsaicin concentration-pain intensity relations and the time course of pain (latencies, pain durations). 4. Capsaicin always evoked pain upon injection into skin and paravenous tissue (0.3-6.5 microM) and into occluded finger veins (3.3-33 microM), whereas it had no effect whatsoever when perfused through hand vein segments even at a concentration of 650 microM. 5. Pain intensity increased with concentration and usually reached the tolerance maximum at the fivefold threshold concentration, so that the concentration-pain intensity relations were congruent for the various routes of drug application. 6. The latencies and pain durations were independent of the capsaicin concentration, but were substantially longer with injections into occluded finger veins (latency 10-30 s, pain duration 60-120 s) than with intradermal or paravenous injections (2-9 s, 10-28 s). 7. These observations show for the first time a functional similarity between the nociceptive C fibre system of the skin and the paravascular tissues, and by inference, they dismiss the possibility that C fibre endings mediate pain in cutaneous veins.

  5. Enhanced Area of Secondary Hyperalgesia in Women with Multiple Stressful Life Events: A Pilot Study.

    PubMed

    You, Dokyoung S; Creech, Suzannah K; Meagher, Mary W

    2016-10-01

    Stressful life events are associated with increased pain severity and chronicity. However, the mechanism underlying this association remains disputed. Recent animal studies suggest that chronic stress increases pain sensitivity and persistence by enhancing peripheral and central sensitization mechanisms. To test this hypothesis in humans, the authors examined whether sensitization is enhanced in healthy women reporting more stressful life events using the topical capsaicin test. Thirty-two healthy young women reporting varying levels of stressful life events were invited for laboratory pain testing. Capsaicin was applied topically to the volar forearm. Measurements included capsaicin-induced spontaneous pain and area of secondary hyperalgesia in the region surrounding capsaicin application. Physiological (heart rate and skin conductance) and self-reported affective (emotional valence and arousal) states were also measured. The results indicate that more stressful life events predicted a linear increase in the area of secondary hyperalgesia (β = 0.40, p = 0.023, R 2 = 0.16), but not the intensity of secondary hyperalgesia nor capsaicin-induced spontaneous pain. These findings suggest that life stressors may be associated with heightened central sensitization manifested by an increased area of secondary hyperalgesia. Additionally, life stressors were related to greater sympathetic cardiac, but not to affective responses to capsaicin-induced pain. This study shows that women reporting more stressful life events show a larger area of secondary mechanical hyperalgesia. These preliminary findings suggest that life stressors may facilitate pain processing by enhancing central sensitization. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Effect of sympathetic activity on capsaicin-evoked pain, hyperalgesia, and vasodilatation.

    PubMed

    Baron, R; Wasner, G; Borgstedt, R; Hastedt, E; Schulte, H; Binder, A; Kopper, F; Rowbotham, M; Levine, J D; Fields, H L

    1999-03-23

    Painful nerve and tissue injuries can be exacerbated by activity in sympathetic neurons. The mechanisms of sympathetically maintained pain (SMP) are unclear. To determine the effect of cutaneous sympathetic activity on pain induced by primary afferent C-nociceptor sensitization with capsaicin in humans. In healthy volunteers capsaicin was applied topically (n = 12) or injected into the forearm skin (n = 10) to induce spontaneous pain, dynamic and punctate mechanical hyperalgesia, and antidromic (axon reflex) vasodilatation (flare). Intensity of pain and hyperalgesia, axon reflex vasodilatation (laser Doppler), and flare size and area of hyperalgesia (planimetry) were assessed. The local skin temperature at the application and measurement sites was kept constant at 35 degrees C. In each individual the analyses were performed during the presence of high and low sympathetic skin activity induced by whole-body cooling and warming with a thermal suit. By this method sympathetic vasoconstrictor activity is modulated in the widest range that can be achieved physiologically. The degree of vasoconstrictor discharge was monitored by measuring skin blood flow (laser Doppler) and temperature (infrared thermometry) at the index finger. The intensity and spatial distribution of capsaicin-evoked spontaneous pain and dynamic and punctate mechanical hyperalgesia were identical during the presence of high and low sympathetic discharge. Antidromic vasodilatation and flare size were significantly diminished when sympathetic vasoconstrictor neurons were excited. Cutaneous sympathetic vasoconstrictor activity does not influence spontaneous pain and mechanical hyperalgesia after capsaicin-induced C-nociceptor sensitization. When using physiologic stimulation of sympathetic activity, the capsaicin model is not useful for elucidating mechanisms of SMP. In neuropathic pain states with SMP, different mechanisms may be present.

  7. Tachycardia in response to remote capsaicin injection as a model for nociception in the ball python (Python regius).

    PubMed

    Williams, Catherine J A; James, Lauren E; Bertelsen, Mads F; Wang, Tobias

    2016-07-01

    To quantify the effect of subcutaneous (SC) capsaicin injection on heart rate (HR) in ball pythons (Python regius) and to assess the efficacy of two opioids (morphine and butorphanol) in modifying this response. Prospective, randomized, unmatched study. Eleven mixed-sex, captive-bred ball pythons. Snakes were randomly assigned to three groups (n = 6) by intramuscular premedication: 1) control: saline (0.9 mL); 2) morphine (10 mg kg(-1) ); and 3) butorphanol (10 mg kg(-1) ). Three snakes were tested twice and another two were tested three times in different treatments administered 1 month apart. Under isoflurane anaesthesia, snakes were instrumented with SC electrocardiogram (ECG) electrodes and an SC catheter for remote stimulus delivery. After recovery from anaesthesia, all snakes, in visual and audial isolation from the experimenter, received a sham stimulus of saline (0.4 mL) via the SC catheter. A nociceptive stimulus of SC capsaicin (3 mg in 0.2 mL saline with 7% Tween 80) was then applied by catheter at 7 hours after premedication. In a subset (n = 3), two sham injections (saline 0.2 mL) preceded the capsaicin treatment. HR was recorded via ECG, and changes in HR (ΔHR) from baseline were calculated for all stimulations. Capsaicin injection was associated with a significant increase in HR [peak ΔHR: saline group: 8.8 ± 7.1 beats minute(-1) ; capsaicin group: 21.1 ± 5.8 beats minute(-1) (p = 0.0055)] and integrated ΔHR as a function of time. The administration of morphine or butorphanol 7 hours prior to nociception failed to significantly reduce the peak and integrated ΔHR. Butorphanol caused marked, long-lasting sedation as assessed by muscle tone. The HR response to an SC capsaicin injection can serve as a nociceptive model in P. regius. Morphine and butorphanol administration did not reduce HR response to capsaicin stimulation but produced significantly different effects on pre-stimulation HR and sedation. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  8. Estimation of capsaicin through scanning densitometry and evaluation of different varieties of capsicum in India.

    PubMed

    Gantait, Arunava; Maji, Amal; Barman, Tapu; Banerji, Pratim; Venkatesh, P; Mukherjee, Pulok K

    2012-01-01

    Capsicum annuum L. (family: Solanaceae) possesses therapeutic benefits for the treatment of rheumatism, neuropathy, psoriasis, flatulence and so on. In this study fruits of four different varieties of C. annuum from four different geographical regions in India were evaluated based on their total content of capsaicin. Ethanol extracts of the fruits were used. HPTLC plates were developed in a mobile phase containing benzene, ethyl acetate and methanol (75:20:5). Densitometric scanning was performed at a wavelength of 283 nm in the absorbance mode. The calibration curve was described by the equation Y=393.587+3.836*X with a correlation coefficient (r) of 0.99890. The content of capsaicin in Nagaland, Manipur, West Bengal and Shimla varieties was found to be 3.71%, 1.78%, 0.54% and 0.06%, respectively. The developed densitometric method was found to be specific, accurate and precise. A recovery study and precision showed low levels of %RSD values. The linearity range of the curve for capsaicin was found to be 300-900 ng per spot. The limit of detection and the limit of quantification values were determined to be 31 and 94 ng, respectively, proving the sensitivity of the method. Thus the method can be used to control the total content of capsaicin on an industrial scale.

  9. Tachykinin antagonist FK224 inhibits neurokinin A-, substance P- and capsaicin-induced human bronchial contraction.

    PubMed

    Honda, I; Kohrogi, H; Yamaguchi, T; Hamamoto, J; Hirata, N; Iwagoe, H; Fujii, K; Goto, E; Ando, M

    1997-01-01

    To determine the roles of endogenously released tachykinins (substance P [SP] and neurokinin A [NKA]) in the human bronchial tissues, we studied the effects of tachykinin antagonist FK224 on bronchial smooth muscle contraction induced by SP, NKA and capsaicin in an organ bath. FK224 (10(-6) M and 10(-5) M, respectively) significantly inhibited NKA-induced contraction and 10(-5) M FK224 shifted the dose-response curve to more than one log unit higher concentration. Because SP- and capsaicin-induced contractions were small, we pretreated the tissues with the neutral endopeptidase inhibitor phosphoramidon (10(-5) M), which inhibits degradation of exogenous tachykinins in order to potentiate the contractions. FK224 (10(-5) M) significantly inhibited SP-induced contraction and it shifted the dose-response curves to about one log unit higher concentration. FK224 (10(-5) M) also significantly inhibited capsaicin-induced contraction and it shifted the dose-response curves to more than one log unit higher concentration. In contrast, FK224 (10(-5) M) did not affect on acetylcholine-, histamine-, and leukotriene D4-induced contraction. These results suggest that FK224 is a tachykinin receptor antagonist in the human bronchial smooth muscle, and that capsaicin-induced contraction is due to endogenously released tachykinin-like substances in the human bronchus.

  10. In vitro inhibition of lipid accumulation induced by oleic acid and in vivo pharmacokinetics of chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS)

    PubMed Central

    Wu, Sihui; Pan, Haitao; Tan, Sirong; Ding, Chen; Huang, Guidong; Liu, Guihua; Guo, Jiao; Su, Zhengquan

    2017-01-01

    ABSTRACT Chitosan and capsaicin are compounds extracted from natural products and have been indicated to lower body weight and prevent fatty liver. However, their applications are limited by poor oral bioavailability, low compliance and some serious side effects. To solve these problems, we successfully prepared chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS) in previous study. Therefore, in the present study, we evaluated the ability of CTMS and CCMS to eliminate lipid accumulation in hepatocytesand also characterized their pharmacokinetic parameters after administration. The results showed that the two microspheres could significantly reduce intracellular lipid accumulation and dose-dependently improve the triglyceride (TG) content in HepG2 cells. A pharmacokinetic study indicated that CTMS and CCMS were distributed in almost all of the measured tissues, especially liver and kidney, and that their absorption was better than those of chitosan and capsaicin. Simultaneously, the prolonged circulating half-lives, the lower clearance and higher plasma concentration of CTMS and CCMS showed that their bioavailability was effectively enhanced. All of the results indicated that the lipid accumulation inhibition of CTMS and CCMS was better than that of chitosan and capsaicin, and that these microspheres can be developed as preventive agents for fatty liver or obesity. PMID:28659743

  11. Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture.

    PubMed

    Hunsperger, Elizabeth A; Wilcox, Christine L

    2003-05-01

    Herpes simplex virus type 1 (HSV-1) produces a life-long latent infection in neurons of the peripheral nervous system, primarily in the trigeminal and dorsal root ganglia. Neurons of these ganglia express high levels of the capsaicin receptor, also known as the vanilloid receptor-1 (VR-1). VR-1 is a non-selective ion channel, found on sensory neurons, that primarily fluxes Ca(2+) ions in response to various stimuli, including physiologically acidic conditions, heat greater than 45 degrees C and noxious compounds such as capsaicin. Using an in vitro neuronal model to study HSV-1 latency and reactivation, we found that agonists of the VR-1 channel - capsaicin and heat - resulted in reactivation of latent HSV-1. Capsaicin-induced reactivation of HSV-1 latently infected neurons was dose-dependent. Additionally, activation of VR-1 at its optimal temperature of 46 degrees C caused a significant increase in virus titres, which could be attenuated with the VR-1 antagonist, capsazepine. VR-1 activation that resulted in HSV-1 reactivation was calcium-dependent, since the calcium chelator BAPTA significantly reduced reactivation following treatment with caspsaicin and forskolin. Taken together, these results suggest that activation of the VR-1 channel, often associated with increases in intracellular calcium, results in HSV-1 reactivation in sensory neurons.

  12. Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles.

    PubMed

    Terrón-Mejía, Ketzasmin A; Martínez-Benavidez, Evelin; Higuera-Ciapara, Inocencio; Virués, Claudia; Hernández, Javier; Domínguez, Zaira; Argüelles-Monal, Waldo; Goycoolea, Francisco M; López-Rendón, Roberto; Gama Goicochea, Armando

    2018-06-12

    The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.

  13. [Pharmacological studies on ginger. V. Pharmacological comparison between (6)-shogaol and capsaicin].

    PubMed

    Suekawa, M; Sone, H; Sakakibara, I; Ikeya, Y; Aburada, M; Hosoya, E

    1986-11-01

    Pharmacological actions of (6)-shogaol and capsaicin were studied. Both (6)-shogaol (0.5 mg/kg, i.v.) and capsaicin (0.1 mg/kg, i.v.) caused a triad such as a rapid fall in blood pressure, bradycardia and aponea in rats. Both drugs-induced marked pressor responses in blood pressure, which occurred after the rapid fall, were markedly reduced by a spinal destruction. In pithed rats, both drugs-induced peripheral pressor responses were markedly reduced with the combined treatment of [D-Arg1, D-Pro2, D-Trp7,9, Leu11]-substance P (0.5 mg/kg, i.v.), phentolamine (10 mg/kg, i.v.) and the section of sciatic nerves. In isolated guinea-pig trachea, (6)-shogaol (100 microM) and capsaicin (10 microM) induced contractile responses which were slightly inhibited by substance P antagonist (10 microM), but exhibited also a tachyphylaxis. Furthermore, although (6)-shogaol (3.6 microM) showed positive inotropic and chronotropic actions on isolated atria in rats, this effect of (6)-shogaol disappeared by repeated injections or pretreatment (100 mg/kg, s.c.) of (6)-shogaol. These results suggest that (6)-shogaol and capsaicin have similar actions, and that both drugs may cause a peripheral action by releasing an unknown active substance from nerve ends.

  14. [Aural Stimulation with Capsaicin Ointment Improved the Swallowing Function in Patients with Dysphagia: Evaluation by the SMRC Scale].

    PubMed

    Kondo, Eiji; Jinnouchi, Osamu; Ohnishi, Hiroki; Kawata, Ikuji; Takeda, Noriaki

    2015-11-01

    Cough and swallowing reflexes are important airway-protective mechanisms against aspiration. Angiotensin-converting enzyme (ACE) inhibitors, one of the side effects of which is cough, have been reported to reduce the incidence of aspiration pneumonia in hypertensive patients with stroke. ACE inhibitors have also been reported to improve the swallowing function in post-stroke patients. On the other hand, stimulation of the Arnold nerve, the auricular branch of the vagus, triggers the cough reflex (Arnold's ear-cough reflex). Capsaicin, an agonist of Transient Receptor Potential Vanilloid 1 (TRPV1), has been shown to activate the peripheral sensory C-fibers. Stimulation of the sensory branches of the vagus in the laryngotracheal mucosa with capsaicin induces the cough reflex and has been reported to improve the swallowing function in patients with dysphagia. In our previous study, we showed that aural stimulation of the Arnold nerve with 0.025% capsaicin ointment improved the swallowing function, as evaluated by the endoscopic swallowing score, in 26 patients with dysphagia. In the present study, the video images of swallowing recorded in the previous study were re-evaluated using the SMRC scale by an independent otolaryngologist who was blinded to the information about the patients and the endoscopic swallowing score. The SMRC scale is used to evaluate four aspects of the swallowing function: 1) Sensory: the initiation of the swallowing reflex as assessed by the white-out timing; 2) Motion: the ability to hold blue-dyed water in the oral cavity and induce laryngeal elevation; 3) Reflex: glottal closure and the cough reflex induced by touching the epiglottis or arytenoid with the endoscope; 4) Clearance: pharyngeal clearance of the blue-dyed water after swallowing. Accordingly, we demonstrated that a single application of capsaicin ointment to the external auditory canal of patients with dysphagia significantly improved the R, but not the S, M or C scores, and this effect lasted for 60 min. After repeated aural stimulation with the ointment for 7 days, the R score improved significantly in patients with severe dysphagia. The present findings suggest that stimulation of the Arnold's branch of the vagus in the external auditory canal with capsaicin improves the glottal closure and cough reflex in patients with dysphagia. Thus, aural stimulation with capsaicin represents a novel treatment for dysphagia. It is also suggested that repeated alternative aural stimulation with capsaicin for a week, rather than a single application, is needed to improve the swallowing function in patients with severe dysphagia. By the same mechanism as that underlying the effect of ACE inhibitors, aural stimulation with capsaicin may reduce the incidence of aspiration pneumonia in patients with dysphagia.

  15. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors

    PubMed Central

    Huang, Susan M.; Bisogno, Tiziana; Trevisani, Marcello; Al-Hayani, Abdulmonem; De Petrocellis, Luciano; Fezza, Filomena; Tognetto, Michele; Petros, Timothy J.; Krey, Jocelyn F.; Chu, Constance J.; Miller, Jeffrey D.; Davies, Stephen N.; Geppetti, Pierangelo; Walker, J. Michael; Di Marzo, Vincenzo

    2002-01-01

    The vanilloid receptor VR1 is a nonselective cation channel that is most abundant in peripheral sensory fibers but also is found in several brain nuclei. VR1 is gated by protons, heat, and the pungent ingredient of “hot” chili peppers, capsaicin. To date, no endogenous compound with potency at this receptor comparable to that of capsaicin has been identified. Here we examined the hypothesis, based on previous structure-activity relationship studies and the availability of biosynthetic precursors, that N-arachidonoyl-dopamine (NADA) is an endogenous “capsaicin-like” substance in mammalian nervous tissues. We found that NADA occurs in nervous tissues, with the highest concentrations being found in the striatum, hippocampus, and cerebellum and the lowest concentrations in the dorsal root ganglion. We also gained evidence for the existence of two possible routes for NADA biosynthesis and mechanisms for its inactivation in rat brain. NADA activates both human and rat VR1 overexpressed in human embryonic kidney (HEK)293 cells, with potency (EC50 ≈ 50 nM) and efficacy similar to those of capsaicin. Furthermore, NADA potently activates native vanilloid receptors in neurons from rat dorsal root ganglion and hippocampus, thereby inducing the release of substance P and calcitonin gene-related peptide (CGRP) from dorsal spinal cord slices and enhancing hippocampal paired-pulse depression, respectively. Intradermal NADA also induces VR1-mediated thermal hyperalgesia (EC50 = 1.5 ± 0.3 μg). Our data demonstrate the existence of a brain substance similar to capsaicin not only with respect to its chemical structure but also to its potency at VR1 receptors. PMID:12060783

  16. Anti-Inflammatory Effects of Capsaicin and Piperine on Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils.

    PubMed

    Toyoda, Takeshi; Shi, Liang; Takasu, Shinji; Cho, Young-Man; Kiriyama, Yuka; Nishikawa, Akiyoshi; Ogawa, Kumiko; Tatematsu, Masae; Tsukamoto, Tetsuya

    2016-04-01

    Spices have been used for thousands of years, and recent studies suggest that certain spices confer beneficial effects on gastric disorders. The purpose of this study was to evaluate possible chemopreventive effects of spice-derived compounds on Helicobacter pylori (H. pylori)-induced gastritis. We examined the inhibitory effects of curcumin, capsaicin, and piperine on H. pylori in vitro by determining the colony-forming units and real-time RT-PCR in H. pylori stimulated AGS gastric cancer cells. For in vivo analysis, 6-week-old SPF male Mongolian gerbils were infected with H. pylori, fed diets containing 5000 ppm curcumin, 100 ppm capsaicin, or 100 ppm piperine, and sacrificed after 13 weeks. All three compounds inhibited in vitro proliferation of H. pylori, with curcumin being the most effective. Infiltration of neutrophils and mononuclear cells was suppressed by piperine both in the antrum and corpus of H. pylori-infected gerbils. Capsaicin also decreased neutrophils in the antrum and corpus and mononuclear cell infiltration and heterotopic proliferative glands in the corpus. mRNA expression of Tnf-α and formation of phospho-IκB-α in the antrum were reduced by both capsaicin and piperine. In addition, piperine suppressed expression of Il-1β, Ifn-γ, Il-6, and iNos, while H. pylori UreA and other virulence factors were not significantly attenuated by any compounds. These results suggest that capsaicin and piperine have anti-inflammatory effects on H. pylori-induced gastritis in gerbils independent of direct antibacterial effects and may thus have potential for use in the chemoprevention of H. pylori-associated gastric carcinogenesis. © 2015 John Wiley & Sons Ltd.

  17. Orexin-1 receptors in the rostral ventromedial medulla are involved in the modulation of capsaicin evoked pulpal nociception and impairment of learning and memory.

    PubMed

    Shahsavari, F; Abbasnejad, M; Esmaeili-Mahani, S; Raoof, M

    2018-06-01

    To investigate the role of rostral ventromedial medulla orexin-1 receptors in the modulation of orofacial nociception as well as nociception-induced learning and memory impairment in adult male rats. Pulpal nociception was induced by intradental application of capsaicin (100 μg) into the incisors of rats. orexin-1 receptors agonist (orexin-A, 10, 25 and 50 pM/rat) and antagonist (SB-334867-A, 40 and 80 nM/rat) were microinjected into rostral ventromedial medulla prior to capsaicin administration. Total time spent on nocifensive behavior was recorded by direct visualization of freely moving rats while learning and memory were evaluated by the Morris Water Maze test. One-way analysis of variance and repeated-measures were used for the statistical analysis. Capsaicin-treated rats had a significant increase of nocifensive behaviors (P<0.001), as well as learning and memory impairment (P<0.001). However, intra-ventromedial medulla prior microinjection of orexin-A (50 pM/rat) significantly reduced the nociceptive behavior (P<0.001). This effect was blocked by pre-treatment with SB334867-A (80 nM/rat). Orexin-A (50 pM/rat) also inhibited nociception-induced learning and memory deficits. Moreover, administration of SB-334867-A (80 nM/rat) plus orexin-A (50 pM/rat) had no effect on learning and memory deficits induced by capsaicin. The data suggests that rostral ventromedial medulla orexin-A receptors are involved in pulpal nociceptive modulation and improvement of learning and memory deficits induced by intradental application of capsaicin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Interactive effect of acute pain and motor learning acquisition on sensorimotor integration and motor learning outcomes

    PubMed Central

    Dancey, Erin; Andrew, Danielle; Yielder, Paul

    2016-01-01

    Previous work has demonstrated differential changes in early somatosensory evoked potentials (SEPs) when motor learning acquisition occurred in the presence of acute pain; however, the learning task was insufficiently complex to determine how these underlying neurophysiological differences impacted learning acquisition and retention. To address this limitation, we have utilized a complex motor task in conjunction with SEPs. Two groups of 12 participants (n = 24) were randomly assigned to either a capsaicin (capsaicin cream) or a control (inert lotion) group. SEP amplitudes were collected at baseline, after application, and after motor learning acquisition. Participants performed a motor acquisition task followed by a pain-free retention task within 24–48 h. After motor learning acquisition, the amplitude of the N20 SEP peak significantly increased (P < 0.05) and the N24 SEP peak significantly decreased (P < 0.001) for the control group while the N18 SEP peak significantly decreased (P < 0.01) for the capsaicin group. The N30 SEP peak was significantly increased (P < 0.001) after motor learning acquisition for both groups. The P25 SEP peak decreased significantly (P < 0.05) after the application of capsaicin cream. Both groups improved in accuracy after motor learning acquisition (P < 0.001). The capsaicin group outperformed the control group before motor learning acquisition (P < 0.05) and after motor learning acquisition (P < 0.05) and approached significance at retention (P = 0.06). Improved motor learning in the presence of capsaicin provides support for the enhancement of motor learning while in acute pain. In addition, the changes in SEP peak amplitudes suggest that early SEP changes reflect neurophysiological alterations accompanying both motor learning and mild acute pain. PMID:27535371

  19. Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers

    PubMed Central

    Zakharov, A.; Vitale, C.; Kilinc, E.; Koroleva, K.; Fayuk, D.; Shelukhina, I.; Naumenko, N.; Skorinkin, A.; Khazipov, R.; Giniatullin, R.

    2015-01-01

    Trigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish “responder” (65%) from “non-responder” clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the TTX-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine. PMID:26283923

  20. Contribution of sensory nerves to LPS-induced hyperresponsiveness of human isolated bronchi.

    PubMed

    Calzetta, Luigino; Luongo, Livio; Cazzola, Mario; Page, Clive; Rogliani, Paola; Facciolo, Francesco; Maione, Sabatino; Capuano, Annalisa; Rinaldi, Barbara; Matera, Maria Gabriella

    2015-06-15

    Bacterial lipopolysaccharide (LPS) can induce bronchial hyperresponsiveness (BHR), but the underlying mechanisms remain to be determined. Here, the possible contribution of sensory nerves to LPS-induced BHR was examined in human isolated bronchi to pharmacologically identify the mechanisms underlying this phenomenon. Human isolated bronchial tone was induced by electrical field stimulation (EFS). The responses of airways to LPS, with or without capsaicin desensitization or thiorphan treatment were studied and the transient receptor potential vanilloid type 1 (TRPV1) expression was assessed. We performed similar experiments in the presence of a TRPV1 or a neurokinin (NK) 2 receptor antagonist using SB366791 and GR159897, respectively. LPS increased (≃2.3-fold, P<0.001) the contraction induced by EFS, compared to control tissues. Acute administration of capsaicin enhanced (≃2.3-fold, P<0.001) the EFS-mediated contraction, but did not potentiate the effect of LPS. Thiorphan increased (≃1.3-fold, P<0.05) the contractile response of LPS treated tissues and, at lower frequencies, it enhanced (≃1.7-fold, P<0.001) the capsaicin-induced contraction. In capsaicin-desensitized bronchi, LPS did not modify (P>0.05) the EFS contractile response, nor after treatment with thiorphan. Capsaicin desensitization reduced (≃0.4-fold, P<0.001) the LPS-induced BHR. SB366791 and GR159897 prevented the LPS-induced BHR and the release of NKA. LPS increased (+85.3±9.5%, P<0.01) the surface membrane expression of TRPV1 in parasympathetic ganglia. Our results demonstrate the involvement of capsaicin-sensitive sensory nerves and neutral endopeptidases in LPS-induced BHR of the human bronchi, associated with an upregulation of TRPV1 and release of NKA. Copyright © 2015. Published by Elsevier Inc.

  1. Cough physiology in elderly women with nontuberculous mycobacterial lung infections.

    PubMed

    Tsai, Hsiu-Wen; Fennelly, Kevin; Wheeler-Hegland, Karen; Adams, Sherry; Condrey, Jillian; Hosford, Jennifer L; Davenport, Paul W

    2017-05-01

    Elderly white, thin, nonsmoking women appear to be more susceptible to lung infections with Mycobacterium avium complex and other nontuberculous mycobacteria (NTM). It has been postulated that such disease in women is related to suppression of their cough. We hypothesized that patients with pulmonary NTM (pNTM) infections may have altered cough physiology compared with unaffected control subjects. We used capsaicin-induced cough to assess the cough reflex in pNTM subjects. Eight elderly white women with stable chronic pNTM infections and six unaffected age-matched control subjects were recruited. There was no significant difference between groups in capsaicin-elicited cough motor response, airflow pattern, or cough frequency. The urge-to-cough (UTC) score at the lowest capsaicin concentration was significantly lower in pNTM than control subjects ( P < 0.05). There were no significant differences in the UTC score between pNTM and control subjects at >50 μM capsaicin. These results suggest lower UTC sensitivity to the lowest concentration of capsaicin in pNTM than control subjects. In other words, the pNTM subjects do not sense a UTC when the stimulus is relatively small. NEW & NOTEWORTHY This study investigates the cough motor response and cough sensitivity in patients with nontuberculous mycobacteria (NTM) infection. In elderly white female pulmonary NTM subjects, we demonstrated a capacity to produce coughs similar to that of age-matched control subjects but decreased cough sensitivity in response to a low dose of capsaicin compared with control subjects. These findings are important to understand the pathophysiological mechanisms resulting in NTM disease in elderly white women and/or the syndrome developing in elderly white female NTM patients. Copyright © 2017 the American Physiological Society.

  2. Comparative analysis of allyl isothiocyanate (AITC)-induced carbohydrate oxidation changes via TRPV1 between mice and chickens.

    PubMed

    Kawabata, Fuminori; Kawabata, Yuko; Liang, Ruojun; Nishimura, Shotaro; Tabata, Shoji

    2017-01-01

    Postprandial hyperglycemia is a risk factor for cardiovascular diseases. It has been reported that intragastric administration of allyl isothiocyanate (AITC), which is one of the pungent ingredients of wasabi and horseradish but it is not included in hot chili pepper, increased carbohydrate oxidation and reduced postprandial increase of blood glucose via transient receptor potential vanilloid 1 (TRPV1)in mice. However, the action site of AITC on TRPV1 for increasing carbohydrate oxidation is unclear. Both mammalian and chicken TRPV1 (cTRPV1) are activated by heat and acid, but unlike its mammalian counterpart, cTRPV1 is only faintly activated by capsaicin. This difference is due to the 8 chicken-specific amino acid residues around transmembrane 3, which is the main site of capsaicin-binding in rat TRPV1. Moreover, AITC-induced activation of mouse TRPV1 (mTRPV1) is largely dependent on S513, a residue that is involved in capsaicin-binding. Thus, we hypothesized that the increase of carbohydrate oxidation by AITC in mammals is induced by the binding of AITC to the capsaicin-binding site of TRPV1. In this study, we performed a comparative study using chickens and mice, since chickens are thought to partly lack the capsaicin-binding site of TRPV1. We examined the effects of AITC on the respiratory quotient (RQ), the index of carbohydrate oxidation and fat oxidation, in chickens and mice. Respiratory gas analysis revealed that AITC does not increase the RQ in chickens, and Ca 2+ imaging methods and a whole cell-patch clamp analysis showed that AITC does not activate cTRPV1. These results implied that the capsaicin-binding site is an important region for increasing carbohydrate oxidation by AITC administration in animals.

  3. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder.

    PubMed

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J; Zagorodnyuk, V P

    2017-01-01

    There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H 2 O 2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. 'Close-to-target' single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. H 2 O 2 (300-1000 μM) preferentially and potently activated capsaicin-sensitive high threshold afferents but not low threshold stretch-sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin-sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC-030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N-(2-aminoethyl)-N-[[3-methoxy-4-(phenylmethoxy)phenyl]methyl]thiophene-2-carboxamide, significantly inhibited the H 2 O 2 -induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H 2 O 2 on high threshold afferents. The findings show that H 2 O 2 , in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long-lasting activation of the majority of capsaicin-sensitive high threshold afferents, but not low threshold stretch-sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin-sensitive afferent fibres are probable targets of ROS released during oxidative stress. © 2016 The British Pharmacological Society.

  4. [Determination of capsaicinoids and eugenol in waste-edible-oil by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Zhong; Ren, Fei; Zhang, Pan

    2012-11-01

    A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.

  5. Electrophysiological characterization of the rat trigeminal caudalis (Vc) neurons following intramuscular injection of capsaicin

    PubMed Central

    Chun, Yang H; Ro, Jin Y

    2009-01-01

    Extracellular single unit recording experiments were performed to examine response characteristics of wide dynamic range neurons in the Vc that receive masseter afferent input in Sprague Dawley rats. Capsaicin, or its vehicle, was directly administered into the masseter muscle and changes in resting discharge, responses to mechanical stimulation on the cutaneous receptive field and the electrical threshold for masseter nerve stimulation were assessed. Intramuscular capsaicin induced significant increase in the background discharge and mechanical hypersensitivity to the cutaneous stimulation and lowered the threshold masseter nerve stimulation evoked responses in the majority of neurons. The capsaicin-induced increase in evoked responses, but not the resting discharge, was partially attenuated when the muscle was pretreated with a mGluR antagonist. The present study suggests that injury or inflammation in the masseter muscle induce generalized hyperexcitability of central trigeminal neurons and that the blockade of peripherally localized mGluR5 can effectively attenuate muscular hypersensitivity. PMID:19818833

  6. γ-Aminobutyric acid (GABA) oral rinse reduces capsaicin-induced burning mouth pain sensation: An experimental quantitative sensory testing study in healthy subjects.

    PubMed

    Zhang, Y; Wang, K; Arendt-Nielsen, L; Cairns, B E

    2018-02-01

    In burning mouth patients, analgesia after oral administration of clonazepam may result from modulation of peripheral γ-aminobutyric acid (GABA) receptors. The effect of oral administration of test solutions (water, 0.5 mol/L or 0.05 mol/L GABA, 1% lidocaine) was investigated for the amelioration of pain and sensitivity induced by application of capsaicin (1%, 2 min) to the tongue of thirty healthy male and female subjects in this four-session, randomized, placebo-controlled, double-blinded, cross-over study. Intra-oral quantitative sensory testing was used to assess cold (CDT), warm (WDT) and mechanical (MDT) detection thresholds as well as mechanical (MPT) and heat (HPT) pain thresholds. Capsaicin-induced pain intensity was continuously rated on a 0-10 electronic visual analogue scale (VAS). The area under the VAS curve (VASAUC) after rinsing was calculated for each solution. Capsaicin application on the tongue evoked burning pain with a peak of 4.8/10, and significantly increased CDT and MDT while significantly decreasing WDT, HPT, and MPT. The VASAUC was significantly smaller after oral rinse with 0.05 mol/L GABA, 0.5 mol/L GABA, and 1% lidocaine than after oral rinse with water. Rinse with 0.5 mol/L or 0.05 mol/L GABA were similarly effective in decreasing VASAUC. Rinsing with either 1% lidocaine, 0.5 mol/L or 0.05 mol/L GABA also significantly attenuated the effects of capsaicin on WDT and HPT in a treatment independent manner. There were no sex-related differences in these effects of GABA. Capsaicin-induced burning tongue pain and decreases in WDT and HPT can be ameliorated by rinsing the mouth with lidocaine and GABA solutions. Rinsing the mouth with an oral GABA containing solution ameliorated burning pain and increased heat sensitivity produced by application of capsaicin to the tongue. This finding suggests that GABA can act as a local analgesic agent in the oral cavity. © 2017 European Pain Federation - EFIC®.

  7. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons.

    PubMed

    Duzhyy, Dmytro E; Viatchenko-Karpinski, Viacheslav Y; Khomula, Eugen V; Voitenko, Nana V; Belan, Pavel V

    2015-05-20

    Previous studies have shown that increased excitability of capsaicin-sensitive DRG neurons and thermal hyperalgesia in rats with short-term (2-4 weeks) streptozotocin-induced diabetes is mediated by upregulation of T-type Ca(2+) current. In longer-term diabetes (after the 8th week) thermal hyperalgesia is changed to hypoalgesia that is accompanied by downregulation of T-type current in capsaicin-sensitive small-sized nociceptors. At the same time pain symptoms of diabetic neuropathy other than thermal persist in STZ-diabetic animals and patients during progression of diabetes into later stages suggesting that other types of DRG neurons may be sensitized and contribute to pain. In this study, we examined functional expression of T-type Ca(2+) channels in capsaicin-insensitive DRG neurons and excitability of these neurons in longer-term diabetic rats and in thermally hypoalgesic diabetic rats. Here we have demonstrated that in STZ-diabetes T-type current was upregulated in capsaicin-insensitive low-pH-sensitive small-sized nociceptive DRG neurons of longer-term diabetic rats and thermally hypoalgesic diabetic rats. This upregulation was not accompanied by significant changes in biophysical properties of T-type channels suggesting that a density of functionally active channels was increased. Sensitivity of T-type current to amiloride (1 mM) and low concentration of Ni(2+) (50 μM) implicates prevalence of Cav3.2 subtype of T-type channels in the capsaicin-insensitive low-pH-sensitive neurons of both naïve and diabetic rats. The upregulation of T-type channels resulted in the increased neuronal excitability of these nociceptive neurons revealed by a lower threshold for action potential initiation, prominent afterdepolarizing potentials and burst firing. Sodium current was not significantly changed in these neurons during long-term diabetes and could not contribute to the diabetes-induced increase of neuronal excitability. Capsaicin-insensitive low-pH-sensitive type of DRG neurons shows diabetes-induced upregulation of Cav3.2 subtype of T-type channels. This upregulation results in the increased excitability of these neurons and may contribute to nonthermal nociception at a later-stage diabetes.

  8. Machine-learned analysis of the association of next-generation sequencing-based human TRPV1 and TRPA1 genotypes with the sensitivity to heat stimuli and topically applied capsaicin.

    PubMed

    Kringel, Dario; Geisslinger, Gerd; Resch, Eduard; Oertel, Bruno G; Thrun, Michael C; Heinemann, Sarah; Lötsch, Jörn

    2018-03-27

    Heat pain and its modulation by capsaicin varies among subjects in experimental and clinical settings. A plausible cause is a genetic component, of which TRPV1 ion channels, by their response to both heat and capsaicin, are primary candidates. However, TRPA1 channels can heterodimerize with TRPV1 channels and carry genetic variants reported to modulate heat pain sensitivity. To address the role of these candidate genes in capsaicin-induced hypersensitization to heat, pain thresholds acquired before and after topical application of capsaicin and TRPA1/TRPV1 exomic sequences derived by next-generation sequencing were assessed in n = 75 healthy volunteers and the genetic information comprised 278 loci. Gaussian mixture modeling indicated 2 phenotype groups with high or low capsaicin-induced hypersensitization to heat. Unsupervised machine learning implemented as swarm-based clustering hinted at differences in the genetic pattern between these phenotype groups. Several methods of supervised machine learning implemented as random forests, adaptive boosting, k-nearest neighbors, naive Bayes, support vector machines, and for comparison, binary logistic regression predicted the phenotype group association consistently better when based on the observed genotypes than when using a random permutation of the exomic sequences. Of note, TRPA1 variants were more important for correct phenotype group association than TRPV1 variants. This indicates a role of the TRPA1 and TRPV1 next-generation sequencing-based genetic pattern in the modulation of the individual response to heat-related pain phenotypes. When considering earlier evidence that topical capsaicin can induce neuropathy-like quantitative sensory testing patterns in healthy subjects, implications for future analgesic treatments with transient receptor potential inhibitors arise.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  9. Functional and morphological characteristics of neuronal substance P in the canine gastroesophageal junction.

    PubMed

    Sandler, A D; Maher, J W; Weinstock, J V; Schmidt, C D; Schlegel, J F; Jew, J Y; Williams, T H

    1993-10-01

    The specific functions of the numerous substance P (SP) nerve fibers present within the gastrointestinal tract are not clearly defined. This study examines both functional aspects and distribution of immunoreactive SP (IR-SP) in the canine gastroesophageal junctional (GEJ) region. Lower esophageal sphincter pressure (LESP), mean arterial pressure (MAP), pulse rate (PR), and respiratory rate (RR) were monitored before and after topical application of 2 ml capsaicin (8-methyl-N-vanillyl-6-nonenamide) to the distal esophageal mucosa of anesthetized dogs. Animals then underwent a capsaicin desensitization protocol over a 12-day period. The responses of monitored variables were compared on Day 1 and Day 12 of repetitive capsaicin application. Immunohistochemistry and radioimmunoassay (RIA) were performed on GEJ segments to study the distribution and content of IR-SP in both control (untreated) and capsaicin-treated dogs. The IR-SP was extracted from tissue for RIA and analysis by reverse-phase high-performance liquid chromatography (HPLC). On Day 1, a 2-ml capsaicin application stimulated increases in LESP (44.3 +/- 7.8 cm H2O; P < 0.05), MAP (48 +/- 8.7 mm Hg; P < 0.05), PR (52.6 +/- 20.5 beats/min; P < 0.05), and RR (26.3 +/- 15.6 breaths/min; P > 0.2). No response was observed on Day 12 of treatment. This was accompanied by a 43.3% decrease of IR-SP content in the mucosa of the distal esophagus of desensitized animals. Capsaicin applied at greater concentrations on Day 12 stimulated a return of responses (P < 0.05). Ganglia, cell bodies, nerve fascicles, and neurites stained positively for IR-SP. IR-SP content was markedly higher in esophageal mucosa than in gastric mucosa (P < 0.05). The authenticity of the IR-SP molecule was confirmed by elution time on HPLC. In conclusion, repetitive capsaicin application induced a state of homologous desensitization which was accompanied by a partial depletion of mucosal SP. The GEJ region contains a high SP content with a broad neural distribution. These findings are consistent with the hypothesis that SP may act as a neurotransmitter for chemonociceptive stimuli in the canine distal esophagus.

  10. Purinoceptor-mediated, capsaicin-resistant excitatory effect of allyl isothiocyanate on neurons of the guinea-pig small intestine.

    PubMed

    Bartho, Lorand; Nordtveit, Elin; Szombati, Veronika; Benko, Rita

    2013-08-01

    Allyl isothiocyanate (AITC; 200 μM) caused atropine- and tetrodotoxin-sensitive longitudinal muscle contraction on the guinea-pig small intestine. The response was not influenced by hexamethonium, a functional blockade of capsaicin-sensitive neurons or by antagonists acting at TRPV1 or TRPA1, but was abolished by the P2 purinoceptor antagonist PPADS (50 μM). It is concluded that cholinergic motoneurons are activated by a purinergic mechanism in the course of the AITC response, independently of capsaicin-sensitive processes or even TRPA1. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  11. Inhibition of cough-reflex sensitivity by benzonatate and guaifenesin in acute viral cough.

    PubMed

    Dicpinigaitis, Peter V; Gayle, Yvonne E; Solomon, Gail; Gilbert, Richard D

    2009-06-01

    Acute cough due to viral upper respiratory tract infection (URI) is the most common form of cough and accounts for tremendous expenditure on prescription and non-prescription cough products worldwide. However, few agents have been shown in properly conducted clinical trials to be effective for cough due to URI. The present study evaluated the effect of benzonatate 200mg (B), guaifenesin 600 mg (G), their combination (B+G), and placebo (P) on capsaicin-induced cough in 30 adult nonsmokers with acute URI. On 3 separate days within a 7-day period, 1h after ingesting randomly assigned study drug in a double-blind fashion, subjects underwent capsaicin cough challenge testing, which involved inhalation of incremental doubling concentrations of capsaicin until the concentration of capsaicin inducing 5 or more coughs (C(5)) was attained. Each subject received 3 of 4 possible study drugs. G (p=0.01) but not B (p=NS) inhibited cough-reflex sensitivity (log C(5)) relative to P. The combination of B+G suppressed capsaicin-induced cough to a greater degree than B alone (p<0.001) or G alone (p=0.008). The mechanism by which the combination of B+G causes a potentiation of antitussive effect remains to be elucidated. Our results suggest that B+G may be an effective therapy for acute cough due to the common cold (URI).

  12. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    PubMed

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  13. Binding of Capsaicin to the TRPV1 Ion Channel.

    PubMed

    Darré, Leonardo; Domene, Carmen

    2015-12-07

    Transient receptor potential (TRP) ion channels constitute a notable family of cation channels involved in the ability of an organisms to detect noxious mechanical, thermal, and chemical stimuli that give rise to the perception of pain, taste, and changes in temperature. One of the most experimentally studied agonist of TRP channels is capsaicin, which is responsible for the burning sensation produced when chili pepper is in contact with organic tissues. Thus, understanding how this molecule interacts and regulates TRP channels is essential to high impact pharmacological applications, particularly those related to pain treatment. The recent publication of a three-dimensional structure of the vanilloid receptor 1 (TRPV1) in the absence and presence of capsaicin from single particle electron cryomicroscopy experiments provides the opportunity to explore these questions at the atomic level. In the present work, molecular docking and unbiased and biased molecular dynamics simulations were employed to generate a structural model of the capsaicin-channel complex. In addition, the standard free energy of binding was estimated using alchemical transformations coupled with conformational, translational, and orientational restraints on the ligand. Key binding modes consistent with previous experimental data are identified, and subtle but essential dynamical features of the binding site are characterized. These observations shed some light into how TRPV1 interacts with capsaicin, and may help to refine design parameters for new TRPV1 antagonists, and potentially guide further developments of TRP channel modulators.

  14. Analgesic effect of topical oral capsaicin gel in burning mouth syndrome.

    PubMed

    Jørgensen, Mette Rose; Pedersen, Anne Marie Lynge

    2017-03-01

    To investigate the effectiveness of repeated topical application of oral capsaicin gel in two different concentrations for relief of burning/stinging sensations in patients with burning mouth syndrome (BMS). This randomized double-blind cross-over study included 22 female patients with BMS. The patients were randomized for topical application of either 0.01% or 0.025% oral capsaicin gel on the dorsal part of tongue three times daily for 14 days, followed by 14 days wash-out period, and finally treatment with the other concentration of oral gel three times daily for 14 days. A visual analogue scale (VAS) was used to assess the severity of pain five times during the intervention period. 18 patients completed the intervention. Their VAS score at baseline was 5.5 ± 0.6 cm (mean ± SD). Treatment with the two concentrations of capsaicin gels significantly improved the burning/stinging symptoms assessed on VAS compared with baseline (p = 0.002). There was no statistically significant difference between the two concentrations of the gels on relieving symptoms. Four patients dropped out during the intervention period due to gastrointestinal side-effects. Topical capsaicin might be an alternative for the short-term treatment of BMS. However, further studies are needed to investigate especially the gastro-intestinal side-effects which may limit its long-term use.

  15. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    PubMed Central

    Domnick, Claudia; Hauck, Michael; Casey, Kenneth L; Engel, Andreas K; Lorenz, Jürgen

    2009-01-01

    Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage. PMID:21197293

  16. Capsaicin cough sensitivity in bronchiectasis.

    PubMed

    Torrego, A; Haque, R A; Nguyen, L T; Hew, M; Carr, D H; Wilson, R; Chung, K F

    2006-08-01

    Bronchiectasis is a suppurative airway disease characterised by persistent cough and sputum production associated with bronchial dilatation. A study was undertaken to determine whether cough sensitivity is increased in bronchiectatic patients. Twenty two patients with bronchiectasis and 20 healthy non-smoking controls matched for age and sex were recruited into the study. Quality of life (Leicester Cough Questionnaire score), total cough symptom score, and extent of bronchiectasis on HRCT scans were recorded. Cough sensitivity was assessed using incremental inhalation of capsaicin concentrations; the concentration at which 5 or more coughs occurred (C5) was recorded. Patients with bronchiectasis had increased sensitivity to capsaicin compared with controls (mean (SE) log10 C5 1.22 (0.20) v 1.89 (0.21); p<0.03). Capsaicin sensitivity correlated positively with the Leicester Cough Questionnaire score (r = 0.64; p = 0.005) and inversely with the total cough symptom score (r = -0.58; p = 0.004), but not with the extent of the disease. It also correlated with forced expiratory volume in 1 second (FEV1) in litres (r = 0.58; p = 0.005) but not with FEV1 % predicted. Capsaicin sensitivity was not related to the presence of infected sputum or to corticosteroid or bronchodilator use. : Patients with bronchiectasis have a sensitive cough reflex which reflects the severity of cough symptoms. A measure of cough severity could be part of health assessment for patients with bronchiectasis.

  17. The Effect of Capsaicin Derivatives on Tight-Junction Integrity and Permeability of Madin-Darby Canine Kidney Cells.

    PubMed

    Kaiser, Mathias; Chalapala, Sudharani; Gorzelanny, Christian; Perali, Ramu Sridhar; Goycoolea, Francisco Martin

    2016-02-01

    Capsaicin is known to interfere with tight junctions (TJs) of epithelial cells and therefore to enhance paracellular permeability of poorly absorbable drugs. However, due to its low water solubility, pungency, and cytotoxicity, its pharmacologic use is limited. In this study, we investigated the effect of capsaicin derivatives of synthetic (e.g., 10-hydroxy-N-(4-hydroxy-3-methoxybenzyl)decanamide, etc.) and natural (olvanil and dihydrocapsaicin) origin on Madin-Darby Canine Kidney-C7 cells. Impedance spectroscopy was used to determine the transepithelial electrical resistance and the capacitance. Permeability assays with fluorescein isothiocyanate-dextran were carried out to evaluate the impact on cell permeability. The results show that lipophilicity could play an important role for the interference with TJ and that the mechanism is independent from the ion channel TRPV-1 and hence on the flux of calcium into the cells. In summary, we synthesized 4 derivatives of capsaicin of lower lipophilicity and compared their properties with other well-known vanilloids. We show that these compounds are able to enhance the permeability of a hydrophilic macromolecule, by opening the TJ for a shorter time than capsaicin. This behavior is dependent on the lipophilicity of the molecule. Understanding of these phenomena may lead to better control of administration of therapeutic molecules. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Central and peripheral effects of the non-neural substances on respiration before and after vagotomy.

    PubMed

    Sahin, G; Oruç, T; Simşek, G; Güner, I

    1997-08-01

    The central effects of capsaicin, veratrine, histamine and bradykinin were studied by injecting them directly into the oerebrospinal fluid and their peripheral effects were examined by injecting into femoral vein. Our experiments were performed in Na-pentobarbital-anaesthetized dogs. Tidal volume (VT), respiratory frequency (f/min), systemic arterial pressure (BP) were recorded. A significant increase in f, and an initial apnea or hypoventilation followed by a significant increase in VT were observed with central and peripheral capsaicin. Vagotomy removed the peripheral VT response, but not the central one. While central capsaicin administration increased BP, peripheral administration decreased. After vagotomy, a significant increase was observed in BP for both administrations. Respiratory responses to central and peripheral administrations of veratrine were similar to those of capsaicin. Significant increases were observed in f and VT of the intact group in response to central and peripheral administration of histamine. Response to peripheral administration disappeared after vagotomy. While central and peripheral bradykinin increased VT significantly, there was no significant change in f. Vagotomy only removed the increase in VT in response to peripheral administration. In conclusion, respiratory responses to central administration of capsaicin and veratrine are due to direct effects of these substances on respiratory neurons. In peripheral administration, disappearance of the responses after vagotomy indicate that the responses are brought about by stimulation of the lung receptors.

  19. Synthesis and characterization of manganese diselenide nanoparticles (MnSeNPs): Determination of capsaicin by using MnSeNP-modified glassy carbon electrode.

    PubMed

    Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman

    2018-06-02

    A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct  = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1  cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.

  20. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel.

    PubMed

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-06-28

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S-S498F-L505T-Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular "glue" that bridges the S4-S5 linker to the S1-S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor.

  1. Role of Ca++ Influx via Epidermal TRP Ion Channels

    DTIC Science & Technology

    2015-10-01

    increase that could be attenuated with TRPv4 selective inhibitor, GSK205 (10µM). Stimulation with camphor (TRPV3), olvanil and capsaicin (TRPV1) did not...writing. When activating TRPV3 with camphor , and TRPV1 with capsaicin and olvanil, there was no significant increase in capacitance. In view of this

  2. Dietary capsaicin and its anti-obesity potency: from mechanism to clinical implications

    PubMed Central

    Zheng, Jia; Zheng, Sheng; Feng, Qianyun; Zhang, Qian

    2017-01-01

    Obesity is a growing public health problem, which has now been considered as a pandemic non-communicable disease. However, the efficacy of several approaches for weight loss is limited and variable. Thus, alternative anti-obesity treatments are urgently warranted, which should be effective, safe, and widely available. Active compounds isolated from herbs are similar with the practice of Traditional Chinese Medicine, which has a holistic approach that can target to several organs and tissues in the whole body. Capsaicin, a major active compound from chili peppers, has been clearly demonstrated for its numerous beneficial roles in health. In this review, we will focus on the less highlighted aspect, in particular how dietary chili peppers and capsaicin consumption reduce body weight and its potential mechanisms of its anti-obesity effects. With the widespread pandemic of overweight and obesity, the development of more strategies for the treatment of obesity is urgent. Therefore, a better understanding of the role and mechanism of dietary capsaicin consumption and metabolic health can provide critical implications for the early prevention and treatment of obesity. PMID:28424369

  3. Design, synthesis and biological evaluation of novel hydrogen sulfide releasing capsaicin derivatives.

    PubMed

    Gao, Mingxiang; Li, Jinyu; Nie, Cunbin; Song, Beibei; Yan, Lin; Qian, Hai

    2018-05-15

    Capsaicin (CAP), the prototypical TRPV1 agonist, is the major active component in chili peppers with health-promoting benefits. However, its use is limited by the low bioavailability and irritating quality. In this study, for improving the activity of CAP and alleviating its irritating effects, a series of H 2 S-releasing CAPs were designed and synthesized by combining capsaicin and dihydro capsaicin with various hydrogen sulfide donors. The resulting compounds were evaluated their TRPV1 agonist activity, analgesic activity, anticancer activities, H 2 S-releasing ability, and gastric mucosa irritation. Biological evaluation indicated that the most active compound B 9 , containing 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione moiety as H 2 S donor, had better analgesic activity and displayed more potent cytotoxic effects on the test cell lines than the lead compound CAP. Furthermore, the preferred compound, B 9 reduced rat gastric mucosa irritation caused by CAP. Notably, the improved properties of this derivative are associated with its H 2 S-releasing capability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Perceptual and Affective Responses to Sampled Capsaicin Differ by Reported Intake

    PubMed Central

    Nolden, Alissa A.; Hayes, John E.

    2016-01-01

    The present study was conducted to a) generate suprathresold dose-response functions for multiple qualities evoked by capsaicin across a wide range of concentrations, and b) revisit how intensity ratings and liking may differ as a function of self reported intake. Individuals rated eight samples of capsaicin for perceived burn and bitterness, as well as disliking/liking. Measures of reported preference for chili peppers, chili intake frequency, prior experience and personality measures were also assessed. Here, we confirm prior findings showing that burn in the laboratory differs with reported chili intake, with infrequent consumers reporting more burn. We extend these findings by exploring how capsaicin perception varies by reported liking, and measures of variety seeking. We also address the question of whether differences in burn ratings may potentially be an artifact of differential scale usage across groups due to prior experience, and not chronic desensitization, as is typically assumed. By using generalized scaling methods and recalled sensations, we conclude the differences observed here and elsewhere are not likely due to differences in how participants use rating scales. PMID:28392628

  5. Decreased Cough Sensitivity and Aspiration in Parkinson Disease

    PubMed Central

    Brandimore, Alexandra E.; Okun, Michael S.; Davenport, Paul W.; Hegland, Karen W.

    2014-01-01

    BACKGROUND: Aspiration pneumonia is a leading cause of death in people with Parkinson disease (PD). The pathogenesis of these infections is largely attributed to the presence of dysphagia with silent aspiration or aspiration without an appropriate cough response. The goal of this study was to test reflex cough thresholds and associated urge-to-cough (UTC) ratings in participants with PD with and without dysphagia. METHODS: Twenty participants with PD were recruited for this study. They completed a capsaicin challenge with three randomized blocks of 0, 50, 100, and 200 μM capsaicin and rated their UTC by modified Borg scale. The concentration of capsaicin that elicited a two-cough response, total number of coughs, and sensitivity of the participant to the cough stimulus (UTC) were measured. The dysphagia severity of participants with PD was identified with the penetration-aspiration scale. RESULTS: Most participants with PD did not have a consistent two-cough response to 200 μM capsaicin. UTC ratings and total number of coughs produced at 200 μM capsaicin were significantly influenced by dysphagia severity but not by general PD severity, age, or disease duration. Increasing levels of dysphagia severity resulted in significantly blunted cough sensitivity (UTC). CONCLUSIONS: UTC ratings may be important in understanding the mechanism underlying morbidity related to aspiration pneumonia in people with PD and dysphagia. Further understanding of decreased UTC in people with PD and dysphagia will be essential for the development of strategies and treatments to address airway protection deficits in this population. PMID:24968148

  6. Intraplantar injection of bergamot essential oil into the mouse hindpaw: effects on capsaicin-induced nociceptive behaviors.

    PubMed

    Sakurada, Tsukasa; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2009-01-01

    Despite the increasing use of aromatherapy oils, there have not been many studies exploring the biological activities of bergamot (Citrus bergamia, Risso) essential oil (BEO). Recently, we have investigated the effects of BEO injected into the plantar surface of the hindpaw in the capsaicin test in mice. The intraplantar injection of capsaicin produced an intense and short-lived licking/biting response toward the injected hindpaw. The capsaicin-induced nociceptive response was reduced significantly by intraplantar injection of BEO. The essential oils of Clary Sage (Salvia sclarea), Thyme ct. linalool (linalool chemotype of Thymus vulgaris), Lavender Reydovan (Lavandula hybrida reydovan), and True Lavender (Lavandula angustifolia), had similar antinociceptive effects on the capsaicin-induced nociceptive response, while Orange Sweet (Citrus sinensis) essential oil was without effect. In contrast to a small number of pharmacological studies of BEO, there is ample evidence regarding isolated components of BEO which are also found in other essential oils. The most abundant compounds found in the volatile fraction are the monoterpene hydrocarbons, such as limonene, gamma-terpinene, beta-pinene, and oxygenated derivatives, linalool and linalyl acetate. Of these monoterpenes, the pharmacological activities of linalool have been examined. Following intraperitoneal (i.p.) administration in mice, linalool produces antinociceptive and antihyperalgesic effects in different animal models in addition to anti-inflammatory properties. Linalool also possesses anticonvulsant activity in experimental models of epilepsy. We address the importance of linalool or linalyl acetate in BEO-or the other essential oil-induced antinociception.

  7. The impact of capsaicin intake on risk of developing gastric cancers: a meta-analysis.

    PubMed

    Pabalan, Noel; Jarjanazi, Hamdi; Ozcelik, Hilmi

    2014-09-01

    Reported associations of capsaicin with gastric cancer development have been conflicting. Here, we examine 10 published articles that explore these associations using 2,452 cases and 3,996 controls. We used multiple search strategies in MEDLINE through PubMed to seek for suitable articles that had case-control design with gastric cancer as outcome. The outcomes of our study shows protection (odds ratio [OR] 0.55, P = 0.003) and susceptibility (OR 1.94, P = 0.0004), both significant with low and medium-high intake of capsaicin, respectively, although under relatively heterogeneous conditions (P(heterogeneity) = <0.0001). Outlier analysis resulted in loss of overall heterogeneity (P = 0.14) without affecting the pooled ORs. Among the subgroups, low intake elicited protection in both Korean (OR 0.37) and Mexican (OR 0.63) populations while high intake rendered these subgroups susceptible (OR 2.96 and OR 1.57, respectively). These subgroup values were highly significant (P = 0.0001-0.01) obtained in heterogeneous conditions (P(heterogeneity) < 0.0001-0.04). The homogeneous (P(heterogeneity) = 0.27-0.37) H. pylori (OR 0.60 and 1.69) effects were highly significant (P < 0.001) in the low and medium-high intake analyses, respectively. Given outcomes from the tests of interaction, high capsaicin intake is significantly different from the protection that low consumption offers. This meta-analysis implies moderation in capsaicin consumption in order to derive its protective benefits.

  8. Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections.

    PubMed

    Reddy, Umesh K; Almeida, Aldo; Abburi, Venkata L; Alaparthi, Suresh Babu; Unselt, Desiree; Hankins, Gerald; Park, Minkyu; Choi, Doil; Nimmakayala, Padma

    2014-01-01

    Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1.

  9. Identification of Gene-Specific Polymorphisms and Association with Capsaicin Pathway Metabolites in Capsicum annuum L. Collections

    PubMed Central

    Abburi, Venkata L.; Alaparthi, Suresh Babu; Unselt, Desiree; Hankins, Gerald; Park, Minkyu; Choi, Doil

    2014-01-01

    Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1. PMID:24475113

  10. Proteinase-activated receptor-2 activation evokes oesophageal longitudinal smooth muscle contraction via a capsaicin-sensitive and neurokinin-2 receptor-dependent pathway.

    PubMed

    Liu, H; Miller, D V; Lourenssen, S; Wells, R W; Blennerhassett, M G; Paterson, W G

    2010-02-01

    Intraluminal acid evokes sustained oesophageal longitudinal smooth muscle (LSM) contraction and oesophageal shortening, which may play a role in oesophageal pain and the aetiology of hiatus hernia. In the opossum model, this reflex has been shown to involve mast cell activation and release of neurokinins from capsaicin-sensitive neurons. The aim of this study was to determine whether proteinase-activated receptor-2 (PAR-2) activation evokes reflex LSM contraction via similar mechanisms. Tension recording studies were performed using opossum oesophageal LSM strips in the presence and absence of pharmacological agents. In addition, the effect of trypsin on single isolated LSM cells was determined using videomicroscopy, and the expression of PAR-2 in oesophageal tissue was examined using immunohistochemistry. The PAR-2 agonist trypsin evoked sustained, concentration-dependent contraction of LSM muscle strips, but had no effect on isolated LSM cells. The trypsin-induced contraction was blocked by capsaicin desensitization, substance P (SP) desensitization or application of the selective neurokinin-2 (NK-2) receptor antagonist MEN 10376. Immunohistochemistry revealed co-localization of SP, calcitonin gene-related peptide and PAR-2 in axons of opossum oesophageal LSM. Longitudinal smooth muscle contraction induced by trypsin involves capsaicin-sensitive neurons and subsequent activation of NK-2, which is identical to the pathway involved in acid-induced LSM contraction and oesophageal shortening. This suggests that acid-induced LSM contraction may involve mast cell-derived mediators that activate capsaicin-sensitive neurons via PAR-2.

  11. Antihyperalgesic efficacy of 5% lidocaine medicated plaster in capsaicin and sunburn pain models--two randomized, double-blinded, placebo-controlled crossover trials in healthy volunteers.

    PubMed

    Gustorff, Burkhard; Hauer, David; Thaler, Johannes; Seis, Astrid; Draxler, Julia

    2011-12-01

    The aim of this research is to analyze analgesic efficacy of the 5% lidocaine medicated plaster in two randomized, double-blinded, placebo-controlled, crossover studies in 16 healthy volunteers using capsaicin and sunburn pain models. Lidocaine and placebo plasters were simultaneously applied to forearms and thighs at contralateral body sites for three alternating 12-h plaster-on/plaster-off periods. Between the second and third plaster-on period, 4.2-cm circular spots on both pretreated thighs were irradiated with three times the individual minimal erythema dose of UVB light. After the last plaster-on period, 20 μl of 0.1% capsaicin was injected intradermally into both forearms. The study was repeated using a single 12-h plaster application. The area of pinprick hyperalgesia was diminished by 53% (p < 0.003) in the capsaicin model and by 84% (p < 0.0001) in the sunburn model; the intensity of mechanical hyperalgesia to rigid filaments (8 - 512 mN) was reduced in both models. Cold pain perception threshold was reduced (19.7°C ± 8.0 vs 21.8°C ± 6.8 for placebo, p < 0.05, sunburn). Similar effects were observed in the 12-h exposure study. No effect was seen on capsaicin-induced spontaneous pain and flare size, or blood flow in the sunburn area, and heat hyperalgesia in either study. Lidocaine plaster effectively treats mechanical hyperalgesia and cold pain.

  12. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel

    PubMed Central

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-01-01

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S–S498F–L505T–Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular “glue” that bridges the S4–S5 linker to the S1–S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor. PMID:27298359

  13. In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties.

    PubMed

    Fernández-Bedmar, Zahira; Alonso-Moraga, Angeles

    2016-12-01

    The purpose of this study is to determine the nutraceutic potential of different Capsicum sp, capsaicin, capsanthin and lutein and provide data in order to clarify the conflicting results obtained for capsaicin by different authors. To achieve these objectives, in vivo (geno/antigenotoxicity and lifespan assays in the animal model Drosophila) and in vitro (cytotoxicity and DNA-fragmentation assays in HL60 promyelocytic cell line) assays were carried out. Results showed that i) none of the tested substances were genotoxic except green hot pepper and capsaicin at the highest tested concentration (5 mg/mL and 11.5 μM respectively), ii) all tested substances except green hot pepper are antimutagenic against H 2 O 2 -induced damage, iii) only red sweet pepper significantly extend the lifespan and healthspan of D. melanogaster at 1.25 and 2.5 mg/mL, iv) all pepper varieties induce dose-depended cytotoxic effect in HL60 cells with different IC 50 , and v) all pepper varieties and capsaicin exerted proapoptotic effect on HL60 cells. (i) sweet peppers could be suggested as nutraceutical food, (ii) hot peppers should be moderately consumed, and (iii) supplementary studies are necessary to clarify the synergic effect of the carotenoids and capsaicinoids in the hot pepper food matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A possible participation of transient receptor potential vanilloid type 1 channels in the antidepressant effect of fluoxetine.

    PubMed

    Manna, Shyamshree S S; Umathe, Sudhir N

    2012-06-15

    The present study investigated the influence of transient receptor vanilloid type 1 (TRPV1) channel agonist (capsaicin) and antagonist (capsazepine) either alone or in combination with traditional antidepressant drug, fluoxetine; or a serotonin hydroxylase inhibitor, para-chlorophenylalanine; or a glutamate N-methyl-D-aspartate (NMDA) receptor agonist, NMDA on the forced swim test and tail suspension test using male Swiss mice. Results revealed that intracerebroventricular injections of capsaicin (200 and 300 μg/mouse) and capsazepine (100 and 200 μg/mouse) reduced the immobility time, exhibiting antidepressant-like activity that was comparable to the effects of fluoxetine (2.5-10 μg/mouse) in both the tests. However, in the presence of inactive dose (10 μg/mouse) of capsazepine, capsaicin (300 μg/mouse) had no influence on the indices of both tests, signifying that the effects are TRPV1-mediated. Further, the antidepressant-like effects of both the TRPV1 ligands were neutralized in mice-pretreated with NMDA (0.1 μg/mouse), suggestive of the fact that decreased glutamatergic transmission might contribute to the antidepressant-like activity. In addition, co-administration of sub-threshold dose of capsazepine (10 μg/mouse) and fluoxetine (1.75 μg/mouse) produced a synergistic effect in both the tests. In contrast, inactive doses of capsaicin (10 and 100 μg/mouse) partially abolished the antidepressant effect of fluoxetine (10 μg/mouse), while its effect was potentiated by active dose of capsaicin (200 μg/mouse). Moreover, pretreatment of mice with para-chlorophenylalanine (300 mg/kg/day × 3 days, i.p.) attenuated the effects of capsaicin and capsazepine, demonstrating a probable interplay between serotonin and TRPV1, at least in parts. Thus, our data indicate a possible role of TRPV1 in depressive-like symptoms. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor*

    PubMed Central

    Veldhuis, Nicholas A.; Lew, Michael J.; Abogadie, Fe C.; Poole, Daniel P.; Jennings, Ernest A.; Ivanusic, Jason J.; Eilers, Helge; Bunnett, Nigel W.; McIntyre, Peter

    2012-01-01

    The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca2+]i) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1−/− mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission. PMID:22570472

  16. High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: single-center experience.

    PubMed

    Filipczak-Bryniarska, Iwona; Krzyzewski, Roger M; Kucharz, Jakub; Michalowska-Kaczmarczyk, Anna; Kleja, Justyna; Woron, Jarosław; Strzepek, Katarzyna; Kazior, Lucyna; Wordliczek, Jerzy; Grodzicki, Tomasz; Krzemieniecki, Krzysztof

    2017-08-17

    High-dose capsaicin patch is effective in treatment of neuropathic pain in HIV-associated neuropathy and diabetic neuropathy. There are no studies assessing effectiveness of high-dose capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy. We sought to determine the effectiveness of treatment of pain associated with chemotherapy-induced peripheral neuropathy with high-dose capsaicin patch. Our study group consisted of 18 patients with clinically confirmed oxaliplatin-induced neuropathy. Baseline characteristic including underling disease, received cumulative dose of neurotoxic agent, neuropathic symptoms, prior treatment and initial pain level were recorded. Pain was evaluated with Numeric Rating Scale prior to treatment with high-dose capsaicin and after 1.8 day and after 8 and 12 weeks after introducing treatment. Patients were divided into two groups accordingly to the amount of neurotoxic agent that caused neuropathy (high sensitivity and low sensitivity group). Most frequent symptoms of chemotherapy-induced neuropathy were: pain (88.89%), paresthesis (100%), sock and gloves sensation (100%) and hypoesthesis (100%). Initial pain level was 7.45 ± 1.14. Mean cumulative dose of oxaliplatin after which patients developed symptoms was 648.07 mg/m 2 . Mean pain level after 12 weeks of treatment was 0.20 ± 0.41. When examined according to high and low sensitivity to neurotoxic agent patients with low sensitivity had higher pain reduction, especially after 8 days after introducing treatment (69.55 ± 12.09 vs. 49.40 ± 20.34%; p = 0.02) and after 12 weeks (96.96 ± 5.56 vs. 83.93 ± 18.59%; p = 0.04). High-dose capsaicin patch is an effective treatment for pain associated with chemotherapy-induced neuropathy in patients treated with oxaliplatin. Patients with lower sensitivity to neurotoxic agents have better response to treatment and pain reduction.

  17. Modulation of gastric contractions in response to tachykinins and bethanechol by extrinsic nerves.

    PubMed

    Holzer-Petsche, U

    1991-08-01

    1. Extrinsic reflexes elicited by changes in gastric wall tension play an important role in regulating gastric tone. The present study investigated whether such reflexes modulate gastric contractions induced by close arterially administered neurokinin A (NKA), substance P (SP), SP-methylester and bethancehol in anaesthetized rats. 2. Reflex pathways were acutely interrupted by either subdiaphragmatic vagotomy or prevertebral ganglionectomy. C-fibre afferent nerve activity was abolished by pretreating rats with capsaicin 10 to 16 days before the experiments. 3. The order of potency in inducing gastric contractions was NKA greater than SP greater than bethanechol. SP-methylester was markedly less effective than SP and its effects did not fit sigmoid dose-response curves (DRCs). The maximal responses to NKA, SP, and bethanechol were similar, whilst the DRC for SP was significantly flatter than those for NKA or bethanechol. Pretreatment of the rats with the peptidase inhibitors phosphoramidon or captopril did not increase the contractile response to SP. 4. Prevertebral ganglionectomy had no significant effect on the DRCs for SP and NKA, whereas vagotomy shifted the DRCs for all three test substances to the left. 5. Capsaicin pretreatment did not change the DRC for NKA in rats with intact vagus but shifted that for bethanechol to the left. The leftward of the DRC for NKA caused by vagotomy was prevented in capsaicin-pretreated rats whereas the vagotomy-induced shift of the DRC for bethanechol remained unaltered. The shift of the DRC for SP seen in response to vagotomy was only slightly reduced by capsaicin pretreatment. 6. These data may be interpreted as demonstrating two neuronal mechanisms for modulating drug-induced gastric contractions. First, the contractions themselves activate a vago-vagal negative feedback involving capsaicin-sensitive afferents. Second, NKA, and to a lesser degree SP, seem to induce a nonvagal non-splanchnic mechanism which via capsaicin-sensitive afferent neurones reinforces tachykinininduced gastric contractions.

  18. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1)

    PubMed Central

    McNamara, Fergal N; Randall, Andrew; Gunthorpe, Martin J

    2005-01-01

    We have characterised the effects of piperine, a pungent alkaloid found in black pepper, on the human vanilloid receptor TRPV1 using whole-cell patch-clamp electrophysiology. Piperine produced a clear agonist activity at the human TRPV1 receptor yielding rapidly activating whole-cell currents that were antagonised by the competitive TRPV1 antagonist capsazepine and the non-competitive TRPV1 blocker ruthenium red. The current–voltage relationship of piperine-activated currents showed pronounced outward rectification (25±4-fold between −70 and +70 mV) and a reversal potential of 0.0±0.4 mV, which was indistinguishable from that of the prototypical TRPV1 agonist capsaicin. Although piperine was a less potent agonist (EC50=37.9±1.9 μM) than capsaicin (EC50=0.29±0.05 μM), it demonstrated a much greater efficacy (approximately two-fold) at TRPV1. This difference in efficacy did not appear to be related to the proton-mediated regulation of the receptor since a similar degree of potentiation was observed for responses evoked by piperine (230±20%, n=11) or capsaicin (284±32%, n=8) upon acidification to pH 6.5. The effects of piperine upon receptor desensitisation were also unable to explain this effect since piperine resulted in more pronounced macroscopic desensitisation (t1/2=9.9±0.7 s) than capsaicin (t1/2>20 s) and also caused greater tachyphylaxis in response to repetitive agonist applications. Overall, our data suggest that the effects of piperine at human TRPV1 are similar to those of capsaicin except for its propensity to induce greater receptor desensitisation and, rather remarkably, exhibit a greater efficacy than capsaicin itself. These results may provide insight into the TRPV1-mediated effects of piperine on gastrointestinal function. PMID:15685214

  19. The Effect of Dietary Supplements Containing Green Tea, Capsaicin and Ginger Extracts on Weight Loss and Metabolic Profiles in Overweight Women: A Randomized Double-Blind Placebo-Controlled Clinical Trial.

    PubMed

    Taghizadeh, Mohsen; Farzin, Narjes; Taheri, Sara; Mahlouji, Mahnaz; Akbari, Hossein; Karamali, Fatemeh; Asemi, Zatollah

    2017-01-01

    This study was conducted to determine the effects of dietary supplements containing green tea, capsaicin and ginger extracts on weight loss and metabolic profiles among overweight women. This randomized double-blind placebo-controlled clinical trial was implemented among 50 overweight women. Participants were randomly divided into 2 groups. Group A received dietary supplements containing 125 mg green tea, 25 mg capsaicin and 50 mg ginger extracts (n = 25) group B received placebos (n = 25) twice with lunch and twice with dinner daily for 8 weeks. Compared with placebo, taking dietary supplements containing green tea, capsaicin and ginger resulted in a significant decrease in weight (-1.8 ± 1.5 vs. +0.4 ± 1.2 kg, respectively, p < 0.001) and body mass index (BMI; -0.7 ± 0.5 vs. +0.1 ± 0.5 kg/m2, respectively, p < 0.001). In addition, subjects who received green tea, capsaicin and ginger co-supplements had significantly decreased serum insulin concentrations (-2.6 ± 3.9 vs. -0.6 ± 2.0 µIU/mL, p = 0.02), homeostatic model of assessment for insulin resistance (-0.5 ± 0.8 vs. -0.05 ± 0.6, p = 0.01), and increased quantitative insulin sensitivity check index (+0.01 ± 0.01 vs. +0.001 ± 0.01, p = 0.008) and plasma glutathione (GSH) levels (+73.8 ± 120.6 vs. -28.3 ± 193.4 µmol/L, p = 0.03) compared with the placebo. Our study indicated that taking green tea, capsaicin and ginger co-supplements for 8 weeks among overweight women had beneficial effects on weight, BMI, markers of insulin metabolism and plasma GSH levels. © 2017 S. Karger AG, Basel.

  20. Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways.

    PubMed

    Chang, Amy Y; Mann, Tracy S; McFawn, Peter K; Han, Liang; Dong, Xinzhong; Henry, Peter J

    2016-05-23

    The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves. The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ (-/-) mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists). SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ (-/-) mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP, a direct activator of mucus secretion from airway epithelial cells. Additionally, both SLIGRL-amide and ATP stimulated mucus secretion and inhibited IAV infectivity in mouse isolated tracheal segments. SLIGRL-amide inhibits IAV infection independently of MRGPRC11 and independently of capsaicin-sensitive, neuropeptide-releasing sensory nerves, and its secretory action on epithelial cells warrants further investigation.

  1. Effect of an acute intraluminal administration of capsaicin on oesophageal motor pattern in GORD patients with ineffective oesophageal motility.

    PubMed

    Grossi, L; Cappello, G; Marzio, L

    2006-08-01

    Ineffective oesophageal motility (IOM) is a functional disorder affecting about 50% of gastro-oesophageal reflux disease (GORD) patients. This disease in a severe form limits the clearing ability of the oesophagus and is considered one of the predictive factors for poorer GORD resolution. Capsaicin, the active compound of red pepper, exerts a prokinetic effect on oesophageal motility in healthy subjects by increasing the amplitude of body waves, even if no evidence exists on its possible role in situations of reduced motility. The aim of the study was to evaluate the effect of an acute administration of capsaicin on the oesophageal motor pattern in a group of GORD patients affected by severe IOM. Twelve GORD patients with severe IOM received an intra-oesophageal administration of 2 mL of a red pepper-olive oil mixture and 2 mL of olive oil alone serving as a control during a stationary manometry. The motor patterns of the oesophageal body and lower oesophageal sphincter (LOS) were analysed at baseline and after the infusion of the two stimuli. The administration of capsaicin induced a significant improvement in oesophageal body contractility when compared with baseline. The velocity of propagation of waves and the LOS basal tone remained unchanged. The motor pattern was unaltered by the administration of olive oil alone. An acute administration of capsaicin seems to improve the motor performance of the oesophageal body in patients with ineffective motility. Whether this could represent the basis for further therapeutic approaches of GORD patients needs further study.

  2. Localization of TRPV1 and contractile effect of capsaicin in mouse large intestine: high abundance and sensitivity in rectum and distal colon.

    PubMed

    Matsumoto, Kenjiro; Kurosawa, Emi; Terui, Hiroyuki; Hosoya, Takuji; Tashima, Kimihito; Murayama, Toshihiko; Priestley, John V; Horie, Syunji

    2009-08-01

    We investigated immunohistochemical differences in the distribution of TRPV1 channels and the contractile effects of capsaicin on smooth muscle in the mouse rectum and distal, transverse, and proximal colon. In the immunohistochemical study, TRPV1 immunoreactivity was found in the mucosa, submucosal, and muscle layers and myenteric plexus. Large numbers of TRPV1-immunoreactive axons were observed in the rectum and distal colon. In contrast, TRPV1-positive axons were sparsely distributed in the transverse and proximal colon. The density of TRPV1-immunoreactive axons in the rectum and distal colon was much higher than those in the transverse and proximal colon. Axons double labeled with TRPV1 and protein gene product (PGP) 9.5 were detected in the myenteric plexus, but PGP 9.5-immunoreactive cell bodies did not colocalize with TRPV1. In motor function studies, capsaicin induced a fast transient contraction, followed by a large long-lasting contraction in the rectum and distal colon, whereas in the transverse and proximal colon only the transient contraction was observed. The capsaicin-induced transient contraction from the proximal colon to the rectum was moderately inhibited by an NK1 or NK2 receptor antagonist. The capsaicin-induced long-lasting contraction in the rectum and distal colon was markedly inhibited by an NK2 antagonist, but not by an NK1 antagonist. The present results suggest that TRPV1 channels located on the rectum and distal colon play a major role in the motor function in the large intestine.

  3. Capsaicin induces cystatin S-like substances in submandibular saliva of the rat.

    PubMed

    Katsukawa, H; Ninomiya, Y

    1999-10-01

    Irritating dietary substances such as tannin and papain have been reported to alter the morphology of salivary glands and their secretions. Such alterations can be one line of protection from toxic or irritating substances in food. We investigated the effects of dietary capsaicin (a pungent ingredient of hot red pepper) on the rat submandibular gland and its secretions. Several groups of animals were offered either control diets or diets containing capsaicin (from 0.0001 to 0.1%) for seven days. Higher concentrations suppressed food consumption for two days, after which only the highest concentration continued to reduce intake. The relative weight of the salivary glands in capsaicin-diet groups increased in a dose-dependent fashion, and new proteins appeared in the submandibular saliva. Chromatographic and electrophoretic properties of these proteins were identical or similar to those of isoproterenol-induced proteins. After affinity chromatography of the new protein fraction on a Cm-papain Sepharose 4B column, SDS-electrophoresis of the eluate revealed three major bands (15,500, 16,500, and 28,000 kDa). Hydrolysis of N-benzoyl-D,L-arginine-p-nitroanilide by papain (a cysteine protease) decreased in the presence of the new protein fraction, suggesting that these proteins have cystatin-like activity (inhibition of cysteine protease). Denervation of the glossopharyngeal nerve suppressed induction of these proteins. The results suggest that dietary capsaicin induces cystatin S-like substances in submandibular saliva by stimulating the reflex arc involving the glossopharyngeal nerve. These proteins likely facilitate ingestion of diets containing the irritating substance.

  4. CO-LOCALIZATION OF THE VANILLOID CAPSAICIN RECEPTOR AND SUBSTANCE P IN SENSORY NERVE FIBERS INNERVATING COCHLEAR AND VERTEBRO-BASILAR ARTERIES

    PubMed Central

    VASS, Z.; DAI, C. F.; STEYGER, P. S.; JANCSÓ, G.; TRUNE, D. R.; NUTTALL, A. L.

    2014-01-01

    Evidence suggests that capsaicin-sensitive substance P (SP)-containing trigeminal ganglion neurons innervate the spiral modiolar artery (SMA), radiating arterioles, and the stria vascularis of the cochlea. Antidromic electrical or chemical stimulation of trigeminal sensory nerves results in neurogenic plasma extravasation in inner ear tissues. The primary aim of this study was to reveal the possible morphological basis of cochlear vascular changes mediated by capsaicin-sensitive sensory nerves. Therefore, the distribution of SP and capsaicin receptor (transient receptor potential vanilloid type 1—TRPV1) was investigated by double immunolabeling to demonstrate the anatomical relationships between the cochlear and vertebro-basilar blood vessels and the trigeminal sensory fiber system. Extensive TRPV1 and SP expression and co-localization were observed in axons within the adventitial layer of the basilar artery, the anterior inferior cerebellar artery, the SMA, and the radiating arterioles of the cochlea. There appears to be a functional relationship between the trigeminal ganglion and the cochlear blood vessels since electrical stimulation of the trigeminal ganglion induced significant plasma extravasation from the SMA and the radiating arterioles. The findings suggest that stimulation of paravascular afferent nerves may result in permeability changes in the basilar and cochlear vascular bed and may contribute to the mechanisms of vertebro-basilar type of headache through the release of SP and stimulation of TPVR1, respectively. We propose that vertigo, tinnitus, and hearing deficits associated with migraine may arise from perturbations of capsaicin-sensitive trigeminal sensory ganglion neurons projecting to the cochlea. PMID:15026132

  5. Botulinum toxin in Migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents

    PubMed Central

    Roshni, Ramachandran; Carmen, Lam; Yaksh Tony, L

    2015-01-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi) -SO capsaicin (2.5 μg/30 μl) or meningeal capsaicin (4 μl of 1mg/ml). Pre-treatment with ipsi-SO BONT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent. PMID:25958249

  6. A new way to lower blood pressure: pass the chili peppers please!

    PubMed

    Sessa, William C

    2010-08-04

    Activation of TRPV1 channels in sensory nerves by capsaicin promotes neuropeptide release, leading to the perception of pain and inflammation. In this issue, Yang et al. (2010) demonstrate that vascular TRPV1 mediates a beneficial effect of capsaicin in the cardiovascular system, promoting nitric oxide release and lowering blood pressure. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Effects of tachykinins and capsaicin on the mechanical and electrical activity of the guinea-pig isolated trachea

    PubMed Central

    Girard, Valerie; Félétou, Michel; Advenier, Charles; Canet, Emmanuel

    1997-01-01

    The effects of tachykinins and capsaicin were studied by means of intracellular membrane potential and isometric tension recordings in the isolated trachea of the guinea-pig. The basal membrane potential averaged −51 mV, and most preparations demonstrated spontaneous slow waves. Tetraethylammonium (TEA), a potassium channel blocker (8×10−3 M), depolarized the membrane potential to −44 mV and induced a rhythmic activity. In control solution, substance P (10−8–10−6 M), [Nle10]-neurokinin A(4–10) (10−8–10−6 M) and capsaicin (10−7–10−6 M) induced concentration-dependent depolarizations which were statistically significant at the highest concentration tested (depolarization by 10−6 M: 8, 11 and 16 mV for the NK1 agonist, the NK2 agonist and capsaicin, respectively). In the presence of TEA (8×10−3 M), the three substances induced depolarizations which were statistically significant at the highest concentration tested for substance P (10−6 M) and at 10−7 and 10−6 M for both [Nle10]-neurokinin A(4–10) and capsaicin (depolarization by 10−6 M: 11, 17 and 10 mV for substance P, [Nle10]neurokinin A(4–10) and capsaicin, respectively). In the presence or absence of tetraethylammonium, [MePhe7]-neurokinin B (10−8–10−6 M) did not induce any significant changes in membrane potential. The depolarizing effects of substance P (10−6 M) and [Nle10]-neurokinin A(4–10) (10−6 M) were blocked only by the specific antagonists for NK1 and NK2 receptors, SR 140333 (10−7 M) and SR 48968 (10−7 M), respectively. The effects of capsaicin (10−6 M) were partially inhibited by each antagonist and fully blocked by their combination. Substance P (10−9 to 10−4 M), [Nle10]-neurokinin A(4–10) (10−10 to 10−5 M), [MePhe7]-neurokinin B and capsaicin (10−7 to 10−5 M) evoked concentration-dependent contractions. The contractions to substance P were significantly inhibited by SR 140333 (10−8 to 10−6 M) but unaffected by SR 48968 (10−8 to 10−6 M). Furthermore, the response to [Nle10]-neurokinin A(4–10) was significantly inhibited by SR 48968 and unaffected by SR 140333 at the same concentrations. Although SR 48968 (10−7 M) alone did not influence the effects of substance P, it potentiated the inhibitory effect of SR 140333 (10−7 M). A similar synergetic effect of these two compounds was observed in the inhibition of the contractile response to [Nle10]-neurokinin A(4–10). Neither SR 140333 (10−7 M) nor SR 48968 (10−7 M) alone influenced the contractions to [MePhe7]-neurokinin B and capsaicin. However, the combination of the two antagonists abolished the contractions to either peptide. These results demonstrate that the stimulation of both NK1 and NK2 tachykinin-receptors induced contraction and depolarization of the guinea-pig tracheal smooth muscle and that both receptors were stimulated during the endogenous release of tachykinins by capsaicin. There was no evidence for a major role of NK3 receptors in the contractile and electrical activity of the guinea-pig isolated trachea. PMID:9384499

  8. Capsaicin 8% patch treatment for amputation stump and phantom limb pain: a clinical and functional MRI study

    PubMed Central

    Privitera, Rosario; Birch, Rolfe; Sinisi, Marco; Mihaylov, Iordan R; Leech, Robert; Anand, Praveen

    2017-01-01

    Purpose The aim of this study was to measure the efficacy of a single 60 min application of capsaicin 8% patch in reducing chronic amputation stump and phantom limb pain, associated hypersensitivity with quantitative sensory testing, and changes in brain cortical maps using functional MRI (fMRI) scans. Methods A capsaicin 8% patch (Qutenza) treatment study was conducted on 14 patients with single limb amputation, who reported pain intensity on the Numerical Pain Rating Scale ≥4/10 for chronic stump or phantom limb pain. Pain assessments, quantitative sensory testing, and fMRI (for the lip pursing task) were performed at baseline and 4 weeks after application of capsaicin 8% patch to the amputation stump. The shift into the hand representation area of the cerebral cortex with the lip pursing task has been correlated with phantom limb pain intensity in previous studies, and was the fMRI clinical model for cortical plasticity used in this study. Results The mean reduction in spontaneous amputation stump pain, phantom limb pain, and evoked stump pain were −1.007 (p=0.028), −1.414 (p=0.018), and −2.029 (p=0.007), respectively. The areas of brush allodynia and pinprick hypersensitivity in the amputation stump showed marked decreases: −165 cm2, −80% (p=0.001) and −132 cm2, −72% (p=0.001), respectively. fMRI analyses provided objective evidence of the restoration of the brain map, that is, reversal of the shift into the hand representation of the cerebral cortex with the lip pursing task (p<0.05). Conclusion The results show that capsaicin 8% patch treatment leads to significant reduction in chronic pain and, particularly, in the area of stump hypersensitivity, which may enable patients to wear prostheses, thereby improving mobility and rehabilitation. Phantom limb pain (“central” pain) and associated brain plasticity may be modulated by peripheral inputs, as they can be ameliorated by the peripherally restricted effect of the capsaicin 8% patch. PMID:28761369

  9. Capsaicin-evoked cough responses in asthmatic patients: Evidence for airway neuronal dysfunction.

    PubMed

    Satia, Imran; Tsamandouras, Nikolaos; Holt, Kimberley; Badri, Huda; Woodhead, Mark; Ogungbenro, Kayode; Felton, Timothy W; O'Byrne, Paul M; Fowler, Stephen J; Smith, Jaclyn A

    2017-03-01

    Cough in asthmatic patients is a common and troublesome symptom. It is generally assumed coughing occurs as a consequence of bronchial hyperresponsiveness and inflammation, but the possibility that airway nerves are dysfunctional has not been fully explored. We sought to investigate capsaicin-evoked cough responses in a group of patients with well-characterized mild-to-moderate asthma compared with healthy volunteers and assess the influences of sex, atopy, lung physiology, inflammation, and asthma control on these responses. Capsaicin inhalational challenge was performed, and cough responses were analyzed by using nonlinear mixed-effects modeling to estimate the maximum cough response evoked by any concentration of capsaicin (E max ) and the capsaicin dose inducing half-maximal response (ED 50 ). Ninety-seven patients with stable asthma (median age, 23 years [interquartile range, 21-27 years]; 60% female) and 47 healthy volunteers (median age, 38 years [interquartile range, 29-47 years]; 64% female) were recruited. Asthmatic patients had higher E max and lower ED 50 values than healthy volunteers. E max values were 27% higher in female subjects (P = .006) and 46% higher in patients with nonatopic asthma (P = .003) compared with healthy volunteers. Also, patients with atopic asthma had a 21% lower E max value than nonatopic asthmatic patients (P = .04). The ED 50 value was 65% lower in female patients (P = .0001) and 71% lower in all asthmatic patients (P = .0008). ED 50 values were also influenced by asthma control and serum IgE levels, whereas E max values were related to 24-hour cough frequency. Age, body mass index, FEV 1 , PC 20 , fraction of exhaled nitric oxide, blood eosinophil counts, and inhaled steroid treatment did not influence cough parameters. Patients with stable asthma exhibited exaggerated capsaicin-evoked cough responses consistent with neuronal dysfunction. Nonatopic asthmatic patients had the highest cough responses, suggesting this mechanism might be most important in type 2-low asthma phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Dual regulation of TRPV1 by phosphoinositides.

    PubMed

    Lukacs, Viktor; Thyagarajan, Baskaran; Varnai, Peter; Balla, Andras; Balla, Tamas; Rohacs, Tibor

    2007-06-27

    The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PIP2] regulates many ion channels. There are conflicting reports on the effect of PtdIns(4,5)P2 on transient receptor potential vanilloid 1 (TRPV1) channels. We show that in excised patches PtdIns(4,5)P2 and other phosphoinositides activate and the PIP2 scavenger poly-Lys inhibits TRPV1. TRPV1 currents undergo desensitization on exposure to high concentrations of capsaicin in the presence of extracellular Ca2+. We show that in the presence of extracellular Ca2+, capsaicin activates phospholipase C (PLC) in TRPV1-expressing cells, inducing depletion of both PtdIns(4,5)P2 and its precursor PtdIns(4)P (PIP). The PLC inhibitor U73122 and dialysis of PtdIns(4,5)P2 or PtdIns(4)P through the patch pipette inhibited desensitization of TRPV1, indicating that Ca2+-induced activation of PLC contributes to desensitization of TRPV1 by depletion of PtdIns(4,5)P2 and PtdIns(4)P. Selective conversion of PtdIns(4,5)P2 to PtdIns(4)P by a rapamycin-inducible PIP2 5-phosphatase did not inhibit TRPV1 at high capsaicin concentrations, suggesting a significant role for PtdIns(4)P in maintaining channel activity. Currents induced by low concentrations of capsaicin and moderate heat, however, were potentiated by conversion of PtdIns(4,5)P2 to PtdIns(4)P. Increasing PtdIns(4,5)P2 levels by coexpressing phosphatidylinositol-4-phosphate 5-kinase inhibited TRPV1 at low but not at saturating capsaicin concentrations. These data show that at low capsaicin concentrations and other moderate stimuli, PtdIns(4,5)P2 partially inhibits TRPV1 in a cellular context, but this effect is likely to be indirect, because it is not detectable in excised patches. We conclude that phosphoinositides have both inhibitory and activating effects on TRPV1, resulting in complex and distinct regulation at various stimulation levels.

  11. NMDA receptors are involved in the antidepressant-like effects of capsaicin following amphetamine withdrawal in male mice.

    PubMed

    Amiri, Shayan; Alijanpour, Sakineh; Tirgar, Fatemeh; Haj-Mirzaian, Arya; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Rastegar, Mojgan; Ghaderi, Marzieh; Ghazi-Khansari, Mahmoud; Zarrindast, Mohammad-Reza

    2016-08-04

    Amphetamine withdrawal (AW) is accompanied by diminished pleasure and depression which plays a key role in drug relapse and addictive behaviors. There is no efficient treatment for AW-induced depression and underpinning mechanisms were not well determined. Considering both transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and N-Methyl-d-aspartate (NMDA) receptors contribute to pathophysiology of mood and addictive disorders, in this study, we investigated the role of TRPV1 and NMDA receptors in mediating depressive-like behaviors following AW in male mice. Results revealed that administration of capsaicin, TRPV1 agonist, (100μg/mouse, i.c.v.) and MK-801, NMDA receptor antagonist (0.005mg/kg, i.p.) reversed AW-induced depressive-like behaviors in forced swimming test (FST) and splash test with no effect on animals' locomotion. Co-administration of sub-effective doses of MK-801 (0.001mg/kg, i.p.) and capsaicin (10μg/mouse, i.c.v) exerted antidepressant-like effects in behavioral tests. Capsazepine, TRPV1 antagonist, (100μg/mouse, i.c.v) and NMDA, NMDA receptor agonist (7.5mg/kg, i.p.) abolished the effects of capsaicin and MK-801, respectively. None of aforementioned treatments had any effect on behavior of control animals. Collectively, our findings showed that activation of TRPV1 and blockade of NMDA receptors produced antidepressant-like effects in male mice following AW, and these receptors are involved in AW-induced depressive-like behaviors. Further, we found that rapid antidepressant-like effects of capsaicin in FST and splash test are partly mediated by NMDA receptors. Copyright © 2016. Published by Elsevier Ltd.

  12. Specific patterns of spinal metabolites underlying α-Me-5-HT-evoked pruritus compared with histamine and capsaicin assessed by proton nuclear magnetic resonance spectroscopy.

    PubMed

    Liu, Taotao; He, Zhigang; Tian, Xuebi; Kamal, Ghulam Mustafa; Li, Zhixiao; Liu, Zeyuan; Liu, Huili; Xu, Fuqiang; Wang, Jie; Xiang, Hongbing

    2017-06-01

    The mechanism behind itching is not well understood. Proton nuclear magnetic resonance ( 1 H-NMR) spectroscopic analysis of spinal cord extracts provides a quick modality for evaluating the specific metabolic activity of α-Me-5-HT-evoked pruritus mice. In the current study, four groups of young adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with α-Me-5-HT (histamine independent pruritogen), histamine (histamine dependent pruritogen) and capsaicin (algogenic substance), respectively. The intradermal microinjection of α-Me-5-HT and histamine resulted in a dramatic increase in the itch behavior. Furthermore, the results of NMR studies of the spinal cord extracts revealed that the metabolites show very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. All the animals in the groups of α-Me-5-HT and capsaicin were completely separated using the metabolite parameters and principal component analysis. For α-Me-5-HT, the concentrations of glutamate, GABA, glycine and aspartate increased significantly, especially for GABA (increased 17.2%, p=0.008). Furthermore, the concentration of NAA increased, but there was no significant difference (increased 11.3%, p=0.191) compared to capsaicin (decreased 29.1%, p=0.002). Thus the application of magnetic resonance spectroscopy technique, coupled with statistical analysis, could further explain the mechanism behind itching evoked by α-Me-5-HT or other drugs. It can thus improve our understanding of itch pathophysiology and pharmacological therapies which may contribute to itch relief. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons.

    PubMed

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin; Puopolo, Michelino

    2016-03-15

    The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats.

    PubMed

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2016-04-01

    It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markowitz, S.; Saito, K.; Moskowitz, M.A.

    Utilizing /sup 125/I-BSA administered intravenously, a simple, reliable, and sensitive method was established for the detection of plasma protein extravasation in the dura of rats and guinea pigs following chemical, electrical, or immunological stimulation. Extravasated /sup 125/I-BSA or Evans blue was noted in the dura and conjunctiva but not in the temporalis muscle of saline-perfused rats following intravenous capsaicin, 1 mumol/kg. Capsaicin-induced extravasation was mediated by unmyelinated and small myelinated fibers since leakage did not develop in adult animals in whom these fibers were destroyed by capsaicin pretreatment (50 mg/kg) as neonates. An ipsilateral increase in Evans blue and /supmore » 125/I-BSA was found in the dura, eyelids, lips and gingival mucosa, and snout following electrical stimulation of the rat trigeminal ganglion. This increase was also C-fiber dependent. Among those peptides contained in perivascular afferent fibers and administered intravenously, substance P (SP) and neurokinin A (NKA), but not calcitonin gene-related peptide, caused a dose-dependent extravasation in the dura and conjunctiva of rats. Neonatal capsaicin pretreatment did not attenuate SP- nor NKA-induced effects in the dura and actually increased extravasation in the conjunctiva. Intravenous administration of 5-HT or bradykinin to normal adult rats or adult rats pretreated as neonates with capsaicin increased levels of /sup 125/I-BSA in both the dura and the conjunctiva. Histamine and prostaglandin E2, on the other hand, caused protein leakage in the conjunctiva but not in the dura of rats; however, histamine did induce extravasation in the dura of guinea pigs.« less

  16. NRP-1 Receptor Expression Mismatch in Skin of Subjects with Experimental and Diabetic Small Fiber Neuropathy

    PubMed Central

    Van Acker, Nathalie; Ragé, Michael; Vermeirsch, Hilde; Schrijvers, Dorien; Nuydens, Rony; Byttebier, Geert; Timmers, Maarten; De Schepper, Stefanie; Streffer, Johannes; Andries, Luc; Plaghki, Léon; Cras, Patrick; Meert, Theo

    2016-01-01

    The in vivo cutaneous nerve regeneration model using capsaicin is applied extensively to study the regenerative mechanisms and therapeutic efficacy of disease modifying molecules for small fiber neuropathy (SFN). Since mismatches between functional and morphological nerve fiber recovery are described for this model, we aimed at determining the capability of the capsaicin model to truly mimic the morphological manifestations of SFN in diabetes. As nerve and blood vessel growth and regenerative capacities are defective in diabetes, we focused on studying the key regulator of these processes, the neuropilin-1 (NRP-1)/semaphorin pathway. This led us to the evaluation of NRP-1 receptor expression in epidermis and dermis of subjects presenting experimentally induced small fiber neuropathy, diabetic polyneuropathy and of diabetic subjects without clinical signs of small fiber neuropathy. The NRP-1 receptor was co-stained with CD31 vessel-marker using immunofluorescence and analyzed with Definiens® technology. This study indicates that capsaicin application results in significant loss of epidermal NRP-1 receptor expression, whereas diabetic subjects presenting small fiber neuropathy show full epidermal NRP-1 expression in contrast to the basal expression pattern seen in healthy controls. Capsaicin induced a decrease in dermal non-vascular NRP-1 receptor expression which did not appear in diabetic polyneuropathy. We can conclude that the capsaicin model does not mimic diabetic neuropathy related changes for cutaneous NRP-1 receptor expression. In addition, our data suggest that NRP-1 might play an important role in epidermal nerve fiber loss and/or defective regeneration and that NRP-1 receptor could change the epidermal environment to a nerve fiber repellant bed possibly through Sem3A in diabetes. PMID:27598321

  17. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis

    PubMed Central

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G.; Ultsch, Alfred

    2018-01-01

    Abstract The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models. PMID:28700537

  18. A novel pungency biosensor prepared with fixing taste-bud tissue of rats.

    PubMed

    Qiao, Lixin; Jiao, Lihua; Pang, Guangchang; Xie, Junbo

    2015-06-15

    A novel taste biosensor based on ligand-receptor interaction was developed through fixing taste-bud tissues of SD rats to a glassy carbon electrode. Using the sodium alginate-starch gel as a fixing agent, taste-bud tissues of SD rats were fixed between two nuclear microporous membranes to make a sandwich-type sensing membrane. With the taste biosensor, the response current induced by capsaicin and gingerol stimulating the corresponding receptors was measured. The results showed that the lowest limit of detection of this biosensor to capsaicin was 1×10(-13) mol/L and the change rate of response current was the highest at the concentration of 9×10(-13) mol/L, indicating that the capsaicin receptor was saturated at this point. The lowest limit of detection of this biosensor to gingerol was 1×10(-12) mol/L, and the gingerol receptor was saturated when the concentration of gingerol was 3×10(-11) mol/L. It was demonstrated that the interaction curves of capsaicin and gingerol with their respective receptors exhibited high correlation (R(2): 0.9841 and 0.9904). The binding constant and dissociation constant of gingerol with its receptor were 1.564×10(-11) and 1.815×10(-11) respectively, which were all higher than those of capsaicin with its receptor (1.249×10(-12) and 2.078×10(-12)). This study, for the first time, made it possible to quantitatively determine the interaction of the taste receptor and pungent substances with a new biosensor, thus providing a simple approach for monitoring pungent substances and investigating the mechanism of ligand-receptor interaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Functional characterization of substance P receptors in the rabbit ear artery.

    PubMed

    Illes, P; von Falkenhausen, S

    1986-05-01

    Rabbit isolated ear arteries were perfused at a constant flow and stimulated with field pulses (5 Hz, 5 impulses). Different tachykinins and capsaicin depressed stimulation-induced vasoconstriction, substance P (SP) being the most potent inhibitor. The rank order of potency of the tachykinins was, SP approximately equal to physalaemin approximately equal to eledoisin greater than SP-methyl ester; that of SP and its C-terminal fragments, SP approximately equal to SP-(2-11) approximately equal to SP-(4-11) greater than SP-(6-11). SP-(1-9) was inactive. The SP antagonist (Arg5,D-Trp7,9,Nle11)SP-(5-11) 10 mumol/l shifted the concentration-response curve of SP to the right (pA2 = 5.43), whereas it did not reduce the action of capsaicin. Another SP antagonist (D-Pro4,D-Trp7,9,10)SP-(4-11) 10 mumol/l failed to affect the SP depression. Neither antagonist changed vasoconstriction by itself. Pretreatment of the arteries with a mixture of yohimbine, propranolol, atropine, diphenhydramine, burimamide, methysergide and indomethacin, all 1 mumol/l, did not influence the effect of SP or capsaicin. Only the inhibition by SP, but not that by capsaicin was abolished after mechanical destruction of the endothelium. SP, physalaemin and eledoisin, all 3 mumol/l, reduced vasoconstriction by noradrenaline or histamine; capsaicin 30 mumol/l depressed noradrenaline-induced vasoconstriction. In arteries preincubated with 3H-noradrenaline, electrical stimulation (1 Hz, 120 pulses) triggered an increase in the outflow of tritium and evoked vasoconstriction. SP 1 mumol/l did not change either basal or stimulation-evoked tritium outflow, whereas it reduced vasoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Effect of thiorphan on response of the guinea-pig gallbladder to tachykinins.

    PubMed

    Maggi, C A; Patacchini, R; Renzi, D; Santicioli, P; Regoli, D; Rovero, P; Drapeau, G; Surrenti, C; Meli, A

    1989-06-08

    Tachykinins produced a concentration-related contraction of the isolated guinea-pig gallbladder, with a rank order of potency neurokinin A (NKA) greater than Arg-neurokinin B = neurokinin B (NKB) greater than substance P (SP). Only the effect of SP was potentiated by thiorphan (0.1-10 microM). A significant enhancement of the response to SP was also produced by captopril (1 microM). [Nle10]NKA-(4-10) and [beta-Ala8]NKA-(4-10), selective NK-2 receptor agonists, were active, whereas [Pro9]SP sulfone (selective NK-1 agonist) was almost ineffective. [MePhe7]NKB (selective NK-3 agonist) had some activity but only at high concentrations. Septide was almost ineffective and DiMeC7 had an action comparable to that of [MePhe7]NKB. None of the effects induced by these synthetic tachykinin analogs were significantly potentiated by thiorphan. Capsaicin (10 microM) produced a contraction which was unaffected by thiorphan. Both capsaicin and NKA-induced contractions were antagonized by Spantide at concentrations (5-10 microM) which had no effect against the atropine-sensitive contractions produced by electrical field stimulation. Capsaicin (1 microM) produced a consistent release of SP-like immunoreactivity (SP-LI) and a second application of the drug had no further effect, indicating complete desensitization. SP-LI release by capsaicin was almost doubled in the presence of thiorphan. These findings indicate that NK-2 and possibly some NK-3 receptors mediate the contractile response of the guinea-pig gallbladder to tachykinins. Both exogenous and endogenous (released by capsaicin) SP were degraded to a significant extent in this organ via a thiorphan-sensitive mechanism, the identity of which remains to be established.

  1. Intrathecal substance P augments morphine-induced antinociception: possible relevance in the production of substance P N-terminal fragments.

    PubMed

    Komatsu, Takaaki; Sasaki, Mika; Sanai, Kengo; Kuwahata, Hikari; Sakurada, Chikai; Tsuzuki, Minoru; Iwata, Yohko; Sakurada, Shinobu; Sakurada, Tsukasa

    2009-09-01

    The present study sought to examine the mechanism of substance P to modulate the antinociceptive action of intrathecal (i.t.) morphine in paw-licking/biting response evoked by subcutaneous injection of capsaicin into the plantar surface of the hindpaw in mice. The i.t. injection of morphine inhibited capsaicin-induced licking/biting response in a dose-dependent manner. Substance P (25 and 50 pmol) injected i.t. alone did not alter capsaicin-induced nociception, whereas substance P at a higher dose of 100 pmol significantly reduced the capsaicin response. Western blots showed the constitutive expression of endopeptidase-24.11 in the dorsal and ventral parts of lumbar spinal cord of mice. The N-terminal fragment of substance P (1-7), which is known as a major product of substance P by endopeptidase-24.11, was more effective than substance P on capsaicin-induced nociception. Combination treatment with substance P (50 pmol) and morphine at a subthreshold dose enhanced the antinociceptive effect of morphine. The enhanced effect of the combination of substance P with morphine was reduced significantly by co-administration of phosphoramidon, an inhibitor of endopeptidase-24.11. Administration of D-isomer of substance P (1-7), [D-Pro(2), D-Phe(7)]substance P (1-7), an inhibitor of [(3)H] substance P (1-7) binding, or antisera against substance P (1-7) reversed the enhanced antinociceptive effect by co-administration of substance P and morphine. Taken together these data suggest that morphine-induced antinociception may be enhanced through substance P (1-7) formed by the enzymatic degradation of i.t. injected substance P in the spinal cord.

  2. Effects of the calcium channel blockers Phα1β and ω-conotoxin MVIIA on capsaicin and acetic acid-induced visceral nociception in mice.

    PubMed

    Diniz, Danuza Montijo; de Souza, Alessandra Hubner; Pereira, Elizete Maria Rita; da Silva, Juliana Figueira; Rigo, Flavia Karine; Romano-Silva, Marco Aurélio; Binda, Nancy; Castro, Célio J; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus Vinicius

    2014-11-01

    The effects of intrathecal administration of the toxins Phα1β and ω-conotoxin MVIIA were investigated in visceral nociception induced by an intraperitoneal injection of acetic acid and an intracolonic application of capsaicin. The pretreatments for 2h with the toxins reduced the number of writhes or nociceptive behaviors compared with the control mice. Phα1β administration resulted in an Imax of 84±6 and an ID50 of 12 (5-27), and ω-conotoxin MVIIA resulted in an Imax of 82±9 and an ID50 of 11 (4-35) in the contortions induced by the intraperitoneal injection of acetic acid. The administration of Phα1β resulted in an Imax of 64±4 and an ID50 of 18 (9-38), and ω-conotoxin MVIIA resulted in an Imax of 71±9 and an ID50 of 9 (1-83) in the contortions induced by intracolonic capsaicin administration. Phα1β (100/site) or ω-conotoxin MVIIA (30pmol/site) pretreatments caused a reduction in CSF glutamate release in mice intraperitoneally injected with acetic acid or treated with intracolonic capsaicin. The toxin pretreatments reduced the ROS levels induced by intraperitoneal acetic acid injection. Phα1β, but not ω-conotoxin MVIIA, reduced significantly the ROS levels induced by intracolonic capsaicin administration. Phα1β is a ω-toxin with high therapeutic index and a broader action on calcium channels. It shows analgesic effect in several rodents' models of pain, including visceral pain, suggesting that this toxin has the potential to be used in clinical setting as a drug in the control of persistent pathological pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Advancing Nursing Practice: Management of Neuropathic Pain With Capsaicin 8% Without Physician Supervision.

    PubMed

    O'Brien, Joanne; Keaveny, Joseph; Pollard, Valerie; Nugent, Linda Elizabeth

    The purpose of this study was to examine the management of patient's neuropathic pain with capsaicin 8% in a nurse-led clinic when administered by 1 registered advanced nurse practitioner without physician supervision. A longitudinal, single-group, descriptive research design was used to assess pain scores and quality of life 3 times over 3 months after treatment. Patients with a diagnosis of neuropathic pain were assessed and treated with capsaicin 8% by 1 advanced nurse practitioner with prescriptive authority in a nurse-led clinic. Pain scores were collected at baseline, and self-assessed pain, activity level, and quality of life were assessed at 1 week, 4 weeks, and 3 months after treatment. Twenty-four patients were recruited, and data were analyzed using Friedman's test. In post hoc analysis, Wilcoxon signed-rank test was used with Bonferroni correction. Pain scores differed from pretreatment to posttreatment at each of the 3 time points, at rest (χ3 = 20.54, P = .001) and on movement (χ3 = 23.644, P = .001), and remained significant after Bonferroni correction. Overall, 62.5% (n = 15) of patients achieved at least a 30% reduction in self-reported pain at rest from pretreatment to 3 months, and 54% (n = 13) achieved the same reduction in pain on movement. Most improvements in patient's quality of life occurred between 1 and 4 weeks. Patient satisfaction was high, with 83% stating that they would be happy to have the treatment repeated. Single-dose capsaicin 8% decreased neuropathic pain after being administered in an outpatient setting by an experienced registered advanced nurse practitioner. Further multicenter research led by advanced nurse practitioners is needed to support high-quality, safe treatment of neuropathic pain with high-concentration capsaicin in nurse-led chronic pain clinics.

  4. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis.

    PubMed

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-03-01

    The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis

    PubMed Central

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-01-01

    Objective The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro–immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Methods Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. Results In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Conclusions Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release. PMID:25524130

  6. Capsaicin-evoked iCGRP release from human dental pulp: a model system for the study of peripheral neuropeptide secretion in normal healthy tissue

    PubMed Central

    Fehrenbacher, Jill C.; Sun, Xiaoling X.; Locke, Erin E.; Henry, Michael A.; Hargreaves, Kenneth M.

    2009-01-01

    The mechanisms underlying trigeminal pain conditions are incompletely understood. In vitro animal studies have elucidated various targets for pharmacological intervention; however, a lack of clinical models that allow evaluation of viable innervated human tissue has impeded successful translation of many preclinical findings into clinical therapeutics. Therefore, we developed and characterized an in vitro method that evaluates the responsiveness of isolated human nociceptors by measuring basal and stimulated release of neuropeptides from collected dental pulp biopsies. Informed consent was obtained from patients presenting for extraction of normal wisdom teeth. Patients were anesthetized using nerve block injection, teeth were extracted and bisected, and pulp was removed and superfused in vitro. Basal and capsaicin-evoked peripheral release of immunoreactive calcitonin gene-related peptide (iCGRP) was analyzed by enzyme immunoassay. The presence of nociceptive markers within neurons of the dental pulp was characterized using confocal microscopy. Capsaicin increased the release of iCGRP from dental pulp biopsies in a concentration-dependent manner. Stimulated release was dependent on extracellular calcium, reversed by a TRPV1 receptor antagonist, and desensitized acutely (tachyphylaxis) and pharmacologically by pretreatment with capsaicin. Superfusion with phorbol 12-myristate 13-acetate (PMA) increased basal and stimulated release, whereas PGE2 augmented only basal release. Compared with vehicle treatment, pretreatment with PGE2 induced competence for DAMGO to inhibit capsaicin-stimulated iCGRP release, similar to observations in animal models where inflammatory mediators induce competence for opioid inhibition. These results indicate the release of iCGRP from human dental pulp provides a novel tool to determine the effects of pharmacological compounds on human nociceptor sensitivity. PMID:19428185

  7. Trigeminal Ganglion Neurons of Mice Show Intracellular Chloride Accumulation and Chloride-Dependent Amplification of Capsaicin-Induced Responses

    PubMed Central

    Schöbel, Nicole; Radtke, Debbie; Lübbert, Matthias; Gisselmann, Günter; Lehmann, Ramona; Cichy, Annika; Schreiner, Benjamin S. P.; Altmüller, Janine; Spector, Alan C.; Spehr, Jennifer; Hatt, Hanns; Wetzel, Christian H.

    2012-01-01

    Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs. PMID:23144843

  8. Self-reported sleep duration associated with distraction analgesia, hyperemia, and secondary hyperalgesia in the heat-capsaicin nociceptive model.

    PubMed

    Campbell, Claudia M; Bounds, Sara C; Simango, Mpepera B; Witmer, Kenneth R; Campbell, James N; Edwards, Robert R; Haythornthwaite, Jennifer A; Smith, Michael T

    2011-07-01

    Although sleep deprivation is known to heighten pain sensitivity, the mechanisms by which sleep modifies nociception are largely unknown. Few studies of sleep-pain interactions have utilized quantitative sensory testing models that implicate specific underlying physiologic mechanisms. One possibility, which is beginning to receive attention, is that differences in sleep may alter the analgesic effects of distraction. We utilized the heat-capsaicin nociceptive model to examine whether self-reported habitual sleep duration is associated with distraction analgesia, the degree of secondary hyperalgesia and skin flare, markers implicating both central and peripheral processes that heighten pain. Twenty-eight healthy participants completed three experimental sessions in a randomized within subjects design. In the pain only condition, pain was induced for approximately 70-min via application of heat and capsaicin to the dorsum of the non-dominant hand. Verbal pain ratings were obtained at regular intervals. In the distraction condition, identical procedures were followed, but during heat-capsaicin pain, subjects played a series of video games. The third session involved assessing performance on the video games (no capsaicin). Participants indicated their normal self-reported habitual sleep duration over the past month. Individuals who slept less than 6.5 h/night in the month prior to the study experienced significantly less behavioral analgesia, increased skin flare and augmented secondary hyperalgesia. These findings suggest that reduced sleep time is associated with diminished analgesic benefits from distraction and/or individuals obtaining less sleep have a reduced ability to disengage from pain-related sensations. The secondary hyperalgesia finding may implicate central involvement, whereas enhanced skin flare response suggests that sleep duration may also impact peripheral inflammatory mechanisms. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  9. Vasomotor response to cold stimulation in human capsaicin-induced hyperalgesic area.

    PubMed

    Pud, Dorit; Andersen, Ole Kaeseler; Arendt-Nielsen, Lars; Eisenberg, Elon; Yarnitsky, David

    2005-07-01

    Cooling the skin induces sympathetically driven vasoconstriction, with some vasoparalytic dilatation at the lowest temperatures. Neurogenic inflammation, on the other hand, entails vasodilatation. In this study we investigated the balance between vasoconstriction and vasodilatation in an area of experimentally induced secondary hyperalgesia (2 degrees HA), in response to low-temperature stimulations. Fourteen healthy volunteers were exposed to three 30-s long cold stimuli (20, 10, and 0 degrees C) applied, at three adjacent sites, before (baseline) and 8 min after intradermal injection of 50 microg capsaicin to the volar forearm. The cold stimuli were applied distally to the injection site within the 2 degrees HA. Blood flux (BF) and skin temperatures were measured at four different regions (proximally, and distally to the capsaicin injection and at the 0, 10, and 20 degrees C thermode sites) all within the 2 degrees HA. The vascular measurements were conducted five times. Results showed a marked increase in BF after baseline cold stimulation (P<0.001) at the 0 degrees C compared with the three other sites. In addition, vasodilatory effect (elevated BF) was found following the capsaicin injection compared with baseline for all regions (P<0.001): the non-cooled area was dilated by 450+/-5.1%; The vasoconstrictive effect for the 10 and 20 degrees C did not overcome the capsaicin vasodilatation, but did reduce it, with dilatation of 364+/-7.0% and 329+/-7.3%, respectively. For 0 degrees C, a dilatation of 407+/-6.5% was seen. It is concluded that in this experimental model, and potentially in the equivalent clinical syndromes, vasodilatation induced by the inflammation is only slightly reduced by cold stimulation such that it is still dominant, despite some cold-induced vasoconstriction.

  10. Electrophysiological effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones.

    PubMed Central

    Myers, A C; Undem, B J

    1993-01-01

    1. We evaluated the effects of neurokinins, tachykinin analogues, or capsaicin on passive membrane properties of guinea-pig bronchial parasympathetic neurones using intracellular recording techniques. 2. Substance P (SP) and the tachykinin analogue, acetyl-[Arg6,Sar9,Met(O2)11]-SP(6-11) (ASMSP), at concentrations selective for the neurokinin (NK)-1 receptor subtype, depolarized the resting potential (3 and 5 mV, respectively) with no change in input resistance. Neurokinin A and beta Ala8NKA(4-10), at concentrations selective for the NK-2 receptor subtype (0.1 microM), were without effect. 3. Neurokinin B (NKB) and [Asp5,6,methyl-Phe8]SP(5-11) (senktide analogue), at concentrations selective for NK-3 receptor subtype, elicited maximum depolarizations of 16 +/- 2 mV for both agonists. The peak of the depolarization was associated with an decrease in membrane resistance (35 +/- 4 and 50 +/- 7%, respectively). 4. Capsaicin (1 microM) elicited a 3-24 mV depolarization of the resting potential of thirteen of eighteen bronchial ganglion neurones and decreased the input resistance of seven of thirteen of these neurones. The effects of capsaicin were reduced by desensitization with senktide analogue at a concentration selective for the NK-3 receptor subtype, whereas a non-peptide NK-1 receptor antagonist had no effect. 5. Using voltage clamp analysis, capsaicin and senktide analogue evoked an inward current and an increase in membrane conductance at the resting membrane potential. The reversal potential for senktide analogue was estimated to be + 4 mV. 6. These data support the hypothesis that neurokinin-containing nerve terminals are localized within guinea-pig bronchial parasympathetic ganglia and, when released, the predominant effect of the neurokinins is by activation of NK-3 receptors. PMID:7508508

  11. Endogenous cannabinoid receptor agonists inhibit neurogenic inflammations in guinea pig airways.

    PubMed

    Yoshihara, Shigemi; Morimoto, Hiroshi; Ohori, Makoto; Yamada, Yumi; Abe, Toshio; Arisaka, Osamu

    2005-09-01

    Although neurogenic inflammation via the activation of C fibers in the airway must have an important role in the pathogenesis of asthma, their regulatory mechanism remains uncertain. The pharmacological profiles of endogenous cannabinoid receptor agonists on the activation of C fibers in airway tissues were investigated and the mechanisms how cannabinoids regulate airway inflammatory reactions were clarified. The effects of endogenous cannabinoid receptor agonists on electrical field stimulation-induced bronchial smooth muscle contraction, capsaicin-induced bronchoconstriction and capsaicin-induced substance P release in guinea pig airway tissues were investigated. The influences of cannabinoid receptor antagonists and K+ channel blockers to the effects of cannabinoid receptor agonists on these respiratory reactions were examined. Both endogenous cannabinoid receptor agonists, anandamide and palmitoylethanolamide, inhibited electrical field stimulation-induced guinea pig bronchial smooth muscle contraction, but not neurokinin A-induced contraction. A cannabinoid CB2 antagonist, SR 144528, reduced the inhibitory effect of endogenous agonists, but not a cannabinoid CB1 antagonist, SR 141716A. Inhibitory effects of agonists were also reduced by the pretreatment of large conductance Ca2+ -activated K+ channel (maxi-K+ channel) blockers, iberiotoxin and charybdotoxin, but not by other K+ channel blockers, dendrotoxin or glibenclamide. Anandamide and palmitoylethanolamide blocked the capsaicin-induced release of substance P-like immunoreactivity from guinea pig airway tissues. Additionally, intravenous injection of palmitoylethanolamide dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, but not neurokinin A-induced reaction. However, anandamide did not reduce capsaicin-induced guinea pig bronchoconstriction. These findings suggest that endogenous cannabinoid receptor agonists inhibit the activation of C fibers via cannabinoid CB2 receptors and maxi-K+ channels in guinea pig airways. Copyright (c) 2005 S. Karger AG, Basel.

  12. Effects of carbamazepine on plasma extravasation and bronchoconstriction induced by substance P, capsaicin, acetaldehyde and histamine in guinea-pig lower airways.

    PubMed

    Bianchi, M; Rossoni, G; Maggi, R; Panerai, A E; Berti, F

    1998-01-01

    We evaluated the in vivo effects of the pretreatment with carbamazepine (CBZ) at different doses (10, 20 and 40 mg/kg p.o.) on the Evans-blue extravasation and on bronchoconstriction induced by different substances in guinea-pig tracheal tissue. The drug dose-dependently inhibited the extravasation induced by substance P (SP), capsaicin and acetaldehyde, but not that induced by histamine. At the highest dose (40 mg/kg) CBZ inhibited the bronchoconstriction induced by SP, capsaicin and acetaldehyde, but not that produced by histamine administration. The in vitro study with guinea-pig tracheal preparation indicates that the drug does not interfere with the binding of SP to its receptors. Our results suggest that CBZ exerts a protective activity against the pro-inflammatory action of SP.

  13. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin.

    PubMed

    Raza, Kaisar; Singh, Bhupinder; Mahajan, Anadi; Negi, Poonam; Bhatia, Amit; Katare, O P

    2011-05-01

    Capsaicin, extracted from the fruits of Capsicum, is a powerful local stimulant with strong rubifacient action, devoid of vesication. Topical use of capsaicin is quite common in the treatment of various pain-associated musculo-skeletal disorders, itching and neuropathy. Despite its high pharmacodynamic potential, the patient compliance to the drug is reported to be poor owing to multiple skin problems like irritation, burning sensation, and erythma. The present study targets the encasement of drug in the interiors of flexible membrane vesicles (FMVs), as these are reported to have better penetration in the deeper layers of skin, thus leading to enhanced localization of drug and consequently, decreased skin irritation. Multilamellar drug-loaded FMVs, prepared by thin-film hydration were evaluated for their efficacy in vitro and in vivo. When compared with conventional liposomes, the formulated FMVs showed higher skin retention during ex vivo permeation studies employing LACA mice skin, higher analgesic potential using radiant tail-flick method in mice, and better flexibility in regaining their size. Being less of an irritant, these vesicular carriers were also found to be more comfortable on human skin. Thus, the capsaicin-loaded FMVs offer high potential as topical drug delivery technologies with improved patient acceptance and effectiveness.

  14. Chemical analysis of freshly prepared and stored capsaicin solutions: implications for tussigenic challenges.

    PubMed

    Kopec, Scott E; DeBellis, Ronald J; Irwin, Richard S

    2002-01-01

    The purpose of this study was to assess the stability of stored capsaicin solutions and the actual concentrations of prepared solutions. Capsaicin solutions ranging in concentration from 0.5 to 128 microM were mixed and analyzed using high performance liquid chromatography. Samples of varying concentrations were then stored under 4 environmental conditions: 4 degrees C and protected from light, room temperature (RT) exposed to light, RT protected from light, and -20 degrees C and protected from light. The concentrations were measured every other month for 1 year. Actual concentrations of freshly prepared solutions were on average 88.3% of predicted. For solutions stored at 4 degrees C, there was a decrease only in the lower concentrations (0.5, 1, and 2 microM) after 2 months (P=0.003). Solutions stored at RT exposed to light decreased in concentration after 6 months (P=0.020), and solutions stored at RT protected from light decreased in concentration after 4 months (P=0.026). The group stored at -20 degrees C decreased in concentration after 1 year (P=0.033). We conclude that the actual concentration of capsaicin solution is less than predicted, and solutions of 4 microM or higher concentration are stable for 1 year if stored at 4 degrees C protected from light.

  15. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    PubMed

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  16. Capsaicin-mediated apoptosis of human bladder cancer cells activates dendritic cells via CD91.

    PubMed

    Gilardini Montani, Maria Saveria; D'Eliseo, Donatella; Cirone, Mara; Di Renzo, Livia; Faggioni, Alberto; Santoni, Angela; Velotti, Francesca

    2015-04-01

    Immunostimulation by anticancer cytotoxic drugs is needed for long-term therapeutic success. Activation of dendritic cells (DCs) is crucial to obtain effective and long-lasting anticancer T-cell mediated immunity. The aim of this study was to explore the effect of capsaicin-mediated cell death of bladder cancer cells on the activation of human monocyte-derived CD1a+ immature DCs. Immature DCs (generated from human peripheral blood-derived CD14+ monocytes cultured with granulocyte-macrophage colony stimulating factor and interleukin-4) were cocultured with capsaicin (CPS)-induced apoptotic bladder cancer cells. DC activation was investigated using immunofluorescence and flow cytometric analysis for key surface molecules. In some experiments, CD91 was silenced in immature DCs. We found that capsaicin-mediated cancer cell apoptosis upregulates CD86 and CD83 expression on DCs, indicating the induction of DC activation. Moreover, silencing of CD91 (a common receptor for damage-associated molecular patterns, such as calreticulin and heat-shock protein-90/70) in immature DCs led to the inhibition of DC activation. Our data show that CPS-mediated cancer cell apoptosis activates DCs via CD91, suggesting CPS as an attractive candidate for cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Antinociceptive effect and interaction of uncompetitive and competitive NMDA receptor antagonists upon capsaicin and paw pressure testing in normal and monoarthritic rats.

    PubMed

    Pelissier, Teresa; Infante, Claudio; Constandil, Luis; Espinosa, Jeannette; Lapeyra, Carolina De; Hernández, Alejandro

    2008-01-01

    We assessed whether intrathecal administration of the uncompetitive and competitive NMDA receptor antagonists ketamine and (+/-)CPP, respectively, could produce differential modulation on chemical and mechanical nociception in normal and monoarthritic rats. In addition, the antinociceptive interaction of ketamine and (+/-)CPP on monoarthritic pain was also studied using isobolographic analysis. Monoarthritis was produced by intra-articular injection of complete Freund's adjuvant into the tibio-tarsal joint. Four weeks later, the antinociceptive effect of intrathecal administration of the drugs alone or combined was evaluated by using the intraplantar capsaicin and the paw pressure tests. Ketamine (0.1, 1, 10, 30, 100, 300 and 1000 microg i.t.) and (+/-)CPP (0.125, 2.5, 7.5, 12.5, 25 and 50 microg i.t.) produced significantly greater dose-dependent antinociception in the capsaicin than in the paw pressure test. Irrespective of the nociceptive test employed, both antagonists showed greater antinociceptive activity in monoarthritic than in healthy rats. Combinations produced synergy of a supra-additive nature in the capsaicin test, but only additive antinociception in paw pressure testing. The efficacy of the drugs, alone or combined, is likely to depend on the differential sensitivity of tonic versus phasic pain and/or chemical versus mechanical pain to NMDA antagonists.

  18. The contractile effect of anandamide in the guinea-pig small intestine is mediated by prostanoids but not TRPV1 receptors or capsaicin-sensitive nerves.

    PubMed

    Dékány, András; Benko, Rita; Szombati, Veronika; Bartho, Lorand

    2013-05-01

    Although exogenous and endogenous cannabinoid receptor agonists have well-documented inhibitory effects on gastrointestinal motility, a TRPV1 receptor-mediated excitatory action of anandamide (arachidonoyl ethanolamide, AEA) in the guinea-pig ileum strip has also been described. We used in vitro capsaicin desensitization for assessing the possible participation of sensory neurons in the contractile effect of anandamide on the guinea-pig whole ileum, as well as autonomic drugs and a cyclooxygenase inhibitor for characterizing this response. Isolated organ experiments were used with isotonic recording. Contractions induced by anandamide (1 or 10 μM) were strongly inhibited by tetrodotoxin, indomethacin or atropine plus a tachykinin NK(1) receptor antagonist, but weakly to moderately reduced by atropine alone and partly diminished by the fatty acid amide hydrolase inhibitor URB 597. Neither capsaicin pre-treatment nor the TRPV1 receptor antagonist BCTC, the ganglionic blocking drug hexamethonium or cannabinoid (CB1 or CB2 ) receptor antagonists, influenced the effect of anandamide. It is concluded that the capsaicin-insensitive, neuronal excitatory effect of anandamide in the intestine is most probably mediated by cyclooxygenase products. Such a mechanism may also play a role at other sites in the mammalian body. © 2012 Nordic Pharmacological Society. Published by Blackwell Publishing Ltd.

  19. A case of acute myocardial infarction due to the use of cayenne pepper pills.

    PubMed

    Sayin, Muhammet Rasit; Karabag, Turgut; Dogan, Sait Mesut; Akpinar, Ibrahim; Aydin, Mustafa

    2012-04-01

    The use of weight loss pills containing cayenne pepper has ever been increasing. The main component of cayenne pepper pills is capsaicin. There are conflicting data about the effects of capsaicin on the cardiovascular system. In this paper, we present the case of a 41 year old male patient with no cardiovascular risk factors who took cayenne pepper pills to lose weight and developed acute myocardial infarction.

  20. Simultaneous Determination of Piperine, Capsaicin, and Dihydrocapsaicin in Korean Instant-Noodle (Ramyun) Soup Base Using High-Performance Liquid Chromatography with Ultraviolet Detection.

    PubMed

    Shim, You-Shin; Kim, Jong-Chan; Jeong, Seung-Weon

    2016-01-01

    A simultaneous analytical method for piperine, capsaicin, and dihydrocapsaicin in Korean instant-noodle soup base using HPLC was validated in terms of precision, accuracy, sensitivity, and linearity. The HPLC separation was performed on a reversed-phase C18 column (5 μm particle size, 4.6 mm id, 250 mm length) using a UV detector fixed at 280 nm. The LOD and LOQ of the HPLC analyses ranged from 0.25 to 1.03 mg/kg. The intraday and interday precisions of the individual piperine, capsaicin, and dihydrocapsaicin were <10.55%, and the recovery values ranged from 85.43 to 94.68%. The calibration curves exhibited good linearity (r(2) = 0.999) within the tested ranges. These results suggest that the analytical method in this study can be used to classify Korean instant noodles based on their levels of spiciness.

  1. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.).

    PubMed

    Barbero, Gerardo F; Ruiz, Aurora G; Liazid, Ali; Palma, Miguel; Vera, Jesús C; Barroso, Carmelo G

    2014-06-15

    The evolution of total capsaicinoids and the individual contents of the five major capsaicinoids: nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin present in the Cayenne pepper (Capsicum annuum L.), during fruit ripening, has been established. Capsaicinoids begin to accumulate gradually in the peppers from the beginning of its development up to a maximum concentration (1,789 μmol/Kg FW). From this time there is initially a sharp decrease in the total capsaicinoid content (32%), followed by a gradual decrease until day 80 of ripening. The two major capsaicinoids present in the Cayenne pepper are capsaicin and dihydrocapsaicin, which represent between 79% and 90%, respectively, of total capsaicinoids depending on fruit ripening. The relative content of capsaicin differs from the evolution of the other four capsaicinoids studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Selectively targeting pain in the trigeminal system

    PubMed Central

    Kim, Hyun Yeong; Kim, Kihwan; Li, Hai Ying; Chung, Gehoon; Park, Chul-Kyu; Kim, Joong Soo; Jung, Sung Jun; Lee, Min Kyung; Ahn, Dong Kuk; Hwang, Se Jin; Kang, Youngnam; Binshtok, Alexander M.; Bean, Bruce P.; Woolf, Clifford J.; Oh, Seog Bae

    2015-01-01

    We tested whether it is possible to selectively block pain signals in the orofacial area by delivering the permanently charged lidocaine derivative QX-314 into nociceptors via TPRV1 channels. We examined the effects of co-applied QX-314 and capsaicin on nociceptive, proprioceptive, and motor function in the rat trigeminal system. QX-314 alone failed to block voltage-gated sodium channel currents (INa) and action potentials (APs) in trigeminal ganglion (TG) neurons. However, co-application of QX-314 and capsaicin blocked INa and APs in TRPV1-positive TG and dental nociceptive neurons, but not in TRPV1-negative TG neurons or in small neurons from TRPV1 knock-out mice. Immunohistochemistry revealed that TRPV1 is not expressed by trigeminal motor and trigeminal mesencephalic neurons. Capsaicin had no effect on rat trigeminal motor and proprioceptive mesencephalic neurons and therefore should not allow QX-314 to enter these cells. Co-application of QX-314 and capsaicin inhibited the jaw-opening reflex evoked by noxious electrical stimulation of the tooth pulp when applied to a sensory but not a motor nerve, and produced long-lasting analgesia in the orofacial area. These data show that selective block of pain signals can be achieved by co-application of QX-314 with TRPV1 agonists. This approach has potential utility in the trigeminal system for treating dental and facial pain. PMID:20236764

  3. Are Rice and Spicy Diet Good for Functional Gastrointestinal Disorders?

    PubMed Central

    2010-01-01

    Rice- and chili-containing foods are common in Asia. Studies suggest that rice is completely absorbed in the small bowel, produces little intestinal gas and has a low allergenicity. Several clinical studies have demonstrated that rice-based meals are well tolerated and may improve gastrointestinal symptoms in functional gastrointestinal disorders (FGID). Chili is a spicy ingredient commonly use throughout Asia. The active component of chili is capsaicin. Capsaicin can mediate a painful, burning sensation in the human gut via the transient receptor potential vanilloid-1 (TRPV1). Recently, the TRPV1 expressing sensory fibers have been reported to increase in the gastrointestinal tract of patients with FGID and visceral hypersensitivity. Acute exposure to capsaicin or chili can aggravate abdominal pain and burning in dyspepsia and IBS patients. Whereas, chronic ingestion of natural capsaicin agonist or chili has been shown to decrease dyspeptic and gastroesophageal reflux disease (GERD) symptoms. The high prevalence of spicy food in Asia may modify gastrointestinal burning symptoms in patients with FGID. Studies in Asia demonstrated a low prevalence of heartburn symptoms in GERD patients in several Asian countries. In conclusion rice is well tolerated and should be advocated as the carbohydrate source of choice for patients with FGID. Although, acute chili ingestion can aggravate abdominal pain and burning symptoms in FGID, chronic ingestion of chili was found to improve functional dyspepsia and GERD symptoms in small randomized, controlled studies. PMID:20535343

  4. A randomized placebo controlled trial to evaluate the effects of butamirate and dextromethorphan on capsaicin induced cough in healthy volunteers

    PubMed Central

    Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H

    2014-01-01

    Aims The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. Methods In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Results Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. Conclusions We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. PMID:24995954

  5. A randomized placebo controlled trial to evaluate the effects of butamirate and dextromethorphan on capsaicin induced cough in healthy volunteers.

    PubMed

    Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H

    2014-12-01

    The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. © 2014 The British Pharmacological Society.

  6. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats.

    PubMed

    Tamaddonfard, Esmaeal; Tamaddonfard, Sina; Pourbaba, Salar

    2015-01-01

    Crocin, a constituent of saffron and yellow gardenia, possesses anti-nociceptive effects. In the present study, we investigated the effects of intra-fourth ventricle injection of crocin in a rat model of orofacial pain. The contribution of opioid system was assessed using intra-fourth ventricle injection of naloxone, an opioid receptor antagonist. A guide cannula was implanted into the fourth ventricle of brain in anesthetized rats. Orofacial pain was induced by subcutaneous (s.c.) injection of capsaicin (1.5 µg/20 µl) into the right vibrissa pad. The time spent face rubbing/grooming was recorded for a period of 20 min. Locomotor activity was measured using an open-field test. Intra-fourth ventricle injection of crocin (10 and 40 µg/rat) and morphine (10 and 40 µg/rat) and their co-administration (2.5 and 10 µg/rat of each) suppressed capsaicin-induced orofacial pain. The analgesic effect induced by 10 µg/rat of morphine, but not crocin (10 µg/rat), was prevented by 20 µg/rat of naloxone pretreatment. The above-mentioned chemical compounds did not affect locomotor activity. The results of this study showed that the injection of crocin into the cerebral fourth ventricle attenuates capsaicin-induced orofacial pain in rats. The anti-nociceptive effect of crocin was not attributed to the central opioid receptors.

  7. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy.more » During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.« less

  8. Effects of Capsaicin Coadministered with Eicosapentaenoic Acid on Obesity-Related Dysregulation in High-Fat-Fed Mice.

    PubMed

    Hirotani, Yoshihiko; Fukamachi, Junta; Ueyama, Rina; Urashima, Yoko; Ikeda, Kenji

    2017-01-01

    Obesity-induced inflammation contributes to the development of metabolic disorders such as insulin resistance, type 2 diabetes, fatty liver disease, and cardiovascular disease. In this study, we investigated whether the combination of eicosapentaenoic acid (EPA) and capsaicin could protect against high-fat diet (HFD)-induced obesity and related metabolic disorders. The experiments were performed using male C57BL/6J mice that were fed one of the following diets for 10 weeks: standard chow (5.3% fat content) (normal group), a HFD (32.0% fat content) (HFD group), or a HFD supplemented with either 4% (w/w) EPA (EPA group) or a combination of 4% (w/w) EPA and 0.01% (w/w) capsaicin (EPA+Cap group). Our results indicated that the body, fat and liver tissue weights and levels of serum glucose, insulin, total cholesterol, triglyceride, high-density lipoprotein-cholesterol, aspartate aminotransferase, and alanine aminotransferase were significantly higher in HFD group mice than in normal group mice (p<0.05 in all cases). However, the body and fat tissue weights and serum glucose levels and homeostasis model assessment of insulin resistance were significantly lower in EPA+Cap group mice group than in HFD and EPA group mice (p<0.05 in all cases). Thus, our study suggests that the combination of EPA and capsaicin might be beneficial for delaying the progression of obesity-related metabolic dysregulation and subsequent complications.

  9. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold

    PubMed Central

    Cao, Xu; Ma, Linlin; Yang, Fan

    2014-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes. PMID:24344247

  10. [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel.

    PubMed

    Khan, Kainat; Singh, Akanksha; Mittal, Monika; Sharan, Kunal; Singh, Nidhi; Dixit, Preety; Sanyal, Sabyasachi; Maurya, Rakesh; Chattopadhyay, Naibedya

    2012-12-01

    [6]-Gingerol, a major constituent of ginger, is considered to have several health beneficial effects. The effect of 6-gingerol on bone cells and skeleton of mice was investigated. The effects of 6-gingerol on mouse bone marrow macrophages and osteoblasts were studied. 6-Gingerol-stimulated osteoclast differentiation of bone marrow macrophages but had no effect on osteoblasts. Capsazepine, an inhibitor of TRPV1 (transient receptor potential vanilloid 1) channel, attenuated the pro-osteoclastogenic effect of 6-gingerol or capsaicin (an agonist of TRPV1). Similar to capsaicin, 6-gingerol stimulated Ca(2) + influx in osteoclasts. The effect of daily feeding of 6-gingerol for 5 wk on the skeleton of adult female Balb/cByJ mice was investigated. Mice treated with capsaicin and ovariectomized (OVx) mice served as controls for osteopenia. 6-Gingerol caused increase in trabecular osteoclast number, microarchitectural erosion at all trabecular sites and loss of vertebral stiffness, and these effects were comparable to capsaicin or OVx group. Osteoclast-specific serum and gene markers of 6-gingerol-treated mice were higher than the OVx group. Bone formation was unaffected by 6-gingerol. Daily feeding of 6-gingerol to skeletally mature female mice caused trabecular osteopenia, and the mechanism appeared to be activation of osteoclast formation via the TRPV1 channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Neuroregulation of a chemosensitive afferent system in the canine distal esophagus.

    PubMed

    Sandler, A D; Schlegel, J F; DeSautel, M G; Maher, J W

    1993-10-01

    Systemic and local responses mediated by chemonociceptive receptors located in the mucosa of the canine distal esophagus were examined following stimulation with capsaicin (8-methyl-N-vanillyl-6-nonenamide). The neural pathways and neurotransmitters mediating these sensory responses were also investigated. Topical application of capsaicin solution to the distal esophageal mucosa produced significant increases in lower esophageal sphincter pressure (LESP), mean arterial pressure (MAP), pulse rate (PR), and respiratory rate (RR) (P < 0.01). Pretreatment with tetrodotoxin completely abolished this reflex activity. Following truncal vagotomy and pyloroplasty, topical capsaicin application produced an increase in LESP, but the increases in MAP, PR, and RR were blocked. The initial increase in LESP was blocked by hexamethonium, atropine, and 4-diphenylacetoxy-N-methylpiperidine, but was not inhibited by phentolamine. Excitatory cardiovascular responses were inhibited by hexamethonium. Administration of a Substance P antagonist attenuated both local and systemic responses. These studies suggest that the vagus nerves serve as the primary afferent pathways through which chemonociceptive esophageal stimuli can induce cardiovascular and respiratory reflex excitation. The increase in lower esophageal sphincter pressure in response to mucosal capsaicin stimulation is mediated via an intrinsic neural pathway that functions independently of vagal innervation, but is dependent on both cholinergic ganglionic neurotransmission and muscarinic type 2 smooth muscle receptor excitation. Substance P appears to play a role in primary sensory afferents as a chemonociceptive neurotransmitter in the canine distal esophagus.

  12. Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons.

    PubMed

    Chaban, Victor V; Cho, Taehoon; Reid, Christopher B; Norris, Keith C

    2013-01-01

    Cell-cell communication occurs via a variety of mechanisms, including long distances (hormonal), short distances (paracrine and synaptic) or direct coupling via gap junctions, antigen presentation, or ligand-receptor interactions. We evaluated the possibility of neuro-hormonal independent, non-diffusible, physically disconnected pathways for cell-cell communication using dorsal root ganglion (DRG) neurons. We assessed intracellular calcium ([Ca(2+)]) in primary culture DRG neurons that express ATP-sensitive P2X3, capsaicinsensitive TRPV1 receptors modulated by estradiol. Physically disconnected (dish-in-dish system; inner chamber enclosed) mouse DRG were cultured for 12 hours near: a) media alone (control 1), b) mouse DRG (control 2), c) human neuroblastoma SHSY-5Y cells (cancer intervention), or d) mouse DRG treated with KCl (apoptosis intervention). Chemosensitive receptors [Ca(2+)](i) signaling did not differ between control 1 and 2. ATP (10 μM) and capsaicin (100nM) increased [Ca(2+)](i) transients to 425.86 + 49.5 nM, and 399.21 ± 44.5 nM, respectively. 17β-estradiol (100 nM) exposure reduced ATP (171.17 ± 48.9 nM) and capsaicin (175.01±34.8 nM) [Ca(2+)](i) transients. The presence of cancer cells reduced ATP- and capsaicin-induced [Ca(2+)](i) by >50% (p<0.05) and abolished the 17β-estradiol effect. By contrast, apoptotic DRG cells increased initial ATP-induced [Ca(2+)](i), flux four fold and abolished subsequent [Ca(2+)](i), responses to ATP stimulation (p<0.001). Capsaicin (100nM) induced [Ca(2+)](i) responses were totally abolished. The local presence of apoptotic DRG or human neuroblastoma cells induced differing abnormal ATP and capsaicin-mediated [Ca(2+)](i) fluxes in normal DRG. These findings support physically disconnected, non-diffusible cell-to-cell signaling. Further studies are needed to delineate the mechanism(s) of and model(s) of communication.

  13. Investigation of TRPV1 loss-of-function phenotypes in TRPV1 Leu206Stop mice generated by N-ethyl-N-nitrosourea mutagenesis.

    PubMed

    Christoph, Thomas; Kögel, Babette; Schiene, Klaus; Peters, Thomas; Schröder, Wolfgang

    2018-06-02

    N-ethyl-N-nitrosourea (ENU) random mutagenesis was used to generate a mouse model for the analysis of the transient receptor potential vanilloid 1 (TRPV1) cation channel. A transversion from T→A in exon 4 led to a Leu206Stop mutation generating a loss-of-function mutant. The TRPV1 agonist capsaicin was used to analyze functional and nociceptive parameters in vitro and in vivo in TRPV1 Leu206Stop mice and congenic C3HeB/FeJ controls. Capsaicin-induced [Ca 2+ ] i changes in small diameter DRG neurons were significantly diminished in TRPV1 Leu206Stop mice and administration of capsaicin induced neither hypothermia nor nocifensive behaviour in vivo. TRPV1 Leu206Stop mice were tested in the spinal nerve ligation of mononeuropathic pain and developed mechanical hypersensitivity two weeks after nerve injury. In the open field test, a significant increase in spontaneous locomotion was detected in TRPV1 Leu206Stop mice as compared to wildtype controls. TRPV1 knockout mice have been reported to carry a similar phenotype regarding capsaicin-evoked responses in vitro and in vivo. However, in contrast to TRPV1 Leu206Stop mice, TRPV1 knockout mice did not differ in spontaneous locomotion as compared to congenic C57BL/6 mice, suggesting subtle ENU-dependent or independent strain differences between TRPV1 Leu206Stop mice and their wildtype controls. In summary, these data revealed a target-related (i.e. capsaicin-evoked) phenotype of TRPV1 Leu206Stop mice closely resembling that of published TRPV1 knockout mice. However, since ENU-mutant mice are congenic with the mouse strain initially used in random mutagenesis, direct phenotypic comparison with the respective wildtype controls is possible, and the time-consuming backcrossing in lines with targeted mutations is avoided. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Comparison of cooling and EMLA to reduce the burning pain during capsaicin 8% patch application: a randomized, double-blind, placebo-controlled study.

    PubMed

    Knolle, Erich; Zadrazil, Markus; Kovacs, Gabor Geza; Medwed, Stephanie; Scharbert, Gisela; Schemper, Michael

    2013-12-01

    Topical capsaicin 8% was developed for the treatment of peripheral neuropathic pain. The pain reduction is associated with a reversible reduction of epidermal nerve fiber density (ENFD). During its application, topical capsaicin 8% provokes distinct pain. In a randomized, double-blind study analyzed with a block factorial analysis of variance, we tested whether cooling the skin would result in reliable prevention of the application pain without inhibiting reduction of ENFD. A capsaicin 8% patch was cut into 4 quarters and 2 each were applied for 1 hour on the anterior thighs of 12 healthy volunteers. A randomization scheme provided for 1 of the application sites of each thigh to be pretreated with EMLA and the other with placebo, whereas both application sites of 1 thigh, also randomly selected, were cooled by cool packs, resulting in a site temperature of 20°C during the entire treatment period. The maximum pain level given for the cooled sites (visual analogue scale [VAS] 1.3 ± 1.4) proved to be significantly lower than for the non-cooled sites (VAS 7.5 ± 1.9) (P < .0001). In contrast, there was no significant difference in application pain between the sites pretreated with EMLA or with placebo (VAS 4.1 ± 3.6 vs 4.8 ± 3.5, P = .1084). At all application sites, ENFD was significantly reduced by 8.0 ± 2.8 (ENF/mm ± SD, P < .0001), that is, 70%, with no significant differences between the sites with the different experimental conditions. In conclusion, cooling the skin to 20°C reliably prevents the pain from capsaicin 8% patch application, whereas EMLA does not. ENFD reduction is not inhibited by cooling. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Angiotensin II type 2 receptor (AT2R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons

    PubMed Central

    Anand, U; Facer, P; Yiangou, Y; Sinisi, M; Fox, M; McCarthy, T; Bountra, C; Korchev, YE; Anand, P

    2013-01-01

    Background The angiotensin II (AngII) receptor subtype 2 (AT2R) is expressed in sensory neurons and may play a role in nociception and neuronal regeneration. Methods We used immunostaining with characterized antibodies to study the localization of AT2R in cultured human and rat dorsal root ganglion (DRG) neurons and a range of human tissues. The effects of AngII and AT2R antagonist EMA401 on capsaicin responses in cultured human and rat (DRG) neurons were measured with calcium imaging, on neurite length and density with Gap43 immunostaining, and on cyclic adenosine monophosphate (cAMP) expression using immunofluorescence. Results AT2R expression was localized in small-/medium-sized cultured neurons of human and rat DRG. Treatment with the AT2R antagonist EMA401 resulted in dose-related functional inhibition of capsaicin responses (IC50 = 10 nmol/L), which was reversed by 8-bromo-cAMP, and reduced neurite length and density; AngII treatment significantly enhanced capsaicin responses, cAMP levels and neurite outgrowth. The AT1R antagonist losartan had no effect on capsaicin responses. AT2R was localized in sensory neurons of human DRG, and nerve fibres in peripheral nerves, skin, urinary bladder and bowel. A majority sub-population (60%) of small-/medium-diameter neuronal cells were immunopositive in both control post-mortem and avulsion-injured human DRG; some very small neurons appeared to be intensely immunoreactive, with TRPV1 co-localization. While AT2R levels were reduced in human limb peripheral nerve segments proximal to injury, they were preserved in painful neuromas. Conclusions AT2R antagonists could be particularly useful in the treatment of chronic pain and hypersensitivity associated with abnormal nerve sprouting. PMID:23255326

  16. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis.

    PubMed

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G; Ultsch, Alfred

    2017-08-16

    The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  17. Antitussive and antibronchoconstriction actions of fenspiride in guinea-pigs.

    PubMed

    Laude, E A; Bee, D; Crambes, O; Howard, P

    1995-10-01

    Fenspiride is a nonsteroidal anti-inflammatory agent, which we have previously shown to have an in vivo antibronchoconstrictor action in guinea pigs. We have currently studied this action using the constrictors Substance P, neurokinin A, citric acid and capsaicin in anaesthetized guinea-pigs. Fenspiride has also been reported to produce a subjective improvement in cough in patients. We have used a conscious guinea-pig model of cough as a more definitive method to study the effect of fenspiride on capsaicin- and citric acid-induced cough. Aerosolized fenspiride (1 mg.mL-1) caused a 58% reversal of capsaicin-induced bronchoconstriction; and i.v. fenspiride (1mg.kg-1) a 45% reversal of citric acid induced bronchoconstriction. Substance P- and neurokinin A-induced bronchoconstriction were unaffected by 1 mg.kg-1 i.v. fenspiride. Aerosolized fenspiride (1, 3 and 10 mg.mL-1) administered for 4 min reduced citric acid (300 mM) induced cough, but 0.1 mg.mL-1 was without effect. Pretreatment with aerosolized fenspiride (10 mg.mL-1) caused a shift in the citric acid dose response curve to the right. For citric acid-induced cough, the duration of action of aerosolized fenspiride (10 mg.mL-1) was found to be 5 and 15 min post-treatment. Aerosolized capsaicin (30 microM) induced cough was also reduced by 3 and 10 mg.mL-1 aerosolized fenspiride, but no significant effect was found with 1 mg.mL-1. We conclude that aerosolized fenspiride reduces capsaicin- and citric acid-induced bronchoconstriction as well as induced cough in guinea-pigs in vivo. Whether a pathway common to both cough and bronchoconstriction is the site of action of fenspiride remains to be established. We postulate that fenspiride, acting as an antitussive and antibronchoconstrictor agent, would be beneficial in the clinical situation for those patients with hyperresponsive airways.

  18. Stimulation of airway sensory nerves by cyclosporin A and FK506 in guinea-pig isolated bronchus.

    PubMed

    Harrison, S; Reddy, S; Page, C P; Spina, D

    1998-12-01

    We have investigated the contractile property of cyclosporin A and FK506 in guinea-pig isolated bronchus. Cyclosporin A (10 microM) failed to significantly attenuate the excitatory non-adrenergic non-cholinergic (eNANC) and cholinergic contractile response (per cent methacholine Emax) induced by electrical field stimulation (EFS). In contrast, eNANC responses were significantly attenuated by both the neurokinin (NK)-1 and (NK)-2 receptor antagonists, N-acetyl-L-tryptophan 3,5-bis (trifluoromethyl)-benzyl and SR48968, respectively. Cyclosporin A and FK506 caused a concentration-dependent contraction in guinea-pig isolated bronchus, which was significantly attenuated by NK-1 and NK-2 receptor antagonists. The capsaicin receptor antagonist, capsazepine (10 microM) significantly reduced the contractile response to cyclosporin A and capsaicin, but not to FK506. The N-type calcium channel blocker, omega-Conotoxin (omegaCTX: 10 nM), significantly reduced the contractile response to FK506 and the eNANC response following EFS. In contrast, omega-CTX failed to significantly reduce the contractile potency to capsaicin or cyclosporin A. In bronchial preparations desensitized by repeated application of capsaicin (1 microM), the contractile responses to both cyclosporin A (100 microM) and FK506 (100 microM), were significantly reduced. In contrast, the contractile responses to substance P and neurokinin A (10 microM) were not altered. Furthermore, repeated application of cyclosporin A (100 microM) significantly inhibited the contractile response to capsaicin (1 microM). The findings from this study would indicate that cyclosporin A and FK506 mediate contraction of guinea-pig isolated bronchus secondary to the release of neuropeptides from airway sensory nerves. However, the release of sensory neuropeptides appears to be mediated via different mechanisms for cyclosporin A and FK506, the former by stimulation of the vanilloid receptor and the latter via opening of N-type calcium channels.

  19. Physical Property Data Review of Selected Chemical Agents and Related Compounds: Updating Field Manual 3-9 (FM 3-9)

    DTIC Science & Technology

    2003-09-01

    Ed.; Reinhold Book Corporation: New York, 1968. Daroff, P.M.; Metz, D.; Roberts, A.; Adams, J.A.; Jenkins, W. Oleoresin Capsicum : An Effective Less...Capsaicin, The Pungent Principle of Capsicum . III. J.Am. Chem. Soc. 1923, 45, p 2179. Newman, J.H., Edgewood Arsenal Notebook # NB 9298, p 64 (U...Service: Edgewood Arsenal, MD, 1921, UNCLASSIFIED Report (AD-B955153). Steadman, A. Isolation ofCapsaicin from Capsicum ; EACD 188; U.S. Army Chemical

  20. [Structural changes in the tissues of white rats after capsaicin administration].

    PubMed

    Vorob'eva, N F; Kniazev, G G; Lazarev, V A; Spiridonov, V K

    1997-01-01

    Tissue structure of albino rat lung, skin and cornea changing after administration of capsaicin (neurotoxin isolated from red pepper) was studied using light and electron microscope. 5 mg/kg dose causes tissue swelling and microcirculatory bed reaction. 200 mg/kg dose leads to more significant dystrophic tissue alterations. Fibrosclerosis signs were found in certain cases. Microcirculatory disorders are proposed as the main reason for tissue structure alterations observed, although the mechanism of their development is still unclear.

  1. Hyaluronan modulates TRPV1 channel opening, reducing peripheral nociceptor activity and pain

    PubMed Central

    Caires, Rebeca; Luis, Enoch; Taberner, Francisco J.; Fernandez-Ballester, Gregorio; Ferrer-Montiel, Antonio; Balazs, Endre A.; Gomis, Ana; Belmonte, Carlos; de la Peña, Elvira

    2015-01-01

    Hyaluronan (HA) is present in the extracellular matrix of all body tissues, including synovial fluid in joints, in which it behaves as a filter that buffers transmission of mechanical forces to nociceptor nerve endings thereby reducing pain. Using recombinant systems, mouse-cultured dorsal root ganglia (DRG) neurons and in vivo experiments, we found that HA also modulates polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channels. HA diminishes heat, pH and capsaicin (CAP) responses, thus reducing the opening probability of the channel by stabilizing its closed state. Accordingly, in DRG neurons, HA decreases TRPV1-mediated impulse firing and channel sensitization by bradykinin. Moreover, subcutaneous HA injection in mice reduces heat and capsaicin nocifensive responses, whereas the intra-articular injection of HA in rats decreases capsaicin joint nociceptor fibres discharge. Collectively, these results indicate that extracellular HA reduces the excitability of the ubiquitous TRPV1 channel, thereby lowering impulse activity in the peripheral nociceptor endings underlying pain. PMID:26311398

  2. Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum.

    PubMed

    Vieira-Araújo, Francisco Marcelo; Macedo Rondon, Fernanda Cristina; Pinto Vieira, Ícaro Gusmão; Pereira Mendes, Francisca Noelia; Carneiro de Freitas, José Claudio; Maia de Morais, Selene

    2018-05-01

    The primary choice of drugs to treat Leishmaniasis are the pentavalent antimony-based compounds, nevertheless these drugs presented undesirable side effects. However, safe natural compounds could be used in combination with these drugs to enhance their activity. The aim of this study was to evaluate the sinergism of capsaicin and piperine, isolated from Capsicum frutescens and Piper nigrum, respectively, in combination with meglumine antimoniate against Leishmania infantum promastigote and amastigote forms. Each compound was mixed with the standard drug in several percentage mixtures and tested at various concentrations. Capsaicin and piperine in combination with meglumine antimoniate (25% + 75%) showed better anti-leishmanial activity with EC 50  = 4.31 ± 0.44 e 7.25 ± 4.84 μg/mL against promastigote and amastigote forms, respectively. The results point that these spice alkaloids are suitable compounds to be administered in combinations with antileishmanial drugs to improve their action. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli

    PubMed Central

    Puri, Sakshi; Faulkes, Zen

    2015-01-01

    Nociceptors are sensory neurons that are tuned to tissue damage. In many species, nociceptors are often stimulated by noxious extreme temperatures and by chemical agonists that do not damage tissue (e.g., capsaicin and isothiocyanate). We test whether crustaceans have nociceptors by examining nociceptive behaviours and neurophysiological responses to extreme temperatures and potentially nocigenic chemicals. Crayfish (Procambarus clarkii) respond quickly and strongly to high temperatures, and neurons in the antenna show increased responses to transient high temperature stimuli. Crayfish showed no difference in behavioural response to low temperature stimuli. Crayfish also showed no significant changes in behaviour when stimulated with capsaicin or isothiocyanate compared to controls, and neurons in the antenna did not change their firing rate following application of capsaicin or isothiocyanate. Noxious high temperatures appear to be a potentially ecologically relevant noxious stimulus for crayfish that can be detected by sensory neurons, which may be specialized nociceptors. PMID:25819841

  4. Intradermal capsaicin as a neuropathic pain model in patients with unilateral sciatica

    PubMed Central

    Aykanat, Verna; Gentgall, Melanie; Briggs, Nancy; Williams, Desmond; Yap, Sharon; Rolan, Paul

    2012-01-01

    AIM This study compared the responses between patients with unilateral sciatica and pain-free volunteers following administration of intradermal capsaicin. METHODS Fourteen patients with unilateral sciatica and 12 pain-free volunteers received one injection per hour over 4 h of 1 µg and 10 µg capsaicin, into each calf. For each dose, spontaneous pain (10 cm VAS), area of flare (cm2) and the sum of allodynia and hyperalgesia radii across eight axes (cm) were recorded pre-injection and at 5, 15, 30, 45 and 60 min post injection. RESULTS Sciatica subjects experienced higher spontaneous pain and hyperalgesia responses in both legs compared with pain-free volunteers. The largest mean difference in spontaneous pain was 2.8 cm (95% CI 1.6, 3.9) at 5 min in the unaffected leg following 10 µg. The largest mean difference in hyperalgesia was 19.7 cm (95% CI 12.4, 27.0) at 60 min in the unaffected leg following 10 µg. Allodynia was greater in patients than in controls with the largest mean difference of 2.9 cm (95% CI 1, 4.8) at 5 min following 10 µg in the affected leg. Allodynia was also higher in the affected leg compared with the unaffected leg in sciatica patients with the highest mean difference of 3.0 cm (95% CI 1.2, 4.7) at 5 min following 10 µg. CONCLUSIONS The responses to intradermal capsaicin are quantitatively and qualitatively different in unilateral sciatica patients compared with pain-free controls. PMID:21740458

  5. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    PubMed

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  6. Effect of drying methods (microwave vacuum, freeze, hot air and sun drying) on physical, chemical and nutritional attributes of five pepper (Capsicum annuum var. annuum) cultivars.

    PubMed

    Maurya, Vaibhav Kumar; Gothandam, Kodiveri Muthukaliannan; Ranjan, Vijay; Shakya, Amita; Pareek, Sunil

    2018-07-01

    A randomized block design experiment was performed to investigate the influence of drying on the physical, chemical and nutritional quality attributes of five prominent cultivars of India under sun drying (SD) (mean temperature 35.5 °C, average daily radiation 5.26 kW h m -2 and mean relative humidity 73.66% RH), hot air drying (HD) at 65 °C, microwave vacuum drying (MVD) (800 W, 5 kPa) and freeze drying (FD) (-50 °C, 5 kPa). Water activity, pH, total phenolic content (TPC), ascorbic acid (AA), capsaicin, β-carotene, color and Scoville heat unit were studied. TPC, AA, capsaicin content, β-carotene, color and water activity were significantly affected by the drying method. FD was observed to be most efficient in minimizing the loss of color, capsaicin and β-carotene. The hotness of analyzed samples decreased in the order 'Bird's Eye' > 'Sannam S4' > 'CO-4' > 'PLR-1' > 'PKM-1' among the studied cultivars, and FD > MVD > HD > SD among the drying methods. The FD method was observed to be the most efficient drying method for retaining capsaicin content over other drying methods (SD, HD, MVD), whereas MVD was found to be most efficient in minimizing the loss to nutritional attributes for all five pepper cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Repression of calcitonin gene-related peptide expression in trigeminal neurons by a Theobroma cacao extract☆

    PubMed Central

    Abbey, Marcie J.; Patil, Vinit V.; Vause, Carrie V.; Durham, Paul L.

    2008-01-01

    Ethnopharmacological relevance Cocoa bean preparations were first used by the ancient Maya and Aztec civilizations of South America to treat a variety of medical ailments involving the cardiovascular, gastrointestinal, and nervous systems. Diets rich in foods containing abundant polyphenols, as found in cocoa, underlie the protective effects reported in chronic inflammatory diseases. Release of calcitonin gene-related peptide (CGRP) from trigeminal nerves promotes inflammation in peripheral tissues and nociception. Aim of the study To determine whether a methanol extract of Theobroma cacao L. (Sterculiaceae) beans enriched for polyphenols could inhibit CGRP expression, both an in vitro and an in vivo approach was taken. Results Treatment of rat trigeminal ganglia cultures with depolarizing stimuli caused a significant increase in CGRP release that was repressed by pretreatment with Theobroma cacao extract. Pretreatment with Theobroma cacao was also shown to block the KCl- and capsaicin-stimulated increases in intracellular calcium. Next, the effects of Theobroma cacao on CGRP levels were determined using an in vivo model of temporomandibular joint (TMJ) inflammation. Capsaicin injection into the TMJ capsule caused an ipsilateral decrease in CGRP levels. Theobroma cacao extract injected into the TMJ capsule 24 h prior to capsaicin treatment repressed the stimulatory effects of capsaicin. Conclusions Our results demonstrate that Theobroma cacao extract can repress stimulated CGRP release by a mechanism that likely involves blockage of calcium channel activity. Furthermore, our findings suggest that the beneficial effects of diets rich in cocoa may include suppression of sensory trigeminal nerve activation. PMID:17997062

  8. Repression of calcitonin gene-related peptide expression in trigeminal neurons by a Theobroma cacao extract.

    PubMed

    Abbey, Marcie J; Patil, Vinit V; Vause, Carrie V; Durham, Paul L

    2008-01-17

    Cocoa bean preparations were first used by the ancient Maya and Aztec civilizations of South America to treat a variety of medical ailments involving the cardiovascular, gastrointestinal, and nervous systems. Diets rich in foods containing abundant polyphenols, as found in cocoa, underlie the protective effects reported in chronic inflammatory diseases. Release of calcitonin gene-related peptide (CGRP) from trigeminal nerves promotes inflammation in peripheral tissues and nociception. To determine whether a methanol extract of Theobroma cacao L. (Sterculiaceae) beans enriched for polyphenols could inhibit CGRP expression, both an in vitro and an in vivo approach was taken. Treatment of rat trigeminal ganglia cultures with depolarizing stimuli caused a significant increase in CGRP release that was repressed by pretreatment with Theobroma cacao extract. Pretreatment with Theobroma cacao was also shown to block the KCl- and capsaicin-stimulated increases in intracellular calcium. Next, the effects of Theobroma cacao on CGRP levels were determined using an in vivo model of temporomandibular joint (TMJ) inflammation. Capsaicin injection into the TMJ capsule caused an ipsilateral decrease in CGRP levels. Theobroma cacao extract injected into the TMJ capsule 24h prior to capsaicin treatment repressed the stimulatory effects of capsaicin. Our results demonstrate that Theobroma cacao extract can repress stimulated CGRP release by a mechanism that likely involves blockage of calcium channel activity. Furthermore, our findings suggest that the beneficial effects of diets rich in cocoa may include suppression of sensory trigeminal nerve activation.

  9. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees.

    PubMed

    Borbély, Éva; Sándor, Katalin; Markovics, Adrienn; Kemény, Ágnes; Pintér, Erika; Szolcsányi, János; Quinn, John P; McDougall, Jason J; Helyes, Zsuzsanna

    2016-09-01

    Mast cell tryptase (MCT) is elevated in arthritic joints, but its direct effects are not known. Here, we investigated MCT-evoked acute inflammatory and nociceptive mechanisms with behavioural, in vivo imaging and immunological techniques. Neurogenic inflammation involving capsaicin-sensitive afferents, transient receptor potential vanilloid 1 receptor (TRPV1), substance P (SP), neurokinin A (NKA) and their NK1 tachykinin receptor were studied using gene-deleted mice compared to C57Bl/6 wildtypes (n = 5-8/group). MCT was administered intraarticularly or topically (20 μl, 12 μg/ml). Capsaicin-sensitive afferents were defunctionalized with the TRPV1 agonist resiniferatoxin (RTX; 30-70-100 μg/kg s.c. pretreatment). Knee diameter was measured with a caliper, synovial perfusion with laser Doppler imaging, mechanonociception with aesthesiometry and weight distribution with incapacitance tester over 6 h. Cytokines and neuropeptides were determined with immunoassays. MCT induced synovial vasodilatation, oedema, impaired weight distribution and mechanical hyperalgesia, but cytokine or neuropeptide levels were not altered at the 6-h timepoint. Hyperaemia was reduced in RTX-treated and TRPV1-deleted animals, and oedema was absent in NK1-deficient mice. Hyperalgesia was decreased in SP/NKA- and NK1-deficient mice, weight bearing impairment in RTX-pretreated, TRPV1- and NK1-deficient animals. MCT evokes synovial hyperaemia, oedema, hyperalgesia and spontaneous pain. Capsaicin-sensitive afferents and TRPV1 receptors are essential for vasodilatation, while tachykinins mediate oedema and pain.

  10. The effect of compound 48/80 on contractions induced by toluene diisocyanate in isolated guinea-pig bronchus.

    PubMed

    Mapp, C E; Boniotti, A; Papi, A; Chitano, P; Coser, E; Di Stefano, A; Saetta, M; Ciaccia, A; Fabbri, L M

    1993-06-01

    We have investigated the ability of compound 48/80 and of histamine H1 and H2 receptor antagonists to inhibit toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. Compound 48/80 (100 micrograms/ml) significantly inhibited toluene diisocyanate-induced contractions. By contrast, the two histamine H1 and H2 receptor antagonists, chlorpheniramine (10 microM) and cimetidine, (10 microM) did not affect toluene diisocyanate-induced contractions, but significantly inhibited contractions induced by exogenously applied histamine (100 microM) and by 48/80. We investigated which mechanisms 48/80 used to inhibit toluene diisocyanate-induced contractions, paying particular attention to the possible involvement of capsaicin-sensitive primary afferents. In vitro capsaicin desensitization (10 microM for 30 min followed by washing) significantly reduced compound 48/80-induced contractions. A capsaicin-resistant component of contraction was also evident. Ruthenium red (3 microM), an inorganic dye which acts as a selective functional antagonist of capsaicin, did not affect 48/80-induced contraction. MEN 10,207 (Tyr5,D-Trp6,8,9,Arg10)-neurokinin A (4-10) (3 microM) a selective antagonist of NK2-tachykinin receptors significantly reduced 48/80-induced contractions. These results show that compound 48/80 inhibits toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. It is likely that two mechanisms are involved in the inhibition: (1) the release of mediators other than histamine by mast cells, (2) an effect of 48/80 on sensory nerves.

  11. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sá-Júnior, Paulo Luiz de; Pasqualoto, Kerly Fernanda Mesquita; Ferreira, Adilson Kleber

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle atmore » the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.« less

  12. Acute Effects of Capsaicin on Energy Expenditure and Fat Oxidation in Negative Energy Balance

    PubMed Central

    Janssens, Pilou L. H. R.; Hursel, Rick; Martens, Eveline A. P.; Westerterp-Plantenga, Margriet S.

    2013-01-01

    Background Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. Aim We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Methods Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions ‘100%CAPS’, ‘100%Control’, ‘75%CAPS’ and ‘75%Control’. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. Results An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. Conclusion In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Trial Registration Nederlands Trial Register; registration number NTR2944 PMID:23844093

  13. Neurogenic vasoreactive response of human internal thoracic artery smooth muscle.

    PubMed

    Canver, C C; Cooler, S D; Saban, R

    1997-09-01

    The interaction between primary afferent neurons containing neuropeptides and the vascular smooth muscle is incompletely understood. To explore the function of perivascular afferent neurons and to determine whether they produce local effects on vascular smooth muscle cells, we investigated the effects of acute capsaicin and substance P administration in vitro on human internal thoracic arteries (ITA). Vessels were obtained from patients undergoing coronary bypass or from multiorgan transplant donors. Fourteen ITA segments (5 mm wide) were suspended as rings between two stainless-steel stirrups in water-jacketed (37 degrees C) tissue baths under 2.5 to 3 g of basal tension. The tissue baths contained 10 mL physiological salt solution (PSS) of the following composition (mM): NaCl, 119; KCl, 4.7; NaH2PO4, 1.0; MgCl2, 0.5; CaCl2, 2.5; NaHCO3, 25; and glucose, 11; aerated continuously with 95% O2 and 5% CO2. Peptidase inhibitors (phosphoramidon and captopril) were added to PSS to decrease peptide degradation. Mechanical responses were measured isometrically and recorded on a polygraph via isotonic force transducers. Vessels were preconstricted with submaximal concentrations of norepinephrine. After the tension had stabilized, substance P or capsaicin was added cumulatively to the tissue bath. At the end of the experiments, the viability of ITA was verified by its responses to endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) vasodilators. In the endothelium-intact ITA segments, substance P produced relaxation of ITA smooth muscle while it induced slight contraction when the ITA was devoid of its endothelium (P = 0.0585). The addition of capsaicin to human ITA primarily produced contractile effects on the developed smooth muscle force. The capsaicin-induced contraction of the ITA smooth muscle was independent of endothelial cell integrity, although contraction was greater in the endothelium-intact ITA segments (P = 0.0165). The acute capsaicin exposure of human ITA revealed that primary afferent neurons containing neuropeptides innervate human ITAs. There is a real potential for perivascular afferent neurons and sensory peptides to influence the ITA smooth muscle function.

  14. The anti-inflammatory effect of diclofenac is considerably augmented by topical capsaicinoids-containing patch in carrageenan-induced paw oedema of rat.

    PubMed

    Ercan, Nilufer; Uludag, Mecit Orhan; Agis, Erol Rauf; Demirel-Yilmaz, Emine

    2013-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most used drugs in musculoskeletal disorders, but their systemic adverse effects limit their therapeutic benefit in local inflammation. On the other hand, topical preparations of capsaicinoids are widely used for musculoskeletal disorders as a complementary therapy. In this study, the effects of both topical capsaicinoids-containing patch and local subcutaneous capsaicin application on the anti-inflammatory action of NSAID were examined. Carrageenan-induced paw oedema of rats was used as the inflammation model. The volume and weight of the paw oedema and plasma extravasation in the paw were determined after carrageenan injection. The systemic application of diclofenac (3 mg/kg), which is an NSAID, significantly decreased the volume and weight of the paw oedema. Topical capsaicinoids-containing patch application or local capsaicin injection (2, 10, 20 μg/paw) alone did not cause any effect on oedema volume and weight. However, the combination of diclofenac with topical capsaicinoids-containing patch significantly increased the effectiveness of diclofenac on inflammation. Evans blue content of the paws that represents plasma extravasation was decreased by capsaicinoids-containing patch with and without diclofenac and diclofenac combination with the lowest dose of capsaicin injection. The results of this study indicate that topical application of capsaicinoids-containing patch enhances the anti-inflammatory effect of diclofenac and its beneficial effect may not purely relate to its capsaicin content. In the treatment of local inflammatory disorders, the combination of NSAID with topical capsaicinoids-containing patch could increase the anti-inflammatory efficiency of drug without systemic side effects.

  15. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    PubMed

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model.

    PubMed

    Chan, K Y; Gupta, S; de Vries, R; Danser, A H J; Villalón, C M; Muñoz-Islas, E; Maassenvandenbrink, A

    2010-07-01

    During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin and periarterial electrical stimulation in rats, using intravital microscopy. Male Sprague-Dawley rats were anaesthetized and the overlying bone was thinned to visualize the dural artery. Then, vasodilator responses to exogenous (i.v. alpha-CGRP) and endogenous (released by i.v. capsaicin and periarterial electrical stimulation) CGRP were elicited in the absence or presence of the above antagonists. alpha-CGRP, capsaicin and periarterial electrical stimulation increased dural artery diameter. Ketamine and MK801 inhibited the vasodilator responses to capsaicin and electrical stimulation, while only ketamine attenuated those to alpha-CGRP. In contrast, GYKI52466 only attenuated the vasodilatation to exogenous alpha-CGRP, while LY466195 did not affect the vasodilator responses to endogenous or exogenous CGRP. Although GYKI52466 has not been tested clinically, our data suggest that it would not inhibit migraine via vascular mechanisms. Similarly, the antimigraine efficacy of LY466195 seems unrelated to vascular CGRP-mediated pathways and/or receptors. In contrast, the cranial vascular effects of ketamine and MK801 may represent a therapeutic mechanism, although the same mechanism might contribute, peripherally, to cardiovascular side effects.

  17. Impaired diffuse noxious inhibitory controls in specific alternation of rhythm in temperature-stressed rats.

    PubMed

    Itomi, Yasuo; Tsukimi, Yasuhiro; Kawamura, Toru

    2016-08-05

    Fibromyalgia is characterized by chronic widespread musculoskeletal pain. A hypofunction in descending pain inhibitory systems is considered to be involved in the chronic pain of fibromyalgia. We examined functional changes in descending pain inhibitory systems in rats with specific alternation of rhythm in temperature (SART) stress, by measuring the strength of diffuse noxious inhibitory controls (DNIC). Hindpaw withdrawal thresholds to mechanical von Frey filament or fiber-specific electrical stimuli by the Neurometer system were used to measure the pain response. To induce DNIC, capsaicin was injected into the intraplantar of the forepaw. SART-stressed rats were established by exposure to repeated cold stress for 4 days. In the control rats, heterotopic intraplantar capsaicin injection increased withdrawal threshold, indicative of analgesia by DNIC. The strength of DNIC was reduced by naloxone (μ-opioid receptor antagonist, intraperitoneally and intracerebroventricularly), yohimbine (α2-adrenoceptor antagonist, intrathecally), and WAY-100635 (5-HT1A receptor antagonist, intrathecally) in the von Frey test. In SART-stressed rats, capsaicin injection did not increase withdrawal threshold in the von Frey test, indicating deficits in DNIC. In the Neurometer test, deficient DNIC in SART-stressed rats were observed only for Aδ- and C-fibers, but not Aβ-fibers stimulation. Analgesic effect of intracerebroventricular morphine was markedly reduced in SART-stressed rats compared with the control rats. Taken together, in SART-stressed rats, capsaicin-induced DNIC were deficient, and a hypofunction of opioid-mediated central pain modulation system may cause the DNIC deficit. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evidence for CGRP re-uptake in rat dura mater encephali

    PubMed Central

    Gupta, Saurabh; Amrutkar, Dipak Vasantrao; Mataji, Aydin; Salmasi, Hassan; Hay-Schmidt, Anders; Sheykhzade, Majid; Messlinger, Karl; Olesen, Jes; Jansen-Olesen, Inger

    2010-01-01

    BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is widely distributed in the trigeminovascular system and released from sensory fibres of the cranial dura mater upon noxious stimulation. Such release may be a mechanism underlying migraine headache. Based on data from guinea pig basilar artery preparations, we have here studied CGRP release and uptake in an organ preparation of the hemisected rat skull. EXPERIMENTAL APPROACH CGRP release from the cranial dura was quantified by a commercial enzyme-linked immunoassay. CGRP was depleted using repetitive challenges of capsaicin. After incubating the tissue with CGRP for 20 min and extensive washing, another capsaicin challenge was performed. Immunohistochemistry was used to visualize CGRP immunofluorescence in dural nerve fibres. KEY RESULTS Capsaicin-induced CGRP release was attenuated by the transient receptor potential vanilloid receptor type I antagonist capsazepine or by Ca2+-free solutions. After the CGRP-depleted preparation had been exposed to exogenous CGRP, capsaicin-induced CGRP release was increased compared to the challenge just prior to incubation. CGRP uptake was not influenced by Ca2+-free solutions. Olcegepant and CGRP8–37 (CGRP receptor antagonists) did not affect uptake of CGRP. However, a monoclonal CGRP-binding antibody decreased CGRP uptake significantly. Release of CGRP after incubation was attenuated by Ca2+-free solutions and by capsazepine. Immunohistochemical assays indicated a weak trend towards CGRP uptake in rat dura mater. CONCLUSION AND IMPLICATIONS We have presented evidence for CGRP uptake in nerves and its re-release in rat dura mater. This may have implications for the pathophysiology and treatment of migraine. PMID:20804493

  19. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs

    PubMed Central

    Canning, Brendan J; Mazzone, Stuart B; Meeker, Sonya N; Mori, Nanako; Reynolds, Sandra M; Undem, Bradley J

    2004-01-01

    We have identified the tracheal and laryngeal afferent nerves regulating cough in anaesthetized guinea-pigs. Cough was evoked by electrical or mechanical stimulation of the tracheal or laryngeal mucosa, or by citric acid applied topically to the trachea or larynx. By contrast, neither capsaicin nor bradykinin challenges to the trachea or larynx evoked cough. Bradykinin and histamine administered intravenously also failed to evoke cough. Electrophysiological studies revealed that the majority of capsaicin-sensitive afferent neurones (both Aδ- and C-fibres) innervating the rostral trachea and larynx have their cell bodies in the jugular ganglia and project to the airways via the superior laryngeal nerves. Capsaicin-insensitive afferent neurones with cell bodies in the nodose ganglia projected to the rostral trachea and larynx via the recurrent laryngeal nerves. Severing the recurrent nerves abolished coughing evoked from the trachea and larynx whereas severing the superior laryngeal nerves was without effect on coughing. The data indicate that the tracheal and laryngeal afferent neurones regulating cough are polymodal Aδ-fibres that arise from the nodose ganglia. These afferent neurones are activated by punctate mechanical stimulation and acid but are unresponsive to capsaicin, bradykinin, smooth muscle contraction, longitudinal or transverse stretching of the airways, or distension. Comparing these physiological properties with those of intrapulmonary mechanoreceptors indicates that the afferent neurones mediating cough are quite distinct from the well-defined rapidly and slowly adapting stretch receptors innervating the airways and lungs. We propose that these airway afferent neurones represent a distinct subtype and that their primary function is regulation of the cough reflex. PMID:15004208

  20. Intraluminal acid induces oesophageal shortening via capsaicin-sensitive neurokinin neurons.

    PubMed

    Paterson, William G; Miller, David V; Dilworth, Neil; Assini, Joseph B; Lourenssen, Sandra; Blennerhassett, Michael G

    2007-10-01

    Intraluminal acid evokes reflex contraction of oesophageal longitudinal smooth muscle (LSM) and consequent oesophageal shortening. This reflex may play a role in the pathophysiology of oesophageal pain syndromes and hiatus hernia formation. The aim of the current study was to elucidate further the mechanisms of acid-induced oesophageal shortening. Intraluminal acid perfusion of the intact opossum smooth muscle oesophagus was performed in vitro in the presence and absence of neural blockade and pharmacological antagonism of the neurokinin 2 receptor, while continuously recording changes in oesophageal axial length. In addition, the effect of these antagonists on the contractile response of LSM strips to the mast cell degranulating agent 48/80 was determined. Finally, immunohistochemistry was performed to look for evidence of LSM innervation by substance P/calcitonin gene-related peptide (CGRP)-containing axons. Intraluminal acid perfusion induced longitudinal axis shortening that was completely abolished by capsaicin desensitization, substance P desensitization, or the application of the neurokinin 2 receptor antagonist MEN10376. Compound 48/80 induced sustained contraction of LSM strips in a concentration-dependent fashion and this was associated with evidence of mast cell degranulation. The 48/80-induced LSM contraction was antagonized by capsaicin desensitization, substance P desensitization and MEN10376, but not tetrodotoxin. Immunohistochemistry revealed numerous substance P/CGRP-containing neurons innervating the LSM and within the mucosa. This study suggests that luminal acid activates a reflex pathway involving mast cell degranulation, activation of capsaicin-sensitive afferent neurons and the release of substance P or a related neurokinin, which evokes sustained contraction of the oesophageal LSM. This pathway may be a target for treatment of oesophageal pain syndromes.

  1. Inhibitors of neutral endopeptidase potentiate electrically and capsaicin-induced noncholinergic contraction in guinea pig bronchi.

    PubMed

    Djokic, T D; Nadel, J A; Dusser, D J; Sekizawa, K; Graf, P D; Borson, D B

    1989-01-01

    To evaluate the role of airway neutral endopeptidase (NEP) in the regulation of contraction of airway smooth muscle in response to endogenous tachykinins, we studied the effects of the NEP inhibitor phosphoramidon on contractions of guinea pig bronchial smooth muscle strips induced by either electrical field stimulation (EFS) or by capsaicin. In the presence of atropine (10(-6) M), propranolol (10(-6) M), phentolamine (10(-5) M), indomethacin (10(-6) M) and pyrilamine (5 x 10(-6) M) EFS (biphasic; pulse width, 1.0 msec; frequency 0.5-5 Hz for 30 sec; intensity, 20 V) produced noncholinergic, nonadrenergic muscle contraction in a frequency-dependent fashion (P less than .001). Phosphoramidon potentiated the contractile responses to EFS (P less than .01). Leucine-thiorphan (10(-5) M), another NEP inhibitor, potentiated EFS-induced contraction in a similar fashion as phosphoramidon (186 and 182% of control, respectively; each comparison, P less than .025). Captopril, bestatin, leupeptin and physostigmine (each drug, 10(-5) M) were without effect (P greater than .5, N = 5). Capsaicin (1.5 x 10(-8) M) produced long-lasting atropine-resistant smooth muscle contraction, an effect potentiated by phosphoramidon (10(-5) M (P less than .001). Removal of the epithelium slightly but significantly (P less than .05) increased the contractile responses to capsaicin and to EFS at impulse frequencies of 2 and 5 Hz, and phosphoramidon substantially increased contractions in tissues without epithelium. The trachea, bronchi and lungs each contained significant NEP activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Activation of Spinal μ- and δ-Opioid Receptors Potently Inhibits Substance P Release Induced by Peripheral Noxious Stimuli

    PubMed Central

    Beaudry, Hélène; Dubois, Dave; Gendron, Louis

    2013-01-01

    Over the past few years, δ-opioid receptors (DOPRs) and μ-opioid receptors (MOPRs) have been shown to interact with each other. We have previously seen that expression of MOPR is essential for morphine and inflammation to potentiate the analgesic properties of selective DOPR agonists. In vivo, it is not clear whether MOPRs and DOPRs are expressed in the same neurons. Indeed, it was recently proposed that these receptors are segregated in different populations of nociceptors, with MOPRs and DOPRs expressed by peptidergic and nonpeptidergic fibers, respectively. In the present study, the role and the effects of DOPR- and MOPR-selective agonists in two different pain models were compared. Using preprotachykinin A knock-out mice, we first confirmed that substance P partly mediates intraplantar formalin- and capsaicin-induced pain behaviors. These mice had a significant reduction in pain behavior compared with wild-type mice. We then measured the effects of intrathecal deltorphin II (DOPR agonist) and DAMGO (MOPR agonist) on pain-like behavior, neuronal activation, and substance P release following formalin and capsaicin injection. We found that both agonists were able to decrease formalin- and capsaicin-induced pain, an effect that was correlated with a reduction in the number of c-fos-positive neurons in the superficial laminae of the lumbar spinal cord. Finally, visualization of NK1 (neurokinin 1) receptor internalization revealed that DOPR and MOPR activation strongly reduced formalin- and capsaicin-induced substance P release via direct action on primary afferent fibers. Together, our results indicate that functional MOPRs and DOPRs are both expressed by peptidergic nociceptors. PMID:21917790

  3. A systematic review of randomized trials for the treatment of burning mouth syndrome.

    PubMed

    Kisely, Steve; Forbes, Malcolm; Sawyer, Emily; Black, Emma; Lalloo, Ratilal

    2016-07-01

    Burning mouth syndrome (BMS) is characterized by burning of the oral mucosa in the absence of underlying dental or medical causes. The results of previous systematic reviews have generally been equivocal. However, findings for most interventions are based on searches of 5-10years ago. This study therefore updates previous searches of randomized controlled trials (RCTs) for pain as assessed by Visual Analogue Scales (VAS). Secondary outcomes included quality of life, mood, taste and salivary flow. A search of MEDLINE and Embase up to 2016. 24 RCTs were identified. Meta-analyses were impossible because of wide variations in study method and quality. The commonest interventions were alpha-lipoic acid (ALA) (8 comparisons), capsaicin or an analogue (4 comparisons), clonazepam (3 comparisons) and psychotherapy (2 comparisons). ALA and capsaicin led to significantly greater improvements in VAS (4 studies each), as did clonazepam (all 3 studies), at up to two month follow-up. However, capsaicin led to prominent dyspepsia. Psychotherapy significantly improved outcomes in one study at two and 12month follow-up. Catauma and tongue-protectors also showed promise (one study each). There were no significant differences in any of the secondary outcomes except in the one study of tongue protectors. At least in some studies and for some outcomes, ALA, clonazepam, capsaicin and psychotherapy may show modest benefit in the first two months. However, these conclusions are limited by generally short follow-up periods, high study variability and low participant numbers. Further RCTs with follow-up of at least 12months are indicated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Chemesthesis and taste: evidence of independent processing of sensation intensity.

    PubMed

    Green, Barry G; Alvarez-Reeves, Marty; George, Pravin; Akirav, Carol

    2005-11-15

    The ability to perceive taste from temperature alone ("thermal taste") was recently shown to predict higher perceptual responsiveness to gustatory and olfactory stimuli. This relationship was hypothesized to be due in part to individual differences in CNS processes involved in flavor perception. Here we report three experiments that tested whether subjects who differ in responsiveness to thermal taste and/or chemical taste also differ in responsiveness to oral chemesthesis. In experiment 1, subjects identified as 'thermal tasters' (TTs) or 'thermal non-tasters' (TnTs) used the general Labeled Magnitude Scale to rate the intensity of sensations produced on the tongue tip by capsaicin, menthol, sucrose, NaCl, citric acid, and QSO4. TTs rated all four taste stimuli higher than did TnTs, whereas sensations of burning/stinging/pricking and temperature from capsaicin and menthol did not differ significantly between groups. In experiment 2, testing with capsaicin on both the front and back of the tongue confirmed there was no difference in ratings of burning/stinging/pricking when subjects were grouped according to the ability to perceive thermal taste. In experiment 3, subjects were classified as high- or low-tasters according to their ratings of sucrose sweetness rather than thermal taste. No group difference was found for perception of capsaicin even when presented in mixture with sucrose or NaCl. The results are discussed in the context of previous evidence of an association between chemesthesis and sensitivity to the bitter tastant PROP, and in terms of the various peripheral and central neural processes that may underlie intensity perception in taste and chemesthesis.

  5. Lack of analgesia by oral standardized cannabis extract on acute inflammatory pain and hyperalgesia in volunteers.

    PubMed

    Kraft, Birgit; Frickey, Nathalie A; Kaufmann, Rainer M; Reif, Marcus; Frey, Richard; Gustorff, Burkhard; Kress, Hans G

    2008-07-01

    Cannabinoid-induced analgesia was shown in animal studies of acute inflammatory and neuropathic pain. In humans, controlled clinical trials with Delta-tetrahydrocannabinol or other cannabinoids demonstrated analgesic efficacy in chronic pain syndromes, whereas the data in acute pain were less conclusive. Therefore, the aim of this study was to investigate the effects of oral cannabis extract in two different human models of acute inflammatory pain and hyperalgesia. The authors conducted a double-blind, crossover study in 18 healthy female volunteers. Capsules containing Delta-tetrahydrocannabinol-standardized cannabis extract or active placebo were orally administered. A circular sunburn spot was induced at one upper leg. Heat and electrical pain thresholds were determined at the erythema, the area of secondary hyperalgesia, and the contralateral leg. Intradermal capsaicin-evoked pain and areas of flare and secondary hyperalgesia were measured. Primary outcome parameters were heat pain thresholds in the sunburn erythema and the capsaicin-evoked area of secondary hyperalgesia. Secondary measures were electrical pain thresholds, sunburn-induced secondary hyperalgesia, and capsaicin-induced pain. Cannabis extract did not affect heat pain thresholds in the sunburn model. Electrical thresholds (250 Hz) were significantly lower compared with baseline and placebo. In the capsaicin model, the area of secondary hyperalgesia, flare, and spontaneous pain were not altered. To conclude, no analgesic or antihyperalgesic activity of cannabis extract was found in the experiments. Moreover, the results even point to the development of a hyperalgesic state under cannabinoids. Together with previous data, the current results suggest that cannabinoids are not effective analgesics for the treatment of acute nociceptive pain in humans.

  6. Protons modulate perivascular axo-axonal neurotransmission in the rat mesenteric artery.

    PubMed

    Takatori, Shingo; Hirai, Kazuhiro; Ozaki, Shuichiro; Tangsucharit, Panot; Fukushima-Miyashita, Satoko; Goda, Mitsuhiro; Hashikawa-Hobara, Narumi; Ono, Nobufumi; Kawasaki, Hiromu

    2014-12-01

    Previous studies have demonstrated that nicotine releases protons from adrenergic nerves via stimulation of nicotinic ACh receptors and activates transient receptor potential vanilloid-1 (TRPV1) receptors located on calcitonin gene-related peptide (CGRP)-containing (CGRPergic) vasodilator nerves, resulting in vasodilatation. The present study investigated whether perivascular nerves release protons, which modulate axon-axonal neurotransmission. Perfusion pressure and pH levels of perfusate in rat-perfused mesenteric vascular beds without endothelium were measured with a pressure transducer and a pH meter respectively. Periarterial nerve stimulation (PNS) initially induced vasoconstriction, which was followed by long-lasting vasodilatation and decreased pH levels in the perfusate. Cold-storage denervation of the preparation abolished the decreased pH and vascular responses to PNS. The adrenergic neuron blocker guanethidine inhibited PNS-induced vasoconstriction and effects on pH, but not PNS-induced vasodilatation. Capsaicin (CGRP depletor), capsazepine and ruthenium red (TRPV1 inhibitors) attenuated the PNS-induced decrease in pH and vasodilatation. In denuded preparations, ACh caused long-lasting vasodilatation and lowered pH; these effects were inhibited by capsaicin pretreatment and atropine, but not by guanethidine or mecamylamine. Capsaicin injection induced vasodilatation and a reduction in pH, which were abolished by ruthenium red. The use of a fluorescent pH indicator demonstrated that application of nicotine, ACh and capsaicin outside small mesenteric arteries reduced perivascular pH levels and these effects were abolished in a Ca(2+) -free medium. These results suggest that protons are released from perivascular adrenergic and CGRPergic nerves upon PNS and these protons modulate transmission in CGRPergic nerves. © 2014 The British Pharmacological Society.

  7. The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types.

    PubMed

    Gannon, Nicholas P; Lambalot, Emily L; Vaughan, Roger A

    2016-05-01

    There is increasing interest in dietary chemicals that may provide benefits for pathologies such as diabetes and obesity. Capsaicinoids found in chili peppers and pepper extracts, are responsible for the "hot" or "spicy" sensation associated with these foods. Capsaicinoid consumption is also associated with enhanced metabolism, making them potentially therapeutic for metabolic disease by promoting weight loss. This review summarizes much of the current experimental evidence (ranging from basic to applied investigations) of the biochemical and molecular metabolic effects of capsaicinoids in metabolically significant cell types. Along with influencing metabolic rate, findings demonstrate capsaicinoids appear to alter molecular metabolic signaling, regulate hunger and satiety, blood metabolites, and catecholamine release. Notably, the majority of the experiments summarized herein utilized isolated supplemental or research grade capsaicinoids rather than natural food sources for experimental interventions. Additional work should be conducted using primary food sources of capsaicin to explore pharmacological, physiological, and metabolic benefits of both chronic and acute capsaicin consumption. © 2016 BioFactors, 42(3):229-246, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  8. Relative efficacy of topical non-steroidal anti-inflammatory drugs and topical capsaicin in osteoarthritis: protocol for an individual patient data meta-analysis.

    PubMed

    Persson, Monica S M; Fu, Yu; Bhattacharya, Archan; Goh, Siew-Li; van Middelkoop, Marienke; Bierma-Zeinstra, Sita M A; Walsh, David; Doherty, Michael; Zhang, Weiya

    2016-09-29

    Pain is the most troubling issue to patients with osteoarthritis (OA), yet current pharmacological treatments offer only small-to-moderate pain reduction. Current guidelines therefore emphasise the need to identify predictors of treatment response. In line with these recommendations, an individual patient data (IPD) meta-analysis will be conducted. The study aims to investigate the relative treatment effects of topical non-steroidal anti-inflammatory drugs (NSAIDs) and topical capsaicin in OA and to identify patient-level predictors of treatment response. IPD will be collected from randomised controlled trials (RCTs) of topical NSAIDs and capsaicin in OA. Multilevel regression modelling will be conducted to determine predictors for the specific and the overall treatment effect. Through the identification of treatment responders, this IPD meta-analysis may improve the current understanding of the pain mechanisms in OA and guide clinical decision-making. Identifying and prescribing the treatment most likely to be beneficial for an individual with OA will improve the efficiency of patient management. CRD42016035254.

  9. In vitro Inhibition of Pancreatic Lipase by Polyphenols:
A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study

    PubMed Central

    2017-01-01

    Summary The inhibitory activity and binding characteristics of caffeic acid, p-coumaric acid, quercetin and capsaicin, four phenolic compounds found in hot pepper, against porcine pancreatic lipase activity were studied and compared to hot pepper extract. Quercetin was the strongest inhibitor (IC50=(6.1±2.4) µM), followed by p-coumaric acid ((170.2±20.6) µM) and caffeic acid ((401.5±32.1) µM), while capsaicin and a hot pepper extract had very low inhibitory activity. All polyphenolic compounds showed a mixed-type inhibition. Fluorescence spectroscopy studies showed that polyphenolic compounds had the ability to quench the intrinsic fluorescence of pancreatic lipase by a static mechanism. The sequence of Stern-Volmer constant was quercetin, followed by caffeic and p-coumaric acids. Molecular docking studies showed that caffeic acid, quercetin and p-coumaric acid bound near the active site, while capsaicin bound far away from the active site. Hydrogen bonds and π-stacking hydrophobic interactions are the main pancreatic lipase-polyphenolic compound interactions observed. PMID:29540986

  10. Integrity of erythrocytes of hypercholesterolemic rats during spices treatment.

    PubMed

    Kempaiah, R K; Srinivasan, K

    2002-07-01

    In rats rendered hypercholesterolemic by maintaining them on a cholesterol-enriched diet (0.5%) for 8 weeks, inclusion of spice principles--curcumin (0.2%) or capsaicin (0.015%) or the spice--garlic powder (2.0%) in the diet, produced the expected hypolipidemic effect. Plasma cholesterol which was more than 200% that of basal control in hypercholesterolemic rats, was decreased by these dietary spice principles and garlic by 25-39%. Erythrocyte membranes of hypercholesterolemic rats were relatively enriched in cholesterol, which was about 120% of basal control, while membrane phospholipid was unaffected. This resulted in a significant alteration in cholesterol to phospholipid ratio of RBC membranes. Dietary curcumin, capsaicin and garlic were observed to counter this altered lipid profile of erythrocyte membranes in hypercholesterolemic situation by producing a significant 10-14% decrease in membrane cholesterol content. As a result of alteration in membrane structural lipids, the structural integrity of RBCs was also affected. An examination of the osmotic fragility of erythrocytes in various groups, indicated that RBCs of hypercholesterolemic rats were relatively fragile compared to normal controls. Dietary curcumin, capsaicin and garlic appeared to correct this increased fragility of erythrocytes.

  11. Protecting western redcedar from deer browsing—with a passing reference to TRP channels

    PubMed Central

    Romanovsky, Andrej A

    2015-01-01

    This editorial is about tree farming. It proposes to test in an experiment whether co-planting (in the same hole) western redcedar (WRC, Thuja plicata) with Sitka spruce (Picea sitchensis) protects WRC seedlings from wildlife browsing. This sustainable protection method is an alternative to the traditional use of mechanical devices and big-game repellents. Many repellents contain transient receptor potential (TRP) agonists, such as capsaicin, a TRP vanilloid-1 agonist. This editorial also delivers a puzzle: while herbivores avoid capsaicin, why do people living in hot climates consume large quantities of it (in chili peppers)? PMID:27227013

  12. Roles of calcitonin gene-related peptide in maintenance of gastric mucosal integrity and in enhancement of ulcer healing and angiogenesis.

    PubMed

    Ohno, Takashi; Hattori, Youichiro; Komine, Rie; Ae, Takako; Mizuguchi, Sumito; Arai, Katsuharu; Saeki, Takeo; Suzuki, Tatsunori; Hosono, Kanako; Hayashi, Izumi; Oh-Hashi, Yoshio; Kurihara, Yukiko; Kurihara, Hiroki; Amagase, Kikuko; Okabe, Susumu; Saigenji, Katsunori; Majima, Masataka

    2008-01-01

    The gastrointestinal tract is known to be rich in neural systems, among which afferent neurons are reported to exhibit protective actions. We tested whether an endogenous neuropeptide, calcitonin gene-related peptide (CGRP), can prevent gastric mucosal injury elicited by ethanol and enhance healing of acetic acid-induced ulcer using CGRP knockout mice (CGRP(-/-)). The stomach was perfused with 1.6 mmol/L capsaicin or 1 mol/L NaCl, and gastric mucosal injury elicited by 50% ethanol was estimated. Levels of CGRP in the perfusate were determined by enzyme immunoassay. Gastric ulcers were induced by serosal application of absolute acetic acid. Capsaicin inhibited injured area dose-dependently. Fifty percent ethanol containing capsaicin immediately increased intragastric levels of CGRP in wild-type (WT) mice, although 50% ethanol alone did not. The protective action of capsaicin against ethanol was completely abolished in CGRP(-/-). Preperfusion with 1 mol/L NaCl increased CGRP release and reduced mucosal damage during ethanol perfusion. However, 1 mol/L NaCl was not effective in CGRP(-/-). Healing of ulcer elicited by acetic acid in CGRP(-/-) mice was markedly delayed, compared with that in WT. In WT, granulation tissues were formed at the base of ulcers, and substantial neovascularization was induced, whereas those were poor in CGRP(-/-). Expression of vascular endothelial growth factor was more markedly reduced in CGRP(-/-) than in WT. CGRP has a preventive action on gastric mucosal injury and a proangiogenic activity to enhance ulcer healing. These results indicate that the CGRP-dependent pathway is a good target for regulating gastric mucosal protection and maintaining gastric mucosal integrity.

  13. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats

    PubMed Central

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-01-01

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539

  14. Comparison of NSAID patch given as monotherapy and NSAID patch in combination with transcutaneous electric nerve stimulation, a heating pad, or topical capsaicin in the treatment of patients with myofascial pain syndrome of the upper trapezius: a pilot study.

    PubMed

    Kim, Do-Hyeong; Yoon, Kyung Bong; Park, SangHa; Jin, Tae Eun; An, Yoo Jin; Schepis, Eric A; Yoon, Duck Mi

    2014-12-01

    This study compared the therapeutic effect of monotherapy with a nonsteroidal anti-inflammatory drug (NSAID) patch vs an NSAID patch combined with transcutaneous electric nerve stimulation (TENS), a heating pad, or topical capsaicin in the treatment of patients with myofascial pain syndrome (MPS) of the upper trapezius. A randomized, single-blind, controlled study of combination therapy for patients with MPS was performed. Ninety-nine patients were randomly assigned to one of four different self-management methods for treatment: NSAID patch (N = 25), NSAID patch + TENS (N = 24), NSAID patch + heating pad (N = 25), and NSAID patch + topical capsaicin (N = 25). The NSAID patch used in this study was a ketoprofen patch. All treatment groups were observed for 2 weeks, and the numeric rating scale (NRS) pain score, cervical active range of motion, pressure pain threshold, and Neck Disability Index were assessed. There was no significant difference between the NSAID patch alone group and the three combination therapy groups with respect to decrease in NRS score from baseline (day 0) to each period of observation. In covariate analysis, although there was no difference among the groups in most of the periods, the data at day 14 indicated a trend (P = 0.057). There were no significant differences in the other variables. We did not observe a statistical difference in improvements to the clinical variables among the four different methods. However, further studies regarding the effectiveness of a mixture of topical capsaicin and ketoprofen in patients with MPS should be considered. Wiley Periodicals, Inc.

  15. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  16. Inhibition of virulence potential of Vibrio cholerae by natural compounds

    PubMed Central

    Yamasaki, Shinji; Asakura, Masahiro; Neogi, Sucharit Basu; Hinenoya, Atsushi; Iwaoka, Emiko; Aoki, Shunji

    2011-01-01

    The rise in multi-drug resistant Vibrio cholerae strains is a big problem in treatment of patients suffering from severe cholera. Only a few studies have evaluated the potential of natural compounds against V. cholerae. Extracts from plants like ‘neem’, ‘guazuma’, ‘daio’, apple, hop, green tea and elephant garlic have been shown to inhibit bacterial growth or the secreted cholera toxin (CT). However, inhibiting bacterial growth like common antimicrobial agents may also impose selective pressure facilitating development of resistant strains. A natural compound that can inhibit virulence in V. cholerae is an alternative choice for remedy. Recently, some common spices were examined to check their inhibitory capacity against virulence expression of V. cholerae. Among them methanol extracts of red chili, sweet fennel and white pepper could substantially inhibit CT production. Fractionation of red chili methanol extracts indicated a hydrophobic nature of the inhibitory compound(s), and the n-hexane and 90 per cent methanol fractions could inhibit >90 per cent of CT production. Purification and further fractionation revealed that capsaicin is one of the major components among these red chili fractions. Indeed, capsaicin inhibited the production of CT in various V. cholerae strains regardless of serogroups and biotypes. The quantitative reverse transcription real-time PCR assay revealed that capsaicin dramatically reduced the expression of major virulence-related genes such as ctxA, tcpA and toxT but enhanced the expression of hns gene that transcribes a global prokaryotic gene regulator (H-NS). This indicates that the repression of CT production by capsaicin or red chili might be due to the repression of virulence genes transcription by H-NS. Regular intake of spices like red chili might be a good approach to fight against devastating cholera. PMID:21415500

  17. Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy

    PubMed Central

    Campbell, Claudia M.; Kipnes, Mark S.; Stouch, Bruce C.; Brady, Kerrie L.; Kelly, Margaret; Schmidt, William K.; Petersen, Karin L.; Rowbotham, Michael C.; Campbell, James N.

    2012-01-01

    A length-dependent neuropathy with pain in the feet is a common complication of diabetes (painful diabetic neuropathy, PDN). It was hypothesized that pain may arise from sensitized-hyperactive cutaneous nociceptors, and that this abnormal signaling may be reduced by topical administration of the α2-adrenergic agonist, clonidine, to the painful area. This was a randomized, double-blind, placebo-controlled, parallel-group, multi-center trial. Nociceptor function was measured by determining the painfulness of 0.1% topical capsaicin applied to the pre-tibial area of each subject for 30 minutes during screening. Subjects were then randomized to receive 0.1% topical clonidine gel (n=89) or placebo gel (n=90) applied t.i.d. to their feet for 12 weeks. The difference in foot pain at week 12 in relation to baseline, rated on a 0-10 numerical pain rating scale (NPRS), was compared between groups. Baseline NPRS was imputed for missing data for subjects who terminated the study early. The subjects treated with clonidine showed a trend toward decreased foot pain compared to the placebo-treated group (the primary endpoint; p=0.07). In subjects who felt any level of pain to capsaicin, clonidine was superior to placebo (p<0.05). In subjects with a capsaicin pain rating ≥2 (0-10, NPRS), the mean decrease in foot pain was 2.6 for active compared to 1.4 for placebo (p=0.01). Topical clonidine gel significantly reduces the level of foot pain in PDN subjects with functional (and possibly sensitized) nociceptors in the affected skin as revealed by testing with topical capsaicin. Screening for cutaneous nociceptor function may help distinguish candidates for topical therapy for neuropathic pain. PMID:22683276

  18. Antinociceptive activity and mechanism of action of hydroalcoholic extract and dichloromethane fraction of Amphilophium crucigerum seeds in mice.

    PubMed

    De Prá, Samira Dal Toé; Ferro, Paula Ronsani; Milioli, Alessandra Marcon; Rigo, Flávia Karine; Chipindo, Orlando Justo; Camponogara, Camila; Casoti, Rosana; Manfron, Melânia Palermo; de Oliveira, Sara Marchesan; Ferreira, Juliano; Trevisan, Gabriela

    2017-01-04

    The medicinal plant generally known as monkey's comb (Amphilophium crucigerum) has been popularly described for the treatment of neuropathic and inflammatory pain, specially seeds preparations. The goal of the present study was to evaluate the antinociceptive effect of the crude extract (Crd) and dichloromethane fraction (Dcm) of A. crucigerum seeds, and investigate the involvement of transient receptor potential vanilloid 1 (TRPV1) receptor in this effect. Male Swiss mice were used in this study. The effects of Crd and Dcm was tested on capsaicin-induced Ca 2+ influx or the specific binding of [ 3 H]-resiniferatoxin. Moreover, after treatment with Crd or Dcm, animals were exposed to acute pain (hot water tail-flick and capsaicin intraplantar test) or chronic pain models (injection of complete Freund's adjuvant or partial ligation of the sciatic nerve). Acute adverse effects were also noted: locomotor activity, corporal temperature, hepatic or renal damage, gastrointestinal transit alteration, and ulcerogenic activity. The oral administration of Crd or Dcm resulted in an antinociceptive effect in the hot water tail-flick (48°C) and capsaicin intraplantar tests. Furthermore, these preparations exhibited antinociceptive and anti-inflammatory effects in a chronic inflammatory pain model, and antinociceptive effects in a neuropathic pain model. Moreover, Crd and Dcm reduced capsaicin-induced Ca 2+ influx and diminished the [ 3 H]-resiniferatoxin specific binding to spinal cord membranes. Acute adverse events were not found with Crd or Dcm administration. In conclusion, our results support the analgesic effect of A. crucigerum and suggest the presence of compounds that may act as TRPV1 antagonists. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Inhibition of virulence potential of Vibrio cholerae by natural compounds.

    PubMed

    Yamasaki, Shinji; Asakura, Masahiro; Neogi, Sucharit Basu; Hinenoya, Atsushi; Iwaoka, Emiko; Aoki, Shunji

    2011-02-01

    The rise in multi-drug resistant Vibrio cholerae strains is a big problem in treatment of patients suffering from severe cholera. Only a few studies have evaluated the potential of natural compounds against V. cholerae. Extracts from plants like 'neem', 'guazuma', 'daio', apple, hop, green tea and elephant garlic have been shown to inhibit bacterial growth or the secreted cholera toxin (CT). However, inhibiting bacterial growth like common antimicrobial agents may also impose selective pressure facilitating development of resistant strains. A natural compound that can inhibit virulence in V. cholerae is an alternative choice for remedy. Recently, some common spices were examined to check their inhibitory capacity against virulence expression of V. cholerae. Among them methanol extracts of red chili, sweet fennel and white pepper could substantially inhibit CT production. Fractionation of red chili methanol extracts indicated a hydrophobic nature of the inhibitory compound(s), and the n-hexane and 90 per cent methanol fractions could inhibit >90 per cent of CT production. Purification and further fractionation revealed that capsaicin is one of the major components among these red chili fractions. Indeed, capsaicin inhibited the production of CT in various V. cholerae strains regardless of serogroups and biotypes. The quantitative reverse transcription real-time PCR assay revealed that capsaicin dramatically reduced the expression of major virulence-related genes such as ctxA, tcpA and toxT but enhanced the expression of hns gene that transcribes a global prokaryotic gene regulator (H-NS). This indicates that the repression of CT production by capsaicin or red chili might be due to the repression of virulence genes transcription by H-NS. Regular intake of spices like red chili might be a good approach to fight against devastating cholera.

  20. Modulation of gastric contractions in response to tachykinins and bethanechol by extrinsic nerves.

    PubMed Central

    Holzer-Petsche, U.

    1991-01-01

    1. Extrinsic reflexes elicited by changes in gastric wall tension play an important role in regulating gastric tone. The present study investigated whether such reflexes modulate gastric contractions induced by close arterially administered neurokinin A (NKA), substance P (SP), SP-methylester and bethancehol in anaesthetized rats. 2. Reflex pathways were acutely interrupted by either subdiaphragmatic vagotomy or prevertebral ganglionectomy. C-fibre afferent nerve activity was abolished by pretreating rats with capsaicin 10 to 16 days before the experiments. 3. The order of potency in inducing gastric contractions was NKA greater than SP greater than bethanechol. SP-methylester was markedly less effective than SP and its effects did not fit sigmoid dose-response curves (DRCs). The maximal responses to NKA, SP, and bethanechol were similar, whilst the DRC for SP was significantly flatter than those for NKA or bethanechol. Pretreatment of the rats with the peptidase inhibitors phosphoramidon or captopril did not increase the contractile response to SP. 4. Prevertebral ganglionectomy had no significant effect on the DRCs for SP and NKA, whereas vagotomy shifted the DRCs for all three test substances to the left. 5. Capsaicin pretreatment did not change the DRC for NKA in rats with intact vagus but shifted that for bethanechol to the left. The leftward of the DRC for NKA caused by vagotomy was prevented in capsaicin-pretreated rats whereas the vagotomy-induced shift of the DRC for bethanechol remained unaltered. The shift of the DRC for SP seen in response to vagotomy was only slightly reduced by capsaicin pretreatment. 6. These data may be interpreted as demonstrating two neuronal mechanisms for modulating drug-induced gastric contractions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1717093

  1. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    PubMed

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  2. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat

    PubMed Central

    Pettorossi, V E; Torre, G Della; Bortolami, R; Brunetti, O

    1999-01-01

    The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a ‘12-train’ series, an increasing inhibition. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots. PMID:10050025

  3. Pharyngeal chemosensitivity in patients with obstructive sleep apnea and healthy subjects.

    PubMed

    Heiser, Clemens; Zimmermann, Ingo; Sommer, J Ulrich; Hörmann, Karl; Herr, Raphael M; Stuck, Boris A

    2013-09-01

    Signs of pharyngeal neurodegeneration have been detected in patients with obstructive sleep apnea (OSA). Along with this neurodegeneration, a decreased pharyngeal sensitivity to mechanical stimulation has been described. The decreased sensitivity may play a role in the pathophysiology of this disease. The aim of the study was to investigate the chemosensitivity of the pharyngeal mucosa in patients with OSA compared with controls. Healthy controls and patients with OSA (age: 30-60 years) were included. Testing of oropharyngeal chemosensitivity was performed with subjective intensity ratings of capsaicin (SIR, visual analogue scale 0-10), air puffs (presented with an olfactometer), and stimulation with CO2 at the posterior pharyngeal wall. A 2-point discrimination test at the soft palate, an intensity rating of capsaicin at the tongue, and a nasal lateralization test were performed. Twenty-six patients with OSA and 18 healthy controls were included. No differences were detected in the SIR of capsaicin at the tongue or in the nasal lateralization test. At the pharynx, a decreased sensitivity to capsaicin (OSA: 6.8 ± 2.3; healthy control: 8.6 ± 1.3), air puffs (OSA: 2.8 ± 1.9; healthy control: 4.2 ± 1.6), and stimulation with CO2 (OSA: 1.5 ± 1.7; healthy control: 2.8 ± 1.8) were demonstrated in patients with OSA (all P < 0.05). Two-point discrimination at the soft palate was reduced with statistical significance in the OSA group (OSA: 11.5 ± 5.4 mm; healthy control: 5.0 ± 2.4 mm). The results suggest reduced pharyngeal chemosensitivity in OSA patients in addition to the reduced mechanical pharyngeal sensitivity shown with 2-point discrimination. This demonstrates peripheral neurodegeneration in the context of this disease.

  4. Antinociceptive action of botulinum toxin type A in carrageenan-induced mirror pain.

    PubMed

    Drinovac Vlah, V; Bach-Rojecky, L; Lacković, Z

    2016-12-01

    "Mirror pain" or mirror-image pain (MP) is pain opposite to the side of injury. Mechanism and frequency in humans are not known. There is no consent on therapy. Here we report that unilaterally injected botulinum toxin type A (BT-A) has bilateral effect in experimental MP, thus deserves to be investigated as therapy for this condition. We examined the localization of BT-A's bilateral antinociceptive action in MP induced by 3 % carrageenan intramuscular injection in Wistar rats. BT-A was applied peripherally (5 U/kg), into ipsilateral or contralateral hind paw pad (i.pl.) and centrally (1 U/kg), at spinal (intrathecally, i.t.) or supraspinal (intracisternally, i.c.) level. Additionally, we examined the involvement of central opioid and GABAergic systems, as well as the contribution of peripheral capsaicin-sensitive neurons to BT-A's bilateral antinociceptive effect. Ipsilateral i.pl. and i.t. BT-A reduced the bilateral mechanical sensitivity to von Frey filaments, while contralateral i.pl. and i.c. treatments had no effect on either tested side. Bilateral antinociceptive effect of ipsilateral i.pl. BT-A was prevented by μ-opioid antagonist naloxonazine (1.5 μg/10 μl) and GABA A antagonist bicuculline (1 μg/10 μl) if applied at the spinal level, in contrast to supraspinal application of the same doses. Local treatment of sciatic nerve with 2 % capsaicin 5 days following BT-A i.pl. injection caused desensitization of sciatic capsaicin-sensitive fibers, but did not affect bilateral antinociceptive effect of BT-A and the presence of cleaved SNAP-25 at the spinal cord slices. Present experiments suggest segmental actions of peripheral BT-A at spinal level, which are probably not solely dependent on capsaicin-sensitive neurons.

  5. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy.

    PubMed

    Simpson, David M; Brown, Stephen; Tobias, Jeffrey

    2008-06-10

    HIV-associated distal sensory polyneuropathy (HIV-DSP) is a painful condition with limited effective treatment. Capsaicin desensitizes cutaneous nociceptors resulting in reduced pain. We report a placebo-controlled study of a high-concentration capsaicin dermal patch (NGX-4010) for the treatment of painful HIV-DSP. This double-blind multicenter study randomized 307 patients with painful HIV-DSP to receive NGX-4010 or control, a low-concentration capsaicin patch. After application of a topical anesthetic, NGX-4010 or control was applied once for 30, 60, or 90 minutes to painful areas on the feet. The primary efficacy endpoint was percent change in Numeric Pain Rating Scale (NPRS) from baseline in mean "average pain for past 24 hours" scores from weeks 2 to 12. A single NGX-4010 application resulted in a mean pain reduction of 22.8% during weeks 2 to 12 as compared to a 10.7% reduction for controls (p = 0.0026). Following a transient treatment-related pain increase, pain was reduced; significant improvement was apparent by week 2 and continued throughout the controlled 12-week observation period. Mean pain reductions in the NGX-4010 30-, 60- and 90-minute groups were 27.7%, 15.9%, and 24.7% (p = 0.0007, 0.287, and 0.0046 vs control). One third of NGX-4010-treated patients reported >or=30% pain decrease from baseline as compared to 18% of controls (p = 0.0092). Self-limited, mild-to-moderate local skin reactions were commonly observed. A single NGX-4010 application was safe and provided at least 12 weeks of pain reduction in patients with HIV-associated distal sensory polyneuropathy. These results suggest that NGX-4010 could provide a promising new treatment for painful HIV neuropathy.

  6. Serotonin modulates substance P-induced plasma extravasation and vasodilatation in rat skin by an action through capsaicin-sensitive primary afferent nerves.

    PubMed

    Khalil, Z; Helme, R D

    1990-09-17

    Using a blister model of inflammation in the rat hind footpad, the present study was undertaken to examine the ability of serotonin (5-HT) to modulate an inflammatory reaction manifested as plasma extravasation and vasodilatation induced by the neuropeptide substance P (SP). In addition, the role of primary afferent sensory nerve fibres in these modulatory effects was studied in capsaicin pretreated rats. Using a protocol of simultaneous perfusion of amine and peptide over the blister base, no major modulatory effect was observed. On the other hand, using a protocol of sequential perfusion, 5-HT was found to extend the plasma extravasation and vasodilatation responses to SP. 5-HT maintained the plasma extravasation response to SP after cessation of stimulation (during the post-stimulation period). On the other hand, it extended the vasodilatation response to SP during the actual stimulation period by preventing the occurrence of tachyphylaxis. These modulatory effects were absent in capsacin-pretreated rats. The present study provides evidence for the first time in vivo to suggest that serotonin can modulate an inflammatory response to SP via a mechanism that involves capsaicin-sensitive sensory fibres.

  7. Infringement of the barriers of cancer via dietary phytoconstituents capsaicin through novel drug delivery system.

    PubMed

    Giri, Tapan Kumar; Alexander, Amit; Ajazuddin; Barman, Tapan Kumar; Maity, Subhasis

    2016-01-01

    Cancer is the major cause of fatality and the number of new cases is increasing incessantly. Conventional therapies and existing anticancer agents cause serious side effects and expand the patient's lifespan by a few years. There is the need to exploit alternative anticancer agents and novel drug delivery system to deliver these agents to the tumor site for the prevention of cancer. Recently, biologically active compounds isolated from plants used for the management of cancer have been the heart of interest. Capsaicin is a major pungent agent present in the chili peppers that is heavily consumed in the world. Capsaicin has demonstrated effectiveness as an anticancer agent, but a restraining factor is its pungency, extremely low aqueous solubility, and poor oral bioavailability which impede its use as an anticancer agent. Many technologies have been developed and applied to conquer this drawback. We bring to light the benefits of this phytoconstituent for treating different types of cancer. We also discussed some of the delivery approaches that have already made an impact by either delivering a drug to target tissue or increasing its bioavailability by many folds.

  8. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies.

    PubMed

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V; Pavlyukovets, Vladimir A; Blumberg, Peter M; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  9. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca2+/PKA Signaling.

    PubMed

    Frey, Erin; Karney-Grobe, Scott; Krolak, Trevor; Milbrandt, Jeff; DiAntonio, Aaron

    2018-01-01

    Preconditioning nerve injuries activate a pro-regenerative program that enhances axon regeneration for most classes of sensory neurons. However, nociceptive sensory neurons and central nervous system neurons regenerate poorly. In hopes of identifying novel mechanisms that promote regeneration, we screened for drugs that mimicked the preconditioning response and identified a nociceptive ligand that activates a preconditioning-like response to promote axon outgrowth. We show that activating the ion channel TRPV1 with capsaicin induces axon outgrowth of cultured dorsal root ganglion (DRG) sensory neurons, and that this effect is blocked in TRPV1 knockout neurons. Regeneration occurs only in NF200-negative nociceptive neurons, consistent with a cell-autonomous mechanism. Moreover, we identify a signaling pathway in which TRPV1 activation leads to calcium influx and protein kinase A (PKA) activation to induce a preconditioning-like response. Finally, capsaicin administration to the mouse sciatic nerve activates a similar preconditioning-like response and induces enhanced axonal outgrowth, indicating that this pathway can be induced in vivo . These findings highlight the use of local ligands to induce regeneration and suggest that it may be possible to target selective neuronal populations for repair, including cell types that often fail to regenerate.

  10. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome

    PubMed Central

    Sanati, Setareh; Razavi, Bibi Marjan; Hosseinzadeh, Hossein

    2018-01-01

    Objective(s): Metabolic syndrome, a coexisting of high blood glucose, obesity, dyslipidemia and hypertension, is an important risk factor for cardiovascular disease occurrence and mortality. Recently, there is a rising demand for herbal drugs which have less adverse effects and have shown more beneficial effects in comparison with synthetic options. Red pepper, with the scientific name of Capsicum annuum, belongs to the Solanaceae family. The lipid-lowering, antihypertensive, antidiabetic and anti-obesity effects of C. annuum have been demonstrated in several studies. Materials and Methods: In this review, we summarized different animal and human studies on the effect of red pepper and capsaicin on different components of metabolic syndrome which are risk factors for cardiovascular diseases (CVDs). Results: According to these studies, red pepper as well as capsaicin has ability to control of metabolic syndrome and its related disorders such as obesity, disrupted lipid profile, diabetes and its complications. Conclusion: Red pepper has beneficial effects on metabolic syndrome and can decrease the risk of mortality due to cardiovascular diseases, but still more research projects need to be done and confirm its advantageous especially in humans. PMID:29922422

  11. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies

    NASA Astrophysics Data System (ADS)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V.; Pavlyukovets, Vladimir A.; Blumberg, Peter M.; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  12. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Fen; Sun Wenwu; Zhao Xiao Ting

    Synoviocyte hyperplasia is critical for rheumatoid arthritis, therefore, potentially an important target for therapeutics. It was found in this work that a TRPV1 agonist capsaicin, and acidic solution (pH 5.5) induced increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) and reactive oxygen species (ROS) production in synoviocytes isolated from a rat model of collagen-induced arthritis. The increases in both [Ca{sup 2+}]{sub c} and ROS production were completely abolished in calcium-free buffer or by a TRPV1 antagonist capsazepine. Further experiments revealed that capsaicin and pH 5.5 solution caused mitochondrial membrane depolarization and reduction in cell viability; such effects were inhibited bymore » capsazepine, or the NAD(P)H oxidase inhibitor diphenylene iodonium. Both capsaicin and pH 5.5 buffer induced apoptosis as shown by nuclear condensation and fragmentation. Furthermore, RT-PCR readily detected TRPV1 mRNA expression in the isolated synoviocytes. Taken together, these data indicated that TRPV1 activation triggered synoviocyte death by [Ca{sup 2+}]{sub c} elevation, ROS production, and mitochondrial membrane depolarization.« less

  13. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  14. Piperine: researchers discover new flavor in an ancient spice.

    PubMed

    Szallasi, Arpad

    2005-09-01

    Studies with animals that are deficient in the vanilloid (capsaicin) receptor TRPV1 have confirmed the pivotal role that TRPV1 has in the development of post-inflammatory hyperalgesia, and enhanced TRPV1 expression has been described in various human disorders. Natural products have provided several lead structures for the development of vanilloid ligands. A recent study shows that piperine, the irritant principle in black pepper, is more efficient than capsaicin in the desensitization of human TRPV1, which suggests that this pharmacological aspect of vanilloids can be dissociated from its potency. This finding raises the intriguing possibility that piperine can be used as a chemical template for the design of improved TRPV1 agonists.

  15. Capsaicin and N-arachidonoyl-dopamine (NADA) decrease tension by activating both cannabinoid and vanilloid receptors in fast skeletal muscle fibers of the frog.

    PubMed

    Trujillo, Xóchitl; Ortiz-Mesina, Mónica; Uribe, Tannia; Castro, Elena; Montoya-Pérez, Rocío; Urzúa, Zorayda; Feria-Velasco, Alfredo; Huerta, Miguel

    2015-02-01

    Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3% of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors.

  16. The Preparation of Capsaicin-Chitosan Microspheres (CCMS) Enteric Coated Tablets

    PubMed Central

    Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan

    2013-01-01

    This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818

  17. Intraplantar injection of bergamot essential oil induces peripheral antinociception mediated by opioid mechanism.

    PubMed

    Sakurada, Tsukasa; Mizoguchi, Hirokazu; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2011-01-01

    This study investigated the effect of bergamot essential oil (BEO) containing linalool and linalyl acetate as major volatile components in the capsaicin test. The intraplantar injection of capsaicin (1.6 μg) produced a short-lived licking/biting response toward the injected paw. The nociceptive behavioral response evoked by capsaicin was inhibited dose-dependently by intraplantar injection of BEO. Both linalool and linalyl acetate, injected into the hindpaw, showed a significant reduction of nociceptive response, which was much more potent than BEO. Intraperitoneal (i.p.) and intraplantar pretreatment with naloxone hydrochloride, an opioid receptor antagonist, significantly reversed BEO- and linalool-induced antinociception. Pretreatment with naloxone methiodide, a peripherally acting μ-opioid receptor preferring antagonist, resulted in a significant antagonizing effect on antinociception induced by BEO and linalool. Antinociception induced by i.p. or intrathecal morphine was enhanced by the combined injection of BEO or linalool. The enhanced effect of combination of BEO or linalool with morphine was antagonized by pretreatment with naloxone hydrochloride. Our results provide evidence for the involvement of peripheral opioids, in the antinociception induced by BEO and linalool. Combined administration of BEO or linalool acting at the peripheral site, and morphine may be a promising approach in the treatment of clinical pain. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Differential contributions of peripheral and central mechanisms to pain in a rodent model of osteoarthritis.

    PubMed

    Haywood, Adrian R; Hathway, Gareth J; Chapman, Victoria

    2018-05-08

    The mechanisms underlying the transition from acute nociceptive pain to centrally maintained chronic pain are not clear. We have studied the contributions of the peripheral and central nervous systems during the development of osteoarthritis (OA) pain. Male Sprague-Dawley rats received unilateral intra-articular injections of monosodium iodoacetate (MIA 1 mg) or saline, and weight-bearing (WB) asymmetry and distal allodynia measured. Subgroups of rats received intra-articular injections of, QX-314 (membrane impermeable local anaesthetic) + capsaicin, QX-314, capsaicin or vehicle on days 7, 14 or 28 post-MIA and WB and PWT remeasured. On days 7&14 post-MIA, but not day 28, QX-314 + capsaicin signficantly attenuated changes in WB induced by MIA, illustrating a crucial role for TRPV1 expressing nociceptors in early OA pain. The role of top-down control of spinal excitability was investigated. The mu-opioid receptor agonist DAMGO was microinjected into the rostroventral medulla, to activate endogenous pain modulatory systems, in MIA and control rats and reflex excitability measured using electromyography. DAMGO (3 ng) had a significantly larger inhibitory effect in MIA treated rats than in controls. These data show distinct temporal contribtuions of TRPV1 expressing nociceptors and opioidergic pain control systems at later timepoints.

  19. Brazilian Capsicum peppers: capsaicinoid content and antioxidant activity.

    PubMed

    Bogusz, Stanislau; Libardi, Silvia H; Dias, Fernanda Fg; Coutinho, Janclei P; Bochi, Vivian C; Rodrigues, Daniele; Melo, Arlete Mt; Godoy, Helena T

    2018-01-01

    Capsicum peppers are known as a source of capsaicinoids, phenolic compounds and antioxidants. Brazilian Capsicum peppers are important spices used in foods worldwide. However, little information is available on the chemical composition and antioxidant activity of these peppers. Capsaicin, dihydrocapsaicin, total phenolic compounds and antioxidant activity were investigated in extracts of three Brazilian peppers: Capsicum frutescens, C. chinense and C. baccatum var. pendulum, in two different harvest years and at two ripening stages. The bioactive compound content was dependent on harvest year, and changes in the concentration profiles were found for capsaicin. Mature fruits of C. chinense harvested in the first year had the highest capsaicin concentration (2.04 mg g -1 fresh pepper), and mature fruits of C. frutescens harvested in the same first year had the highest dihydrocapsaicin content (0.95 mg g -1 fresh pepper). Mature fruits of C. frutescens harvested in the first year showed the major total phenolic compound content (2.46 mg g -1 fresh pepper). The total phenolic compound content was directly related to antioxidant activity. Our results suggest that phenolic compounds significantly contribute to the antioxidant activity of the investigated peppers. Also, these data add valued novel information that enhances current knowledge of Brazilian pepper fruits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Evolution of Capsaicinoids in Peter Pepper (Capsicum annuum var. annuum) During Fruit Ripening.

    PubMed

    Barbero, Gerardo F; de Aguiar, Ana C; Carrera, Ceferino; Olachea, Ángel; Ferreiro-González, Marta; Martínez, Julian; Palma, Miguel; Barroso, Carmelo G

    2016-08-01

    The evolution of individual and total contents of capsaicinoids present in Peter peppers (Capsicum annuum var. annuum) at different ripening stages has been studied. Plants were grown in a glasshouse and the new peppers were marked in a temporal space of ten days. The extraction of capsaicinoids was performed by ultrasound-assisted extraction with MeOH. The capsaicinoids nordihydrocapsaicin (n-DHC), capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin were analyzed by ultraperformance liquid chromatography (UHPLC)-fluorescence and identified by UHPLC-Q-ToF-MS. The results indicate that the total capsaicinoids increase in a linear manner from the first point of harvest at ten days (0.283 mg/g FW) up to 90 days, at which point they reach a concentration of 1.301 mg/g FW. The evolution as a percentage of the individual capsaicinoids showed the initial predominance of capsaicin, dihydrocapsaicin, and n-DHC. Dihydrocapsaicin was the major capsaicinoid up to day 50 of maturation. After 50 days, capsaicin became the major capsaicinoid as the concentration of dihydrocapsaicin fell slightly. The time of harvest of Peter pepper based on the total capsaicinoids content should be performed as late as possible. In any case, harvesting should be performed before overripening of the fruit is observed. © 2016 Wiley-VHCA AG, Zürich.

  1. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia.

    PubMed

    Garami, Andras; Shimansky, Yury P; Pakai, Eszter; Oliveira, Daniela L; Gavva, Narender R; Romanovsky, Andrej A

    2010-01-27

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.

  2. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia

    PubMed Central

    Garami, Andras; Shimansky, Yury P.; Pakai, Eszter; Oliveira, Daniela L.; Gavva, Narender R.; Romanovsky, Andrej A.

    2010-01-01

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We have found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia. PMID:20107070

  3. Pain modality- and sex-specific effects of COMT genetic functional variants

    PubMed Central

    Belfer, Inna; Segall, Samantha K.; Lariviere, William R.; Smith, Shad B.; Dai, Feng; Slade, Gary G.; Rashid, Naim U.; Mogil, Jeffrey S.; Campbell, Claudia; Edwards, Robert; Liu, Qian; Bair, Eric; Maixner, William; Diatchenko, Luda

    2013-01-01

    The enzyme catechol-O-methyltransferase (COMT) metabolizes catecholamine neurotransmitters involved in a number of physiological functions including pain perception. Both human and mouse COMT genes possess functional polymorphisms contributing to inter-individual variability in pain phenotypes such as sensitivity to noxious stimuli, severity of clinical pain and response to pain treatment. In this study, we found that the effects of Comt functional variation in mice are modality-specific. Spontaneous inflammatory nociception and thermal nociception behaviors were correlated the most with the presence of the B2 SINE transposon insertion residing in the 3’UTR mRNA region. Similarly, in humans, COMT functional haplotypes were associated with thermal pain perception and with capsaicin-induced pain. Furthermore, COMT genetic variations contributed to pain behaviors in mice and pain ratings in humans in a sex-specific manner. The ancestral Comt variant, without a B2 SINE insertion, was more strongly associated with sensitivity to capsaicin in female versus male mice. In humans, the haplotype coding for low COMT activity increased capsaicin-induced pain perception in women, but not men. These findings reemphasize the fundamental contribution of COMT to pain processes, and provide a fine-grained resolution of this contribution at the genetic level that can be used to guide future studies in the area of pain genetics. PMID:23701723

  4. Application of the fiber-optic perfusion fluorometer to absorption and exsorption studies in hairless mouse skin.

    PubMed

    Shackleford, J M; Yielding, K L

    1987-09-01

    This study was undertaken to test the fiber-optic perfusion fluorometer as a direct means of evaluating skin absorption and exsorption in hairless mice. Skin-barrier compromise was accomplished in the absorption experiments by application of dimethyl sulfoxide to the skin surface or by partial removal of the stratum corneum with sticky tape. Absorbed fluorescein was measured easily in unanesthetized control (skin-barrier intact) and experimental mice. Unabsorbed chemical did not fluoresce 15 minutes after application, although it was present on the surface of the skin as a dry powder. The time course of fluorescein elimination from the skin was related to a rapid phase (vascular removal) and a slow phase (reservoir entrapment). In the exsorption experiments the fluorescein was injected intraperitoneally. Back skin on the right side was swabbed with either dimethyl sulfoxide or 1% capsaicin in alcohol prior to the injections, and differences in skin fluorescence on the left (control) and right sides were recorded. One application of dimethyl sulfoxide or capsaicin increased the level of skin exsorption. Three applications of dimethyl sulfoxide almost doubled the amount of exsorbed dye, whereas three applications of the capsaicin inhibited the exsorption process. It was concluded that the fiber-optic perfusion fluorometer provides an excellent technique in support of other methods of investigating the skin.

  5. Pharmacokinetic-Pharmacodynamic Relationship of Erenumab (AMG 334) and Capsaicin-Induced Dermal Blood Flow in Healthy and Migraine Subjects.

    PubMed

    Vu, Thuy; Ma, Peiming; Chen, Jiyun Sunny; de Hoon, Jan; Van Hecken, Anne; Yan, Lucy; Wu, Liviawati Sutjandra; Hamilton, Lisa; Vargas, Gabriel

    2017-09-01

    Capsaicin-induced dermal blood flow (CIDBF) is a validated biomarker used to evaluate the target engagement of potential calcitonin gene-related peptide-blocking therapeutics for migraine. To characterize the pharmacokinetics (PK) and quantify the inhibitory effects of erenumab (AMG 334) on CIDBF, CIDBF data were pooled from a single- and a multiple-dose study in healthy and migraine subjects. Repeated capsaicin challenges and DBF measurements were performed and serum erenumab concentrations determined. A population analysis was conducted using a nonlinear mixed-effects modeling approach. Effects of body weight, gender, and age on model parameters were evaluated. Two-compartment target-mediated drug disposition (TMDD) model assuming binding of erenumab in the central compartment best described the nonlinear PK of erenumab. Subcutaneous absorption half-life was 1.6 days and bioavailability was 74%. Erenumab produced a maximum inhibition of 89% (95% confidence interval: 87-91%). Erenumab concentrations required for 50% and 99% of maximum inhibition were 255 ng/mL and 1134 ng/mL, respectively. Increased body weight was associated with increased erenumab clearance but had no effect on the inhibitory effect on CIDBF. Our results show that erenumab pharmacokinetics was best characterized by a TMDD model and resulted in potent inhibition of CIDBF.

  6. Comparison of topical capsaicin and topical turpentine Oil for treatment of painful diabetic neuropathy.

    PubMed

    Musharraf, Muhammad Usman; Ahmad, Zaheer; Yaqub, Zernab

    2017-01-01

    Diabetes Mellitus is a pandemic of the modern era owing to our rapidly deteriorating lifestyle. Painful diabetic neuropathy is one of the costliest and disabling complications of diabetes mellitus. No single treatment exists to prevent or reverse neuropathic changes or to provide total pain relief. Topical Capsaicin and Turpentine Oil are found to be effective in treatment of painful diabetic neuropathy. Patients of either gender with ages between 18 and 70 years having painful diabetic neuropathy already taking one oral drug for painful neuropathy and treatment for diabetes mellitus and an HbA1C less than 8.5% were included while Pregnant or lactating mothers, patients with chronic liver disease and patients with renal insufficiency (creatinine >3.0 mg/dl) and peripheral arterial disease were excluded from study. Patients were randomly divided into two groups (A & B) using computer generated random number table. Group A was given topical application of capsaicin while Group B was given topical application of commercially available turpentine oil over painful site on feet. 300 patients were equally divided in two groups. The patients in group A had a Visual Analog Pain Score of 7.91±5.10 at baseline and 5.10±1.343 after 3 months of treatment (p-value 0.0001). The patients in group B had a Visual Analog Pain Score of 7.83±1.012 at baseline and 5.20±1.187 after 3 months of treatment (p-value 0.0001). Chi Square test was applied to compare efficacy of both groups. It was noted that 71 (53%) had efficacy in group A and 63 (47%) had efficacy in the group B but the difference was not statistically significant. (p-value=0.399). It has been concluded that turpentine oil is effective in managing diabetic neuropathic pain similar to capsaicin cream.

  7. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P < 0.05) and fullness (P = 0.01) were measured every waking hour and before and after every meal using visual analogue scales, and were higher in the 100%CAPS versus 100%Control condition. After dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P < 0.05) and satiety (P = 0.06) and fullness (P = 0.06) tended to be lower in the 75%Control versus 100%Control condition. Furthermore, ad libitum intake (P = 0.07) and overconsumption (P = 0.06) tended to decrease in 100%CAPS versus 100%Control. In energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. Copyright © 2014. Published by Elsevier Ltd.

  8. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature.

    PubMed

    Chen, L; Kaßmann, M; Sendeski, M; Tsvetkov, D; Marko, L; Michalick, L; Riehle, M; Liedtke, W B; Kuebler, W M; Harteneck, C; Tepel, M; Patzak, A; Gollasch, M

    2015-02-01

    Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. The TRPV1 agonist capsaicin relaxed mouse mesenteric arteries with an EC50 of 25 nm, but large mouse renal arteries or rat descending vasa recta only at >100-fold higher concentrations. The vasodilatory effect of capsaicin in the low-nanomolar concentration range was endothelium-dependent and absent in vessels of Trpv1 -/- mice. The TRPV4 agonist GSK1016790A relaxed large conducting renal arteries, mesenteric arteries and vasa recta with EC50 of 18, 63 nm and ~10 nm respectively. These effects were endothelium-dependent and inhibited by a TRPV4 antagonist, AB159908 (10 μm). Capsaicin and GSK1016790A produced vascular dilation in isolated mouse perfused kidneys with EC50 of 23 and 3 nm respectively. The capsaicin effects were largely reduced in Trpv1 -/- kidneys, and the effects of GSK1016790A were inhibited in Trpv4 -/- kidneys. Our results demonstrate that two TRPV channels have unique sites of vasoregulatory function in the kidney with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. Risk factors associated with gastric cancer in Mexico: education, breakfast and chili.

    PubMed

    Trujillo Rivera, Alejandro; Sampieri, Clara Luz; Morales Romero, Jaime; Montero, Hilda; Acosta Mesa, Héctor Gabriel; Cruz Ramírez, Nicandro; Novoa Del Toro, Elva María; León Córdoba, Kenneth

    2018-06-01

    the aim of the study was to use a validated questionnaire to identify factors associated with the development of gastric cancer (GC) in the Mexican population. the study included cases and controls that were paired by sex and ± 10 years of age at diagnosis. In relation to cases, 46 patients with a confirmed histopathological diagnosis of adenocarcinoma-type GC, as reported in the hospital records, were selected, and 46 blood bank donors from the same hospital were included as controls. The previously validated Questionnaire to Find Factors Associated with Gastric Cancer (QUFA-GC©) was used to collect data. Odds ratio (OR) and 95% confidence interval (IC) were estimated via univariate analysis (paired OR). Multivariate analysis was performed by logistic regression. A decision tree was constructed using the J48 algorithm. an association was found by univariate analysis between GC risk and a lack of formal education, having smoked for ≥ 10 years, eating rapidly, consuming very hot food and drinks, a non-suitable breakfast within two hours of waking, pickled food and capsaicin. In contrast, a protective association against GC was found with taking recreational exercise and consuming fresh fruit and vegetables. No association was found between the development of GC and having an income that reflected poverty, using a refrigerator, perception of the omission of breakfast and time period of alcoholism. In the final multivariate analysis model, having no formal education (OR = 17.47, 95% CI = 5.17-76.69), consuming a non-suitable breakfast within two hours of waking (OR = 8.99, 95% CI = 2.85-35.50) and the consumption of capsaicin ˃ 29.9 mg capsaicin per day (OR = 3.77, 95% CI = 1.21-13.11) were factors associated with GC. an association was found by multivariate analysis between the presence of GC and education, type of breakfast and the consumption of capsaicin. These variables are susceptible to intervention and can be identified via the QUFA-GC ©.

  10. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    PubMed

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  11. Molecular Cloning and Functional Characterization of Xenopus tropicalis Frog Transient Receptor Potential Vanilloid 1 Reveal Its Functional Evolution for Heat, Acid, and Capsaicin Sensitivities in Terrestrial Vertebrates*

    PubMed Central

    Ohkita, Masashi; Saito, Shigeru; Imagawa, Toshiaki; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2012-01-01

    The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca2+]i). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ∼60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca2+]i increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function. PMID:22130664

  12. Feasibility of Topical Applications of Natural High-Concentration Capsaicinoid Solutions in Patients with Peripheral Neuropathic Pain: A Retrospective Analysis.

    PubMed

    Bauchy, Fanny; Mouraux, Andre; Deumens, Ronald; Leerink, Marjolein; Ulpiano Trillig, Antonio; le Polain de Waroux, Bernard; Steyaert, Arnaud; Joëlle, Quetin-Leclercq; Forget, Patrice

    2016-01-01

    Background. Capsaicin, one of several capsaicinoid compounds, is a potent TRPV1 agonist. Topical application at high concentration (high concentration, >1%) induces a reversible disappearance of epidermal free nerve endings and is used to treat peripheral neuropathic pain (PNP). While the benefit of low-concentration capsaicin remains controversial, the 8%-capsaicin patch (Qutenza®, 2010, Astellas, Netherlands) has shown its effectiveness. This patch is, however, costly and natural high-concentration capsaicinoid solutions may represent a cheaper alternative to pure capsaicin. Methods. In this retrospective study, 149 patients were screened, 132 were included with a diagnosis of neuropathic pain, and eighty-four were retained in the final analyses (median age: 57.5 years [IQR25-75: 44.7-67.1], male/female: 30/54) with PNP who were treated with topical applications of natural high-concentration capsaicinoid solutions (total number of applications: 137). Indications were postsurgical PNP (85.7%) and nonsurgical PNP (14.3%) (posttraumatic, HIV-related, postherpetic, and radicular PNP). Objectives. To assess the feasibility of topical applications of natural high-concentration capsaicinoid solutions for the treatment of PNP. Results. The median treated area was 250 cm 2 [IQR25-75: 144-531]. The median amount of capsaicinoids was 55.1 mg [IQR25-75: 28.7-76.5] per plaster and the median concentration was 172.3  μ g/cm 2 [IQR25-75: 127.6-255.2]. Most patients had local adverse effects on the day of treatment, such as mild to moderate burning pain and erythema. 13.6-19.4% of the patients experienced severe pain or erythema. Following treatment, 62.5% of patients reported a lower pain intensity or a smaller pain surface, and 35% reported a sustained pain relief lasting for at least 4 weeks. Conclusion. Analgesic topical treatment with natural high-concentration capsaicinoid is feasible and may represent a low cost alternative to alleviate PNP in clinical practice.

  13. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through direct synapses on somata in Vmes and on dendrites of neurons in Vmot.

  14. [The effect of calcitonin gene-related peptide on collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary arterial hypertension].

    PubMed

    Li, Xian-Wei; Du, Jie; Li, Yuan-Jian

    2013-03-01

    To observe the effect of calcitonin gene-related peptide (CGRP) on pulmonary vascular collagen accumulation in hypoxia rats in order to study the effect of CGRP on hypoxic pulmonary vascular structural remodeling and its possible mechanism. Rats were acclimated for 1 week, and then were randomly divided into three groups: normoxia group, hypoxia group, and hypoxia plus capsaicin group. Pulmonary arterial hypertension was induced by hypoxia in rats. Hypoxia plus capsaicin group, rats were given capsaicin (50 mg/(kg x d), s.c) 4 days before hypoxia to deplete endogenous CGRP. Hypoxia (3% O2) stimulated proliferation of pulmonary arterial smooth muscle cells (PASMCs) and proliferation was measured by BrdU marking. The expression levels of CGRP, phosphorylated ERK1/2 (p-ERK1/ 2), collagen I and collagen III were detected by real-time PCR or Western blot. Right ventricle systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) of pulmonary arterial hypertension (PAH) rats induced by hypoxia were higher than those of normoxia rats. By HE and Masson staining, it was demonstrated that hypoxia also significantly induced hypertrophy of pulmonary arteries and increased level of collagen accumulation. Hypoxia dramatically decreased the CGRP level and increased the expression of p-ERK1/2, collagen I, collagen III in pulmonary arteries. All these effects of hypoxia were further aggravated by pre-treatment of rats with capsaicin. CGRP concentration-dependently inhibited hypoxia-induced proliferation of PASMCs, markedly decreased the expression of p-ERK1/2, collagen I and collagen III. All these effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that CGRP might inhibit hypoxia-induced PAH and pulmonary vascular remodeling, through inhibiting phosphorylation of ERK1/2 and alleviating the collagen accumulation of pulmonary arteries.

  15. Expression of TRPV1 channels by Cajal-Retzius cells and layer-specific modulation of synaptic transmission by capsaicin in the mouse hippocampus.

    PubMed

    Anstötz, Max; Lee, Sun Kyong; Maccaferri, Gianmaria

    2018-05-28

    By taking advantage of calcium imaging and electrophysiology, we provide direct pharmacological evidence for the functional expression of TRPV1 channels in hippocampal Cajal-Retzius cells. Application of the TRPV1 activator capsaicin powerfully enhances spontaneous synaptic transmission in the hippocampal layers that are innervated by the axons of Cajal-Retzius cells. Capsaicin-triggered calcium responses and membrane currents in Cajal-Retzius cells, as well as layer-specific modulation of spontaneous synaptic transmission, are absent when the drug is applied to slices prepared from TRPV1 - / - animals. We discuss the implications of the functional expression of TRPV1 channels in Cajal-Retzius cells and of the observed TRPV1-dependent layer-specific modulation of synaptic transmission for physiological and pathological network processing. The vanilloid receptor TRPV1 forms complex polymodal channels that are expressed by sensory neurons and play a critical role in nociception. Their distribution pattern and functions in cortical circuits are, however, much less understood. Although TRPV1 reporter mice have suggested that, in the hippocampus, TRPV1 is predominantly expressed by Cajal-Retzius cells (CRs), direct functional evidence is missing. As CRs powerfully excite GABAergic interneurons of the molecular layers, TRPV1 could play important roles in the regulation of layer-specific processing. Here, we have taken advantage of calcium imaging with the genetically encoded indicator GCaMP6s and patch-clamp techniques to study the responses of hippocampal CRs to the activation of TRPV1 by capsaicin, and have compared the effect of TRPV1 stimulation on synaptic transmission in layers innervated or non-innervated by CRs. Capsaicin induced both calcium responses and membrane currents in ∼50% of the cell tested. Neither increases of intracellular calcium nor whole-cell currents were observed in the presence of the TRPV1 antagonists capsazepine/Ruthenium Red or in slices prepared from TRPV1 knockout mice. We also report a powerful TRPV1-dependent enhancement of spontaneous synaptic transmission onto interneurons with dendritic trees confined to the layers innervated by CRs. In conclusion, our work establishes that functional TRPV1 is expressed by a significant fraction of CRs and we propose that TRPV1 activity may regulate layer-specific synaptic transmission in the hippocampus. Lastly, as CR density decreases during postnatal development, we also propose that functional TRPV1 receptors may be related to mechanisms involved in CR progressive reduction by calcium-dependent toxicity/apoptosis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  16. The research of the possible mechanism and the treatment for capsaicin-induced cough.

    PubMed

    Zhang, Li; Sun, Tieying; Liu, Longteng; Wang, Lifang

    2018-04-01

    Unexplained chronic cough (UCC) affects millions of patients worldwide. New therapeutic approaches to this condition are urgently needed, since current treatment options provide only symptomatic relief. Cough reflex hypersensitivity has been shown to play an important role in the pathogenesis of UCC. The transient receptor potential vanilloid type 1 (TRPV1) is present on peripheral terminals of airway sensory nerves and modulation of its activity represents a potential target for the pharmacological treatment of UCC. The aim of this study was to explore the efficacy and the possible mechanism of SB705498, a TRPV1 antagonist, for cough in a capsaicin-induced cough animal model (i.e. guinea pigs). Induction of cough by capsaicin was successfully implemented in the guinea pigs, and the animals that met the inclusion criteria were randomly divided into four treatment groups: (1) Saline inhalation group (NSInh group, N = 10, negative control group), (2) Codeine phosphate intraperitoneal injection group (CPInp group, N = 10, positive control group), (3) SB705498 inhalation group (SBInh group, N = 10), (4) SB705498 intragastric administration group (SBIng group, N = 10). After treatment with above compounds, the capsaicin-induced cough experiment was performed again. The cough numbers and the cough incubation periods were recorded to evaluate the antitussive effect of SB705498. Enzyme-linked immunosorbent assay (ELISA) testing and Immunohistochemistry (IHC) staining for substance P (SP), calcitonin gene related peptide (CGRP) and neurokinin A (NKA) expression in lung and brain tissues were performed as an indication of neurogenic inflammation. Hematoxylin-Eosin (H&E) staining was used to observe the pathology morphology of lung and brain tissues. When the CPInp, SBInh and SBIng groups were compared to the NSInh group, the cough numbers were significantly reduced (p < .001), while the cough incubation periods were significantly prolonged (P < .001). In addition, the expression of SP, CGRP and NKA in lung and brain tissue was reduced (P < .05). None of the animals in the four groups exhibited lung and brain parenchymal inflammation. The results from this study showed that SB705498 had a significant antitussive effect, could reduce the neurogenic inflammation by reducing the expression of SP, CGRP and NKA in a capsaicin-induced cough model of guinea pigs. The results further indicated that TRPV1 played an important role in UCC and SB705498 might be a promising therapeutic agent for UCC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Importance of brain-gut axis in the gastroprotection induced by gastric and remote preconditioning.

    PubMed

    Brzozowski, T; Konturek, P C; Pajdo, R; Kwiecień, S; Sliwowski, Z; Drozdowicz, D; Ptak-Belowska, A; Pawlik, M; Konturek, S J; Pawlik, W W; Hahn, G G

    2004-03-01

    Limitation of the damage to the organs such as heart, liver, intestine, stomach and brain by an earlier brief complete occlusion of their arteries is defined as ischemic preconditioning (IP). No study so for has been undertaken to check whether brain-gut axis is involved in the gastroprotection exhibited by gastric IP or in that induced by repeated brief episodes of ischemia of remote organs such as heart and liver. This study was designed to determine the possible involvement of vagal and sensory afferent nerves, in the mechanism of gastric and remote organ IP on the gastric mucosa in rats exposed to prolonged ischemia-reperfusion with or without functional ablation of sensory nerves by capsaicin or in those with removed vagal innervation by vagotomy. This gastric IP was induced by short ischemia episodes (occlusion of celiac artery 1-5 times for 5 min) applied 30 min before subsequent ischemia followed by 3 h of reperfusion (I/R) and compared with remote IP induced by occlusion of left descending coronary artery or hepatic artery plus portal vein. The area of gastric lesions was determined by planimetry, gastric blood flow (GBF) was measured by H(2)-gas clearance method and mucosal biopsy samples were taken for the assessment of calcitonin gene-related peptide (CGRP) by RIA. Exposure of gastric mucosa to standard 3 h of I/R produced numerous gastric lesions and significant fall in the GBF and mucosal CGRP content. Two 5 min short ischemic episodes by occlusion of coronary or hepatic arteries, significantly reduced gastric damage induced by I/R with the extent similar to that exhibited by two short (5 min) episodes of gastric ischemia. These protective effects of gastric and remote IPs were accompanied by a restoration of the fall in the CGRP content caused by I/R alone. Protection and hyperemia induced by gastric IP were significantly attenuated in capsaicin-denervated or vagotomized animals and completely removed in those exposed to the combination of vagotomy and capsaicin-denervation. The IP-induced protection and hyperemia were restored by the administration of exogenous CGRP to gastric IP in capsaicin-treated animals. Gastroprotective and hyperemic actions of remote IP were markedly diminished in capsaicin-denervated rats and in those subjected to vagotomy. We conclude that brief ischemia in remote organs such as heart and liver protects gastric mucosa against gastric injury induced by I/R as effectively as gastric IP via mechanism involving both vagal and sensory nerves releasing vasodilatatory mediators such as CGRP.

  18. Dietary spices as beneficial modulators of lipid profile in conditions of metabolic disorders and diseases.

    PubMed

    Srinivasan, Krishnapura

    2013-04-25

    Spices are valued for their medicinal properties besides their use as food adjuncts to enhance the sensory quality of food. Dietary garlic, onion, fenugreek, red pepper, turmeric, and ginger have been proven to be effective hypocholesterolemics in experimentally induced hypercholesterolemia. The hypolipidemic potential of fenugreek in diabetic subjects and of garlic and onion in humans with induced lipemia has been demonstrated. Capsaicin and curcumin - the bioactive compounds of red pepper and turmeric - are documented to be efficacious at doses comparable to usual human intake. Capsaicin and curcumin have been shown to be hypotriglyceridemic, thus preventing accumulation of fat in the liver under adverse situations by enhancing triglyceride transport out of the liver. Capsaicin, curcumin, fenugreek, ginger, and onion enhance secretion of bile acids into bile. These hypocholesterolemic spices/spice principles reduce blood and liver cholesterol by enhancing cholesterol conversion to bile acids through activation of hepatic cholesterol-7α-hydroxylase. Many human trials have been carried out with garlic, onion, and fenugreek. The mechanism underlying the hypocholesterolemic and hypotriglyceridemic influence of spices is fairly well understood. Health implications of the hypocholesterolemic effect of spices experimentally documented are cardio-protection, protection of the structural integrity of erythrocytes by restoration of membrane cholesterol/phospholipid profile and prevention of cholesterol gallstones by modulation of the cholesterol saturation index in bile.

  19. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    PubMed Central

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  20. Capsiate Inhibits DNFB-Induced Atopic Dermatitis in NC/Nga Mice through Mast Cell and CD4+ T-Cell Inactivation.

    PubMed

    Lee, Ji H; Lee, Yun S; Lee, Eun-Jung; Lee, Ji H; Kim, Tae-Yoon

    2015-08-01

    Capsaicin has many biological effects, such as antioxidant, anticancer, and antiangiogenic effects, but it is rarely used because of its high pungency. Capsiate, a nonpungent capsaicin analog, also has multiple biological effects, similar to those of capsaicin, but does not cause irritation. However, the effect of capsiate on allergic responses and immune cells has not been well studied. In this study, we investigated the effect of capsiate on atopic dermatitis, mouse CD4+ T cells, and mast cell activation. Capsiate inhibited DNFB-induced atopic dermatitis in NC/Nga mice. Topical treatment with capsiate suppressed serum IgE levels and cytokine and chemokine expression in the skin of DNFB-treated NC/Nga mice. In addition, it suppressed the activation of CD4+ T cells and mast cells, which are implicated in allergic diseases. Capsiate inhibited the differentiation of naïve CD4+ T cells into T helper type 1 (Th1), Th2, and Th17 cells. Treatment with capsiate inhibited the expression of pro-inflammatory cytokines and degranulation from activated bone marrow-derived mast cells through the inhibition of extracellular signal-regulated kinase signal pathways. Consistent with these results, treatment with capsiate inhibited passive cutaneous anaphylaxis. Taken together, our results suggest that capsiate might be a good candidate molecule for the treatment of allergic diseases such as atopic dermatitis.

  1. Antinociceptive effect and mechanism of action of isatin, N-methyl isatin and oxopropyl isatin in mice.

    PubMed

    Giorno, Thais Biondino Sardella; Silva, Bárbara Vasconcellos da; Pinto, Angelo da Cunha; Fernandes, Patricia Dias

    2016-04-15

    There has been growing interest in the synthesis of new derivatives from isatin, found in Isatis genus. Our objectives were to characterize the antinociceptive mechanism of action of isatin, N-methyl-isatin (MI) and N-methyl-3-(2-oxopropyl)-3-hydroxy-2-oxindole (MOI). Substances (0.1-10mg/kg, p.o.) were studied in chemical (paw licking induced by formalin, capsaicin or glutamate) or thermal (hot plate) models of nociception. The involvement of several systems was evaluated using different receptor antagonists. All three substances inhibit both phases of formalin-induced licking, increase the area under the curve and MI and MOI have a higher effect than that of morphine (in hot plate). Capsaicin and glutamate-induced licking were also reduced by all three substances. In the hot plate model, the antinociceptive effect of isatin was reduced by naloxone and atropine; naloxone, atropine and L-NAME reduced MI effect while naloxone, atropine, L-NAME, mecamylamine and ondansetron reduced MOI effect. Our results suggest that isatin, MI and MOI: 1) present activity in models of nociception; 2) capsaicin and glutamate receptors seems to participate in the mechanism of action; 3) opioid, cholinergic, serotoninergic, nitrergic and adrenergic systems may be involved, at least in part, in the mechanism of action of some of these substances. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Potentiation of pulmonary reflex response to capsaicin 24h following whole-body acrolein exposure is mediated by TRPV1.

    PubMed

    Hazari, Mehdi S; Rowan, William H; Winsett, Darrell W; Ledbetter, Allen D; Haykal-Coates, Najwa; Watkinson, William P; Costa, Daniel L

    2008-02-01

    Pulmonary C-fibers are stimulated by irritant air pollutants producing apnea, bronchospasm, and decrease in HR. Chemoreflex responses resulting from C-fiber activation are sometimes mediated by TRPV1 and release of substance P. While acrolein has been shown to stimulate C-fibers, the persistence of acrolein effects and the role of C-fibers in these responses are unknown. These experiments were designed to determine the effects of whole-body acrolein exposure and pulmonary chemoreflex response post-acrolein. Rats were exposed to either air or 3 ppm acrolein for 3 h while ventilatory function and HR were measured; 1-day later response to capsaicin challenge was measured in anesthetized rats. Rats experienced apnea and decrease in HR upon exposure to acrolein, which was not affected by either TRPV1 antagonist or NK(1)R antagonist pretreatment. Twenty-four hours later, capsaicin caused apnea and bronchoconstriction in control rats, which was potentiated in rats exposed to acrolein. Pretreatment with TRPV1 antagonist or NK(1)R antagonist prevented potentiation of apneic response and bronchoconstriction 24h post-exposure. These data suggest that although potentiation of pulmonary chemoreflex response 24h post-acrolein is mediated by TRPV1 and release of substance P, cardiopulmonary inhibition during whole-body acrolein exposure is mediated through other mechanisms.

  3. Antinociceptive Effect of the Essential Oil Obtained from the Leaves of Croton cordiifolius Baill. (Euphorbiaceae) in Mice

    PubMed Central

    Nogueira, Lenise de Morais; da Silva, Monalisa Ribeiro; dos Santos, Simone Maria; de Albuquerque, Julianna Ferreira Cavalcanti; Ferraz, Igor Cavalcanti; de Albuquerque, Thaíse Torres; Mota, Carlos Renato França de Carvalho; Araújo, Renata Mendonça; Viana, Glauce Socorro de Barros; Martins, René Duarte; Ximenes, Rafael Matos

    2015-01-01

    Croton cordiifolius Baill. is a shrub known as “quebra-faca” and is used to treat inflammation, pain, wounds, and gastrointestinal disturbances in the semiarid region in the northeast of Brazil. In an ethnobotanical survey in the state of Pernambuco, “quebra-faca” use was cited in 33% of the interviews. Thus, we decided to evaluate the antinociceptive effects of the essential oil from C. cordiifolius (CcEO). Chemical analysis by gas chromatography-mass spectrometry revealed 1,8-cineole (25.09%) and α-phellandrene (15.43%) as major constituents. Antinociceptive activity was evaluated using murine models of chemically induced pain (writhing induced by acetic acid, formalin, capsaicin, and glutamate tests). Opioid and central nervous systems (CNS) involvement were also investigated. Regarding antinociceptive activity, CcEO (50 and 100 mg/kg) reduced the number of writhing responses induced by acetic acid and decreased the licking times in both phases of the formalin test. CcEO also was evaluated in capsaicin- and glutamate-induced nociception. While no effect was observed in the capsaicin test, CcEO (100 mg/kg) was effective in the glutamate test. Naloxone, an opioid antagonist, did not affect the antinociceptive activity of CcEO in writhing test. In conclusion, the antinociceptive effect of CcEO could be explained, at least in part, by inhibition of the glutamatergic system. PMID:25821494

  4. Gingerols: a novel class of vanilloid receptor (VR1) agonists

    PubMed Central

    Dedov, Vadim N; Tran, Van H; Duke, Colin C; Connor, Mark; Christie, MacDonald J; Mandadi, Sravan; Roufogalis, Basil D

    2002-01-01

    Gingerols, the pungent constituents of ginger, were synthesized and assessed as agonists of the capsaicin-activated VR1 (vanilloid) receptor. [6]-Gingerol and [8]-gingerol evoked capsaicin-like intracellular Ca2+ transients and ion currents in cultured DRG neurones. These effects of gingerols were blocked by capsazepine, the VR1 receptor antagonist. The potency of gingerols increased with increasing size of the side chain and with the overall hydrophobicity in the series. We conclude that gingerols represent a novel class of naturally occurring VR1 receptor agonists that may contribute to the medicinal properties of ginger, which have been known for centuries. The gingerol structure may be used as a template for the development of drugs acting as moderately potent activators of the VR1 receptor. PMID:12411409

  5. [Antitumor effect of capsaicin on colorectal carcinoma xenograft in nude mice].

    PubMed

    Zhu, Li-li; Hu, Wan-le; Zhang, Lin-jun; Yu, Zhi-gao; Huang, Chong-jie; Jiang, Ming-zhe; Teng, Ming-xing; Liu, Jian-lu; Liu, Chang-bao

    2013-04-01

    To evaluate the effect of capsaicin on nude mice xenografted with colorectal carcinoma cells, and to explore its mechanism of action. A nude mouse model of colorectal cancer was established by subcutaneous inoculation of human colorectal carcinoma HT-29 cells. Terminal deoxynucleotidyl transferase-mediated nicked labeling assay (TUNEL) was undertaken to detect the cell proliferation and apoptosis in the xenograft tissue in nude mice. Immunohistochemical (IHC) staining and Western blot were used to detect the expression of HSP27, Cyt-C and active caspase-3. The tumor growth of the groups C10 and C20 was significantly slower than that of the group NS. The integrated optical density (IOD) of both the group C5 (2532.14 ± 578.11) and group C10 (6364.03 ± 1137.98) was significantly higher than that of the group NS (760.12 ± 238.05), (P < 0.05). The integrated optical density (IOD) of the group C20 was (15743.96 ± 1855.95), significantly higher than that of the groups C10, C5 and NS (all were P < 0.01). Immunohistochemistry showed that the cytoplasmic expression of HSP27 was strongly positive in the group NS, and significantly reduced with the increasing dose of capsaicin in the treated groups. The expression of active caspase-3 and Cyt-C in the group NS was weakly positive, and was significantly increased with the increasing dose of capsaicin in the groups C5 and C10 (P < 0.05), and the expression of active caspase-3 and Cyt-C of the group C20 was significantly higher than that of the groups C5, C10 and NS (P < 0.01). Western blot analysis showed that both the expressions of HSP27 of the group C5 (0.73 ± 0.05) and the group C10 (0.41 ± 0.03) were significantly lower than that of the group NS (P < 0.05). The expression of HSP27 of the group C20 (0.22 ± 0.06) was significantly lower than that of the groups C5, C10 and NS (P < 0.01). The expressions of active-caspase-3 and Cyt-C in the group C5 were (2.57 ± 0.34) and (2.03 ± 0.38), significantly higher than those of the group NS (P < 0.05). The expressions of active-caspase-3 and Cyt-C in the group C10 were (4.23 ± 0.45) and (3.13 ± 0.44), also significantly higher than those of the group NS (P < 0.05). The expressions of active-caspase-3 and Cyt-C in the group C20 were (5.78 ± 0.48) and (4.92 ± 0.52), significantly higher than those of the group C5, C10 and NS (P < 0.01). TUNEL analysis showed that there was a significant difference of cell apoptosis in comparison of each two groups. The higher dose of capsaicin was used, the more apoptosis was observed. Capsaicin can significantly inhibit the tumor growth and induce cell apoptosis in the colorectal carcinoma xenograft in nude mice. Its mechanism of action is possibly related with the down-regulation of HSP27 expression and up-regulation of expression of active caspase-3 and Cyt-C in the colorectal carcinoma xenograft in nude mice.

  6. Ipomoea pes-caprae (L.) R. Br (Convolvulaceae) relieved nociception and inflammation in mice - A topical herbal medicine against effects due to cnidarian venom-skin contact.

    PubMed

    da Silva Barth, Cristiane; Tolentino de Souza, Hugo Guilherme; Rocha, Lilian W; da Silva, Gislaine Francieli; Dos Anjos, Mariana Ferreira; Pastor, Veronica D'Avila; Belle Bresolin, Tania Mari; Garcia Couto, Angelica; Roberto Santin, José; Meira Quintão, Nara Lins

    2017-03-22

    Ipomoea pes-caprae is known as bayhops, beach morning glory or goat's foot, and in Brazil as salsa-de-praia. Its leaves are used in worldwide folk medicine for the relief of jellyfish-stings symptoms. The literature only reports the neutralizing effects of nonpolar plant derived over jellyfish venoms, without validating the popular use or exploring the mechanism of action. This study aimed to evaluate and validate the topical effects of a semisolid containing hydroethanolic extract obtained from the aerial parts of I. pes-caprae using different models of paw- and ear-oedema and spontaneous nociception in mice, attempting to better understand the mechanism involved in its effect. Leaf and stem of I. pes-caprae were extracted by ethanol 50% (v/v) and the soft-extract was incorporated in Hostacerin® cream base at 0.5%, 1.0% and 2% (w/w). The anti-hypersensitivity effects were evaluated by injecting the Physalia physalis venom into the right mice's hindpaw pre-treated either with the semisolid containing the I. pes-caprae extract or with the isolated majority compound 3,5-Di-O-caffeoylquinic acid (ISA). The topical anti-inflammatory activity was investigated using both preclinical models: paw oedema induced by trypsin, bradykinin (BK), histamine and carrageenan, and ear oedema induced by capsaicin. Additionally, the model of spontaneous nociception induced by trypsin and capsaicin were used to verify the topical antinociceptive activity. The animals pre-treated with the semisolid containing I. pes-caprae extract or with the intraplantar injection of the major component (ISA) had the mechanical hypersensitivity induced by P. physalis venom significantly reduced. Significant inhibition was also observed in paw-oedema induced by trypsin, histamine and BK, and in a less extent in carrageenan-induced paw oedema. Similar effect was observed in mice challenged to the capsaicin-induced ear-oedema. Besides the vascular effects, the extract interfered with leukocyte migration induced by histamine injection. Finally, the semisolid presented significant inhibition in trypsin- and capsaicin-induced spontaneous nociception. The hydroethanolic extract of I. pes-caprae showed compliance with the topical popular use of the herbal product to relieve the symptoms evoked by the cnidarian venom-skin contact, such as neurogenic oedema and nociception. The extract components seem to interfere with the effects resulting from the TRPV1, B 2 R and PAR-2 activation, once it interfered with painful-behaviour and oedema induced by capsaicin, BK and trypsin, pointing the histaminergic system as the main target, once it is an important mediator in the signalling pathway of the aforementioned receptors. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. No relevant modulation of TRPV1-mediated trigeminal pain by intranasal carbon dioxide in healthy humans.

    PubMed

    Jürgens, Tim P; Reetz, Romy; May, Arne

    2013-04-10

    Nasal insufflation of CO2 has been shown to exert antinociceptive respectively antihyperalgesic effects in animal pain models using topical capsaicin with activation of TRPV1-receptor positive nociceptive neurons. Clinical benefit from CO2 inhalation in patients with craniofacial pain caused by a putative activation of TRPV1 receptor positive trigeminal neurons has also been reported. These effects are probably mediated via an activation of TRPV1 receptor - positive neurons in the nasal mucosa with subsequent central inhibitory effects (such as conditioned pain modulation). In this study, we aimed to examine the effects of intranasal CO2 on a human model of craniofacial pain elicited by nasal application of capsaicin. In a first experiment, 48 healthy volunteers without previous craniofacial pain received intranasal capsaicin to provoke trigeminal pain elicited by activation of TRVP1 positive nociceptive neurons. Then, CO2 or air was insufflated alternatingly into the nasal cavity at a flow rate of 1 l/min for 60 sec each. In the subsequent experiment, all participants were randomized into 2 groups of 24 each and received either continuous nasal insufflation of CO2 or placebo for 18:40 min after nociceptive stimulation with intranasal capsaicin. In both experiments, pain was rated on a numerical rating scale every 60 sec. Contrary to previous animal studies, the effects of CO2 on experimental trigeminal pain were only marginal. In the first experiment, CO2 reduced pain ratings only minimally by 5.3% compared to air if given alternatingly with significant results for the main factor GROUP (F1,47=4.438; p=0.041) and the interaction term TIME*GROUP (F2.6,121.2=3.3; p=0.029) in the repeated-measures ANOVA. However, these effects were abrogated after continuous insufflation of CO2 or placebo with no significant changes for the main factors or the interaction term. Although mild modulatory effects of low-flow intranasal CO2 could be seen in this human model of TRPV-1 mediated activation of nociceptive trigeminal neurons, utility is limited as observed changes in pain ratings are clinically non-significant.

  8. Ascending neural pathways in the rat ileum in vitro--effect of capsaicin and involvement of nitric oxide.

    PubMed

    Allescher, H D; Sattler, D; Piller, C; Schusdziarra, V; Classen, M

    1992-07-07

    The aim of the present study was to develop and characterize an in vitro model of the rat ileum in which activation of the orally projecting neural excitatory pathway of the myenteric reflex is produced by electrical field stimulation anally to the recording site. The motility of a 10-cm segment of rat ileum was recorded using a perfused manometric assembly with side holes 2 and 4 cm orally to the stimulation site. Electrical field stimulation caused a contractile response in the oral but not in the aboral direction of the stimulation site. The contractile response, which was maximal using low stimulus frequencies (3 or 5 pulses per second (pps)) and decreased with higher frequencies (10 or 20 pps), was blocked by atropine (10(-6) M) at all frequencies tested after acute and after prolonged (greater than 30 min) treatment. The maximal contractile response at 3 pps was abolished by hexamethonium (10(-4) M), tetrodotoxin (5 x 10(-7) M) and by complete transection of the muscular wall between the stimulation and the recording site. Acute administration of capsaicin (8 x 10(-7) M) to the bath reduced the lag between the start of the electrical stimulation and the onset of the contractile response. Higher concentrations of capsaicin (10(-5) M) reduced the contractile response, but this was partly due to an unspecific effect of capsaicin. Blockade of nitric oxide (NO) synthesis by L-NG-nitro-arginine-methyl ester (L-NAME) (3 x 10(-4) M) augmented the contractile response to anal stimulation by 222.4% and reduced the lag period by 54.5%, whereas the stereoisomer D-NAME had no significant effect. The potentiating effects of L-NAME were reversed in the presence of L-arginine (3 x 10(-3) M) but not in the presence of the stereoisomer D-arginine (3 x 10(-3) M). This model can be used to study ascending neural pathways in the rat small intestine. The ascending excitatory response is abolished by atropine and hexamethonium and is modulated by capsicin-sensitive fibers. The ascending pathway is under tonic inhibition of metabolites of the L-arginine-NO pathway.

  9. Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction.

    PubMed

    Watase, Tetsuro; Shimizu, Kohei; Ohara, Kinuyo; Komiya, Hiroki; Kanno, Kohei; Hatori, Keisuke; Noma, Noboru; Honda, Kuniya; Tsuboi, Yoshiyuki; Katagiri, Ayano; Shinoda, Masamichi; Ogiso, Bunnai; Iwata, Koichi

    2018-01-01

    Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin to the upper first molar tooth pulp. We further investigated whether astroglial glutamine synthesis is involved in first molar tooth pulp hypersensitivity associated with masseter muscle contraction. Methods The first molar tooth pulp was treated with capsaicin or vehicle in masseter muscle contraction or sham rats, following which the astroglial glutamine synthetase inhibitor methionine sulfoximine or Phosphate buffered saline (PBS) was applied. Astroglial activation was assessed via immunohistochemistry. Results The mechanical head-withdrawal threshold of the ipsilateral masseter muscle was significantly decreased in masseter muscle contraction rats than in sham rats. Genioglossus electromyography activity was significantly higher in masseter muscle contraction rats than sham rats. Glial fibrillary acidic protein-immunoreactive cell density was significantly higher in masseter muscle contraction rats than in sham rats. Administration of methionine sulfoximine induced no significant changes in the density of glial fibrillary acidic protein-immunoreactive cells relative to PBS treatment. However, mechanical head-withdrawal threshold was significantly higher in masseter muscle contraction rats than PBS-treated rats after methionine sulfoximine administration. Genioglossus electromyography activity following first molar tooth pulp capsaicin treatment was significantly lower in methionine sulfoximine-treated rats than in PBS-treated rats. In the ipsilateral region, the total number of phosphorylated extracellular signal-regulated protein kinase immunoreactive cells in the medullary dorsal horn was significantly smaller upon first molar tooth pulp capsaicin application in methionine sulfoximine-treated rats than in PBS-treated rats. Conclusions Our results suggest that masseter muscle contraction induces astroglial activation, and that this activation spreads from caudal to the obex in the medullary dorsal horn, resulting in enhanced neuronal excitability associated with astroglial glutamine synthesis in medullary dorsal horn neurons receiving inputs from the tooth pulp. These findings provide significant insight into the mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle contraction.

  10. Feasibility of Topical Applications of Natural High-Concentration Capsaicinoid Solutions in Patients with Peripheral Neuropathic Pain: A Retrospective Analysis

    PubMed Central

    Mouraux, Andre; Deumens, Ronald; Leerink, Marjolein; le Polain de Waroux, Bernard; Joëlle, Quetin-Leclercq

    2016-01-01

    Background. Capsaicin, one of several capsaicinoid compounds, is a potent TRPV1 agonist. Topical application at high concentration (high concentration, >1%) induces a reversible disappearance of epidermal free nerve endings and is used to treat peripheral neuropathic pain (PNP). While the benefit of low-concentration capsaicin remains controversial, the 8%-capsaicin patch (Qutenza®, 2010, Astellas, Netherlands) has shown its effectiveness. This patch is, however, costly and natural high-concentration capsaicinoid solutions may represent a cheaper alternative to pure capsaicin. Methods. In this retrospective study, 149 patients were screened, 132 were included with a diagnosis of neuropathic pain, and eighty-four were retained in the final analyses (median age: 57.5 years [IQR25–75: 44.7–67.1], male/female: 30/54) with PNP who were treated with topical applications of natural high-concentration capsaicinoid solutions (total number of applications: 137). Indications were postsurgical PNP (85.7%) and nonsurgical PNP (14.3%) (posttraumatic, HIV-related, postherpetic, and radicular PNP). Objectives. To assess the feasibility of topical applications of natural high-concentration capsaicinoid solutions for the treatment of PNP. Results. The median treated area was 250 cm2 [IQR25–75: 144–531]. The median amount of capsaicinoids was 55.1 mg [IQR25–75: 28.7–76.5] per plaster and the median concentration was 172.3 μg/cm2 [IQR25–75: 127.6–255.2]. Most patients had local adverse effects on the day of treatment, such as mild to moderate burning pain and erythema. 13.6–19.4% of the patients experienced severe pain or erythema. Following treatment, 62.5% of patients reported a lower pain intensity or a smaller pain surface, and 35% reported a sustained pain relief lasting for at least 4 weeks. Conclusion. Analgesic topical treatment with natural high-concentration capsaicinoid is feasible and may represent a low cost alternative to alleviate PNP in clinical practice. PMID:28115879

  11. Involvement of Trigeminal Transition Zone and Laminated Subnucleus Caudalis in Masseter Muscle Hypersensitivity Associated with Tooth Inflammation

    PubMed Central

    Shimizu, Kohei; Matsumoto, Kunihito; Noma, Noboru; Matsuura, Shingo; Ohara, Kinuyo; Komiya, Hiroki; Watase, Tetsuro; Ogiso, Bunnai; Tsuboi, Yoshiyuki; Shinoda, Masamichi; Hatori, Keisuke; Nakaya, Yuka; Iwata, Koichi

    2014-01-01

    A rat model of pulpitis/periapical periodontitis was used to study mechanisms underlying extraterritorial enhancement of masseter response associated with tooth inflammation. Periapical bone loss gradually increased and peaked at 6 weeks after complete Freund’s adjuvant (CFA) application to the upper molar tooth pulp (M1). On day 3, the number of Fos-immunoreactive (IR) cells was significantly larger in M1 CFA rats compared with M1 vehicle (veh) rats in the trigeminal subnucleus interpolaris/caudalis transition zone (Vi/Vc). The number of Fos-IR cells was significantly larger in M1 CFA and masseter (Mass) capsaicin applied (M1 CFA/Mass cap) rats compared with M1 veh/Mass veh rats in the contralateral Vc and Vi/Vc. The number of phosphorylated extracellular signal-regulated kinase (pERK)-IR cells was significantly larger in M1 CFA/Mass cap and M1 veh/Mass cap rats compared to Mass-vehicle applied rats with M1 vehicle or CFA in the Vi/Vc. Pulpal CFA application caused significant increase in the number of Fos-IR cells in the Vi/Vc but not Vc on week 6. The number of pERK-IR cells was significantly lager in the rats with capsaicin application to the Mass compared to Mass-vehicle treated rats after pulpal CFA- or vehicle-application. However, capsaicin application to the Mass did not further affect the number of Fos-IR cells in the Vi/Vc in pulpal CFA-applied rats. The digastric electromyographic (d-EMG) activity after Mass-capsaicin application was significantly increased on day 3 and lasted longer at 6 weeks after pulpal CFA application, and these increase and duration were significantly attenuated by i.t. PD98059, a MEK1 inhibitor. These findings suggest that Vi/Vc and Vc neuronal excitation is involved in the facilitation of extraterritorial hyperalgesia for Mass primed with periapical periodontitis or acute pulpal-inflammation. Furthermore, phosphorylation of ERK in the Vi/Vc and Vc play pivotal roles in masseter hyperalgesia after pulpitis or periapical periodontitis. PMID:25279551

  12. Arthritis Pain: Do's and Don'ts

    MedlinePlus

    ... Arthritis is a leading cause of pain and disability worldwide. You can find plenty of advice about ... a winter indoors. Cream containing capsaicin may be applied to skin over a painful joint to relieve ...

  13. Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla.

    PubMed

    Gu, Fenglin; Chen, Yonggan; Hong, Yinghua; Fang, Yiming; Tan, Lehe

    2017-12-01

    High-performance liquid chromatography-mass spectrometry (LC-MS) was used for comprehensive metabolomic fingerprinting of vanilla fruits prepared from the curing process. In this study, the metabolic changes of vanilla pods and vanilla beans were characterized using MS-based metabolomics to elucidate the biosynthesis of vanillin. The vanilla pods were significantly different from vanilla beans. Seven pathways of vanillin biosynthesis were constructed, namely, glucovanillin, glucose, cresol, capsaicin, vanillyl alcohol, tyrosine, and phenylalanine pathways. Investigations demonstrated that glucose, cresol, capsaicin, and vanillyl alcohol pathway were detected in a wide range of distribution in microbial metabolism. Thus, microorganisms might have participated in vanillin biosynthesis during vanilla curing. Furthermore, the ion strength of glucovanillin was stable, which indicated that glucovanillin only participated in the vanillin biosynthesis during the curing of vanilla.

  14. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo

    PubMed Central

    Desai, Pinaki R.; Marepally, Srujan; Patel, Apurva R.; Voshavar, Chandrashekhar; Chaudhuri, Arabinda; Singh, Mandip

    2013-01-01

    The barrier properties of the skin pose a significant but not insurmountable obstacle for development of new effective anti-inflammatory therapies. The objective of this study was to design and evaluate therapeutic efficacy of anti-nociception agent Capsaicin (Cap) and anti-TNFα siRNA (siTNFα) encapsulated cyclic cationic head Lipid-Polymer hybrid Nanocarriers (CyLiPns) against chronic skin inflammatory diseases. Physico-chemical characterizations including hydrodynamic size, surface potential and entrapment efficacies of CyLiPns were found to be 163 ± 9 nm, 35.14 ± 8.23 mV and 92% for Cap, respectively. In vitro skin distribution studies revealed that CyLiPns could effectively deliver FITC-siRNA upto 360 µm skin depth. Further, enhanced (p<0.001) Cap permeation from CyLiPns was observed compared to Capsaicin-Solution and Capzasin-HP. Therapeutic efficacies of CyLiPns were assessed using imiquamod induced psoriatic plaque like model. CyLiPns carrying both Cap and siTNFα showed significant reduced expression of TNFα, NF-κB, IL-17, IL-23 and Ki-67 genes compare to either drugs alone (p<0.05) and was in close comparison with Topgraf®;. Collectively these findings support our notion that novel cationic lipid-polymer hybrid nanoparticles can efficiently carry siTNFα and Cap into deeper dermal milieu and Cap with combination of siTNFα show synergism in treating skin inflammation. PMID:23643662

  15. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    PubMed

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  16. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea.

    PubMed

    Diepvens, Kristel; Westerterp, Klaas R; Westerterp-Plantenga, Margriet S

    2007-01-01

    The global prevalence of obesity has increased considerably in the last decade. Tools for obesity management, including caffeine, ephedrine, capsaicin, and green tea have been proposed as strategies for weight loss and weight maintenance, since they may increase energy expenditure and have been proposed to counteract the decrease in metabolic rate that is present during weight loss. A combination of caffeine and ephedrine has shown to be effective in long-term weight management, likely due to different mechanisms that may operate synergistically, e.g., respectively inhibiting the phosphodiesterase-induced degradation of cAMP and enhancing the sympathetic release of catecholamines. However, adverse effects of ephedrine prevent the feasibility of this approach. Capsaicin has been shown to be effective, yet when it is used clinically it requires a strong compliance to a certain dosage, that has not been shown to be feasible yet. Also positive effects on body-weight management have been shown using green tea mixtures. Green tea, by containing both tea catechins and caffeine, may act through inhibition of catechol O-methyl-transferase, and inhibition of phosphodiesterase. Here, the mechanisms may also operate synergistically. In addition, tea catechins have antiangiogenic properties that may prevent development of overweight and obesity. Furthermore, the sympathetic nervous system is involved in the regulation of lipolysis, and the sympathetic innervation of white adipose tissue may play an important role in the regulation of total body fat in general.

  17. Role of substance P in cough.

    PubMed

    Sekizawa, K; Jia, Y X; Ebihara, T; Hirose, Y; Hirayama, Y; Sasaki, H

    1996-01-01

    The sensory neuropeptide, substance P (SP), is present in human airway nerves, beneath and within the epithelium where the condensed localization of neutral endopeptidase (NEP), the major enzyme degrading SP, is observed. To test the hypothesis whether SP stimulates the cough reflex and NEP modifies the cough reflex, we studied the cough response to various stimuli in awake guinea-pigs. Inhibition of NEP with phosphoramidon caused cough, which was inhibited by systemic capsaicin treatment and by aerosols of a specific NK1 receptor antagonist FK 888. Aerosols of FK 888 also inhibited cough induced by bronchoconstricting agents such as acetylcholine and histamine in non-sensitized animals and by ovalbumin antigen in animals sensitized to ovalbumin. The number of coughs induced by histamine aerosols was inhibited by systemic capsaicin treatment and enhanced by pretreatment with a NEP inhibitor phosphoramidon. Likewise, FK 888 inhibited the augmented cough response to aerosolized capsaicin in female guinea-pigs treated with a long-term medication of an angiotensin-converting enzyme inhibitor, cilazapril. In humans, aerosols of SP did not cause cough in normal subjects, whereas it did in patients with common colds. The SP fragment a major metabolite of SP produced by NEP, was less effective compared with SP in these patients, suggesting that damaged epithelium may facilitate the penetration of SP. These findings suggest that SP released from sensory nerves in response to stimuli may mediate cough and NEP may have a role in modulating SP-induced effects.

  18. Characteristics of dorsal root ganglia neurons sensitive to Substance P.

    PubMed

    Moraes, Eder Ricardo; Kushmerick, Christopher; Naves, Ligia Araujo

    2014-11-27

    Substance P modulates ion channels and the excitability of sensory neurons in pain pathways. Within the heterogeneous population of Dorsal Root Ganglia (DRG) primary sensory neurons, the properties of cells that are sensitive to Substance P are poorly characterized. To define this population better, dissociated rat DRG neurons were tested for their responsiveness to capsaicin, ATP and acid. Responses to ATP were classified according to the kinetics of current activation and desensitization. The same cells were then tested for modulation of action potential firing by Substance P. Acid and capsaicin currents were more frequently encountered in the largest diameter neurons. P2X3-like ATP currents were concentrated in small diameter neurons. Substance P modulated the excitability in 20 of 72 cells tested (28%). Of the Substance P sensitive cells, 10 exhibited an increase in excitability and 10 exhibited a decrease in excitability. There was no significant correlation between sensitivity to capsaicin and to Substance P. Excitatory effects of Substance P were strongly associated with cells that had large diameters, fired APs with large overshoots and slowly decaying after hyperpolarizations, and expressed acid currents at pH 7. No neurons that were excited by Substance P presented P2X3-like currents. In contrast, neurons that exhibited inhibitory effects of Substance P fired action potentials with rapidly decaying after hyperpolarizations. We conclude that excitatory effects of Substance P are restricted to a specific neuronal subpopulation with limited expression of putative nociceptive markers.

  19. The capsaicin analog nonivamide decreases total energy intake from a standardized breakfast and enhances plasma serotonin levels in moderately overweight men after administered in an oral glucose tolerance test: a randomized, crossover trial.

    PubMed

    Hochkogler, Christina M; Rohm, Barbara; Hojdar, Karin; Pignitter, Marc; Widder, Sabine; Ley, Jakob P; Krammer, Gerhard E; Somoza, Veronika

    2014-06-01

    Since bolus administration of capsaicin has been shown to reduce appetite and ad libitum energy intake, this study elucidated the satiating effect of the less pungent capsaicin analog, nonivamide, on subjective feelings of hunger, ad libitum food intake, and satiating hormones in moderately overweight male subjects. Following a randomized, crossover design, 24 male subjects (BMI 27.5 ± 1.53 kg/m(2) ) received either 75 g glucose in 300 mL water (control treatment, CT) or the same glucose solution supplemented with 0.15 mg nonivamide (nonivamide treatment, NT). Ratings of hunger were assessed before and 2 h after each intervention by means of visual analog scales. Ad libitum energy and macronutrient intakes from a standardized breakfast 2 h postintervention were calculated. Plasma glucose, insulin, peptide YY (3-36), glucagon-like peptide 1, and serotonin were quantified in blood samples drawn before and 15, 30, 60, 90, and 120 min after each intervention. NT reduced subjective feelings of hunger and ad libitum energy and carbohydrate intakes from a standardized breakfast compared to CT. Plasma analysis revealed higher mean plasma glucagon-like peptide 1 and serotonin concentrations after NT versus CT. Addition of 0.15 mg nonivamide to a glucose solution reduced ad libitum energy intake from a standardized breakfast in moderately overweight men. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of anti-migraine therapeutics using the capsaicin-induced dermal blood flow model.

    PubMed

    Buntinx, Linde; Vermeersch, Steve; de Hoon, Jan

    2015-11-01

    The efficacy of calcitonin gene-related peptide (receptor) (CGRP-(R)) blocking therapeutics in the treatment of acute migraine headache provided proof-of-concept for the involvement of CGRP in the pathophysiology of this disorder. One of the major hurdles for the development of any class of drugs, including CGRP blocking therapeutics, is the early clinical development process during which toxic and inefficacious compounds need to be eliminated as early as possible in order to focus on the most promising molecules. At this stage, human models providing proof of target engagement, combined with safety and tolerability studies, are extremely valuable in focusing on those therapeutics that have the highest engagement from the lowest exposure. They guide the go/no-go decision making, establish confidence in the candidate molecule by de-risking toxicity and safety issues and thereby speed up the early clinical development. In this review the focus is on the so called 'capsaicin model' as a typical example of a target engagement biomarker used as a human model for the development of CGRP blocking therapeutics. By applying capsaicin onto the skin, TRPV1 channels are activated and a CGRP-mediated increase in dermal blood flow can be quantified with laser Doppler perfusion imaging. Effective CGRP blocking therapeutics in turn, display blockade of this response. The translation of this biomarker model from animals to humans is discussed as well as the limitations of the assay in predicting the efficacy of anti-migraine drugs. © 2015 The British Pharmacological Society.

  1. Gastroprotective effects of flavonoids in plant extracts.

    PubMed

    Zayachkivska, O S; Konturek, S J; Drozdowicz, D; Konturek, P C; Brzozowski, T; Ghegotsky, M R

    2005-03-01

    The purpose of this paper is to overview the relations between plant-originated substances and their bioactivity measured in terms of antioxidant, cytoprotective and antiulcer activities. In addition, we assessed whether these compounds are capable of affecting the gastric mucosal lesions induced by absolute ethanol applied intragastrically (i.g.). The following plant-originated flavonoid substances were considered; Solon (Sophoradin extract), Amaranth seed extract, grapefruit-seed extract (GSE) and capsaicin (extract of chilly pepper). The area of gastric mucosa lesions and gastric blood flow were measured in rats with ethanol-induced lesions without (control) and with one of the tested substances without and with capsaicin denervation of afferent nerves or administration of L-nitro-arginine (L-NNA), an inhibitor of nitric oxide synthase (NOS). Male Wistar rats, weighing 180-220 g fasted for 24 h before the study where used 100% ethanol was applied i.g. to induce gastric lesions, whose area was determined by planimetry. Gastric blood flow was assessed using electrolytic regional blood flowmeter. All tested plant-originated substances afforded gastroprotection against ethanol-induced damage and this was accompanied by increase in gastric microcirculation, both changes being reversed by pretreatment with neurotoxic dose of capsaicin or by pretreatment with L-NNA. We conclude that plant-originated flavonoid substances are highly gastroprotective probably due to enhancement of the expression of constitutive NOS and release of NO and neuropeptides such as calcitonin gene related peptide (CGRP) released from sensory afferent nerves increasing gastric microcirculation.

  2. Influence of plant-originated gastroproteciive and antiulcer substances on gastric mucosal repair.

    PubMed

    Zayachkivska, O S; Konturek, S J; Drozdowicz, D; Brzozowski, T; Gzhegotsky, M R

    2004-01-01

    Fundamental basis of cellular and molecular mechanisms involved in mucosal injury and repair in gastrointestinal tract helps to develop new therapeutic approaches to various gut mucosal injury- related diseases. The study was aimed to assess the relations between plant-originated substances and their bioactivity measured in terms of antioxidant, cytoprotective and antiulceric activities and to deteminate if these effects are capable of affecting the gastric mucosal lesions induced by absolute ethanol applied intragastrically. The following plant-originated substances were considered: Solon, capsaicin, grapefruit-seed extract and amaranth. The area of gastric mucosa lesions and gastric blood flow were measured in rats with ethanol-induced lesions without (control) and with one of the tested substances without and with capsaicin denervation of afferent nerves or administration of L-nitro-arginine (L-NNA), an inhibitor of nitric oxide synthase (NOS). male Wistar rats, weighing 180-220 g fasted for 24 h before the study, 100% ethanol was applied ig to induced gastric lesions, whose area was determined by planimetry. Gastric blood flow was assessed using electrolytic regional blood flowmeter. All tested plant-originated substances afforded gastroprotection against ethanol-induced damage and this was accompanied by an increase in gastric microcirculation, both changes being reversed by pretreatment with neurotoxic dose of capsaicin or by pretreatment-with L-NNA. Plant-originated substances are highly gastroprotective probably due to enhancement of the expression of NOS I, NO release and an increase in gastric microcirculation.

  3. The chimeric approach reveals that differences in the TRPV1 pore domain determine species-specific sensitivity to block of heat activation.

    PubMed

    Papakosta, Marianthi; Dalle, Carine; Haythornthwaite, Alison; Cao, Lishuang; Stevens, Edward B; Burgess, Gillian; Russell, Rachel; Cox, Peter J; Phillips, Stephen C; Grimm, Christian

    2011-11-11

    The capsaicin-, heat-, and proton-activated ion channel TRPV1, a member of the transient receptor potential cation channel family is a polymodal nociceptor. For almost a decade, TRPV1 has been explored by the pharmaceutical industry as a potential target for example for pain conditions. Antagonists which block TRPV1 activation by capsaicin, heat, and protons were developed by a number of pharmaceutical companies. The unexpected finding of hyperthermia as an on-target side effect in clinical studies using polymodal TRPV1 antagonists has prompted companies to search for ways to circumvent hyperthermia, for example by the development of modality-selective antagonists. The significant lack of consistency of the pharmacology of many TRPV1 antagonists across different species has been a further obstacle. JYL-1421 for example was shown to block capsaicin and heat responses in human and monkey TRPV1 while it was largely ineffective in blocking heat responses in rat TRPV1. These findings suggested structural dissimilarities between different TRPV1 species relevant for small compound antagonism for example of heat activation. Using a chimeric approach (human and rat TRPV1) in combination with a novel FLIPR-based heat activation assay and patch-clamp electrophysiology we have identified the pore region as being strongly linked to the observed species differences. We demonstrate that by exchanging the pore domains JYL-1421, which is modality-selective in rat can be made modality-selective in human TRPV1 and vice-versa.

  4. Use of spray-cooling technology for development of microencapsulated capsicum oleoresin for the growing pig as an alternative to in-feed antibiotics: a study of release using in vitro models.

    PubMed

    Meunier, J-P; Cardot, J-M; Manzanilla, E G; Wysshaar, M; Alric, M

    2007-10-01

    The aim of this study was to develop sustained release microspheres of capsicum oleoresin as an alternative to in-feed additives. Two spray-cooling technologies, a fluidized air bed using a spray nozzle system and a vibrating nozzle system placed on top of a cooling tower, were used to microencapsulate 20% of capsicum oleoresin in a hydrogenated, rapeseed oil matrix. Microencapsulation was intended to reduce the irritating effect of capsicum oleoresin and to control its release kinetics during consumption by the animal. Particles produced by the fluidized air bed process (batch F1) ranged from 180 to 1,000 microm in size. The impact of particle size on release of capsaicin, the main active compound of capsicum oleoresin, was studied after sieving batch F1 to obtain 4 formulations: F1a (180 to 250 microm), F1b (250 to 500 microm), F1c (500 to 710 microm), and F1d (710 to 1,000 microm). The vibrating nozzle system can produce a monodispersive particle size distribution. In this study, particles of 500 to 710 microm were made (batch F2). The release kinetics of the formulations was estimated in a flow-through cell dissolution apparatus (CFC). The time to achieve a 90% dissolution value (T90%) of capsaicin for subbatches of F1 increased with the increase in particle size (P < 0.05), with the greatest value of 165.5 +/- 13.2 min for F1d. The kinetics of dissolution of F2 was slower than all F1 subbatches, with a T90% of 422.7 +/- 30.0 min. Nevertheless, because CFC systems are ill suited for experiments with solid feed and thus limit their predictive values, follow-up studies were performed on F1c and F2 using an in vitro dynamic model that simulated more closely the digestive environment. For both formulations a lower quantity of capsaicin dialyzed was recorded under fed condition vs. fasting condition with 46.9% +/- 1.0 vs. 74.7% +/- 2.7 for F1c and 32.4% +/- 1.4 vs. 44.2% +/- 2.6 for F2, respectively. This suggests a possible interaction between capsaicin and the feed matrix. Moreover, 40.4 +/- 3.9% of the total capsaicin intake in F2 form was dialyzed after 8 h of digestion when feed had been granulated vs. 32.4 +/- 1.4% when feed had not been granulated, which suggests that the feed granulation process could lead to a partial degradation of the microspheres and to a limitation of the sustained release effect. This study demonstrates the potential and the limitations of spray-cooling technology to encapsulate feed additives.

  5. Osthole inhibits histamine-dependent itch via modulating TRPV1 activity.

    PubMed

    Yang, Niu-Niu; Shi, Hao; Yu, Guang; Wang, Chang-Ming; Zhu, Chan; Yang, Yan; Yuan, Xiao-Lin; Tang, Min; Wang, Zhong-Li; Gegen, Tana; He, Qian; Tang, Kehua; Lan, Lei; Wu, Guan-Yi; Tang, Zong-Xiang

    2016-05-10

    Osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson, has long been used in China as an antipruritic herbal medicine; however, the antipruitic mechanism of osthole is unknown. We studied the molecular mechanism of osthole in histamine-dependent itch by behavioral test, Ca(2+) imaging, and electrophysiological experiments. First, osthole clearly remitted the scratching behaviors of mice induced with histamine, HTMT, and VUF8430. Second, in cultured dorsal root ganglion (DRG) neurons, osthole showed a dose-dependent inhibitory effect to histamine. On the same neurons, osthole also decreased the response to capsaicin and histamine. In further tests, the capsaicin-induced inward currents were inhibited by osthole. These results revealed that osthole inhibited histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how osthole exerts anti-pruritus effects and suggests that osthole may be a useful treatment medicine for histamine-dependent itch.

  6. Osthole inhibits histamine-dependent itch via modulating TRPV1 activity

    PubMed Central

    Yang, Niu-Niu; Shi, Hao; Yu, Guang; Wang, Chang-Ming; Zhu, Chan; Yang, Yan; Yuan, Xiao-Lin; Tang, Min; Wang, Zhong-li; Gegen, Tana; He, Qian; Tang, Kehua; Lan, Lei; Wu, Guan-Yi; Tang, Zong-Xiang

    2016-01-01

    Osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson, has long been used in China as an antipruritic herbal medicine; however, the antipruitic mechanism of osthole is unknown. We studied the molecular mechanism of osthole in histamine-dependent itch by behavioral test, Ca2+ imaging, and electrophysiological experiments. First, osthole clearly remitted the scratching behaviors of mice induced with histamine, HTMT, and VUF8430. Second, in cultured dorsal root ganglion (DRG) neurons, osthole showed a dose-dependent inhibitory effect to histamine. On the same neurons, osthole also decreased the response to capsaicin and histamine. In further tests, the capsaicin-induced inward currents were inhibited by osthole. These results revealed that osthole inhibited histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how osthole exerts anti-pruritus effects and suggests that osthole may be a useful treatment medicine for histamine-dependent itch. PMID:27160770

  7. Targeting Transient Receptor Potential Vanilloid 1 (TRPV1) Channel Softly: The Discovery of Passerini Adducts as a Topical Treatment for Inflammatory Skin Disorders.

    PubMed

    Serafini, Marta; Griglio, Alessia; Aprile, Silvio; Seiti, Fabio; Travelli, Cristina; Pattarino, Franco; Grosa, Giorgio; Sorba, Giovanni; Genazzani, Armando A; Gonzalez-Rodriguez, Sara; Butron, Laura; Devesa, Isabel; Fernandez-Carvajal, Asia; Pirali, Tracey; Ferrer-Montiel, Antonio

    2018-05-24

    Despite being an old molecule, capsaicin is still a hot topic in the scientific community, and the development of new capsaicinoids is a promising pharmacological approach in the management of skin disorders related to inflammation and pruritus. Here we report the synthesis and the evaluation of capsaicin soft drugs that undergo deactivation by the hydrolyzing activity of skin esterases. The implanting of an ester group in the lipophilic moiety of capsaicinoids by the Passerini multicomponent reaction affords both agonists and antagonists that retain transient receptor potential vanilloid 1 channel (TRPV1) modulating activity and, at the same time, are susceptible to hydrolysis. The most promising antagonist identified shows in vivo anti-nociceptive activity on pruritus and hyperalgesia without producing hyperthermia, thus validating it as novel treatment for dermatological conditions that implicate TRPV1 channel dysfunction.

  8. A Novel Operant-based Behavioral Assay of Mechanical Allodynia in the Orofacial Region of Rats

    PubMed Central

    Rohrs, Eric L.; Kloefkorn, Heidi E.; Lakes, Emily H.; Jacobs, Brittany Y.; Neubert, John K.; Caudle, Robert M.; Allen, Kyle D.

    2015-01-01

    Background Detecting behaviors related to orofacial pain in rodent models often relies on subjective investigator grades or methods that place the animal in a stressful environment. In this study, an operant-based behavioral assay is presented for the assessment of orofacial tactile sensitivity in the rat. New Methods In the testing chamber, rats are provided access to a sweetened condensed milk bottle; however, a 360° array of stainless steel wire loops impedes access. To receive the reward, an animal must engage the wires across the orofacial region. Contact with the bottle triggers a motor, requiring the animal to accept increasing pressure on the face during the test. To evaluate this approach, tolerated bottle distance was measured for 10 hairless Sprague-Dawley rats at baseline and 30 minutes after application of capsaicin cream (0.1%) to the face. The experiment was repeated to evaluate the ability of morphine to reverse this effect. Results The application of capsaicin cream reduced tolerated bottle distance measures relative to baseline (p<0.05). As long as morphine did not cause reduced participation due to sedation, subcutaneous morphine dosing reduced the effects of capsaicin (p<0.001). Comparison with Existing Method For behavioral tests, experimenters often make subjective decisions of an animal’s response. Operant methods can reduce these effects by measuring an animal’s selection in a reward-conflict decision. Herein, a method to measure orofacial sensitivity is presented using an operant system. Conclusions This operant device allows for consistent measurement of heightened tactile sensitivity in the orofacial regions of the rat. PMID:25823368

  9. An evaluation of the antinociceptive effects of Phα1β, a neurotoxin from the spider Phoneutria nigriventer, and ω-conotoxin MVIIA, a cone snail Conus magus toxin, in rat model of inflammatory and neuropathic pain.

    PubMed

    de Souza, Alessandra Hubner; Castro, Célio J; Rigo, Flavia Karine; de Oliveira, Sara Marchesan; Gomez, Renato Santiago; Diniz, Danuza Montijo; Borges, Marcia Helena; Cordeiro, Marta Nascimento; Silva, Marco Aurélio Romano; Ferreira, Juliano; Gomez, Marcus Vinicius

    2013-01-01

    Voltage-sensitive calcium channels (VSCCs) underlie cell excitability and are involved in the mechanisms that generate and maintain neuropathic and inflammatory pain. We evaluated in rats the effects of two VSCC blockers, ω-conotoxin MVIIA and Phα1β, in models of inflammatory and neuropathic pain induced with complete Freund's adjuvant (CFA) and chronic constrictive injury (CCI), respectively. We also evaluated the effects of the toxins on capsaicin-induced Ca(2+) influx in dorsal root ganglion (DRG) neurons obtained from rats exposed to both models of pain. A single intrathecal injection of Phα1β reversibly inhibits CFA and CCI-induced mechanical hyperalgesia longer than a single injection of ω-conotoxin MVIIA. Phα1β and MVIIA also inhibited capsaicin-induced Ca(2+) influx in DRG neurons. The inhibitory effect of Phα1β on capsaicin-induced calcium transients in DRG neurons was greater in the CFA model of pain, while the inhibitory effect of ω-conotoxin MVIIA was greater in the CCI model. The management of chronic inflammatory and neuropathic pain is still a major challenge for clinicians. Phα1β, a reversible inhibitor of VSCCs with a preference for N-type Ca(2+) channels, has potential as a novel therapeutic agent for inflammatory and neuropathic pain. Clinical studies are necessary to establish the role of Phα1β in the treatment of chronic pain.

  10. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    PubMed Central

    Lee, M. C.; O'Neill, J.; Dickenson, A. H.; Iannetti, G. D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. PMID:27098022

  11. In vivo potency of different ligands on voltage-gated sodium channels.

    PubMed

    Safrany-Fark, Arpad; Petrovszki, Zita; Kekesi, Gabriella; Liszli, Peter; Benedek, Gyorgy; Keresztes, Csilla; Horvath, Gyongyi

    2015-09-05

    The Ranvier nodes of thick myelinated nerve fibers contain almost exclusively voltage-gated sodium channels (Navs), while the unmyelinated fibers have several receptors (e.g., cannabinoid, transient receptor potential vanilloid receptor 1), too. Therefore, a nerve which contains only motor fibers can be an appropriate in vivo model for selective influence of Navs. The goals were to evaluate the potency of local anesthetic drugs on such a nerve in vivo; furthermore, to investigate the effects of ligands with different structures (arachidonic acid, anandamide, capsaicin and nisoxetine) that were proved to inhibit Navs in vitro with antinociceptive properties. The marginal mandibular branch of the facial nerve was explored in anesthetized Wistar rats; after its stimulation, the electrical activity of the vibrissae muscles was registered following the perineural injection of different drugs. Lidocaine, bupivacaine and ropivacaine evoked dose-dependent decrease in electromyographic activity, i.e., lidocaine had lower potency than bupivacaine or ropivacaine. QX-314 did not cause any effect by itself, but its co-application with lidocaine produced a prolonged inhibition. Nisoxetine had a very low potency. While anandamide and capsaicin in high doses caused about 50% decrease in the amplitude of action potential, arachidonic acid did not influence the responses. We proved that the classical local anesthetics have high potency on motor nerves, suggesting that this method might be a reliable model for selective targeting of Navs in vivo circumstances. It is proposed that the effects of these endogenous lipids and capsaicin on sensory fibers are not primarily mediated by Navs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  13. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients.

    PubMed

    Singleton, J Robinson; Marcus, Robin L; Lessard, Margaret K; Jackson, Justin E; Smith, A Gordon

    2015-01-01

    Unmyelinated cutaneous axons are vulnerable to physical and metabolic injury, but also capable of rapid regeneration. This balance may help determine risk for peripheral neuropathy associated with diabetes or metabolic syndrome. Capsaicin application for 48 hours induces cutaneous fibers to die back into the dermis. Regrowth can be monitored by serial skin biopsies to determine intraepidermal nerve fiber density (IENFD). We used this capsaicin axotomy technique to examine the effects of exercise on cutaneous regenerative capacity in the setting of metabolic syndrome. Baseline ankle IENFD and 30-day cutaneous regeneration after thigh capsaicin axotomy were compared for participants with type 2 diabetes (n = 35) or metabolic syndrome (n = 32) without symptoms or examination evidence of neuropathy. Thirty-six participants (17 with metabolic syndrome) then joined twice weekly observed exercise and lifestyle counseling. Axotomy regeneration was repeated in month 4 during this intervention. Baseline distal leg IENFD was significantly reduced for both metabolic syndrome and diabetic groups. With exercise, participants significantly improved exercise capacity and lower extremity power. Following exercise, 30-day reinnervation rate improved (0.051 ± 0.027 fibers/mm/day before vs 0.072 ± 0.030 after exercise, p = 0.002). Those who achieved improvement in more metabolic syndrome features experienced a greater degree of 30-day reinnervation (p < 0.012). Metabolic syndrome was associated with reduced baseline IENFD and cutaneous regeneration capacity comparable to that seen in diabetes. Exercise-induced improvement in metabolic syndrome features increased cutaneous regenerative capacity. The results underscore the potential benefit to peripheral nerve function of a behavioral modification approach to metabolic improvement. © 2014 American Neurological Association.

  14. Failure of intrathecal ketorolac to reduce remifentanil-induced postinfusion hyperalgesia in humans.

    PubMed

    Eisenach, James C; Tong, Chuanyao; Curry, Regina S

    2015-01-01

    In rodents, acute exposure to opioids results in transient antinociception followed by longer lasting hypersensitivity to tactile or thermal stimuli, a phenomenon termed opioid-induced hyperalgesia. This hypersensitivity can be blocked or reversed by intrathecally administered cyclooxygenase inhibitors, including ketorolac, suggesting a role for spinal prostaglandins. In surgical patients, the dose of intraoperative opioid, particularly the short-acting drug, remifentanil, is directly related to increased pain and opioid requirements for many hours postoperatively. In addition, experimentally induced tactile hypersensitivity in humans is exaggerated after cessation of remifentanil infusions. The degree of this experimental opioid-induced hyperalgesia is reduced by systemic treatment with cyclooxygenase inhibitors, and investigators have speculated that this reduction reflects the actions in the central nervous system, most likely in the spinal cord. To test this hypothesis, we measured cerebrospinal fluid prostaglandin E2 concentrations during and after remifentanil infusion in 30 volunteers. These volunteers received intrathecal ketorolac or saline in a random, blinded manner during intravenous remifentanil infusion after generation of hypersensitivity by topical capsaicin. Remifentanil reduced pain to noxious heat stimuli and reduced areas of capsaicin-induced hypersensitivity similarly in those receiving intrathecal ketorolac or saline. The primary outcome measure, area of capsaicin-induced hypersensitivity after stopping remifentanil, showed a similar increase in those receiving ketorolac as in those receiving saline. Cerebrospinal fluid prostaglandin E2 concentrations did not increase during postinfusion hyperalgesia compared with those during infusion, and they were not increased during infusion compared with those in historical controls. These data fail to support the hypothesis that acute opioid-induced hyperalgesia reflects spinal cyclooxygenase activation causing central sensitization.

  15. Dynamic exercise training prevents exercise pressor reflex overactivity in spontaneously hypertensive rats

    PubMed Central

    Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.; Smith, Scott A.

    2015-01-01

    Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training. PMID:26163445

  16. Pathophysiological mechanisms of neuropathic pain: comparison of sensory phenotypes in patients and human surrogate pain models.

    PubMed

    Vollert, Jan; Magerl, Walter; Baron, Ralf; Binder, Andreas; Enax-Krumova, Elena K; Geisslinger, Gerd; Gierthmühlen, Janne; Henrich, Florian; Hüllemann, Philipp; Klein, Thomas; Lötsch, Jörn; Maier, Christoph; Oertel, Bruno; Schuh-Hofer, Sigrid; Tölle, Thomas R; Treede, Rolf-Detlef

    2018-06-01

    As an indirect approach to relate previously identified sensory phenotypes of patients suffering from peripheral neuropathic pain to underlying mechanisms, we used a published sorting algorithm to estimate the prevalence of denervation, peripheral and central sensitization in 657 healthy subjects undergoing experimental models of nerve block (NB) (compression block and topical lidocaine), primary hyperalgesia (PH) (sunburn and topical capsaicin), or secondary hyperalgesia (intradermal capsaicin and electrical high-frequency stimulation), and in 902 patients suffering from neuropathic pain. Some of the data have been previously published. Randomized split-half analysis verified a good concordance with a priori mechanistic sensory profile assignment in the training (79%, Cohen κ = 0.54, n = 265) and the test set (81%, Cohen κ = 0.56, n = 279). Nerve blocks were characterized by pronounced thermal and mechanical sensory loss, but also mild pinprick hyperalgesia and paradoxical heat sensations. Primary hyperalgesia was characterized by pronounced gain for heat, pressure and pinprick pain, and mild thermal sensory loss. Secondary hyperalgesia was characterized by pronounced pinprick hyperalgesia and mild thermal sensory loss. Topical lidocaine plus topical capsaicin induced a combined phenotype of NB plus PH. Topical menthol was the only model with significant cold hyperalgesia. Sorting of the 902 patients into these mechanistic phenotypes led to a similar distribution as the original heuristic clustering (65% identity, Cohen κ = 0.44), but the denervation phenotype was more frequent than in heuristic clustering. These data suggest that sorting according to human surrogate models may be useful for mechanism-based stratification of neuropathic pain patients for future clinical trials, as encouraged by the European Medicines Agency.

  17. Area 3a Neuron Response to Skin Nociceptor Afferent Drive

    PubMed Central

    Favorov, Oleg V.; Li, Yongbiao; Quibrera, Miguel; Tommerdahl, Mark

    2009-01-01

    Area 3a neurons are identified that respond weakly or not at all to skin contact with a 25–38 °C probe, but vigorously to skin contact with the probe at ≥49 °C. Maximal rate of spike firing associated with 1- to 7-s contact at ≥49 °C occurs 1-2 s after probe removal from the skin. The activity evoked by 5-s contact with the probe at 51 °C remains above-background for ∼20 s after probe retraction. After 1-s contact at 55–56 °C activity remains above-background for ∼4 s. Magnitude of spike firing associated with 5-s contact increases linearly as probe temperature is increased from 49–51 °C. Intradermal capsaicin injection elicits a larger (∼2.5×) and longer-lasting (100×) increase in area 3a neuron firing rate than 5-s contact at 51 °C. Area 3a neurons exhibit enhanced or novel responsivity to 25–38 °C contact for a prolonged time after intradermal injection of capsaicin or α, β methylene adenosine triphosphate. Their 1) delayed and persisting increase in spike firing in response to contact at ≥49 °C, 2) vigorous and prolonged response to intradermal capsaicin, and 3) enhanced and frequently novel response to 25–38 °C contact following intradermal algogen injection or noxious skin heating suggest that the area 3a neurons identified in this study contribute to second pain and mechanical hyperalgesia/allodynia. PMID:18534992

  18. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK

    PubMed Central

    Beltrán, Leopoldo R.; Dawid, Corinna; Beltrán, Madeline; Gisselmann, Guenter; Degenhardt, Katharina; Mathie, Klaus; Hofmann, Thomas; Hatt, Hanns

    2013-01-01

    For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P) potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1), TASK-3 (K2P 9.1), and TRESK (K2P 18.1) channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreased the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine. PMID:24302912

  19. Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel.

    PubMed

    Boukalova, Stepana; Teisinger, Jan; Vlachova, Viktorie

    2013-03-01

    The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Involvement of the TRPV1 receptor in plasma extravasation in airways of rats treated with an angiotensin-converting enzyme inhibitor.

    PubMed

    de Oliveira, Janiana Raíza Jentsch Matias; Otuki, Michel Fleith; Cabrini, Daniela Almeida; Brusco, Indiara; Oliveira, Sara Marchesan; Ferreira, Juliano; André, Eunice

    2016-12-01

    Angiotensin-converting enzyme inhibitors (ACEIs) are widely used in the treatment of hypertension, congestive heart failure and renal disease, and are considered relatively safe and generally well-tolerated drugs. However, adverse effects of ACEIs have been reported, including non-productive cough and angioedema, which can lead to poor adherence to therapy. The mechanisms by which ACEIs promote adverse effects are not fully elucidated, although increased bradykinin plasma levels following ACEI therapy seem to play an important role. Since bradykinin can sensitise the transient potential vanilloid receptor 1 (TRPV1), we investigated the role of TRPV1 in plasma extravasation in the trachea and bronchi of rats treated with the ACEI captopril. We observed that intravenous (i.v.) administration of captopril did not cause plasma extravasation in the trachea or bronchi of spontaneously breathing rats, but induced plasma extravasation in the trachea and bronchi of artificially ventilated rats. The intratracheal (i.t.) instillation of capsaicin or bradykinin also induced an increase in plasma extravasation in the trachea and bronchi of artificially ventilated rats. As expected, capsaicin-induced plasma extravasation was inhibited by i.t. pretreatment with the TRPV1 selective antagonist capsazepine (CPZ) while bradykinin-induced plasma extravasation was reduced by i.t. pretreatment with the selective B 2 receptor antagonist Icatibant, originally known as HOE 140 (HOE). Interestingly, bradykinin-induced plasma extravasation was also inhibited by CPZ. The pretreatment with HOE and CPZ, singly or in combination and at doses which do not cause inhibitory effects per se, significantly inhibited the plasma extravasation induced by captopril treatment in artificially ventilated rats. In addition, treatment with a high dose of capsaicin in newborn rats, which induces degeneration of TRPV1-expressing sensory neurons, abolished both capsaicin and captopril-induced plasma extravasation in artificially ventilated rats. In conclusion, our study identified that captopril treatment promoted sensitisation of TRPV1, via B 2 receptor activation, inducing plasma extravasation in the airways of mechanically ventilated rats. The present findings add a new view about the role of TRPV1 in the plasma extravasation induced by captopril and could to contribute to the elucidation of mechanisms by which ACEI induces adverse effects on airways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Glucagon-like peptide 1 receptor (GLP-1R) expression by nerve fibres in inflammatory bowel disease and functional effects in cultured neurons.

    PubMed

    Anand, Uma; Yiangou, Yiangos; Akbar, Ayesha; Quick, Tom; MacQuillan, Anthony; Fox, Mike; Sinisi, Marco; Korchev, Yuri E; Jones, Ben; Bloom, Steve R; Anand, Praveen

    2018-01-01

    Glucagon like-peptide 1 receptor (GLP-1R) agonists diminish appetite and may contribute to the weight loss in inflammatory bowel disease (IBD). The aim of this study was to determine, for the first time, the expression of GLP-1R by colon nerve fibres in patients with IBD, and functional effects of its agonists in cultured rat and human sensory neurons. GLP-1R and other nerve markers were studied by immunohistochemistry in colon biopsies from patients with IBD (n = 16) and controls (n = 8), human dorsal root ganglia (DRG) tissue, and in GLP-1R transfected HEK293 cells. The morphological effects of incretin hormones oxyntomodulin, exendin-4 and glucagon were studied on neurite extension in cultured DRG neurons, and their functional effects on capsaicin and ATP signalling, using calcium imaging. Significantly increased numbers of colonic mucosal nerve fibres were observed in IBD biopsies expressing GLP-1R (p = 0.0013), the pan-neuronal marker PGP9.5 (p = 0.0008), and sensory neuropeptide CGRP (p = 0.0014). An increase of GLP-1R positive nerve fibres in IBD colon was confirmed with a different antibody to GLP-1R (p = 0.016). GLP-1R immunostaining was intensely positive in small and medium-sized neurons in human DRG, and in human and rat DRG cultured neurons. Co-localization of GLP-1R expression with neuronal markers in colon and DRG confirmed the neural expression of GLP-1R, and antibody specificity was confirmed in HEK293 cells transfected with the GLP-1R. Treatment with oxyntomodulin, exendin-4 and GLP-1 increased neurite length in cultured neurons compared with controls, but did not stimulate calcium influx directly, or affect capsaicin responses. However, exendin-4 significantly enhanced ATP responses in human DRG neurons. Our results show that increased GLP-1R innervation in IBD bowel could mediate enhanced visceral afferent signalling, and provide a peripheral target for therapeutic intervention. The differential effect of GLP-1R agonists on capsaicin and ATP responses in neurons suggest they may not affect pain mechanisms mediated by the capsaicin receptor TRPV1, but may enhance the effects of purinergic agonists.

  2. Glucagon-like peptide 1 receptor (GLP-1R) expression by nerve fibres in inflammatory bowel disease and functional effects in cultured neurons

    PubMed Central

    Yiangou, Yiangos; Akbar, Ayesha; Quick, Tom; MacQuillan, Anthony; Fox, Mike; Sinisi, Marco; Korchev, Yuri E.; Jones, Ben; Bloom, Steve R.; Anand, Praveen

    2018-01-01

    Introduction Glucagon like-peptide 1 receptor (GLP-1R) agonists diminish appetite and may contribute to the weight loss in inflammatory bowel disease (IBD). Objectives The aim of this study was to determine, for the first time, the expression of GLP-1R by colon nerve fibres in patients with IBD, and functional effects of its agonists in cultured rat and human sensory neurons. Methods GLP-1R and other nerve markers were studied by immunohistochemistry in colon biopsies from patients with IBD (n = 16) and controls (n = 8), human dorsal root ganglia (DRG) tissue, and in GLP-1R transfected HEK293 cells. The morphological effects of incretin hormones oxyntomodulin, exendin-4 and glucagon were studied on neurite extension in cultured DRG neurons, and their functional effects on capsaicin and ATP signalling, using calcium imaging. Results Significantly increased numbers of colonic mucosal nerve fibres were observed in IBD biopsies expressing GLP-1R (p = 0.0013), the pan-neuronal marker PGP9.5 (p = 0.0008), and sensory neuropeptide CGRP (p = 0.0014). An increase of GLP-1R positive nerve fibres in IBD colon was confirmed with a different antibody to GLP-1R (p = 0.016). GLP-1R immunostaining was intensely positive in small and medium-sized neurons in human DRG, and in human and rat DRG cultured neurons. Co-localization of GLP-1R expression with neuronal markers in colon and DRG confirmed the neural expression of GLP-1R, and antibody specificity was confirmed in HEK293 cells transfected with the GLP-1R. Treatment with oxyntomodulin, exendin-4 and GLP-1 increased neurite length in cultured neurons compared with controls, but did not stimulate calcium influx directly, or affect capsaicin responses. However, exendin-4 significantly enhanced ATP responses in human DRG neurons. Conclusion Our results show that increased GLP-1R innervation in IBD bowel could mediate enhanced visceral afferent signalling, and provide a peripheral target for therapeutic intervention. The differential effect of GLP-1R agonists on capsaicin and ATP responses in neurons suggest they may not affect pain mechanisms mediated by the capsaicin receptor TRPV1, but may enhance the effects of purinergic agonists. PMID:29813107

  3. Diet-Induced Obesity Enhances TRPV1-Mediated Neurovascular Reactions in the Dura Mater.

    PubMed

    Marics, Balázs; Peitl, Barna; Pázmándi, Kitti; Bácsi, Attila; Németh, József; Oszlács, Orsolya; Jancsó, Gábor; Dux, Mária

    2017-03-01

    Exploring the pathophysiological changes in transient receptor potential vanilloid 1 (TRPV1) receptor of the trigeminovascular system in high-fat, high-sucrose (HFHS) diet-induced obesity of experimental animals. Clinical and experimental observations suggest a link between obesity and migraine. Accumulating evidence indicates that metabolic and immunological alterations associated with obesity may potentially modulate trigeminovascular functions. A possible target for obesity-induced pathophysiological changes is the TRPV1/capsaicin receptor which is implicated in the pathomechanism of headaches in a complex way. Male Sprague-Dawley rats were fed a regular (n = 25) or HFHS diet (n = 26) for 20 weeks. At the end of the dietary period, body weight of the animals was normally distributed in both groups and it was significantly higher in animals on HFHS diet. Therefore, experimental groups were regarded as control and HFHS diet-induced obese groups. Capsaicin-induced changes in meningeal blood flow and release of calcitonin gene-related peptide (CGRP) from dural trigeminal afferents were measured in control and obese rats. The distribution of TRPV1- and CGRP-immunoreactive meningeal sensory nerves was also compared in whole mount preparations of the dura mater. Metabolic parameters of the animals were assessed by examining glucose and insulin homeostasis as well as plasma cytokine concentrations. HFHS diet was accompanied by reduced food consumption and greater fluid and energy intakes in addition to increased body weight of the animals. HFHS diet increased fasting blood glucose and insulin concentrations as well as levels of circulating proinflammatory cytokines interleukin-1β and interleukin-6. In obese animals, dural application of the archetypal TRPV1 agonist capsaicin resulted in significantly augmented vasodilatory and vasoconstrictor responses as compared to controls. Diet-induced obesity was also associated with enhanced basal and capsaicin-induced CGRP release from meningeal afferents ex vivo. Except for minor morphological changes, the distribution of dural TRPV1- and CGRP-immunoreactive afferents was similar in control and obese animals. Our results suggest that obesity induced by long-term HFHS diet results in sensitization of the trigeminovascular system. Changes in TRPV1-mediated vascular reactions and CGRP release are pathophysiological alterations that may be of relevance to the enhanced headache susceptibility of obese individuals. © 2017 American Headache Society.

  4. Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons

    PubMed Central

    Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.

    2011-01-01

    Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 μM), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and capsaicin-elicited sEPSCs in TNC slices. The same effects of capsaicin and sumatriptan were found in acutely dissociated DiI-labeled TG neurons innervating cerebral dura. Conclusion Our results build on previous work indicating that TRPV1 channels in trigeminal nociceptors play a role in craniofacial pain. Our findings that TRPV1 is inhibited by the specific antimigraine drug sumatriptan, and that TRPV1 channels are functional in neurons projecting to cerebral dura suggests a specific role for these channels in migraine or cluster headache. PMID:22289052

  5. SUSCEPTIBILITY TO POLLUTANT-INDUCED AIRWAY INFLAMMATION IS NEUROGENICALLY MEDIATED.

    EPA Science Inventory

    Neurogenic inflammation in the airways involves the activation of sensory irritant receptors (capsaicin, VR1) by noxious stimuli and the subsequent release of neuropeptides (e.g., SP, CGRP, NKA) from these fibers. Once released, these peptides initiate and sustain symptoms of ...

  6. Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by β-cyclodextrin inclusion complex in mice.

    PubMed

    Silva, Juliane C; Almeida, Jackson R G S; Quintans, Jullyana S S; Gopalsamy, Rajiv Gandhi; Shanmugam, Saravanan; Serafini, Mairim Russo; Oliveira, Maria R C; Silva, Bruno A F; Martins, Anita O B P B; Castro, Fyama F; Menezes, Irwin R A; Coutinho, Henrique D M; Oliveira, Rita C M; Thangaraj, Parimelazhagan; Araújo, Adriano A S; Quintans-Júnior, Lucindo J

    2016-12-01

    Orofacial pain is associated with diagnosis of chronic pain of head, face, mouth, neck and all the intraoral structures. Carvacrol, a naturally occurring isoprenoid with diverse class of biological activities including anti-inflammatory, analgesic, antitumor and antioxidant properties. Now, the antinociceptive effect was studied in mice pretreatment with carvacrol (CARV) and β-cyclodextrin complex containing carvacrol (CARV-βCD) in formalin-, capsaicin-, and glutamate- induced orofacial nociception. Mice were pretreated with vehicle (0.9% Nacl, p.o.), CARV (10 and 20mg/kg, p.o.), CARV-βCD (10 and 20mg/kg, p.o.) or MOR (10mg/kg, i.p.) before the nociceptive behavior induced by subcutaneous injections (s.c.) of formalin (20μl, 2%), capsaicin (20μl, 2.5μg) or glutamate (20μl, 25μM) into the upper lip respectively. The interference on motor coordination was determined using rotarod and grip strength meter apparatus. CARV-βCD reduced the nociceptive during the two phases of the formalin test, whereas CARV did not produced the reduction in face-rubbing behavior in the initial phase. CARV-βCD (20mg/kg, p.o.) produced 49.3% behavior pain while CARV alone at 20mg/kg, p.o, produced 28.7% of analgesic inhibition in the second phase of formalin test. CARV, CARV-βCD and Morphine (MOR) showed a significant reduction against nociception caused by capsaicin or glutamate injection. Thus the encapsulation of carvacrol in β-cyclodextrin can acts as a considerable therapeutic agent with pharmacological interest for the orofacial pain management. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.

    PubMed

    Zugaj, D; Chenet, A; Petit, L; Vaglio, J; Pascual, T; Piketty, C; Bourdes, V

    2018-02-04

    Currently, imaging technologies that can accurately assess or provide surrogate markers of the human cutaneous microvessel network are limited. Dynamic optical coherence tomography (D-OCT) allows the detection of blood flow in vivo and visualization of the skin microvasculature. However, image processing is necessary to correct images, filter artifacts, and exclude irrelevant signals. The objective of this study was to develop a novel image processing workflow to enhance the technical capabilities of D-OCT. Single-center, vehicle-controlled study including healthy volunteers aged 18-50 years. A capsaicin solution was applied topically on the subject's forearm to induce local inflammation. Measurements of capsaicin-induced increase in dermal blood flow, within the region of interest, were performed by laser Doppler imaging (LDI) (reference method) and D-OCT. Sixteen subjects were enrolled. A good correlation was shown between D-OCT and LDI, using the image processing workflow. Therefore, D-OCT offers an easy-to-use alternative to LDI, with good repeatability, new robust morphological features (dermal-epidermal junction localization), and quantification of the distribution of vessel size and changes in this distribution induced by capsaicin. The visualization of the vessel network was improved through bloc filtering and artifact removal. Moreover, the assessment of vessel size distribution allows a fine analysis of the vascular patterns. The newly developed image processing workflow enhances the technical capabilities of D-OCT for the accurate detection and characterization of microcirculation in the skin. A direct clinical application of this image processing workflow is the quantification of the effect of topical treatment on skin vascularization. © 2018 The Authors. Skin Research and Technology Published by John Wiley & Sons Ltd.

  8. Sex-dependent expression of TRPV1 in bladder arterioles

    PubMed Central

    Phan, Thieu X.; Ton, Hoai T.; Chen, Yue; Basha, Maureen E.

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a major nociceptive ion channel implicated in bladder physiology and/or pathophysiology. However, the precise expression of TRPV1 in neuronal vs. nonneuronal bladder cells is uncertain. Here we used reporter mouse lines (TRPV1-Cre:tdTomato and TRPV1PLAP-nlacZ) to map expression of TRPV1 in postnatal bladder. TRPV1 was not detected in the urothelium, however, we found marked expression of TRPV1 lineage in sensory nerves, and surprisingly, in arterial/arteriolar smooth muscle (ASM) cells. Tomato fluorescence was prominent in the vesical arteries and in small-diameter (15–40 μm) arterioles located in the suburothelial layer with a near equal distribution in bladder dome and base. Notably, arteriolar TRPV1 expression was greater in females than in males and increased in both sexes after 90 days of age, suggesting sex hormone and age dependency. Analysis of whole bladder and vesical artery TRPV1 mRNA revealed a similar sex and developmental dependence. Pharmacological experiments confirmed functional TRPV1 protein expression; capsaicin increased intracellular Ca2+ in ∼15% of ASM cells from wild-type female bladders, but we observed no responses to capsaicin in bladder arterioles isolated from TRPV1-null mice. Furthermore, capsaicin triggered arteriole constriction that was rapidly reversed by the TRPV1 antagonist, BCTC. These data show that predominantly in postpubertal female mice, bladder ASM cells express functional TRPV1 channels that may act to constrict arterioles. TRPV1 may therefore play an important role in regulating the microcirculation of the female bladder, and this effect may be of significance during inflammatory conditions. PMID:27654891

  9. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons.

    PubMed

    Pittman, Sherry K; Gracias, Neilia G; Fehrenbacher, Jill C

    2016-05-01

    Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization.

    PubMed

    Huang, Yung-Jen; Lee, Kuan H; Grau, James W

    2017-02-01

    Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABA A agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation.

    PubMed

    Gregorio-Teruel, Lucia; Valente, Pierluigi; González-Ros, José Manuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2014-03-01

    The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.

  12. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways.

    PubMed

    Liang, M; Lee, M C; O'Neill, J; Dickenson, A H; Iannetti, G D

    2016-08-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. Copyright © 2016 the American Physiological Society.

  13. Comparison of Two Methods for Inducing Reflex Cough in Patients With Parkinson's Disease, With and Without Dysphagia.

    PubMed

    Hegland, Karen W; Troche, Michelle S; Brandimore, Alexandra; Okun, Michael S; Davenport, Paul W

    2016-02-01

    Aspiration pneumonia is a common cause of death in people with Parkinson's disease (PD). Dysfunctional swallowing occurs in the majority of people with PD, and research has shown that cough function is also impaired. Previous studies suggest that testing reflex cough by having participants inhale a cough-inducing stimulus through a nebulizer may be a reliable indicator of swallowing dysfunction, or dysphagia. The primary goal of this study was to determine the cough response to two different cough-inducing stimuli in people with and without PD. The second goal of this study was to compare the cough response to the two different stimuli in people with PD, with and without swallowing dysfunction. Seventy adults (49 healthy and 21 with PD) participated in the study. Aerosolized water (fog) and 200 μM capsaicin were used to induce cough. Each substance was placed in a small, hand-held nebulizer, and presented to the participant. Each cough stimulus was presented three times. The total number of coughs produced to each stimulus trial was recorded. All participants coughed more to capsaicin versus fog (p < 0.001). A categorical 'responder' and 'non-responder' variable for the fog stimulus, defined as whether or not the participant coughed at least two times to two of three presentations of the stimulus, yields sensitivity of 77.8 % and a specificity of 90.9 % for identifying PD participants with and without dysphagia. The data show a differential response of the PD participants to the capsaicin versus fog stimuli. Clinically, this finding may allow for earlier identification of people with PD who are in need of a swallowing evaluation. As well, there are implications for the neural control of cough in this patient population.

  14. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    PubMed Central

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  15. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    PubMed

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  16. Morphine, but not sodium cromoglycate, modulates the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro.

    PubMed Central

    Ray, N. J.; Jones, A. J.; Keen, P.

    1991-01-01

    1. Opioids have been shown to inhibit substance P (SP) release from primary afferent neurones (PAN). In addition, opioid receptors have been identified on PAN of the vagus nerves. Sodium cromoglycate (SCG) decreases the excitability of C-fibres in the lung of the dog in vivo. We have utilised a multi-superfusion system to investigate the effect of opioids and SCG on the release of SP from the rat trachea in vitro. 2. Pretreatment of newborn rats with capsaicin (50 mg kg-1 s.c. at day 1 and 2 of life) resulted in a 93.2 +/- 6.3% reduction in tracheal substance P-like immunoreactivity (SP-LI) content when determined by radioimmunoassay in the adult. 3. Exposure to isotonically elevated potassium concentrations (37-90 mM), capsaicin (100 nM-10 microM), and bradykinin (BK; 10nm-1 microM) but not des-Arg9-BK (1 microM) stimulated SP-LI release by a calcium-dependent mechanism. 4. SCG (1 microM and 100 microM) did not affect spontaneous, potassium (60 mM)- or BK (1 microM)-stimulated SP-LI release. 5. Morphine (0.1-100 microM) caused dose-related inhibition of potassium (60 mM)-stimulated SP-LI release with the greatest inhibition of 60.4 +/- 13.7% at 100 microM. The effect of morphine was not mimicked by the kappa-opioid receptor agonist, U50,488H (10 microM) or the delta-opioid receptor agonist, Tyr-(D-Pen)-Gly-Phe-(D-Pen) (DPDPE). 6. The effect of morphine was totally abolished by prior and concomitant exposure to naloxone (100 nM) which had no effect on control release values.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1713104

  17. Medial prefrontal cortex TRPV1 channels modulate the baroreflex cardiac activity in rats

    PubMed Central

    Lagatta, D C; Ferreira‐Junior, N C

    2015-01-01

    Background and Purpose The ventral portion of the medial prefrontal cortex (vMPFC) comprises the infralimbic (IL), prelimbic (PL) and dorsopenducular (DP) cortices. The IL and PL regions facilitate the baroreceptor reflex arc. This facilitatory effect on the baroreflex is thought to be mediated by vMPFC glutamatergic transmission, through NMDA receptors. The glutamatergic transmission can be modulated by other neurotransmitters, such as the endocannabinoids, which are agonists of the TRPV1 receptor. TRPV1 channels facilitate glutamatergic transmission in the brain. Thus, we hypothesized that TRPV1 receptors in the vMPFC enhance the cardiac baroreflex response. Experimental Approach Stainless steel guide cannulae were bilaterally implanted into the vMPFC of male Wistar rats. Afterwards, a catheter was inserted into the femoral artery, for recording MAP and HR, and into the femoral vein for assessing baroreflex activation. Key Results Microinjections of the TRPV1 receptor antagonists capsazepine and 6‐iodo‐nordihydrocapsaicin (6‐IODO) into the vMPFC reduced the cardiac baroreflex activity in unanaesthetized rats. Capsaicin microinjected into the vMPFC increased the cardiac baroreflex activity in unanaesthetized rats. When an ineffective dose of the TRPV1 receptor antagonist 6‐IODO was used, the capsaicin‐induced increase in the cardiac baroreflex response was abolished. The higher doses of capsaicin administered into the vMPFC after the ineffective dose of 6‐IODO displaced the dose–response curve of the baroreflex parameters to the right, with no alteration in the maximum effect of capsaicin. Conclusions and Implications The results of the present study show that stimulation of the TRPV1 receptors in the vMPFC increases the cardiac baroreceptor reflex response. PMID:26360139

  18. Effects of macrolides on antigen-induced increases in cough reflex sensitivity in guinea pigs.

    PubMed

    Tokuda, Akira; Ohkura, Noriyuki; Fujimura, Masaki; Furusho, Shiho; Abo, Miki; Katayama, Nobuyuki

    2010-02-01

    Macrolides are antibiotics that have anti-inflammatory activities. Hence, they are used for both acute and chronic inflammatory airway diseases. However, the effects of these agents on allergic airway disorders presenting with an isolated chronic cough, such as non-asthmatic eosinophilic bronchitis and eosinophilic tracheobronchitis with cough hypersensitivity (atopic cough), still remain to be elucidated. To determine if macrolides are effective in the management of chronic cough caused by eosinophilic airway inflammation. The cough reflex sensitivity to inhaled capsaicin was measured at 48h after challenge with an aerosolized antigen in actively sensitized guinea pigs. The 14-, 15- or 16-membered macrolides (erythromycin, azythromycin, or josamycin, respectively) were given intraperitoneally every 12h after the antigen challenge. Bronchoalveolar lavage and the resection of the tracheal tissue were performed immediately after the measurement of the cough response to capsaicin. The antigen-induced increase in the number of coughs elicited by capsaicin inhalation was significantly reduced by treatments with erythromycin and azythromycin, but not with josamycin. Erythromycin dose-dependently inhibited the increases in the substance P, prostaglandin E(2) and leukotriene B(4) levels, but not the histamine levels, in the bronchoalveolar lavage fluid. However, erythromycin did not influence the antigen-induced decrease in the neutral endopeptidase (NEP) activity in the tracheal tissue. Both 14- and 15-membered, but not 16-membered, macrolides could reduce the antigen-induced cough reflex hypersensitivity by inhibiting the antigen-induced release of the afferent sensory nerve sensitizers. These macrolides may be therapeutically useful for the treatment of isolated chronic cough based on cough reflex hypersensitivity in allergic airway diseases such as non-asthmatic eosinophilic bronchitis and atopic cough. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Sensory neuropeptides modulate cigarette smoke-induced decrease in neutral endopeptidase activity in guinea pig airways.

    PubMed

    Kuo, H P; Lu, L C

    1995-01-01

    Cigarette smoke (CS) inhalation stimulates C-fibers to release sensory neuropeptides which mediate airway reflex responses to prevent irritants from entering the lower airways. When CS is inhaled via the upper airways, these airway defense responses may modulate the effect of CS on airway NEP activity and related airway hyperresponsiveness. To examine this possibility, we exposed guinea pigs to 1:10 diluted mid-tar cigarette smoke 100 puffs per day for 7 days and recorded pulmonary resistance of cumulative doses of neurokinin A (NKA, 10(-12)-10(-8) mol/kg, i.v.) or methacholine (Mch, 1-50 micrograms/kg, i.v.). NEP activity in the tracheobronchi was measured using fluorometric assay. Exposure of CS alone failed to alter the dose-response to NKA or Mch compared with air control. NEP activity in the airways after CS exposure was slightly but significantly lower than that of air control. Capsaicin pretreatment 1 week before CS exposure significantly shifted the dose-response curves of NKA, but not Mch, to the left and decreased NEP activity in the airways to a greater extent compared with CS exposure alone group. Capsaicin pretreatment alone failed to alter the responsiveness to NKA or NEP activity. CS also induced a significant increase in neutrophil counts in airways. Capsaicin pretreatment enhanced the effect of CS on neutrophil recruitment. We conclude that sensory neuropeptides may have a protective role in modulation of airways NEP activity downregulation induced by CS, probably by preventing CS from entering the lower airways or the chronic release of sensory neuropeptides induced by CS providing increased amount of substrata for NEP upregulation, and therefore modify the direct effect of CS on NEP activity and related airway hyperresponsiveness.

  20. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability.

    PubMed

    Iannotti, Fabio Arturo; Hill, Charlotte L; Leo, Antonio; Alhusaini, Ahlam; Soubrane, Camille; Mazzarella, Enrico; Russo, Emilio; Whalley, Benjamin J; Di Marzo, Vincenzo; Stephens, Gary J

    2014-11-19

    Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg(2+)-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg(2+)-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg(2+)-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.

  1. Interactions between superficial and deep dorsal horn spinal cord neurons in the processing of nociceptive information.

    PubMed

    Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy

    2012-12-01

    In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Psychophysics, flare, and neurosecretory function in human pain models: capsaicin versus electrically evoked pain.

    PubMed

    Geber, Christian; Fondel, Ricarda; Krämer, Heidrun H; Rolke, Roman; Treede, Rolfe-Detlef; Sommer, Claudia; Birklein, Frank

    2007-06-01

    Intradermal capsaicin injection (CAP) and electrical current stimulation (ES) are analyzed in respect to patterns and test-retest reliability of pain as well as sensory and neurosecretory changes. In 10 healthy subjects, 2x CAP (50 microg) and 2x ES (5 to 30 mA) were applied to the volar forearm. The time period between 2 identical stimulations was about 4 months. Pain ratings, areas of mechanical hyperalgesia, and allodynia were assessed. The intensity of sensory changes was quantified by using quantitative sensory testing. Neurogenic flare was assessed by using laser Doppler imaging. Calcitonin gene-related peptide (CGRP) release was quantified by dermal microdialysis in combination with an enzyme immunoassay. Time course and peak pain ratings were different between CAP and ES. Test-retest correlation was high (r > or = 0.73). Both models induced primary heat hyperalgesia and primary plus secondary pin-prick hyperalgesia. Allodynia occurred in about half of the subjects. Maximum flare sizes did not differ between CAP and ES, but flare intensities were higher for ES. Test-retest correlation was higher for flare sizes than for flare intensity. A significant CGRP release could only be measured after CAP. The different time courses of pain stimulation (CAP: rapidly decaying pain versus ES: pain plateau) led to different peripheral neurosecretory effects but induced similar central plasticity and hyperalgesia. The present study gives a detailed overview of psychophysical and neurosecretory characteristics induced by noxious stimulation with capsaicin and electrical current. We describe differences, similarities, and reproducibility of these human pain models. These data might help to interpret past and future results of human pain studies using experimental pain.

  3. A prospective study on symptom generation according to spicy food intake and TRPV1 genotypes in functional dyspepsia patients.

    PubMed

    Lee, S-Y; Masaoka, T; Han, H S; Matsuzaki, J; Hong, M J; Fukuhara, S; Choi, H S; Suzuki, H

    2016-09-01

    Capsaicin is an ingredient of red peppers that binds to transient receptor potential vanilloid subtype 1 (TRPV1), and Koreans eat more capsaicin-rich food than do Japanese. This study aimed to compare symptom generation according to TRPV1 genotypes and the intake of spicy foods. Consecutive functional dyspepsia (FD) patients who were evaluated at Konkuk University Medical Centre (Korea) and Keio University Hospital (Japan) were included. Questionnaires on spicy food intake, patient assessment of gastrointestinal symptoms (PAGI-SYM), patient assessment of quality of life, and hospital anxiety and depression scale were provided. Blood was sampled for the detection of TRPV1 polymorphisms, and upper gastrointestinal endoscopy was performed with biopsies. Of 121 included subjects, 35 and 28 carried the TRPV1 CC and GG genotypes, respectively, with the prevalence rates not differing between Japan and Korea. The prevalence of FD subtypes did not differ with the spicy food intake, TRPV1 genotypes, or Helicobacter pylori infection. Neither TRPV1 polymorphisms nor H. pylori infections were related to scores on the PAGI-SYM questionnaires, but spicy food intake was positively correlated with the scores for stomach fullness (p = 0.001) and retching (p = 0.001). Using the linear regression analysis, stomach fullness was associated with spicy food intake (p = 0.007), whereas retching was related to younger age (p < 0.001) and female gender (p = 0.014). Upper gastrointestinal symptoms are more common in subjects with a higher consumption of spicy foods, younger age and female gender, regardless of TRPV1 genotypes and the H. pylori infection status. Capsaicin-rich foods may induce stomach fullness. © 2016 John Wiley & Sons Ltd.

  4. Peripheral antinociceptive action of mangiferin in mouse models of experimental pain: role of endogenous opioids, K(ATP)-channels and adenosine.

    PubMed

    Lopes, Synara C; da Silva, Ana Virginia L; Arruda, Bruno Rodrigues; Morais, Talita C; Rios, Jeison Barros; Trevisan, Maria Teresa S; Rao, Vietla S; Santos, Flávia A

    2013-09-01

    This study aimed to assess the possible systemic antinociceptive activity of mangiferin and to clarify the underlying mechanism, using the acute models of chemical (acetic acid, formalin, and capsaicin) and thermal (hot-plate and tail-flick) nociception in mice. Mangiferin at oral doses of 10 to 100 mg/kg evidenced significant antinociception against chemogenic pain in the test models of acetic acid-induced visceral pain and in formalin- and capsaicin-induced neuro-inflammatory pain, in a naloxone-sensitive manner, suggesting the participation of endogenous opiates in its mechanism. In capsaicin test, the antinociceptive effect of mangiferin (30 mg/kg) was not modified by respective competitive and non-competitive transient receptor potential vanilloid 1 (TRPV1) antagonists, capsazepine and ruthenium red, or by pretreatment with L-NAME, a non-selective nitric oxide synthase inhibitor, or by ODQ, an inhibitor of soluble guanylyl cyclase. However, mangiferin effect was significantly reversed by glibenclamide, a blocker of K(ATP) channels and in animals pretreated with 8-phenyltheophylline, an adenosine receptor antagonist. Mangiferin failed to modify the thermal nociception in hot-plate and tail-flick test models, suggesting that its analgesic effect is only peripheral but not central. The orally administered mangiferin (10-100 mg/kg) was well tolerated and did not impair the ambulation or the motor coordination of mice in respective open-field and rota-rod tests, indicating that the observed antinociception was unrelated to sedation or motor abnormality. The findings of this study suggest that mangiferin has a peripheral antinociceptive action through mechanisms that involve endogenous opioids, K(ATP)-channels and adenosine receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons.

    PubMed

    Koplas, P A; Rosenberg, R L; Oxford, G S

    1997-05-15

    Capsaicin (Cap) is a pungent extract of the Capsicum pepper family, which activates nociceptive primary sensory neurons. Inward current and membrane potential responses of cultured neonatal rat dorsal root ganglion neurons to capsaicin were examined using whole-cell and perforated patch recording methods. The responses exhibited strong desensitization operationally classified as acute (diminished response during constant Cap exposure) and tachyphylaxis (diminished response to successive applications of Cap). Both acute desensitization and tachyphylaxis were greatly diminished by reductions in external Ca2+ concentration. Furthermore, chelation of intracellular Ca2+ by addition of either EGTA or bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid to the patch pipette attenuated both forms of desensitization even in normal Ca2+. Release of intracellular Ca2+ by caffeine triggered acute desensitization in the absence of extracellular Ca2+, and barium was found to effectively substitute for calcium in supporting desensitization. Cap activated inward current at an ED50 of 728 nM, exhibiting cooperativity (Hill coefficient, 2.2); however, both forms of desensitization were only weakly dependent on [Cap], suggesting a dissociation between activation of Cap-sensitive channels and desensitization. Removal of ATP and GTP from the intracellular solutions resulted in nearly complete tachyphylaxis even with intracellular Ca2+ buffered to low levels, whereas changes in nucleotide levels did not significantly alter the acute form of desensitization. These data suggest a key role for intracellular Ca2+ in desensitization of Cap responses, perhaps through Ca2+-dependent dephosphorylation at a locus that normally sustains Cap responsiveness via ATP-dependent phosphorylation. It also seems that the signaling mechanisms underlying the two forms of desensitization are not identical in detail.

  6. Effects of topical combinations of clonidine and pentoxifylline on capsaicin-induced allodynia and postcapsaicin tourniquet-induced pain in healthy volunteers: a double-blind, randomized, controlled study.

    PubMed

    Ragavendran, J Vaigunda; Laferrière, André; Bennett, Gary J; Ware, Mark A; Gandhi, Wiebke; Bley, Keith; Schweinhardt, Petra; Coderre, Terence J

    2016-10-01

    This double-blind randomized controlled study was designed to evaluate the analgesic effects of topical treatments with clonidine (CLON) and pentoxifylline (PTX) tested alone or as low- and high-dose combinations in a human experimental model of pain. Of 69 healthy subjects aged 18 to 60 years, 23 each were randomly allocated to low-dose (0.04% + 2%) and high-dose (0.1% + 5%) CLON + PTX groups. Both of these groups also received their corresponding placebos in one of 2 treatment periods separated by at least 48 hours. Twenty-three additional subjects received either CLON (0.1%) or PTX (5%) as single drug treatments, in each of 2 treatment periods. Assessment of analgesic efficacy was based on allodynic effects of previous intraepidermal capsaicin injection, as well as postcapsaicin tourniquet-induced pain 50 minutes following capsaicin injection. Visual Analogue Scale (VAS) ratings of pain intensity and the area of dynamic mechanical allodynia were the primary outcome measures, whereas area of punctate mechanical allodynia (PMA) served as a secondary outcome measure. Topical treatments with high- or low-dose combinations significantly reduced VAS ratings compared with corresponding placebo treatments throughout the period of postcapsaicin tourniquet-induced pain. Importantly, the high-dose combination produced lower VAS ratings than CLON alone, which were lower than PTX alone. Results also revealed significant inhibition of postcapsaicin dynamic mechanical allodynia and PMA for the high-dose combination compared with placebo, and of PMA for CLON compared with the low-dose combination. Hence, the present data are supportive of further clinical investigation of the high-dose topical combination of CLON + PTX in complex regional pain syndrome and neuropathic pain patients, for which our preclinical data predict efficacy.

  7. Reflex regulation of airway sympathetic nerves in guinea-pigs

    PubMed Central

    Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel

    2006-01-01

    Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway contraction induced by parasympathetic nerve activation in the airways. PMID:16581869

  8. Modulatory effect of neuropeptide Y on acetylcholine-induced oedema and vasoconstriction in isolated perfused lungs of rabbit.

    PubMed Central

    Delaunois, A; Gustin, P; Dessy-Doize, C; Ansay, M

    1994-01-01

    1. The modulatory role of neuropeptide Y (NPY) on pulmonary oedema induced by acetylcholine and capsaicin was investigated. The effects of NPY on the haemodynamic response to acetylcholine, phenylephrine and substance P were also investigated. 2. Isolated, ventilated, exsanguinated lungs of the rabbit were perfused with a constant flow of recirculating blood-free perfusate. The double/arterial/venous occlusion method was used to partition the total pressure gradient (delta Pt) into four components: the arterial gradient (delta Pa), the pre- and post-capillary gradients (respectively delta Pa' and delta Pv') and the venous pressure gradient (delta Pv). Endothelial permeability was evaluated by measuring the capillary filtration coefficient (Kf,c). 3. Acetylcholine (10(-8) M to 10(-4) M) and substance P (SP, 10(-10) M to 10(-6) M) induced a concentration-dependent increase in the Kf,c. Capsaicin (10(-4) M) and 5-hydroxytryptamine (5-HT) (10(-4) M) also increased this parameter. NPY (10(-8) M) completely inhibited the effects of acetylcholine and capsaicin on the Kf,c, without preventing the effects of substance P and 5-HT. 4. Acetylcholine induced concentration-dependent vasoconstriction in the precapillary segment. The effect was inhibited by NPY and aspirin, an inhibitor of cyclo-oxygenase, while ketanserin, a 5-HT2 receptor antagonist, and SR140333, a new NK1 antagonist, had no protective effect. Phenylephrine increased delta Pa at high concentration, an effect also inhibited by NPY and aspirin. Substance P had no significant haemodynamic effect. When injected together with NPY, substance P (10(-6) M) induced a significant increase in the total pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7532083

  9. Hyperexcitability of bladder afferent neurons associated with reduction of Kv1.4 α-subunit in rats with spinal cord injury.

    PubMed

    Takahashi, Ryosuke; Yoshizawa, Tsuyoshi; Yunoki, Takakazu; Tyagi, Pradeep; Naito, Seiji; de Groat, William C; Yoshimura, Naoki

    2013-12-01

    To clarify the functional and molecular mechanisms inducing hyperexcitability of C-fiber bladder afferent pathways after spinal cord injury we examined changes in the electrophysiological properties of bladder afferent neurons, focusing especially on voltage-gated K channels. Freshly dissociated L6-S1 dorsal root ganglion neurons were prepared from female spinal intact and spinal transected (T9-T10 transection) Sprague Dawley® rats. Whole cell patch clamp recordings were performed on individual bladder afferent neurons. Kv1.2 and Kv1.4 α-subunit expression levels were also evaluated by immunohistochemical and real-time polymerase chain reaction methods. Capsaicin sensitive bladder afferent neurons from spinal transected rats showed increased cell excitability, as evidenced by lower spike activation thresholds and a tonic firing pattern. The peak density of transient A-type K+ currents in capsaicin sensitive bladder afferent neurons from spinal transected rats was significantly less than that from spinal intact rats. Also, the KA current inactivation curve was displaced to more hyperpolarized levels after spinal transection. The protein and mRNA expression of Kv1.4 α-subunits, which can form transient A-type K+ channels, was decreased in bladder afferent neurons after spinal transection. Results indicate that the excitability of capsaicin sensitive C-fiber bladder afferent neurons is increased in association with reductions in transient A-type K+ current density and Kv1.4 α-subunit expression in injured rats. Thus, the Kv1.4 α-subunit could be a molecular target for treating overactive bladder due to neurogenic detrusor overactivity. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Musculoskeletal Health and Injury Prevention

    DTIC Science & Technology

    2008-07-01

    benefits , from maintaining low back health to preventing knee injury; • Pilates is an alternative approach for treating non-specific low back pain...Omega-3 Fatty Acids • Calcium and Vitamin D • Coenzyme Q10 • Capsaicin Cream ( chili peppers) Summary Musculoskeletal health requires: • A

  11. 21 CFR 310.545 - Drug products containing certain active ingredients offered over-the-counter (OTC) for certain uses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products. Aspirin Chloral hydrate Chlorobutanol Cyclomethycaine sulfate Eugenol Hexylresorcinol... isothiocyanate Aspirin Bismuth sodium tartrate Camphor (exceeding 3 percent) Capsaicin Capsicum Capsicum... oxide (vii) Poison ivy, poison oak, and poison sumac drug products. Alcohol Aspirin Benzethonium...

  12. 21 CFR 310.545 - Drug products containing certain active ingredients offered over-the-counter (OTC) for certain uses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products. Aspirin Chloral hydrate Chlorobutanol Cyclomethycaine sulfate Eugenol Hexylresorcinol... isothiocyanate Aspirin Bismuth sodium tartrate Camphor (exceeding 3 percent) Capsaicin Capsicum Capsicum... oxide (vii) Poison ivy, poison oak, and poison sumac drug products. Alcohol Aspirin Benzethonium...

  13. 21 CFR 310.545 - Drug products containing certain active ingredients offered over-the-counter (OTC) for certain uses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products. Aspirin Chloral hydrate Chlorobutanol Cyclomethycaine sulfate Eugenol Hexylresorcinol... isothiocyanate Aspirin Bismuth sodium tartrate Camphor (exceeding 3 percent) Capsaicin Capsicum Capsicum... oxide (vii) Poison ivy, poison oak, and poison sumac drug products. Alcohol Aspirin Benzethonium...

  14. Where did the chili get its spice? Biogeography of capsaicinoid production in ancestral wild chili species.

    PubMed

    Tewksbury, Joshua J; Manchego, Carlos; Haak, David C; Levey, Douglas J

    2006-03-01

    The biogeography of pungency in three species of wild chili in the chaco and surrounding highland habitats of southeastern Bolivia is described. We report that Capsicum chacoense, C. baccatum, and C. eximium are polymorphic for production of capsaicin and its analogs, such that completely pungent and completely nonpungent individuals co-occur in some populations. In C. chacoense, the density of plants and the proportion of pungent plants increased with elevation. Above 900 m, all individuals in all populations except two were pungent; nonpungent individuals in at least one of the two polymorphic populations were likely a result of spreading by humans. The occurrence of pungent and nonpungent individuals in three species of ancestral Capsicum and the geographic variation of pungency within species suggest that production of capsaicin and its analogs entails both costs and benefits, which shift from one locality to another. Determining the selection pressures behind such shifts is necessary to understand the evolution of pungency in chilies.

  15. Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation.

    PubMed

    Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong

    2016-06-15

    Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.

  16. Multisteric TRPV1 nocisensor: a target for analgesics.

    PubMed

    Szolcsányi, János; Sándor, Zoltán

    2012-12-01

    Cloning of the transient receptor potential vanilloid type 1 (TRPV1), the heat-gated cation channel/capsaicin receptor expressed by sensory neurons, has opened the door for development of new types of analgesics that selectively act on nociceptors. Here we summarize mutagenetic evidence for selective loss of responsiveness to vanilloids, protons, and heat stimuli to provide clues for avoiding on-target side effects of hyperthermia and burn risk. It is suggested that the complex chemoceptive thermosensor function of TRPV1 (which is modulated by depolarizing stimuli) can be attributed to multisteric gating functions. In this way, it forms the prototype of a new class of ion channels different from the canonical voltage-gated and ligand-gated ones. Several endogenous lipid ligands activate and inhibit TRPV1 and its gating initiates sensory transducer and mediator-releasing functions. Second generation TRPV1 antagonists that do not induce hyperthermia are under development, and a dermal capsaicin patch is already on the market for long-term treatment of neuropathic pain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus

    PubMed Central

    Hurtado-Zavala, Joaquin I.; Ramachandran, Binu; Ahmed, Saheeb; Halder, Rashi; Bolleyer, Christiane; Awasthi, Ankit; Stahlberg, Markus A.; Wagener, Robin J.; Anderson, Kristin; Drenan, Ryan M.; Lester, Henry A.; Miwa, Julie M.; Staiger, Jochen F.; Fischer, Andre; Dean, Camin

    2017-01-01

    TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine—via α2β2-containing nicotinic receptors—to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity. PMID:28722015

  18. Ontogenetic Variation of Individual and Total Capsaicinoids in Malagueta Peppers (Capsicum frutescens) during Fruit Maturation.

    PubMed

    Fayos, Oreto; de Aguiar, Ana Carolina; Jiménez-Cantizano, Ana; Ferreiro-González, Marta; Garcés-Claver, Ana; Martínez, Julián; Mallor, Cristina; Ruiz-Rodríguez, Ana; Palma, Miguel; Barroso, Carmelo G; Barbero, Gerardo F

    2017-05-03

    The ontogenetic variation of total and individual capsaicinoids (nordihydrocapsaicin (n-DHC), capsaicin (C), dihydrocapsaicin (DHC), homocapsaicin (h-C) and homodihydrocapsaicin (h-DHC)) present in Malagueta pepper ( Capsicum frutescens ) during fruit ripening has been studied. Malagueta peppers were grown in a greenhouse under controlled temperature and humidity conditions. Capsaicinoids were extracted using ultrasound-assisted extraction (UAE) and the extracts were analyzed by ultra-performance liquid chromatography (UHPLC) with fluorescence detection. A significant increase in the total content of capsaicinoids was observed in the early days (between 12 and 33). Between day 33 and 40 there was a slight reduction in the total capsaicinoid content (3.3% decrease). C was the major capsaicinoid, followed by DHC, n-DHC, h-C and h-DHC. By considering the evolution of standardized values of the capsaicinoids it was verified that n-DHC, DHC and h-DHC (dihydrocapsaicin-like capsaicinoids) present a similar behavior pattern, while h-C and C (capsaicin-like capsaicinoids) show different evolution patterns.

  19. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog.

    PubMed

    Masuda, Yoriko; Haramizu, Satoshi; Oki, Kasumi; Ohnuki, Koichiro; Watanabe, Tatsuo; Yazawa, Susumu; Kawada, Teruo; Hashizume, Shu-ichi; Fushiki, Tohru

    2003-12-01

    Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.

  20. Pharmacologic and non-pharmacologic treatments for chronic pain in individuals with HIV: a systematic review

    PubMed Central

    Merlin, Jessica S.; Bulls, Hailey W.; Vucovich, Lee A.; Edelman, E. Jennifer; Starrels, Joanna L.

    2016-01-01

    Chronic pain occurs in as many as 85% of individuals with HIV and is associated with substantial functional impairment. Little guidance is available for HIV providers seeking to address their patients’ chronic pain. We conducted a systematic review to identify clinical trials and observational studies that examined the impact of pharmacologic or non-pharmacologic interventions on pain and/or functional outcomes among HIV-infected individuals with chronic pain in high-development countries. Eleven studies met inclusion criteria and were mostly low or very low quality. Seven examined pharmacologic interventions (gabapentin, pregabalin, capsaicin, analgesics including opioids) and four examined non-pharmacologic interventions (cognitive behavioral therapy, self-hypnosis, smoked cannabis). The only controlled studies with positive results were of capsaicin and cannabis, and had short-term follow-up (≤12 weeks). Among the seven studies of pharmacologic interventions, five had substantial pharmaceutical industry sponsorship. These findings highlight several important gaps in the HIV/chronic pain literature that require further research. PMID:27267445

  1. Sensitive detection of capsaicinoids using a surface plasmon resonance sensor with anti-homovanillic Acid polyclonal antibodies.

    PubMed

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-11-13

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.

  2. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum).

    PubMed

    Sandoval-Castro, Claudia Jaqueline; Valdez-Morales, Maribel; Oomah, B Dave; Gutiérrez-Dorado, Roberto; Medina-Godoy, Sergio; Espinosa-Alonso, L Gabriela

    2017-06-01

    Bioactive compounds and antioxidant activity were evaluated from industrial Jalapeño pepper byproducts and simulated non processed byproducts from two Mexican states (Chihuahua and Sinaloa) to determine their value added potential as commercial food ingredients. Aqueous 80% ethanol produced about 13% of dry extract of polar compounds. Total phenolic content increased and capsaicin and dihydrocapsaicin decreased on scalding samples (80 °C, 2 min) without affecting ascorbic acid. The major phenolic compounds, rutin, epicatechin and catechin comprised 90% of the total compounds detected by HPLC of each Jalapeño pepper byproducts. ORAC analysis showed that the origin and scalding process affected the antioxidant activity which correlated strongly with capsaicin content. Although scalding decreased capsaicinoids (up to 42%), phenolic content by (up to 16%), and the antioxidant activity (variable). Jalapeño pepper byproduct is a good source of compounds with antioxidant activity, and still an attractive ingredient to develop useful innovative products with potential food/non-food applications simultaneously reducing food loss and waste.

  3. ROLE OF TACHYKININS IN OZONE-INDUCED ACUTE LUNG INJURY

    EPA Science Inventory

    To examine the hypothesis that the acute, reversible changes caused by O3 exposure are mediated by techykinin release, guinea pigs were depleted of tachykinins using repeated capsaicin (CAP) injections prior to O3 exposure, in an attempt to prevent O3-induced functional changes. ...

  4. 75 FR 22788 - Garlic Oil and Capsaicin; Registration Review Proposed Decisions; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... pesticide can perform its intended function without unreasonable adverse effects on human health or the...; human health; farm worker; agricultural advocates; the chemical industry; pesticide users; and members... scientific and other knowledge, including its effects on human health and the environment. DATES: Comments...

  5. Calcitonin gene-related peptide (CGRP) in the circular muscle of guinea-pig colon: role as inhibitory transmitter and mechanisms of relaxation.

    PubMed

    Maggi, C A; Giuliani, S; Zagorodnyuk, V

    1996-01-16

    In the presence of 1 microM tetrodotoxin (TTX), human alpha calcitonin gene-related peptide (CGRP) produced a concentration-dependent relaxation (EC50 1.1 nM; Emax 86% of the relaxation to 1 microM isoprenaline) of mucosa-free circular muscle strips from the guinea-pig proximal colon. In the presence of TTX, the C-terminal fragment CGRP(8-37) produced a concentration (0.3-3 microM)-dependent rightward shift of the curve to CGRP. The TTX-resistant, receptor-mediated, CGRP-induced relaxation was unaffected by apamin (0.3 microM) and L-nitroarginine (L-NOARG, 100 microM), alone or in combination, as well as by glibenclamide (3 microM) or (S)-ketoprofen (10 microM). Tetraethylammonium (TEA, 1-10 mM) and cyclopiazonic acid (CPA, 3-10 microM) produced a concentration-dependent partial inhibition of the relaxant response to CGRP. The inhibitory effect of TEA on the maximal relaxation produced by CGRP was prevented by nifedipine (1 microM) which did not affect the CGRP-relaxation of its own. In the presence of atropine (1 microM), guanethidine (3 microM), SR 140,333 (0.3 microM), MEN 10,627 (1 microM), apamin (0.3 microM) and L-NOARG (100 microM), the application of 1 microM capsaicin produced a transient relaxation of the strips. This response was not reproduced upon a second application of capsaicin, 60 min later, indicating complete desensitization. CGRP(8-37) (0.3-1.0 microM) produced a partial inhibitory effect (about 50% inhibition) of the relaxant response to capsaicin. In the presence of atropine (1 microM), guanethidine (3 microM), SR 140,333 (0.3 microM), MEN 10,627 (1 microM), apamin (0.3 microM), L-NOARG (100 microM) and after capsaicin in vitro pretreatment (10 microM for 15 min), electrical field stimulation (EFS, 10 Hz for 5 s) produced a transient relaxation which was unchanged by CGRP(8-37) (1 microM) while being abolished by TTX. In sucrose gap, brief superfusion with 0.3 microM CGRP produced a TTX (1 microM)- resistant membrane hyperpolarization and relaxation: the hyperpolarization produced by CGRP was inhibited by about 50% by either TEA (10 mM) or CPA (10 microM), while being unaffected by glibenclamide (3 microM). The combined application of TEA and CPA was not more effective (65% inhibition) in inhibiting the CGRP-induced hyperpolarization than each drug alone. We conclude that CGRP produces a direct relaxation of the circular muscle of the guinea-pig proximal colon by activating receptors sensitive to blockade by CGRP(8-37). Activation of Ca-dependent potassium channels and Ca release/reuptake from internal store(s) appear both to be involved in the action of CGRP. Endogenous CGRP mediates part of the relaxant response evoked by stimulation of capsaicin-sensitive primary afferent nerves in the circular muscle of guinea-pig colon, while it is not involved in the apamin and L-NOARG-resistant nonadrenergic noncholinergic (NANC) relaxation produced by electrical field stimulation of intrinsic inhibitory nerves.

  6. POTENTIATION OF PULMONARY REFLEX RESPONSE TO CAPSAICIN 24 HOURS FOLLOWING WHOLE-BODY ACROLEIN EXPOSURE IS MEDIATED BY TRPV1

    EPA Science Inventory

    Pulmonary C-fibers are stimulated by irritant air pollutants producing apnea, bronchospasm, and decrease in HR. C-fiber chemoreflex activation is mediated by TRPV1 and release of substance P. While acrolein has been shown to stimulate C-fibers, the persistence of acrolein effect...

  7. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    PubMed

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  8. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs

    PubMed Central

    Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J

    2013-01-01

    We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010

  9. Genetic variants involved in gallstone formation and capsaicin metabolism, and the risk of gallbladder cancer in Chilean women

    PubMed Central

    Báez, Sergio; Tsuchiya, Yasuo; Calvo, Alfonso; Pruyas, Martha; Nakamura, Kazutoshi; Kiyohara, Chikako; Oyama, Mari; Yamamoto, Masaharu

    2010-01-01

    AIM: To determine the effects of genetic variants associated with gallstone formation and capsaicin (a pungent component of chili pepper) metabolism on the risk of gallbladder cancer (GBC). METHODS: A total of 57 patients with GBC, 119 patients with gallstones, and 70 controls were enrolled in this study. DNA was extracted from their blood or paraffin block sample using standard commercial kits. The statuses of the genetic variants were assayed using Taqman® SNP Genotyping Assays or Custom Taqman® SNP Genotyping Assays. RESULTS: The non-ancestral T/T genotype of apolipoprotein B rs693 polymorphism was associated with a decreased risk of GBC (OR: 0.14, 95% CI: 0.03-0.63). The T/T genotype of cholesteryl ester transfer protein (CETP) rs708272 polymorphism was associated with an increased risk of GBC (OR: 5.04, 95% CI: 1.43-17.8). CONCLUSION: Genetic variants involved in gallstone formation such as the apolipoprotein B rs693 and CETP rs708272 polymorphisms may be related to the risk of developing GBC in Chilean women. PMID:20082485

  10. Pharmacologic effects of grain weevil extract on isolated guinea pig tracheal smooth muscle.

    PubMed

    Schachter, E Neil; Zuskin, Eugenija; Arumugam, Uma; Goswami, Satindra; Castranova, Vincent; Whitmer, Mike; Chiarelli, Angelo

    2008-01-01

    The grain weevil, an insect (pest) that infects grain, is a frequent contaminant of processed wheat, and its presence may contribute to respiratory abnormalities in grain workers. We studied the in vitro effects of an extract of grain weevil (GWE) on airway smooth muscle. Pharmacologic studies included in vitro challenge of guinea pig trachea with GWE, in parallel organ baths, pretreated with mediator-modifying agents or a control solution. Dose-related contractions of nonsensitized guinea pig trachea (GPT) were demonstrated using this extract. Pharmacologic studies were performed by pretreating guinea pig tracheal tissue with drugs known to modulate smooth muscle contraction: atropine, indomethacin, pyrilamine, acivicin, NDGA, BPB, TMB8, captopril, and capsaicin. Atropine, pyrilamine, BPB, and capsaicin significantly reduced the contractile effects of the extract at most of the challenge doses (p < 0.01 or p < 0.05). Inhibition of GWE-induced contraction by blocking of other mediators was less complete. We suggest that GWE causes dose-related airway smooth muscle constriction of the GPT by nonimmunologic mechanisms involving a variety of airway mediators and possibly cholinergic receptors.

  11. Sensitive Detection of Capsaicinoids Using a Surface Plasmon Resonance Sensor with Anti-Homovanillic Acid Polyclonal Antibodies

    PubMed Central

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-01-01

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes. PMID:25586413

  12. Bone marrow transplantation reveals an essential synergy between neuronal and hemopoietic cell neurokinin production in pulmonary inflammation.

    PubMed

    Chavolla-Calderón, Mara; Bayer, Meggan K; Fontán, J Julio Pérez

    2003-04-01

    Neurogenic inflammation is believed to originate with the antidromic release of substance P, and of other neurokinins encoded by the preprotachykinin A (PPT-A) gene, from unmyelinated nerve fibers (C-fibers) following noxious stimuli. Consistent with this concept, we show here that selective sensory-fiber denervation with capsaicin and targeted deletion of the PPT-A gene protect murine lungs against both immune complex-mediated and stretch-mediated injuries. Reconstitution of PPT-A gene-deleted mice with WT bone marrow does not abrogate this protection, demonstrating a critical role for PPT-A gene expression by sensory neurons in pulmonary inflammation. Surprisingly, reconstitution of WT mice with PPT-A gene-deficient bone marrow also confers protection against pulmonary injury, revealing that PPT-A gene expression in hemopoietic cells has a previously unanticipated essential role in tissue injury. Taken together, these findings demonstrate a critical synergy between capsaicin-sensitive sensory fibers and hemopoietic cells in neurokinin-mediated inflammation and suggest that such synergy may be the basis for a stereotypical mechanism of response to injury in the respiratory tract.

  13. Bone marrow transplantation reveals an essential synergy between neuronal and hemopoietic cell neurokinin production in pulmonary inflammation

    PubMed Central

    Chavolla-Calderón, Mara; Bayer, Meggan K.; Fontán, J. Julio Pérez

    2003-01-01

    Neurogenic inflammation is believed to originate with the antidromic release of substance P, and of other neurokinins encoded by the preprotachykinin A (PPT-A) gene, from unmyelinated nerve fibers (C-fibers) following noxious stimuli. Consistent with this concept, we show here that selective sensory-fiber denervation with capsaicin and targeted deletion of the PPT-A gene protect murine lungs against both immune complex–mediated and stretch-mediated injuries. Reconstitution of PPT-A gene–deleted mice with WT bone marrow does not abrogate this protection, demonstrating a critical role for PPT-A gene expression by sensory neurons in pulmonary inflammation. Surprisingly, reconstitution of WT mice with PPT-A gene–deficient bone marrow also confers protection against pulmonary injury, revealing that PPT-A gene expression in hemopoietic cells has a previously unanticipated essential role in tissue injury. Taken together, these findings demonstrate a critical synergy between capsaicin-sensitive sensory fibers and hemopoietic cells in neurokinin-mediated inflammation and suggest that such synergy may be the basis for a stereotypical mechanism of response to injury in the respiratory tract. PMID:12671046

  14. Chronic alteration in phosphatidylinositol 4,5-bisphosphate levels regulates capsaicin and mustard oil responses

    PubMed Central

    Patil, Mayur J.; Belugin, Sergei; Akopian, Armen N.

    2011-01-01

    There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP2) modulate TRPV1 and TRPA1 activities. Since inflammation results in PIP2 depletion, persisting for long periods (hours-to-days) in pain models and in clinic, we examined whether chronic depletion and accumulation of PIP2 affects capsaicin and mustard oil responses. In addition we also wanted to evaluate whether the effects of PIP2 depend on TRPV1 and TRPA1 co-expression, and whether the PIP2 actions vary in expression cells versus sensory neurons. Chronic PIP2 production was stimulated by over-expression of phosphatidylinositol-4-phosphate-5-kinase, while PIP2-specific phospholipid 5′-phosphatase was selected to reduce plasma membrane levels of PIP2. Our results demonstrate that capsaicin (100 nM; CAP) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP2 levels in wild-type (WT) or TRPA1 null-mutant sensory neurons, as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP2 depletion in cells containing TRPV1 alone, but not TRPV1 together with TRPA1. Mustard oil (25 μM; MO) responses were also not affected by PIP2 in WT sensory neurons and cells co-expressing TRPA1 and TRPV1. In contrast, PIP2 reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP2 on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP2 levels regulate magnitude of CAP and MO responses, as well as MO-tachyphylaxis. This regulation depends on co-expression profile of TRPA1 and TRPV1 and cell type. PMID:21337373

  15. Reduced mechanosensitivity of duodenal vagal afferent neurons after an acute switch from milk-based to plant-based diets in anaesthetized pigs.

    PubMed

    Bligny, D; Blat, S; Chauvin, A; Guérin, S; Malbert, C-H

    2005-06-01

    Acute changes in diet composition and/or origin alter gastric emptying and gastrointestinal motility. One of the hypotheses explaining these alterations involves changes in the sensitivity of duodenal vagal sensory neurons. The aim of this study was to evaluate the characteristics of multimodal duodenal vagal sensory neurons in 20 pigs feed either with milk-based or plant-based diets of identical caloric content. Twenty duodenal vagal afferents were recorded in anesthetized animal from the cervical vagus using the single fiber method. 10 pigs were fed with a milk-based diet (MD) for one month while the diet of the 10 other pigs was changed for plant-based diet (PD) the day preceding the recording session. The behavior of the receptors was tested in basal resting conditions and after challenges with duodenal intralipid and close intra-arterial injection of CCK, 5-HT or capsaicin with and without isovolumetric duodenal distensions at 20, 40 and 60 mmHg. All receptors were slowly adapting C type fiber with a receptor field located 6-7 cm distal to the pylorus. The rate of discharge during distension (20, 40 and 60 mmHg) combined with duodenal intralipid was significantly larger for MD compared with PD. Similarly, the rate of discharge observed during distensions performed with CCK and with 5-HT were greater for MD compared with PD while CCK and 5-HT without distension were equally stimulating for MD and PD. No significant difference was found between groups during capsaicin infusion irrespective of the stimulating pressure. In conclusion, a switch to plant-based diet, when compared to a milk-based diet, results in an overall decrease in mechanical sensitivity of duodenal neurons during lipid, 5HT and CCK challenges, but not in basal conditions or after capsaicin. This reduced sensitivity to distension may explain the diet-induced alteration of gastric emptying that is controlled primarily through a vago-vagal reflex.

  16. Chronic adriamycin treatment impairs CGRP-mediated functions of meningeal sensory nerves.

    PubMed

    Deák, Éva; Rosta, Judit; Boros, Krisztina; Kis, Gyöngyi; Sántha, Péter; Messlinger, Karl; Jancsó, Gábor; Dux, Mária

    2018-06-01

    Adriamycin is a potent anthracycline-type antitumor agent, but it also exerts potentially serious side effects due to its cardiotoxic and neurotoxic propensity. Multiple impairments in sensory nerve functions have been recently reported in various rat models. The present experiments were initiated in an attempt to reveal adriamycin-induced changes in sensory effector functions of chemosensitive meningeal afferents. Meningeal blood flow was measured with laser Doppler flowmetry in the parietal dura mater of adult male Wistar rats. The dura mater was repeatedly stimulated by topical applications of capsaicin, a transient receptor potential vanilloid 1 (TRPV1) receptor agonist, or acrolein, a transient receptor potential ankyrin 1 (TRPA1) receptor agonist, which induce the release of calcitonin gene-related peptide (CGRP) from meningeal afferents. The blood flow increasing effects of CGRP, histamine, acetylcholine and forskolin were also measured. Capsaicin- and acrolein-induced CGRP release was measured with enzyme-linked immunoassay in an ex vivo dura mater preparation. TRPV1 content of trigeminal ganglia and TRPV1-, CGRP- and CGRP receptor component-immunoreactive structures were examined in dura mater samples obtained from control and adriamycin-treated rats. The vasodilator effects of capsaicin, acrolein and CGRP were significantly reduced in adriamycin-treated animals while histamine-, acetylcholine- and forskolin-induced vasodilatation were unaffected. Measurements of CGRP release in an ex vivo dura mater preparation revealed an altered dynamic upon repeated stimulations of TRPV1 and TRPA1 receptors. In whole-mount dura mater preparations immunohistochemistry revealed altered CGRP receptor component protein (RCP)-immunoreactivity in adriamycin-treated animals, while CGRP receptor activity modifying protein (RAMP1)-, TRPV1- and CGRP-immunostaining were left apparently unaltered. Adriamycin-treatment slightly reduced TRPV1 protein content of trigeminal ganglia. The present findings demonstrate that adriamycin-treatment alters the function of the trigeminovascular system leading to reduced meningeal sensory neurogenic vasodilatation that may affect the local regulatory and protective mechanisms of chemosensitive afferents leading to alterations in tissue integrity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Antinociceptive properties of the aqueous and methanol extracts of the stem bark of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) in mice.

    PubMed

    Bomba, Francis Desire Tatsinkou; Wandji, Bibiane Aimee; Piegang, Basile Nganmegne; Awouafack, Maurice Ducret; Sriram, Dharmarajan; Yogeeswari, Perumal; Kamanyi, Albert; Nguelefack, Telesphore Benoit

    2015-11-04

    Aqueous maceration from the stem barks of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) is taken orally in the central Africa for the management of various ailments, including pain. This work was carried out to evaluate in mice, the antinociceptive effects of the aqueous and methanol extracts of the stem bark of P. macrocarpus. The chemical composition of the aqueous and methanol extracts prepared as cold macerations was determined by high performance liquid chromatography coupled with mass spectrometry (LCMS). The antinociceptive effects of these extracts administered orally at the doses of 100, 200 and 400 mg/kg were evaluated using behavioral pain model induced by acetic acid, formalin, hot-plate, capsaicin and glutamate. The rotarod test was also performed at the same doses. The oral acute toxicity of both extracts was studied at the doses of 800, 1600, 3200 and 6400 mg/kg in mice. The LCMS analysis revealed the presence of ellagic acid as the major constituent in the methanol extract. Both extracts of P. macrocarpus significantly and dose dependently reduced the time and number of writhing induced by acetic acid. They also significantly inhibited the two phases of formalin-induced pain. These effects were significantly inhibited by a pretreatment with naloxone, except for the analgesic activity of the methanol extract at the earlier phase. In addition, nociception induced by hot plate, intraplantar injection of capsaicin or glutamate was significantly inhibited by both extracts. Acute toxicity test showed no sign of toxicity. These results demonstrate that aqueous and methanol extracts of P. macrocarpus are none toxic substances with good central and peripheral antinociceptive effects that are at least partially due to the presence of ellagic acid. These extracts may induce their antinociceptive effect by interfering with opioid, capsaicin and excitatory amino acid pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels

    PubMed Central

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Yu, Weihua; Hu, Hongzhen

    2014-01-01

    Background and PurposeRetinoids, through their activation of retinoic acid receptors (RARs) and retinoid X receptors, regulate diverse cellular processes, and pharmacological intervention in their actions has been successful in the treatment of skin disorders and cancers. Despite the many beneficial effects, administration of retinoids causes irritating side effects with unknown mechanisms. Here, we demonstrate that LE135 [4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid], a selective antagonist of RARβ, is a potent activator of the capsaicin (TRPV1) and wasabi (TRPA1) receptors, two critical pain-initiating cation channels. Experimental ApproachWe performed to investigate the excitatory effects of LE135 on TRPV1 and TRPA1 channels expressed in HEK293T cells and in dorsal root ganglia neurons with calcium imaging and patch-clamp recordings. We also used site-directed mutagenesis of the channels to determine the structural basis of LE135-induced activation of TRPV1 and TRPA1 channels and behavioural testing to examine if pharmacological inhibition and genetic deletion of the channels affected LE135-evoked pain-related behaviours. Key ResultsLE135 activated both the capsaicin receptor (TRPV1) and the allyl isothiocyanate receptor (TRPA1) heterologously expressed in HEK293T cells and endogenously expressed by sensory nociceptors. Mutations disrupting the capsaicin-binding site attenuated LE135 activation of TRPV1 channels and a single mutation (K170R) eliminated TRPA1 activity evoked by LE135. Intraplantar injection of LE135 evoked pain-related behaviours. Both TRPV1 and TRPA1 channels were involved in LE135-elicited pain-related responses, as shown by pharmacological and genetic ablation studies. Conclusions and ImplicationsThis blocker of retinoid acid signalling also exerted non-genomic effects through activating the pain-initiating TRPV1 and TRPA1 channels. PMID:24308840

  19. Modulatory Role of Sensory Innervation on Hair Follicle Stem Cell Progeny during Wound Healing of the Rat Skin

    PubMed Central

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I.; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    Background The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. Methodology/Principal Findings We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU+) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU+ nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU+/CldU+). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU+/CldU+ cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34+ and BrdU-retaining cells of the hair follicles. Conclusions/Significance Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair SC physiology during wound healing. PMID:22574159

  20. Neurogenic plasma leakage in mouse airways

    PubMed Central

    Baluk, Peter; Thurston, Gavin; Murphy, Thomas J; Bunnett, Nigel W; McDonald, Donald M

    1999-01-01

    This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. Single bolus intravenous injections of capsaicin (0.5 and 1 μmol kg−1, i.v.) or substance P (1, 10 and 37 nmol kg−1, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. Pretreatment with captopril (2.5 mg kg−1, i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg−1, i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg−1, i.v.). After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg−1, i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg−1, i.v.). Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature. PMID:10077247

  1. Differential coding of hyperalgesia in the human brain: a functional MRI study.

    PubMed

    Maihöfner, Christian; Handwerker, Hermann O

    2005-12-01

    Neuropathic pain can be both ongoing or stimulus-induced. Stimulus-induced pain, also known as hyperalgesia, can be differentiated into primary and secondary hyperalgesia. The former results from sensitization of peripheral nociceptive structures, the latter involves sensitization processes within the central nervous system (CNS). Hypersensitivity towards heat stimuli, i.e. thermal hyperalgesia, is a key feature of primary hyperalgesia, whereas secondary hyperalgesia is characterized by hypersensitivity towards mechanical (e.g. pin-prick) stimulation. Using functional magnetic resonance imaging (fMRI), we investigated if brain activation patterns associated with primary and secondary hyperalgesia might differ. Thermal and pin-prick hyperalgesia were induced on the left forearm in 12 healthy subjects by topical capsaicin (2.5%, 30 min) application. Equal pain intensities of both hyperalgesia types were applied during fMRI experiments, based on previous quantitative sensory testing. Simultaneously, subjects had to rate the unpleasantness of stimulus-related pain. Pin-prick hyperalgesia (i.e. subtraction of brain activations during pin-prick stimulation before and after capsaicin exposure) led to activations of primary and secondary somatosensory cortices (S1 and S2), associative-somatosensory cortices, insula and superior and inferior frontal cortices (SFC, IFC). Brain areas activated during thermal hyperalgesia (i.e. subtraction of brain activations during thermal stimulation before and after capsaicin exposure) were S1 and S2, insula, associative-somatosensory cortices, cingulate cortex (GC), SFC, middle frontal cortex (MFC) and IFC. When compared to pin-prick hyperalgesia, thermal hyperalgesia led to an increased activation of bilateral anterior insular cortices, MFC, GC (Brodmann area 24' and 32') and contralateral SFC and IFC, despite equal pain intensities. Interestingly, stronger activations of GC, contralateral MFC and anterior insula significantly correlated to higher ratings of the stimulus-related unpleasantness. We conclude that thermal and mechanical hyperalgesia produce substantially different brain activation patterns. This is linked to different psychophysical properties.

  2. The Effects of a Co-Application of Menthol and Capsaicin on Nociceptive Behaviors of the Rat on the Operant Orofacial Pain Assessment Device

    PubMed Central

    Anderson, Ethan M.; Jenkins, Alan C.; Caudle, Robert M.; Neubert, John K.

    2014-01-01

    Background Transient receptor potential (TRP) cation channels are involved in the perception of hot and cold pain and are targets for pain relief in humans. We hypothesized that agonists of TRPV1 and TRPM8/TRPA1, capsaicin and menthol, would alter nociceptive behaviors in the rat, but their opposite effects on temperature detection would attenuate one another if combined. Methods Rats were tested on the Orofacial Pain Assessment Device (OPAD, Stoelting Co.) at three temperatures within a 17 min behavioral session (33°C, 21°C, 45°C). Results The lick/face ratio (L/F: reward licking events divided by the number of stimulus contacts. Each time there is a licking event a contact is being made.) is a measure of nociception on the OPAD and this was equally reduced at 45°C and 21°C suggesting they are both nociceptive and/or aversive to rats. However, rats consumed (licks) equal amounts at 33°C and 21°C but less at 45°C suggesting that heat is more nociceptive than cold at these temperatures in the orofacial pain model. When menthol and capsaicin were applied alone they both induced nociceptive behaviors like lower L/F ratios and licks. When applied together though, the licks at 21°C were equal to those at 33°C and both were significantly higher than at 45°C. Conclusions This suggests that the cool temperature is less nociceptive when TRPM8/TRPA1 and TRPV1 are co-activated. These results suggest that co-activation of TRP channels can reduce certain nociceptive behaviors. These data demonstrate that the motivational aspects of nociception can be influenced selectively by TRP channel modulation and that certain aspects of pain can be dissociated and therefore targeted selectively in the clinic. PMID:24558480

  3. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels.

    PubMed

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Yu, Weihua; Hu, Hongzhen

    2014-03-01

    Retinoids, through their activation of retinoic acid receptors (RARs) and retinoid X receptors, regulate diverse cellular processes, and pharmacological intervention in their actions has been successful in the treatment of skin disorders and cancers. Despite the many beneficial effects, administration of retinoids causes irritating side effects with unknown mechanisms. Here, we demonstrate that LE135 [4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid], a selective antagonist of RARβ , is a potent activator of the capsaicin (TRPV1) and wasabi (TRPA1) receptors, two critical pain-initiating cation channels. We performed to investigate the excitatory effects of LE135 on TRPV1 and TRPA1 channels expressed in HEK293T cells and in dorsal root ganglia neurons with calcium imaging and patch-clamp recordings. We also used site-directed mutagenesis of the channels to determine the structural basis of LE135-induced activation of TRPV1 and TRPA1 channels and behavioural testing to examine if pharmacological inhibition and genetic deletion of the channels affected LE135-evoked pain-related behaviours. LE135 activated both the capsaicin receptor (TRPV1) and the allyl isothiocyanate receptor (TRPA1) heterologously expressed in HEK293T cells and endogenously expressed by sensory nociceptors. Mutations disrupting the capsaicin-binding site attenuated LE135 activation of TRPV1 channels and a single mutation (K170R) eliminated TRPA1 activity evoked by LE135. Intraplantar injection of LE135 evoked pain-related behaviours. Both TRPV1 and TRPA1 channels were involved in LE135-elicited pain-related responses, as shown by pharmacological and genetic ablation studies. This blocker of retinoid acid signalling also exerted non-genomic effects through activating the pain-initiating TRPV1 and TRPA1 channels. © 2013 The British Pharmacological Society.

  4. Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation.

    PubMed

    Tender, Gabriel C; Walbridge, Stuart; Olah, Zoltan; Karai, Laszlo; Iadarola, Michael; Oldfield, Edward H; Lonser, Russell R

    2005-03-01

    Neuropathic pain is mediated by nociceptive neurons that selectively express the vanilloid receptor 1 (VR1). Resiniferatoxin (RTX) is an excitotoxic VR1 agonist that causes destruction of VR1-positive neurons. To determine whether RTX can be used to ablate VR1-positive neurons selectively and to eliminate hyperalgesia and neurogenic inflammation without affecting tactile sensation and motor function, the authors infused it unilaterally into the trigeminal ganglia in Rhesus monkeys. Either RTX (three animals) or vehicle (one animal) was directly infused (20 microl) into the right trigeminal ganglion in Rhesus monkeys. Animals were tested postoperatively at 1, 4, and 7 weeks thereafter for touch and pain perception in the trigeminal distribution (application of saline and capsaicin to the cornea). The number of eye blinks, eye wipes, and duration of squinting were recorded. Neurogenic inflammation was tested using capsaicin cream. Animals were killed 4 (one monkey) and 12 (three monkeys) weeks postinfusion. Histological and immunohistochemical analyses were performed. Throughout the duration of the study, response to high-intensity pain stimulation (capsaicin) was selectively and significantly reduced (p < 0.001, RTX-treated compared with vehicle-treated eye [mean +/- standard deviation]): blinks, 25.7 +/- 4.4 compared with 106.6 +/- 20.8; eye wipes, 1.4 +/- 0.8 compared with 19.3 +/- 2.5; and squinting, 1.4 +/- 0.6 seconds compared with 11.4 +/- 1.6 seconds. Normal response to sensation was maintained. Animals showed no neurological deficit or sign of toxicity. Neurogenic inflammation was blocked on the RTX-treated side. Immunohistochemical analysis of the RTX-treated ganglia showed selective elimination of VR1-positive neurons. Nociceptive neurons can be selectively ablated by intraganglionic RTX infusion, resulting in the elimination of high-intensity pain perception and neurogenic inflammation while maintaining normal sensation and motor function. Analysis of these findings indicated that intraganglionic RTX infusion may provide a new treatment for pain syndromes such as trigeminal neuralgia as well as others.

  5. Role of the Outer Pore Domain in Transient Receptor Potential Vanilloid 1 Dynamic Permeability to Large Cations*

    PubMed Central

    Munns, Clare H.; Chung, Man-Kyo; Sanchez, Yuly E.; Amzel, L. Mario; Caterina, Michael J.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-d-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity. PMID:25568328

  6. Role of the outer pore domain in transient receptor potential vanilloid 1 dynamic permeability to large cations.

    PubMed

    Munns, Clare H; Chung, Man-Kyo; Sanchez, Yuly E; Amzel, L Mario; Caterina, Michael J

    2015-02-27

    Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-D-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Prenatal Nicotinic Exposure Upregulates Pulmonary C-fiber NK1R Expression to Prolong Pulmonary C-fiber-Mediated Apneic Response

    PubMed Central

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2015-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA1 receptor, ADA1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA1R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChRs or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. PMID:26524655

  8. Modulatory role of sensory innervation on hair follicle stem cell progeny during wound healing of the rat skin.

    PubMed

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU(+)) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU(+) nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU(+)/CldU(+)). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU(+)/CldU(+) cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34(+) and BrdU-retaining cells of the hair follicles. Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair SC physiology during wound healing.

  9. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    PubMed

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  10. Distinctive Changes in Plasma Membrane Phosphoinositides Underlie Differential Regulation of TRPV1 in Nociceptive Neurons

    PubMed Central

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R.; Sharma, Esseim; Fukami, Kiyoko

    2013-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca2+-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca2+-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin–nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity. PMID:23843517

  11. A novel inhibitor of active protein kinase G attenuates chronic inflammatory and osteoarthritic pain.

    PubMed

    Sung, Ying-Ju; Sofoluke, Nelson; Nkamany, Mary; Deng, Shixian; Xie, Yuli; Greenwood, Jeremy; Farid, Ramy; Landry, Donald W; Ambron, Richard T

    2017-05-01

    Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC50 of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund's adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subcutaneous delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.

  12. A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea pig

    PubMed Central

    Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.

    1983-01-01

    Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120

  13. Effects of neuropeptides and capsaicin on the canine tracheal vasculature in vivo.

    PubMed

    Salonen, R O; Webber, S E; Widdicombe, J G

    1988-12-01

    1. The nonadrenergic, noncholinergic nervous system may control the airway vasculature via various neuropeptides. We have perfused the cranial tracheal arteries of the anaesthetized dog and investigated the effects of neuropeptides and capsaicin (which is supposed to release neuropeptides from sensory nerve endings) on the tracheal vasculature by injecting them locally into the perfusion system. 2. Neurokinin A (NKA, 0.02-20 pmol), calcitonin gene-related peptide (CGRP, 2-200 pmol) and peptide histidine isoleucine (PHI, 0.02-2 nmol) dose-dependently decreased tracheal vascular resistance (Rtv). NKA was 10 and 100 times more potent than CGRP and PHI, respectively. The duration of the response to CGRP was greatly prolonged with larger doses. Galanin (0.2-2 nmol) had no appreciable effect on Rtv. 3. Neuropeptide Y (NPY 0.02-2 nmol) and bombesin (0.02-10 nmol) dose-dependently increased Rtv. However, the dose-response curve for bombesin was bell-shaped suggesting the development of tachyphylaxis with larger doses. In smaller doses, bombesin was twice as potent as NPY. The duration of the response to NPY was prolonged with larger doses. 4. With the exception of PHI no neuropeptide altered tracheal smooth muscle tone; PHI (1 and 2 nmol) caused small dilatations of the trachea. 5. The effects of capsaicin (2-100 nmol) were complex. Usually, the vascular response had two dose-dependent phases: a rapid vasoconstriction followed by a small, longer-lasting vasodilatation. The tracheal smooth muscle response was usually biphasic, a contraction followed by a relaxation. 6. According to previous and present data, the order of potency of the neuropeptides on the canine tracheal vasculature is for the vasodilators : NKA > vasoactive intestinal peptide (VIP) > CGRP > substance P > PHI, and for the vasoconstrictors: bombesin > NPY. The longer-acting neuropeptides (VIP, CGRP and NPY) may be more important than the shorter-acting neuropeptides (substance P, NKA, PHI and bombesin) as regulators of the airway wall blood flow.

  14. Mechanisms underlying clinical efficacy of Angiotensin II type 2 receptor (AT2R) antagonist EMA401 in neuropathic pain: clinical tissue and in vitro studies.

    PubMed

    Anand, Uma; Yiangou, Yiangos; Sinisi, Marco; Fox, Michael; MacQuillan, Anthony; Quick, Tom; Korchev, Yuri E; Bountra, Chas; McCarthy, Tom; Anand, Praveen

    2015-06-26

    The clinical efficacy of the Angiotensin II (AngII) receptor AT2R antagonist EMA401, a novel peripherally-restricted analgesic, was reported recently in post-herpetic neuralgia. While previous studies have shown that AT2R is expressed by nociceptors in human DRG (hDRG), and that EMA401 inhibits capsaicin responses in cultured hDRG neurons, the expression and levels of its endogenous ligands AngII and AngIII in clinical neuropathic pain tissues, and their signalling pathways, require investigation. We have immunostained AngII, AT2R and the capsaicin receptor TRPV1 in control post-mortem and avulsion injured hDRG, control and injured human nerves, and in cultured hDRG neurons. AngII, AngIII, and Ang-(1-7) levels were quantified by ELISA. The in vitro effects of AngII, AT2R agonist C21, and Nerve growth factor (NGF) were measured on neurite lengths; AngII, NGF and EMA401 effects on expression of p38 and p42/44 MAPK were measured using quantitative immunofluorescence, and on capsaicin responses using calcium imaging. AngII immunostaining was observed in approximately 75% of small/medium diameter neurons in control (n = 5) and avulsion injured (n = 8) hDRG, but not large neurons i.e. similar to TRPV1. AngII was co-localised with AT2R and TRPV1 in hDRG and in vitro. AngII staining by image analysis showed no significant difference between control (n = 12) and injured (n = 13) human nerves. AngII levels by ELISA were also similar in control human nerves (4.09 ± 0.36 pmol/g, n = 31), injured nerves (3.99 ± 0.79 pmol/g, n = 7), and painful neuromas (3.43 ± 0.73 pmol/g, n = 12); AngIII and Ang-(1-7) levels were undetectable (<0.03 and 0.05 pmol/g respectively). Neurite lengths were significantly increased in the presence of NGF, AngII and C21 in cultured DRG neurons. AngII and, as expected, NGF significantly increased signal intensity of p38 and p42/44 MAPK, which was reversed by EMA401. AngII mediated sensitization of capsaicin responses was not observed in the presence of MAP kinase inhibitor PD98059, and the kinase inhibitor staurosporine. The major AT2R ligand in human peripheral nerves is AngII, and its levels are maintained in injured nerves. EMA401 may act on paracrine/autocrine mechanisms at peripheral nerve terminals, or intracrine mechanisms, to reduce neuropathic pain signalling in AngII/NGF/TRPV1-convergent pathways.

  15. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capscicum species

    USDA-ARS?s Scientific Manuscript database

    Hot pepper is an important spice crop the world-over and is closely related to sweet peppers that represent an important vegetable crop in many cultures. Both hot and mild peppers are important sources of dietary nutrients and hot pepper is a source of the medicinal compound capsaicin, which is wide...

  16. Mechanisms of Aromatase Inhibitor-induced Musculoskeletal Symptoms

    DTIC Science & Technology

    2012-07-01

    through the TRPV1 cation channel, an important chemical and thermal nociceptive transducer (15). In addition to steroids supplied by circulation in...identify whether aromatase expression co-localizes with functional neuronal populations, such as TRPV1 or CGRP expressing sensory neurons...to augment neuropeptide release from cultured sensory neurons evoked by the inflammatory mediator bradykinin and TRPV1 -selective agonist capsaicin (17

  17. Acquisition of HPLC-Mass Spectrometer

    DTIC Science & Technology

    2015-08-18

    phenyl alanine. This dithiol is coordinated to the iron and all attempts to decompose the ionic coordination complex 56 to recover strictly the...sulfonation process of an asymmetric deprotonation providing a lithium complex with sparteine. This reaction scheme will also direct stereochemistry of...currently used in ointments for treatment of pain and inflammation. Capsaicin shows promise as an effective anti-cancer nutritional agent and

  18. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation.

    PubMed

    Gavva, Narender R; Bannon, Anthony W; Surapaneni, Sekhar; Hovland, David N; Lehto, Sonya G; Gore, Anu; Juan, Todd; Deng, Hong; Han, Bora; Klionsky, Lana; Kuang, Rongzhen; Le, April; Tamir, Rami; Wang, Jue; Youngblood, Brad; Zhu, Dawn; Norman, Mark H; Magal, Ella; Treanor, James J S; Louis, Jean-Claude

    2007-03-28

    The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood-brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.

  19. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli.

    PubMed

    Chatchaisak, Duangthip; Connor, Mark; Srikiatkhachorn, Anan; Chetsawang, Banthit

    2018-05-01

    Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.

  20. Recent advances in the study on capsaicinoids and capsinoids.

    PubMed

    Luo, Xiu-Ju; Peng, Jun; Li, Yuan-Jian

    2011-01-10

    Chili peppers are the major source of nature capsaicinoids, which consist of capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin, etc. Capsaicinoids are found to exert multiple pharmacological and physiological effects including the activities of analgesia, anticancer, anti-inflammation, antioxidant and anti-obesity. Therefore, capsaicinoids may have the potential value in clinic for pain relief, cancer prevention and weight loss. In addition, capsaicinoids also display the benefits on cardiovascular and gastrointestinal system. It has been shown that capsaicinoids are potential agonists of capsaicin receptor or transient receptor potential vanilloid subfamily member 1 (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. CH-19 Sweet peppers are the source of nature capsinoids, which share similar structure with capsaicinoids and consist of capsiate, dihydrocapsiate, and nordihydrocapsiate, etc, Comparing with capsaicinoids, capsinoids are less pungent and easily broken down in the normal aqueous conditions. So far, it has been found that capsinoids possess the biological properties of antitumor, antioxidant and anti-obesity. Since capsinoids are less toxic than capsaicinoids, therefore, capsinoids may have the advantages over capsaicinoids in clinical applications such as cancer prevention and weight loss. Copyright © 2010 Elsevier B.V. All rights reserved.

Top