Science.gov

Sample records for capsaicin induced trigeminal

  1. Increased vascular permeability in rat nasal mucosa induced by substance P and stimulation of capsaicin-sensitive trigeminal neurons.

    PubMed

    Lundblad, L; Saria, A; Lundberg, J M; Anggård, A

    1983-01-01

    Electrical stimulation of the maxillary branches of the trigeminal nerve induced an increase in vascular permeability to macromolecules and an interstitial edema in the nasal mucosa of the rat, as indicated by extravasation of Evans blue. In animals that had been treated neonatally with capsaicin, the effect of trigeminal nerve stimulation was abolished. Local application of capsaicin or substance P (SP) also induced a significant Evans blue extravasation in the nasal mucosa. In capsaicin-pretreated animals the effect of SP was still present, while the permeability increase induced by capsaicin was abolished. In conclusion, chemogenic irritation of the nasal mucosa by capsaicin induces edema probably via a local axon reflex inducing release of SP. Capsaicin-sensitive SP-containing afferents in the nasal mucosa may also be involved in the pathogenesis of nasal congestion seen in various types of rhinitis.

  2. Subcutaneous Botulinum toxin type A reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin.

    PubMed

    Gazerani, Parisa; Pedersen, Natalia Spicina; Staahl, Camilla; Drewes, Asbjørn Mohr; Arendt-Nielsen, Lars

    2009-01-01

    The present human study aimed at investigating the effect of subcutaneous administration of Botulinum toxin type A (BoNT/A) on capsaicin-induced trigeminal pain, neurogenic inflammation and experimentally induced cutaneous pain modalities. Fourteen healthy males (26.3+/-2.6 years) were included in this double-blind and placebo-controlled trial. The subjects received subcutaneous BoNT/A (22.5U) and isotonic saline in the mirror sides of their forehead. Pain and neurogenic inflammation was induced by four intradermal injections of capsaicin (100mug/muL) (before, and days 1, 3 and 7 after treatments). The capsaicin-induced pain intensity, pain area, the area of secondary hyperalgesia, the area of visible flare and vasomotor reactions were recorded together with cutaneous heat, electrical and pressure pain thresholds. BoNT/A reduced the capsaicin-induced trigeminal pain intensity compared to saline (F=37.9, P<0.001). The perceived pain area was smaller for the BoNT/A-treated side compared to saline (F=7.8, P<0.05). BoNT/A reduced the capsaicin-induced secondary hyperalgesia (F=5.3, P<0.05) and flare area (F=10.3, P<0.01) compared to saline. BoNT/A reduced blood flow (F(1,26)=109.5, P<0.001) and skin temperature (F(1,26)=63.1, P<0.001) at the capsaicin injection sites compared to saline and its suppressive effect was maximal at days 3 and 7 (P<0.05, post hoc test). BoNT/A elevated cutaneous heat pain thresholds (F=17.1, P<0.001) compared to saline; however, no alteration was recorded for electrical or pressure pain thresholds (P>0.05). Findings from the present study suggest that BoNT/A appears to preferentially target Cfibers and probably TRPV1-receptors, block neurotransmitter release and subsequently reduce pain, neurogenic inflammation and cutaneous heat pain threshold.

  3. Trigeminal Ganglion Neurons of Mice Show Intracellular Chloride Accumulation and Chloride-Dependent Amplification of Capsaicin-Induced Responses

    PubMed Central

    Schöbel, Nicole; Radtke, Debbie; Lübbert, Matthias; Gisselmann, Günter; Lehmann, Ramona; Cichy, Annika; Schreiner, Benjamin S. P.; Altmüller, Janine; Spector, Alan C.; Spehr, Jennifer; Hatt, Hanns; Wetzel, Christian H.

    2012-01-01

    Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs. PMID:23144843

  4. Electrophysiological characterization of the rat trigeminal caudalis (Vc) neurons following intramuscular injection of capsaicin

    PubMed Central

    Chun, Yang H; Ro, Jin Y

    2009-01-01

    Extracellular single unit recording experiments were performed to examine response characteristics of wide dynamic range neurons in the Vc that receive masseter afferent input in Sprague Dawley rats. Capsaicin, or its vehicle, was directly administered into the masseter muscle and changes in resting discharge, responses to mechanical stimulation on the cutaneous receptive field and the electrical threshold for masseter nerve stimulation were assessed. Intramuscular capsaicin induced significant increase in the background discharge and mechanical hypersensitivity to the cutaneous stimulation and lowered the threshold masseter nerve stimulation evoked responses in the majority of neurons. The capsaicin-induced increase in evoked responses, but not the resting discharge, was partially attenuated when the muscle was pretreated with a mGluR antagonist. The present study suggests that injury or inflammation in the masseter muscle induce generalized hyperexcitability of central trigeminal neurons and that the blockade of peripherally localized mGluR5 can effectively attenuate muscular hypersensitivity. PMID:19818833

  5. Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents.

    PubMed

    Lam, David K; Sessle, Barry J; Hu, James W

    2009-01-28

    We have examined the effect of the peripheral application of glutamate and capsaicin to deep craniofacial tissues in influencing the activation and peripheral sensitization of deep craniofacial nociceptive afferents. The activity of single trigeminal nociceptive afferents with receptive fields in deep craniofacial tissues were recorded extracellularly in 55 halothane-anesthetized rats. The mechanical activation threshold (MAT) of each afferent was assessed before and after injection of 0.5 M glutamate (or vehicle) and 1% capsaicin (or vehicle) into the receptive field. A total of 68 afferents that could be activated by blunt noxious mechanical stimulation of the deep craniofacial tissues (23 masseter, 5 temporalis, 40 temporomandibular joint) were studied. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization reflected as MAT reduction in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to glutamate alone. These findings indicate that peripheral application of glutamate or capsaicin may activate or induce peripheral sensitization in a subpopulation of trigeminal nociceptive afferents innervating deep craniofacial tissues, as reflected in changes in MAT and other afferent response properties. The data further suggest that peripheral glutamate and capsaicin receptor mechanisms may interact to modulate the activation and peripheral sensitization in some deep craniofacial nociceptive afferents.

  6. Trigeminal postherpetic neuralgia responsive to treatment with capsaicin 8 % topical patch: a case report.

    PubMed

    Sayanlar, Jennifer; Guleyupoglu, Nilufer; Portenoy, Russell; Ashina, Sait

    2012-10-01

    Postherpetic neuralgia has been variably defined but is generally understood to be pain that persists for longer than a few months after an attack of herpes zoster. Pain persists for years in approximately 10 % of those afflicted with acute herpes zoster. The likelihood of postherpetic neuralgia increases with older age, severity of the zoster, trigeminal location, and other factors. Postherpetic neuralgia is a neuropathic pain and treatment usually involves sequential trials of topical and systemic drugs; a variety of other therapies may be considered in refractory cases. A new topical capsaicin 8 % patch has been approved for this indication based on the positive studies in patients with non-trigeminal postherpetic neuralgia. Experience with the use of the capsaicin 8 % patch for trigeminal distribution neuralgia is lacking. We report a case of trigeminal postherpetic neuralgia which was safely and effectively treated with capsaicin 8 % patch.

  7. Effect of capsaicin on voltage-gated currents of trigeminal neurones in cell culture and slice preparations.

    PubMed

    Balla, Z; Szoke, E; Czéh, G; Szolcsányi, J

    2001-01-01

    Effects of capsaicin on voltage-gated currents were examined in vitro by whole-cell patch-clamp recordings from small neurones of rat trigeminal ganglia either in slice preparations or in different cell cultures. Cells were classified as sensitive to capsaicin if they responded with inward current and/or conductance change to the agent in nanomolar concentration. Capsaicin (150 to 330 nM) in sensitive cells reduced the mixed inward current evoked by depolarizing step or ramp commands in all preparations. In cultured cells, the inward current was depressed to 32.78 +/- 26.42% (n = 27) of the control. Both the tetrodotoxin-sensitive and -resistant inward currents were affected. The data support the concept that capsaicin besides acting on VR-1 receptors inhibits also some voltage gated channels. In 34 cultured cells, capsaicin increased the slope conductance to 170.5 +/- 68%. Percentage of capsaicin sensitive cells observed in nerve growth factor-treated cultured cell populations was higher (77.8%) than in the two other preparations (14.3 or 38.8%). It is concluded that 1) depression of the voltage-gated currents may play an important role in the functional desensitization of the sensory receptors and in the analgesic effect induced by the agent and 2) cell body of sensory neurones under native condition seems less sensitive to capsaicin then that of cells cultured in the presence of nerve growth factor.

  8. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Largent-Milnes, Tally M; Aicher, Sue A

    2014-11-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats

    PubMed Central

    Hegarty, Deborah M.; Hermes, Sam M.; Largent-Milnes, Tally M.; Aicher, Sue A.

    2014-01-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings. PMID:24996127

  10. Alternation of gene expression in trigeminal ganglion neurons following complete Freund's adjuvant or capsaicin injection into the rat face.

    PubMed

    Okumura, Masayo; Iwata, Koichi; Yasuda, Koichi; Inoue, Katsuhiro; Shinoda, Masamichi; Honda, Kuniya; Shibuta, Kazuo; Yasuda, Masashi; Kondo, Eiji

    2010-10-01

    The hyperexcitability of trigeminal ganglion (TG) neurons following inflammation or C-fiber stimulation is known to be involved in a variety of changes in gene expression in TG neurons, resulting in pain abnormalities in orofacial regions. We analyzed nocifensive behavior following complete Freund's adjuvant (CFA) or capsaicin injection into the maxillary whisker pad, and gene expression in the TG neurons using microarray analysis. The head-withdrawal latency to capsaicin injection or the head-withdrawal threshold to mechanical stimulation of the whisker pad skin in CFA-treated rats was significantly decreased compared to vehicle-treated rats. Many up-regulated and down-regulated genes in the TG neurons of each model were reported. Genes which have not been linked to peripheral inflammation or C-fiber activation were detected. Moreover, microarray chip containing a number of non-coding sequences was also up-regulated by C-fiber activation. These findings suggest that the diverse gene expressions in TG neurons are differentially involved in the inflammatory chronic pain and the acute pain induced by C-fiber activation, and the hyperexcitation of C-fibers are associated with the activation of certain non-coding RNAs.

  11. The effect of capsaicin on expression patterns of CGRP in trigeminal ganglion and trigeminal nucleus caudalis following experimental tooth movement in rats

    PubMed Central

    ZHOU, Yang; LONG, Hu; YE, Niansong; LIAO, Lina; YANG, Xin; JIAN, Fan; WANG, Yan; LAI, Wenli

    2016-01-01

    ABSTRACT Objectives The aim of this study was to explore the effect of capsaicin on expression patterns of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) and trigeminal subnucleus caudalis (Vc) following experimental tooth movement. Material and Methods Male Sprague-Dawley rats were used in this study and divided into small-dose capsaicin+force group, large-dose capsaicin+force group, saline+force group, and no force group. Closed coil springs were used to mimic orthodontic forces in all groups except for the no force group, in which springs were inactivated. Capsaicin and saline were injected into periodontal tissues. Rats were euthanized at 0 h, 12 h, 1 d, 3 d, 5 d, and 7 d following experimental tooth movement. Then, TG and Vc were obtained for immunohistochemical staining and western blotting against CGRP. Results Immunohistochemical results indicated that CGRP positive neurons were located in the TG, and CGRP immunoreactive fibers were distributed in the Vc. Immunohistochemical semiquantitative analysis and western blotting analysis demonstrated that CGRP expression levels both in TG and Vc were elevated at 12 h, 1 d, 3 d, 5 d, and 7 d in the saline + force group. However, both small-dose and large-dose capsaicin could decrease CGRP expression in TG and Vc at 1 d and 3 d following experimental tooth movement, as compared with the saline + force group. Conclusions These results suggest that capsaicin could regulate CGRP expression in TG and Vc following experimental tooth movement in rats. PMID:28076465

  12. Sweet taste and chorda tympani transection alter capsaicin-induced lingual pain perception in adult human subjects.

    PubMed

    Schöbel, N; Kyereme, J; Minovi, A; Dazert, S; Bartoshuk, L; Hatt, H

    2012-10-10

    Sweetness signals the nutritional value of food and may moreover be accompanied by a sensory suppression that leads to higher pain tolerance. This effect is well documented in infant rats and humans. However, it is still debated whether sensory suppression is also present in adult humans. Thus, we investigated the effects of sweet taste on the perception of the painful trigeminal stimulus capsaicin in two groups of healthy adult human subjects. A solution of 100 μM capsaicin was applied to the tip of the subject's tongues in order to stimulate trigeminal Aδ- and C-fiber nociceptors. When swallowed, 1M sucrose reduced the capsaicin-induced burning sensation by 29% (p ≤ 0.05) whereas a solution of similar taste intensity containing 1 μM quinine did not. Similarly, sucrose application to the frontal hemitongue suppressed the perception of the burning sensation induced by contralaterally applied capsaicin by 25% (p ≤ 0.01). We furthermore investigated the effects of documented unilateral transection of the chorda tympani nerve on capsaicin perception. In accordance with the ipsi-to-contralateral effect of sucrose on capsaicin perception in healthy subjects, hemiageusic subjects were more sensitive for capsaicin on the tongue contralateral to the taste nerve lesion (+38%; p ≤ 0.01). Taken together, these results argue I) for the existence of food intake-induced sensory suppression, if not analgesia, in adult humans and II) a centrally mediated suppression of trigeminal sensation by taste inputs that III) becomes disinhibited upon peripheral taste nerve lesion.

  13. Chemical nociception in the jejunum induced by capsaicin

    PubMed Central

    Schmidt, B; Hammer, J; Holzer, P; Hammer, H F

    2004-01-01

    Background and aims: Chemonociception in the human small intestine has not been studied extensively. Although capsaicin can cause intestinal sensations, it is not known if this is due to stimulation of chemoreceptors or to motor changes. Our aims were to evaluate motor activity during capsaicin induced nociception and to compare qualities of jejunal nociception induced by capsaicin and mechanical distension. Methods: Twenty nine healthy subjects swallowed a tube with a perfusion site at the ligament of Treitz and, 7 cm distally, a barostat balloon. Phasic motor activity was measured around the perfusion site and the balloon. Capsaicin solutions (40, 200, and 400 μg/ml) 2.5 ml/min were perfused for 60 minutes or until severe discomfort occurred. A graded questionnaire for seven different sensations was completed every 10 minutes and after capsaicin perfusion was replaced by saline perfusion because of severe discomfort. Sensations arising from pressure controlled distensions were assessed before and after capsaicin perfusion when sensations had stopped (n = 19), or during capsaicin administration when no discomfort was reported (n = 5). Results: Capsaicin perfusion induced feelings of pressure, cramps, pain, and warmth. The quality and abdominal location of these sensations were similar to those induced by distension, except for warmth (p<0.01) and pressure (p<0.05). Seven of 12 subjects receiving 40 μg/ml capsaicin and all subjects receiving higher capsaicin concentrations developed discomfort. Perfusion had to be stopped after 55 (3.3), 15 (5.7), and 10 (2.2) minutes with 40, 200, and 400 μg/ml capsaicin, respectively, whereafter the sensations disappeared within 10 minutes. Repeated capsaicin (200 μg/ml) applications significantly reduced the time until discomfort occurred (p = 0.01). Jejunal tone was not altered by capsaicin but phasic activity proximal to the perfusion site was reduced during capsaicin induced discomfort (p<0.001). Pain

  14. The effects of Botulinum Toxin type A on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization.

    PubMed

    Gazerani, Parisa; Staahl, Camilla; Drewes, Asbjøn M; Arendt-Nielsen, Lars

    2006-06-01

    The trigeminovascular system is involved in migraine. Efficacy of Botulinum Toxin type A (BoNT-A) in migraine has been investigated in clinical studies but the mechanism of action remains unexplored. It is hypothesized that BoNT-A inhibits peripheral sensitization of nociceptive fibers and indirectly reduces central sensitization. We examined the effect of intramuscular injection of BoNT-A on an experimental human model of trigeminal sensitization induced by intradermal capsaicin injection to the forehead. BoNT-A (BOTOX) or saline was injected intramuscularly in precranial, neck and shoulder muscles to 32 healthy male volunteers in a double blind-randomized manner. Intradermally capsaicin-induced pain, flare and secondary hyperalgesia were obtained before and 1, 4 and 8 weeks after the above treatments. A significant suppressive effect of BoNT-A on pain, flare and hyperalgesia area was observed. The pain intensity area was significantly smaller in BoNT-A group (9.16+/-0.83 cm x s) compared to saline group (15.41+/-0.83cm x s) (P=0.011). The flare area was also reduced significantly in BoNT-A group (29.81+/-0.69 cm2) compared to saline group (39.71+/-0.69 cm2) (P<0.001). Similarly, the mean area of secondary hyperalgesia was significantly smaller in BoNT-A group (4.25+/-0.91 cm2) compared to saline group (7.03+/-0.91 cm2) (P=0.040). Post hoc analysis showed significant differences across the trials with a remarkable suppression effect of BoNT-A on capsaicin-induced sensory and vasomotor reactions as early as week1 (P<0.001). BoNT-A presented suppressive effects on the trigeminal/cervical nociceptive system activated by intradermal injection of capsaicin to the forehead. The effects are suggested to be caused by a local peripheral effect of BoNT-A on cutaneous nociceptors.

  15. Mechanistic Studies of Capsaicin-Induced Apnea in Rodents.

    PubMed

    Ren, Jun; Ding, Xiuqing; Greer, John J

    2017-02-01

    Inhalation of capsaicin-based sprays can cause central respiratory depression and lethal apneas. There are contradictory reports regarding the sites of capsaicin action. Furthermore, an understanding of the neurochemical mechanisms underlying capsaicin-induced apneas and the development of pharmacological interventions is lacking. The main objectives of this study were to perform a systematic study of the mechanisms of action of capsaicin-induced apneas and to provide insights relevant to pharmacological intervention. In vitro and in vivo rat and transient receptor potential vanilloid superfamily member 1 (TRPV1)-null mouse models were used to measure respiratory parameters and seizure-like activity in the presence of capsaicin and compounds that modulate glutamatergic neurotransmission. Administration of capsaicin to in vitro and in vivo rat and wild-type mouse models induced dose-dependent apneas and the production of seizure-like activity. No significant changes were observed in TRPV1-null mice or rat medullary slice preparations. The capsaicin-induced effects were inhibited by the TRPV1 antagonist capsazepine, amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonists CNQX, NBQX, perampanel, and riluzole, a drug that inhibits glutamate release and increases glutamate uptake. The capsaicin-induced effects on breathing and seizure-like activity were accentuated by positive allosteric modulators of the AMPA receptors, CX717 and cyclothiazide. To summarize, capsaicin-induced apneas and seizure-like behaviors are mediated via TRPV1 activation acting at lung afferents, spinal cord-ascending tracts, and medullary structures (including nucleus tractus solitarius). AMPA receptor-mediated conductances play an important role in capsaicin-induced apneas and seizure-like activity. A pharmaceutical strategy targeted at reducing AMPA receptor-mediated glutamatergic signaling may reduce capsaicin-induced deleterious effects.

  16. Olopatadine hydrochloride inhibits capsaicin-induced flare response in humans.

    PubMed

    Shindo, Masahisa; Yoshida, Yuichi; Yamamoto, Osamu

    2011-01-01

    Capsaicin, a vanilloid, has the potential for releasing substance P (SP) from sensory nerves. Topical application of capsaicin induces a flare response in the skin. However, it has not been clarified whether the release of SP is involved in the process of flare response or not. A potent antihistamine drug, olopatadine hydrochloride, is known to have inhibitory action against the release of SP. We examined the effects of olopatadine (at a dose of 5 mg) on skin reaction induced by topical application of capsaicin in 10 healthy subjects. The scores of capsaicin-induced flare responses after olopatadine administration were significantly lower at 30 min than at baseline. Our findings suggest that olopatadine hydrochloride could inhibit capsaicin-induced flare responses. Copyright © 2011 S. Karger AG, Basel.

  17. Modulation of lipopolysaccharide-induced oxidative stress by capsaicin.

    PubMed

    Abdel-Salam, Omar M E; Abdel-Rahman, Rehab Fawzy; Sleem, Amany A; Farrag, Abdel Razik

    2012-08-01

    . Capsaicin exerted protective effects in the liver and lung against the LPS-induced tissue damage.

  18. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    PubMed Central

    Park, Chul-Kyu

    2015-01-01

    In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region. PMID:26617436

  19. Effects of the CGRP receptor antagonist BIBN4096BS on capsaicin-induced carotid haemodynamic changes in anaesthetised pigs

    PubMed Central

    Kapoor, Kapil; Arulmani, Udayasankar; Heiligers, Jan P C; Garrelds, Ingrid M; Willems, Edwin W; Doods, Henri; Villalón, Carlos M; Saxena, Pramod R

    2003-01-01

    Calcitonin gene-related peptide (CGRP), a potent vasodilator released from capsaicin-sensitive trigeminal sensory nerves, seems to be involved in the pathogenesis of migraine. Hence, CGRP receptor antagonists may serve as a novel treatment for migraine. This study was therefore designed to investigate the effects of BIBN4096BS (100, 300 and 1000 μg kg−1, i.v.), a potent and selective CGRP receptor antagonist, on capsaicin-induced carotid haemodynamic changes in anaesthetised pigs. Both vagosympathetic trunks were cut and phenylephrine was infused into the carotid artery (i.c.) to support carotid vascular tone. Infusions of capsaicin (0.3, 1, 3 and 10 μg kg−1 min−1, i.c.) did not alter the heart rate, but dose-dependently increased the mean arterial blood pressure. This moderate hypertensive effect was not modified by BIBN4096BS. Capsaicin infusion (10 μg kg−1 min−1, i.c.) increased total carotid, arteriovenous anastomotic and tissue blood flows and conductances as well as carotid pulsations, but decreased the difference between arterial and jugular venous oxygen saturations. These responses to capsaicin were dose-dependently blocked by BIBN4096BS. Capsaicin infusion (10 μg kg−1 min−1, i.c.) more than doubled the jugular venous plasma concentration of CGRP. This effect was not blocked, but rather increased, by BIBN4096BS. The above results show that BIBN4096BS behaves as a potent antagonist of capsaicin-induced carotid haemodynamic changes that are mediated via the release of CGRP. Therefore, this compound may prove effective in the treatment of migraine. PMID:12970078

  20. Overexpression of artemin in the tongue increases expression of TRPV1 and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard oil.

    PubMed

    Elitt, Christopher M; Malin, Sacha A; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2008-09-16

    Artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, supports a subpopulation of trigeminal sensory neurons through activation of the Ret/GFRalpha3 receptor tyrosine kinase complex. In a previous study we showed that artemin is increased in inflamed skin of wildtype mice and that transgenic overexpression of artemin in skin increases TRPV1 and TRPA1 expression in dorsal root ganglia neurons. In this study we examined how transgenic overexpression of artemin in tongue epithelium affects the anatomy, gene expression and calcium handling properties of trigeminal sensory afferents. At the RNA level, trigeminal ganglia of artemin overexpresser mice (ART-OEs) had an 81% increase in GFRalpha3, a 190% increase in TRPV1 and a 403% increase in TRPA1 compared to wildtype (WT) controls. Myelinated and unmyelinated fibers of the lingual nerve were increased in diameter, as was the density of GFRalpha3 and TRPV1-positive innervation to the dorsal anterior tongue and fungiform papilla. Retrograde labeling of trigeminal afferents by WGA injection into the tip of the tongue showed an increased percentage of GFRalpha3, TRPV1 and isolectin B4 afferents in ART-OE mice. ART-OE afferents had larger calcium transients in response to ligands of TRPV1 (capsaicin) and TRPA1 (mustard oil). Behavioral sensitivity was also exhibited by ART-OE mice to capsaicin and mustard oil, measured using a two-choice drinking test. These results suggest a potential role for artemin-responsive GFRalpha3/TRPV1/TRPA1 sensory afferents in mediating sensitivity associated with tissue injury, chemical sensitivity or disease states such as burning mouth syndrome.

  1. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  2. 17Beta-estradiol mediates the sex difference in capsaicin-induced nociception in rats.

    PubMed

    Lu, Yu-Ching; Chen, Chao-Wei; Wang, Su-Yi; Wu, Fong-Sen

    2009-12-01

    We have previously shown that the male sex steroid testosterone inhibits slightly, but the female sex steroid 17beta-estradiol (E(2)) potentiates dramatically, the capsaicin receptor-mediated current in rat dorsal root ganglion (DRG) neurons. Here, we used pharmacological methods and the nociceptive behavioral test to determine whether there is a sex difference in capsaicin-induced acute pain in rats in vivo and what mechanism underlies this sex difference. Results revealed that intradermal injection of capsaicin induced a dose-dependent nocifensive response in males and females, with the dose required to produce a comparable level of nociception being approximately 3- to 4-fold higher in males than in females. In addition, females during the proestrus stage exhibited significantly greater capsaicin-induced nocifensive responses compared with the estrus stage. Moreover, the female's enhanced sensitivity to the capsaicin-induced nocifensive response was completely reversed by ovariectomy 6 weeks before capsaicin injection. It is noteworthy that intradermal coinjection of E(2) but not progesterone with capsaicin potentiated the capsaicin-induced nocifensive response in ovariectomized rats. Likewise, intradermal E(2) injection dose-dependently potentiated the capsaicin-induced nocifensive response in male rats. Furthermore, potentiation by E(2) of the capsaicin-induced nocifensive response in male rats was not significantly reduced by a selective protein kinase C (PKC) inhibitor or by a selective protein kinase A (PKA) inhibitor, indicating that neither PKC nor PKA was involved in the effect of E(2). These data demonstrate that E(2) mediates the female's enhanced sensitivity to capsaicin-induced acute pain, consistent with potentiation by E(2) of the capsaicin receptor-mediated current in rat DRG neurons.

  3. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats.

    PubMed

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2016-04-01

    It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory.

  4. Capsaicin effects on blinking.

    PubMed

    Leon-Sarmiento, Fidias E; Bayona-Prieto, Jaime; Leon-S, Marta E

    2005-09-01

    Blinking is a normal human phenomenon involving trigeminal and facial pathways. To gain understanding on the neurobiology of blinking, five normal subjects were investigated before and after application of transdermal capsaicin at the forehead for two weeks. No effects of topical capsaicin were detected in eye blink rates. However, when capsaicin was applied to a female subject with blepharospasm, she showed a dramatic restoration of her vision subsequent to blinking modification. Deactivation of abnormal A-to-C fibers cross talks at the trigeminal-facial pathways seems to be the most likely mechanism of such improvement.

  5. TRPA1 contributes to capsaicin-induced facial cold hyperalgesia in rats.

    PubMed

    Honda, Kuniya; Shinoda, Masamichi; Furukawa, Akihiko; Kita, Kozue; Noma, Noboru; Iwata, Koichi

    2014-12-01

    Orofacial cold hyperalgesia is known to cause severe persistent pain in the face following trigeminal nerve injury or inflammation, and transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankylin 1 (TRPA1) are thought to be involved in cold hyperalgesia. However, how these two receptors are involved in cold hyperalgesia is not fully understood. To clarify the mechanisms underlying facial cold hyperalgesia, nocifensive behaviors to cold stimulation, the expression of TRPV1 and TRPA1 in trigeminal ganglion (TG) neurons, and TG neuronal excitability to cold stimulation following facial capsaicin injection were examined in rats. The head-withdrawal reflex threshold (HWRT) to cold stimulation of the lateral facial skin was significantly decreased following facial capsaicin injection. This reduction of HWRT was significantly recovered following local injection of TRPV1 antagonist as well as TRPA1 antagonist. Approximately 30% of TG neurons innervating the lateral facial skin expressed both TRPV1 and TRPA1, and about 64% of TRPA1-positive neurons also expressed TRPV1. The TG neuronal excitability to noxious cold stimulation was significantly increased following facial capsaicin injection and this increase was recovered by pretreatment with TRPA1 antagonist. These findings suggest that TRPA1 sensitization via TRPV1 signaling in TG neurons is involved in cold hyperalgesia following facial skin capsaicin injection.

  6. Biomimetic proopiomelanocortin suppresses capsaicin-induced sensory irritation in humans

    PubMed Central

    Fatemi, Sayed Ali; Jafarian-Dehkordi, Abbas; Hajhashemi, Valiollah; Asilian-Mahabadi, Ali

    2016-01-01

    Sensitive skin is a frequently mentioned cosmetic complaint. Addition of a biomimetic of neuromediator has recently appeared as a promising new way to cure skin care product problems. This study was aimed to assess the inhibitory effect of a biomimetic lipopeptide derived from proopiomelanocortin (bPOMC) on capsaicin-induced sensory irritation in human volunteers and also to compare its protective effect with that of the well-known anti irritant strontium chloride. The effect of each test compound was studied on 28 selected healthy volunteers with sensitive skin in accordance with a double-blind vehicle-controlled protocol. From day 1 to day 13 each group was applied the test compound (bPOMC or strontium chloride) to one wing of the nose and the corresponding placebo (vehicle) to the other side twice daily. On days 0 and 14, acute skin irritation was induced by capsaicin solution and quantified using clinical stinging test assessments. Following the application of capsaicin solution, sensory irritation was evaluated using a 4-point numeric scale. The sensations perceived before and after treatment (on days 0 and 14) was calculated for the two zones (test materials and vehicle). Ultimately the percentage of variation between each sample and the placebo and also the inhibitory effect of bPOMC compared to that of strontium chloride were reported. Clinical results showed that after two weeks treatment, the levels of skin comfort reported in the group treated with bPOMC were significantly higher than those obtained in the placebo group and the inhibitory effect of bPOMC was about 47% higher than that of strontium chloride. The results of the present study support the hypothesis that biomimetic peptides may be effective on sensitive skin. PMID:28003842

  7. Donitriptan, but not sumatriptan, inhibits capsaicin-induced canine external carotid vasodilatation via 5-HT1B rather than 5-HT1D receptors

    PubMed Central

    Muñoz-Islas, E; Gupta, S; Jiménez-Mena, L R; Lozano-Cuenca, J; Sánchez-López, A; Centurión, D; Mehrotra, S; MaassenVanDenBrink, A; Villalón, C M

    2006-01-01

    Background and purpose: It has been suggested that during a migraine attack capsaicin-sensitive trigeminal sensory nerves release calcitonin gene-related peptide (CGRP), resulting in cranial vasodilatation and central nociception; hence, trigeminal inhibition may prevent this vasodilatation and abort migraine headache. This study investigated the effects of the agonists sumatriptan (5-HT1B/1D water-soluble), donitriptan (5-HT1B/1D lipid-soluble), PNU-142633 (5-HT1D water-soluble) and PNU-109291 (5-HT1D lipid-soluble) on vasodilator responses to capsaicin, α-CGRP and acetylcholine in dog external carotid artery. Experimental approach: 59 vagosympathectomized dogs were anaesthetized with sodium pentobarbitone. Blood pressure and heart rate were recorded with a pressure transducer, connected to a cannula inserted into a femoral artery. A precalibrated flow probe was placed around the common carotid artery, with ligation of the internal carotid and occipital branches, and connected to an ultrasonic flowmeter. The thyroid artery was cannulated for infusion of agonists. Key results: Intracarotid infusions of capsaicin, α-CGRP and acetylcholine dose-dependently increased blood flow through the carotid artery. These responses remained unaffected after intravenous (i.v.) infusions of sumatriptan, PNU-142633, PNU-109291 or physiological saline; in contrast, donitriptan significantly attenuated the vasodilator responses to capsaicin, but not those to α-CGRP or acetylcholine. Only sumatriptan and donitriptan dose-dependently decreased the carotid blood flow. Interestingly, i.v. administration of the antagonist, SB224289 (5-HT1B), but not of BRL15572 (5-HT1D), abolished the inhibition by donitriptan. Conclusions and implications: Our results suggest that the inhibition produced by donitriptan of capsaicin-induced external carotid vasodilatation is mainly mediated by 5-HT1B, rather than 5-HT1D, receptors, probably by a central mechanism. PMID:16880765

  8. Capsaicin-induced activation of fine afferent fibres from rat skin in vitro.

    PubMed

    Seno, N; Dray, A

    1993-07-01

    A preparation of the hindpaw-skin together with the saphenous nerve from the adult rat was maintained in vitro. This was used to characterize the properties of sensory receptors with slowly conducting nerve fibres (C- and A delta) and to evaluate the effects of capsaicin and the capsaicin antagonist, capsazepine. Mechano-heat sensitive C-fibres were the most sensitive to capsaicin (threshold < 0.3 microM) applied to the receptive field. Other types of C-fibres were less sensitive (mechano-cold sensitive fibres threshold 1 microM) or insensitive (high- and low-threshold mechano-sensitive fibres). Mechano-heat and mechano-cold sensitive A delta-receptors were also activated by capsaicin but high- and low-threshold mechano-sensitive A delta-fibres were insensitive to capsaicin (maximum concentration 3 microM). The capsaicin-induced activation of mechano-heat sensitive C-fibres was concentration dependent with an EC50 = 350 nM. Responses to capsaicin, administered at submaximal concentrations were highly reproducible when administrations were separated by 30 min. Administrations at greater frequency reduced responsiveness to capsaicin. This was accompanied by a slowing of conduction velocity or production of a conduction blockade which was reversible after a few minutes. The activation of mechano-heat sensitive C-fibres by capsaicin could be prevented by capsazepine, indicating the involvement of specific capsaicin receptor-sites. These data show that fine afferents in the rat hindpaw-skin retain receptive properties when maintained in vitro. These fibres exhibit differential sensitivity to capsaicin; mechano-heat sensitive C-fibres being the most sensitive. The activation of this class of fibre was mediated via a specific capsaicin-receptor.

  9. The pepper's natural ingredient capsaicin induces autophagy blockage in prostate cancer cells

    PubMed Central

    Ramos-Torres, Ágata; Bort, Alicia; Morell, Cecilia; Rodríguez-Henche, Nieves; Díaz-Laviada, Inés

    2016-01-01

    Capsaicin, the pungent ingredient of red hot chili peepers, has been shown to have anti-cancer activities in several cancer cells, including prostate cancer. Several molecular mechanisms have been proposed on its chemopreventive action, including ceramide accumulation, endoplasmic reticulum stress induction and NFκB inhibition. However, the precise mechanisms by which capsaicin exerts its anti-proliferative effect in prostate cancer cells remain questionable. Herein, we have tested the involvement of autophagy on the capsaicin mechanism of action on prostate cancer LNCaP and PC-3 cells. The results showed that capsaicin induced prostate cancer cell death in a time- and concentration-dependent manner, increased the levels of microtubule-associated protein light chain 3-II (LC3-II, a marker of autophagy) and the accumulation of the cargo protein p62 suggesting an autophagy blockage. Moreover, confocal microscopy revealed that capsaicin treatment increased lysosomes which co-localized with LC3 positive vesicles in a similar extent to that produced by the lysosomal protease inhibitors E64 and pepstatin pointing to an autophagolysosomes breakdown inhibition. Furthermore, we found that capsaicin triggered ROS generation in cells, while the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Co-treatment of cells with NAC and capsaicin abrogated the effects of capsaicin on autophagy and cell death. Normal prostate PNT2 and RWPE-1 cells were more resistant to capsaicin-induced cytotoxicity and did not accumulate p62 protein. Taken together, these results suggest that ROS-mediated capsaicin-induced autophagy blockage contributes to antiproliferation in prostate cancer cells, which provides new insights into the anticancer molecular mechanism of capsaicin. PMID:26625315

  10. Mechanisms underlying the augmentation of phenylbiguanide and capsaicin induced cardiorespiratory reflexes by Mesobuthus tamulus venom.

    PubMed

    Dutta, Abhaya; Akella, Aparna; Deshpande, Shripad B

    2012-10-01

    Phenylbiguanide (PBG) and capsaicin evoke cardiorespiratory reflexes utilizing two separate pathways. It is known that Indian Red Scorpion (Mesobuthus tumulus; MBT) venom augments PBG (5-HT(3)) responses but, the effect of MBT venom on capsaicin (TRPV1)-induced response is not known. Therefore, the present study was undertaken to ascertain whether MBT venom also augments the capsaicin-induced reflex responses involving mechanisms similar to PBG. Experiments were performed on anaesthetized adult rats. Blood pressure, respiratory excursions and ECG were recorded. At the end of each experiment pulmonary water content was determined. PBG (10 μg/kg) produced hypotension, bradycardia and apnoea-bradypnoea. Capsaicin (10 μg/kg) also produced hypotension, bradycardia and apnoea-bradypnoea. MBT venom (100 μg/kg) augmented PBG as well as capsaicin-induced responses and produced pulmonary oedema (increased pulmonary water content). Prostaglandin synthase inhibitor (indomethacin; 10 mg/kg) blocked the venom-induced augmentation of PBG and capsaicin reflexes. Kinin synthase inhibitor (aprotinin; 6000 KIU) and guanylate cyclase (GC) inhibitor (methylene blue; 5 mg/kg) blocked the venom-induced augmentation of PBG response but not the capsaicin response. However, pulmonary oedema was blocked by these antagonists. Phosphodiesterase V inhibitor (sildenafil; 100 μg/kg) augmented the PBG response but not the capsaicin response, though pulmonary oedema was seen in both the groups. The present results indicate that MBT venom also augments the capsaicin-induced responses. The augmentation of capsaicin response involves PGs and pulmonary oedema-independent mechanisms whereas, the augmentation of PBG response involves kinin mediated GC-cGMP pathway and pulmonary oedema-dependent mechanisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Intrapericardial capsaicin and bradykinin induce different cardiac-somatic and cardiovascular reflexes in rats.

    PubMed

    Liu, Xiaohua; Zhang, Qi; Han, Man; Du, Jianqing

    2016-07-01

    Patients with myocardial infarction experience various types of chest pain and autonomic disturbance symptoms. Studies in rats have shown that pericardial infusions of certain chemicals induce cardiac-related muscle pain and cardiovascular reflexes. In the present study, bradykinin or capsaicin was injected into the pericardial sac and the resulting cardiac-somatic reflexes and blood pressure (BP) alterations were record. We found that the cardiac-somatic reflex induced by bradykinin had a longer latency, shorter duration, and lower firing rate than that induced by capsaicin (p<0.05). We also found that bradykinin induced a hypertensive response (p<0.05), while capsaicin induced a hypotensive response (p<0.05). Bilateral vagotomy had no effect on the cardiac-somatic reflex induced by bradykinin (p>0.05) but reduced the reflex induced by capsaicin (p<0.05). However, vagotomy had no effect on the BP alterations induced by both bradykinin and capsaicin (p>0.05). These results suggest that bradykinin and capsaicin activate different pathways to induce cardiac-somatic and cardiovascular reflexes and that the vagus nerve is involved in TRPV1-related muscle pain modulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Involvement of a capsaicin-sensitive TRPV1-independent mechanism in lipopolysaccharide-induced fever in chickens.

    PubMed

    Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Nikami, Hideki; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2007-11-01

    It has been demonstrated that capsaicin blocks lipopolysaccharide (LPS)-induced fever in mammals. In this study, we investigated TRPV1 (transient receptor potential ion channel of vanilloid subtype-1)-independent action of capsaicin on LPS-induced fever in chickens. The chicken is a valuable model for this purpose because chicken TRPV1 has been shown to be insensitive to capsaicin and thus the effects of capsaicin can be attributed to TRPV1-independent mechanisms. Administration of capsaicin (10 mg/kg, iv) to conscious unrestrained chicks at 5 days of age caused a transient decrease in body temperature. This effect of capsaicin was not observed in chicks that had been pretreated twice with capsaicin, indicating that the capsaicin-sensitive pathway can be desensitized. LPS (2 mg/kg, ip) induced fever that lasted for about 2.5 h, but fever was not induced in chicks that had been pretreated with capsaicin for 2 days. The preventive effect of capsaicin on LPS-induced fever was not blocked by capsazepine, an antagonist for TRPV1, but the antagonist per se blocked the febrile response to LPS. These findings suggest that a capsaicin-sensitive TRPV1-independent mechanism may be involved in LPS-induced fever.

  13. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression.

    PubMed

    Granato, Marisa; Gilardini Montani, Maria Saveria; Filardi, Mariarosari; Faggioni, Alberto; Cirone, Mara

    2015-10-06

    Capsaicin, the pungent alkaloid of red pepper has been extensively studied for its many properties, especially the anti-inflammatory and anti-oxidant ones. It binds to vanilloid receptor 1, although it has been reported to be able to mediate some effects independently of its receptor. Another important property of Capsaicin is the anticancer activity against highly malignant tumors, alone or in combination with other chemotherapeutic agents. In this study, we found that Capsaicin induced an apoptotic cell death in PEL cells correlated with the inhibition of STAT3. STAT3 pathway, constitutively activated in PEL cells, is essential for their survival. By STAT3 de-phosphorylation, Capsaicin reduced the Mcl-1 expression level and this could represent one of the underlying mechanisms leading to the Capsaicin-mediated cell death and autophagy induction. Next, by pharmacological or genetic inhibition, we found that autophagy played a pro-survival role, suggesting that its inhibition could be exploited to increase the Capsaicin cytotoxic effect against PEL cells. Finally, we show that Capsaicin induced DAMP exposure, as for an immunogenic cell death, directly promoted DC activation and, more importantly, that it counteracted the immune-suppression, in terms of DC differentiation, mediated by the PEL released factors.

  14. Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

    PubMed Central

    Jung, Sung-Hyun; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Subin; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2014-01-01

    Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation. PMID:24642709

  15. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    PubMed

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer.

  17. Capsaicin Induces Degeneration of Cutaneous Autonomic Nerve Fibers

    PubMed Central

    Gibbons, Christopher H; Wang, Ningshan; Freeman, Roy

    2010-01-01

    Objective To determine the effects of topical application of capsaicin on cutaneous autonomic nerves. Methods Thirty-two healthy subjects underwent occlusive application of 0.1% capsaicin cream (or placebo) for 48 hours. Subjects were followed for 6 months with serial assessments of sudomotor, vasomotor, pilomotor and sensory function with simultaneous assessment of innervation through skin biopsies. Results There were reductions in sudomotor, vasomotor, pilomotor and sensory function in capsaicin- treated subjects (p<0.01 vs. placebo). Sensory function declined more rapidly than autonomic function; reaching a nadir by day 6 while autonomic function reached a nadir by day 16. There were reductions in sudomotor, vasomotor, pilomotor and sensory nerve fiber densities in capsaicin treated subjects (p<0.01 vs. placebo). Intra-epidermal nerve fiber density declined maximally by 6 days while autonomic nerve fiber densities reached maximal degeneration by day 16. Conversely, autonomic nerves generally regenerated more rapidly than sensory nerves, requiring 40–50 days to return to baseline levels while sensory fibers required 140–150 days to return to baseline. Interpretation Topical capsaicin leads to degeneration of sudomotor, vasomotor and pilomotor nerves accompanied by impairment of sudomotor, vasomotor and pilomotor function. These results suggest the susceptibility and/or pathophysiologic mechanisms of nerve damage may differ between autonomic and sensory nerve fibers treated with capsaicin and enhances the capsaicin model for the study of disease modifying agents. The data suggest caution should be taken when topical capsaicin is applied to skin surfaces at risk for ulceration, particularly in neuropathic conditions characterized by sensory and autonomic impairment. PMID:21061393

  18. Capsaicin-induced, capsazepine-insensitive relaxation of the guinea-pig ileum.

    PubMed

    Fujimoto, Seigo; Mori, Mayumi; Tsushima, Hiromi; Kunimatsu, Mitoshi

    2006-01-13

    The mechanisms underlying transient receptor potential vanilloid receptor type 1 (TRPV1)-independent relaxation elicited by capsaicin were studied by measuring isometric force and phosphorylation of 20-kDa regulatory light chain subunit of myosin (MLC(20)) in ileum longitudinal smooth muscles of guinea-pigs. In acetylcholine-stimulated tissues, capsaicin (1-100 microM) and resiniferatoxin (10 nM-1 microM) produced a concentration-dependent relaxation. The relaxant response was attenuated by 4-aminopyridine and high-KCl solution, but not by capsazepine, tetraethylammonium, Ba(2+), glibenclamide, charybdotoxin plus apamin nor antagonists of cannabinoid receptor type 1 and calcitonin-gene related peptide. A RhoA kinase inhibitor reduced the relaxant effect of capsaicin at 30 microM. Capsaicin and resiniferatoxin reduced acetylcholine- and caffeine-induced transient contractions in a Ca(2+)-free, EGTA solution. Capsaicin at 30 microM for 20 min did not alter basal levels of MLC(20) phosphorylation, but abolished an increase by acetylcholine in MLC(20) phosphorylation. It is suggested that the relaxant effect of capsaicin at concentrations used is not mediated by TRPV1, but by 4-aminopyridine-sensitive K(+) channels, and that capsaicin inhibits contractile mechanisms involving Ca(2+) release from intracellular storage sites. The relaxation could be explained by a decrease in phosphorylation of MLC(20).

  19. Ocular inflammation induces trigeminal pain, peripheral and central neuroinflammatory mechanisms.

    PubMed

    Launay, Pierre-Serge; Reboussin, Elodie; Liang, Hong; Kessal, Karima; Godefroy, David; Rostene, William; Sahel, Jose-Alain; Baudouin, Christophe; Melik Parsadaniantz, Stéphane; Reaux Le Goazigo, Annabelle

    2016-04-01

    Ocular surface diseases are among the most frequent ocular pathologies, with prevalence ranging from 20% of the general population. In addition, ocular pain following corneal injury is frequently observed in clinic. The aim of the study was to characterize the peripheral and central neuroinflammatory process in the trigeminal pathways in response to cornea alteration induced by chronic topical instillations of 0.2% benzalkonium chloride (BAC) in male C57BL/6J mice. In vitro BAC induced neurotoxicity and increases neuronal (FOS, ATF3) and pro-inflammatory (IL-6) markers in primary mouse trigeminal ganglion culture. BAC-treated mice exhibited 7days after the treatment reduced aqueous tear production and increased inflammatory cell infiltration in the cornea. Hypertonic saline-evoked eye wipe behavior was enhanced in BAC-treated animals that exhibited increased FOS, ATF3 and Iba1 immunoreactivity in the trigeminal ganglion. Ocular inflammation is associated with a significant increase in IL-6 and TNF-α mRNA expression in the trigeminal ganglion. We reported a strong increase in FOS and Iba1 positive cells in particular in the sensory trigeminal complex at the ipsilateral interpolaris/caudalis (Vi/Vc) transition and Vc/upper cervical cord (Vc/C1) regions. In addition, activated microglial cells were tightly wrapped around activated FOS neurons in both regions and phosphorylated p38 mitogen-activated protein kinase was markedly enhanced specifically in microglial cells during ocular inflammation. Similar data were obtained in the facial motor nucleus. These neuroanatomical data correlated with the increase in mRNA expression of pro-inflammatory (TNF-α, IL-6, CCL2) and neuronal (FOS and ATF3) markers. Interestingly, the suppression of corneal inflammation 10days following the end of BAC treatment resulted in a marked attenuation of peripheral and central changes observed in pathological conditions. This study provides the first demonstration that corneal inflammation

  20. Effect of capsaicin and cimetidine on the healing of acetic acid induced gastric ulceration in the rat.

    PubMed Central

    Kang, J Y; Teng, C H; Chen, F C

    1996-01-01

    BACKGROUND: Capsaicin protects the gastric mucosa against experimental injury while capsaicin desensitisation reduces the rate of gastric ulcer healing. The effect of exogenous capsaicin on gastric ulcer healing has not to date been reported. AIM/METHOD: To investigate the effect of capsaicin, cimetidine, and in combination, given intragastrically in the healing of acetic acid induced chronic gastric ulcer in the rat. Treatment started immediately after ulcer induction. RESULTS: At the end of one week, capsaicin, cimetidine, and in combination increased ulcer healing but the effect of combined treatment was less than that of capsaicin alone. In an in vivo gastric chamber preparation, capsaicin increased, while cimetidine decreased, gastric mucosal blood flow measured by laser Doppler flowmetry. A dose response effect in reduction of gastric mucosal blood flow could be demonstrated for cimetidine. The gastric hyperaemic effect of capsaicin was blunted by prior administration of cimetidine. In contrast, capsaicin had no effect on gastric acid secretion and its addition to cimetidine did not affect the acid suppressant effect of the latter. CONCLUSIONS: Capsaicin promotes the healing of acetic acid induced gastric ulcer, probably by its gastric hyperaemic effect. Although cimetidine also promotes ulcer healing due to its inhibitory effect on acid secretion it may have an antagonistic effect on the gastric ulcer healing effect of capsaicin by virtue of inhibition of gastric hyperaemia. PMID:8984019

  1. Effects of capsaicin on VGSCs in TRPV1-/- mice.

    PubMed

    Cao, Xuehong; Cao, Xuesong; Xie, Hong; Yang, Rong; Lei, Gang; Li, Fen; Li, Ai; Liu, Changjin; Liu, Lieju

    2007-08-13

    Two different mechanisms by which capsaicin blocks voltage-gated sodium channels (VGSCs) were found by using knockout mice for the transient receptor potential V1 (TRPV1(-/-)). Similar with cultured rat trigeminal ganglion (TG) neurons, the amplitude of tetrodotoxin-resistant (TTX-R) sodium current was reduced 85% by 1 muM capsaicin in capsaicin sensitive neurons, while only 6% was blocked in capsaicin insensitive neurons of TRPV1(+/+) mice. The selective effect of low concentration capsaicin on VGSCs was reversed in TRPV1(-/-) mice, which suggested that this effect was dependent on TRPV1 receptor. The blockage effect of high concentration capsaicin on VGSCs in TRPV1(-/-) mice was the same as that in capsaicin insensitive neurons of rats and TRPV1(+/+) mice. It is noted that non-selective effect of capsaicin on VGSCs shares many similarities with local anesthetics. That is, firstly, both blockages are concentration-dependent and revisable. Secondly, being accompanied with the reduction of amplitude, voltage-dependent inactivation curve shifts to hyperpolarizing direction without a shift of activation curve. Thirdly, use-dependent blocks are induced at high stimulus frequency.

  2. Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries

    PubMed Central

    Gupta, Saurabh; Lozano-Cuenca, Jair; Villalón, Carlos M.; de Vries, René; Garrelds, Ingrid M.; Avezaat, Cees J. J.; van Kats, Jorge P.; Saxena, Pramod R.

    2007-01-01

    Capsaicin, a pungent constituent from red chilli peppers, activates sensory nerve fibres via transient receptor potential vanilloid receptors type 1 (TRPV1) to release neuropeptides like calcitonin gene-related peptide (CGRP) and substance P. Capsaicin-sensitive nerves are widely distributed in human and porcine vasculature. In this study, we examined the mechanism of capsaicin-induced relaxations, with special emphasis on the role of CGRP, using various pharmacological tools. Segments of human and porcine proximal and distal coronary arteries, as well as cranial arteries, were mounted in organ baths. Concentration response curves to capsaicin were constructed in the absence or presence of the CGRP receptor antagonist olcegepant (BIBN4096BS, 1 μM), the neurokinin NK1 receptor antagonist L-733060 (0.5 μM), the voltage-sensitive calcium channel blocker ruthenium red (100 μM), the TRPV1 receptor antagonist capsazepine (5 μM), the nitric oxide synthetase inhibitor Nω-nitro-l-arginine methyl ester HCl (l-NAME; 100 μM), the gap junction blocker 18α-glycyrrhetinic acid (10 μM), as well as the RhoA kinase inhibitor Y-27632 (1 μM). Further, we also used the K+ channel inhibitors 4-aminopyridine (1 mM), charybdotoxin (0.5 μM) + apamin (0.1 μM) and iberiotoxin (0.5 μM) + apamin (0.1 μM). The role of the endothelium was assessed by endothelial denudation in distal coronary artery segments. In distal coronary artery segments, we also measured levels of cyclic adenosine monophosphate (cAMP) after exposure to capsaicin, and in human segments, we also assessed the amount of CGRP released in the organ bath fluid after exposure to capsaicin. Capsaicin evoked concentration-dependent relaxant responses in precontracted arteries, but none of the above-mentioned inhibitors did affect these relaxations. There was no increase in the cAMP levels after exposure to capsaicin, unlike after (exogenously administered) α-CGRP. Interestingly, there were

  3. Peripheral Glutamate Receptors Are Required for Hyperalgesia Induced by Capsaicin

    PubMed Central

    Jin, You-Hong; Takemura, Motohide; Furuyama, Akira; Yonehara, Norifumi

    2012-01-01

    Transient receptor potential vanilloid1 (TRPV1) and glutamate receptors (GluRs) are located in small diameter primary afferent neurons (nociceptors), and it was speculated that glutamate released in the peripheral tissue in response to activation of TRPV1 might activate nociceptors retrogradely. But, it was not clear which types of GluRs are functioning in the nociceptive sensory transmission. In the present study, we examined the c-Fos expression in spinal cord dorsal horn following injection of drugs associated with glutamate receptors with/without capsaicin into the hindpaw. The subcutaneous injection of capsaicin or glutamate remarkably evoked c-Fos expression in ipsilateral sides of spinal cord dorsal horn. This capsaicin evoked increase of c-Fos expression was significantly prevented by concomitant administration of MK801, CNQX, and CPCCOEt. On the other hand, there were not any significant changes in coinjection of capsaicin and MCCG or MSOP. These results reveal that the activation of iGluRs and group I mGluR in peripheral afferent nerves play an important role in mechanisms whereby capsaicin evokes/maintains nociceptive responses. PMID:22110945

  4. Reactive oxygen species induce procalcitonin expression in trigeminal ganglia glia

    PubMed Central

    Raddant, Ann C.; Russo, Andrew F.

    2014-01-01

    Objective To examine calcitonin gene-related peptide (CGRP) gene expression under inflammatory conditions using trigeminal ganglia organ cultures as an experimental system. These cultures have increased proinflammatory signaling that may mimic neurogenic inflammation in the migraine state. Background The trigeminal nerve sends peripheral pain signals to the central nervous system during migraine. Understanding the dynamic processes that occur within the trigeminal nerve and ganglion may provide insights into events that contribute to migraine pain. A neuropeptide of particular interest is CGRP, which can be elevated and play a causal role in migraine. However, most studies have overlooked a second splice product of the CALCA gene, which encodes calcitonin (CT), a peptide hormone involved in calcium homeostasis. Importantly, a precursor form of calcitonin called procalcitonin (proCT) can act as a partial agonist at the CGRP receptor and elevated proCT has recently been reported during migraine. Methods We used a trigeminal ganglion whole organ explant model, which has previously been demonstrated to induce pro-inflammatory agents in vitro. Quantitative PCR and immunohistochemistry were used to evaluate changes in mRNA and protein levels of CGRP and proCT. Results Whole mouse trigeminal ganglia cultured for 24 h showed a 10-fold increase in CT mRNA, with no change in CGRP mRNA. A similar effect was observed in ganglia from adult rats. ProCT immunoreactivity was localized in glial cells. Cutting the tissue blunted the increase in CT, suggesting that induction required the close environment of the intact ganglia. Consistent with this prediction, there were increased reactive oxygen species in the ganglia and the elevated CT mRNA was reduced by antioxidant treatment. Surprisingly, reactive oxygen species were increased in neurons, not glia. Conclusions These results demonstrate that reactive oxygen species can activate proCT expression from the CGRP gene in trigeminal

  5. Topical capsaicin application causes cold hypersensitivity in awake monkeys.

    PubMed

    Kamo, Hiroshi; Honda, Kuniya; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Kondo, Masahiro; Taira, Masato; Yamashita, Akiko; Katsuyama, Narumi; Masuda, Yuji; Kato, Takafumi; Iwata, Koichi

    2008-06-01

    Recent animal studies have demonstrated that many trigeminal ganglion neurons co-express TRPV1 and TRPA1 receptors following peripheral inflammation. In the present study, we examined whether cold receptors were sensitized by capsaicin in awake monkeys. Two monkeys were trained to detect a change in cold stimulus temperature (30 degrees C to 0.5, 1.0, 1.5 or 2.0 degrees C) applied to the facial skin. A total of 589 trials were studied, and the number of escape and hold-through trials and detection latency were measured. The number of escape trials was increased after capsaicin treatment, whereas that of hold-through trials was decreased. Detection latency was significantly decreased after capsaicin treatment. The present findings suggest that topical application of capsaicin to the facial skin induces reversible hypersensitivity to a facial cold stimulus in behaving monkeys.

  6. Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation.

    PubMed

    Sánchez, Ana Maria; Malagarie-Cazenave, Sophie; Olea, Nuria; Vara, Diana; Chiloeches, Antonio; Díaz-Laviada, Inés

    2007-11-01

    Numerous studies have recently focused on the anticarcinogenic, antimutagenic, or chemopreventive activities of the main pungent component of red pepper, capsaicin (N-vanillyl-8-methyl-1-nonenamide). We have previously shown that, in the androgen-independent prostate cancer PC-3 cells, capsaicin inhibits cell growth and induces apoptosis through reactive oxygen species (ROS) generation [Apoptosis 11 (2006) 89-99]. In the present study, we investigated the signaling pathways involved in the antiproliferative effect of capsaicin. Here, we report that capsaicin apoptotic effect was mediated by ceramide generation which occurred by sphingomyelin hydrolysis. Using siRNA, we demonstrated that N-SMase expression is required for the effect of capsaicin on prostate cell viability. We then investigated the role of MAP kinase cascades, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, in the antiproliferative effect of capsaicin, and we confirmed that capsaicin could activate ERK and JNK but not p38 MAPK. Pharmacological inhibition of JNK kinase, as well as inhibition of ROS by the reducing agent N-acetylcysteine, prevented ceramide accumulation and capsaicin-induced cell death. However, inhibition of ceramide accumulation by the SMase inhibitor D609 did not modify JNK activation. These data reveal JNK as an upstream regulator of ceramide production. Capsaicin-promoted activation of ERK was prevented with all the inhibitors tested. We conclude that capsaicin induces apoptosis in PC-3 cells via ROS generation, JNK activation, ceramide accumulation, and second, ERK activation.

  7. Capsaicin induces apoptosis in SCC-4 human tongue cancer cells through mitochondria-dependent and -independent pathways.

    PubMed

    Ip, Siu-Wan; Lan, Sheng-Hui; Huang, An-Cheng; Yang, Jai-Sing; Chen, Ya-Yin; Huang, Hui-Ying; Lin, Zen-Pin; Hsu, Yuan-Man; Yang, Mei-Due; Chiu, Chang-Fang; Chung, Jing-Gung

    2012-05-01

    Although there have been advances in the fields of surgery, radiotherapy, and chemotherapy of tongue cancer, the cure rates are still not substantially satisfactory. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the major pungent ingredient of hot chili pepper and has been reported to have an antitumor effect on many human cancer cell types. The molecular mechanisms of the antitumor effect of capsaicin are not yet completely understood. Herein, we investigated whether capsaicin induces apoptosis in human tongue cancer cells. Capsaicin decreased the percentage of viable cells in a dose-dependent manner in human tongue cancer SCC-4 cells. In addition, capsaicin produced DNA fragmentation, decreased the DNA contents (sub-G1 phase), and induced G0/G1 phase arrest in SCC-4 cells. We demonstrated that capsaicin-induced apoptosis is associated with an increase in reactive oxygen species and Ca²⁺ generations and a disruption of the mitochondrial transmenbrane potential (ΔΨ(m)). Treatment with capsaicin induced a dramatic increase in caspase-3 and -9 activities, as assessed by flow cytometric methods. A possible mechanism of capsaicin-induced apoptosis is involved in the activation of caspase-3 (one of the apoptosis-executing enzyme). Confocal laser microscope examination also showed that capsaicin induced the releases of AIF, ATF-4, and GADD153 from mitochondria of SCC-4 cells. Copyright © 2010 Wiley Periodicals, Inc.

  8. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin-induced apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Chen, Xun; Tan, Miduo; Xie, Zhiqin; Feng, Bin; Zhao, Zhijian; Yang, Kaiqing; Hu, Chen; Liao, Ni; Wang, Taoli; Chen, Dongliang; Xie, Feng; Tang, Caixi

    2016-07-01

    Capsaicin, which is the pungent ingredient of red hot chili peppers, has been reported to possess anticancer activity, including that against hepatocellular carcinoma. However, the precise molecular mechanisms by which capsaicin exerts its anticancer effects remain poorly understood. Herein, we have tested the involvement of autophagy in the capsaicin mechanism of action in human hepatocellular carcinoma. HepG2 cancer cells were treated with different doses of capsaicin (50, 100 and 200μmol/L) for 6, 12, and 24 h. Flow cytometry and Caspase-3 activity assay were performed to determine cell apoptosis. Immunofluorescence was performed to visualize LC3-positive puncta. Western blotting was used to detect the expression of the hallmarks of apoptosis and autophagy. Capsaicin can induce apoptosis in HepG2 cells. The expression levels of CL-PARP and Bcl-2 were significantly increased. In line with the apoptosis, capsaicin can trigger autophagy in HepG2 cells. Capsaicin increased LC3-II and beclin-1 expression and GFP-LC3-positive autophagosomes. Pharmacological or genetic inhibition of autophagy further sensitized HepG2 cells to capsaicin-induced apoptosis. Mechanistically, capsaicin upregulated the Stat3 activity which contributed to autophagy. Importantly, we found that capsaicin triggered reactive oxygen species (ROS) generation in hepatoma cells and that the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Moreover, NAC abrogated the effects of capsaicin on Stat3-dependent autophagy. In this study, we demonstrated that capsaicin increased the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3)-dependent autophagy through the generation of ROS signaling pathways in human hepatoma. Inhibiting autophagy could enhance capsaicin-induced apoptosis in human hepatocellular carcinoma.

  9. Capsaicin Induces “Brite” Phenotype in Differentiating 3T3-L1 Preadipocytes

    PubMed Central

    Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

    2014-01-01

    Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and

  10. A comparison of hyperalgesia and neurogenic inflammation induced by melittin and capsaicin in humans.

    PubMed

    Sumikura, H; Andersen, O K; Drewes, A M; Arendt-Nielsen, L

    2003-02-13

    Melittin (a main compound of bee venom) and capsaicin were injected intradermally in healthy human volunteers: (1) to study secondary mechanical hyperalgesia (static hyperalgesia and dynamic hyperalgesia) around the injection site; and (2) to correlate the sensory changes to the neurogenic inflammation assessed by laser-doppler blood flowmetry. Melittin 50 microg and capsaicin 10 microg induced comparable spontaneous pain and increased blood flow (neurogenic inflammation). Intradermal injection of melittin induced regions of secondary mechanical hyperalgesia around the injection site, however, they were not as large as the hyperalgesia induced by capsaicin. This is the first report studying mechanical hyperalgesia induced by melittin in humans, and the results were in agreement with the previous observations in rats. Melittin seems to be a valuable model to study a possible contribution of neurogenic inflammation to hyperalgesia in humans.

  11. Ca(2+) and Calpain Mediate Capsaicin-induced Ablation of Axonal Terminals Expressing Transient Receptor Potential Vanilloid 1.

    PubMed

    Wang, Sheng; Wang, Sen; Asgar, Jamila; Joseph, John; Ro, Jin Y; Wei, Feng; Campbell, James N; Chung, Man-Kyo

    2017-03-30

    Capsaicin is an ingredient in spicy peppers that produces burning pain by activating transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel in nociceptors. Capsaicin also has been used as an analgesic, and its topical administration is approved for the treatment of certain pain conditions. The mechanisms underlying capsaicin-induced analgesia likely involve reversible ablation of nociceptor terminals. However, the mechanisms underlying these effects are not well understood. To visualize TRPV1-lineage axons, a genetically engineered mouse model was used in which a fluorophore is expressed under TRPV1 promoter. Using a combination of these TRPV1-lineage reporter mice and primary afferent cultures, we monitored capsaicin-induced effects on afferent terminals in real time. We found that Ca2+ influx through TRPV1 is necessary for capsaicin-induced ablation of nociceptive terminals. Although capsaicin-induced mitochondrial Ca2+ uptake was TRPV1-dependent, dissipation of the mitochondrial membrane potential, inhibition of the mitochondrial transition permeability pore and scavengers of reactive oxygen species did not attenuate capsaicin-induced ablation. In contrast, MDL28170, an inhibitor of the Ca2+-dependent protease calpain diminished ablation. Furthermore, overexpression of calpastatin, an endogenous inhibitor of calpain, or knockdown of calpain2 also decreased the ablation. Quantitative assessment of TRPV1-lineage afferents in the epidermis of the hind paws of the reporter mice showed that EGTA and MDL28170 diminished capsaicin-induced ablation. Moreover, MDL28170 prevented capsaicin-induced thermal hypoalgesia. These results suggest that TRPV1/Ca2+/calpain-dependent signaling plays a dominant role in capsaicin-induced ablation of nociceptive terminals and further our understanding of the molecular mechanisms underlying effects of capsaicin on nociceptors.

  12. Capsaicin-induced activation of pulmonary vagal C fibers produces reflex laryngeal closure in the rat.

    PubMed

    Lu, I-Jung; Lee, Kun-Ze; Hwang, Ji-Chuu

    2006-10-01

    Our recent studies show that intravenous administration of capsaicin induces enhancement of the intralaryngeal thyroarytenoid (TA) branch but a reduction of the intralaryngeal abducent branch, suggesting that the glottis is likely closed by capsaicin. The aim of the present study was to examine whether the glottis is adducted by intravenous administration of capsaicin. Electromyographic (EMG) activity of the TA muscle, subglottal pressure (SGP), and glottal behavior were evaluated before and after intravenous administration of capsaicin in male Wistar rats that were anesthetized and tracheostomized. Catheters were placed in the femoral artery and vein, as well as in the right jugular vein. Low and high doses of capsaicin (0.625 and 1.25 microg/kg) produced apnea and increases in the amplitude of the TA EMG. This enhancement of the TA EMG was observed during apnea as well as during recovery from apnea. Moreover, the onset of the TA EMG was advanced such that it commenced earlier during inspiration. Concomitantly, the SGP substantially increased. Increases in both the TA EMG and SGP were abolished after bilateral sectioning of the recurrent laryngeal nerve. In some animals, movement of the vocal folds was recorded by taking a motion picture with a digital camera under a surgical microscope. With intravenous administration of capsaicin, a tight glottal closure, decreases in blood pressure, and bradycardia were observed. These results strongly suggest that glottal closure is reflexively induced by intravenous administration of capsaicin and that closure of the glottis is beneficial for the defense of the airway and lungs when an animal is exposed to environmental irritants.

  13. Dose-dependent protective effect of BPC 157 on capsaicin-induced rhinitis in rats.

    PubMed

    Kalogjera, L; Ries, M; Baudoin, T; Ferencic, Z; Trotic, R; Pegan, B

    1997-01-01

    Protection of BPC 157 on capsaicin-induced rhinitis was studied in Wistar rats for its effect on mastocyte infiltration, degranulation and inflammatory cell infiltration. Animals were pretreated with 10 microg/kg, 10 ng/kg or 2 ml saline i.p. and capsaicin (0.05 ml/nostril of 1750 nmol/l sol.) was applied intranasally. They were then euthanized at 1, 3 and 12 h after capsaicin provocation. Nasal mucosa was analyzed and scored for mastocyte infiltration, degranulation and inflammatory cell infiltration. BPC 157 pretreatment significantly prevented mastocyte infiltration at 1 h. Polymorphonuclear leukocyte infiltration was significantly reduced in rats pretreated with 10 microg/kg BPC 157. A dose-dependent effect of BPC 157 pretreatment was demonstrated only for polymorphonuclear leukocyte infiltration at 12 h.

  14. Vasosensory responses elicited by Indian red scorpion venom last longer than capsaicin-induced responses.

    PubMed

    Singh, Sanjeev K; Deshpande, Shripad B

    2008-11-01

    The present study was conducted to compare the time-related cardiorespiratory changes occurring after the injection of Mesobuthus tamulus (BT; 1 mg/kg) venom and capsaicin (1.2 ng/kg) in the peripheral end of femoral artery in urethane anaesthetised rats. Blood pressure (BP), electrocardiogram (for heart rate; HR) and respiratory movements were recorded for 60 min after venom/capsaicin intra-arterially. Minute ventilation (MV) was computed by using appropriate calibrations. After intraarterial injection of BT venom, there was immediate (within 2 sec) increase in respiratory rate (RR) and MV which reached to 40% within 30 sec, followed by a 40% decrease in RR without any change in MV. Further, there was sustained increase in RR (50%) and MV (65%) up to 60 min. The BP began to increase at 40 sec, peaking at 5 min (50%) and remained above the initial level up to 60 min. The bradycardiac response began after 5 min which peaked (50% of the initial) at 25 min and remained at that level up to 60 min. In capsaicin treated group, there was immediate hyperventilatory (increase in RR and MV) changes within 2 sec which returned to the initial level within 2 min and remained at that level up to 60 min. The capsaicin-induced hypotensive response began within 5 sec which returned to the initial level by 5 min and remained at that level throughout. Capsaicin did not produce any change in HR. These observations suggest that intraarterial injection of BT venom produces prolonged cardiorespiratory alterations as compared to the capsaicin-induced responses.

  15. Chronic stress-induced mechanical hyperalgesia is controlled by capsaicin-sensitive neurones in the mouse.

    PubMed

    Scheich, B; Vincze, P; Szőke, É; Borbély, É; Hunyady, Á; Szolcsányi, J; Dénes, Á; Környei, Zs; Gaszner, B; Helyes, Zs

    2017-09-01

    Clinical studies demonstrated peripheral nociceptor deficit in stress-related chronic pain states, such as fibromyalgia. The interactions of stress and nociceptive systems have special relevance in chronic pain, but the underlying mechanisms including the role of specific nociceptor populations remain unknown. We investigated the role of capsaicin-sensitive neurones in chronic stress-related nociceptive changes. Capsaicin-sensitive neurones were desensitized by the capsaicin analogue resiniferatoxin (RTX) in CD1 mice. The effects of desensitization on chronic restraint stress (CRS)-induced responses were analysed using behavioural tests, chronic neuronal activity assessment in the central nervous system with FosB immunohistochemistry and peripheral cytokine concentration measurements. Chronic restraint stress induced mechanical and cold hypersensitivity and increased light preference in the light-dark box test. Open-field and tail suspension test activities were not altered. Adrenal weight increased, whereas thymus and body weights decreased in response to CRS. FosB immunopositivity increased in the insular cortex, dorsomedial hypothalamic and dorsal raphe nuclei, but not in the spinal cord dorsal horn after the CRS. CRS did not affect the cytokine concentrations of hindpaw tissues. Surprisingly, RTX pretreatment augmented stress-induced mechanical hyperalgesia, abolished light preference and selectively decreased the CRS-induced neuronal activation in the insular cortex. RTX pretreatment alone increased the basal noxious heat threshold without influencing the CRS-evoked cold hyperalgesia and augmented neuronal activation in the somatosensory cortex and interleukin-1α and RANTES production. Chronic restraint stress induces hyperalgesia without major anxiety, depression-like behaviour or peripheral inflammatory changes. Increased stress-induced mechanical hypersensitivity in RTX-pretreated mice is presumably mediated by central mechanisms including cortical plastic

  16. Tacrolimus hydrate ointment inhibits skin plasma extravasation in rats induced by topical m-xylene but not capsaicin.

    PubMed

    Goto, Shiho; Kondo, Fumio; Ikai, Yoshitomo; Miyake, Mio; Futamura, Masaki; Ito, Komei; Sakamoto, Tatsuo

    2009-04-17

    Tacrolimus ointment is used to treat various chronic inflammatory skin diseases. However, the effect of this ointment on acute neurogenic inflammation in the skin remains to be fully elucidated. Topical capsaicin and m-xylene produce tachykinin release from sensory nerves in the skin, resulting in skin plasma leakage. We investigated the effect of tacrolimus ointment (0.1%) on skin microvascular leakage induced by topical capsaicin (10 mM) and m-xylene (neat), and intracutaneous compound 48/80 (c48/80) (10 microg/ml, 50 microl/site) in two groups of rats pretreated with excessive capsaicin or its vehicle. The amount of leaked Evans blue dye reflected skin plasma leakage. Capsaicin, m-xylene or c48/80 was applied to the shaved abdomens of rats 8 h after topical application of tacrolimus ointment or its base. Desensitization with capsaicin reduced the skin response to capsaicin and m-xylene by 100% and 65%, respectively, but not to c48/80. Tacrolimus ointment significantly inhibited the skin response induced by m-xylene and c48/80, regardless of pretreatment with capsaicin. However, topical tacrolimus did not influence the skin response induced by capsaicin. We also evaluated whether topical capsaicin and m-xylene, and intracutaneous c48/80 cause mast cell degranulation in skin treated with tacrolimus. Mast cell degranulation was microscopically assessed. Topical tacrolimus only significantly suppressed degranulation induced by m-xylene and c48/80. Our data shows that tacrolimus ointment partially inhibits plasma leakage and mast cell degranulation in rat skin induced by m-xylene and c48/80 but not capsaicin, suggesting that the inhibitory effect is not associated with a reduction in neurogenic-mediated mechanisms.

  17. Disodium cromoglycate inhibits capsaicin-induced eosinophil infiltration of conjunctiva independent of mast cells.

    PubMed

    Ebihara, Nobuyuki; Nishikawa, Motoaki; Murakami, Akira

    2006-01-01

    To investigate whether disodium cromoglycate (DSCG) inhibits capsaicin-induced eosinophil infiltration of the conjunctiva independent of mast cells. We administered 5 microl of capsaicin solution (10(-5) M) into the conjunctival sacs of mast cell-deficient W/W(v) mice (12 animals) and wild-type mice (12 animals). As controls, the eyes of 12 wild-type and 12 W/W(v) mice were treated with phosphate-buffered saline. Following treatment, the eyelids and eyeballs were removed en bloc at 3, 9, or 24 h, and were histologically examined. The number of infiltrated eosinophils and the expression of vascular cell adhesion molecule-l (VCAM-1) in the conjunctiva were quantified by the staining method of Hansel and immunohistochemical analysis. We also investigated whether treatment by depletion of neuropeptides or by DSCG administration could suppress the capsaicin-induced eosinophil infiltration of the conjunctiva. In both W/W(v) and wild-type mice, eosinophil infiltration of conjunctival tissues was observed 3 h after capsaicin administration. In both strains of mice, the number of infiltrated eosinophils increased over time, with VCAM-1 expression on vascular endothelial cells peaking at 9 h after treatment, and decreasing gradually within 24 h after treatment. In both the neuropeptide-depleted and the DSCG-treated groups, eosinophil infiltration and VCAM-1 expression were suppressed in comparison with the nontreated group. DSCG can directly inhibit neuropeptide-induced eosinophil infiltration of the conjunctiva independent of mast cells.

  18. Electroacupuncture suppresses capsaicin-induced secondary hyperalgesia through an endogenous spinal opioid mechanism

    PubMed Central

    Kim, Hee Young; Wang, Jigong; Lee, Inhyung; Kim, Hee Kee; Chung, Kyungsoon; Chung, Jin Mo

    2009-01-01

    Central sensitization, caused either by tissue inflammation or peripheral nerve injury, plays an important role in persistent pain. An animal model of capsaicin-induced pain has well-defined peripheral and central sensitization components, thus is useful for studying the analgesic effect on two separate components. The focus of this study is to examine the analgesic effects of electroacupuncture (EA) on capsaicin-induced secondary hyperalgesia, which represents central sensitization. Capsaicin (0.5%, 10 μl) was injected into the plantar side of the left hind paw, and foot withdrawal thresholds in response to von Frey stimuli (mechanical sensitivity) were determined for both primary and secondary hyperalgesia in rats. EA (2 Hz, 3 mA) was applied to various pairs of acupoints, GB30-GB34, BL40-BL60, GV2-GV6, LI3-LI6 and SI3-TE8, for 30 min under isofluraine anesthesia and then the effect of EA on mechanical sensitivity of paw was determined. EA applied to the ipsilateral SI3-TE8, but none the other acupoints, significantly reduced capsaicin-induced secondary hyperalgesia but not primary hyperalgesia. EA analgesic effect was inhibited by a systemic non-specific opioid receptor (OR) antagonist or an intrathecal μ- or δ-OR antagonist. EA analgesic effect was not affected by an intrathecal κ-OR antagonist or systemic adrenergic receptor antagonist. This study demonstrates that EA produces a stimulation point specific analgesic effect on capsaicin-induced secondary hyperalgesia (central sensitization), mediated by activating endogenous spinal μ and δ opioid receptors. PMID:19646817

  19. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1

    PubMed Central

    Tang, Xu; Weber, Christopher R.; Shen, Le; Turner, Jerrold R.; Matthews, Jeffrey B.

    2013-01-01

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-Isc). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-Isc by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-Isc. Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca2+]i) in T84 cells and AMG-9810 blocked the rise in [Ca2+]i induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  20. Effects of relaxation and stress on the capsaicin-induced local inflammatory response.

    PubMed

    Lutgendorf, S; Logan, H; Kirchner, H L; Rothrock, N; Svengalis, S; Iverson, K; Lubaroff, D

    2000-01-01

    Although stress is known to modulate the inflammatory response, there has been little experimental examination of the effects of stress and stress reduction on inflammation in humans. In particular, the effects of stress and relaxation on neurogenic inflammation have been minimally studied. This study examines the effects of three experimental manipulations: mental stress, relaxation, and control on the local inflammatory response evoked by the intradermal injection of capsaicin, the active ingredient in chili peppers. Fifty subjects (28 men and 22 women) were pretrained in relaxation using an imagery-based relaxation tape and then randomized to experimental condition. Subjects participated in an evening reactivity session including 20 minutes of a stress (Stroop test), relaxation (tape), or control (video) manipulation, followed by a capsaicin injection in the forearm. Digitized flare measurements were taken for 1 hour postcapsaicin, and measurements of cardiovascular variables, cortisol, adrenocorticotrophic hormone, and norepinephrine were taken at regular intervals. The size of the maximum capsaicin-induced flare was significantly smaller in the relaxation condition than in the stress or control conditions, which did not differ from each other. Increases in norepinephrine, heart rate, and systolic blood pressure during the experimental task, but not after capsaicin, significantly predicted size of maximum flare and total area under the curve of flare measurements. These findings suggest that stress reduction may affect local inflammatory processes. Results are consistent with sympathetic modulation of the effects of relaxation on the flare response.

  1. The capsaicin VR1 receptor mediates substance P release in toxin A-induced enteritis in rats.

    PubMed

    McVey, D C; Vigna, S R

    2001-09-01

    The mechanism by which Clostridium difficile toxin A causes substance P (SP) release and subsequent inflammation in the rat ileum is unknown. Pretreatment with the vanilloid receptor subtype 1 (VR1) antagonist, capsazepine, before toxin A administration significantly inhibited toxin A-induced SP release and intestinal inflammation. Intraluminal administration of the VR1 agonist capsaicin caused intestinal inflammation similar to the effects of toxin A. Pretreatment with capsazepine before capsaicin administration also significantly inhibited capsaicin-induced intestinal inflammation. These results suggest that intraluminal toxin A causes SP release from primary sensory neurons via stimulation of VR1 receptors resulting in intestinal inflammation.

  2. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action.

    PubMed

    Chen, Kuo-Shuen; Chen, Pei-Ni; Hsieh, Yih-Shou; Lin, Chin-Yin; Lee, Yi-Hsun; Chu, Shu-Chen

    2015-02-25

    Atherosclerosis is a chronic inflammatory vascular disease. It is characterized by endothelial dysfunction, lipid accumulation, leukocyte activation, and the production of inflammatory mediators and reactive oxygen species (ROS). Capsaicin, a biologically active compound of the red pepper and chili pepper, has several anti-oxidant, anti-inflammatory, anti-cancer, and hypolipidemic biological effects. However, its protective effects on foam cell formation and endothelial injury induced by oxidized low-density lipoprotein (oxLDL) remain unclear. In this study, we evaluated the anti-oxidative activity of capsaicin, and determined the mechanism by which capsaicin rescues human umbilical vein endothelial cells (HUVECs) from oxLDL-mediated dysfunction. The anti-oxidative activity of capsaicin was defined by Apo B fragmentation and conjugated diene production of the copper-mediated oxidation of LDL. Capsaicin repressed ROS generation, as well as subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxLDL in HUVECs. Capsaicin also protected foam cell formation in macrophage RAW 264.7 cells. Our results suggest that capsaicin may prevent oxLDL-induced cellular dysfunction and protect RAW 264.7 cells from LDL oxidation.

  3. Anti pruritic effects of topical crotamiton, capsaicin, and a corticosteroid on pruritogen-induced scratching behavior.

    PubMed

    Sekine, Rika; Satoh, Takahiro; Takaoka, Ayumi; Saeki, Kazumi; Yokozeki, Hiroo

    2012-03-01

    Itch accompanies various skin diseases. As a number of mediators other than histamine can be involved in the itch sensation, H1 receptor antagonists are not necessarily effective in treating itch. External application of antipruritic drugs is occasionally used as an alternative therapy for pruritic skin conditions, such as pruritus on primary non-diseased, non-inflamed skin. Even so, the actual effects of these drugs on the itch sensation have yet to be studied in detail. To verify the antipruritic effects of crotamiton, capsaicin, and a corticosteroid on the itch sensation, we examined the inhibitory effects of these drugs on various pruritogen-induced scratching behaviors in mice. Topical application of 10% crotamiton moderately inhibited histamine-, serotonin-, and PAR-2 agonist-induced scratching behaviors. Topical capsaicin (0.025%) also exerted a moderate suppressive effect on histamine-, substance P-, and PAR-2 agonist-induced itch responses. Notably, topical corticosteroid (0.05% clobetasol propionate) remarkably inhibited the scratching behaviors induced by all of the pruritogenic agents tested. Therapeutic effects of capsaicin on substance P-induced pruritus did not seem to be mediated by desensitization of the TRPV1 (+) C fibers and/or by altered responsiveness of the mast cells. In addition, the antipruritic effects of crotamiton and corticosteroid appear to be, at least partly, associated with a TRPV1-independent pathway. This study examined the itch responses to pruritogens and demonstrated the mode of action of the externally applied antipruritic drugs.

  4. Increase in gastric secretion induced by 2-deoxy-D-glucose is impaired in capsaicin pretreated rats.

    PubMed Central

    Evangelista, S.; Santicioli, P.; Maggi, C. A.; Meli, A.

    1989-01-01

    Gastric acid secretion was determined following intravenous administration of 2-deoxy-D-glucose (2-DG; 60 mg kg-1) or electrical stimulation of the vagus nerve in urethane-anaesthetized rats pretreated when newborn with either capsaicin or the vehicle. The secretory response to 2-DG was substantially reduced in the capsaicin pretreated rats, while that induced by electrical vagal stimulation (1 mA, 1 ms. 3 Hz) was unaffected. These results suggest that capsaicin-sensitive fibres are involved in the afferent branch of the reflex response activated by 2-DG to stimulate gastric acid secretion. PMID:2804552

  5. Influence of Capsaicin on Inflammatory Cytokines Induced by Lipopolysaccharide in Myoblast Cells Under In vitro Environment

    PubMed Central

    Shang, Ke; Amna, Touseef; Amina, Musarat; Al-Musayeib, Nawal M.; Al-Deyab, Salem S.; Hwang, Inho

    2017-01-01

    Background: ellular damage initiated by reactive oxygen species (ROS) is the main cause of numerous severe diseases and therefore for this reason, the natural antioxidants have note worthy significance in human health. Capsaicin possesses noteworthy analgesic and anti-inflammatory properties. It also possesses healing effects for treatment of arthritis, diabetic neuropathy, gastric lesions, and cardiac excitability that is why it is incorporated in creams and gels. Objective: The present study was carried out to estimate the in vitro antioxidant and ROS scavenging activities of capsaicin against muscle precursor cells. Till date, no investigation has been carried out to study the effect of capsaicin on myoblasts. Materials and methods: Herein, the cytotoxicity was induced by endotoxin lipopolysaccharide (LPS) to analyze the effect of capsaicin on LPS induced inflammation and apoptosis on muscle cells. To find out the toxicity of endotoxin, myoblasts were exposed to different concentrations of LPS, viability and morphology was checkedby the means of CCK-8 test and microscopy, respectively. Apoptotic cell death was examined by fluorescence staining. Additionally, LPS-induced apoptosis was determined by mRNAexpression of calpain, caspase-3 and tumor necrosisfactor alpha (TNF-α), and were quantified by qRT-PCR. Results: The outcome of the presentstudy demonstrated that LPS stimulation generatestoxicity in dose-dependent manner. Pre-treatmentof myoblasts with capsaicin can considerably alleviate LPS-induced inflammation. Conclusion: In conclusion, this study indicates that dietetic supplementation of capsicum may help to alleviate/reduce the inflammatory effects and is therefore potent source of natural antioxidant agent which can be utilized to control muscle related diseases, such as myotube atrophy. SUMMARY In the present study cytotoxicity was induced by LPS to analyze the effect of capsaicin on LPS induced inflammation and apoptosis on muscle cells.The results of

  6. Dose-dependent effects of smoked cannabis on capsaicin-induced pain and hyperalgesia in healthy volunteers.

    PubMed

    Wallace, Mark; Schulteis, Gery; Atkinson, J Hampton; Wolfson, Tanya; Lazzaretto, Deborah; Bentley, Heather; Gouaux, Ben; Abramson, Ian

    2007-11-01

    Although the preclinical literature suggests that cannabinoids produce antinociception and antihyperalgesic effects, efficacy in the human pain state remains unclear. Using a human experimental pain model, the authors hypothesized that inhaled cannabis would reduce the pain and hyperalgesia induced by intradermal capsaicin. In a randomized, double-blinded, placebo-controlled, crossover trial in 15 healthy volunteers, the authors evaluated concentration-response effects of low-, medium-, and high-dose smoked cannabis (respectively 2%, 4%, and 8% 9-delta-tetrahydrocannabinol by weight) on pain and cutaneous hyperalgesia induced by intradermal capsaicin. Capsaicin was injected into opposite forearms 5 and 45 min after drug exposure, and pain, hyperalgesia, tetrahydrocannabinol plasma levels, and side effects were assessed. Five minutes after cannabis exposure, there was no effect on capsaicin-induced pain at any dose. By 45 min after cannabis exposure, however, there was a significant decrease in capsaicin-induced pain with the medium dose and a significant increase in capsaicin-induced pain with the high dose. There was no effect seen with the low dose, nor was there an effect on the area of hyperalgesia at any dose. Significant negative correlations between pain perception and plasma delta-9-tetrahydrocannabinol levels were found after adjusting for the overall dose effects. There was no significant difference in performance on the neuropsychological tests. This study suggests that there is a window of modest analgesia for smoked cannabis, with lower doses decreasing pain and higher doses increasing pain.

  7. Effects of sensory denervation by neonatal capsaicin administration on experimental pancreatitis induced by dibutyltin dichloride.

    PubMed

    Ikeura, Tsukasa; Kataoka, Yosky; Wakabayashi, Taketoshi; Mori, Tetsuji; Takamori, Yasuharu; Takamido, Shoichiroh; Okazaki, Kazuichi; Yamada, Hisao

    2007-09-01

    Increase in the number of intrapancreatic sensory nerve fibers has been implicated in the generation of pain in chronic pancreatitis. Because some sensory neurotransmitters (e.g., substance P) are known to have proinflammatory effects, we hypothesized that denervation of intrapancreatic nerves might influence not only pain generation but also inflammation. Neonatal Lewis rats were injected with capsaicin (50 mg/kg or 0 mg/kg), a neurotoxin, to induce denervation of primary sensory neurons. When rats reached 170-190 g body weight, experimental pancreatitis was induced by a single administration of dibutyltin dichloride (7 mg/mg). The severity of pancreatitis was evaluated in both groups in the acute phase (at 3 and 7 days) and chronic phase (at 28 days). At day 7, the sensory denervation induced by neonatal capsaicin administration inhibited pancreatic inflammation on both histological (determination of interstitial edema, expansion of interlobular septa and intercellular spaces, and inflammatory cell infiltration) and biochemical (intrapancreatic myeloperoxidase activity) evaluation. Furthermore, at day 28, glandular atrophy, pseudotubular complexes, and rate of fibrosis were each significantly lower in the capsaicin-pretreated group than in the vehicle-pretreated group. Our findings provide in vivo evidence that primary sensory neurons play important roles in both acute pancreatitis and chronic pancreatic inflammation with fibrosis.

  8. Cerebral Networks Linked to Itch-related Sensations Induced by Histamine and Capsaicin.

    PubMed

    Vierow, Verena; Forster, Clemens; Vogelgsang, Rebekka; Dörfler, Arnd; Handwerker, Herman O

    2015-07-01

    This functional magnetic resonance imaging (fMRI) study explored the central nervous processing of itch induced by histamine and capsaicin, delivered via inactivated cowhage spicules, and the influence of low-dose naltrexone. Scratch bouts were delivered at regular intervals after spicule insertion in order temporarily to suppress the itch. At the end of each trial the subjects rated their itch and scratch-related sensations. Stepwise multiple regression analyses were employed for identifying cerebral networks contributing to the intensities of "itching", "burning", "stinging", "pricking" and "itch relief by scratching". In the capsaicin experiments a network for "burning" was identified, which included the posterior insula, caudate and putamen. In the histamine experiments networks for "itching" and "itch relief" were found, which included operculum, hippocampus and amygdala. Naltrexone generally reduced fMRI activation and the correlations between fMRI signal and ratings. Furthermore, scratching was significantly less pleasant under naltrexone.

  9. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study.

    PubMed

    Yang, Huan; Meijer, Hil G E; Doll, Robert J; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month.

  10. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study

    PubMed Central

    Yang, Huan; Meijer, Hil G. E.; Doll, Robert J.; Buitenweg, Jan R.; van Gils, Stephan A.

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month. PMID:27252644

  11. Effects of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of human serum lipids.

    PubMed

    Ahuja, Kiran D K; Kunde, Dale A; Ball, Madeleine J; Geraghty, Dominic P

    2006-08-23

    The oxidation of low-density lipoprotein (LDL) is believed to be the initiating factor for the development and progression of atherosclerosis. The active ingredients of spices such as chili and turmeric (capsaicin and curcumin, respectively) have been shown to reduce the susceptibility of LDL to oxidation. One of the techniques used to study the oxidation of LDL is to isolate LDL and subject it to metal-induced (copper or iron) oxidation. However, whole serum may represent a closer situation to in vivo conditions than using isolated LDL. We investigated the effects of different concentrations (0.1-3 microM) of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of serum lipoproteins. The lag time (before initiation of oxidation) and rate of oxidation (slope of propagation phase) were calculated. The lag time increased, and the rate of oxidation decreased with increasing concentrations of the tested antioxidants (p < 0.05). A 50% increase in lag time (from control) was observed at concentrations between 0.5 and 0.7 microM for capsaicin, dihydrocapsaicin, and curcumin. This study shows that oxidation of serum lipids is reduced by capsaicinoids and curcumin in a concentration-dependent manner.

  12. Antiallodynic effects of loperamide and fentanyl against topical capsaicin-induced allodynia in unanesthetized primates.

    PubMed

    Butelman, Eduardo R; Harris, Todd J; Kreek, Mary Jeanne

    2004-10-01

    Capsaicin produces thermal allodynia in animals and humans by acting as an agonist at vanilloid receptor subtype 1 [VR1; also known as transient receptor potential vanilloid type 1 (TRPV1)]. VR1 receptors are widely distributed in the periphery (e.g., on primary afferent neurons). These studies examined the ability of loperamide (0.1-1 mg/kg s.c.; a micro-opioid agonist that is peripherally selective after systemic administration), in preventing and reversing thermal allodynia caused by topical capsaicin (0.004 M) in rhesus monkeys, within a tail withdrawal assay (n = 4; 38 degrees C and 42 degrees C; normally non-noxious thermal stimuli). The effects of loperamide were compared with those of the centrally penetrating micro-agonist, fentanyl (0.0032-0.032 mg/kg s.c.). We also characterized the allodynic effects of the endogenous VR1 agonist ("endovanilloid"), N-oleoyldopamine (OLDA; 0.0013-0.004 M). In this model, loperamide and fentanyl produced dose-dependent prevention of capsaicin-induced allodynia, whereas only fentanyl produced robust reversal of ongoing allodynia. Antagonism experiments with naltrexone (0.1 mg/kg s.c.) or its analog, methylnaltrexone (0.32 mg/kg s.c.), which does not readily cross the blood-brain barrier, suggest that the antiallodynic effects of loperamide and fentanyl were predominantly mediated by peripherally and centrally located micro-receptors, respectively. Loperamide and fentanyl (1 mg/kg and 0.032 mg/kg, respectively) also prevented OLDA (0.004 M)-induced allodynia. Up to the largest dose studied, loperamide was devoid of thermal antinociceptive effects at 48 degrees C (a noxious thermal stimulus, in the absence of capsaicin). By contrast, fentanyl (0.01-0.032 mg/kg) caused dose-dependent antinociception in this sensitive thermal antinociceptive assay (a presumed centrally mediated effect). These studies show that loperamide, acting as a peripherally selective micro-agonist after systemic administration, can prevent capsaicin-induced

  13. New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy.

    PubMed

    Shaqura, Mohammed; Khalefa, Baled I; Shakibaei, Mehdi; Zöllner, Christian; Al-Khrasani, Mahmoud; Fürst, Susanna; Schäfer, Michael; Mousa, Shaaban A

    2014-10-01

    Painful diabetic neuropathy is a disease of the peripheral sensory neuron with impaired opioid responsiveness. Since μ-opioid receptor (MOR) activation can inhibit the transient receptor potential vanilloid 1 (TRPV1) activity in peripherally sensory neurons, this study investigated the mechanisms of impaired opioid inhibitory effects on capsaicin-induced TRPV1 activity in painful diabetic neuropathy. Intravenous injection of streptozotocin (STZ, 45 mg/kg) in Wistar rats led to a degeneration of insulin producing pancreatic β-cells, elevated blood glucose, and mechanical hypersensitivity (allodynia). In these animals, local morphine's inhibitory effects on capsaicin-induced nocifensive behavior as well as on capsaicin-induced TRPV1 current in dorsal root ganglion cells were significantly impaired. These changes were associated with a loss in MOR but not TRPV1 in peripheral sensory neurons. Intrathecal delivery of nerve growth factor in diabetic animals normalized sensory neuron MOR and subsequently rescued morphine's inhibitory effects on capsaicin-induced TRPV1 activity in vivo and in vitro. These findings identify a loss in functional MOR on sensory neurons as a contributing factor for the impaired opioid inhibitory effects on capsaicin-induced TRPV1 activity during advanced STZ-induced diabetes. Moreover, they support growing evidence of a distinct regulation of opioid responsiveness during various painful states of disease (e.g. arthritis, cancer, neuropathy) and may give novel therapeutic incentives.

  14. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  15. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms.

    PubMed

    Baskaran, Padmamalini; Krishnan, Vivek; Ren, Jun; Thyagarajan, Baskaran

    2016-08-01

    The growing epidemic of obesity and metabolic diseases necessitates the development of novel strategies to prevent and treat such diseases. Current research suggests that browning of white adipose tissue (WAT) promotes energy expenditure to counter obesity. Recent research suggests that activation of the TRPV1 channels counters obesity. However, the mechanism by which activation of TRPV1 channels counters obesity still remains unclear. We evaluated the effect of dietary capsaicin to induce a browning program in WAT by activating TRPV1 channels to prevent diet-induced obesity using wild-type and TRPV1(-/-) mouse models. We performed experiments using preadipocytes and fat pads from these mice. Capsaicin stimulated the expression of brown fat-specific thermogenic uncoupling protein-1 and bone morphogenetic protein-8b in WAT. Capsaicin triggered browning of WAT by promoting sirtuin-1 expression and activity via TRPV1 channel-dependent elevation of intracellular Ca(2) (+) and phosphorylation of Ca(2) (+) /calmodulin-activated protein kinase II and AMP-activated kinase. Capsaicin increased the expression of PPARγ 1 coactivator α and enhanced metabolic and ambulatory activity. Further, capsaicin stimulated sirtuin-1-dependent deacetylation of PPARγ and the transcription factor PRDM-16 and facilitated PPARγ-PRDM-16 interaction to induce browning of WAT. Dietary capsaicin did not protect TRPV1(-/-) mice from obesity. Our results show for the first time that activation of TRPV1 channels by dietary capsaicin triggers browning of WAT to counteract obesity. Our results suggest that activation of TRPV1 channels is a promising strategy to counter obesity. © 2016 The British Pharmacological Society.

  16. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel‐dependent mechanisms

    PubMed Central

    Baskaran, Padmamalini; Krishnan, Vivek; Ren, Jun

    2016-01-01

    Background and Purpose The growing epidemic of obesity and metabolic diseases necessitates the development of novel strategies to prevent and treat such diseases. Current research suggests that browning of white adipose tissue (WAT) promotes energy expenditure to counter obesity. Recent research suggests that activation of the TRPV1 channels counters obesity. However, the mechanism by which activation of TRPV1 channels counters obesity still remains unclear. Experimental Approach We evaluated the effect of dietary capsaicin to induce a browning program in WAT by activating TRPV1 channels to prevent diet‐induced obesity using wild‐type and TRPV1−/− mouse models. We performed experiments using preadipocytes and fat pads from these mice. Key Results Capsaicin stimulated the expression of brown fat‐specific thermogenic uncoupling protein‐1 and bone morphogenetic protein‐8b in WAT. Capsaicin triggered browning of WAT by promoting sirtuin‐1 expression and activity via TRPV1 channel‐dependent elevation of intracellular Ca2 + and phosphorylation of Ca2 +/calmodulin‐activated protein kinase II and AMP‐activated kinase. Capsaicin increased the expression of PPARγ 1 coactivator α and enhanced metabolic and ambulatory activity. Further, capsaicin stimulated sirtuin‐1‐dependent deacetylation of PPARγ and the transcription factor PRDM‐16 and facilitated PPARγ–PRDM‐16 interaction to induce browning of WAT. Dietary capsaicin did not protect TRPV1−/− mice from obesity. Conclusions and Interpretations Our results show for the first time that activation of TRPV1 channels by dietary capsaicin triggers browning of WAT to counteract obesity. Our results suggest that activation of TRPV1 channels is a promising strategy to counter obesity. PMID:27174467

  17. Trigeminal star-like platinum complexes induce cancer cell senescence through quadruplex-mediated telomere dysfunction.

    PubMed

    Zheng, Xiao-Hui; Mu, Ge; Zhong, Yi-Fang; Zhang, Tian-Peng; Cao, Qian; Ji, Liang-Nian; Zhao, Yong; Mao, Zong-Wan

    2016-12-01

    Two trigeminal star-like platinum complexes were synthesized to induce the formation of human telomere G-quadruplex (hTel G4) with extremely high selectivity and affinity. The induced hTel G4 activates strong telomeric DNA damage response (TDDR), resulting in telomere dysfunction and cell senescence.

  18. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    SciTech Connect

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-02-15

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  19. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve

    PubMed Central

    2012-01-01

    Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks. PMID:23270529

  20. Pattern of neuropathic pain induced by topical capsaicin application in healthy subjects.

    PubMed

    Lötsch, Jörn; Dimova, Violeta; Hermens, Hanneke; Zimmermann, Michael; Geisslinger, Gerd; Oertel, Bruno G; Ultsch, Alfred

    2015-03-01

    Human experimental pain models are widely used to study drug effects under controlled conditions, but they require further optimization to better reflect clinical pain conditions. To this end, we measured experimentally induced pain in 110 (46 men) healthy volunteers. The quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain) was applied on untreated ("control") and topical capsaicin-hypersensitized ("test") skin. Z-transformed QST-parameter values obtained at the test site were compared with corresponding values published from 1236 patients with neuropathic pain using Bayesian statistics. Subjects were clustered for the resemblance of their QST pattern to neuropathic pain. Although QST parameter values from the untreated site agreed with reference values, several QST parameters acquired at the test site treated with topical capsaicin deviated from normal. These deviations resembled in 0 to 7 parameters of the QST pattern observed in patients with neuropathic pain. Higher degrees (50%-60%) of resemblance to neuropathic QST pattern were obtained in 18% of the subjects. Inclusion in the respective clusters was predictable at a cross-validated accuracy of 86.9% by a classification and regression tree comprising 3 QST parameters (mechanical pain sensitivity, wind-up ratio, and z-transformed thermal sensory limen) from the control sites. Thus, we found that topical capsaicin partly induced the desired clinical pattern of neuropathic pain in a preselectable subgroup of healthy subjects to a degree that fuels expectations that experimental pain models can be optimized toward mimicking clinical pain. The subjects, therefore, qualify for enrollment in analgesic drug studies that use highly selected cohorts to enhance predictivity for clinical analgesia.

  1. Trigeminal Neuralgia

    MedlinePlus

    Trigeminal neuralgia Overview By Mayo Clinic Staff Trigeminal neuralgia is a chronic pain condition that affects the trigeminal nerve, ... face to your brain. If you have trigeminal neuralgia, even mild stimulation of your face — such as ...

  2. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    PubMed

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The role of trigeminal nucleus caudalis orexin 1 receptor in orofacial pain-induced anxiety in rat.

    PubMed

    Bahaaddini, Mehri; Khatamsaz, Saeed; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Raoof, Maryam

    2016-10-19

    The relationship between anxiety and pain has received special attention. Orexins (A and B) are hypothalamic neuropeptides that have diverse functions in the regulation of different physiological and behavioral responses. This study was designed to evaluate the role of orexin 1 receptors (OX1R) within trigeminal nucleus caudalis (TNC) in anxiety following the induction of orofacial pain. The subcutaneous injection of capsaicin (CAP) into the rat upper lip region produced pain responses. OX1R agonist (orexin A) and antagonist (SB-334867) were microinjected into the TNC before the administration of CAP. Anxiety behaviors were investigated using elevated plus maze (EPM) and open-field tests. The results showed that CAP injection significantly decreases the percentage of time spent in the open arms of the EPM and the time spent in the center of the open field. Surprisingly, orexin (50, 100, and 150 pM/rat) significantly exaggerated the CAP effects, whereas SB-334867 (20, 40 nM/rat) significantly inhibited the CAP-induced anxiety. The CAP-injected group showed a significant decrease in the percentage of entries to open arms in the EPM and the number of visits in the center area of the open field compared with the control group. Orexin significantly potentiated the mentioned effects of CAP, whereas SB-334867 (40, 80 nM/rat) exerted a significant inhibitory effect on CAP-induced anxiety. The overall results indicated that the TNC OX1Rs play an important role in orofacial pain-induced anxiety.

  4. Short Report: TRPV1-polymorphism 1911 A>G alters capsaicin-induced sensory changes in healthy subjects.

    PubMed

    Forstenpointner, Julia; Förster, Matti; May, Denisa; Hofschulte, Friederike; Cascorbi, Ingolf; Wasner, Gunnar; Gierthmühlen, Janne; Baron, Ralf

    2017-01-01

    C-fibers express transient receptor potential (TRP) channels. These high-voltage gated channels function as integrators of different physical stresses (e.g. heat, protons, ATP). Additionally channel activation can be induced by capsaicin. Topically applied, capsaicin elicits burning pain, heat and mechanical hyperalgesia and serves as a human surrogate model for pain. It was suggested that the TRPV1-variant rs8065080 (1911A>G) plays a pivotal role in patients with neuropathic pain syndromes. We investigated the effect of this TRPV1-SNP on thermal sensitivity and superficial skin perfusion in 25 healthy subjects. Nine subjects being homozygous TRPV1 wild type (AA), 8 heterozygous (AG) and 8 homozygous variant (GG) carriers were selected out of a pool of genotyped healthy individuals. Under physiological conditions (no capsaicin application), there was no statistical significant difference in thermal thresholds or skin perfusion between carriers of different TRPV1 1199A>G genotypes. However, intra-individual calculations (Δ% pre vs. post capsaicin) revealed (1) less warm-detection in AA/AG (-82.1%) compared to GG (-13.1%) and (2) a gain of heat pain sensitivity in AA/AG (+22.2%) compared to GG carriers (+15.6%) after adjustment for perfusion measurements ((1)p = 0.009, (2)p = 0.021). Presence of homozygous variant TRPV1 genotype (GG) demonstrated less capsaicin-induced warm hypoesthesia in warm-detection and less capsaicin-induced heat pain sensitivity suggesting an altered channel function. This demonstrates not only the functional influence of TRPV1 rs8065080 polymorphism itself; it further more underpins the relevance of genotyping-based approaches in both patients and surrogate models of neuropathic pain in healthy volunteers.

  5. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice.

    PubMed

    Luvisetto, Siro; Vacca, Valentina; Cianchetti, Carlo

    2015-02-01

    We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists.

  6. Cough reduction using capsaicin.

    PubMed

    Ternesten-Hasséus, Ewa; Johansson, Ewa-Lena; Millqvist, Eva

    2015-01-01

    Chronic unexplained cough triggered by environmental irritants is characterized by increased cough reflex sensitivity, which can be demonstrated by means of inhaled capsaicin. Topical capsaicin can be used to improve non-allergic rhinitis and intestinal hypersensitivity and to reduce neuropathic pain. We established whether an oral intake of natural capsaicin (chilli) could desensitize the cough reflex and improve unexplained coughing. Twenty-four patients with irritant-induced, unexplained chronic cough and 15 controls were included in the study. For 4 weeks, the participants took capsules with pure capsaicin, and for 4 weeks, they took placebo capsules. The protocol was crossover, randomized, and double blind. Cough sensitivity during the study was evaluated by a standardized capsaicin inhalation cough test that assessed the capsaicin concentration required to reach two coughs (C2) and five coughs (C5). Participants were also administered questionnaires on cough and cough-related symptoms. Three patients withdrew before the study end, one during the active treatment period and two during the placebo period. After treatment with capsaicin, the thresholds for C2 were higher (improved) both in patients (p < 0.020) and in controls (p < 0.0061) compared to after the placebo period. Among patients, the concentration needed to reach C2 (p < 0.0004) and C5 (p < 0.0009) increased after the period with the active substance compared to cough thresholds at baseline. The cough symptom scores improved after 4 weeks of active treatment (p < 0.0030) compared to the baseline scores. Capsaicin powder taken orally decreased capsaicin cough sensitivity and cough symptoms. The findings suggest a desensitization of the cough-sensitive transient receptor potential vanilloid-1 (TRPV1). Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Corneal edema induced by cold in trigeminal nerve palsy

    SciTech Connect

    Thorgaard, G.L.; Holland, E.J.; Krachmer, J.H.

    1987-05-15

    We examined a 34-year-old man who complained of decreased visual acuity in the right eye when exposed to cold environmental temperatures. Although examination at room temperature was unremarkable, he developed prominent unilateral corneal edema of the right eye when placed in a cold room at 4 C. Corneal thickness increased from 525 to 789 microns in the affected eye. Further examination disclosed a right-sided trigeminal nerve palsy. He was eventually found to have a 3 X 2-cm tentorial ridge meningioma on the right.

  8. The Role of Capsaicin-induced Acute Inactivation of C-fibers on Tactile Learning in Rat

    PubMed Central

    Rahmani, Mohammadreza; Rajabi, Soodeh; Allahtavakoli, Mohammad; Roohbakhsh, Ali; Sheibani, Vahid; Shamsizadeh, Ali

    2013-01-01

    Objective(s): In our previous study, we reported that capsaicin-induced unmyelinated C-fiber depletion can modulate excitatory and integrative circuits in the somatosensory cortex following experience-dependent plasticity. In this study, we investigated the involvement of the capsaicin-induced acute inactivation of c-fibers on tactile learning in rat. Materials and Methods: The delayed novel object recognition test was used to assess tactile learning. This procedure consisted of two phases. The first of these (T1) was a training phase during which the animals explored two similar objects. T2, the test phase, occurred 24 hr later, during which the animals explored one novel and one familiar object. In order to induce acute inactivation of the C-fiber pathway, 25–30 μl of a 10% capsaicin was injected subcutaneously into the rat’s upper lip, 6 h prior to T1. Tactile learning was quantified using a discrimination ratio. Results: In T2, the discrimination ratio in capsaicin-treated animals (37.3±3.8%) was lower than that observed in vehicle-treated animals (54.4±5.1%, P<0.05). Conclusion: These findings indicate that the selective inactivation of a peripheral nociceptor subpopulation affects tactile learning. PMID:24298379

  9. Peripheral nerve lesion-induced uptake and transport of choleragenoid by capsaicin-sensitive c-fibre spinal ganglion neurons.

    PubMed

    Jancsó, G; Sántha, P; Gecse, Krisztina

    2002-01-01

    In the present experiments the effect of systemic capsaicin treatment on the retrograde labelling of sensory ganglion cells was studied following the injection of choleratoxin B subunit-horseradish peroxidase conjugate (CTX-HRP) into intact and chronically transected peripheral nerves. In the control rats CTX-HRP injected into intact sciatic nerves labelled medium and large neurons with a mean cross-sectional area of 1,041 +/- 39 gm2. However, after injection of the conjugate into chronically transected sciatic nerves of the control rats, many small cells were also labelled, shifting the mean cross-sectional area of the labelled cells to 632 +/- 118 microm2. Capsaicin pretreatment per se induced a moderate but significant decrease in the mean cross-sectional area of the labelled neurons (879 +/- 79 microm2). More importantly, systemic pretreatment with capsaicin prevented the peripheral nerve lesion-induced labelling of small cells. Thus, the mean cross-sectional areas of labelled neurons relating to the intact and transected sciatic nerves, respectively, did not differ significantly. These findings provide direct evidence for a phenotypic switch of capsaicin-sensitive nociceptive neurons after peripheral nerve injury, and suggest that lesion-induced morphological changes in the spinal cord may be related to specific alterations in the chemistry of C-fibre afferent neurons rather than to a sprouting response of A-fibre afferents.

  10. Intraplantar injection of bergamot essential oil into the mouse hindpaw: effects on capsaicin-induced nociceptive behaviors.

    PubMed

    Sakurada, Tsukasa; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2009-01-01

    Despite the increasing use of aromatherapy oils, there have not been many studies exploring the biological activities of bergamot (Citrus bergamia, Risso) essential oil (BEO). Recently, we have investigated the effects of BEO injected into the plantar surface of the hindpaw in the capsaicin test in mice. The intraplantar injection of capsaicin produced an intense and short-lived licking/biting response toward the injected hindpaw. The capsaicin-induced nociceptive response was reduced significantly by intraplantar injection of BEO. The essential oils of Clary Sage (Salvia sclarea), Thyme ct. linalool (linalool chemotype of Thymus vulgaris), Lavender Reydovan (Lavandula hybrida reydovan), and True Lavender (Lavandula angustifolia), had similar antinociceptive effects on the capsaicin-induced nociceptive response, while Orange Sweet (Citrus sinensis) essential oil was without effect. In contrast to a small number of pharmacological studies of BEO, there is ample evidence regarding isolated components of BEO which are also found in other essential oils. The most abundant compounds found in the volatile fraction are the monoterpene hydrocarbons, such as limonene, gamma-terpinene, beta-pinene, and oxygenated derivatives, linalool and linalyl acetate. Of these monoterpenes, the pharmacological activities of linalool have been examined. Following intraperitoneal (i.p.) administration in mice, linalool produces antinociceptive and antihyperalgesic effects in different animal models in addition to anti-inflammatory properties. Linalool also possesses anticonvulsant activity in experimental models of epilepsy. We address the importance of linalool or linalyl acetate in BEO-or the other essential oil-induced antinociception.

  11. σ1 receptors are involved in the visceral pain induced by intracolonic administration of capsaicin in mice.

    PubMed

    González-Cano, Rafael; Merlos, Manuel; Baeyens, José M; Cendán, Cruz M

    2013-03-01

    Visceral pain is an important and prevalent clinical condition whose treatment is challenging. Sigma-1 (σ1) receptors modulate somatic pain, but their involvement in pure visceral pain is unexplored. The authors evaluated the role of σ1 receptors in intracolonic capsaicin-induced visceral pain (pain-related behaviors and referred mechanical hyperalgesia to the abdominal wall) using wild-type (WT) (n = 12 per group) and σ1 receptor knockout (σ1-KO) (n = 10 per group) mice, selective σ1 receptor antagonists (BD-1063, S1RA, and NE-100), and control drugs (morphine and ketoprofen). The intracolonic administration of capsaicin (0.01-1%) induced concentration-dependent visceral pain-related behaviors and referred hyperalgesia in both WT and σ1-KO mice. However, the maximum number of pain-related behaviors induced by 1% capsaicin in σ1-KO mice (mean ± SEM, 22 ± 2.9) was 48% of that observed in WT animals (46 ± 4.2). Subcutaneous administration of the σ1 receptor antagonists BD-1063 (16-64 mg/kg), S1RA (32-128 mg/kg), and NE-100 (8-64 mg/kg) dose-dependently reduced the number of behavioral responses (by 53, 62, and 58%, respectively) and reversed the referred hyperalgesia to mechanical control threshold (0.53 ± 0.05 g) in WT mice. In contrast, these drugs produced no change in σ1-KO mice. Thus, the effects of these drugs are specifically mediated by σ1 receptors. Morphine produced an inhibition of capsaicin-induced visceral pain in WT and σ1-KO mice, whereas ketoprofen had no effect in either mouse type. These results suggest that σ1 receptors play a role in the mechanisms underlying capsaicin-induced visceral pain and raise novel perspectives for their potential therapeutic value.

  12. Botulinum toxin A does not alter capsaicin-induced pain perception in human skin.

    PubMed

    Schulte-Mattler, Wilhelm J; Opatz, Oliver; Blersch, Wendelin; May, Arne; Bigalke, Hans; Wohlfahrt, Kai

    2007-09-15

    A genuine peripheral antinociceptive and anti-inflammatory effect of Botulinum neurotoxin type A (BoNT/A) has been proposed but could not be demonstrated in humans so far. Therefore, 100 mouse units of Botulinum toxin A (Dysport) and placebo were injected in a double blind paradigm in defined skin areas of 50 subjects. At baseline and after 4 and 8 weeks allodynia was induced in the skin areas with capsaicin ointment. Heat and cold pain threshold temperatures were measured with quantitative sensory testing, and threshold intensities upon electrical stimulation with a pain specific surface electrode were determined. No BoNT/A related differences in pain perception were found at any quality. There is neither a direct peripheral antinociceptive effect nor a significant effect against neurogenic inflammation of BoNT/A in humans.

  13. Capsaicin ameliorates stress-induced Alzheimer's disease-like pathological and cognitive impairments in rats.

    PubMed

    Jiang, Xia; Jia, Lin-Wei; Li, Xiao-Hong; Cheng, Xiang-Shu; Xie, Jia-Zhao; Ma, Zhi-Wei; Xu, Wei-Jie; Liu, Yue; Yao, Yun; Du, Lai-Ling; Zhou, Xin-Wen

    2013-01-01

    Hyperphosphorylated tau aggregated into neurofibrillary tangles is a hallmark lesion of Alzheimer's disease (AD) and is linked to synaptic and cognitive impairments. In animal models, cold water stress (CWS) can cause cognitive disorder and tau hyperphosphorylation. Capsaicin (CAP), a specific TRPV1 agonist, is neuroprotective against stress-induced impairment, but the detailed mechanisms are still elusive. Here, we investigated whether CAP mitigates CWS-induced cognitive and AD-like pathological alterations in rats. The animals were administered CAP (10 mg/kg in 0.2 ml, 0.1% ethanol) or a control (0.2 ml normal saline, 0.1% ethanol) by intragastric infusion 1 h before CWS treatment. Our results showed that CAP significantly attenuated CWS-induced spatial memory impairment and suppression of PP-DG long-term potentiation; CAP abolished CWS-induced dendritic regression and enhanced several memory-associated proteins decreased by CWS, such as synapsin I and PSD93; CAP also prevented CWS-induced tau hyperphosphorylation by abolishing inhibition of protein phosphatase 2A. Taken together, this study demonstrated that activation of TRPV1 can mitigate CWS-induced AD-like neuropathological alterations and cognitive impairment and may be a promising target for therapeutic intervention in AD.

  14. Capsaicin-induced Ca(2+) signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH.

    PubMed

    Song, Shanshan; Ayon, Ramon J; Yamamura, Aya; Yamamura, Hisao; Dash, Swetaleena; Babicheva, Aleksandra; Tang, Haiyang; Sun, Xutong; Cordery, Arlette G; Khalpey, Zain; Black, Stephen M; Desai, Ankit A; Rischard, Franz; McDermott, Kimberly M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2017-03-01

    Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca(2+) concentration ([Ca(2+)]cyt). A rise in [Ca(2+)]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca(2+)]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca(2+)]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca(2+)]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca(2+)]cyt, and the hypo-osmolarity-induced rise in [Ca(2+)]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca(2+)]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca(2+)]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca(2+)]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca(2+) influx and excessive PASMC proliferation in patients with IPAH. Copyright © 2017 the American Physiological Society.

  15. [ROLE OF CAPSAICIN-SENSITIVE NERVES IN THE REGULATION OF DEHYDROEPIANDROSTERONE SULFATE BLOOD CONTENT UNDER NORMAL AND FRUCTOSE-INDUCED METABOLIC SYNDROME].

    PubMed

    Spiridonov, V K; Tolochko, Z S; Ovcjukova, M V; Kostina, N E; Obut, T A

    2015-08-01

    The effects of the stimulation of capsaicin-sensitive nerves (capsaicin, 1 mg/kg, s/c) and their eafferentation (capsaicin, 150 mg/kg, s/c) on the blood content of dehydroepiandrosterone sulfate (DHEAS) was investigated in normal rats and rats with fructose-induced metabolic syndrome (12.5% fructose solution, 10 weeks). An increase in blood of tryglyceride, lipid peroxidation, glucose (fasting and after loading glucose, 2 mg/kg, i/p) was considered as symptoms of metabolic syndrome. It was shown that in normal rats drinking tap water the stimulation of capsaicin-sensitive nerves resulted in the increase of DHEAS content while their deafferentation reduced the concentration of this hormone in the blood. The fructose diet caused the decrease in content of DHEAS, triglyceridemia, lipid peroxidation, impaired tolerance glucose. In rats with the metabolic syndrome the stimulation capsaicin-sensitive nerves prevented the fructose-induced decrease of DHEAS content as well as decreased the symptoms of metabolic syndrome. In fructose fed rats the stimulation-induced effects were prevented by the deafferentation of capsaicin-sensitive nerves. It is suggested that capsaicin-sensitive nerves contribute both to the regulation of blood content of DHEAS under normal and fructose-induced metabolic syndrome.

  16. Anti-Inflammatory Effects of Capsaicin and Piperine on Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils.

    PubMed

    Toyoda, Takeshi; Shi, Liang; Takasu, Shinji; Cho, Young-Man; Kiriyama, Yuka; Nishikawa, Akiyoshi; Ogawa, Kumiko; Tatematsu, Masae; Tsukamoto, Tetsuya

    2016-04-01

    Spices have been used for thousands of years, and recent studies suggest that certain spices confer beneficial effects on gastric disorders. The purpose of this study was to evaluate possible chemopreventive effects of spice-derived compounds on Helicobacter pylori (H. pylori)-induced gastritis. We examined the inhibitory effects of curcumin, capsaicin, and piperine on H. pylori in vitro by determining the colony-forming units and real-time RT-PCR in H. pylori stimulated AGS gastric cancer cells. For in vivo analysis, 6-week-old SPF male Mongolian gerbils were infected with H. pylori, fed diets containing 5000 ppm curcumin, 100 ppm capsaicin, or 100 ppm piperine, and sacrificed after 13 weeks. All three compounds inhibited in vitro proliferation of H. pylori, with curcumin being the most effective. Infiltration of neutrophils and mononuclear cells was suppressed by piperine both in the antrum and corpus of H. pylori-infected gerbils. Capsaicin also decreased neutrophils in the antrum and corpus and mononuclear cell infiltration and heterotopic proliferative glands in the corpus. mRNA expression of Tnf-α and formation of phospho-IκB-α in the antrum were reduced by both capsaicin and piperine. In addition, piperine suppressed expression of Il-1β, Ifn-γ, Il-6, and iNos, while H. pylori UreA and other virulence factors were not significantly attenuated by any compounds. These results suggest that capsaicin and piperine have anti-inflammatory effects on H. pylori-induced gastritis in gerbils independent of direct antibacterial effects and may thus have potential for use in the chemoprevention of H. pylori-associated gastric carcinogenesis. © 2015 John Wiley & Sons Ltd.

  17. Changes in synaptic effectiveness of myelinated joint afferents during capsaicin-induced inflammation of the footpad in the anesthetized cat.

    PubMed

    Rudomin, P; Hernández, E

    2008-05-01

    The present series of experiments was designed to examine, in the anesthetized cat, the extent to which the synaptic efficacy of knee joint afferents is modified during the state of central sensitization produced by the injection of capsaicin into the hindlimb plantar cushion. We found that the intradermic injection of capsaicin increased the N2 and N3 components of the focal potentials produced by stimulation of intermediate and high threshold myelinated fibers in the posterior articular nerve (PAN), respectively. This facilitation lasted several hours, had about the same time course as the paw inflammation and was more evident for the N2 and N3 potentials recorded within the intermediate zone in the L6 than in the L7 spinal segments. The capsaicin-induced facilitation of the N2 focal potentials, which are assumed to be generated by activation of fibers signaling joint position, suggests that nociception may affect the processing of proprioceptive and somato-sensory information and, probably also, movement. In addition, the increased effectiveness of these afferents could activate, besides neurons in the intermediate region, neurons located in the more superficial layers of the dorsal horn. As a consequence, normal joint movements could produce pain representing a secondary hyperalgesia. The capsaicin-induced increased efficacy of the PAN afferents producing the N3 focal potentials, together with the reduced post-activation depression that follows high frequency autogenetic stimulation of these afferents, could further contribute to the pain sensation from non-inflamed joints during skin inflammation in humans. The persistence, after capsaicin, of the inhibitory effects produced by stimulation of cutaneous nerves innervating non-inflamed skin regions may account for the reported reduction of the articular pain sensations produced by trans-cutaneous stimulation.

  18. In vitro capsaicin-induced cytological changes and alteration in calcium distribution in giant serotonergic neurons of the snail Helix pomatia: a light- and electron-microscopic study.

    PubMed

    Hernádi, L; Erdélyi, L; Párducz, A; Szabadi, H; Such, G; Jancsó, G

    1995-12-01

    Morphological changes induced by capsaicin were studied in the serotonergic metacerebral giant neurons of the cerebral ganglia of Helix pomatia under in vitro conditions. Capsaicin at a concentration of 10(-4)M caused characteristic structural alterations in the giant serotonergic neurons but did not significantly influence serotonin immunoreactivity in the neurons. At the light-microscopic level, the most conspiciuous structural alterations were swelling of the cell bodies, which contained a swollen pale nucleus. Under the electron microscope, the nuclei, mitochondria and the cisternae of the endoplasmic reticulum were swollen in the capsaicin-affected metacerebral giant neurons. Electron-microscopic cytochemical techniques for calcium demonstration revealed electron-dense deposits in the swollen mitochondria and in the cisternae of the endoplasmic reticulum, suggesting an increased Ca2+ influx. The serotonergic metacerebral giant neurons could be labelled by cobalt (1mM) in the presence of capsaicin (10(-4)M) suggesting that capsaicin opens the cation chanels of the capsaicin-sensitive neuronal membrane. The morphological and cytochemical alterations induced by capsaicin in the serotonergic metacerebral giant neurons of Helix pomatia closely resemble those induced in sensory neurons of mammalian dorsal root ganglion.

  19. Selectively targeting pain in the trigeminal system

    PubMed Central

    Kim, Hyun Yeong; Kim, Kihwan; Li, Hai Ying; Chung, Gehoon; Park, Chul-Kyu; Kim, Joong Soo; Jung, Sung Jun; Lee, Min Kyung; Ahn, Dong Kuk; Hwang, Se Jin; Kang, Youngnam; Binshtok, Alexander M.; Bean, Bruce P.; Woolf, Clifford J.; Oh, Seog Bae

    2015-01-01

    We tested whether it is possible to selectively block pain signals in the orofacial area by delivering the permanently charged lidocaine derivative QX-314 into nociceptors via TPRV1 channels. We examined the effects of co-applied QX-314 and capsaicin on nociceptive, proprioceptive, and motor function in the rat trigeminal system. QX-314 alone failed to block voltage-gated sodium channel currents (INa) and action potentials (APs) in trigeminal ganglion (TG) neurons. However, co-application of QX-314 and capsaicin blocked INa and APs in TRPV1-positive TG and dental nociceptive neurons, but not in TRPV1-negative TG neurons or in small neurons from TRPV1 knock-out mice. Immunohistochemistry revealed that TRPV1 is not expressed by trigeminal motor and trigeminal mesencephalic neurons. Capsaicin had no effect on rat trigeminal motor and proprioceptive mesencephalic neurons and therefore should not allow QX-314 to enter these cells. Co-application of QX-314 and capsaicin inhibited the jaw-opening reflex evoked by noxious electrical stimulation of the tooth pulp when applied to a sensory but not a motor nerve, and produced long-lasting analgesia in the orofacial area. These data show that selective block of pain signals can be achieved by co-application of QX-314 with TRPV1 agonists. This approach has potential utility in the trigeminal system for treating dental and facial pain. PMID:20236764

  20. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action.

    PubMed

    Skrzypski, M; Sassek, M; Abdelmessih, S; Mergler, S; Grötzinger, C; Metzke, D; Wojciechowicz, T; Nowak, K W; Strowski, M Z

    2014-01-01

    Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo.

  1. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors.

    PubMed

    Marichal-Cancino, Bruno A; González-Hernández, Abimael; Manrique-Maldonado, Guadalupe; Ruiz-Salinas, Inna I; Altamirano-Espinoza, Alain H; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2012-10-05

    It has been suggested that during a migraine attack trigeminal nerves release calcitonin gene-related peptide (CGRP), producing central nociception and vasodilatation of cranial arteries, including the extracranial branches of the external carotid artery. Since trigeminal inhibition may prevent this vasodilatation, the present study has investigated the effects of intrathecal dihydroergotamine on the external carotid vasodilatation to capsaicin, α-CGRP and acetylcholine. Anaesthetized vagosympathectomized dogs were prepared to measure blood pressure, heart rate and external carotid conductance. A catheter was inserted into the right common carotid artery for the continuous infusion of phenylephrine (to restore the carotid vascular tone), whereas the corresponding thyroid artery was cannulated for one-min intracarotid infusions of capsaicin, α-CGRP and acetylcholine (which dose-dependently increased the external carotid conductance). Another cannula was inserted intrathecally (C(1)-C(3)) for the administration of dihydroergotamine, the α(2)-adrenoceptor antagonist rauwolscine or the serotonin 5-HT(1B/1D) receptor antagonist GR127935 (N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carboxamide hydrochloride monohydrate). Intrathecal dihydroergotamine (10, 31 and 100μg) inhibited the vasodilatation to capsaicin, but not that to α-CGRP or acetylcholine. This inhibition was: (i) unaffected by 10μg GR127935 or 100μg rauwolscine, but abolished by 31μg GR127935 or 310μg rauwolscine at 10μg dihydroergotamine; and (ii) abolished by the combination 10μg GR127935+100μg rauwolscine at 100μg dihydroergotamine. Thus, intrathecal (C(1)-C(3)) dihydroergotamine seems to inhibit the external carotid vasodilatation to capsaicin by spinal activation of serotonin 5-HT(1B/1D) (probably 5-HT(1B)) receptors and α(2) (probably α(2A/2C))-adrenoceptors.

  2. Capsaicin for Rhinitis.

    PubMed

    Fokkens, Wytske; Hellings, Peter; Segboer, Christine

    2016-08-01

    Rhinitis is a multifactorial disease characterized by symptoms of sneezing, rhinorrhea, postnasal drip, and nasal congestion. Non-allergic rhinitis is characterized by rhinitis symptoms without systemic sensitization of infectious etiology. Based on endotypes, we can categorize non-allergic rhinitis into an inflammatory endotype with usually eosinophilic inflammation encompassing at least NARES and LAR and part of the drug induced rhinitis (e.g., aspirin intolerance) and a neurogenic endotype encompassing idiopathic rhinitis, gustatory rhinitis, and rhinitis of the elderly. Patients with idiopathic rhinitis have a higher baseline TRPV1 expression in the nasal mucosa than healthy controls. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is the active component of chili peppers, plants of the genus Capsicum. Capsaicin is unique among naturally occurring irritant compounds because the initial neuronal excitation evoked by it is followed by a long-lasting refractory period, during which the previously excited neurons are no longer responsive to a broad range of stimuli. Patients with idiopathic rhinitis benefit from intranasal treatment with capsaicin. Expression of TRPV1 is reduced in patients with idiopathic rhinitis after capsaicin treatment. Recently, in a Cochrane review, the effectiveness of capsaicin in the management of idiopathic rhinitis was evaluated and the authors concluded that given that many other options do not work well in non-allergic rhinitis, capsaicin is a reasonable option to try under physician supervision. Capsaicin has not been shown to be effective in allergic rhinitis nor in other forms of non-allergic rhinitis like the inflammatory endotypes or other neurogenic endotypes like rhinitis of the elderly or smoking induced rhinitis.

  3. Evaluation of a novel mouse model of intracisternal strychnine-induced trigeminal allodynia.

    PubMed

    Lee, Il-Ok; Whitehead, Ryan A; Ries, Craig R; Schwarz, Stephan K W; Puil, Ernest; MacLeod, Bernard A

    2013-08-01

    Intractable neuropathic dynamic allodynia remains one of the major symptoms of human trigeminal neuropathy and is commonly accepted to be the most excruciatingly painful condition known to humankind. At present, a validated animal model of this disorder is necessary for efficient and effective development of novel drug treatments. Intracisternal strychnine in rats has been shown to result in localized trigeminal dynamic allodynia, thus representing a possible model of trigeminal neuralgia. The purpose of this study was to validate a mouse model of trigeminal glycinergic inhibitory dysfunction using established positive (carbamazepine epoxide) and negative (morphine) controls. The actions of conventional first-line treatment (carbamazepine epoxide [CBZe]) and clinically ineffective morphine were tested for trigeminal dynamic mechanical allodynia produced by intracisternal strychnine. In mice under halothane anesthesia, we injected either strychnine (0.3 μg), strychnine with CBZe (4 ng), or artificial cerebrospinal fluid (aCSF) intracisternally (i.c.). In a separate set of experiments, subcutaneous morphine (3 mg·kg(-1) sc) was injected with intracisternal strychnine. Dynamic mechanical allodynia was induced by stroking the fur with polyethylene (PE-10) tubing. The response of each mouse was rated to determine its allodynia score, and scores of each group were compared. In addition, in a separate dichotomous disequilibrium study, pairs of mice were injected with strychnine/saline, strychnine/strychnine-CBZe, or strychnine/strychnine-morphine. A blinded observer recorded which mouse of each pair had the greater global pain behaviour. Strychnine (i.c.) produced higher quantitative allodynia scores in the trigeminal distribution (mean 81.5%; 95% confidence interval [CI] 76.4 to 86.6) vs the aCSF group (mean 11.3%; 95% CI 8.1 to 14.4) (P < 0.0001). Carbamazepine epoxide (i.c.) completely abolished allodynia when co-injected with strychnine (mean 83.2%; 95% CI 78.1 to

  4. Capsaicin pretreatment attenuates LPS-induced hypothermia through TRPV1-independent mechanisms in chicken.

    PubMed

    Nikami, Hideki; Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Hirayama, Haruko; Iwami, Momoe; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2008-06-06

    It has been demonstrated that chicken TRPV1 (transient receptor potential vanilloid of subtype-1) is insensitive to capsaicin (CAP), and therefore, a chicken model is suitable to analyze the CAP-sensitive TRPV1-independent pathway. We elucidated here the possible involvement of the pathway in hypothermia induced by bacterial endotoxin (lipopolysaccharide, LPS) in chickens. Chicks were pretreated with CAP (10 mg/kg, iv) at 1, 2 and 3 days of age to desensitize them towards the CAP-sensitive pathway. An intravenous injection of LPS in 4-day-old chicks caused progressive hypothermia, ending with collapse and 78% mortality within 12 h after injection. The CAP pretreatment rescued the LPS-induced endotoxin shock and hypothermia in chicks. LPS-induced iNOS expression as well as NO production in liver and lung was suppressed by CAP pretreatment. CAP pretreatment also attenuated hypothermia due to exposure of chicks to cold ambient temperature. These findings suggest that a CAP-sensitive TRPV1-independent pathway may be involved in pathophysiological hypothermic reactions through the mediation of NO in chickens.

  5. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats

    PubMed Central

    Tamaddonfard, Esmaeal; Tamaddonfard, Sina; Pourbaba, Salar

    2015-01-01

    Objectives: Crocin, a constituent of saffron and yellow gardenia, possesses anti-nociceptive effects. In the present study, we investigated the effects of intra-fourth ventricle injection of crocin in a rat model of orofacial pain. The contribution of opioid system was assessed using intra-fourth ventricle injection of naloxone, an opioid receptor antagonist. Materials and Methods: A guide cannula was implanted into the fourth ventricle of brain in anesthetized rats. Orofacial pain was induced by subcutaneous (s.c.) injection of capsaicin (1.5 µg/20 µl) into the right vibrissa pad. The time spent face rubbing/grooming was recorded for a period of 20 min. Locomotor activity was measured using an open-field test. Results: Intra-fourth ventricle injection of crocin (10 and 40 µg/rat) and morphine (10 and 40 µg/rat) and their co-administration (2.5 and 10 µg/rat of each) suppressed capsaicin-induced orofacial pain. The analgesic effect induced by 10 µg/rat of morphine, but not crocin (10 µg/rat), was prevented by 20 µg/rat of naloxone pretreatment. The above-mentioned chemical compounds did not affect locomotor activity. Conclusion: The results of this study showed that the injection of crocin into the cerebral fourth ventricle attenuates capsaicin-induced orofacial pain in rats. The anti-nociceptive effect of crocin was not attributed to the central opioid receptors. PMID:26468465

  6. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats.

    PubMed

    Tamaddonfard, Esmaeal; Tamaddonfard, Sina; Pourbaba, Salar

    2015-01-01

    Crocin, a constituent of saffron and yellow gardenia, possesses anti-nociceptive effects. In the present study, we investigated the effects of intra-fourth ventricle injection of crocin in a rat model of orofacial pain. The contribution of opioid system was assessed using intra-fourth ventricle injection of naloxone, an opioid receptor antagonist. A guide cannula was implanted into the fourth ventricle of brain in anesthetized rats. Orofacial pain was induced by subcutaneous (s.c.) injection of capsaicin (1.5 µg/20 µl) into the right vibrissa pad. The time spent face rubbing/grooming was recorded for a period of 20 min. Locomotor activity was measured using an open-field test. Intra-fourth ventricle injection of crocin (10 and 40 µg/rat) and morphine (10 and 40 µg/rat) and their co-administration (2.5 and 10 µg/rat of each) suppressed capsaicin-induced orofacial pain. The analgesic effect induced by 10 µg/rat of morphine, but not crocin (10 µg/rat), was prevented by 20 µg/rat of naloxone pretreatment. The above-mentioned chemical compounds did not affect locomotor activity. The results of this study showed that the injection of crocin into the cerebral fourth ventricle attenuates capsaicin-induced orofacial pain in rats. The anti-nociceptive effect of crocin was not attributed to the central opioid receptors.

  7. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli.

    PubMed

    Chatchaisak, Duangthip; Connor, Mark; Srikiatkhachorn, Anan; Chetsawang, Banthit

    2017-02-15

    Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.

  8. Pharmacological evidence that spinal α(2C)- and, to a lesser extent, α(2A)-adrenoceptors inhibit capsaicin-induced vasodilatation in the canine external carotid circulation.

    PubMed

    Villalón, Carlos M; Galicia-Carreón, Jorge; González-Hernández, Abimael; Marichal-Cancino, Bruno A; Manrique-Maldonado, Guadalupe; Centurión, David

    2012-05-15

    During a migraine attack capsaicin-sensitive trigeminal sensory nerves release calcitonin gene-related peptide (CGRP), producing cranial vasodilatation and central nociception; hence, trigeminal inhibition may prevent this vasodilatation and abort migraine headache. This study investigated the role of spinal α₂-adrenoceptors and their subtypes (i.e. α(2A), α(2B) and/or α(2C)-adrenoceptors) in the inhibition of the canine external carotid vasodilator responses to capsaicin. Anaesthetized vagosympathectomized dogs were prepared to measure arterial blood pressure, heart rate and external carotid conductance. The thyroid artery was cannulated for one-min intracarotid infusions of capsaicin, α-CGRP and acetylcholine. A cannula was inserted intrathecally for spinal (C₁-C₃) administration of 2-amino-6-ethyl-4,5,7,8-tetrahydro-6H-oxazolo-[5,4-d]-azepin-dihydrochloride (B-HT 933; a selective α₂-adrenoceptor agonist) and/or the α₂-adrenoceptor antagonists rauwolscine (α(2A/2B/2C)), 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole maleate (BRL44408; α(2A)), imiloxan (α(2B)) or acridin-9-yl-[4-(4-methylpiperazin-1-yl)-phenyl]amine (JP-1302; α(2C)). Infusions of capsaicin, α-CGRP and acetylcholine dose-dependently increased the external carotid conductance. Intrathecal B-HT 933 (1000 and 3100 μg) inhibited the vasodilator responses to capsaicin, but not those to α-CGRP or acetylcholine. This inhibition, abolished by rauwolscine (310 μg), was: (i) unaffected by 3,100 μg imiloxan; (ii) partially blocked by 310 μg of BRL44408 or 100 μg of JP-1302; and (iii) abolished by 1,000 μg of BRL44408 or 310 μg of JP-1302. Thus, intrathecal B-HT 933 inhibited the external carotid vasodilator responses to capsaicin. This response, mediated by spinal α₂-adrenoceptors unrelated to the α(2B)-adrenoceptor subtype, resembles the pharmacological profile of α(2C)-adrenoceptors and, to a lesser extent, α(2A)-adrenoceptors.

  9. Capsaicin-sensitive sensory neurons are involved in bicarbonate secretion induced by lansoprazole, a proton pump inhibitor, in rats.

    PubMed

    Inada, I; Satoh, H

    1996-04-01

    Lansoprazole, a proton pump inhibitor, exerts prominent antiulcer activity via both antisecretory and mucosal protective actions. Although the antisecretory action has been explained by inactivation of (H+, K+)-ATPase in parietal cells, the mode of mucosal protective action remains to be elucidated. In the present study, the effect of lansoprazole on duodenal bicarbonate secretion was studied in anesthetized rats to clarify the mode of the mucosal protective action. Lansoprazole (0.1 mM) applied topically to the duodenum significantly (P < 0.01) increased bicarbonate secretion by 0.36 +/- 0.11 microeq/15 min (21 +/- 5%) compared with the value in the vehicle control. Topical administration of capsaicin (10 mg/ml) in the duodenum and intravenous infusion of vasoactive intestinal peptide (10 micrograms/kg/hr) increased bicarbonate secretion. Five-minute perfusion of the duodenal loop with 100 mM HCl increased bicarbonate secretion. Administration of lansoprazole (0.3 and 1 mg/kg, intravenously) 60 min before luminal acidification enhanced the acid-induced bicarbonate secretion dose-dependently and significantly (P < 0.01). In the capsaicin-pretreated rats, the effects of lansoprazole on basal and acid-induced bicarbonate secretion were significantly (P < 0.05) decreased compared with that of control group. These results indicate that lansoprazole increases basal and acid-induced bicarbonate secretion in the duodenum in rats and that capsaicin-sensitive sensory neurons may be involved in the mode of action for these effects.

  10. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    PubMed

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  11. Ultrafast optical recording reveals distinct capsaicin-induced ion dynamics along single nociceptive neurite terminals in vitro

    NASA Astrophysics Data System (ADS)

    Goldstein, Robert H.; Katz, Ben; Lev, Shaya; Binshtok, Alexander M.

    2017-07-01

    Pain signals are detected by terminals of nociceptive peripheral fibers situated among the keratinocytes and epithelial cells. Despite being key structures for pain-related stimuli detection and transmission, little is known about the functional organization of terminals. This is mainly due to their minute size, rendering them largely inaccessible by conventional experimental approaches. Here, we report the implementation of an ultrafast optical recording approach for studying cultured neurite terminals, which are readily accessible for assay manipulations. Using this approach, we were able to study capsaicin-induced calcium and sodium dynamics in the nociceptive processes, at a near-action potential time resolution. The approach was sensitive enough to detect differences in latency, time-to-peak, and amplitude of capsaicin-induced ion transients along the terminal neurites. Using this approach, we found that capsaicin evokes distinctive calcium signals along the neurite. At the terminal, the signal was insensitive to voltage-gated sodium channel blockers, and showed slower kinetics and smaller signal amplitudes, compared with signals that were measured further up the neurite. These latter signals were mainly abolished by sodium channel blockers. We propose this ultrafast optical recording approach as a model for studying peripheral terminal signaling, forming a basis for studying pain mechanisms in normal and pathological states.

  12. High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: single-center experience.

    PubMed

    Filipczak-Bryniarska, Iwona; Krzyzewski, Roger M; Kucharz, Jakub; Michalowska-Kaczmarczyk, Anna; Kleja, Justyna; Woron, Jarosław; Strzepek, Katarzyna; Kazior, Lucyna; Wordliczek, Jerzy; Grodzicki, Tomasz; Krzemieniecki, Krzysztof

    2017-08-17

    High-dose capsaicin patch is effective in treatment of neuropathic pain in HIV-associated neuropathy and diabetic neuropathy. There are no studies assessing effectiveness of high-dose capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy. We sought to determine the effectiveness of treatment of pain associated with chemotherapy-induced peripheral neuropathy with high-dose capsaicin patch. Our study group consisted of 18 patients with clinically confirmed oxaliplatin-induced neuropathy. Baseline characteristic including underling disease, received cumulative dose of neurotoxic agent, neuropathic symptoms, prior treatment and initial pain level were recorded. Pain was evaluated with Numeric Rating Scale prior to treatment with high-dose capsaicin and after 1.8 day and after 8 and 12 weeks after introducing treatment. Patients were divided into two groups accordingly to the amount of neurotoxic agent that caused neuropathy (high sensitivity and low sensitivity group). Most frequent symptoms of chemotherapy-induced neuropathy were: pain (88.89%), paresthesis (100%), sock and gloves sensation (100%) and hypoesthesis (100%). Initial pain level was 7.45 ± 1.14. Mean cumulative dose of oxaliplatin after which patients developed symptoms was 648.07 mg/m(2). Mean pain level after 12 weeks of treatment was 0.20 ± 0.41. When examined according to high and low sensitivity to neurotoxic agent patients with low sensitivity had higher pain reduction, especially after 8 days after introducing treatment (69.55 ± 12.09 vs. 49.40 ± 20.34%; p = 0.02) and after 12 weeks (96.96 ± 5.56 vs. 83.93 ± 18.59%; p = 0.04). High-dose capsaicin patch is an effective treatment for pain associated with chemotherapy-induced neuropathy in patients treated with oxaliplatin. Patients with lower sensitivity to neurotoxic agents have better response to treatment and pain reduction.

  13. Latent Herpes Simplex Virus 1 Infection Does Not Induce Apoptosis in Human Trigeminal Ganglia

    PubMed Central

    Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-01-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+ T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. PMID:25762734

  14. FK962 induces neurite outgrowth in cultured monkey trigeminal ganglion cells.

    PubMed

    Nakajima, Emi; Walkup, Ryan D; Shearer, Thomas R; Azuma, Mitsuyoshi

    2017-01-01

    Corneal sensation, cell proliferation, and wound healing all depend on adequate corneal innervation. Disruption of corneal innervation can lead to dry eye and delayed wound healing. Our studies in rats and rabbits show that the substituted fluorobenzamide drug FK962 accelerates the extension of neuronal processes and recovery of corneal sensitivity. The purpose of the present study was 1) to determine whether FK962 induces sprouting and elongation of neurites in cultured monkey trigeminal ganglion cells, and 2) to investigate the involvement of the neurotrophic peptide GDNF in FK962-induced neurite elongation. Dissociated, cultured trigeminal ganglion cells, containing neuronal and Schwann cells were cultured for 48 h with or without FK962. Neuronal elongation was evaluated by immunostaining with a neurofilament-specific antibody. Culture with or without GDNF, or with antibody against GDNF, was used to determine the role of GDNF in FK962-induced neurite elongation. FK962 or GDNF were found to significantly induce neurite elongation. The GDNF antibody significantly inhibited elongation induced by FK962. GDNF was found to be a mediator of FK962-induced neurite elongation in a relevant primate model. FK962 may be a candidate drug for treatment of neurotrophic disorders in the human cornea.

  15. Low-dose endotoxin potentiates capsaicin-induced pain in man: evidence for a pain neuroimmune connection.

    PubMed

    Hutchinson, Mark R; Buijs, Mara; Tuke, Jonathan; Kwok, Yuen Hei; Gentgall, Melanie; Williams, Desmond; Rolan, Paul

    2013-05-01

    Despite the wealth of evidence in animals that immune activation has a key role in the development and maintenance of chronic pain, evidence to support this in humans is scant. We have sought such evidence by examining the effect of a subtle immunological stimulus, low dose intravenous endotoxin, on the allodynia, hyperalgesia, flare and pain produced by intradermal capsaicin in healthy volunteers. Here we provide evidence of immune priming of this neuropathic-like pain response in humans. Specifically, in 12 healthy volunteers, activation of Toll-Like Receptor 4 by endotoxin (0.4ng/kg IV) caused significant 5.1-fold increase in the 90-min integral of areas of capsaicin-induced allodynia (95% CI 1.3-9.1), 2.2-fold increase in flare (95% CI 1.9-2.6) and 1.8-fold increase in hyperalgesia (95% CI 1.1-2.5) following 50μg intradermal capsaicin injected into the forearm 3.5h after endotoxin. These data demonstrate clinically a significant role for the neuroimmune pain connection in modifying pain, thus providing evidence that immune priming may produce pain enhancement in humans and hence offer a novel range of pharmacological targets for anti-allodynics and/or analgesics. Additionally, the simplicity of the model makes it suitable as a test-bed for novel immune-targeted pain therapeutics.

  16. A randomized placebo controlled trial to evaluate the effects of butamirate and dextromethorphan on capsaicin induced cough in healthy volunteers

    PubMed Central

    Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H

    2014-01-01

    Aims The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. Methods In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Results Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. Conclusions We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. PMID:24995954

  17. A randomized placebo controlled trial to evaluate the effects of butamirate and dextromethorphan on capsaicin induced cough in healthy volunteers.

    PubMed

    Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H

    2014-12-01

    The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. © 2014 The British Pharmacological Society.

  18. Protective effect of capsaicin against methyl methanesulphonate induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9).

    PubMed

    Khanam, Saba; Fatima, Ambreen; Jyoti, Rahul Smita; Ali, Fahad; Naz, Falaq; Shakya, Barkha; Siddique, Yasir Hasan

    2017-04-01

    Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the main component in hot peppers, including red chili peppers, jalapenos, and habanero, belonging to the genus Capsicum. Capsaicin is a potent antioxidant that interferes with free radical activities. In the present study, the possible protective effect of capsaicin was studied against methyl methanesulphonate (MMS) induced toxicity in third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9). The third instar was allowed to feed on the diet having different doses of capsaicin and MMS separately and in combination. The results suggested that the exposure of third instar larvae to the diet having MMS alone showed significant hsp70 expression as well as tissue DNA and oxidative damage, whereas the larvae feed on the diet having MMS and capsaicin showed a decrease in the toxic effects for 48-h of exposure. In conclusion, capsaicin showed a dose-dependent decrease in the toxic effects induced by MMS in the third instar larvae of transgenic Drosophila melanogaster. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages.

    PubMed

    Chen, Ching-Wen; Lee, Sho Tone; Wu, Wen Tung; Fu, Wen-Mei; Ho, Feng-Ming; Lin, Wan Wan

    2003-11-01

    1. Although capsaicin analogs might be a potential strategy to manipulate inflammation, the mechanism is still unclear. In this study, the effects and action mechanisms of vanilloid analogs on iNOS and COX-2 expression were investigated in RAW264.7 macrophages. 2. Capsaicin and resiniferatoxin (RTX) can inhibit LPS- and IFN-gamma-mediated NO production, and iNOS protein and mRNA expression with similar IC50 values of around 10 microm. 3. Capsaicin also transcriptionally inhibited LPS- and PMA-induced COX-2 expression and PGE2 production. However, this effect exhibited a higher potency (IC50: 0.2 microm), and RTX failed to elicit such responses at 10 microm. 4. Interestingly, we found that capsazepine, a competitive TRPV1 antagonist, did not prevent the inhibition elicited by capsaicin or RTX. Nevertheless, it mimicked vanilloids in inhibiting iNOS/NO and COX-2/PGE2 induction with an IC50 value of 3 microm. RT-PCR and immunoblotting analysis excluded the expression of TRPV1 in RAW264.7 macrophages. 5. The DNA binding assay demonstrated the abilities of vanilloids to inhibit LPS-elicited NF-kappaB and AP-1 activation and IFN-gamma-elicited STAT1 activation. The reporter assay of AP-1 activity also supported this action. 6. The kinase assay indicated that ERK, JNK, and IKK activation by LPS were inhibited by vanilloids. 7. In conclusion, vanilloids can modulate the expression of inflammatory iNOS and COX-2 genes in macrophages through interference with upstream signalling events of LPS and IFN-gamma. These findings provide new insights into the potential benefits of the active ingredient in hot chilli peppers in inflammatory conditions.

  20. Neurotransmitter-blocking agents influence antinociceptive effects of carbamazepine, baclofen, pentazocine and morphine on bradykinin-induced trigeminal pain.

    PubMed

    Foong, F W; Satoh, M

    1984-06-01

    The influence of naloxone (a narcotic antagonist), bicuculline (a GABA antagonist), phentolamine (an alpha-blocking agent), propranolol (a beta-adrenergic blocking agent), haloperidol (a dopaminergic blocking agent), methysergide (a serotonergic blocking agent) and atropine (a muscarinic blocking agent), on the antinociceptive effects induced by carbamazepine, baclofen, pentazocine and morphine, were investigated with a new antinociception test, using the trigeminal pain induced by application of bradykinin onto the tooth pulp of the rat. The antinociceptive effect of carbamazepine was significantly inhibited by bicuculline, phentolamine, propranolol and haloperidol but not by naloxone, methysergide and atropine. The effect of baclofen was significantly reduced by naloxone, bicuculline, propranolol and atropine but not by phentolamine, haloperidol and methysergide. The antinociceptive actions of pentazocine and morphine on trigeminal pain were significantly reduced by naloxone and phentolamine, and by naloxone alone, respectively. These results suggest the involvement of different neurotransmitters in the antinociceptive effects of the four analgesic drugs on trigeminal pain induced by bradykinin.

  1. Sensitization of Primary Afferent Nociceptors Induced by Intradermal Capsaicin Involves the Peripheral Release of Calcitonin Gene-Related Peptide Driven by Dorsal Root Reflexes

    PubMed Central

    Li, Dingge; Ren, Yong; Xu, Xijin; Zou, Xiaoju; Fang, Li; Lin, Qing

    2008-01-01

    Neuropeptides released from axons of primary afferent nociceptive neurons are the key elements for the incidence of neurogenic inflammation and their release is associated with dorsal root reflexes (DRRs). However, whether the release is due to the triggering of DRRs and plays a role in inflammation-induced pain still remain to be determined. The present study assessed the role of calcitonin gene-related peptide (CGRP) in sensitization of primary afferent nociceptors induced by activation of transient receptor potential vanilloid-1 (TRPV1) following intradermal injection of capsaicin and determined if this release is due to activation of primary afferent neurons antidromically by triggering of DRRs. Under dorsal root intact conditions, primary afferent nociceptive fibers recorded in anesthetized rats could be sensitized by capsaicin injection, as shown by an increase in afferent responses and lowering of the response threshold to mechanical stimuli. After DRRs were removed by dorsal rhizotomy, the capsaicin-evoked sensitization was significantly reduced. In dorsal root intact rats, peripheral pretreatment with a CGRP receptor antagonist could dose-dependently reduce the capsaicin-induced sensitization. Peripheral post-treatment with CGRP could dose-dependently restore the capsaicin-induced sensitization under dorsal rhizotomized conditions. Capsaicin injection evoked increases in numbers of single and double labeled TRPV1 and CGRP neurons in ipsilateral dorsal root ganglia (DRG). After dorsal rhizotomy, these evoked expressions were significantly inhibited. Perspective These data indicate that the DRR-mediated neurogenic inflammation enhances sensitization of primary afferent nociceptors induced by capsaicin injection. The underlying mechanism involves antidromic activation of DRG neurons via up-regulation of TRPV1 receptors whereby CGRP is released peripherally. PMID:18701354

  2. Identifying the integrated neural networks involved in capsaicin-induced pain using fMRI in awake TRPV1 knockout and wild-type rats.

    PubMed

    Yee, Jason R; Kenkel, William; Caccaviello, John C; Gamber, Kevin; Simmons, Phil; Nedelman, Mark; Kulkarni, Praveen; Ferris, Craig F

    2015-01-01

    In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1). Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type vs. knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain.

  3. Identifying the integrated neural networks involved in capsaicin-induced pain using fMRI in awake TRPV1 knockout and wild-type rats

    PubMed Central

    Yee, Jason R.; Kenkel, William; Caccaviello, John C.; Gamber, Kevin; Simmons, Phil; Nedelman, Mark; Kulkarni, Praveen; Ferris, Craig F.

    2015-01-01

    In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1). Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type vs. knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain. PMID:25745388

  4. Transient cold pain has no effect on cutaneous vasodilatation induced by capsaicin: a randomized-control-crossover study in healthy subjects.

    PubMed

    Pud, Dorit; Andersen, Ole Kaeseler; Arendt-Nielsen, Lars; Yarnitsky, David

    2006-05-01

    Cooling the skin induces sympathetically driven vasoconstriction, along with some vasoparalytic dilatation at lowermost temperatures. Neurogenic inflammation, on the other hand, entails vasodilatation. In the present study, we examined the dynamic vasomotor balance of capsaicin-induced vasodilatation within the area of the induced neurogenic inflammation, with and without superimposed cooling. In a randomized-control-crossover fashion, a sample of 14 healthy volunteers participated in three experiments: (1) exposure to each 0 degrees C cold pain stimulus and a neutral 30 degrees C stimulus (control) for 30 s to the volar forearms by contact thermal thermode (1.6x1.6 cm(2)), (2) injection of 50 microg intradermal capsaicin without cooling and (3) injection of capsaicin followed by application of 0 degrees C cold pain stimulation for 30 s within the area of the secondary hyperalgesia. Repetitive vascular measurements over skin area of 4.0x4.0 cm(2) of blood flux (BF) were acquired before and during the 5 min after stimulation. A marked increase in BF (i.e. vasodilatation) at the location of the cold stimulus in comparison to control (30 degrees C) (F=11.97, p=0.004) within the first 3 min was demonstrated. Two-way repeated-measures ANOVA indicated no interaction between the experimental conditions (capsaicin with or without cold) and time (F=0.934, p=0.454). The cold pain stimulation was found to be insignificant in its influence on BF evoked by capsaicin (F=0.018, p=0.894). The results of our study indicate that (1) transient cooling causes significant vasodilatation, (2) intradermal injection of capsaicin is dominant in inducing vasodilatation, and (3) the cold-pain-evoked vasodilatation has no modulative effect on the capsaicin-evoked cutaneous vasodilatation.

  5. Material basis for inhibition of dragon's blood on capsaicin-induced TRPV1 receptor currents in rat dorsal root ganglion neurons.

    PubMed

    Wei, Li-Si; Chen, Su; Huang, Xian-Ju; Yao, Jing; Liu, Xiang-Ming

    2013-02-28

    The effects of dragon's blood and its components cochinchinenin A, cochinchinenin B, loureirin B as well as various combinations of the three components on capsaicin-induced TRPV1 receptor currents were studied in acutely dissociated DRG neurons using both voltage and current whole-cell patch clamp technique. The results indicated that dragon's blood and its three components concentration-dependently reduce the peak amplitudes of capsaicin-induced TRPV1 receptor currents. There was no significant difference between the effects of dragon's blood and the combination wherein the three components were present in respective mass fractions in dragon's blood. The respective concentrations of the three components used alone were all higher than the total concentration of three components used in combination when the percentage inhibition of the peak amplitude was 50%. The proportion of three components was adjusted and the total concentration reduced, the resulting combination still inhibit the currents with a lower IC50 value, and inhibit capsaicin-induced membrane depolarization on current clamp. The combination of three components not only increase the capsaicin IC50 value, but also reduce the capsaicin maximal response. These result suggested that analgesic effect of dragon's blood may be partly explained on the basis of silencing pain signaling pathways caused by the inhibition of dragon's blood on capsaicin-induced TRPV1 receptor currents in DRG neurons and could be due to the synergistic effect of the three components. Antagonism of the capsaicin response by the combination of three components is not competitive. The analgesic effect of dragon's blood was also confirmed using animal models. Copyright © 2013. Published by Elsevier B.V.

  6. Capsaicin-induced central sensitization evokes segmental increases in trigger point sensitivity in humans.

    PubMed

    Srbely, John Z; Dickey, James P; Bent, Leah R; Lee, David; Lowerison, Mark

    2010-07-01

    This study investigated whether inducing central sensitization evokes segmental increases in trigger point pressure sensitivity. We evoked central sensitization at the C(5) segment and validated its presence via mechanical cutaneous sensitivity (brush allodynia) testing. Trigger point pressure sensitivity was quantified using the pain pressure threshold (PPT) value. A 50 cm(2) area of the C(5) dermatome at the right lateral elbow was pretreated with 45 degrees heat for 10 minutes. Test subjects (n = 20) then received topical capsaicin cream (0.075%; Medicis, Toronto, Canada) to the C(5) dermatome, whereas control subjects (n = 20) received a topical placebo cream (Biotherm Massage, Montreal, Canada). PPT readings were recorded from the infraspinatus (C(5,6)) and gluteus medius (L(4,5)S(1)) trigger points at zero (pre-intervention), 10, 20, and 30 minutes after intervention; all PPT readings were normalized to pre-intervention (baseline) values. The difference between the PPT readings at the 2 trigger point sites represents the direct influence of segmental mechanisms on the trigger point sensitivity at the infraspinatus site (PPT(seg)). Test subjects demonstrated statistically significant increases in Total Allodynia scores and significant decreases in PPT(seg) at 10, 20, and 30 minutes after application, when compared with control subjects. These results demonstrate that increases in central sensitization evoke increases in trigger point pressure sensitivity in segmentally related muscles. Myofascial pain is the most common form of musculoskeletal pain. Myofascial trigger points play an important role in the clinical manifestation of myofascial pain syndrome. Elucidating the role of central sensitization in the pathophysiology of trigger points is fundamental to developing optimal strategies in the management of myofascial pain syndrome.

  7. Functional depletion of capsaicin-sensitive primary afferent fibers attenuates rat pain-related behaviors and paw edema induced by the venom of scorpion Buthus martensi Karch.

    PubMed

    Bai, Zhan-Tao; Liu, Tong; Pang, Xue-Yan; Jiang, Feng; Cheng, Ming; Ji, Yong-Hua

    2008-10-01

    The role of capsaicin-sensitive primary afferent fibers in rat pain-related behaviors and paw edema induced by scorpion Buthus martensi Karch (BmK) venom was investigated in this study. It was found that functional depletion of capsaicin-sensitive primary afferent fibers with a single systemic injection of resiniferatoxin (RTX) dramatically decreased spontaneous nociceptive behaviors, prevented the development of primary mechanical and thermal hyperalgesia as well as mirror-image mechanical hyperalgesia. RTX treatment significantly attenuated BmK venom-induced c-Fos expression in all laminaes of bilateral L4-L5 lumbar spinal cord, especially in superficial laminaes. Moreover, RTX treatment markedly reduced the early paw edema induced by BmK venom. Thus, the results indicate that capsaicin-sensitive primary afferent fibers play a critical role in various pain-related behaviors and paw edema induced by BmK venom in rats.

  8. Carboxyl-terminal Domain of Transient Receptor Potential Vanilloid 1 Contains Distinct Segments Differentially Involved in Capsaicin- and Heat-induced Desensitization*

    PubMed Central

    Joseph, John; Wang, Sen; Lee, Jongseok; Ro, Jin Y.; Chung, Man-Kyo

    2013-01-01

    Multiple Ca2+-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca2+, although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys155, both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli. PMID:24174527

  9. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice.

    PubMed

    Entrena, José Manuel; Cobos, Enrique José; Nieto, Francisco Rafael; Cendán, Cruz Miguel; Gris, Georgia; Del Pozo, Esperanza; Zamanillo, Daniel; Baeyens, José Manuel

    2009-06-01

    We evaluated the role of sigma(1) receptors on capsaicin-induced mechanical hypersensitivity and on nociceptive pain induced by punctate mechanical stimuli, using wild-type and sigma(1) receptor knockout (sigma(1)-KO) mice and selective sigma(1) receptor-acting drugs. Mutation in sigma(1)-KO mice was confirmed by PCR analysis of genomic DNA and, at the protein level, by [(3)H](+)-pentazocine binding assays. Both wild-type and sigma(1)-KO mice not treated with capsaicin showed similar responses to different intensities of mechanical stimuli (0.05-8 g force), ranging from innocuous to noxious, applied to the hind paw. This indicates that sigma(1) gene inactivation does not modify the perception of punctate mechanical stimuli. The intraplantar (i.pl.) administration of capsaicin induced dose-dependent mechanical allodynia in wild-type mice (markedly reducing both the threshold force necessary to induce paw withdrawal and the latency to paw withdrawal induced by a given force). In contrast, capsaicin was completely unable to induce mechanical hypersensitivity in sigma(1)-KO mice. The high-affinity and selective sigma(1) antagonists BD-1063, BD-1047 and NE-100, administered subcutaneously (s.c.), dose-dependently inhibited mechanical allodynia induced by capsaicin (1 microg,i.pl.), yielding ED(50) (mg/kg) values of 15.80+/-0.93, 29.31+/-1.65 and 40.74+/-7.20, respectively. The effects of the sigma(1) antagonists were reversed by the sigma(1) agonist PRE-084 (32 mg/kg, s.c.). None of the drugs tested modified the responses induced by a painful mechanical punctate stimulus (4 g force) in nonsensitized animals. These results suggest that sigma(1) receptors are essential for capsaicin-induced mechanical hypersensitivity, but are not involved in mechanical nociceptive pain.

  10. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation.

    PubMed

    Fanselow, E E; Reid, A P; Nicolelis, M A

    2000-11-01

    Stimulation of the vagus nerve has become an effective method for desynchronizing the highly coherent neural activity typically associated with epileptic seizures. This technique has been used in several animal models of seizures as well as in humans suffering from epilepsy. However, application of this technique has been limited to unilateral stimulation of the vagus nerve, typically delivered according to a fixed duty cycle, independently of whether ongoing seizure activity is present. Here, we report that stimulation of another cranial nerve, the trigeminal nerve, can also cause cortical and thalamic desynchronization, resulting in a reduction of seizure activity in awake rats. Furthermore, we demonstrate that providing this stimulation only when seizure activity begins results in more effective and safer seizure reduction per second of stimulation than with previous methods. Seizure activity induced by intraperitoneal injection of pentylenetetrazole was recorded from microwire electrodes in the thalamus and cortex of awake rats while the infraorbital branch of the trigeminal nerve was stimulated via a chronically implanted nerve cuff electrode. Continuous unilateral stimulation of the trigeminal nerve reduced electrographic seizure activity by up to 78%, and bilateral trigeminal stimulation was even more effective. Using a device that automatically detects seizure activity in real time on the basis of multichannel field potential signals, we demonstrated that seizure-triggered stimulation was more effective than the stimulation protocol involving a fixed duty cycle, in terms of the percent seizure reduction per second of stimulation. In contrast to vagus nerve stimulation studies, no substantial cardiovascular side effects were observed by unilateral or bilateral stimulation of the trigeminal nerve. These findings suggest that trigeminal nerve stimulation is safe in awake rats and should be evaluated as a therapy for human seizures. Furthermore, the results

  11. Estrous Cycle Induces Peripheral Sensitization in Trigeminal Ganglion Neurons: An Animal Model of Menstrual Migraine.

    PubMed

    Saleeon, Wachirapong; Jansri, Ukkrit; Srikiatkhachorn, Anan; Bongsebandhu-phubhakdi, Saknan

    2016-02-01

    Many women experience menstrual migraines that develop into recurrent migraine attacks during menstruation. In the human menstrual cycle, the estrogen level fluctuates according to changes in the follicular and luteal phases. The rat estrous cycle is used as an animal model to study the effects of estrogen fluctuation. To investigate whether the estrous cycle is involved in migraine development by comparing the neuronal excitability of trigeminal ganglion (TG) neurons in each stage of the estrous cycle. Female rats were divided into four experimental groups based on examinations of the cytologies of vaginal smears, and serum analyses of estrogen levels following each stage of the estrous cycle. The rats in each stage of the estrous cycle were anesthetized and their trigeminal ganglia were removed The collections of trigeminal ganglia were cultured for two to three hours, after which whole-cell patch clamp experiments were recorded to estimate the electrophysiological properties of the TG neurons. There were many vaginal epithelial cells and high estrogen levels in the proestrus and estrus stages of the estrous cycle. Electrophysiological studies revealed that the TG neurons in the proestrus and estrus stages exhibited significantly lower thresholds of stimulation, and significant increase in total spikes compared to the TG neurons that were collected in the diestrus stage. Our results revealed that high estrogen levels in the proestrus and estrus stages altered the thresholds, rheobases, and total spikes of the TG neurons. High estrogen levels in the estrous cycle induced an increase in neuronal excitability and the peripheral sensitization of TG neurons. These findings may provide an explanation for the correlation of estrogen fluctuations during the menstrual cycle with the pathogenesis of menstrual migraines.

  12. Capsaicin Protects Against Oxidative Insults and Alleviates Behavioral Deficits in Rats with 6-OHDA-Induced Parkinson's Disease via Activation of TRPV1.

    PubMed

    Zhao, ZhenXiang; Wang, JianFeng; Wang, LingLing; Yao, XiaoMei; Liu, YiLin; Li, Ye; Chen, Si; Yue, Tao; Wang, XiaoTang; Yu, WenFei; Liu, YiMing

    2017-08-31

    Increasing evidence suggests that capsaicin may play a role in modulating neuronal function and controlling motor behavior. However, the underlying mechanism is still unclear and the activation of transient receptor potential vanilloid 1 (TRPV1) might be involved in. This study investigated the potential neuroprotective role of capsaicin in a rat model of 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD). Capsaicin was treated intraperitoneally for the 6-OHDA induced PD rats and the locomotor activity and abnormal involuntary movements were found alleviated. Besides, brain oxidative stress (lipid peroxidation, superoxide dismutase and catalase) was also assessed, and oxidative insults were investigated relieved. Both the expression of tyrosine hydroxylase and TRPV1 were increased in the striatal and substantia nigra areas of 6-OHDA induced rats after the treatment of capsaicin by the semi-quantitative analysis of Western Blot. And the immunostaining of substantia nigra further suggested that capsaicin might protect against dopaminergic neuronal loss. Our results showed that TRPV1 might be a novel therapeutic target for PD.

  13. Lack of effect of central nervous system-active doses of nabilone on capsaicin-induced pain and hyperalgesia.

    PubMed

    Kalliomäki, Jarkko; Philipp, Andrew; Baxendale, Jane; Annas, Peter; Karlsten, Rolf; Segerdahl, Märta

    2012-04-01

    The aim of the present study was to investigate the effects of nabilone on capsaicin-induced pain and hyperalgesia, as well as on biomarkers of cannabinoid central nervous system (CNS) effects. A randomized, double-blind, placebo-controlled, crossover study was conducted in 30 healthy male volunteers receiving single doses of nabilone (1, 2 or 3 mg). Pain intensity after intradermal capsaicin injections in the forearm was assessed by continuous visual analogue scale (0-100 mm). Capsaicin cream was applied to the calf to induce hyperalgesia. Primary hyperalgesia was assessed by measuring heat pain thresholds, whereas secondary hyperalgesia was assessed by measuring the area where light tactile stimulation was felt to be painful. Pain and hyperalgesia were measured at baseline and 2-3.5 h after dosing. The CNS effects were assessed at baseline and up to 24 h after dosing using visual analogue mood scales for feeling 'stimulated', 'anxious', 'sedated' and 'down'. Plasma samples for pharmacokinetic analysis were obtained up to 24 h after drug administration. Nabilone did not significantly attenuate either ongoing pain or primary or secondary hyperalgesia, whereas dose-dependent CNS effects were observed from 1.5 to 6 h after dosing, being maximal at 4-6 h. Plasma concentrations of nabilone and its metabolite carbinol were maximal 1-2 h after dosing. Adverse events (AE) were common on nabilone treatment. Four subjects withdrew due to pronounced CNS AE (anxiety, agitation, altered perception, impaired consciousness). Although nabilone had marked CNS effects, no analgesic or antihyperalgesic effects were observed.

  14. Phα1β toxin prevents capsaicin-induced nociceptive behavior and mechanical hypersensitivity without acting on TRPV1 channels.

    PubMed

    Castro-Junior, Celio J; Milano, Julie; Souza, Alessandra H; Silva, Juliana F; Rigo, Flávia K; Dalmolin, Geruza; Cordeiro, Marta N; Richardson, Michael; Barros, Alexandre G A; Gomez, Renato S; Silva, Marco A R; Kushmerick, Christopher; Ferreira, Juliano; Gomez, Marcus V

    2013-08-01

    Phα1β toxin is a peptide purified from the venom of the armed spider Phoneutria nigriventer, with markedly antinociceptive action in models of acute and persistent pain in rats. Similarly to ziconotide, its analgesic action is related to inhibition of high voltage activated calcium channels with more selectivity for N-type. In this study we evaluated the effect of Phα1β when injected peripherally or intrathecally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of Phα1β on Ca²⁺ transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor. Intraplantar or intrathecal administered Phα1β reduced both nocifensive behavior and mechanical hypersensitivity induced by capsaicin similarly to that observed with SB366791, a specific TRPV1 antagonist. Peripheral nifedipine and mibefradil did also decrease nociceptive behavior induced by intraplantar capsaicin. In contrast, ω-conotoxin MVIIA (a selective N-type Ca²⁺ channel blocker) was effective only when administered intrathecally. Phα1β, MVIIA and SB366791 inhibited, with similar potency, the capsaicin-induced Ca²⁺ transients in DRG neurons. The simultaneous administration of Phα1β and SB366791 inhibited the capsaicin-induced Ca²⁺ transients that were additive suggesting that they act through different targets. Moreover, Phα1β did not inhibit capsaicin-activated currents in patch-clamp recordings of HEK293 cells that expressed TRPV1 receptors. Our results show that Phα1β may be effective as a therapeutic strategy for pain and this effect is not related to the inhibition of TRPV1 receptors.

  15. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    SciTech Connect

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang; Li, Junying

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  16. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model.

    PubMed

    Geng, Shengnan; Zheng, Yaqiu; Meng, Mingjing; Guo, Zhenzhen; Cao, Ning; Ma, Xiaofang; Du, Zhenhua; Li, Jiahuan; Duan, Yongjian; Du, Gangjun

    Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.

  17. Drug-Induced Hypersensitivity Syndrome Caused by Carbamazepine Used for the Treatment of Trigeminal Neuralgia

    PubMed Central

    Ono, Yuko; Shirafuji, Yoshinori; Hamada, Toshihisa; Masui, Masanori; Obata, Kyoichi; Yao, Mayumi; Kishimoto, Koji; Sasaki, Akira

    2016-01-01

    An 88-year-old man was diagnosed with trigeminal neuralgia, and treatment of carbamazepine 200 mg/day was initiated. About 6 weeks later, the patient developed a skin rash accompanied by fever. He was admitted to hospital and diagnosed with drug-induced hypersensitivity syndrome (DIHS) caused by carbamazepine. Oral carbamazepine treatment was stopped, but blood tests showed acute liver and acute renal failure. Drug-induced lymphocyte stimulation test (DLST) for carbamazepine, human herpes virus-6 (HHV-6) IgG, and CMV-HRP were negative. Oral prednisolone therapy was begun 18 days later. The titer of HHV-6 IgG antibodies was then detected (640 times). Following treatment, liver and renal function improved and the erythema disappeared. PMID:27885344

  18. Antiobese effects of capsaicin-chitosan microsphere (CCMS) in obese rats induced by high fat diet.

    PubMed

    Tan, Sirong; Gao, Bing; Tao, Yi; Guo, Jiao; Su, Zheng-quan

    2014-02-26

    Chitosan (CTS) and capsaicin (CAP) are two kinds of effective ingredients for antiobesity, which are extracted from crab shells and Capsicum annuum. However, the strong taste of CAP makes it difficult to consume, and the antiobesity ability of CTS is limited. In this study, we prepared capsaicin-chitosan microspheres (CCMSs) by ion-cross-linking and spray drying and examined the antiobesity ability of CCMSs in obese rats. The effects of CCMSs on body weight, Lee's index, body fat, and serum lipids were investigated. The mRNA expression of PPARα, PPARγ, leptin, UCP2, GPR120, FTO, and adiponectin in the liver was determined by quantitative real-time PCR, and the protein expression of adiponectin, leptin, PPARα, UCP2, and hepatic lipase in serum was evaluated by enzyme-linked immunosorbent assay. CCMSs were prepared with 85.17% entrapment efficiency and 8.87% mean drug loading. Compared with chitosan microspheres, CAP, and Orlistat, the CCMSs showed better ability to control body weight, body mass index, organ index, body fat, proportion of fat to body weight, and serum lipids. The CCMSs upregulated the expressions of PPARα, PPARγ, UCP2, and adiponectin and downregulated the expression of leptin. CCMSs may thus be considered novel, safe, effective, and natural weight loss substances, and there is an additive effect between CTMS and capsaicin.

  19. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    PubMed

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue.

  20. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses

    PubMed Central

    Klein, Amanda H.; Joe, Christopher L.; Davoodi, Auva; Takechi, Kenichi; Carstens, Mirela Iodi; Carstens, E

    2014-01-01

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive TRPA1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher-order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42°C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. PMID:24759772

  1. Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats.

    PubMed

    Sekiguchi, Kenta; Takehana, Shiori; Shibuya, Eri; Matsuzawa, Nichiwa; Hidaka, Shiori; Kanai, Yurie; Inoue, Maki; Kubota, Yoshiko; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Resveratrol, a component of red wine, has been reported to decrease prostaglandin E2 production by inhibiting the cyclooxygenase-2 cascade and to modulate various voltage-dependent ion channels, suggesting that resveratrol could attenuate inflammatory hyperalgesia. However, the effects of resveratrol on inflammation-induced hyperexcitability of nociceptive neurons in vivo remain to be determined. Thus, the aim of the present study was to determine whether daily systemic administration of resveratrol to rats attenuates the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis wide-dynamic range neurons associated with hyperalgesia. Inflammation was induced by injection of complete Freund's adjuvant into the whisker pad. The threshold of escape from mechanical stimulation applied to whisker pad in inflamed rats was significantly lower than in control rats. The decreased mechanical threshold in inflamed rats was restored to control levels by daily systemic administration of resveratrol (2 mg/kg, i.p.). The mean discharge frequency of spinal trigeminal nucleus caudalis wide-dynamic range neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after resveratrol administration. In addition, the increased mean spontaneous discharge of spinal trigeminal nucleus caudalis wide-dynamic range neurons in inflamed rats was significantly decreased after resveratrol administration. Similarly, resveratrol significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, resveratrol restored the expanded mean size of the receptive field in inflamed rats to control levels. These results suggest that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory hyperalgesia and that this effect is due primarily to the suppression of spinal trigeminal nucleus caudalis wide dynamic range neuron hyperexcitability via inhibition of

  2. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin

    PubMed Central

    Lin, Qing; Li, Dingge; Xu, Xijin; Zou, Xiaoju; Fang, Li

    2007-01-01

    Background Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV1) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV1 receptors initiates neurogenic inflammation via triggering DRRs. Results Here we used pharmacological manipulations to analyze the roles of TRPV1 and neuropeptidergic receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin. The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP) resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or intrathecal administration of the GABAA receptor antagonist, bicuculline, reduced dramatically the capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV1 receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses between 30–150 μg. In contrast, pretreatment of the periphery with different doses of CGRP8–37 (a CGRP receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If both CGRP and NK1 receptors were blocked by co-administration of CGRP8–37 and spantide I, a stronger

  3. Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse.

    PubMed

    Elekes, Krisztián; Helyes, Zsuzsanna; Németh, József; Sándor, Katalin; Pozsgai, Gábor; Kereskai, László; Börzsei, Rita; Pintér, Erika; Szabó, Arpád; Szolcsányi, János

    2007-06-07

    Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration. SP and CGRP were determined with radioimmunoassay, myeloperoxidase activity with spectrophotometry, interleukin-1beta with ELISA and histopathological changes with semiquantitative scoring from lung samples. Treatments with resiniferatoxin for selective destruction of capsaicin-sensitive afferents, NK(1) antagonist SR 140333, NK(2) antagonist SR 48968, their combination, or CGRP1 receptor antagonist CGRP(8-37) were performed. Lipopolysaccharide significantly increased lung SP and CGRP concentrations, which was prevented by resiniferatoxin pretreatment. Resiniferatoxin-desensitization markedly enhanced inflammation, but decreased bronchoconstriction. CGRP(8-37) or combination of SR 140333 and SR 48968 diminished neutrophil accumulation, MPO levels and IL-1beta production, airway hyperresponsiveness was inhibited only by SR 48968. This is the first evidence that capsaicin-sensitive afferents exert a protective role in endotoxin-induced airway inflammation, but contribute to increased bronchoconstriction. Activation of CGRP1 receptors or NK(1)+NK(2) receptors participate in granulocyte accumulation, but NK(2) receptors play predominant role in enhanced airway resistance.

  4. Antihyperalgesic effects of clomipramine and tramadol in a model of posttraumatic trigeminal neuropathic pain in mice.

    PubMed

    Alvarez, Pedro; Brun, Aurore; Labertrandie, Anaïs; Lopez, José; Correa, Alejandro; Constandil, Luís; Hernández, Alejandro; Pelissier, Teresa

    2011-01-01

    To develop a behavioral model in mice that is capable of mimicking some distinctive symptoms of human posttraumatic trigeminal neuropathic pain such as spontaneous pain, cold allodynia, and chemical÷inflammatory hyperalgesia, and to use this model to investigate the antinociceptive effects of clomipramine and tramadol, two drugs used for the treatment of neuropathic pain. A partial tight ligature of the right infraorbital nerve by an intraoral access or a sham procedure was performed. Fourteen days later, mice were subcutaneously injected with saline or drugs and the spontaneous nociceptive behavior, as well as the responses to topical acetone and to formalin or capsaicin injected into the ipsilateral vibrissal pad, were assessed. Data were analyzed by ANOVA. Neuropathic mice exhibited an increased spontaneous rubbing÷scratching of the ipsilateral vibrissal pad, together with enhanced responses to cooling (acetone) and the chemical irritants (formalin, capsaicin). Clomipramine and tramadol produced an antihyperalgesic effect on most of these nociceptive responses, but tramadol was ineffective on capsaicin-induced hyperalgesia. Nociceptive responses in this neuropathic pain model in mice exhibited a pattern consistent with the pain described by posttraumatic trigeminal neuropathic patients. The selective antihyperalgesic effect obtained with two commonly used drugs for treating neuropathic pain confirms the validity of this preclinical model.

  5. PACAP induces neurite outgrowth in cultured trigeminal ganglion cells and recovery of corneal sensitivity after flap surgery in rabbits.

    PubMed

    Fukiage, Chiho; Nakajima, Takeshi; Takayama, Yoshiko; Minagawa, Yoko; Shearer, Thomas R; Azuma, Mitsuyoshi

    2007-02-01

    To evaluate the ability of pituitary adenylate cyclase-activating polypeptide (PACAP) to induce growth of neuronal processes in cultured trigeminal ganglion cells, and to accelerate neurite outgrowth and recovery of corneal sensitivity after creation of a corneal flap in a rabbit model of laser-assisted in situ keratomileusis (LASIK) surgery. Animal study. The cDNA of rabbit PACAP was sequenced, and the expression of PACAP receptors in the trigeminal ganglia from rabbits was quantified by quantitative real-time polymerase chain reaction. Trigeminal ganglion cells were isolated from rabbits and cultured for 48 hours with or without PACAP27 (bioactive N-terminal peptide from PACAP). Cells were stained with antibody against neurofilaments, and neurite outgrowth was quantified by cell counting. In the rabbit LASIK model, a corneal flap with a planned thickness of 130 microm and 8.5 mm diameter was created with a microkeratome. The rabbits then received eyedrops containing PACAP27 four times a day for eight weeks, and corneal sensitivity was measured. Neurite outgrowth was assessed by staining histologic sections of the flap area for cholinesterase. The deduced amino acid sequence of PACAP in rabbit was identical to that of human. PACAP receptor, PAC1, was highly expressed in trigeminal ganglia from newborn and adult rabbits. PACAP27 at 1 microM induced growth of neuronal processes in cultured primary trigeminal ganglion cells. In the LASIK model, extensions of neuronal processes from amputated nerve trunks in cornea were observed after administration of eyedrops containing 1 or 10 microM PACAP27. The 10 microM PACAP27 treatment also greatly accelerated recovery of corneal sensitivity. PACAP may be a candidate drug for ameliorating dry eye after LASIK surgery.

  6. Development of anti-migraine therapeutics using the capsaicin-induced dermal blood flow model.

    PubMed

    Buntinx, Linde; Vermeersch, Steve; de Hoon, Jan

    2015-11-01

    The efficacy of calcitonin gene-related peptide (receptor) (CGRP-(R)) blocking therapeutics in the treatment of acute migraine headache provided proof-of-concept for the involvement of CGRP in the pathophysiology of this disorder. One of the major hurdles for the development of any class of drugs, including CGRP blocking therapeutics, is the early clinical development process during which toxic and inefficacious compounds need to be eliminated as early as possible in order to focus on the most promising molecules. At this stage, human models providing proof of target engagement, combined with safety and tolerability studies, are extremely valuable in focusing on those therapeutics that have the highest engagement from the lowest exposure. They guide the go/no-go decision making, establish confidence in the candidate molecule by de-risking toxicity and safety issues and thereby speed up the early clinical development. In this review the focus is on the so called 'capsaicin model' as a typical example of a target engagement biomarker used as a human model for the development of CGRP blocking therapeutics. By applying capsaicin onto the skin, TRPV1 channels are activated and a CGRP-mediated increase in dermal blood flow can be quantified with laser Doppler perfusion imaging. Effective CGRP blocking therapeutics in turn, display blockade of this response. The translation of this biomarker model from animals to humans is discussed as well as the limitations of the assay in predicting the efficacy of anti-migraine drugs.

  7. Body temperature dependency in baclofen-induced gastric acid secretion in rats relation to capsaicin-sensitive afferent neurons.

    PubMed

    Kato, S; Araki, H; Kawauchi, S; Takeuchi, K

    2001-03-16

    Body temperature dependency in gastric functional responses to baclofen, a GABA(B) agonist, such as acid secretion, mucosal blood flow (GMBF) and motor activity, was examined in urethane-anesthetized rats under normal (37+/-1 degrees C) and hypothermic (31+/-1 degrees C) conditions. A rat stomach was mounted in an ex-vivo chamber, perfused with saline, and the acid secretion was measured using a pH-stat method, simultaneously with GMBF by a laser Doppler flowmeter. Gastric motility was measured using a miniature balloon as intraluminal pressure recordings. Intravenous administration of baclofen significantly increased acid secretion at the doses > 0.3 mg/kg under hypothermic conditions, yet it caused a significant stimulation only at doses > 10 mg/kg under normothermic conditions. The increases in gastric motility and GMBF were similarly induced by baclofen, irrespective of whether the animals were subjected to normothermic or hypothermic conditions. These functional responses to baclofen under hypothermic conditions were totally attenuated by either bilateral vagotomy or atropine (3 mg/kg, s.c.). Baclofen at a lower dose (1 mg/kg i.v.) significantly increased the acid secretion even under normothermic conditions when the animals were subjected to chemical deafferenation of capsaicin-sensitive neurons or pretreatment with intracisternal injection of CGRP8-37 (30 ng/rat). These results suggest that 1) gastric effects of baclofen are dependent on body temperature in stimulating acid secretion but not GMBF or motor activity, 2) the acid stimulatory action of baclofen is enhanced under hypothermic conditions, and 3) the suppression of baclofen-induced acid response under normothermic conditions may be related to capsaicin-sensitive afferent neuronal activity, probably mediated by central release

  8. Light-induced trigeminal sensitization without central visual pathways: another mechanism for photophobia.

    PubMed

    Dolgonos, Sarah; Ayyala, Haripriya; Evinger, Craig

    2011-10-04

    The authors investigated whether trigeminal sensitization occurs in response to bright light with the retina disconnected from the rest of the central nervous system by optic nerve section. In urethane-anesthetized rats, trigeminal reflex blinks were evoked with air puff stimuli directed at the cornea in darkness and at three different light intensities. After normative data were collected, the optic nerve was lesioned and the rats were retested. In an alert rat, reflex blinks were evoked by stimulation of the supraorbital branch of the trigeminal nerve in the dark and in the light. A 9.1 × 10(3) μW/cm(2) and a 15.1 × 10(3) μW/cm(2) light significantly enhanced the magnitude of reflex blinks relative to blinks evoked by the same trigeminal stimulus when the rats were in the dark. In addition, rats exhibited a significant increase in spontaneous blinking in the light relative to the blink rate in darkness. After lesioning of the optic nerve, the 15.1 × 10(3) μW/cm(2) light still significantly increased the magnitude of trigeminal reflex blinks. Bright lights increase trigeminal reflex blink amplitude and the rate of spontaneous blinking in rodents. Light can modify trigeminal activity without involving the central visual system.

  9. Light-Induced Trigeminal Sensitization without Central Visual Pathways: Another Mechanism for Photophobia

    PubMed Central

    Dolgonos, Sarah; Ayyala, Haripriya

    2011-01-01

    Purpose. The authors investigated whether trigeminal sensitization occurs in response to bright light with the retina disconnected from the rest of the central nervous system by optic nerve section. Methods. In urethane-anesthetized rats, trigeminal reflex blinks were evoked with air puff stimuli directed at the cornea in darkness and at three different light intensities. After normative data were collected, the optic nerve was lesioned and the rats were retested. In an alert rat, reflex blinks were evoked by stimulation of the supraorbital branch of the trigeminal nerve in the dark and in the light. Results. A 9.1 × 103 μW/cm2 and a 15.1 × 103 μW/cm2 light significantly enhanced the magnitude of reflex blinks relative to blinks evoked by the same trigeminal stimulus when the rats were in the dark. In addition, rats exhibited a significant increase in spontaneous blinking in the light relative to the blink rate in darkness. After lesioning of the optic nerve, the 15.1 × 103 μW/cm2 light still significantly increased the magnitude of trigeminal reflex blinks. Conclusions. Bright lights increase trigeminal reflex blink amplitude and the rate of spontaneous blinking in rodents. Light can modify trigeminal activity without involving the central visual system. PMID:21896840

  10. Attenuation of capsaicin-induced acute and visceral nociceptive pain by alpha- and beta-amyrin, a triterpene mixture isolated from Protium heptaphyllum resin in mice.

    PubMed

    Oliveira, Francisco A; Costa, Charllynton L S; Chaves, Mariana H; Almeida, Fernanda R C; Cavalcante, Italo J M; Lima, Alana F; Lima, Roberto C P; Silva, Regilane M; Campos, Adriana Rolim; Santos, Flavia A; Rao, Vietla S N

    2005-10-21

    The triterpene mixture, alpha- and beta-amyrin, isolated from Protium heptaphyllum resin was evaluated on capsaicin-evoked nociception in mice. Orally administered alpha- and beta-amyrin (3 to 100 mg/kg) significantly suppressed the nociceptive behaviors--evoked by either subplantar (1.6 microg) or intracolonic (149 microg) application of capsaicin. The antinociception produced by alpha- and beta-amyrin against subplantar capsaicin-induced paw-licking behavior was neither potentiated nor attenuated by ruthenium red (1.5 mg/kg, s.c.), a non-specific antagonist of vanilloid receptor (TRPV1), but was greatly abolished in animals pretreated with naloxone (2 mg/kg, s.c.), suggesting an opioid mechanism. However, participation of alpha2-adrenoceptor involvement was unlikely since yohimbine (2 mg/kg, i.p.) pretreatment failed to block the antinociceptive effect of alpha- and beta-amyrin in the experimental model of visceral nociception evoked by intracolonic capsaicin. The triterpene mixture (3 to 30 mg/kg, p.o.) neither altered significantly the pentobarbital sleeping time, nor impaired the ambulation or motor coordination in open-field and rota-rod tests, respectively, indicating the absence of sedative or motor abnormality that could account for its antinociception. Nevertheless, alpha- and beta-amyrin could significantly block the capsaicin (10 mg/kg, s.c.)-induced hyperthermic response but not the initial hypothermia. These results suggest that the triterpene mixture, alpha- and beta-amyrin has an analgesia inducing effect, possibly involving vanilloid receptor (TRPV1) and an opioid mechanism.

  11. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics.

    PubMed

    Smutzer, Gregory; Devassy, Roni K

    2016-01-01

    Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition.

  12. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    PubMed Central

    Smutzer, Gregory; Devassy, Roni K.

    2016-01-01

    Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition. PMID:26884754

  13. Trigeminal nerve injury induced thrombospondin-4 upregulation contributes to orofacial neuropathic pain states in a rat model

    PubMed Central

    Li, Kang-Wu; Kim, Doo-Sik; Zaucke, Frank; Luo, Z. David

    2013-01-01

    Background Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause upregulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION). Methods Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 upregulation and orofacial behavioral hypersensitivity. Results Our data indicated that trigeminal nerve injury induced TSP4 upregulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 upregulation in Vc/C2 and behavioral hypersensitivity. Conclusions Our data support that infraorbital nerve injury leads to TSP4 upregulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. PMID:24019258

  14. Trigeminal nerve injury-induced thrombospondin-4 up-regulation contributes to orofacial neuropathic pain states in a rat model.

    PubMed

    Li, K-W; Kim, D-S; Zaucke, F; Luo, Z D

    2014-04-01

    Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause up-regulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve. Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 up-regulation and orofacial behavioural hypersensitivity. Our data indicated that trigeminal nerve injury induced TSP4 up-regulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 up-regulation in Vc/C2 and behavioural hypersensitivity. Our data support that infraorbital nerve injury leads to TSP4 up-regulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. © 2013 European Pain Federation - EFIC®

  15. Short-Term Effects of Chewing on Task Performance and Task-Induced Mydriasis: Trigeminal Influence on the Arousal Systems

    PubMed Central

    Tramonti Fantozzi, Maria Paola; De Cicco, Vincenzo; Barresi, Massimo; Cataldo, Enrico; Faraguna, Ugo; Bruschini, Luca; Manzoni, Diego

    2017-01-01

    Trigeminal input to the ascending activating system is important for the maintenance of arousal and may affect the discharge of the noradrenergic neurons of the locus coeruleus (LC), whose activity influences both vigilance state and pupil size, inducing mydriasis. For this reason, pupil size evaluation is now considered an indicator of LC activity. Since mastication activates trigeminal afferent neurons, the aims of the present study, conducted on healthy adult participants, were to investigate whether chewing a bolus of different hardness may: (1) differentially affect the performance on a cognitive task (consisting in the retrieval of specific target numbers within numerical matrices) and (2) increase the dilatation of the pupil (mydriasis) induced by a haptic task, suggesting a change in LC activation. Results show that chewing significantly increased both the velocity of number retrieval (without affecting the number of errors) and the mydriasis associated with the haptic task, whereas simple task repetition did not modify either retrieval or mydriasis. Handgrip exercise, instead, significantly decreased both parameters. Effects were significantly stronger and longer lasting when subjects chewed hard pellets. Finally, chewing-induced improvements in performance and changes in mydriasis were positively correlated, which suggests that trigeminal signals enhanced by chewing may boost the cognitive performance by increasing LC activity. PMID:28848404

  16. Capsaicin Reduces Blood Glucose by Increasing Insulin Levels and Glycogen Content Better than Capsiate in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Zhang, Shiqi; Ma, Xiaohan; Zhang, Lei; Sun, Hui; Liu, Xiong

    2017-03-22

    Chili peppers exhibit antiobesity, anticancer, antidiabetic, and pain- and itch-relieving effects on animals and humans; these effects are due to capsaicin, which is the main pungent and biologically active component of pepper. Capsiate, a nonpungent capsaicin analogue, is similar to capsaicin in terms of structure and biological activity. In this study, we investigated whether capsaicin and capsiate exhibit the same hypoglycemic effects on rats with type 1 diabetes (T1D). Experimental rats were categorized into four groups: control, model, capsaicin, and capsiate groups. The two treatment groups were treated orally with 6 mg/kg bw capsaicin and capsiate daily for 28 days. Treatment with capsaicin and capsiate increased body weight, increased glycogen content, and inhibited intestinal absorption of sugar in T1D rats. Particularly, insulin levels were increased from 14.9 ± 0.76 mIU/L (model group) to 22.4 ± 1.39 mIU/L (capsaicin group), but the capsiate group (16.7 ± 0.79 mIU/L) was increased by only 12.2%. Analysis of the related genes suggested that the transient receptor potential vanilloid 1 (TRPV1) receptor was activated by capsaicin. Liver X receptor and pancreatic duodenum homeobox 1 controlled the glycometabolism balance by regulating the expression levels of glucose kinase, glucose transport protein 2 (GLUT2), phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase, leading to reduced blood glucose levels in T1D rats. Meanwhile, the hypoglycemic effect was enhanced by the down-regulated expression of sodium glucose cotransporter 1, GLUT2, and GLUT5 in the intestine. The results showed that the spicy characteristics of capsaicin might be the root of its ability to decrease blood glucose.

  17. Chemokine ligand 2 in the trigeminal ganglion regulates pain induced by experimental tooth movement.

    PubMed

    Yang, Zhi; Luo, Wei; Wang, Jing; Tan, Yu; Fu, Runqing; Fang, Bing

    2014-07-01

    To test the hypothesis that the chemokine ligand 2/chemokine receptor 2 (CCL2/CCR2) signaling pathway plays an important role in pain induced by experimental tooth movement. Expression of CCL2/CCR2 in the trigeminal ganglion (TG) was determined by Western blotting 0 hours, 4 hours, 1 day, 3 days, 5 days, and 7 days after tooth movement. CCL2 localization and cell size distribution were revealed by immunohistochemistry. The effects of increasing force on CCL2 expression and behavioral changes were investigated. Furthermore, the effects of CCL2/CCR2 antagonists on these changes in pain behaviors were all evaluated. Exogenous CCL2 was injected into periodontal tissues and cultured TG neurons with different concentrations, and then the pain responses or c-fos expression were assessed. Experimental tooth movement led to a statistically significant increase in CCL2/CCR2 expression from day 3 to day 7, especially in small to medium-sized TG neurons. It also triggered an increase in the time spent on directed face-grooming behaviors in a force magnitude-dependent and CCL2 dose-dependent manner. Pain induced by experimental tooth movement was effectively blocked by a CCR2 antagonist and by CCL2 neutralizing antibody. Also, exogenous CCL2 led to an increase in c-fos expression in cultured TG neurons, which was blocked by CCL2 neutralizing antibody. The peripheral CCL2/CCR2 axis is modulated by experimental tooth movement and involved in the development of tooth movement pain.

  18. Gamma Knife rhizotomy-induced histopathology in multiple sclerosis-related trigeminal neuralgia.

    PubMed

    Phillips, David B; Del Bigio, Marc R; Kaufmann, Anthony M

    2014-12-01

    In this report, the authors describe the pathological changes in the human trigeminal nerve after Gamma Knife radiosurgery. Three trigeminal nerves of patients with multiple sclerosis (MS)-related trigeminal neuralgia (MSTN) after Gamma Knife radiosurgery and other ablative procedures were examined by a neuropathologist. These cases were compared with 3 patients with typical TN who underwent partial surgical rhizotomy following recurrent symptoms after gasserian injury procedures, as well as with autopsy specimens from patients with and without MSTN. The three irradiated MS-TN specimens exhibited axon loss, demyelination, myelin debris, and fibrosis. Mild lymphocytic infiltrate was present in all 3 samples from MS-TN patients. The nonirradiated trigeminal nerve samples were generally well myelinated with rare degenerating axons. The microscopic findings in trigeminal nerve autopsy specimens were normal in patients without TN, with MS but not TN, and MS-TN. The inflammation observed in MS-TN specimens collected following Gamma Knife radiosurgery has not previously been described in the literature. These data provide new insight into the changes that occur in trigeminal nerve following stereotactic radiosurgery.

  19. Trigeminal Neuralgia.

    PubMed

    Cruccu, Giorgio

    2017-04-01

    Although trigeminal neuralgia is well known to neurologists, recent developments in classification and clinical diagnosis, new MRI methods, and a debate about surgical options necessitate an update on the topic. Currently, a worldwide controversy exists regarding the classification, diagnostic process, and surgical treatment of trigeminal neuralgia. This controversy has been caused on one side by the recognition that some 50% of patients with trigeminal neuralgia, apart from characteristic paroxysmal attacks, also have continuous pain in the same territory, which results in greater diagnostic difficulties and is associated with a lower response to medical and surgical treatments. In contrast, recent developments in MRI methods allow differentiation between a mere neurovascular contact and an effective compression of the trigeminal root by an anomalous vessel, which implies more difficulties in the choice of surgical treatment, with the indication for microvascular decompression becoming more restricted. This article proposes that the diagnosis of trigeminal neuralgia, with or without concomitant continuous pain, must rely on clinical grounds only. Diagnostic tests are necessary to distinguish three etiologic categories: idiopathic trigeminal neuralgia (nothing is found), classic trigeminal neuralgia (an anomalous vessel produces morphologic changes of the trigeminal root near its entry into the pons), and secondary trigeminal neuralgia (due to major neurologic disease, such as multiple sclerosis or tumors at the cerebellopontine angle). Carbamazepine and oxcarbazepine (ie, voltage-gated, frequency-dependent sodium channel blockers) are still the first-choice medical treatment, although many patients experience significant side effects, and those with concomitant continuous pain respond less well to treatment. The development of sodium channel blockers that are selective for the sodium channel 1.7 (Nav1.7) receptor will hopefully help. Although all the surgical

  20. Arachidonic acid release and prostaglandin F(2alpha) formation induced by anandamide and capsaicin in PC12 cells.

    PubMed

    Someya, Akiyoshi; Horie, Syunji; Murayama, Toshihiko

    2002-08-23

    Anandamide, an endogenous agonist of cannabinoid receptors, activates various signal transduction pathways. Anandamide also activates vanilloid VR(1) receptor, which was a nonselective cation channel with high Ca(2+) permeability and had sensitivity to capsaicin, a pungent principle in hot pepper. The effects of anandamide and capsaicin on arachidonic acid metabolism in neuronal cells have not been well established. We examined the effects of anandamide and capsaicin on arachidonic acid release in rat pheochromocytoma PC12 cells. Both agents stimulated [3H]arachidonic acid release in a concentration-dependent manner from the prelabeled PC12 cells even in the absence of extracellular CaCl(2). The effect of anandamide was neither mimicked by an agonist nor inhibited by an antagonist for cannabinoid receptors. The effects of anandamide and capsaicin were inhibited by phospholipase A(2) inhibitors, but not by an antagonist for vanilloid VR(1) receptor. In PC12 cells preincubated with anandamide or capsaicin, [3H]arachidonic acid release was marked and both agents were no more effective. Co-addition of anandamide or capsaicin synergistically enhanced [3H]arachidonic acid release by mastoparan in the absence of CaCl(2). Anandamide stimulated prostaglandin F(2alpha) formation. These findings suggest that anandamide and capsaicin stimulated arachidonic acid metabolism in cannabinoid receptors- and vanilloid VR(1) receptor-independent manner in PC12 cells. The possible mechanisms are also discussed.

  1. Corn gluten hydrolysate and capsaicin have complimentary actions on body weight reduction and lipid-related genes in diet-induced obese rats.

    PubMed

    Mun, Joo-Mi; Ok, Hyang Mok; Kwon, Oran

    2014-05-01

    The aim of this study was to test the hypothesis that a combination of corn gluten hydrolysate (CGH) and capsaicin may have an additive or synergistic effect on body weight reduction. For 13 weeks, male Sprague-Dawley rats were provided a diet to induce obesity. Afterward, the rats were randomly divided into 5 dietary groups: the normal control (n = 5), the high-fat control (n = 8), the high-fat diet (HFD) containing 35% CGH (n = 7), the HFD containing 0.02% capsaicin (HF-P) (n = 8), and the HFD containing both CGH and capsaicin (HF-CP) (n = 7) for an additional 4 weeks. Administration of CGH plus capsaicin, along with a HFD, led to significant decreases in body weight, fat mass, lipids in the liver, and plasma leptin as well as increases in plasma adiponectin. The pattern of gene expression was different in each target organ. In the liver, up-regulation of peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1α, and acyl-coenzyme A oxidase was found in the HF-CP group. In contrast, down-regulation of peroxisome proliferator-activated receptor γ was found in both the HFD containing 35% CGH and HF-CP groups. In skeletal muscle, up-regulation of insulin receptor and uncoupling protein 3 was found in the HF-P group only, whereas up-regulation of the glucose transporter 4 gene was observed in both the HF-CP and HF-P groups. In adipose tissue, up-regulation of peroxisome proliferator-activated receptor γ and hormone-sensitive lipase was only found in the HF-CP group. In summary, this study suggests that CGH and capsaicin perform complementary actions on food intake, lipid metabolism, and insulin sensitivity by a coordinated control of energy metabolism in the liver, adipose tissue, and skeletal muscle, thus exerting an additive effect on body weight reduction.

  2. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S

    2016-01-01

    Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.

  3. Effects of the calcium channel blockers Phα1β and ω-conotoxin MVIIA on capsaicin and acetic acid-induced visceral nociception in mice.

    PubMed

    Diniz, Danuza Montijo; de Souza, Alessandra Hubner; Pereira, Elizete Maria Rita; da Silva, Juliana Figueira; Rigo, Flavia Karine; Romano-Silva, Marco Aurélio; Binda, Nancy; Castro, Célio J; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus Vinicius

    2014-11-01

    The effects of intrathecal administration of the toxins Phα1β and ω-conotoxin MVIIA were investigated in visceral nociception induced by an intraperitoneal injection of acetic acid and an intracolonic application of capsaicin. The pretreatments for 2h with the toxins reduced the number of writhes or nociceptive behaviors compared with the control mice. Phα1β administration resulted in an Imax of 84±6 and an ID50 of 12 (5-27), and ω-conotoxin MVIIA resulted in an Imax of 82±9 and an ID50 of 11 (4-35) in the contortions induced by the intraperitoneal injection of acetic acid. The administration of Phα1β resulted in an Imax of 64±4 and an ID50 of 18 (9-38), and ω-conotoxin MVIIA resulted in an Imax of 71±9 and an ID50 of 9 (1-83) in the contortions induced by intracolonic capsaicin administration. Phα1β (100/site) or ω-conotoxin MVIIA (30pmol/site) pretreatments caused a reduction in CSF glutamate release in mice intraperitoneally injected with acetic acid or treated with intracolonic capsaicin. The toxin pretreatments reduced the ROS levels induced by intraperitoneal acetic acid injection. Phα1β, but not ω-conotoxin MVIIA, reduced significantly the ROS levels induced by intracolonic capsaicin administration. Phα1β is a ω-toxin with high therapeutic index and a broader action on calcium channels. It shows analgesic effect in several rodents' models of pain, including visceral pain, suggesting that this toxin has the potential to be used in clinical setting as a drug in the control of persistent pathological pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Assessment of pain response in capsaicin-induced dynamic mechanical allodynia using a novel and fully automated brushing device.

    PubMed

    du Jardin, Kristian Gaarn; Gregersen, Lise Skøtt; Røsland, Turid; Uggerhøj, Kathrine Hebo; Petersen, Lars Jelstrup; Arendt-Nielsen, Lars; Gazerani, Parisa

    2013-01-01

    Dynamic mechanical allodynia is traditionally induced by manual brushing of the skin. Brushing force and speed have been shown to influence the intensity of brush-evoked pain. There are still limited data available with respect to the optimal stroke number, length, force, angle and speed. Therefore, an automated brushing device (ABD) was developed, for which brushing angle and speed could be controlled to enable quantitative assessment of dynamic mechanical allodynia. To compare the ABD with manual brushing using capsaicin-induced allodynia, and to investigate the role of stroke angle and speed on pain intensity. Experimental dynamic mechanical allodynia was induced by an intradermal injection of capsaicin (100 µg) into the volar forearm of 12 healthy, male volunteers. Dynamic mechanical allodynia was rated on a 10 cm visual analogue scale (VAS) after each set of strokes at angles of 30°, 60° and 90° with speeds of 17 mm⁄s, 21 mm⁄s and 25 mm⁄s for each angle. A two-way ANOVA with repeated measures was performed to assess the influence of brushing parameters. To evaluate test-retest reliability, Bland-Altman 95% limits of agreement, including a coefficient of repeatability and an intraclass correlation coefficient (ICC), were determined. The angle and speed exhibited a significant impact on pain intensity (P<0.001 and P<0.015, respectively). Post hoc analysis showed that the highest pain intensity was recorded with an angle of 30° regardless of brushing speed. The ABD demonstrated superior test-retest reliability (coefficient of repeatability = 1.9 VAS; ICC=0.91) compared with manual brushing (coefficient of repeatability = 2.8 VAS; ICC=0.80; P<0.05). The most reliable combination of parameters (coefficient of repeatability = 1.3 VAS; ICC=0.97) was an angle of 60° and a speed of 21 mm⁄s. A controlled, automatic brushing method can be used for quantitative investigations of allodynic reactions, and is more reliable for quantitative assessment of dynamic

  5. Trigeminal neuralgia

    MedlinePlus

    ... Elsevier Saunders; 2015:chap 117. Zakrzewska JM, Chen HI, Lee JYK. Trigeminal and glossopharyngeal neuralgia. In: McMohan ... A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the ...

  6. Trigeminal Neuralgia Induced by Cobra Venom Leads to Cognitive Deficits Associated with Downregulation of CREB/BDNF Pathway.

    PubMed

    Zhang, Li; Ding, Xinli; Wu, Zhe; Qian, Xiaoyan; An, Jianxiong; Tian, Ming

    2017-02-01

    Chronic pain often results in cognitive impairment. Our previous study showed that trigeminal neuralgia induced by cobra venom leads to spatial learning and memory deficits, although the underlying mechanism remains unclear. However, recent evidence indicates that the c-AMP-responsive element binding protein (CREB)/brain derived neurotrophic factor (BDNF) pathway plays a critical role in various etiologies of cognitive deficits. Our aim was to explore the CREB/BDNF pathway to determine the molecular mechanisms involved in the pathogenesis of cognitive impairment caused by cobra venom-induced trigeminal neuralgia. A randomized, controlled animal study. Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University. Fifty male Sprague-Dawley rats were randomly divided into 3 groups: cobra venom group, sham group, and control group. Cobra venom or saline was injected into the sheath of the infraorbital nerve (ION), respectively. Video recordings and mechanical thresholds were used to analyze changes in behavioral activity 3 days before surgery and 4, 7, 14, 21, 28, and 56 days after surgery. Morris water maze tests were conducted at 4- and 8-week time points after surgery to evaluate spatial learning and memory. We also investigated expression changes of phosphorylated CREB (p-CREB) and BDNF in the hippocampus and prefrontal cortex (PFC) using western blotting and immunohistochemistry. Cobra venom-treated rats exhibited significant changes in face grooming, as well as exploratory and resting behaviors, compared with the control group and sham group (both P < 0.001). Rats in the cobra venom group exhibited slightly impaired acquisition (P < 0.05) without memory deficits (P > 0.05) in the first water maze protocol. In the second water maze test, rats in the cobra venom group exhibited spatial learning and memory deficits, with fewer platform site crossings during the probe trial (P < 0.05). Moreover, results showed decreased p-CREB and BDNF

  7. Involvement of capsaicin-sensitive afferents and the Transient Receptor Potential Vanilloid 1 Receptor in xylene-induced nocifensive behaviour and inflammation in the mouse.

    PubMed

    Sándor, Katalin; Helyes, Zsuzsanna; Elekes, Krisztián; Szolcsányi, János

    2009-02-27

    The inflammatory actions of xylene, an aromatic irritant and sensitizing agent, were described to be predominantly neurogenic in the rat, but the mechanism and the role of the Transient Receptor Potential Vanilloid 1 (TRPV1) capsaicin receptor localized on a subpopulation of sensory nerves has not been elucidated. This paper characterizes the involvement of capsaicin-sensitive afferents and the TRPV1 receptor in nociceptive and acute inflammatory effects of xylene in the mouse. Topical application of xylene on the paw induced a short, intensive nocifensive behaviour characterized by paw liftings and shakings, which was more intensive in Balb/c than in C57Bl/6 mice. Genetic deletion of the TRPV1 receptor as well as destroying capsaicin-sensitive nerve terminals with resiniferatoxin (RTX) pretreatment markedly reduced, but did not abolish nocifensive behaviours. In respect to the xylene-induced plasma protein extravasation detected by Evans blue leakage, significant difference was neither observed between the Balb/c and C57Bl/6 strains, nor the ear and the dorsal paw skin. These inflammatory responses were diminished in the RTX pretreated group, but not in the TRPV1 gene-deleted one. Injection of the antioxidant N-acetylcysteine 15min prior to xylene smearing significantly reduced plasma protein extravasation at both sites. These results demonstrate that xylene-induced acute nocifensive behaviour is mediated by capsaicin-sensitive afferents via TRPV1 receptor activation in mice. Neurogenic inflammatory components play an important role in xylene-induced plasma protein extravasation, but independently of the TRPV1 ion channel. Reactive oxygen or carbonyl species participate in this process presumably via stimulation of the TRPA1 channel.

  8. Beneficial effect of a novel pentadecapeptide BPC 157 on gastric lesions induced by restraint stress, ethanol, indomethacin, and capsaicin neurotoxicity.

    PubMed

    Sikirić, P; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Gjurasin, M; Konjevoda, P; Separović, J; Ljubanović, D; Artuković, B; Bratulić, M; Tisljar, M; Jurina, L; Buljat, G; Miklić, P; Marović, A

    1996-08-01

    Very recently, the integrity of capsaicin somatosensory neurons and their protection were suggested to be related to the activity in nociception of a newly discovered 15-amino acid peptide, BPC 157, shown to have strong beneficial effect on intestinal and liver lesions. Therefore, from this viewpoint, we have studied the gastroprotective effect of the pentadecapeptide BPC 157, on gastric lesions produced in rats by 96% ethanol, restraint stress, and indomethacin. The possible involvement of sensory neurons in the salutary actions of BPC 157 (10 micrograms/kg, 10 ng/kg intraperitoneally) was studied with capsaicin, which has differential effects on sensory neurons: a high dose in adult (125 mg/kg subcutaneously, 3 months old) or administration (50 mg/kg subcutaneously) to neonatal animals (age of the 7 days) destroys sensory fibers, whereas a low dose (500 micrograms/kg intraperitoneally) activates neurotransmitter release and protective effects on the mucosa. In the absence of capsaicin, BPC 157 protected gastric mucosa against ethanol, restraint, and indomethacin application. In the presence of neurotoxic doses of capsaicin, the negative influence of capsaicin on restraint, ethanol, or indomethacin lesions consistently affected salutary activity of BPC 157. However, BPC 157 protection was still evident in the capsaicin-treated rats (either treated as adults or as newborns) in all of these assays. Interestingly, after neonatal capsaicin treatment, a complete abolition of BPC gastroprotection was noted if BPC 157 was applied as a single nanogram-regimen, but the mucosal protection was fully reversed when the same dose was used daily. In line with the excitatory dose of capsaicin the beneficial effectiveness of BPC 157 appears to be increased as well. Taken together, these data provide evidence for complex synergistic interaction between the beneficial effectiveness of BPC 157 and peptidergic sensory afferent neuron activity.

  9. Tris-hydroxymethyl-aminomethane enhances capsaicin-induced intracellular Ca(2+) influx through transient receptor potential V1 (TRPV1) channels.

    PubMed

    Murakami, Satoshi; Sudo, Yuka; Miyano, Kanako; Nishimura, Hitomi; Matoba, Motohiro; Shiraishi, Seiji; Konno, Hiroki; Uezono, Yasuhito

    2016-02-01

    Non-selective transient receptor potential vanilloid (TRPV) cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM) is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1) and the Ca(2+)-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 μM) and pH 6.5 buffer elicited steep increases in the intracellular Ca(2+) concentration ([Ca(2+)]i), while treatment with THAM (pH 8.5) alone had no effect. However, treatment with THAM (pH 8.5) following capsaicin application elicited a profound, long-lasting increase in [Ca(2+)]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca(2+)]i increases, which could be a mechanism underlying pain induced by basic pH. Copyright © 2015. Production and hosting by Elsevier B.V.

  10. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    PubMed

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-04

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model.

  11. Trigeminal Inflammatory Compression (TIC) Injury Induces Chronic Facial Pain and Susceptibility to Anxiety-Related Behaviors

    PubMed Central

    Lyons, Danielle N.; Kniffin, Tracey C.; Zhang, Liping; Danaher, Robert J.; Miller, Craig S.; Bocanegra, Jose L.; Carlson, Charles R.; Westlund, Karin N.

    2015-01-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week 8 post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury which resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model’s chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  12. Suppression of tumor necrosis factor-α-induced nuclear factor κB activation and aromatase activity by capsaicin and its analog capsazepine.

    PubMed

    Luqman, Suaib; Meena, Abha; Marler, Laura E; Kondratyuk, Tamara P; Pezzuto, John M

    2011-11-01

    Target-specific drugs, including natural products, offer promise for the amelioration of cancer and other human ailments. Capsaicin, the pungent ingredient present in chilies (Capsicum annuum L.), and capsazepine, a synthetic analog of capsaicin (collectively referred to as vanilloids), are known to possess a variety of pharmacological and physiological properties. In our continuous effort to discover and characterize cancer chemopreventive agents from natural products, we investigated the effect of vanilloids on nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) activation using stably transfected 293/NFκB-Luc human embryonic kidney cells induced by treatment with tumor necrosis factor-α (TNFα) and on aromatase activity. Capsaicin and capsazepine blocked TNFα-induced NFκB activation in a dose-dependent manner with 50% inhibitory concentration (IC(50)) values of 0.68 and 4.2 μM, respectively. No significant cytotoxicity was observed at the highest concentrations tested (53.1 μM for capsazepine and 65.5 μM for capsaicin). In addition, these vanilloids inhibited aromatase activity with IC(50) values of 13.6 and 8.8 μM, respectively. Computer-aided molecular docking studies showed docking scores indicative of good binding affinity of vanilloids with aromatase and NFκB. The highly conserved residues for capsaicin and capsazepine binding with NFκB p50 were Ser299 and Ile278 (H-bond 2.81Å) and with NFκB p100 were Ser6, Arg82, Val86, Arg90 (H-bond 2.89Å), Gly4, and Ser2 (H-bond 2.81Å). The amino acids Trp224, Arg435, and Val373 (H-bond 2.80Å) were found to be important for the binding of capsaicin and capsazepine with aromatase. Based on these findings, aromatase and NFκB are suggested as valid targets for these compounds; additional investigation of chemopreventive or chemotherapeutic potential is required.

  13. Capsaicin as an anti-obesity drug.

    PubMed

    Leung, Felix W

    2014-01-01

    Laboratory studies support a role of capsaicin as an anti-obesity agent. Intestinal mucosal afferent nerves appear to play a role in controlling adipose tissue distribution between visceral and subcutaneous sites. Activation of the transient receptor potential vanilloid-1 channels by capsaicin prevents adipogenesis. A neurogenic mechanism modulates the regulation of fat metabolism by transient receptor potential vanilloid-1-sensitive sensory nerves. A neural pathway enables the selective activation of the central network that regulates brown adipose tissue sympathetic nerve activity in response to a specific stimulation of gastrointestinal transient receptor potential channels. Dietary capsaicin reduces metabolic dysregulation in obese/diabetic mice by enhancing expression of adiponectin and its receptor. The effects of capsaicin in adipose tissue and liver are related to its dual action on peroxisome proliferator-activated receptor alpha and transient receptor potential vanilloid-1 expression/activation. Local desensitization of the abdominal capsaicin-sensitive fibers attenuates the hypometabolic adaptation to food deprivation. Truncal vagotomy leads to significant reductions in both diet-induced weight gain and visceral abdominal fat deposition. Vagal de-afferentation leads to a more modest, but clinically and statistically significant, reduction in visceral abdominal fat. Thermogenesis and lipid metabolism-related proteins are altered upon capsaicin treatment in white adipose tissue. Capsaicin induces apoptosis and inhibits adipogenesis in preadipocytes and adipocytes. Epidemiologic data show that consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Clinical evidence supports a role of capsaicin as an anti-obesity agent. Both oral and gastrointestinal exposure to capsaicin increase satiety and reduce energy and fat intake; the stronger reduction with oral exposure suggests a sensory effect of capsaicin. Bioactive

  14. Evaluation of the analgesic efficacy and psychoactive effects of AZD1940, a novel peripherally acting cannabinoid agonist, in human capsaicin-induced pain and hyperalgesia.

    PubMed

    Kalliomäki, Jarkko; Annas, Peter; Huizar, Karin; Clarke, Cyril; Zettergren, Annika; Karlsten, Rolf; Segerdahl, Märta

    2013-03-01

    The aim of the present study was to investigate the effects of AZD1940, a novel peripherally acting cannabinoid CB(1) /CB(2) receptor agonist, on capsaicin-induced pain and hyperalgesia, as well as on biomarkers of cannabinoid central nervous system (CNS) effects. The present study was a randomized, double-blind, placebo-controlled, four-sequence, two-period, cross-over study in 44 male healthy volunteers aged 20-45 years. The effects of two single oral doses of AZD1940 (400 and 800 μg) were compared with placebo. Pain intensity after intradermal capsaicin injections in the forearm was assessed on a continuous visual analogue scale (VAS; 0-100 mm). Primary and secondary hyperalgesia induced by application of capsaicin cream on the calf were assessed by measuring heat pain thresholds and the area of mechanical allodynia, respectively. The CNS effects were assessed at baseline and up to 24 h after dosing using a visual analogue mood scales (VAMS) for feeling 'stimulated', 'high', 'anxious', 'sedated' or 'down'. AZD1940 did not significantly attenuate ongoing pain or primary or secondary hyperalgesia compared with placebo. Mild CNS effects for AZD1940were observed on the VAMS for 'high' and 'sedated'. Dose-dependent mild-to-moderate CNS-related and gastrointestinal adverse events were reported following treatment with AZD1940. No evidence of analgesic efficacy was found for a peripherally acting CB(1)/CB(2) receptor agonist in the human capsaicin pain model. The emergence of mild dose-dependent CNS effects suggests that the dose range predicted from preclinical data had been attained.

  15. Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+-mediated mitochondrial pathway

    PubMed Central

    Xie, Le; Xiang, Guang-Hong; Tang, Tao; Tang, Yan; Zhao, Ling-Yun; Liu, Dong; Zhang, You-Ren; Tang, Jin-Tian; Zhou, Shen; Wu, Da-Hua

    2016-01-01

    Human glioma is the most common type of primary brain tumor and one of the most invasive and aggressive tumors, which, even with treatments including surgery, radiotherapy and chemotherapy, often relapses and exhibits resistance to conventional treatment methods. Developing novel strategies to control human glioma is, therefore, an important research focus. The present study investigated the mechanism of apoptosis induction in U251 human glioma cells by capsaicin (Cap) and dihydrocapsaicin (DHC), the major pungent ingredients of red chili pepper, using the Cell Counting Kit-8 assay, transmission electron microscopy analysis, flow cytometry analysis, laser scanning confocal microscope analysis and immunohistochemical staining. Treatment of U251 glioma cells with Cap and DHC resulted in a dose- and time-dependent inhibition of cell viability and induction of apoptosis, whereas few effects were observed on the viability of L929 normal murine fibroblast cells. The apoptosis-inducing effects of Cap and DHC in U251 cells were associated with the generation of reactive oxygen species, increased Ca2+ concentrations, mitochondrial depolarization, release of cytochrome c into the cytosol and activation of caspase-9 and −3. These effects were further confirmed by observations of the anti-tumor effects of Cap and DHC in vivo in a U251 cell murine tumor xenograft model. These results demonstrate that Cap and DHC are effective inhibitors of in vitro and in vivo survival of human glioma cells, and provide the rationale for further clinical investigation of Cap and DHC as treatments for human glioma. PMID:27748914

  16. Capsaicin-induced mucus secretion in rat airways assessed in vivo and non-invasively by magnetic resonance imaging

    PubMed Central

    Karmouty-Quintana, H; Cannet, C; Sugar, R; Fozard, J R; Page, C P; Beckmann, N

    2007-01-01

    Background and purpose: An up-regulation of the sensory neural pathways in the lung has been implicated in asthma and chronic obstructive pulmonary disease (COPD) and is thought to contribute to mucus hypersecretion, an essential feature of both diseases. The aim of this study was to assess non-invasively the acute effects (up to 60 min) of sensory nerve stimulation by capsaicin in the lung, using magnetic resonance imaging (MRI). Experimental approach: Male Brown Norway rats were imaged prior to and 10, 30 and 60 min after intra-tracheal challenge with capsaicin (30 μgkg−1) or vehicle (0.5% ethanol solution). In subsequent studies, pre-treatment with the transient receptor potential vanilloid (TRPV)-1 antagonist, capsazepine; the dual neurokinin (NK) 1 and NK2 receptor antagonist, DNK333 and the mast cell stabilizer, di-sodium cromoglycate (DSCG) was used to modulate the effects of capsaicin. Key results: Diffuse fluid signals were detected by MRI in the lung as early as 10 min after capsaicin, remaining constant 30 and 60 min after treatment. Broncho-alveolar lavage (BAL) fluid analysis performed 60 min after capsaicin revealed increased mucin concentration. Capsazepine (3.5 mgkg−1), DNK333 (10 mgkg−1) but not DSCG (10 mgkg−1) administered prophylactically were able to block the effect of capsaicin in the airways. Conclusions and implications: These observations suggest that the fluid signals detected by MRI after capsaicin administration reflected predominantly the release of mucus following activation of sensory nerves. They point to the opportunity of non-invasively assessing with MRI the influence of neuronal mechanisms in animal models of asthma and COPD. PMID:17351665

  17. Irreversible impairment of thermoregulation induced by capsaicin and similar pungent substances in rats and guinea-pigs.

    PubMed

    Jancsó-Gábor, A; Szolcsányi, J; Jancsó, N

    1970-03-01

    1. In rats and guinea-pigs a subcutaneous or intraperitoneal injection of capsaicin, the substance responsible for the pungency of red pepper, produces profound hypothermia associated with skin vasodilatation.2. After large doses of capsaicin rats and guinea-pigs become insensitive to the hypothermic action of capsaicin. This densensitization is apparently irreversible since it is present months after the capsaicin treatment.3. Capsaicin-desensitized animals are no longer able to protect themselves against overheating but respond with pronounced hyperthermia to high ambient temperatures (32-40 degrees C). Temperature regulation against cold exposure, however, is not impaired.4. They also respond with an enhanced hyperthermia to painful stimuli such as repeated pinching of the tail or repeated introduction of the thermometer probe into the rectum.5. The enhanced hyperthermias are not due to increased heat production but to impairment of the heat dissipating mechanisms, which in rats and guinea-pigs acts mainly through evaporation of saliva, and skin vasodilatation.6. Acylamides with pungent action related to capsaicin such as piperine, caprinoyl-p-aminophenol and propionyl vanillylamide also cause hypothermia followed by desensitization and their efficacy is dependent on their pungency. The non-pungent nonenoyl benzylamide produces neither hypothermia nor desensitization.7. Capsaicin and its related pungent acylamides appear first to stimulate and then to desensitize the hypothalamic warmth detectors. By stimulating them the acylamides evoke reflexly the hypothermic response, whereas after desensitization the protective thermoregulatory reflexes for heat dissipation are no longer activated in response to high ambient temperature and to painful stimuli.

  18. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons.

    PubMed

    Matak, Ivica; Rossetto, Ornella; Lacković, Zdravko

    2014-08-01

    Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A's central antinociceptive activity following its application into the rat whisker pad was examined in trigeminal nucleus caudalis (TNC) and higher-level nociceptive brain areas using BoNT/A-cleaved synaptosomal-associated protein 25 (SNAP-25) and c-Fos immunohistochemistry. Occurrence of cleaved SNAP-25 in TNC was examined after nonselective ganglion ablation with formalin or selective denervation of capsaicin-sensitive (vanilloid receptor-1 or TRPV1-expressing) neurons, and in relation to different cellular and neuronal markers. Regional c-Fos activation and effect of TRPV1-expressing afferent denervation on toxin's antinociceptive action were studied in formalin-induced orofacial pain. BoNT/A-cleaved SNAP-25 was observed in TNC, but not in higher-level nociceptive nuclei. Cleaved SNAP-25 in TNC disappeared after formalin-induced trigeminal ganglion ablation or capsaicin-induced sensory denervation. Occurrence of cleaved SNAP-25 in TNC and BoNT/A antinociceptive activity in formalin-induced orofacial pain were prevented by denervation with capsaicin. Cleaved SNAP-25 localization demonstrated toxin's presynaptic activity in TRPV1-expressing neurons. BoNT/A reduced the c-Fos activation in TNC, locus coeruleus, and periaqueductal gray. Present experiments suggest that BoNT/A alters the nociceptive transmission at the central synapse of primary afferents. Targeting of TRPV1-expressing neurons might be associated with observed selectivity of BoNT/A action only in certain types of pain.

  19. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    PubMed

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing.

  20. Molecular and Cellular Mechanisms of Trigeminal Chemosensation

    PubMed Central

    Gerhold, Kristin A.; Bautista, Diana M.

    2010-01-01

    Three sensory systems, olfaction, taste, and somatosensation, are dedicated to the detection of chemicals in the environment. Trigeminal somatosensory neurons enable us to detect a wide range of environmental stimuli, including pressure, temperature, and chemical irritants, within the oral and nasal mucosa. Natural plant-derived irritants have served as powerful pharmacological tools for identifying receptors underlying somatosensation. This is illustrated by the use of capsaicin, menthol, and wasabi to identify the heat-sensitive ion channel TRPV1, the cold-sensitive ion channel TRPM8, and the irritant receptor TRPA1, respectively. In addition to TRP channels, members of the two-pore potassium channel family have also been implicated in trigeminal chemosensation. KCNK18 was recently identified as a target for hydroxy-α-sanshool, the tingling and numbing compound produced in Schezuan peppers and other members of the Xanthoxylum genus. The role of these channels in trigeminal thermosensation and pain will be discussed. PMID:19686135

  1. Experimental colitis in rats induces de novo synthesis of cytokines at distant intestinal sites: role of capsaicin-sensitive primary afferent fibers.

    PubMed

    Mourad, Fadi H; Hamdi, Tamim; Barada, Kassem A; Saadé, Nayef E

    2016-06-01

    Increased levels of pro- and anti-inflammatory cytokines were observed in various segments of histologically-intact small intestine in animal models of acute and chronic colitis. Whether these cytokines are produced locally or spread from the inflamed colon is not known. In addition, the role of gut innervation in this upregulation is not fully understood. To examine whether cytokines are produced de novo in the small intestine in two rat models of colitis; and to investigate the role of capsaicin-sensitive primary afferents in the synthesis of these inflammatory cytokines. Colitis was induced by rectal instillation of iodoacetamide (IA) or trinitrobenzene sulphonic acid (TNBS) in adult Sprague-Dawley rats. Using reverse transcriptase (RT) and real-time PCR, TNF-α, and IL-10 mRNA expression was measured in mucosal scrapings of the duodenum, jejunum, ileum and colon at different time intervals after induction of colitis. Capsaicin-sensitive primary afferents (CSPA) were ablated using subcutaneous injections of capsaicin at time 0, 8 and 32 h, and the experiment was repeated at specific time intervals to detect any effect on cytokines expression. TNF-α mRNA expression increased by 3-40 times in the different intestinal segments (p<0.05 to p<0.001), 48h after IA-induced colitis. CSPA ablation completely inhibited this upregulation in the small intestine, but not in the colon. Similar results were obtained in TNBS-induced colitis at 24 h. Intestinal IL-10 mRNA expression significantly decreased at 12 h and then increased by 6-43 times (p<0.05 to p<0.001) 48h after IA administration. This increase was abolished in rats subjected to CSPA ablation except in the colon, where IL-10 further increased by twice (p<0.05). In the TNBS group, there was 4-12- and 4-7-fold increases in small intestinal IL-10 mRNA expression at 1 and 21 days after colitis induction, respectively (both p<0.01). This increase was not observed in rats pretreated with capsaicin. Capsaicin-treated and

  2. Inhibition of FAAH reduces nitroglycerin-induced migraine-like pain and trigeminal neuronal hyperactivity in mice.

    PubMed

    Nozaki, Chihiro; Markert, Astrid; Zimmer, Andreas

    2015-08-01

    There is evidence to suggest that a dysregulation of endocannabinoid signaling may contribute to the etiology and pathophysiology of migraine. Thus, patients suffering from chronic migraine or medication overuse headache showed alterations in the activity of the arachidonoylethanolamide (AEA) degrading enzyme fatty acid amide hydrolase (FAAH) and a specific AEA membrane transporter, alongside with changes in AEA levels. The precise role of different endocannabinoid system components is, however, not clear. We have therefore investigated mice with a genetic deletion of the two main cannabinoid receptors CB1 and CB2, or the main endocannabinoid degrading enzymes, FAAH and monoacylglycerol lipase (MAGL), which degrades 2-arachidonoylglycerol (2-AG), in a nitroglycerine-induced animal model of migraine. We found that nitroglycerin-induced mechanical allodynia and neuronal activation of the trigeminal nucleus were completely abolished in FAAH-deficient mice. To validate these results, we used two structurally different FAAH inhibitors, URB597 and PF3945. Both inhibitors also dose-dependently blocked nitroglycerin-induced hyperalgesia and the activation of trigeminal neurons. The effects of the genetic deletion of pharmacological blockade of FAAH are mediated by CB1 receptors, because they were completely disrupted with the CB1 antagonist rimonabant. These results identify FAAH as a target for migraine pharmacotherapy.

  3. Quantitative characterization of capsaicin-induced TRPV1 ion channel activation in HEK293 cells by impedance spectroscopy.

    PubMed

    Weyer, Maxi; Jahnke, Heinz-Georg; Krinke, Dana; Zitzmann, Franziska D; Hill, Kerstin; Schaefer, Michael; Robitzki, Andrea A

    2016-11-01

    The analysis of receptor activity, especially in its native cellular environment, has always been of great interest to evaluate its intrinsic but also downstream biological activity. An important group of cellular receptors are ion channels. Since they are involved in a broad range of crucial cell functions, they represent important therapeutic targets. Thus, novel analytical techniques for the quantitative monitoring and screening of biological receptor activity are of great interest. In this context, we developed an impedance spectroscopy-based label-free and non-invasive monitoring system that enabled us to analyze the activation of the transient receptor potential channel Vanilloid 1 (TRPV1) in detail. TRPV1 channel activation by capsaicin resulted in a reproducible impedance decrease. Moreover, concentration response curves with an EC50 value of 0.9 μM could be determined. Control experiments with non TRPV1 channel expressing HEK cells as well as experiments with the TRPV1 channel blocker ruthenium red validated the specificity of the observed impedance decrease. More strikingly, through correlative studies with a cytoskeleton restructuring inhibitor mixture and equivalent circuit analysis of the acquired impedance spectra, we could quantitatively discriminate between the direct TRPV1 channel activation and downstream-induced biological effects. In summary, we developed a quantitative impedimetric monitoring system for the analysis of TRPV1 channel activity as well as downstream-induced biological activity in living cells. It has the capabilities to identify novel ion channel activators as well as inhibitors for the TRPV1 channel but could also easily be applied to other ion channel-based receptors.

  4. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion.

    PubMed

    Lukács, M; Warfvinge, K; Kruse, L S; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2016-12-01

    Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.

  5. Testosterone is essential for alpha(2)-adrenoceptor-induced antinociception in the trigeminal region of the male rat.

    PubMed

    Nag, Subodh; Mokha, Sukhbir S

    2009-12-18

    Activation of the alpha(2)-adrenoceptor has been shown to produce antinociception. We have previously shown that the antinociceptive effect of clonidine, an alpha(2)-adrenoceptor agonist, is sex-specific and is abolished by exogenous estrogen in ovariectomized rats or high level of endogenous estrogen in proestrous females. Here, we investigated whether testosterone mediates the antinociceptive effect of clonidine in the trigeminal region of the male rat. Clonidine (7 microg/5 microl) was injected intracisternally through a PE-10 cannula implanted dorsal to the trigeminal region in orchidectomized (GDX) male Sprague-Dawley rats. In separate groups, testosterone propionate (250 microg/100 microl; GDX+T) or beta-estradiol benzoate (100 microg/100 microl; GDX+E) were injected subcutaneously 24 and 48 h respectively prior to the N-methyl-D-aspartic acid (NMDA)--or heat-evoked nociceptive test. NMDA-induced number of scratches or duration of scratching behavior did not change significantly in control groups with or without hormonal replacement. Clonidine significantly reduced both measures only in the GDX+T group but not in GDX or GDX+E group. Clonidine also significantly increased head withdrawal latency (HWL) in the GDX+T group, but not in GDX or GDX+E group. The antinociceptive effect of clonidine was reversed by yohimbine, an alpha(2)-adrenoceptor antagonist, in GDX+T group. We conclude that testosterone is required for the expression of antinociception produced by selective activation of the alpha(2)-adrenoceptor in the trigeminal region of the male rat. These findings further our understanding of sex-related differences in the modulation of nociception and may provide insight into development and administration of analgesic agents in young vs. aging men.

  6. Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+‑mediated mitochondrial pathway.

    PubMed

    Xie, Le; Xiang, Guang-Hong; Tang, Tao; Tang, Yan; Zhao, Ling-Yun; Liu, Dong; Zhang, You-Ren; Tang, Jin-Tian; Zhou, Shen; Wu, Da-Hua

    2016-11-01

    Human glioma is the most common type of primary brain tumor and one of the most invasive and aggressive tumors, which, even with treatments including surgery, radiotherapy and chemotherapy, often relapses and exhibits resistance to conventional treatment methods. Developing novel strategies to control human glioma is, therefore, an important research focus. The present study investigated the mechanism of apoptosis induction in U251 human glioma cells by capsaicin (Cap) and dihydrocapsaicin (DHC), the major pungent ingredients of red chili pepper, using the Cell Counting Kit‑8 assay, transmission electron microscopy analysis, flow cytometry analysis, laser scanning confocal microscope analysis and immunohistochemical staining. Treatment of U251 glioma cells with Cap and DHC resulted in a dose‑ and time‑dependent inhibition of cell viability and induction of apoptosis, whereas few effects were observed on the viability of L929 normal murine fibroblast cells. The apoptosis‑inducing effects of Cap and DHC in U251 cells were associated with the generation of reactive oxygen species, increased Ca2+ concentrations, mitochondrial depolarization, release of cytochrome c into the cytosol and activation of caspase‑9 and ‑3. These effects were further confirmed by observations of the anti‑tumor effects of Cap and DHC in vivo in a U251 cell murine tumor xenograft model. These results demonstrate that Cap and DHC are effective inhibitors of in vitro and in vivo survival of human glioma cells, and provide the rationale for further clinical investigation of Cap and DHC as treatments for human glioma.

  7. Activation of the cAMP transduction cascade contributes to the mechanical hyperalgesia and allodynia induced by intradermal injection of capsaicin.

    PubMed

    Sluka, K A

    1997-11-01

    1. The spinal role of the cAMP transduction cascade in nociceptive processing was investigated in awake behaving rats (male, Sprague-Dawley) by activating or inhibiting this pathway spinally. Microdialysis fibres were implanted into the dorsal horn to infuse drugs directly to the spinal cord. 2. Animals, without peripheral tissue injury, were tested for responses to repeated applications (10 trials) of von Frey filaments and threshold to mechanical stimulation before and after infusion of 8-bromo-cAMP. In this group of animals treated spinally with 8-br-cAMP (1-10 mM) a dose-dependent hyperalgesia and allodynia were produced. This was manifested as an increased number of responses to 10 trials of von Frey filaments (10, 50, 150, 250 mN) and a decrease in mechanical threshold. 3. A second series of experiments studied the manipulation of the cAMP pathway spinally in a model of tissue injury induced by intradermal injection of capsaicin. Animals were either pre- or post-treated spinally with the adenylate cyclase inhibitor, tetrahydrofuryl adenine (THFA) or the protein kinase A inhibitor, myrosilated protein kinase (14-22) amide (PKI). Injection of capsaicin resulted in an increased number of responses to repeated applications of von Frey filaments and a decrease in threshold to mechanical stimuli outside the site of injection, secondary mechanical hyperalgesia and allodynia. 4. Pre-treatment with either THFA (1 mM) or PKI (5 mM) had no effect on the capsaicin-evoked secondary hyperalgesia and allodynia. 5. In contrast, post-treatment spinally with THFA (0.01-1 mM) or PKI (0.05-50 mM) dose-dependently reduced the mechanical hyperalgesia and allodynia produced by capsaicin injection. Furthermore, the mechanical hyperalgesia and allodynia blocked by the adenylate cyclase inhibitor, THFA (1 mM), was reversed by infusion of 8-bromo-cAMP (0.01-10 mM) in a dose-dependent manner. 6. Thus, this study demonstrates that activation of the cAMP transduction cascade at the spinal

  8. Herpes simplex virus type-1 latency-associated transcript-induced immunoreactivity of substance P in trigeminal neurons is reversed by bone morphogenetic protein-7.

    PubMed

    Hamza, Mohamed A; Higgins, Dennis M; Ruyechan, William T

    2007-02-08

    Herpes simplex virus type-1 (HSV-1) primarily infects mucoepithelial tissues of the eye and the orofacial region. Subsequently, the virus is retrogradely transported through the axons of the trigeminal sensory neurons to their nuclei, where the virus establishes a life-long latent infection. During this latency period, the viral genome is transcriptionally silent except for a single region encoding the latency-associated transcript (LAT). To understand how HSV-1 latency might affect the expression of substance P in sensory neurons, we transfected primary cultures of trigeminal neurons obtained from rat embryos, with LAT expressing plasmids. The expression of LAT increased the percentage of substance P-immunoreactive neurons by two thirds. To examine the effect of bone morphogenetic protein-7 (BMP7) on the LAT-induced increase in substance P expression in trigeminal neurons, cultures transfected with LAT were treated with BMP7. Treatment with BMP7 reversed the effects of LAT on substance P expression in trigeminal neurons. Our data show for the first time that LAT increases substance P expression in trigeminal neurons and BMP7 can reverse these effects of LAT.

  9. Capsaicin synergizes with camptothecin to induce increased apoptosis in human small cell lung cancers via the calpain pathway.

    PubMed

    Friedman, Jamie R; Perry, Haley E; Brown, Kathleen C; Gao, Ying; Lin, Ju; Stevenson, Cathyrn D; Hurley, John D; Nolan, Nicholas A; Akers, Austin T; Chen, Yi Charlie; Denning, Krista L; Brown, Linda G; Dasgupta, Piyali

    2017-04-01

    Small cell lung cancer (SCLC) is characterized by excellent initial response to chemotherapy and radiation therapy with a majority of the patients showing tumor shrinkage and even remission. However, the challenge with SCLC therapy is that patients inevitably relapse and subsequently do not respond to the first line treatment. Recent clinical studies have investigated the possibility of camptothecin-based combination therapy as first line treatment for SCLC patients. Conventionally, camptothecin is used for recurrent SCLC and has poor survival outcomes. Therefore, drugs which can improve the therapeutic index of camptothecin should be valuable for SCLC therapy. Extensive evidence shows that nutritional compounds like capsaicin (the spicy compound of chili peppers) can improve the anti-cancer activity of chemotherapeutic drugs in both cell lines and animal models. Statistical analysis shows that capsaicin synergizes with camptothecin to enhance apoptosis of human SCLC cells. The synergistic activity of camptothecin and capsaicin is observed in both classical and variant SCLC cell lines and, in vivo, in human SCLC tumors xenotransplanted on chicken chorioallantoic membrane (CAM) models. The synergistic activity of capsaicin and camptothecin are mediated by elevation of intracellular calcium and the calpain pathway. Our data foster hope for novel nutrition based combination therapies in SCLC.

  10. Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons

    PubMed Central

    Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.

    2011-01-01

    Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 μM), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and

  11. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    PubMed

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-09-29

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons.

    PubMed

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P

    2015-12-17

    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.

  13. NMDA-induced burst discharge in guinea pig trigeminal motoneurons in vitro.

    PubMed

    Kim, Y I; Chandler, S H

    1995-07-01

    1. The responses of guinea pig trigeminal motoneurons (TMNs) to N-methyl-D,L-aspartate (NMA) were studied using brain stem slice preparations and whole cell patch-clamp (n = 89) or conventional microelectrode (n = 22) recording techniques. The primary goals of this study were to determine whether N-methyl-D-aspartate (NMDA) receptor activation would produce spontaneous bursting activity in TMNs and, if so, the underlying mechanisms responsible for the generation of these bursts. 2. Bath-applied NMA (100-300 microM, n = 80) in standard perfusion medium elicited depolarization, increase in apparent input resistance (Rinp), and rhythmic burst discharges (1-90 s in duration) from TMNs. These effects were blocked by the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5, 30 microM, n = 6), but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5-10 microM, n = 10). Furthermore, the burst-inducing effect of NMA was not mimicked by the non-NMDA receptor agonists kainate (KA, 5-10 microM, n = 6) and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 5-10 microM, n = 5). 3. In tetrodotoxin (TTX) treatment conditions (n = 13), NMA elicited depolarization, an increase in apparent Rinp, and rhythmic membrane potential oscillations without action potential bursts (i.e., plateau potentials), suggesting that the effects of NMA observed in the TTX-free condition resulted from activation of postsynaptic NMDA receptors. 4. Graded depolarization of neurons (n = 20) by intracellular direct current injection generally led to a graded increase in frequency and duration of the NMA-induced bursts and plateau potentials until these rhythmic events eventually became transformed into continuous spike discharge and maintained depolarization, respectively. Removal of Mg2+ from the perfusion medium (n = 11) also turned the bursts and plateau potentials into continuous spike discharge and maintained depolarization, respectively

  14. Trigeminal neuralgia

    PubMed Central

    Cruccu, Giorgio; Finnerup, Nanna B.; Jensen, Troels S.; Scholz, Joachim; Sindou, Marc; Svensson, Peter; Zakrzewska, Joanna M.; Nurmikko, Turo

    2016-01-01

    Trigeminal neuralgia (TN) is an exemplary condition of neuropathic facial pain. However, formally classifying TN as neuropathic pain based on the grading system of the International Association for the Study of Pain is complicated by the requirement of objective signs confirming an underlying lesion or disease of the somatosensory system. The latest version of the International Classification of Headache Disorders created similar difficulties by abandoning the term symptomatic TN for manifestations caused by major neurologic disease, such as tumors or multiple sclerosis. These diagnostic challenges hinder the triage of TN patients for therapy and clinical trials, and hamper the design of treatment guidelines. In response to these shortcomings, we have developed a classification of TN that aligns with the nosology of other neurologic disorders and neuropathic pain. We propose 3 diagnostic categories. Classical TN requires demonstration of morphologic changes in the trigeminal nerve root from vascular compression. Secondary TN is due to an identifiable underlying neurologic disease. TN of unknown etiology is labeled idiopathic. Diagnostic certainty is graded possible when pain paroxysms occur in the distribution of the trigeminal nerve branches. Triggered paroxysms permit the designation of clinically established TN and probable neuropathic pain. Imaging and neurophysiologic tests that establish the etiology of classical or secondary TN determine definite neuropathic pain. PMID:27306631

  15. Failure of capsaicin-containing red pepper sauce suspension to induce esophageal motility response in patients with Barrett's esophagus.

    PubMed

    Király, A; Süto, G; Czimmer, J; Horváth, O P; Mózsik, G

    2001-01-01

    The physiologic importance of afferent sensory pathways in the esophageal motor functions has been recently recognised. Capsaicin-sensitive sensory afferents were shown to play a role in the maintenance of mucosal integrity of the GI tract, and regulation of human esophageal motility. The aim of this study was to investigate the effect of topical application of capsaicin-containing red pepper sauce (Tabasco, 25%v/v, pH:7.0) suspension on the phasic activity of the human esophagus of healthy volunteers and patients with Barrett's esophagus. The diagnosis of Barrett's esophagus was based on the findings of esophagoscopy and histology taken from the squamocolumnar junction of the esophagus. Esophageal motility was measured by perfusion manometry before and after application of red pepper sauce. Capsaicin containing red pepper sauce increases the motility response (LES tone, contraction amplitude, propagation velocity) of the human esophagus in healthy volunteers. This response failed in patients with Barrett's esophagus. Impaired esophageal sensory motor function may serve as one etiologic role in the development of Barrett's esophagus.

  16. Ocular surface injury induces inflammation in the brain: in vivo and ex vivo evidence of a corneal-trigeminal axis.

    PubMed

    Ferrari, Giulio; Bignami, Fabio; Giacomini, Chiara; Capitolo, Eleonora; Comi, Giancarlo; Chaabane, Linda; Rama, Paolo

    2014-08-21

    To test whether a corneal injury can stimulate inflammation in the trigeminal ganglion (TG), a structure located in the brain. At 4 and 8 days after alkali burn induced in the right eyes of mice, in vivo magnetic resonance imaging (MRI) of the brain was done before and after ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) contrast to track macrophages. Trigeminal ganglia were stained for Prussian Blue and inflammatory cell markers. Interleukin-1β, TNF-α, and VEGF-A transcripts were quantified on days 1, 4, and 8, and 4 days after corneal topical anti-inflammatory treatment with 0.2% dexamethasone. The expression of Substance P and its receptor NK-1R was also measured in the TG on day 4. Corneal alkali burn induced leukocyte infiltration, including T cells, in the right TG at 4 and 8 days. In vivo MRI showed an increased contrast uptake in the right TG, which peaked at day 8. Prussian Blue(+) USPIO(+) macrophages were observed in the right TG and exhibited an M2 phenotype. The M2-macrophage infiltration was preponderant in the TG after damage. The proinflammatory cytokines Substance P and NK-1R were significantly increased in both the TGs. The expression of IL-1β and VEGF-A was significantly reduced in the right TG with dexamethasone treatment. We suggest, for the first time, inflammatory involvement of brain structures following ocular surface damage. Our findings support the hypothesis that the neuropeptide Substance P may be involved in the propagation of inflammation from the cornea to the TG through corneal nerves. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  17. Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    PubMed Central

    Mustafa, Golam; Hou, Jiamei; Nelson, Rachel; Tsuda, Shigeharu; Jahan, Mansura; Mohammad, Naweed S.; Watts, Joseph V.; Thompson, Floyd J.; Bose, Prodip

    2017-01-01

    Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation. These allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, especially in the trigeminal nucleus caudalis. This study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhibited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensitivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache after traumatic brain injury. PMID:28761433

  18. Laser modulation of heat and capsaicin receptor TRPV1 leads to thermal antinociception.

    PubMed

    Ryu, J-J; Yoo, S; Kim, K Y; Park, J-S; Bang, S; Lee, S H; Yang, T-J; Cho, H; Hwang, S W

    2010-12-01

    Er,Cr:YSGG lasers are used clinically in dentistry. The advantages of laser therapy include minimal thermal damage and the alleviation of pain. This study examined whether the Er,Cr:YSGG laser has in vivo and in vitro antinociceptive effects in itself. In capsaicin-evoked acute licking/shaking tests and Hargreaves tests, laser irradiation with an aerated water spray suppressed nociceptive behavior in mice. Laser irradiation attenuated TRPV1 activation by capsaicin in Ca(2+) imaging experiments with TRPV1-overexpressing cells and cultured trigeminal neurons. Therefore, the laser-induced behavioral changes are probably due to the loss of TRPV1 activity. TRPV4 activity was also attenuated, but limited mechanical antinociception by the laser was observed. The laser failed to alter the other receptor functions, which indicates that the antinociceptive effect of the laser is dependent on TRPV1. These results suggest that the Er,Cr:YSGG laser has analgesic effects via TRPV1 inhibition. Such mechanistic approaches may help define the laser-sensitive pain modality and increase its beneficial uses.

  19. Sensory trigeminal ULF-TENS stimulation reduces HRV response to experimentally induced arithmetic stress: A randomized clinical trial.

    PubMed

    Monaco, Annalisa; Cattaneo, Ruggero; Ortu, Eleonora; Constantinescu, Marian Vladimir; Pietropaoli, Davide

    2017-05-01

    Ultra Low Frequency Transcutaneous Electric Nervous Stimulation (ULF-TENS) is extensively used for pain relief and for the diagnosis and treatment of temporomandibular disorders (TMD). In addition to its local effects, ULF-TENS acts on the autonomic nervous system (ANS), with particular reference to the periaqueductal gray (PAG), promoting the release of endogenous opioids and modulating descending pain systems. It has been suggested that the PAG participates in the coupling between the emotional stimulus and the appropriate behavioral autonomic response. This function is successfully investigated by HRV. Therefore, our goal is to investigate the effects of trigeminal ULF-TENS stimulation on autonomic behavior in terms of HRV and respiratory parameters during an experimentally-induced arithmetic stress test in healthy subjects. Thirty healthy women between 25 and 35years of age were enrolled and randomly assigned to either the control (TENS stimulation off) or test group (TENS stimulation on). Heart (HR, LF, HF, LF/HF ratio, DET, RMSSD, PNN50, RR) and respiratory (BR) rate were evaluated under basal, T1 (TENS off/on), and stress (mathematical task) conditions. Results showed that HRV parameters and BR significantly changed during the arithmetic stress paradigm (p<0.01). Independently of stress conditions, TENS and control group could be discriminated only by non-linear HRV data, namely RR and DET (p=0.038 and p=0.027, respectively). During the arithmetic task, LF/HF ratio was the most sensitive parameter to discriminate between groups (p=0.019). Our data suggest that trigeminal sensory ULF-TENS reduces the autonomic response in terms of HRV and BR during acute mental stress in healthy subjects. Future directions of our work aim at applying the HRV and BR analysis, with and without TENS stimulation, to individuals with dysfunctional ANS among those with TMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inflammation enhanced brain-derived neurotrophic factor-induced suppression of the voltage-gated potassium currents in small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone.

    PubMed

    Takeda, M; Takahashi, M; Matsumoto, S

    2014-03-07

    We recently indicated that brain-derived neurotrophic factor (BDNF) enhances the excitability of small-diameter trigeminal ganglion (TRG) neurons projecting onto the trigeminal nucleus interpolaris/caudalis (Vi/Vc) transition zone via a paracrine mechanism following masetter muscle (MM) inflammation. The present study investigated whether modulation of voltage-gated potassium (K) channels by BDNF contributes to this hyperexcitability effect. To induce inflammation we injected complete Freund's adjuvant (CFA) into the MM. The escape threshold from mechanical stimulation applied to skin above the inflamed MM was significantly lower than in naïve rats. TRG neurons innervating the site of inflammation were subsequently identified by fluorogold (FG) labeling, and microbeads (MB) were used to label neurons projecting specifically to the Vi/Vc region. BDNF significantly decreased the total, transient (IA), and sustained (IK) currents in FG-/MB-labeled small-diameter TRG neurons under voltage-clamp conditions in naïve and inflamed rats. The magnitude of inhibition of IA and IK currents by BDNF in FG-/MB-labeled TRG neurons was significantly greater in inflamed rats than in naïve rats, and BDNF inhibited IA to a significantly greater extent than IK. Furthermore, co-administration of K252a, a tyrosine kinase inhibitor, abolished the suppression of IA and IK currents by BDNF. These results suggested that the inhibitory effects of BDNF on IA and IK currents in small-diameter TRG neurons projecting onto the Vi/Vc potentiate neuronal excitability, and in turn, contribute to MM inflammatory hyperalgesia. These findings support the development of voltage-gated K(+) channel openers and tyrosine kinase inhibitors as potential therapeutic agents for the treatment of trigeminal inflammatory hyperalgesia. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Capsaicin partially mimics heat in mouse fibroblast cells in vitro.

    PubMed

    Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Nakamura, Hiroyuki; Yachie, Akihiro; Shido, Osamu

    2017-03-01

    Capsaicin activates transient receptor potential vanilloid 1 (TRPV1), a cation channel in the transient receptor potential family, resulting in the transient entry of Ca(2+) and Mg(2+) and a warm sensation. However, the effects of capsaicin on cells have not fully elucidated in fibroblasts. In this study, we investigated whether capsaicin could induce signal transduction in mouse fibroblast cells and compared the effect with that of heat-induced signal transduction. The activation of the mitogen-activated protein kinases (MAPKs) ERK and p38 MAPK, expression levels of heat shock protein 70 (HSP70) and HSP90, actin assembly, and cell proliferation were analyzed in NIH3T3 mouse fibroblast cells. A 15-min stimulation with capsaicin (∼100 μM) phosphorylated ERK and p38 MAPK and induced actin assembly. A 2-day stimulation with capsaicin increased the level of HSP70, but not HSP90, and the 2-day stimulation with capsaicin (∼100 μM) did not affect cell proliferation. A 15-min exposure to moderate heat (39.5 °C) phosphorylated both ERK and p38 MAPK and induced actin assembly to similar degrees as stimulation with capsaicin. A 2-day exposure to moderate heat increased the levels of both HSP70 and HSP90 and prevented cell proliferation. However, the 2-day stimulation with capsaicin (100 μM) failed to prevent heat shock-induced cell death. Thus, our results suggest that the effects of capsaicin on fibroblast cells partially differ from those of heat. Notably, the 2-day stimulation with capsaicin was not sufficient to develop heat tolerance in fibroblast cells.

  2. Radiofrequency trigeminal rhizolysis for the treatment of trigeminal neuralgia secondary to brainstem infarction. Report of two cases.

    PubMed

    Foroohar, M; Herman, M; Heller, S; Levy, R M

    1997-01-15

    Although percutaneous radiofrequency trigeminal rhizolysis (RFL) has been used to treat idiopathic trigeminal neuralgia thought secondary to multiple sclerosis, the use of RFL for trigeminal neuralgia caused by brainstem infarction has not been advocated. The authors report two patients with trigeminal neuralgia following pontine infarction in whom aggressive medical management failed, but who were successfully treated with RFL. Pain relief has persisted for the 3- and 6-year duration of follow-up examinations. Descending trigeminal reticular fibers may be affected by brainstem infarction and result in trigeminal neuralgia; thus, treatment by rhizotomy may be effective in decreasing the peripheral afferent input into the spinal trigeminal nucleus thus decreasing the pain. These two cases demonstrate the utility of RFL in the relief of ischemia-induced trigeminal neuralgia and lead the authors to suggest that its use be broadened to include this indication.

  3. GABAB receptors in the NTS mediate the inhibitory effect of trigeminal nociceptive inputs on parasympathetic reflex vasodilation in the rat masseter muscle.

    PubMed

    Ishii, Hisayoshi; Izumi, Hiroshi

    2012-03-15

    The present study was designed to examine whether trigeminal nociceptive inputs are involved in the modulation of parasympathetic reflex vasodilation in the jaw muscles. This was accomplished by investigating the effects of noxious stimulation to the orofacial area with capsaicin, and by microinjecting GABA(A) and GABA(B) receptor agonists or antagonists into the nucleus of the solitary tract (NTS), on masseter hemodynamics in urethane-anesthetized rats. Electrical stimulation of the central cut end of the cervical vagus nerve (cVN) in sympathectomized animals bilaterally increased blood flow in the masseter muscle (MBF). Increases in MBF evoked by cVN stimulation were markedly reduced following injection of capsaicin into the anterior tongue in the distribution of the lingual nerve or lower lip, but not when injected into the skin of the dorsum of the foot. Intravenous administration of either phentolamine or propranolol had no effect on the inhibitory effects of capsaicin injection on the increases of MBF evoked by cVN stimulation, which were largely abolished by microinjecting the GABA(B) receptor agonist baclofen into the NTS. Microinjection of the GABA(B) receptor antagonist CGP-35348 into the NTS markedly attenuated the capsaicin-induced inhibition of MBF increase evoked by cVN stimulation, while microinjection of the GABA(A) receptor antagonist bicuculline did not. Our results indicate that trigeminal nociceptive inputs inhibit vagal-parasympathetic reflex vasodilation in the masseter muscle and suggest that the activation of GABA(B) rather than GABA(A) receptors underlies the observed inhibition in the NTS.

  4. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK.

    PubMed

    Beltrán, Leopoldo R; Dawid, Corinna; Beltrán, Madeline; Gisselmann, Guenter; Degenhardt, Katharina; Mathie, Klaus; Hofmann, Thomas; Hatt, Hanns

    2013-01-01

    For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P) potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1), TASK-3 (K2P 9.1), and TRESK (K2P 18.1) channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreased the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine.

  5. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK

    PubMed Central

    Beltrán, Leopoldo R.; Dawid, Corinna; Beltrán, Madeline; Gisselmann, Guenter; Degenhardt, Katharina; Mathie, Klaus; Hofmann, Thomas; Hatt, Hanns

    2013-01-01

    For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P) potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1), TASK-3 (K2P 9.1), and TRESK (K2P 18.1) channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreased the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine. PMID:24302912

  6. Effect of resveratrol on c-fos expression of rat trigeminal spinal nucleus caudalis and C1 dorsal horn neurons following mustard oil-induced acute inflammation.

    PubMed

    Matsumoto, Yasuhiro; Komatsu, Kyouhei; Shimazu, Yoshihito; Takehana, Shiori; Syouji, Yumiko; Kobayashi, Ayumu; Takeda, Mamoru

    2017-10-01

    The dietary constituent, resveratrol, was recently identified as a transient receptor potential ankyrin 1 (TRPA1) antagonist, voltage-dependent sodium ion (Na(+) ) channel, and cyclooxygenase-2 (COX-2) inhibitor. The aim of the present study was to investigate whether pretreatment with resveratrol attenuates acute inflammation-induced sensitization of nociceptive processing in rat spinal trigeminal nucleus caudalis (SpVc) and upper cervical (C1) dorsal horn neurons, via c-fos immunoreactivity. Mustard oil (MO), a TRPA1 channel agonist, was injected into the whisker pads of rats to induce inflammation. Pretreatment with resveratrol significantly decreased the mean thickness of inflammation-induced edema in whisker pads compared with those of untreated, inflamed rats. Ipsilateral of both the superficial and deep laminae of SpVc and C1 dorsal horn, there were significantly more c-fos-immunoreactive SpVc/C1 neurons in inflamed rats compared with naïve rats, and resveratrol pretreatment significantly decreased that number relative to untreated, inflamed rats. These results suggest that systemic administration of resveratrol attenuates acute inflammation-induced augmented nociceptive processing of trigeminal SpVc and C1 neurons. These findings support resveratrol as a potential therapeutic agent for use in alternative, complementary medicine to attenuate, or even prevent, acute trigeminal inflammatory pain. © 2017 Eur J Oral Sci.

  7. Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus

    SciTech Connect

    Kuramori, Chikanori; Azuma, Motoki; Kume, Kanako; Kaneko, Yuki; Inoue, Atsushi; Yamaguchi, Yuki; Kabe, Yasuaki; Hosoya, Takamitsu; Kizaki, Masahiro; Suematsu, Makoto; Handa, Hiroshi

    2009-02-06

    Capsaicin is widely used as a food additive and as an analgesic agent. Besides its well-known role in nociception, which is mediated by vanilloid receptor 1 specifically expressed in dorsal root ganglion neurons, capsaicin has also been considered as a potential anticancer agent, as it inhibits cell proliferation and induces apoptosis in various types of cancer cells. Here we identified a new molecular target of capsaicin from human myeloid leukemia cells. We show that capsaicin binds to prohibitin (PHB) 2, which is normally localized to the inner mitochondrial membrane, and induces its translocation to the nucleus. PHB2 is implicated in the maintenance of mitochondrial morphology and the control of apoptosis. We also provide evidence suggesting that capsaicin causes apoptosis directly through the mitochondria and that PHB2 contributes to capsaicin-induced apoptosis at multiple levels. This work will serve as an important foundation for further understanding of anticancer activity of capsaicin.

  8. Capsaicin and sensory neurones: a historical perspective.

    PubMed

    Szolcsányi, János

    2014-01-01

    Capsaicin, the pungent ingredient of red pepper has become not only a "hot" topic in neuroscience but its new target-related unique actions have opened the door for the drug industry to introduce a new chapter of analgesics. After several lines of translational efforts with over 1,000 patents and clinical trials, the 8% capsaicin dermal patch reached the market and its long-lasting local analgesic effect in some severe neuropathic pain states is now well established. This introductory chapter outlines on one hand the historical background based on the author's 50 years of experience in this field and on the other hand emphasizes new scopes, fascinating perspectives in pharmaco-physiology, and molecular pharmacology of nociceptive sensory neurons. Evidence for the effect of capsaicin on C-polymodal nociceptors (CMH), C-mechanoinsensitive (CHMi), and silent C-nociceptors are listed and the features of the capsaicin-induced blocking effects of nociceptors are demonstrated. Common and different characteristics of nociceptor-blocking actions after systemic, perineural, local, intrathecal, and in vitro treatments are summarized. Evidence for the misleading conclusions drawn from neonatal capsaicin pretreatment is presented. Perspectives opened from cloning the capsaicin receptor "Transient Receptor Potential Vanilloid 1" (TRPV1) are outlined and potential molecular mechanisms behind the long-lasting functional, ultrastructural, and nerve terminal-damaging effects of capsaicin and other TRPV1 agonists are summarized. Neurogenic inflammation and the long-list of "capsaicin-sensitive" tissue responses are mediated by an unorthodox dual sensory-efferent function of peptidergic TRPV1-expressing nerve terminals which differ from the classical efferent and sensory nerve endings that have a unidirectional role in neuroregulation. Thermoregulatory effects of capsaicin are discussed in detail. It is suggested that since hyperthermia and burn risk due to enhanced noxious heat

  9. Repetitive Transcranial Magnetic Stimulation (rTMS)-Induced Trigeminal Autonomic Cephalalgia

    PubMed Central

    DURMAZ, Onur; ATEŞ, Mehmet Alpay; ŞENOL, Mehmet Güney

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is an effective and novel treatment method that has been approved for the treatment of refractory depression by the U.S. Food and Drug Administration. The most common side effects of rTMS are a transient headache that usually responds to simple analgesics, local discomfort in the stimulation area, dizziness, ipsilateral lacrimation and, very rarely, generalized seizure. TMS is also regarded as a beneficial tool for investigating mechanisms underlying headache. Although rTMS has considerable benefits in terms of headache, there is the potential for rare side effects. In this report, we present the case of a patient with no history of autonomic headache who underwent a course of rTMS for refractory unipolar depression caused by an inadequate response to pharmacotherapy. After his fourth rTMS session, the patient developed sudden headaches with characteristics of trigeminal autonomic cephalalgia on the stimulated side, representing a noteworthy example of the potential side effects of rTMS. PMID:28360729

  10. Light-Emitting Diode Phototherapy Reduces Nocifensive Behavior Induced by Thermal and Chemical Noxious Stimuli in Mice: Evidence for the Involvement of Capsaicin-Sensitive Central Afferent Fibers.

    PubMed

    Pigatto, Glauce Regina; Coelho, Igor Santos; Aquino, Rosane Schenkel; Bauermann, Liliane Freitas; Santos, Adair Roberto Soares

    2016-04-07

    Low-intensity phototherapy using light fonts, like light-emitting diode (LED), in the red to infrared spectrum is a promising alternative for the treatment of pain. However, the underlying mechanisms by which LED phototherapy reduces acute pain are not yet well understood. This study investigated the analgesic effect of multisource LED phototherapy on the acute nocifensive behavior of mice induced by thermal and chemical noxious stimuli. The involvement of central afferent C fibers sensitive to capsaicin in this effect was also investigated. Mice exposed to multisource LED (output power 234, 390, or 780 mW and power density 10.4, 17.3, and 34.6 mW/cm(2), respectively, from 10 to 30 min of stimulation with a wavelength of 890 nm) showed rapid and significant reductions in formalin- and acetic acid-induced nocifensive behavior. This effect gradually reduced but remained significant for up to 7 h after LED treatment in the last model used. Moreover, LED (390 mW, 17.3 mW/cm(2)/20 min) irradiation also reduced nocifensive behavior in mice due to chemical [endogenous (i.e., glutamate, prostaglandins, and bradykinin) or exogenous (i.e., formalin, acetic acid, TRPs and ASIC agonist, and protein kinase A and C activators)] and thermal (hot plate test) stimuli. Finally, ablating central afferent C fibers abolished LED analgesia. These experimental results indicate that LED phototherapy reduces the acute painful behavior of animals caused by chemical and thermal stimuli and that LED analgesia depends on the integrity of central afferent C fibers sensitive to capsaicin. These findings provide new information regarding the underlying mechanism by which LED phototherapy reduces acute pain. Thus, LED phototherapy may be an important tool for the management of acute pain.

  11. Capsaicin, Nociception and Pain.

    PubMed

    Frias, Bárbara; Merighi, Adalberto

    2016-06-18

    Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.

  12. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.

  13. Increases in PKC gamma expression in trigeminal spinal nucleus is associated with orofacial thermal hyperalgesia in streptozotocin-induced diabetic mice.

    PubMed

    Xie, Hong-Ying; Xu, Fei; Li, Yue; Zeng, Zhao-Bin; Zhang, Ran; Xu, Hui-Jun; Qian, Nian-Song; Zhang, Yi-Guan

    2015-01-01

    Painful diabetic polyneuropathy (PDN) at the early phrase of diabetes frequently exhibits increased responsiveness to nociception. In diabetic patients and animal models, alterations in the transmission of orofacial sensory information have been demonstrated in trigeminal system. Herein, we examined the changes of protein kinase Cγ subunit (PKCγ) in trigeminal spinal nucleus (Sp5C) and observed the development of orofacial thermal sensitivity in streptozotocin (STZ)-induced type 1 diabetic mice. With hyperglycemia and body weight loss, STZ mice exhibited orofacial thermal hyperalgesia, along with increased PKCγ expression in Sp5C. Insulin treatment at the early stage of diabetes could alleviate the orofacial thermal hyperalgesia and impaired increased PKCγ in Sp5C in diabetic mice. In summary, our results demonstrate that PKCγ might be involved in orofacial thermal hyperalgesia of diabetes, and early insulin treatment might be effective way to treat orofacial PDN.

  14. The blink reflex and the corneal reflex are followed by cortical activity resembling the nociceptive potentials induced by trigeminal laser stimulation in man.

    PubMed

    de Tommaso, M; Libro, G; Guido, M; Sciruicchio, V; Puca, F

    2001-09-07

    Laser stimulation of the supraorbital regions evokes brain potentials (LEPs) related to trigeminal nociception. The aim of this study was to record the R2 component of the blink reflex and the corneal reflex in 20 normal subjects, comparing the scalp activity following these reflexes with the nociceptive potentials evoked by CO2 laser stimulation of supraorbital regions. Cortical and muscular reflexes evoked by stimulation of the first trigeminal branch were recorded simultaneously. The R2 component of the blink reflex and the corneal reflex were followed by two cortical peaks, which resembled morphologically N-P waves of LEPs. The two peaks demonstrated a difference in latency of approximately 40 ms, which is consistent with activation time of nociception. This finding suggests that these reflexes are induced by activation of small pain-related fibers.

  15. Sex differences in the contribution of ATP-sensitive K+ channels in trigeminal ganglia under an acute muscle pain condition

    PubMed Central

    Niu, Katelyn; Saloman, Jami L.; Zhang, Youping; Ro, Jin Y.

    2011-01-01

    In this study, we examined whether functional subunits of the ATP-dependent K+ channel (KATP) are expressed in trigeminal ganglia (TG), which contains sensory neurons that innervate oral and facial structures. We also investigated whether direct activation of the KATP effectively attenuates mechanical hypersensitivity in the context of an acute orofacial muscle pain condition. The KATP expression in TG and behavioral studies were conducted in age matched male and female Sprague Dawley rats. RT-PCR experiments showed that the mRNAs for the inwardly rectifying pore-forming subunits, Kir6.1 and Kir6.2, as well as the regulatory sulphonylurea subunits, SUR1 and SUR2, were reliably detected in TG. Subsequent western blot analysis confirmed that proteins for all 4 subunits are expressed in TG, and showed that Kir6.2 is expressed at a significantly higher level in male TG compared to that of female rats. This observation was confirmed by the immunohistochemical demonstration of higher percentages of Kir6 positive masseter afferents in female rats. Masseteric injection of capsaicin evokes a time dependent increase in masseter sensitivity to noxious mechanical stimulation. A specific KATP agonist, pinacidil, dose-dependently attenuated the capsaicin-induced mechanical hypersensitivity in male rats. The dose of pinacidil (20µg) that completely blocked the capsaicin responses in male rats was ineffective in female rats regardless of their estrus phases. Only at the highest dose (300µg) we used, pinacidil was partially effective in female rats. Similarly, another KATP agonist, diazoxide which targets different KATP subunits also showed sex specific responses in attenuating capsaicin-induced masseter hypersensitivity. These data suggested that sex differences in functional KATP expression in TG may underlie sex specific responses to KATP agonists. The present study provided novel information on sex differences in KATP expression in TG and its contribution under an orofacial

  16. Capsaicin Inhibits Dimethylnitrosamine-Induced Hepatic Fibrosis by Inhibiting the TGF-β1/Smad Pathway via Peroxisome Proliferator-Activated Receptor Gamma Activation.

    PubMed

    Choi, Jae Ho; Jin, Sun Woo; Choi, Chul Yung; Kim, Hyung Gyun; Lee, Gi Ho; Kim, Yong An; Chung, Young Chul; Jeong, Hye Gwang

    2017-01-18

    Capsaicin (CPS) exerts many pharmacological effects, but any possible influence on liver fibrosis remains unclear. Therefore, we evaluated the inhibitory effects of CPS on dimethylnitrosamine (DMN) and TGF-β1-induced liver fibrosis in rats and hepatic stellate cells (HSCs). CPS inhibited DMN-induced hepatotoxicity, NF-κB activation, and collagen accumulation. CPS also suppressed the DMN-induced increases in α-SMA, collagen type I, MMP-2, and TNF-α. In addition, CPS inhibited DMN-induced TGF-β1 expression (from 2.3 ± 0.1 to 1.0 ± 0.1) and Smad2/3 phosphorylation (from 1.5 ± 0.1 to 1.1 ± 0.1 and from 1.6 ± 0.1 to 1.1 ± 0.1, respectively) by activating Smad7 expression (from 0.1 ± 0.0 to 0.9 ± 0.1) via PPAR-γ induction (from 0.2 ± 0.0 to 0.8 ± 0.0) (p < 0.05). Furthermore, in HSCs, CPS inhibited the TGF-β1-induced increases in α-SMA and collagen type I expression, via PPAR-γ activation. These results indicate that CPS can ameliorate hepatic fibrosis by inhibiting the TGF-β1/Smad pathway via PPAR-γ activation.

  17. Capsaicin- and mustard oil-induced extracellular signal-regulated protein kinase phosphorylation in sensory neurons in vivo: effects of neurokinins 1 and 2 receptor antagonists and of a nitric oxide synthase inhibitor.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid; Schuligoi, Rufina

    2009-01-01

    Stimulation of primary sensory neurons with capsaicin or mustard oil leads to phosphorylation of extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) via activation of transient receptor potential V1 (TRPV1) or TRPA1, respectively. p-ERK1/2 was determined by Western immunoblotting in the dorsal root ganglia and in the sciatic nerve of rats following either systemic or perineural capsaicin treatment, or mustard oil application to the hind paw skin. To investigate the possible involvement of neurokinin 1 (NK(1)) and NK(2) receptors as well as of nitric oxide, the selective antagonists, SR140333 for NK(1) and SR48968 for NK(2), and the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), were employed. The increase of p-ERK1/2 after systemic capsaicin treatment was markedly attenuated by SR140333, while only the increase in the dorsal root ganglia was impaired by SR48968; in contrast, inhibition of nitric oxide synthase had no effect. Perineural capsaicin induced an increase in p-ERK1/2 in the ipsilateral sciatic nerve and in the dorsal root ganglia. This effect was not influenced by SR140333 or L-NAME. We found for the first time that mustard oil application to the hind paw skin caused an increase in p-ERK1/2 in the sciatic nerve and in the dorsal root ganglia and only the phosphorylation in the latter was attenuated by SR140333 while L-NAME showed no effect. From the present results, it may be assumed that capsaicin- or mustard oil-induced p-ERK1/2 in sensory neurons is not solely directly linked to TRPV1 or TRPA1 channels, but under certain conditions NK(1)- and NK(2)-mediated mechanisms are involved.

  18. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats

    PubMed Central

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-01-01

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain. PMID:26224622

  19. Increased COX2 in the trigeminal nucleus caudalis is involved in orofacial pain induced by experimental tooth movement.

    PubMed

    Gao, Yuan; Duan, Yin-Zhong

    2010-03-01

    Pain is among the major problems during orthodontic treatment. Recent studies have shown that central Cyclooxygenase2 (COX2) pathway was involved in several pain models. The present study investigated whether inducible COX2 within the trigeminal nucleus caudalis (Vc) contributed to experimental tooth movement pain in freely moving rats. Elastic rubber bands were inserted between the first and second maxillary molars bilaterally to establish tooth movement model. The directed mouth wiping behavior was used to evaluate the pain during tooth movement. COX2 distribution in Vc was studied by immunohistochemistry and the changes of COX2 expression were detected by Western blot at different time point after rubber band insertion. Our results showed that tooth movement significantly increased COX2 expression in Vc and the time spent on mouth wiping, reaching a maximum at 1 day and then decreasing gradually. Furthermore, the rhythm change of COX2 expression in Vc and the mouth wiping behavior were much correlative with each other. All of the COX2-immunoreactive structures in Vc exhibited NeuN-immunopositive staining and most of these COX2-immunoreactive neurons were Fos-immunopositive. Importantly, the mouth wiping behavior could be attenuated by intracisternal injection of NS-398 (a selective COX2 inhibitor) but not by periodontal administration of NS-398. All these results suggested that increased COX2 in Vc was involved in tooth movement pain and thus may be a central target for orthodontic pain treatment.

  20. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors.

    PubMed

    Huang, Ming; Cheng, Gen; Tan, Han; Qin, Rui; Zou, Yimin; Wang, Yun; Zhang, Ying

    2017-09-01

    Capsaicin, the ingredient responsible for the pungent taste of hot chili peppers, is widely used in the study and management of pain. Recently, its neuroprotective effect has been described in multiple studies. Herein, we investigated the underlying mechanisms for the neuroprotective effect of capsaicin. Direct injection of capsaicin (1 or 3nmol) into the peri-infarct area reduced the infarct volume and improved neurological behavioral scoring and motor coordination function in the middle cerebral artery occlusion (MCAO)/reperfusion model in rats. The time window of the protective effect of capsaicin was within 1h after reperfusion, when excitotoxicity is the main reason of cell death. In cultured cortical neurons, administration of capsaicin attenuated glutamate-induced excitotoxic injury. With respect to the mechanisms of the neuroprotective effect of capsaicin, reduced calcium influx after glutamate stimulation was observed following capsaicin pretreatment in cortical neurons. Trpv1 knock-out abolished the inhibitory effect of capsaicin on glutamate-induced calcium influx and subsequent neuronal death. Reduced expression of GluN1 and GluN2B, subunits of NMDA receptor, was examined after capsaicin treatment in cortical neurons. In summary, our studies reveal that the neuroprotective effect of capsaicin in cortical neurons is TRPV1-dependent and down-regulation of the expression and function of NMDA receptors contributes to the protection afforded by capsaicin. Copyright © 2017. Published by Elsevier Inc.

  1. Effects of curcumin and capsaicin irradiated with visible light on murine oral mucosa.

    PubMed

    Okada, Norihisa; Muraoka, Eitoku; Fujisawa, Seiichiro; Machino, Mamoru

    2012-01-01

    The purpose of this study was to evaluate the histopathological effects of curcumin and capsaicin, with or without visible light (VL) irradiation for 5 min, on the oral mucous membrane in mice. Capsaicin-treated, but not curcumin-treated, buccal epithelium exhibited slight tissue damage; VL irradiation caused excessive tissue damage, particularly when combined with the former treatment. The TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method demonstrated that both capsaicin and curcumin induced apoptosis, with the apoptotic effect of capsaicin appearing at an early stage of application. VL irradiation increased the number of apoptotic cells, particularly those upon in the capsaicin-treated area. Capsaicin and curcumin acted as photosensitizers exposure to VL, in the presence of oxygen. Curcumin and capsaicin with VL irradiation could thus be used for photodynamic therapy in the clinical setting, especially in precancerous oral diseases.

  2. The stimulation of capsaicin-sensitive neurones in a vanilloid receptor-mediated fashion by pungent terpenoids possessing an unsaturated 1,4-dialdehyde moiety.

    PubMed Central

    Szallasi, A.; Jonassohn, M.; Acs, G.; Bíró, T.; Acs, P.; Blumberg, P. M.; Sterner, O.

    1996-01-01

    1. The irritant fungal terpenoid isovelleral caused protective eye-wiping movements in the rat upon intraocular instillation and showed cross-tachyphylaxis with capsaicin, the pungent principle in hot pepper. 2. Isovelleral induced a dose-dependent calcium uptake by rat dorsal root ganglion neurones cultured in vitro with an EC50 of 95 nM, which was fully inhibited by the competitive vanilloid receptor antagonist capsazepine. 3. Isovelleral inhibited specific binding of [3H]-resiniferatoxin (RTX), an ultrapotent capsaicin analogue, to rat trigeminal ganglion or spinal cord preparations with an IC50 of 5.2 microM; in experiments in which the concentration of [3H]-RTX was varied, isovelleral changed both the apparent affinity (from 16 pM to 37 pM) and the co-operativity index (from 2.1 to 1.5), but not the Bmax. 4. The affinity of isovelleral for inducing calcium uptake or inhibiting RTX binding was in very good agreement with the threshold dose (2.2. nmol) at which it provoked pungency on the human tongue. 5. For a series of 14 terpenoids with an unsaturated 1,4-dialdehyde, a good correlation was found between pungency on the human tongue and affinity for vanilloid receptors on the rat spinal cord. 6. The results suggest that isovelleral-like compounds produce their irritant effect by interacting with vanilloid receptors on capsaicin-sensitive sensory neurones. Since these pungent diterpenes are structurally distinct from the known classes of vanilloids, these data provide new insights into structure-activity relations and may afford new opportunities for the development of drugs targeting capsaicin-sensitive pathways. PMID:8886410

  3. Transcutaneous trigeminal nerve stimulation induces a long-term depression-like plasticity of the human blink reflex.

    PubMed

    Pilurzi, Giovanna; Mercante, Beniamina; Ginatempo, Francesca; Follesa, Paolo; Tolu, Eusebio; Deriu, Franca

    2016-02-01

    The beneficial effects of trigeminal nerve stimulation (TNS) on several neurological disorders are increasingly acknowledged. Hypothesized mechanisms include the modulation of excitability in networks involved by the disease, and its main site of action has been recently reported at brain stem level. Aim of this work was to test whether acute TNS modulates brain stem plasticity using the blink reflex (BR) as a model. The BR was recorded from 20 healthy volunteers before and after 20 min of cyclic transcutaneous TNS delivered bilaterally to the infraorbital nerve. Eleven subjects underwent sham-TNS administration and were compared to the real-TNS group. In 12 subjects, effects of unilateral TNS were tested. The areas of the R1 and R2 components of the BR were recorded before and after 0 (T0), 15 (T15), 30 (T30), and 45 (T45) min from TNS. In three subjects, T60 and T90 time points were also evaluated. Ipsi- and contralateral R2 areas were significantly suppressed after bilateral real-TNS at T15 (p = 0.013), T30 (p = 0.002), and T45 (p = 0.001), while R1 response appeared unaffected. The TNS-induced inhibitory effect on R2 responses lasted up to 60 min. Real- and sham-TNS protocols produced significantly different effects (p = 0.005), with sham-TNS being ineffective at any time point tested. Bilateral TNS was more effective (p = 0.009) than unilateral TNS. Acute TNS induced a bilateral long-lasting inhibition of the R2 component of the BR, which resembles a long-term depression-like effect, providing evidence of brain stem plasticity produced by transcutaneous TNS. These findings add new insight into mechanisms of TNS neuromodulation and into physiopathology of those neurological disorders where clinical benefits of TNS are recognized.

  4. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses.

    PubMed

    Fattori, Victor; Hohmann, Miriam S N; Rossaneis, Ana C; Pinho-Ribeiro, Felipe A; Verri, Waldiceu A

    2016-06-28

    In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.

  5. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1.

    PubMed

    Wang, Xiangbin; Miyares, Rosa Linda; Ahern, Gerard P

    2005-04-15

    Oleoylethanolamide (OEA) is an endogenous lipid that regulates feeding and body weight. Although the effects of OEA are believed to depend on activation of vagal sensory afferent neurones, the mechanisms involved in exciting these neurones are unclear. Here we show that OEA directly excited nodose ganglion neurones, the cell bodies of vagal afferents. OEA depolarized these neurones and evoked inward currents that were restricted to capsaicin-sensitive cells. These currents were fully blocked by the TRPV1 inhibitor, capsazepine, and no responses to OEA were observed in neurones cultured from TRPV1-null mice. Similarly, OEA induced a rise in Ca(+) concentration in wild-type but not TRPV1-deficient neurones, and responses to OEA were greater at 37 degrees C compared to room temperature. Significantly, OEA administration in mice induced visceral pain-related behaviours that were inhibited by capsazepine and absent in TRPV1-null animals. Further, OEA reduced 30-min food intake in wild-type but not in TRPV1-null mice. Thus, the acute behavioural effects of OEA may result from visceral malaise via the activation of TRPV1.

  6. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1

    PubMed Central

    Wang, Xiangbin; Miyares, Rosa Linda; Ahern, Gerard P

    2005-01-01

    Oleoylethanolamide (OEA) is an endogenous lipid that regulates feeding and body weight. Although the effects of OEA are believed to depend on activation of vagal sensory afferent neurones, the mechanisms involved in exciting these neurones are unclear. Here we show that OEA directly excited nodose ganglion neurones, the cell bodies of vagal afferents. OEA depolarized these neurones and evoked inward currents that were restricted to capsaicin-sensitive cells. These currents were fully blocked by the TRPV1 inhibitor, capsazepine, and no responses to OEA were observed in neurones cultured from TRPV1-null mice. Similarly, OEA induced a rise in Ca+ concentration in wild-type but not TRPV1-deficient neurones, and responses to OEA were greater at 37°C compared to room temperature. Significantly, OEA administration in mice induced visceral pain-related behaviours that were inhibited by capsazepine and absent in TRPV1-null animals. Further, OEA reduced 30-min food intake in wild-type but not in TRPV1-null mice. Thus, the acute behavioural effects of OEA may result from visceral malaise via the activation of TRPV1. PMID:15695242

  7. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    SciTech Connect

    Sá-Júnior, Paulo Luiz de; Pasqualoto, Kerly Fernanda Mesquita; Ferreira, Adilson Kleber; Tavares, Maurício Temotheo; Damião, Mariana Celestina Frojuello Costa Bernstorff; Azevedo, Ricardo Alexandre de; Câmara, Diana Aparecida Dias; Pereira, Alexandre; Madeiro de Souza, Dener; Parise Filho, Roberto

    2013-02-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.

  8. Capsaicin-Sensitive Sensory Nerves Are Necessary for the Protective Effect of Ghrelin in Cerulein-Induced Acute Pancreatitis in Rats

    PubMed Central

    Bonior, Joanna; Warzecha, Zygmunt; Ceranowicz, Piotr; Gajdosz, Ryszard; Pierzchalski, Piotr; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Trąbka, Rafał; Kuśnierz-Cabala, Beata; Dembiński, Artur; Jaworek, Jolanta

    2017-01-01

    Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect. PMID:28665321

  9. Perception of trigeminal mixtures.

    PubMed

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels.

  10. Oxytocin Inhibits the Membrane Depolarization-Induced Increase in Intracellular Calcium in Capsaicin Sensitive Sensory Neurons: A Peripheral Mechanism of Analgesic Action

    PubMed Central

    Hobo, Shotaro; Hayashida, Ken-ichiro; Eisenach, James C.

    2011-01-01

    Background Lumbar intrathecal injection of oxytocin produces antinociception in rats and analgesia in humans. Classically, oxytocin receptors couple to stimulatory G proteins, increase inositol-3-phosphate production, and result in neuronal excitation. Most work to date has focused on a spinal site of oxytocin to excite γ-aminobutyric acid interneurons to produce analgesia. Here we ask whether oxytocin might also affect primary sensory afferents by modulating high voltage-gated calcium channels, such as it does in the brain. Methods Dorsal root ganglion cells from adult rats were acutely dissociated and cultured, and changes in intracellular calcium determined by fluorescent microscopy using an indicator dye. The effects of oxytocin alone and in the presence of transient depolarization from increased extracellular KCl concentration were determined, then the pharmacology of these effects were studied. Cells from injured dorsal root ganglion cells after spinal nerve ligation were also studied. Results Oxytocin produced a concentration-dependent inhibition of the increase in intracellular calcium from membrane depolarization, an effect blocked more efficiently by oxytocin- than vasopressin-receptor selective antagonists. Oxytocin-induced inhibition was present in cells responding to capsaicin, and when internal stores of calcium were depleted with thapsigargin. Oxytocin produced similar inhibition in cells from animals with spinal nerve ligation. Conclusions These data suggest that oxytocin produces antinociception after intrathecal delivery in part by reducing excitatory neurotransmitter release from the central terminals of nociceptors. PMID:22104073

  11. Fos protein-like immunoreactive neurons induced by electrical stimulation in the trigeminal sensory nuclear complex of rats with chronically injured peripheral nerve.

    PubMed

    Fujisawa, Naoko; Terayama, Ryuji; Yamaguchi, Daisuke; Omura, Shinji; Yamashiro, Takashi; Sugimoto, Tomosada

    2012-06-01

    The rat trigeminal sensory nuclear complex (TSNC) was examined for Fos protein-like immunoreactive (Fos-LI) neurons induced by electrical stimulation (ES) of the lingual nerve (LN) at 2 weeks after injury to the LN or the inferior alveolar nerve (IAN). Intensity-dependent increase in the number of Fos-LI neurons was observed in the subnucleus oralis (Vo) and caudalis (Vc) of the spinal trigeminal tract nucleus irrespective of nerve injury. The number of Fos-LI neurons induced by ES of the chronically injured LN at A-fiber intensity (0.1 mA) was significantly increased in the Vo but not the Vc. On the other hand, in rats with chronically injured IAN, the number of Fos-LI neurons induced by ES of the LN at C-fiber intensity (10 mA) was significantly increased in the Vc but not the Vo. These results indicated that injury of a nerve innervating intraoral structures increased the c-Fos response of Vo neurons to A-fiber intensity ES of the injured nerve. A similar nerve injury enhanced the c-Fos response of Vc neurons to C-fiber intensity ES of a spared uninjured nerve innervating an intraoral territory neighboring that of the injured nerve. The present result show that nerve injury causes differential effects on c-Fos expression in the Vo and Vc, which may explain complexity of neuropathic pain symptoms in clinical cases.

  12. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet.

    PubMed

    Kang, Chao; Wang, Bin; Kaliannan, Kanakaraju; Wang, Xiaolan; Lang, Hedong; Hui, Suocheng; Huang, Li; Zhang, Yong; Zhou, Ming; Chen, Mengting; Mi, Mantian

    2017-05-23

    Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation.IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of

  13. Effect of the gamma knife treatment on the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.

    PubMed

    Song, Zhi-Xiu; Qian, Wei; Wu, Yu-Quan; Sun, Fang-Jie; Fei, Jun; Huang, Run-Sheng; Fang, Jing-Yu; Wu, Cai-Zhen; An, You-Ming; Wang, Daxin; Yang, Jun

    2014-01-01

    To understand the mechanism of the gamma knife treating the trigeminal neuralgia. Using the MASEP-SRRS type gamma knife treatment system, 140 Chinese patients with trigeminal neuralgia (NT) were treated in our hospital from 2002 to 2010, in which the pain relief rate reached 95% and recurrence rate was 3% only. We investigated the effect of the gamma knife treatment on the trigeminal nerve root in 20 Chinese patients with primary trigeminal neuralgia by the magnetic resonance imager (MRI) observation. 1) The cross-sectional area of trigeminal nerve root became smaller and MRI signals were lower in the treatment side than those in the non-treatment side after the gamma knife treatment of primary trigeminal neuralgia; 2) in the treatment side, the cross-sectional area of the trigeminal nerve root decreased significantly after the gamma knife treatment; 3) there was good correlation between the clinical improvement and the MRI findings; and 4) the straight distance between the trigeminal nerve root and the brainstem did not change after the gamma knife treatment. The pain relief induced the gamma knife radiosurgery might be related with the atrophy of the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.

  14. The effects of juvenile capsaicin desensitization in rats: behavioral impairments.

    PubMed

    Petrovszki, Zita; Adam, Gábor; Kekesi, Gabriella; Tuboly, Gábor; Morvay, Zita; Nagy, Endre; Benedek, György; Horvath, Gyöngyi

    2014-02-10

    Capsaicin desensitization leads to behavioral changes, some of which are related to schizophrenia, but investigations into these effects have been scarce. The goal of this study was to characterize the consequences of juvenile capsaicin desensitization on different functions: acute and inflammation-induced thermal and mechanical sensitivity, urinary bladder capacity and thermoregulation, and also on the potentially schizophrenia-related impairments in sensory-motor gating, motor activity and cognitive functioning. Male Wistar rats desensitized with increasing doses of subcutaneous capsaicin after weaning were investigated. Heat and mechanical pain sensitivity did not change significantly; however, morphine produced a prolonged decrease in the nociceptive response to inflammation in desensitized animals. Ultrasound examination of the bladder revealed enhanced bladder volume in treated animals. Capsaicin-treated animals had higher body temperature at 22 °C in both dark and light periods, and they also showed prolonged hyperthermia in new environmental circumstances. Warm environment induced a profound impairment of thermoregulation in desensitized animals. The treated animals also showed higher levels of activity during the active phase and at both cool and warm temperatures. The amplitude of the responses to auditory stimuli and prepulse inhibition did not differ between the two groups, but the desensitized animals showed learning impairments in the novel object recognition test. These results suggest that juvenile capsaicin desensitization leads to sustained changes in several functions that may be related to schizophrenia. We propose that capsaicin desensitization, together with other interventions, may lead to an improved chronic animal model of schizophrenia.

  15. Trigeminal trophic syndrome: report of 3 cases affecting the scalp.

    PubMed

    Bolaji, Ranti S; Burrall, Barbara A; Eisen, Daniel B

    2013-12-01

    Trigeminal trophic syndrome (TTS) is a rare condition that results from a prior injury to the sensory distribution of the trigeminal nerve. Patients typically respond to the altered sensation with self-mutilation, most often of the nasal ala. We describe 3 patients with TTS who presented with self-induced ulcerations primarily involving the scalp. Two patients developed delusions of parasitosis (DOP) based on the resulting symptoms of TTS, which is a unique association. Trigeminal trophic syndrome may occur at extranasal sites and in any branch of the trigeminal nerve. The condition should be considered when ulcers are encountered in this nerve distribution. Symptoms such as formication may mimic DOP. Trigeminal trophic syndrome may be differentiated from DOP by the restriction of symptoms and ulcerations to the distribution of the trigeminal nerve.

  16. Familial classic trigeminal neuralgia.

    PubMed

    Fernández Rodríguez, B; Simonet, C; Cerdán, D M; Morollón, N; Guerrero, P; Tabernero, C; Duarte, J

    2017-03-24

    The classic form of trigeminal neuralgia is usually sporadic (no familial clustering). However, around 2% of all cases of trigeminal neuralgia may be familial. Describing this entity may be useful for diagnosing this process and may also be key to determining the underlying causes of sporadic classical trigeminal neuralgia. We report on cases in a series of 5 families with at least 2 members with classic trigeminal neuralgia, amounting to a total of 11 cases. We recorded cases of familial classical trigeminal neuralgia between March 2014 and March 2015 by systematically interviewing all patients with a diagnosis of trigeminal neuralgia who visited the neurology department on an outpatient basis. In our sample, most patients with familial classic trigeminal neuralgia were women. Mean age at onset was 62.9±13.93 years, decreasing in subsequent generations. V2 was the most frequently affected branch. Most of our patients responded well to medical treatment, and surgery was not effective in all cases. These family clusters support the hypothesis that classic trigeminal neuralgia may have a genetic origin. Several causes have been suggested, including inherited anatomical changes affecting the base of the skull which would promote compression of the trigeminal nerve by vascular structures, familial AHT (resulting in tortuous vessels that would compress the trigeminal nerve), and mutations in the gene coding for calcium channels leading to hyperexcitability. Classic trigeminal neuralgia may be an autosomal dominant disorder displaying genetic anticipation. Copyright © 2017 The Author(s). Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Repression of calcitonin gene-related peptide expression in trigeminal neurons by a Theobroma cacao extract☆

    PubMed Central

    Abbey, Marcie J.; Patil, Vinit V.; Vause, Carrie V.; Durham, Paul L.

    2008-01-01

    Ethnopharmacological relevance Cocoa bean preparations were first used by the ancient Maya and Aztec civilizations of South America to treat a variety of medical ailments involving the cardiovascular, gastrointestinal, and nervous systems. Diets rich in foods containing abundant polyphenols, as found in cocoa, underlie the protective effects reported in chronic inflammatory diseases. Release of calcitonin gene-related peptide (CGRP) from trigeminal nerves promotes inflammation in peripheral tissues and nociception. Aim of the study To determine whether a methanol extract of Theobroma cacao L. (Sterculiaceae) beans enriched for polyphenols could inhibit CGRP expression, both an in vitro and an in vivo approach was taken. Results Treatment of rat trigeminal ganglia cultures with depolarizing stimuli caused a significant increase in CGRP release that was repressed by pretreatment with Theobroma cacao extract. Pretreatment with Theobroma cacao was also shown to block the KCl- and capsaicin-stimulated increases in intracellular calcium. Next, the effects of Theobroma cacao on CGRP levels were determined using an in vivo model of temporomandibular joint (TMJ) inflammation. Capsaicin injection into the TMJ capsule caused an ipsilateral decrease in CGRP levels. Theobroma cacao extract injected into the TMJ capsule 24 h prior to capsaicin treatment repressed the stimulatory effects of capsaicin. Conclusions Our results demonstrate that Theobroma cacao extract can repress stimulated CGRP release by a mechanism that likely involves blockage of calcium channel activity. Furthermore, our findings suggest that the beneficial effects of diets rich in cocoa may include suppression of sensory trigeminal nerve activation. PMID:17997062

  18. Evidence for a role of capsaicin-sensitive sensory nerves in the lung oedema induced by Tityus serrulatus venom in rats.

    PubMed

    Andrade, Marcus V M; Souza, Danielle G; de A Castro, Maria Salete; Cunha-Melo, José R; Teixeira, Mauro M

    2002-03-01

    In the most severe cases of human envenoming by Tityus serrulatus, pulmonary oedema is a frequent finding and can be the cause of death. We have previously demonstrated a role for neuropeptides acting on tachykinin NK(1) receptors in the development of lung oedema following i.v. injection of T. serrulatus venom (TsV) in experimental animals. The present work was designed to investigate whether capsaicin-sensitive primary afferent neurons were a potential source of NK(1)-acting neuropeptides. To this end, sensory nerves were depleted of neuropeptides by neonatal treatment of rats with capsaicin. The effectiveness of this strategy at depleting sensory nerves was demonstrated by the inhibition of the neuropeptide-dependent response to intraplantar injection of formalin. Pulmonary oedema, as assessed by the levels of extravasation of Evans blue dye in the bronchoalveolar lavage and in the left lung, was markedly inhibited in capsaicin-treated animals. In contrast, capsaicin treatment failed to alter the increase in arterial blood pressure or the lethality following i.v. injection of TsV. Our results demonstrate an important role for capsaicin-sensitive sensory nerves in the cascade of events leading to lung injury following the i.v. administration of TsV.

  19. Differential expression of connexins in trigeminal ganglion neurons and satellite glial cells in response to chronic or acute joint inflammation.

    PubMed

    Garrett, Filip G; Durham, Paul L

    2008-11-01

    Trigeminal nerve activation in response to inflammatory stimuli has been shown to increase neuron-glia communication via gap junctions in trigeminal ganglion. The goal of this study was to identify changes in the expression of gap junction proteins, connexins (Cxs), in trigeminal ganglia in response to acute or chronic joint inflammation. Although mRNA for Cxs 26, 36, 40 and 43 was detected under basal conditions, protein expression of only Cxs 26, 36 and 40 increased following capsaicin or complete Freund's adjuvant (CFA) injection into the temporomandibular joint (TMJ). While Cx26 plaque formation between neurons and satellite glia was transiently increased following capsaicin injections, Cx26 plaque formation between neurons and satellite glia was sustained in response to CFA. Interestingly, levels of Cx36 and Cx40 were only elevated in neurons following capsaicin or CFA injections, but the temporal response was similar to that observed for Cx26. In contrast, Cx43 expression was not increased in neurons or satellite glial cells in response to CFA or capsaicin. Thus, trigeminal ganglion neurons and satellite glia can differentially regulate Cx expression in response to the type and duration of inflammatory stimuli, which likely facilitates increased neuron-glia communication during acute and chronic inflammation and pain in the TMJ.

  20. Nano-encapsulation of capsaicin on lipid vesicle and evaluation of their hepatocellular protective effect.

    PubMed

    Giri, Tapan Kumar; Mukherjee, Payel; Barman, Tapan Kumar; Maity, Subhasis

    2016-07-01

    The intention of the study was to evaluate the effectiveness of nanocapsulated food constituent capsaicin in protection of liver oxidative stress. We had prepared phospholipid vesicle (nanoliposome) by formation of thin lipid film followed by hydration when the mean vesicle diameter was found to be 277.7nm. Protection from sodium fluoride (NaF) induced oxidative stress by capsaicin loaded nanoliposomal formulation were tested in rats where a single dose of capsaicin in free and nanoliposome forms were administered after two hour of exposure to NaF. Membrane in hepatic cells were damaged by NaF and it was evaluated by estimating reactive oxygen species (ROS), lipid peroxidation, and catalase activity when it was observed that free capsaicin produced mild protection whereas liposomal capsaicin exerted a significant result. This can be suggested that liposome encapsulating capsaicin acts as a promising therapeutic agent in reducing liver oxidative stress produced by different stress factors.

  1. Cold and L-menthol-induced sensitization in healthy volunteers--a cold hypersensitivity analogue to the heat/capsaicin model.

    PubMed

    Andersen, Hjalte H; Poulsen, Jeppe N; Uchida, Yugo; Nikbakht, Anahita; Arendt-Nielsen, Lars; Gazerani, Parisa

    2015-05-01

    Topical high-concentration L-menthol is the only established human experimental pain model to study mechanisms underlying cold hyperalgesia. We aimed at investigating the combinatorial effect of cold stimuli and topical L-menthol on cold pain and secondary mechanical hyperalgesia. Analogue to the heat-capsaicin model on skin sensitization, we proposed that cold/menthol enhances or prolong L-menthol-evoked sensitization. Topical 40% L-menthol or vehicle was applied (20 minutes) on the volar forearms of 20 healthy females and males (age, 28.7 ± 0.6 years). Cold stimulation of 5°C for 5 minutes was then applied to the treated area 3 times with 40-minute intervals. Cold detection threshold and pain, mechanical hyperalgesia (pinprick), static and dynamic mechanical allodynia (von Frey and brush), skin blood flow (laser speckle), and temperature (thermocamera) were assessed. Cold detection threshold and cold pain threshold (CPT) increased after L-menthol and remained high after the cold rekindling cycles (P < 0.001). L-menthol evoked secondary hyperalgesia to pinprick (P < 0.001) particularly in females (P < 0.05) and also induced secondary allodynia to von Frey and brush (P < 0.001). Application of cold stimuli kept these areas enlarged with a higher response in females to brush after the third cold cycle (P < 0.05). Skin blood flow increased after L-menthol (P < 0.001) and stayed stable after cold cycles. Repeated application of cold on skin treated by L-menthol facilitated and prolonged L-menthol-induced cold pain and hyperalgesia. This model may prove beneficial for testing analgesic compounds when a sufficient duration of time is needed to see drug effects on CPT or mechanical hypersensitivity.

  2. Cellular Transcription Factors Induced in Trigeminal Ganglia during Dexamethasone-Induced Reactivation from Latency Stimulate Bovine Herpesvirus 1 Productive Infection and Certain Viral Promoters

    PubMed Central

    Workman, Aspen; Eudy, James; Smith, Lynette; Frizzo da Silva, Leticia; Sinani, Devis; Bricker, Halie; Cook, Emily; Doster, Alan

    2012-01-01

    Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay—Bovine Gene Chip—was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons. PMID:22190728

  3. Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain.

    PubMed

    Li, Na; Lu, Zhan-ying; Yu, Li-hua; Burnstock, Geoffrey; Deng, Xiao-ming; Ma, Bei

    2014-03-18

    ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y₂ receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y₂ receptors in pain behaviour. In control rats: 1) UTP, an agonist of P2Y₂/P2Y₄ receptors, caused a significant decrease in the mean threshold intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons. 2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y₂ receptors by suramin or injection of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats. 3) Injection of P2Y₂ receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia. Our data suggest that inhibition of P2Y₂ receptors leads to down-regulation of ERK-mediated phosphorylation and increase of the expression of I(A)-related Kv channels in trigeminal ganglion neurons, which might contribute to the clinical treatment of trigeminal neuropathic pain.

  4. Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain

    PubMed Central

    2014-01-01

    Backgrouds ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y2 receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y2 receptors in pain behaviour. Results In control rats: 1) UTP, an agonist of P2Y2/P2Y4 receptors, caused a significant decrease in the mean threshold intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons. 2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y2 receptors by suramin or injection of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats. 3) Injection of P2Y2 receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia. Conclusions Our data suggest that inhibition of P2Y2 receptors leads to down-regulation of ERK-mediated phosphorylation and increase of the expression of IA–related Kv channels in trigeminal ganglion neurons, which might contribute to the clinical treatment of trigeminal neuropathic pain. PMID:24642246

  5. P2X3 and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons

    PubMed Central

    Saloman, Jami L.; Chung, Man-Kyo; Ro, Jin Y.

    2012-01-01

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) affect a large percentage of the population. Identifying mechanisms underlying hyperalgesia could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. In this study, we provide evidence of functional interactions between two ligand-gated channels, P2X3 and TRPV1, in trigeminal sensory neurons, and propose that the interactions serve as an underlying mechanism for the development of mechanical hyperalgesia. Mechanical sensitivity of the masseter muscle was assessed in lightly anesthetized rats via an electronic anesthesiometer (Ro et al., 2009). Direct intramuscular injection of a selective P2X3 agonist, αβmeATP, induced a dose- and time-dependent hyperalgesia. Mechanical sensitivity in the contralateral muscle was unaffected suggesting local P2X3 mediate the hyperalgesia. Anesthetizing the overlying skin had no effect on αβmeATP-induced hyperalgesia confirming the contribution of P2X3 from muscle. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810. P2X3 was co-expressed with TRPV1 in masseter muscle afferents confirming the possibility for intracellular interactions. Additionally, in a subpopulation of P2X3/TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly amplified following P2X3 activation. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal ganglia cultures. Significant phosphorylation was observed at 15 min, the time point at which behavioral hyperalgesia was prominent. Previously, activation of either P2X3 or TRPV1 had been independently implicated in the development of mechanical hyperalgesia. Our data propose P2X3 and TRPV1 interact in a facilitatory manner, which could contribute to the peripheral sensitization

  6. H2S-induced HCO3- secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons.

    PubMed

    Takeuchi, Koji; Ise, Fumitaka; Takahashi, Kento; Aihara, Eitaro; Hayashi, Shusaku

    2015-04-30

    Hydrogen sulfide (H2S) is known to be an important gaseous mediator that affects various functions under physiological and pathological conditions. We examined the effects of NaHS, a H2S donor, on HCO3(-) secretion in rat stomachs and investigated the mechanism involved in this response. Under urethane anesthesia, rat stomachs were mounted on an ex vivo chamber and perfused with saline. Acid secretion had been inhibited by omeprazole. The secretion of HCO3(-) was measured at pH 7.0 using a pH-stat method and by the addition of 10 mM HCl. NaHS (0.5-10 mM) was perfused in the stomach for 5 min. Indomethacin or L-NAME was administered s.c. before NaHS treatment, while glibenclamide (a KATP channel blocker), ONO-8711 (an EP1 antagonist), or propargylglycine (a cystathionine γ-lyase inhibitor) was given i.p. before. The mucosal perfusion of NaHS dose-dependently increased the secretion of HCO3(-), and this effect was significantly attenuated by indomethacin, L-NAME, and sensory deafferentation, but not by glibenclamide or ONO-8711. The luminal output of nitric oxide, but not the mucosal production of prostaglandin E2, was increased by the perfusion of NaHS. Mucosal acidification stimulated HCO3(-) secretion, and this response was inhibited by sensory deafferentation, indomethacin, L-NAME, and ONO-8711, but not by propargylglycine. These results suggested that H2S increased HCO3(-) secretion in the stomach, and this effect was mediated by capsaicin-sensitive afferent neurons and dependent on nitric oxide and prostaglandins, but not ATP-sensitive K(+) channels. Further study is needed to define the role of endogenous H2S in the mechanism underlying acid-induced gastric HCO3(-) secretion. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induces involuntary reflex contraction of the frontalis muscles.

    PubMed

    Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya

    2013-02-01

    The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.

  8. Modulation of trigeminal laser evoked potentials and laser silent periods by homotopical experimental pain.

    PubMed

    Romaniello, Antonietta; Arendt-Nielsen, Lars; Cruccu, Giorgio; Svensson, Peter

    2002-07-01

    Cutaneous laser stimulation activates predominantly the A-delta and C mechano-heat nociceptors. Applied to the perioral region, low intensity CO(2)-laser pulses evoke reproducible trigeminal cortical evoked potentials (LEPs). High intensity CO(2)-laser stimuli induce a reflex response in the contracted jaw-closing muscle, the so-called laser silent period (LSP). Both LEPs and LSP provide a useful tool to study the physiology of the trigeminal nociceptive system. In ten healthy subjects we recorded the subjective ratings of the perioral laser stimulation and the trigeminal LEPs and LSP before, during and after homotopic experimental tonic muscle (infusion of hypertonic saline into the masseter muscle) and tonic skin pain (topical application of capsaicin to the cheek). LEPs were recorded from the vertex at two stimulus intensities: low (1.1 x pain threshold, PTh) and high (1.5 x PTh). LSP from masseter and temporalis muscles were recorded bilaterally through surface electromyographic (EMG) electrodes. CO(2)-laser pulses were applied to the perioral region (V2/V3) on the painful and non-painful side. The amplitude of LEPs increased with higher stimulus intensities (P<0.0001), but were suppressed by 42.3+/-5.3% during experimental muscle pain (P<0.0001) and by 41.6+/-3.2% during skin pain (P<0.0001). No pain-related effects were observed for the N and P latency of the LEPs (P> 0.20). The LSP in the masseter and temporalis muscles had similar onset-latency (80+/-5 ms), offset-latency (111+/-5 ms) and duration (31+/-4 ms). Experimental pain had no effect on the onset- and offset-latency (P>0.05). Experimental pain, whether from muscle or from skin, reduced the degree of suppression (P<0.01) and the area under the EMG curve (P< 0.005) of the LSP. The LSP was still suppressed during the post-pain recordings when the skin pain had disappeared (P<0.05). In all experiments experimental tonic pain decreased the subjective ratings of the perioral laser stimulation (P< 0

  9. Melittin selectively activates capsaicin-sensitive primary afferent fibers.

    PubMed

    Shin, Hong Kee; Kim, Jin Hyuk

    2004-08-06

    Whole bee venom (WBV)-induced pain model has been reported to be very useful for the study of pain. However, the major constituent responsible for the production of pain by WBV is not apparent. Intraplantar injection of WBV and melittin dramatically reduced mechanical threshold, and increased flinchings and paw thickness. In behavioral experiments, capsaicin pretreatment almost completely prevented WBV- and melittin-induced reduction of mechanical threshold and flinchings. Intraplantar injection of melittin increased discharge rate of dorsal horn neurons only with C fiber input from peripheral receptive field, which was completely blocked by topical application of capsaicin to sciatic nerve. These results suggest that both melittin and WBV induce nociceptive responses by selective activation of capsaicin-sensitive afferent fibers.

  10. 5-HT7 Receptors Are Not Involved in Neuropeptide Release in Primary Cultured Rat Trigeminal Ganglion Neurons.

    PubMed

    Wang, Xiaojuan; Hu, Rong; Liang, Jianbo; Li, Ze; Sun, Weiwen; Pan, Xiaoping

    2016-06-01

    Migraine is a common but complex neurological disorder. Its precise mechanisms are not fully understood. Increasing indirect evidence indicates that 5-HT7 receptors may be involved; however, their role remains unknown. Our previous in vivo study showed that selective blockade of 5-HT7 receptors caused decreased serum levels of calcitonin gene-related peptide (CGRP) in the external jugular vein following electrical stimulation of the trigeminal ganglion (TG) in an animal model of migraine. In the present study, we used an in vitro model of cultured TG cells to further investigate whether 5-HT7 receptors are directly responsible for the release of CGRP and substance P from TG neurons. We stimulated rat primary cultured TG neurons with capsaicin or potassium chloride (KCl) to mimic neurogenic inflammation, resulting in release of CGRP and substance P. 5-HT7 receptors were abundantly expressed in TG neurons. Greater than 93 % of 5-HT7 receptor-positive neurons co-expressed CGRP and 56 % co-expressed substance P. Both the capsaicin- and KCl-induced release of CGRP and substance P were unaffected by pretreatment of cultured TG cells with the selective 5-HT7 receptor agonist AS19 and antagonist SB269970. This study demonstrates for the first time that 5-HT7 receptors are abundantly co-expressed with CGRP and substance P in rat primary TG neurons and suggests that they are not responsible for the release of CGRP and substance P from cultured TG neurons evoked by capsaicin or KCl.

  11. Botulinum toxin type A reduces capsaicin-evoked pain and neurogenic vasodilatation in human skin.

    PubMed

    Tugnoli, Valeria; Capone, Jay Guido; Eleopra, Roberto; Quatrale, Rocco; Sensi, Mariachiara; Gastaldo, Ernesto; Tola, Maria Rosaria; Geppetti, Pierangelo

    2007-07-01

    The effect of Botulinum Toxin type A (BoNT/A) on pain and neurogenic vasodilatation induced by application to the human skin of thermal stimuli and capsaicin was evaluated in a double blind study. A capsaicin cream (0.5 ml of a 0.075%) was applied to the skin of both forearms of eighteen subjects randomly pretreated with either BoNT/A (Botox) or 0.9% saline (NS). Capsaicin was applied to a skin area either inside (protocol A) or adjacent to the BoNT/A treated area (protocol B). Pre-treatment with BoNT/A did not affect thermal-specific and thermal-pain thresholds (by quantitative sensory testing). However, capsaicin-induced pain sensation (by a visual analogue scale), flare area (by acetate sheet) and changes in cutaneous blood flow (CBF, by laser Doppler flowmetry) were reduced when capsaicin was administered inside (protocol A) the BoNT/A treated area. In Protocol B, capsaicin-induced pain was unchanged, and capsaicin-induced flare/increase in CBF were reduced only in the area treated with BoNT/A, but not in the BoNT/A untreated area. Results indicate that (i) BoNT/A reduces capsaicin-induced pain and neurogenic vasodilatation without affecting the transmission of thermal and thermal-pain modalities; (ii) reduction in capsaicin-induced pain occurs only if capsaicin is administered into the BoNT/A pretreated area; (iii) reduction in neurogenic vasodilatation by BoNT/A does not contribute to its analgesic action. BoNT/A could be tested for the treatment of conditions characterised by neurogenic inflammation and inflammatory pain.

  12. Intracranial Trigeminal Schwannoma

    PubMed Central

    2015-01-01

    Intracranial trigeminal schwannomas are rare tumors. Patients usually present with symptoms of trigeminal nerve dysfunction, the most common symptom being facial pain. MRI is the imaging modality of choice and is usually diagnostic in the appropriate clinical setting. The thin T2-weighted CISS 3D axial sequence is important for proper assessment of the cisternal segment of the nerve. They are usually hypointense on T1, hyperintense on T2 with avid enhancement post gadolinium. CT scan is supplementary to MRI, particularly for tumors located in the skull base. Imaging plays a role in diagnosis and surgical planning. In this pictorial essay, we retrospectively reviewed imaging findings in nine patients with pathologically proven trigeminal schwannoma. Familiarity with the imaging findings of intracranial trigeminal schwannoma may help to diagnose this entity. PMID:25924170

  13. Triggering trigeminal neuralgia.

    PubMed

    Di Stefano, Giulia; Maarbjerg, Stine; Nurmikko, Turo; Truini, Andrea; Cruccu, Giorgio

    2017-01-01

    Introduction Although it is widely accepted that facial pain paroxysms triggered by innocuous stimuli constitute a hallmark sign of trigeminal neuralgia, very few studies to date have systematically investigated the role of the triggers involved. In the recently published diagnostic classification, triggered pain is an essential criterion for the diagnosis of trigeminal neuralgia but no study to date has been designed to address this issue directly. In this study, we set out to determine, in patients with trigeminal neuralgia, how frequently triggers are present, which manoeuvres activate them and where cutaneous and mucosal trigger zones are located. Methods Clinical characteristics focusing on trigger factors were collected from 140 patients with trigeminal neuralgia, in a cross-sectional study design. Results Provocation of paroxysmal pain by various trigger manoeuvres was reported by 136 of the 140 patients. The most frequent manoeuvres were gentle touching of the face (79%) and talking (54%). Trigger zones were predominantly reported in the perioral and nasal region. Conclusion This study confirms that in trigeminal neuralgia, paroxysmal pain is associated with triggers in virtually all patients and supports the use of triggers as an essential diagnostic feature of trigeminal neuralgia.

  14. Gene therapy for trigeminal pain in mice

    PubMed Central

    Tzabazis, Alexander Z.; Klukinov, Michael; Feliciano, David P.; Wilson, Steven P.; Yeomans, David C.

    2014-01-01

    The aim of this study was to test the efficacy of a single direct injection of viral vector encoding for encephalin to induce a widespread expression of the transgene and potential analgesic effect in trigeminal behavioral pain models in mice. After direct injection of HSV-1 based vectors encoding for human preproenkephalin (SHPE) or the lacZ reporter gene (SHZ.1, control virus) into the trigeminal ganglia in mice, we performed an orofacial formalin test and assessed the cumulative nociceptive behavior at different time points after injection of the viral vectors. We observed an analgesic effect on nociceptive behavior that lasted up to 8 weeks after a single injection of SHPE into the trigeminal ganglia. Control virus injected animals showed nociceptive behavior similar to naïve mice. The analgesic effect of SHPE injection was reversed/attenuated by subcutaneous naloxone injections, a μ-opioid receptor antagonist. SHPE injected mice also showed normalization in withdrawal latencies upon thermal noxious stimulation of inflamed ears after subdermal complete Freund’s adjuvans injection indicating widespread expression of the transgene. Quantitative immunohistochemistry of trigeminal ganglia showed expression of human preproenkephalin after SHPE injection. Direct injection of viral vectors proved to be useful for exploring the distinct pathophysiology of the trigeminal system and could also be an interesting addition to the pain therapists’ armamentarium. PMID:24572785

  15. Effect of capsaicin on thermoregulation: an update with new aspects

    PubMed Central

    Szolcsányi, János

    2015-01-01

    Capsaicin, a selective activator of the chemo- and heat-sensitive transient receptor potential (TRP) V1 cation channel, has characteristic feature of causing long-term functional and structural impairment of neural elements supplied by TRPV1/capsaicin receptor. In mammals, systemic application of capsaicin induces complex heat-loss response characteristic for each species and avoidance of warm environment. Capsaicin activates cutaneous warm receptors and polymodal nociceptors but has no effect on cold receptors or mechanoreceptors. In this review, thermoregulatory features of capsaicin-pretreated rodents and TRPV1-mediated neural elements with innocuous heat sensitivity are summarized. Recent data support a novel hypothesis for the role of visceral warmth sensors in monitoring core body temperature. Furthermore, strong evidence suggests that central presynaptic nerve terminals of TRPV1-expressing cutaneous, thoracic and abdominal visceral receptors are activated by innocuous warmth stimuli and capsaicin. These responses are absent in TRPV1 knockout mice. Thermoregulatory disturbance induced by systemic capsaicin pretreatment lasts for months and is characterized by a normal body temperature at cool environment up to a total dose of 150 mg/kg s.c. Upward differential shift of set points for activation vasodilation, other heat-loss effectors and thermopreference develops. Avoidance of warm ambient temperature (35°C, 40°C) is severely impaired but thermopreference at cool ambient temperatures (Tas) are not altered. TRPV1 knockout or knockdown and genetically altered TRPV1, TRPV2 and TRPM8 knockout mice have normal core temperature in thermoneutral or cool environments, but the combined mutant mice have impaired regulation in warm or cold (4°C) environments. Several lines of evidence support that in the preoptic area warmth sensitive neurons are activated and desensitized by capsaicin, but morphological evidence for it is controversial. It is suggested that these

  16. Uncommon Cause of Trigeminal Neuralgia: Tentorial Ossification over Trigeminal Notch

    PubMed Central

    Bang, Sun Woo; Han, Kyung Ream; Kim, Seung Ho; Jeong, Won Ho; Kim, Eun Jin; Choi, Jin Wook; Kim, Chan

    2015-01-01

    Ossification of the tentorium cerebelli over the trigeminal notch is rare, but it may cause compression of the trigeminal nerve, leading to trigeminal neuralgia (TN). We were unable to find any previously reported cases with radiological evaluation, although we did find one case with surgically proven ossification of the tentorium cerebelli. Here, we present a case of TN caused by tentorial ossification over the trigeminal notch depicted on magnetic resonance imaging (MRI) and computed tomography (CT). PMID:26380124

  17. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis.

    PubMed

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G; Ultsch, Alfred

    2017-08-16

    The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible

  18. Lack of Integrative Control of Body Temperature after Capsaicin Administration

    PubMed Central

    Lee, Tai Hee; Lee, Jae Woo; Osaka, Toshimasa; Kobayashi, Akiko; Namba, Yoshio; Inoue, Shuji; Kimura, Shuichi

    2000-01-01

    Background Body temperature is usually regulated by opposing controls of heat production and heat loss. However, systemic administration of capsaicin, the pungent ingredient of hot peppers, facilitated heat production and heat loss simultaneously in rats. We recently found that the capsaicin-induced heat loss and heat production occur simultaneously and that the biphasic change in body temperature is a sum of transient heat loss and long-lasting heat production. Moreover, suppression of the heat loss response did not affect capsaicin-induced heat production and suppression of heat production did not affect capsaicin-induced heat loss. These observations suggest the independent peripheral mechanisms of capsaicin-induced thermal responses. Thus, the capsaicin-induced thermal responses apparently lack an integrated control. Methods Male Wistar rats were maintained at an ambient temperature of 24 ± 1°C on a 12 h on-off lighting schedule at least for two weeks before the experiments. They were anesthetized with urethane (1.5 g/kg, i.p.) and placed on a heating pad, which was kept between 29 and 30 °C. Skin temperature(Ts) was measured with a small thermistor, which was taped to the dorsal surface of the rat’s tail, to assess vasoactive changes indirectly. Colonic temperature(Tc) was measured with another thermistor inserted about 60 mm into the anus. O2 consumption was measured by the open-circuit method, and values were corrected for metabolic body size (kg0.75). Capsaicin (Sigma) was dissolved in a solution comprising 80% saline, 10% Tween 80, and 10% ethanol, and injected subcutaneously at a dose of 5 mg/kg. Each rat received a single injection of capsaicin because repeated administration of capsaicin renders an animal insensitive to the subsequent administration of capsaicin. Laminectomy was performed at the level of the first and second cervical vertebrae to expose the cervical spinal cord for sectioning. The brain was transected at 4-mm rostral from the

  19. Capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of botulinum neurotoxin a.

    PubMed

    Thyagarajan, Baskaran; Krivitskaya, Natalia; Potian, Joseph G; Hognason, Kormakur; Garcia, Carmen C; McArdle, Joseph J

    2009-11-01

    Botulinum neurotoxin A (BoNT/A), the most toxic, naturally occurring protein, cleaves synapse-associated protein of 25 kDa and inhibits acetylcholine release from motor nerve endings (MNEs). This leads to paralysis of skeletal muscles. Our study demonstrates that capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of BoNT/A. Bilateral injection of BoNT/A near the innervation of the Extensor digitorum longus (EDL) muscle of adult Swiss-Webster mice inhibited the toe spread reflex (TSR). However, when capsaicin was coinjected bilaterally, or injected 4 or 8 h before injecting BoNT/A, the TSR remained normal. In animals that were pretreated with capsazepine, capsaicin failed to protect against the neuroparalytic effects of BoNT/A. In vivo analyses demonstrated that capsaicin protected muscle functions and electromygraphic activity from the incapacitating effects of BoNT/A. The twitch response to nerve stimulation was greater for EDL preparations isolated from mice injected with capsaicin before BoNT/A. Capsaicin pretreatment also prevented the inhibitory effects of BoNT/A on end-plate currents. Furthermore, pretreatment of Neuro 2a cells with capsaicin significantly preserved labeling of synaptic vesicles by FM 1-43. This protective effect of capsaicin was observed only in the presence of extracellular Ca(2+) and was inhibited by capsazepine. Immunohistochemistry demonstrated that MNEs express transient receptor potential protein of the vanilloid subfamily, TRPV1, the capsaicin receptor. Capsaicin pretreatment, in vitro, reduced nerve stimulation or KCl-induced uptake of BoNT/A into motor nerve endings and cholinergic Neuro 2a cells. These data demonstrate that capsaicin interacts with TRPV1 receptors on MNEs to reduce BoNT/A uptake via a Ca(2+)-dependent mechanism.

  20. Use of Capsaicin to Treat Pain: Mechanistic and Therapeutic Considerations

    PubMed Central

    Chung, Man-Kyo; Campbell, James N.

    2016-01-01

    Capsaicin is the pungent ingredient of chili peppers and is approved as a topical treatment of neuropathic pain. The analgesia lasts for several months after a single treatment. Capsaicin selectively activates TRPV1, a Ca2+-permeable cationic ion channel that is enriched in the terminals of certain nociceptors. Activation is followed by a prolonged decreased response to noxious stimuli. Interest also exists in the use of injectable capsaicin as a treatment for focal pain conditions, such as arthritis and other musculoskeletal conditions. Recently injection of capsaicin showed therapeutic efficacy in patients with Morton’s neuroma, a painful foot condition associated with compression of one of the digital nerves. The relief of pain was associated with no change in tactile sensibility. Though injection evokes short term pain, the brief systemic exposure and potential to establish long term analgesia without other sensory changes creates an attractive clinical profile. Short-term and long-term effects arise from both functional and structural changes in nociceptive terminals. In this review, we discuss how local administration of capsaicin may induce ablation of nociceptive terminals and the clinical implications. PMID:27809268

  1. Use of Capsaicin to Treat Pain: Mechanistic and Therapeutic Considerations.

    PubMed

    Chung, Man-Kyo; Campbell, James N

    2016-11-01

    Capsaicin is the pungent ingredient of chili peppers and is approved as a topical treatment of neuropathic pain. The analgesia lasts for several months after a single treatment. Capsaicin selectively activates TRPV1, a Ca(2+)-permeable cationic ion channel that is enriched in the terminals of certain nociceptors. Activation is followed by a prolonged decreased response to noxious stimuli. Interest also exists in the use of injectable capsaicin as a treatment for focal pain conditions, such as arthritis and other musculoskeletal conditions. Recently injection of capsaicin showed therapeutic efficacy in patients with Morton's neuroma, a painful foot condition associated with compression of one of the digital nerves. The relief of pain was associated with no change in tactile sensibility. Though injection evokes short term pain, the brief systemic exposure and potential to establish long term analgesia without other sensory changes creates an attractive clinical profile. Short-term and long-term effects arise from both functional and structural changes in nociceptive terminals. In this review, we discuss how local administration of capsaicin may induce ablation of nociceptive terminals and the clinical implications.

  2. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report.

    PubMed

    De Cicco, Vincenzo

    2012-09-03

    A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro

  3. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report

    PubMed Central

    2012-01-01

    Introduction A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. Case presentation A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. Conclusions A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with

  4. Capsaicin and arterial hypertensive crisis.

    PubMed

    Patanè, Salvatore; Marte, Filippo; La Rosa, Felice Carmelo; La Rocca, Roberto

    2010-10-08

    Chili peppers are rich in capsaicin. The potent vasodilator calcitonin gene-related peptide (CGRP) is stored in a population of C-fiber afferents that are sensitive to capsaicin. CGRP and peptides released from cardiac C fibers have a beneficial effect in myocardial ischemia and reperfusion. It has been reported that capsaicin pretreatment can deplete cardiac C-fiber peptide stores. Furthermore, it has also been reported that capsaicin-treated pigs have significantly increased mean arterial blood pressure compared with controls, and that the decrease in CGRP synthesis and release contributes to the elevated blood pressure. A case has also been reported of an arterial hypertensive crisis in a patient with a large ingestion of peppers and chili peppers the day before. We present a case of an arterial hypertensive crisis in a 19-year-old Italian man with an abundant ingestion of peppers and of chili peppers the preceding day. This case describes an unusual pattern of arterial hypertensive crisis due to capsaicin.

  5. Comparative effect of Phoneutria nigriventer spider venom and capsaicin on the rat paw oedema.

    PubMed

    Costa, S K; Esquisatto, L C; Camargo, E; Gambero, A; Brain, S D; De Nucci, G; Antunes, E

    2001-08-17

    Capsaicin, the pungent component of hot peppers, and the venom of the spider Phoneutria nigriventer are able to activate sensory nerves resulting in cutaneous neurogenic plasma extravasation. This study was undertaken to compare the ability of these substances to evoke oedema in the rat hind-paw and mechanisms underlying this effect. Subplantar injection of either Phoneutria nigriventer venom (PNV; 1-100 microg/paw) or capsaicin (10-200 microg/paw) caused a significant paw oedema that was potentiated by CGRP (10 pmol/paw). In rats treated neonatally with capsaicin to deplete neuropeptides, the paw oedema induced by either PNV (100 microg/paw) or capsaicin (100 microg/paw) was partially reduced (P<0.05). The tachykinin NK1 receptor antagonist SR140333 (0.2 micromol/kg; i.v.) prevented the paw oedema induced by the tachykinin NK1 receptor agonist GR73632 (30 pmol/paw) and partially reduced paw oedema induced by PNV or capsaicin. Treatment of rats with compound 48/80 (5 mg/kg; s.c. 3 days) or with both H1 receptor antagonist (mepyramine; 1 nmol/paw) and 5-HT receptor antagonist (methysergide; 1 nmol/paw) significantly inhibited PNV- or capsaicin-induced paw oedema. The combined treatment with mepyramine and methysergide and SR140333 further reduced PNV- and capsaicin-induced paw oedema. The bradykinin B2 receptor antagonist Hoe 140 affected neither PNV- nor capsaicin-induced responses. Our results suggest that PNV and capsaicin each induce paw oedema that is partially mediated by activation of sensory fibers culminating in the release of substance P as well as by activation of mast cells which in turn release amines such as histamine and 5-HT.

  6. Ruthenium red inhibits tail skin vasodilatation evoked by intracerebroventricular injection of capsaicin in the rat.

    PubMed

    Hajós, M; Jancsó, G; Mari, Z; Obál, F

    1991-04-01

    The effect of Ruthenium red on the tail skin vasodilatation evoked by an intracerebroventricular injection of capsaicin was studied in the anesthetized rat. Injection of capsaicin into the lateral ventricle resulted in a marked elevation of the tail skin temperature, indicative of peripheral vasodilatation. Ruthenium red, given by intracerebroventricular injection, significantly inhibited this response, which is known to be mediated by central warmth-sensitive neuronal structures. The findings suggest that the sensitivity to Ruthenium red, reportedly characteristic of the capsaicin-sensitive neurons in the peripheral nervous system, is also a trait of the capsaicin-sensitive nerve cells in the central nervous system. This is the first evidence indicating that similar molecular mechanisms, presumably involving changes in cellular calcium metabolism, contribute to the capsaicin-induced activation of neurons in both the peripheral and central nervous systems.

  7. [Pharmacotherapy of trigeminal neuralgia].

    PubMed

    Ramirez, H; Martinez, C; Oliva, J; Montini, C

    1989-12-01

    The efficacy of drug treatment on 119 patients with trigeminal neuralgia is reported in the present paper. Among them, 112 were idiopathic trigeminal neuralgias while only 7 cases were secondary trigeminal neuralgias. All patients were treated with drugs at different stages of the evolution of the neuralgia. Carbamazepine was used on all patients. 12.6% was treated with imipramine (tricyclic antidepressive drug), 4 patients received amphetamines due to psychiatric emergencies, 4 patients were treated with phenytoin before this study and three patients received baclofen during short periods of follow-up. Drug therapy was the only treatment method in 51 patients. In 43 patients it was combined with peripheral surgical treatments including injections of alcohol and neurectomies. 16.8% of the patients were treated with drugs and acupuncture; the results of this experience will be reported in a future paper. Only 4.2% (5 patients) underwent neurosurgical treatment: one ponto cerebellar angle tumour, one electrocoagulation of the gasserian ganglion through the stereotaxic method and three cases of microvascular decompression of the trigeminal root. Clinical, pharmacological and neurophysiological aspects of trigeminal neuralgia pharmacotherapy are discussed.

  8. Capsaicin regulates the NF-κB pathway in salivary gland inflammation.

    PubMed

    Shin, Y-H; Namkoong, E; Choi, S; Bae, J-S; Jin, M; Hwang, S-M; Arote, R; Choi, S-Y; Park, K

    2013-06-01

    Salivary gland epithelial cells (SGEC) release several cytokines that play important roles in the inflammatory process. In this study, we examined whether capsaicin can modulate cytokine release in SGEC. After cells were stimulated with polyinosinic-polycytidylic acid [poly(I:C)] or lipopolysaccharide (LPS), mRNA transcript and protein levels were detected by reverse-transcriptase-polymerase chain-reaction (RT-PCR), real-time PCR, and enzyme-linked immunosorbent assay (ELISA). These findings demonstrated that the increases in TNFα and IL-6 mRNA transcripts were highest at 3 hrs and 1 hr after incubation with poly(I:C) and LPS, respectively. Pre-treatment of the cells with 10 μµ capsaicin, however, significantly inhibited mRNA transcripts and its protein levels. The simultaneous application of 10 μµ capsazepine with capsaicin did not block the inhibitory effect of capsaicin. Furthermore, the inhibitory effect of capsaicin was also shown in primary cultured cells from TRPV1(-/-) mice. We found that both poly(I:C) and LPS induced IκB-α degradation and phosphorylation, which resulted in NF-κB activation, and capsaicin inhibited this NF-κB pathway. These results demonstrate that SGEC release pro-inflammatory cytokines mediated by TLR, and capsaicin inhibits this process through the NF-κB pathway. This study suggests that capsaicin could potentially alleviate inflammation in salivary glands.

  9. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures.

  10. The effect of spider toxin PhTx3-4, ω-conotoxins MVIIA and MVIIC on glutamate uptake and on capsaicin-induced glutamate release and [Ca2+]i in spinal cord synaptosomes.

    PubMed

    Gonçaves, Jomara M; Ferreira, Juliano; Prado, Marco Antonio M; Cordeiro, Marta N; Richardson, Michael; Pinheiro, Ana Cristina do Nascimento; Silva, Marco A Romano; Junior, Celio José de Castro; Souza, Alessandra H; Gomez, Marcus Vinicius

    2011-03-01

    In spinal cord synaptosomes, the spider toxin PhTx3-4 inhibited capsaicin-stimulated release of glutamate in both calcium-dependent and -independent manners. In contrast, the conus toxins, ω-conotoxin MVIIA and xconotoxin MVIIC, only inhibited calcium-dependent glutamate release. PhTx3-4, but not ω-conotoxin MVIIA or xconotoxin MVIIC, is able to inhibit the uptake of glutamate by synaptosomes, and this inhibition in turn leads to a decrease in the Ca(2+)-independent release of glutamate. No other polypeptide toxin so far described has this effect. PhTx3-4 and ω-conotoxins MVIIC and MVIIA are blockers of voltage-dependent calcium channels, and they significantly inhibited the capsaicin-induced rise of intracellular calcium [Ca(2+)](i) in spinal cord synaptosomes, which likely reflects calcium entry through voltage-gated calcium channels. The inhibition of the calcium-independent glutamate release by PhTx3-4 suggests a potential use of the toxin to block abnormal glutamate release in pathological conditions such as pain.

  11. Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling.

    PubMed

    Damodaram, Srikanth; Thalakoti, Srikanth; Freeman, Stacy E; Garrett, Filip G; Durham, Paul L

    2009-01-01

    Sensitization and activation of trigeminal neurons are implicated in the underlying pathology of migraine, acute sinusitis, and allergic rhinitis. Cell bodies of trigeminal neurons that provide sensory innervation of the dura and nasal mucosa reside in the trigeminal ganglion in association with satellite glial cells where they communicate via gap junctions. Gap junctions, channels formed by connexins, modulate the excitability state of both neurons and glia under pathological conditions. Tonabersat, a compound being tested as an antimigraine drug, is thought to block gap junction activity. To investigate the cellular events within trigeminal ganglia that may account for the significant comorbidity of migraine and rhinosinusitis and determine the effect of tonabersat on neuron-satellite glia communication. Sprague Dawley rats injected with True Blue were used to localize neuronal cell bodies in the ganglion and study neuron-glia signaling via gap junctions in the trigeminal ganglion. Dye coupling studies were conducted under basal conditions and in response to tumor necrosis factor-alpha injection into the whisker pad and/or capsaicin injection into the eyebrow. Changes in connexin 26 and active p38 levels were determined by immunohistochemistry. In addition, the effect of tonabersat prior to chemical stimulation on gap junction activity and expression of connexins and active p38 was investigated. Injection of tumor necrosis factor-alpha, a cytokine implicated in the pathology of acute sinusitis and allergic rhinitis, into the V2 region was shown to lower the amount of capsaicin required to stimulate neurons located in the V1 region of the ganglion. While injection of tumor necrosis factor-alpha into the whisker pad or capsaicin injection into the eyebrow alone did not cause increased dye movement, the combination of both stimuli greatly increased neuron-satellite glia communication via gap junctions in both V1 and V2 regions. The change in gap junction activity

  12. The Capsaicin 8% Patch for Neuropathic Pain in Clinical Practice: A Retrospective Analysis

    PubMed Central

    Wagner, Till; Poole, Chris; Roth-Daniek, Andrea

    2013-01-01

    Objective To investigate the response of patients with peripheral neuropathic pain (PNP) to capsaicin 8% patch treatment in a clinical setting. Design Retrospective analysis. Setting The Clinic for Pain Therapy and Palliative Medicine at the Medical Centre for the region of Aachen, Germany. Subjects Patients diagnosed with PNP who attended the clinic for capsaicin 8% patch treatment between January 13, 2010 and February 7, 2011. Outcome Measures Pain intensity was assessed using the Numeric Pain Rating Scale (NPRS) at baseline and following each capsaicin 8% patch treatment. Changes in prescribed concomitant neuropathic pain (NP) medications and response duration were recorded. Results Overall, 68 patients with PNP conditions, including facial neuropathy (severe trigeminal neuralgia in V2), polyneuropathy, post-herpetic neuralgia, and mononeuropathies, received 96 treatments with the capsaicin 8% patch. The 53 patients with a follow-up of ≥8 weeks demonstrated a 48.4% mean reduction in NPRS score from baseline to Weeks 1–8. Among the 37 responders (those exhibiting ≥30% reduction in NPRS score from baseline to Weeks 1–8), the median time to re-treatment was 125 days. Following treatment, there was a significant (P < 0.001) 54% reduction in the mean number of prescribed concomitant NP medications taken by patients. Conclusions This analysis demonstrates that in clinical practice, the capsaicin 8% patch provides rapid and sustained pain reductions in patients with a variety of PNP conditions and a significant reduction in prescribed concomitant NP medications. The capsaicin 8% patch can be a valuable addition to the NP treatment armory for certain patients. PMID:23710678

  13. Methylmercury chloride-induced and antagonist-reverted succinic dehydrogenase changes in the brain and trigeminal ganglia of the rat

    SciTech Connect

    Unnikumar, K.R.; Sood, P.P.

    1987-06-01

    The effect of methylmercury chloride (MMC) toxicity and its antagonism by chelating agents (N-acetyl-DL-homocysteine thiolactone and 2,3-dimercaptosuccininc acid) on succinic dehydrogenase (SDH) activity of fore-, and mid-, and hindbrain and trigeminal ganglia of rats is reported in this study. A dose of 10 mg MMC/kg body weight was injected subcutaneously for 2.7, and 15 days. The chelating agents were also injected subcutaneously in two separate groups of MMC-treated animals except in group 3. In the latter case MMC was injected in two groups of rats for 7 days, and thereafter antagonists were administered daily (40 mg/kg) for 1 week. The result shows inhibition of the enzyme with MMC in all groups and its restoration by N-acetyl-DL-homocysteine thiolactone; 2,3-dimercaptosuccininc acid, however, further reduced the enzyme level. The significance of inhibition of the enzyme in relation to tissue respiration and ATP production is discussed and the capacities of antagonists in the restoration of the SDH level are also analyzed.

  14. Preparation and Evaluation of PLGA-Coated Capsaicin Magnetic Nanoparticles.

    PubMed

    Baskaran, Mrudhula; Baskaran, Padmamalini; Arulsamy, Navamoney; Thyagarajan, Baskaran

    2017-06-01

    Drugs used in the treatment of diseases can cause several unwanted systemic side effects. A site-specific drug delivery system can eliminate such consequences by delivering drugs to certain target areas of the body where therapeutic effects are required. Here we present the preparation and evaluation of magnetic nanoparticles of capsaicin, the active ingredient in chili peppers, coated with poly-L-lactide co-glycolide (PLGA), a FDA-approved biodegradable bioavailable polymer. PCMN were prepared by solvent-evaporation/coprecipitation technique and their physicochemical and pharmacological characteristics evaluated in vitro. Further, effective pain/inflammation therapeutics of PCMN in a mouse model of inflammation was also studied. We also prepared and evaluated the subcellular localization of PLGA coated fluorescence magnetic nanoparticle (PFMN) in vitro in HEK293 cells. Transmission electron microscopic images of PCMN showed that the size of the nanoparticles were of the order of 10-20 nm. PCMN showed approximately 9.29% drug loading and 89.15% encapsulation efficiencies. In vitro dissolution studies showed an increased solubility of capsaicin due to the nano-size of the PCMN, while PLGA coating allowed sustained release of capsaicin in vitro. The PCMN also reduced paw edema after injection in mice, and confocal microscopy revealed the successful intracellular localization of PLGA-coated fluorescein magnetic nanoparticles in HEK293 cells. The PCMN provided a sustained release of capsaicin in vitro and inhibited carrageenan-induced inflammatory pain in mouse model in vivo. These data suggest that PLGA coating of capsaicin magnetic nanoparticles have the potential to be amenable for a sustained release of capsaicin to relieve pain.

  15. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities.

  16. A critical re-evaluation of the specificity of action of perivagal capsaicin

    PubMed Central

    Browning, K N; Babic, T; Holmes, G M; Swartz, E; Travagli, R A

    2013-01-01

    Perivagal application of capsaicin (1% solution) is considered to cause a selective degeneration of vagal afferent C fibres and has been used extensively to examine the site of action of many gastrointestinal (GI) neuropeptides. The actions of both capsaicin and GI neuropeptides may not be restricted to vagal afferent fibres, however, as other non-sensory neurones have displayed sensitivity to capsaicin and brainstem microinjections of these neuropeptides induce GI effects similar to those obtained upon systemic application. The aim of the present study was to test the hypothesis that perivagal capsaicin induces degeneration of vagal efferents controlling GI functions. Experiments were conducted 7–14 days after 30 min unilateral perivagal application of 0.1–1% capsaicin. Immunohistochemical analyses demonstrated that, as following vagotomy, capsaicin induced dendritic degeneration, decreased choline acetyltransferase but increased nitric oxide synthase immunoreactivity in rat dorsal motor nucleus of the vagus (DMV) neurones. Electrophysiological recordings showed a decreased DMV input resistance and excitability due, in part, to the expression of a large conductance calcium-dependent potassium current and the opening of a transient outward potassium window current at resting potential. Furthermore, the number of DMV neurones excited by thyrotrophin-releasing hormone and the gastric motility response to DMV microinjections of TRH were decreased significantly. Our data indicate that perivagal application of capsaicin induced DMV neuronal degeneration and decreased vagal motor responses. Treatment with perivagal capsaicin cannot therefore be considered selective for vagal afferent C fibres and, consequently, care is needed when using perivagal capsaicin to assess the mechanism of action of GI neuropeptides. PMID:23297311

  17. A critical re-evaluation of the specificity of action of perivagal capsaicin.

    PubMed

    Browning, K N; Babic, T; Holmes, G M; Swartz, E; Travagli, R A

    2013-03-15

    Perivagal application of capsaicin (1% solution) is considered to cause a selective degeneration of vagal afferent C fibres and has been used extensively to examine the site of action of many gastrointestinal (GI) neuropeptides. The actions of both capsaicin and GI neuropeptides may not be restricted to vagal afferent fibres, however, as other non-sensory neurones have displayed sensitivity to capsaicin and brainstem microinjections of these neuropeptides induce GI effects similar to those obtained upon systemic application. The aim of the present study was to test the hypothesis that perivagal capsaicin induces degeneration of vagal efferents controlling GI functions. Experiments were conducted 7-14 days after 30 min unilateral perivagal application of 0.1-1% capsaicin. Immunohistochemical analyses demonstrated that, as following vagotomy, capsaicin induced dendritic degeneration, decreased choline acetyltransferase but increased nitric oxide synthase immunoreactivity in rat dorsal motor nucleus of the vagus (DMV) neurones. Electrophysiological recordings showed a decreased DMV input resistance and excitability due, in part, to the expression of a large conductance calcium-dependent potassium current and the opening of a transient outward potassium window current at resting potential. Furthermore, the number of DMV neurones excited by thyrotrophin-releasing hormone and the gastric motility response to DMV microinjections of TRH were decreased significantly. Our data indicate that perivagal application of capsaicin induced DMV neuronal degeneration and decreased vagal motor responses. Treatment with perivagal capsaicin cannot therefore be considered selective for vagal afferent C fibres and, consequently, care is needed when using perivagal capsaicin to assess the mechanism of action of GI neuropeptides.

  18. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages.

    PubMed

    Kim, Chu-Sook; Kawada, Teruo; Kim, Byung-Sam; Han, In-Seob; Choe, Suck-Young; Kurata, Tadao; Yu, Rina

    2003-03-01

    Capsaicin, a major ingredient of hot pepper, was considered to exhibit an anti-inflammatory property. In order to clarify the signalling mechanism underlying the anti-inflammatory action of capsaicin, we investigated the effect of capsaicin on the production of inflammatory molecules in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. The level of PGE2 was measured by EIA. The expression levels of COX-2, iNOS, IkB-a, and vanilloid receptor-1 (VR-1) were determined at the protein and mRNA levels. Significant inhibition of the production of LPS-induced PGE2 by capsaicin was observed in a dose-dependent manner. Capsaicin did not affect the COX-2 expression at either the protein or mRNA level, but inhibited the enzyme activity of COX-2 and the expression of the iNOS protein. Capsaicin completely blocked LPS-induced disappearance of IkB-a and therefore inactivated NF-kB. The inhibitory action of capsaicin on PGE2 production was not abolished by capsazepine, a specific antagonist to VR-1. A high expression level of the VR-1 like protein (VRL-1) was observed in peritoneal macrophages, while the expression of VR-1 was not detected. These findings suggest that the anti-inflammatory action of capsaicin may occur through a novel mechanism, not by a VR-1 receptor-mediated one. Both capsaicin and capsazepine may be a promising drug candidates for ameliorating inflammatory diseases and cancer.

  19. Inhibition by capsaicin and its related vanilloids of compound action potentials in frog sciatic nerves.

    PubMed

    Tomohiro, Daisuke; Mizuta, Kotaro; Fujita, Tsugumi; Nishikubo, Yukiko; Kumamoto, Eiichi

    2013-03-14

    Although capsaicin not only activates transient receptor potential vanilloid-1 (TRPV1) channels but also inhibits nerve conduction, the latter action has not yet been fully examined. The purpose of the present study was to know whether various vanilloids have an inhibitory action similar to that of capsaicin and further to compare their actions with that of local anesthetic procaine. Fast-conducting compound action potentials (CAPs) were recorded from frog sciatic nerve fibers by using the air-gap method. Capsaicin reversibly and concentration-dependently reduced the peak amplitude of the CAP. TRPV1 antagonist capsazepine did not affect the capsaicin activity, and powerful TRPV1 agonist resiniferatoxin had no effect on CAPs, indicating no involvement of TRPV1 channels. Capsaicin analogs and other various vanilloids also inhibited CAPs in a concentration-dependent manner. An efficacy sequence of these inhibitions was capsaicin=dihydrocapsaicin>capsiate>eugenol>guaiacol≥zingerone≥vanillin>vanillylamine. Vanillic acid had almost no effect on CAPs; olvanil and curcumin appeared to be effective less than capsaicin. Capsaicin and eugenol were, respectively, ten- and two-fold effective more than procaine in CAP inhibition, while each of guaiacol, zingerone and vanillin was five-fold effective less than procaine. Various vanilloids exhibit CAP inhibition, the extent of which is determined by the property of the side chain bound to the vanillyl group, and some of them are more effective than procaine. These results may serve to unveil molecular mechanisms for capsaicin-induced conduction block and to develop antinociceptive drugs related to capsaicin. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The mesencephalic trigeminal sensory nucleus is involved in acquisition of active exploratory behavior induced by changing from a diet of exclusively milk formula to food pellets in mice.

    PubMed

    Ishii, Toshiaki; Furuoka, Hidefumi; Kitamura, Nobuo; Muroi, Yoshikage; Nishimura, Masakazu

    2006-09-21

    Post-weaning mice fed exclusively milk display low-frequency exploratory behavior [Ishii, T., Itou, T., and Nishimura, M. (2005) Life Sci. 78, 174-179] compared to mice fed a food pellet diet. This low-frequency exploratory behavior switched to high-frequency exploration after a switch from exclusively milk formula to a food pellet diet. Acquisition of the high-frequency exploratory behavior was irreversible. Recently, we demonstrated that the mesencephalic trigeminal nucleus (Me5) is involved in the control of feeding and exploratory behavior in mice without modulating the emotional state [Ishii, T., Furuoka, H., Itou, T., Kitamura, N., and Nishimura, M. (2005) Brain Res. 1048, 80-86]. We therefore investigated whether the Me5 is involved in acquisition of high-frequency exploratory behavior induced by the switch in diet from an exclusively milk formula to food pellets. Mouse feeding and exploratory behaviors were analyzed using a food search compulsion apparatus, which was designed to distinguish between the two behaviors under standard living conditions. Immunohistochemical analysis of immediate early genes indicated that the Me5, which receives signals from oral proprioceptors, is transiently activated after the diet change. The change from low-frequency to high-frequency exploratory behavior was prevented in milk-fed mice by bilateral lesion of the Me5. These results suggest that the Me5 is activated by signals associated with mastication-induced proprioception and contributes to the acquisition of active exploratory behavior.

  1. Chemosensory Information Processing between Keratinocytes and Trigeminal Neurons

    PubMed Central

    Sondersorg, Anna Christina; Busse, Daniela; Kyereme, Jessica; Rothermel, Markus; Neufang, Gitta; Gisselmann, Günter; Hatt, Hanns; Conrad, Heike

    2014-01-01

    Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling. PMID:24790106

  2. Comparable effects of capsaicin-containing red pepper sauce and hydrochloric acid on secondary peristalsis in humans.

    PubMed

    Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai

    2013-11-01

    We aimed to evaluate whether acute esophageal instillation of capsaicin and hydrochloric acid had different effects on distension-induced secondary peristalsis. Secondary peristalsis was induced by slow and rapid air injections into the mid-esophagus after the evaluation of baseline motility in 16 healthy subjects. The effects on secondary peristalsis were determined by esophageal instillation with capsaicin-containing red pepper sauce (pure capsaicin, 0.84 mg) and hydrochloric acid (0.1 N). The administration of capsaicin induced a significant increase in the visual analogue scale score for heartburn as compared with hydrochloric acid (P = 0.002). The threshold volume for generating secondary peristalsis during slow and rapid air distensions did not differ between capsaicin and hydrochloric acid infusions. Hydrochloric acid significantly increased the frequency of secondary peristalsis in response to rapid air distension compared with capsaicin infusion (P = 0.03). Pressure wave amplitude during slow air distension was greater with the infusion of hydrochloric acid than capsaicin infusion (P = 0.001). The pressure wave duration during rapid air distension was longer after capsaicin infusion than hydrochloric acid infusion (P = 0.01). The pressure wave amplitude during rapid air distension was similar between capsaicin and hydrochloric acid infusions. Despite subtle differences in physiological characteristics of secondary peristalsis, acute esophageal instillation of capsaicin and hydrochloric acid produced comparable effects on distension-induced secondary peristalsis. Our data suggest the coexistence of both acid- and capsaicin-sensitive afferents in human esophagus which produce similar physiological alterations in secondary peristalsis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  3. The role of histamine H1, H2 and H3 receptors of ventral posteromedial nucleus of thalamus in modulation of trigeminal pain.

    PubMed

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Ghasemi, Hamid; Henareh-Chareh, Farzin; Hadidi, Mansoor; Mirzakhani, Navideh; Seyedin, Sahar; Taati, Mina; Salighedar, Reza; Salimi, Sara; Safaei, Farshad

    2016-11-15

    Histamine receptors are involved in supraspinal modulation of pain. In the present study, we investigated the effects of microinjection of histamine H1, H2 and H3 receptor antagonists and agonists into the ventral posteromedial (VPM) nucleus of the thalamus on two models of trigeminal pain. Right and left sides of VPM were implanted with two guide cannulas. Corneal pain was induced by local corneal surface application of hypertonic saline and the number of eye wipes was recorded. The duration of face rubbing, as an orofacial pain measure, was recorded after subcutaneous (s.c.) injection of capsaicin into the vibrissa pad. 2-pyridylethylamine (2-PEA, a histamine H1 receptor agonist, 4µg/site) and dimaprit (a histamine H2 receptor agonist, 1 and 4µg/site) suppressed corneal and orofacial pains. Mepyramine (a histamine H1 receptor antagonist) and ranitidine (a histamine H2 receptor antagonist) at the similar doses of 0.5, 2 and 8µg/site alone had no effects on trigeminal pain. Prior microinjection of mepyramine and ranitidine at a similar dose of 8µg/site inhibited the antinociceptive effects of 2-PEA (4µg/site) and dimaprit (4µg/site), respectively. Immepip (a histamine H3 receptor agonist, 1 and 4µg/site) increased, and thioperamide (a histamine H3 receptor antagonist, 2 and 8µg/site) attenuated nociceptive responses. Prior microinjection of thioperamide (8µg/site) prevented immepip (4µg/site)-induced nociception. These chemicals did not change locomotor behavior. It is concluded that post-synaptic histamine H2, and to a lesser extent H1, receptors and pre-synaptic histamine H3 receptor may be involved in VPM modulation of trigeminal pain. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Corticofugal projections induce long-lasting effects on somatosensory responses in the trigeminal complex of the rat

    PubMed Central

    Malmierca, Eduardo; Chaves-Coira, Irene; Rodrigo-Angulo, Margarita; Nuñez, Angel

    2014-01-01

    The sensory information flow at subcortical relay stations is controlled by the action of topographic connections from the neocortex. To determinate the functional properties of the somatosensory corticofugal projections to the principal (Pr5) and caudal spinal (Sp5C) trigeminal nuclei, we performed unitary recordings in anesthetized rats. To examine the effect of these cortical projections we used tactile stimulation of the whisker and electrical stimulation of somatosensory cortices. Corticofugal anatomical projections to Pr5 and Sp5C nuclei were detected by using retrograde fluorescent tracers. Neurons projecting exclusively to Pr5 were located in the cingulate cortex while neurons projecting to both Sp5C and Pr5 nuclei were located in the somatosensory and insular cortices (>75% of neurons). Physiological results indicated that primary somatosensory cortex produced a short-lasting facilitating or inhibiting effects (<5 min) of tactile responses in Pr5 nucleus through activation of NMDA glutamatergic or GABAA receptors since effects were blocked by iontophoretically application of APV and bicuculline, respectively. In contrast, stimulation of secondary somatosensory cortex did not affect most of the Pr5 neurons; however both cortices inhibited the nociceptive responses in the Sp5C nucleus through activation of glycinergic or GABAA receptors because effects were blocked by iontophoretically application of strychnine and bicuculline, respectively. These and anatomical results demonstrated that the somatosensory cortices projects to Pr5 nucleus to modulate tactile responses by excitatory and inhibitory actions, while projections to the Sp5C nucleus control nociceptive sensory transmission by only inhibitory effects. Thus, somatosensory cortices may modulate innocuous and noxious inputs simultaneously, contributing to the perception of specifically tactile or painful sensations. PMID:24904321

  5. An animal model for trigeminal neuralgia by compression of the trigeminal nerve root.

    PubMed

    Luo, Dao-Shu; Zhang, Ting; Zuo, Chang-Xu; Zuo, Zhong-Fu; Li, Hui; Wu, Sheng-Xi; Wang, Wei; Li, Yun-Qing

    2012-01-01

    nerve root injury. CCT animal model with a plastic filament only imitated the mechanical compression of the trigeminal root but not to display the complex vascular physiological feature as the microvascular in the TN patient. The chronic compression of the trigeminal nerve root in rats effectively induced persistent orofacial neuropathic pain behaviors, and it would provide a novel and practical animal model for future research on the pathogenesis of TN.

  6. TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1.

    PubMed

    Salas, Margaux M; Hargreaves, Kenneth M; Akopian, Armen N

    2009-04-01

    The transient receptor potential (TRP)A1 channel is involved in the transduction of inflammation-induced noxious stimuli from the periphery. Previous studies have characterized the properties of TRPA1 in heterologous expression systems. However, there is little information on the properties of TRPA1-mediated currents in sensory neurons. A capsaicin-sensitive subset of rat and mouse trigeminal ganglion sensory neurons was activated with TRPA1-specific agonists, mustard oil and the cannabinoid WIN55,212. Mustard oil- and WIN55,212-gated currents exhibited marked variability in their kinetics of activation and acute desensitization. TRPA1-mediated responses in neurons also possess a characteristic voltage dependency with profound outward rectification that is influenced by extracellular Ca(2+) and the type and concentration of TRPA1-specific agonists. Examination of TRPA1-mediated responses in TRPA1-containing cells indicated that the features of neuronal TRPA1 are not duplicated in cells expressing only TRPA1 and, instead, can be restored only when TRPA1 and TRPV1 channels are coexpressed. In summary, our results suggest that TRPA1-mediated responses in sensory neurons have distinct characteristics that can be accounted for by the coexpression of the TRPV1 and TRPA1 channels.

  7. Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release.

    PubMed

    Hajna, Zsófia; Sághy, Éva; Payrits, Maja; Aubdool, Aisah A; Szőke, Éva; Pozsgai, Gábor; Bátai, István Z; Nagy, Lívia; Filotás, Dániel; Helyes, Zsuzsanna; Brain, Susan D; Pintér, Erika

    2016-10-01

    It is supposed that TRPA1 receptor can be activated by hydrogen sulphide (H2S). Here, we have investigated the role of TRPA1 receptor in H2S-induced [Ca(2+)]i increase in trigeminal ganglia (TRG) neurons, and the involvement of capsaicin-sensitive sensory nerves in H2S-evoked cutaneous vasodilatation. [Ca(2+)]i was measured with ratiometric technique on TRG neurons of TRPA1(+/+) and TRPA1(-/-) mice after NaHS, Na2S, allylisothiocyanate (AITC) or KCl treatment. Microcirculatory changes in the ear were detected by laser Doppler imaging in response to topical NaHS, AITC, NaOH, NaSO3 or NaCl. Mice were either treated with resiniferatoxin (RTX), or CGRP antagonist BIBN4096, or NK1 receptor antagonist CP99994, or K(+) ATP channel blocker glibenclamide. Alpha-CGRP(-/-) and NK1 (-/-) mice were also investigated. NaHS and Na2S increased [Ca(2+)]i in TRG neurons derived from TRPA(+/+) but not from TRPA1(-/-) mice. NaHS increased cutaneous blood flow, while NaOH, NaSO3 and NaCl did not cause significant changes. NaHS-induced vasodilatation was reduced in RTX-treated animals, as well as by pre-treatment with BIBN4096 or CP99994 alone or in combination. NaHS-induced vasodilatation was significantly smaller in alpha-CGRP(-/-) or NK1 (-/-) mice compared to wild-types. H2S activates capsaicin-sensitive sensory nerves through TRPA1 receptors and the resultant vasodilatation is mediated by the release of vasoactive sensory neuropeptides CGRP and substance P.

  8. Cold Suppresses Agonist-induced Activation of TRPV1

    PubMed Central

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction. PMID:21666106

  9. Cold suppresses agonist-induced activation of TRPV1.

    PubMed

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  10. Novel therapeutics in the field of capsaicin and pain.

    PubMed

    Evangelista, Stefano

    2015-01-01

    Capsaicin, a pharmacologically active agent found in chili peppers, causes burning and itching sensation due to binding at the transient receptor potential vanilloid-1 (TRPV-1) receptor, a polymodal receptor critical to the sensing of a variety of stimuli (e.g., noxious heat, bidirectional pH), and subsequent activation of polymodal C and A-δ nociceptive fibers. Acutely, TRPV-1 activation with peripheral capsaicin produces pronociceptive effects, which extends to the development of hyperalgesia and allodynia. However, capsaicin has been reported to display antinociceptive properties as well, largely through TRPV-1-dependent mechanisms. Local application of high concentration of capsaicin is used for neuropathic pain and repeated stimulation of TRPV-1 induced an improvement of epigastric pain in irritable bowel syndrome and dyspepsia patients by desensitization of nociceptive pathways. New TRPV-1 agonists are currently under preclinical study and TRPV-1 antagonists are in early clinical development as analgesics. The TRPV-1 pathway might be a novel target for therapeutics in pain sensitivity.

  11. Gamma Knife® radiosurgery for trigeminal neuralgia.

    PubMed

    Yen, Chun-Po; Schlesinger, David; Sheehan, Jason P

    2011-11-01

    Trigeminal neuralgia is characterized by a temporary paroxysmal lancinating facial pain in the trigeminal nerve distribution. The prevalence is four to five per 100,000. Local pressure on nerve fibers from vascular loops results in painful afferent discharge from an injured segment of the fifth cranial nerve. Microvascular decompression addresses the underlying pathophysiology of the disease, making this treatment the gold standard for medically refractory trigeminal neuralgia. In patients who cannot tolerate a surgical procedure, those in whom a vascular etiology cannot be identified, or those unwilling to undergo an open surgery, stereotactic radiosurgery is an appropriate alternative. The majority of patients with typical facial pain will achieve relief following radiosurgical treatment. Long-term follow-up for recurrence as well as for radiation-induced complications is required in all patients undergoing stereotactic radiosurgery for trigeminal neuralgia.

  12. Trigeminal autonomic cephalgias

    PubMed Central

    2012-01-01

    Summary points 1. Trigeminal autonomic cephalgias (TACs) are headaches/facial pains classified together based on:a suspected common pathophysiology involving the trigeminovascular system, the trigeminoparasympathetic reflex and centres controlling circadian rhythms;a similar clinical presentation of trigeminal pain, and autonomic activation. 2. There is much overlap in the diagnostic features of individual TACs. 3. In contrast, treatment response is relatively specific and aids in establishing a definitive diagnosis. 4. TACs are often presentations of underlying pathology; all patients should be imaged. 5. The aim of the article is to provide the reader with a broad introduction to, and an overview of, TACs. The reading list is extensive for the interested reader. PMID:26516482

  13. Hypothalamic thermosensitivity in capsaicin-desensitized rats.

    PubMed Central

    Cormarèche-Leydier, M; Shimada, S G; Stitt, J T

    1985-01-01

    In rats, we tested the hypothesis that capsaicin desensitization reduces hypothalamic warm thermosensitivity. We locally heated and cooled the hypothalamus using water-perfused thermodes while observing thermoregulatory variables. In untreated rats, a small dose of capsaicin had profound effects on thermoregulation. However, desensitizing rats to capsaicin had no effect on hypothalamic thermosensitivity for metabolic rate or changes in body temperature due to displacements of hypothalamic temperature. Contrary to current opinion, we conclude that capsaicin desensitization does not alter hypothalamic thermosensitivity to warm or cold. PMID:4020699

  14. Distinct Modulations of Human Capsaicin Receptor by Protons and Magnesium through Different Domains*

    PubMed Central

    Wang, Shu; Poon, Kinning; Oswald, Robert E.; Chuang, Huai-hu

    2010-01-01

    The capsaicin receptor (TRPV1) is a nonselective cation channel that integrates multiple painful stimuli, including capsaicin, protons, and heat. Protons facilitate the capsaicin- and heat-induced currents by decreasing thermal threshold or increasing agonist potency for TRPV1 activation (Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. (1998) Neuron 21, 531–543). In the presence of saturating capsaicin, rat TRPV1 (rTRPV1) reaches full activation, with no further stimulation by protons. Human TRPV1 (hTRPV1), a species ortholog with high homology to rTRPV1, is potentiated by extracellular protons and magnesium, even at saturating capsaicin. We investigated the structural basis for protons and magnesium modulation of fully capsaicin-bound human receptors. By analysis of chimeric channels between hTRPV1 and rTRPV1, we found that transmembrane domain 1–4 (TM1–4) of TRPV1 determines whether protons can further open the fully capsaicin-bound receptors. Mutational analysis identified a titratable glutamate residue (Glu-536) in the linker between TM3 and TM4 critical for further stimulation of fully liganded hTRPV1. In contrast, hTRPV1 TM5–6 is required for magnesium augmentation of capsaicin efficacy. Our results demonstrate that capsaicin efficacy of hTRPV1 correlates with the extracellular ion milieu and unravel the relevant structural basis of modulation by protons and magnesium. PMID:20145248

  15. Quantum dot nanoprobe-based high-content monitoring of notch pathway inhibition of breast cancer stem cell by capsaicin.

    PubMed

    Shim, Yumi; Song, Joon Myong

    2015-12-01

    Breast cancer is the major cause of cancer death for women worldwide. Breast cancer patients are treated with chemotherapy and radiotherapy. Although chemotherapy and radiotherapy are applied, some cancer cells still survive. These cells, called cancer stem cell (CSC), exhibit special capabilities, such as drug and radio resistance. The remaining CSC can trigger cancer recurrence. Thus, it is critical to find an effective way to target CSC. Capsaicin has been reported to affect anticancer activity in many cancers. It also has been shown that capsaicin induces apoptosis in the MCF-7 breast cancer cell line. In this study, we demonstrate that capsaicin causes dose-dependent growth disruption in breast CSC and inhibits translocation of notch intracellular membrane domain (NICD) into the nucleus. MCF-7 cells were treated with capsaicin at various concentrations (5 μM, 10 μM, and 20 μM) for 24 h. After capsaicin treatment, it was found that the number of breast CSC (%) decreased as the treatment concentration of capsaicin increased. This result was also confirmed with FACS. NICD translocation to the nucleus and apoptotic cell death of breast CSC were concurrently observed at the single breast CSC level using highly sensitive quantum dot (Qdot)-antibody nanoprobes. The control breast CSCs without the capsaicin treatment were able to translocate NICD into the nucleus. On the other hand, translocation of NICD into the nucleus was not observed in capsaicin-treated cells. In addition, apoptotic cell death was caused when the breast CSC were treated with capsaicin at more than 10 μM. Although many studies have shown that capsaicin produces anticancer activity in cancer cell lines, the present result is the first report to demonstrate that capsaicin is capable of causing breast CSC apoptotic cell death via inhibiting its notch signaling pathway.

  16. Review: Effect of drugs on human cough reflex sensitivity to inhaled capsaicin

    PubMed Central

    2012-01-01

    Capsaicin, the pungent extract of red peppers, has been used in clinical research for almost three decades. Capsaicin has gained favor as the provocative agent of choice to measure cough reflex sensitivity, as it induces cough in a safe, reproducible, and dose-dependent manner. One of the major uses of capsaicin cough challenge testing has been to evaluate the effect of a pharmacological intervention on the human cough reflex. The current review summarizes the published experience with capsaicin inhalation challenge in the evaluation of drug effects on cough reflex sensitivity. A notable contrast evident between studies demonstrating a drug effect (inhibition of cough reflex sensitivity) and those that do not, is the predominance of healthy volunteers as subjects in the latter. This observation suggests that subjects with pathological cough, rather than normal volunteers, comprise the optimal group in which to evaluate the effect of potential antitussive agents on human cough reflex sensitivity. PMID:23146824

  17. Refined distribution of myelinated trigeminal proprioceptive nerve fibres in Mueller's muscle as the mechanoreceptors to induce involuntary reflexive contraction of the levator and frontalis muscles.

    PubMed

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Hirasawa, Chihiro; Moriizumi, Tetsuji

    2009-11-01

    Stretching of mechanoreceptors in Mueller's muscle induces reflexive contraction of not only the levator muscle but also the frontalis muscle as two different eyelid-opening muscles. Previously, we reported that fine neural myelinated structures, acting as mechanoreceptors, were found in the proximal Mueller's muscle. Since there is a risk of misunderstanding that the middle and distal Mueller's muscle does not contain mechanoreceptors and can be invalidated or resected, the accurate distribution of myelinated trigeminal proprioceptive nerve fibres as mechanoreceptors in Mueller's muscle was refined horizontally in this study. We explored 10 whole Mueller's muscles between the levator muscle and the tarsus of the upper eyelids obtained from five Japanese cadavers. The specimens were serially sliced along the horizontal plane and stained with HE, S-100 protein to determine the presence of Schwann cells, and smooth muscle actin antibody to determine the presence of Mueller's smooth muscle fibres. Although all myelinated nerve fibres in the intermuscular connective tissues among the sympathetically innervated Mueller's multi-unit smooth muscle fibres may not correspond to the proprioceptive nerve fibres, the nerve bundles consisting of multiple myelinated nerve fibres were well distributed in the proximal Mueller's muscle, and single myelinated nerve fibres were well distributed in the middle and distal Mueller's muscle. We believe that the mechanoreceptors in Mueller's muscle consist of myelinated proprioceptive nerve fibres with nerve endings possibly attached to collagen fibres in the intermuscular connective tissues present among Mueller's smooth muscle fibres. As the myelinated nerve fibres innervate the middle and distal Mueller's muscle to a greater extent than those in the proximal Mueller's muscle, the former may be more important as mechanoreceptors than the latter and should not be invalidated or excised during surgery for treatment of blepharoptosis to

  18. Mechanisms and clinical uses of capsaicin.

    PubMed

    Sharma, Surinder Kumar; Vij, Amarjit Singh; Sharma, Mohit

    2013-11-15

    Capsaicin is the active ingredient of chili peppers and gives them the characteristic pungent flavor. Understanding the actions of capsaicin led to the discovery of its receptor, transient receptor potential vanilloid subfamily member 1 (TRPV1). This receptor is found on key sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been studied in animal and human models for various indications. Capsaicin is unique among naturally occurring irritant compounds because the initial neuronal excitation evoked by it is followed by a long-lasting refractory period, during which the previously excited neurons are no longer responsive to a broad range of stimuli. This process known as defunctionalisation has been exploited for therapeutic use of capsaicin in various painful conditions. We reviewed different studies on mechanisms of action of capsaicin and its utility in different clinical conditions. A beneficial role of capsaicin has been reported in obesity, cardiovascular and gastrointestinal conditions, various cancers, neurogenic bladder, and dermatologic conditions. Various theories have been put forth to explain these effects. Interestingly many of these pharmacological actions are TRPV1 independent. This review is aimed at providing an overview of these mechanisms and to also present literature which contradicts the proposed beneficial effects of capsaicin. Most of the literature comes from animal studies and since many of these mechanisms are poorly understood, more investigation is required in human subjects.

  19. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s.

    PubMed

    Bhatia, Harsharan S; Roelofs, Nora; Muñoz, Eduardo; Fiebich, Bernd L

    2017-12-01

    Exaggerated inflammatory responses in microglia represent one of the major risk factors for various central nervous system's (CNS) associated pathologies. Release of excessive inflammatory mediators such as prostaglandins and cytokines are the hallmark of hyper-activated microglia. Here we have investigated the hitherto unknown effects of capsaicin (cap) - a transient receptor potential vanilloid 1 (TRPV1) agonist- in murine primary microglia, organotypic hippocampal slice cultures (OHSCs) and human primary monocytes. Results demonstrate that cap (0.1-25 µM) significantly (p < 0.05) inhibited the release of prostaglandin E2 (PGE2), 8-iso-PGF2α, and differentially regulated the levels of cytokines (TNF-α, IL-6 & IL-1β). Pharmacological blockade (via capsazepine & SB366791) and genetic deficiency of TRPV1 (TRPV1(-/-)) did not prevent cap-mediated suppression of PGE2 in activated microglia and OHSCs. Inhibition of PGE2 was partially dependent on the reduced levels of PGE2 synthesising enzymes, COX-2 and mPGES-1. To evaluate potential molecular targets, we discovered that cap significantly suppressed the activation of p38 MAPK and MAPKAPK2 (MK2). Altogether, we demonstrate that cap alleviates excessive inflammatory events by targeting the PGE2 pathway in in vitro and ex vivo immune cell models. These findings have broad relevance in understanding and paving new avenues for ongoing TRPV1 based drug therapies in neuroinflammatory-associated diseases.

  20. Capsaicin inhibits the adipogenic differentiation of bone marrow mesenchymal stem cells by regulating cell proliferation, apoptosis, oxidative and nitrosative stress.

    PubMed

    Ibrahim, Muhammed; Jang, Mi; Park, Mina; Gobianand, Kuppannan; You, Seungkwon; Yeon, Sung-Heom; Park, Sungkwon; Kim, Min Ji; Lee, Hyun-Jeong

    2015-07-01

    Obesity is a global health problem that requires the utmost attention. Apart from other factors the trans-differentiation of mesenchymal stem cells (MSCs) into adipocytes is an added detrimental factor causing the intensification of obesity. The main objective of this present study is to analyse whether capsaicin is capable of inhibiting the differentiation of BMSCs to adipocytes. Bone marrow mesenchymal stem cells (BMSCs) were obtained and exposed to different concentrations of capsaicin for a period of 6 days following 2 days of adipogenic induction. The capsaicin exposed cells were collected at three different time points (2, 4 and 6 days) and subjected to various analyses. BMSCs after exposure to capsaicin showed dose and time dependent reduction in cell viability and proliferation. Interestingly, capsaicin induced cell cycle arrest at G0-G1 and increased apoptosis by increasing reactive oxygen species (ROS) and reactive nitrogen species (RNS) production. Capsaicin significantly inhibited the early adipogenic differentiation, lipogenesis and maturation of adipocytes with concomitant repression of PPARγ, C/EBPα, FABP4 and SCD-1. Taken together, the results of the present study have clearly emphasized that capsaicin potentially inhibits the adipogenic differentiation of mesenchymal stem cells via many different pathways (anti-proliferative, apoptotic and cell cycle arrest) through the stimulation of ROS and RNS production. Thus, capsaicin not only suppresses the maturation of pre-adipocytes into adipocytes but also inhibits the differentiation of mesenchymal stem cells into adipocytes.

  1. Role of capsaicin sensitive nerves in epidermal growth factor effects on gastric mucosal injury and blood flow

    PubMed Central

    Kang, J; Teng, C; Chen, F; Wee, A

    1998-01-01

    Background—Epidermal growth factor (EGF) and capsaicin protect against experimental gastric mucosal injury. Capsaicin exerts its gastroprotective effect by stimulating afferent neurones leading to release of calcitonin gene related peptide (CGRP) which causes gastric hyperaemia. EGF also causes gastric hyperaemia but whether it acts via capsaicin sensitive neurones is unknown. 
Aims—To assess the influence of: (1) capsaicin desensitisation on EGF effects on gastric mucosal injury and gastric mucosal blood flow; and (2) close arterial infusion of hCGRP8-37, a CGRP antagonist, on EGF effects on gastric mucosal blood flow. 
Methods—The absolute ethanol induced gastric mucosal injury model in the rat was used. Gastric mucosal damage was assessed by planimetry and light microscopy. Gastric mucosal blood flow was measured by laser Doppler flowmetry in a gastric chamber preparation. 
Results—Capsaicin desensitisation abolished the gastroprotective and gastric hyperaemic effects of EGF. Close arterial infusion of hCGRP8-37 antagonised the hyperaemic effect of both capsaicin and EGF. 
Conclusion—Results show that EGF may exert its gastroprotective and gastric hyperaemic effects via capsaicin sensitive afferent neurones. 

 Keywords: capsaicin; epidermal growth factor; gastric mucosal injury; gastric mucosal blood flow; calcitonin gene related peptide antagonist; rat PMID:9577339

  2. Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects.

    PubMed

    Kopruszinski, Caroline M; Reis, Renata C; Bressan, Elisangela; Reeh, Peter W; Chichorro, Juliana G

    2015-09-05

    Vitamins of the B complex attenuate some neuropathic pain sensory aspects in various animal models and in patients, but the mechanisms underlying their effects remain to be elucidated. Herein it was investigated if the treatment with a vitamin B complex (VBC) reduces heat hyperalgesia in rats submitted to infraorbital nerve constriction and the possibility that TRPV1 receptors represent a target for B vitamins. In the present study, the VBC refers to a combination of vitamins B1, B6 and B12 at low- (18, 18 and 1.8mg/kg, respectively) or high- (180, 180 and 18mg/kg, respectively) doses. Acute treatment of rats with either the low- or the high-doses combination reduced heat hyperalgesia after nerve injury, but the high-doses combination resulted in a long-lasting effect. Repeated treatment with the low-dose combination reduced heat hyperalgesia on day four after nerve injury and showed a synergist effect with a single injection of carbamazepine (3 or 10mg/kg), which per se failed to modify the heat threshold. In naïve rats, acute treatment with the high-dose of VBC or B1 and B12 vitamins independently reduced heat hyperalgesia evoked by capsaicin (3µg into the upper lip). Moreover, the VBC, as well as, each one of the B vitamins independently reduced the capsaicin-induced calcium responses in HEK 293 cells transiently transfected with the human TRPV1 channels. Altogether, these results indicate that B vitamins can be useful to control heat hyperalgesia associated with trigeminal neuropathic pain and that modulation of TRPV1 receptors may contribute to their anti-hyperalgesic effects. Copyright © 2015. Published by Elsevier B.V.

  3. Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components.

    PubMed

    Glendinning, John I; Tang, Joyce; Morales Allende, Ana Paula; Bryant, Bruce P; Youngentob, Lisa; Youngentob, Steven L

    2017-08-01

    Fetal alcohol exposure (FAE) leads to increased intake of ethanol in adolescent rats and humans. We asked whether these behavioral changes may be mediated in part by changes in responsiveness of the peripheral taste and oral trigeminal systems. We exposed the experimental rats to ethanol in utero by administering ethanol to dams through a liquid diet; we exposed the control rats to an isocaloric and isonutritive liquid diet. To assess taste responsiveness, we recorded responses of the chorda tympani (CT) and glossopharyngeal (GL) nerves to lingual stimulation with ethanol, quinine, sucrose, and NaCl. To assess trigeminal responsiveness, we measured changes in calcium levels of isolated trigeminal ganglion (TG) neurons during stimulation with ethanol, capsaicin, mustard oil, and KCl. Compared with adolescent control rats, the adolescent experimental rats exhibited diminished CT nerve responses to ethanol, quinine, and sucrose and GL nerve responses to quinine and sucrose. The reductions in taste responsiveness persisted into adulthood for quinine but not for any of the other stimuli. Adolescent experimental rats also exhibited reduced TG neuron responses to ethanol, capsaicin, and mustard oil. The lack of change in responsiveness of the taste nerves to NaCl and the TG neurons to KCl indicates that FAE altered only a subset of the response pathways within each chemosensory system. We propose that FAE reprograms development of the peripheral taste and trigeminal systems in ways that reduce their responsiveness to ethanol and surrogates for its pleasant (i.e., sweet) and unpleasant (i.e., bitterness, oral burning) flavor attributes.NEW & NOTEWORTHY Pregnant mothers are advised to avoid alcohol. This is because even small amounts of alcohol can alter fetal brain development and increase the risk of adolescent alcohol abuse. We asked how fetal alcohol exposure (FAE) produces the latter effect in adolescent rats by measuring responsiveness of taste nerves and trigeminal

  4. Effects of intrathecal capsaicin on autonomic and behavioral heat loss responses in the rat.

    PubMed

    Dib, B

    1987-09-01

    Capsaicin and Tween 80 were injected into the lumbar subarachnoid space of rats via a chronic cannula, and the thermoregulatory effects compared. The rats were placed in a climatic chamber at an ambient temperature (Ta) of 20 and 30 degrees C. In the first series of experiments the rats had no access to the fan lever. Intrathecal (IT) capsaicin injection produced a fall in rectal temperature, with a rise in cutaneous temperatures due to vasodilation. On the contrary, IT or the intraperitoneal (IP) Tween 80 injection route had no effect on body temperature. In addition capsaicin-administered IP induced a fall in spinal cord temperature (Tsp). In the second series of experiments the rats had access to a lever activating a fan that drew cool outside air into the climatic chamber. After IT capsaicin injection, the rats increased bar-pressing behavior for fresh air. This was significant at both Ta 20 and 30 degrees C. The results tend to support the hypothesis of capsaicin action somewhere on the thermal afferent pathways. Furthermore, it is possible that the action of capsaicin on thermoregulatory behavior is mediated by the release of substance P from primary afferent terminals.

  5. Radiosurgical management of trigeminal neuralgia.

    PubMed

    Chan, Michael D; Shaw, Edward G; Tatter, Stephen B

    2013-10-01

    Over the past several decades, stereotactic radiosurgery has become a viable noninvasive treatment option for patients with trigeminal neuralgia. The scientific literature regarding the radiosurgical treatment of trigeminal neuralgia has evolved to identify factors that predict both efficacy and toxicity. Radiosurgical management has, thus, become complementary to medical management, microvascular decompression, and percutaneous ablative procedures. Thus, effective management often requires multidisciplinary collaboration. The intent of this review is to discuss the role of radiosurgery in the modern management of trigeminal neuralgia and to review radiosurgical outcomes, targeting, and controversies. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The effects of pregabalin and the glial attenuator minocycline on the response to intradermal capsaicin in patients with unilateral sciatica.

    PubMed

    Sumracki, Nicole M; Hutchinson, Mark R; Gentgall, Melanie; Briggs, Nancy; Williams, Desmond B; Rolan, Paul

    2012-01-01

    Patients with unilateral sciatica have heightened responses to intradermal capsaicin compared to pain-free volunteers. No studies have investigated whether this pain model can screen for novel anti-neuropathic agents in patients with pre-existing neuropathic pain syndromes. This study compared the effects of pregabalin (300 mg) and the tetracycline antibiotic and glial attenuator minocycline (400 mg) on capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia in patients with unilateral sciatica on both their affected and unaffected leg. Eighteen patients with unilateral sciatica completed this randomised, double-blind, placebo-controlled, three-way cross-over study. Participants received a 10 µg dose of capsaicin into the middle section of their calf on both their affected and unaffected leg, separated by an interval of 75 min. Capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were recorded pre-injection and at 5, 20, 40, 60 and 90 min post-injection. Minocycline tended to reduce pre-capsaicin injection values of hyperalgesia in the affected leg by 28% (95% CI 0% to 56%). The area under the effect time curves for capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were not affected by either treatment compared to placebo. Significant limb differences were observed for flare (AUC) (-38% in affected leg, 95% CI for difference -19% to -52%). Both hand dominance and sex were significant covariates of response to capsaicin. It cannot be concluded that minocycline is unsuitable for further evaluation as an anti-neuropathic pain drug as pregabalin, our positive control, failed to reduce capsaicin-induced neuropathic pain. However, the anti-hyperalgesic effect of minocycline observed pre-capsaicin injection is promising pilot information to support ongoing research into glial-mediated treatments for neuropathic pain. The differences in flare response between limbs may represent a useful biomarker to further investigate

  7. Capsaicin inhibits the production of tumor necrosis factor alpha by LPS-stimulated murine macrophages, RAW 264.7: a PPARgamma ligand-like action as a novel mechanism.

    PubMed

    Park, Jun-Young; Kawada, Teruo; Han, In-Seob; Kim, Byung-Sam; Goto, Tsuyoshi; Takahashi, Nobuyuki; Fushiki, Tohru; Kurata, Tadao; Yu, Rina

    2004-08-13

    Capsaicin, a major ingredient of hot pepper, is considered to exhibit anti-inflammatory properties. Our previous study demonstrated that capsaicin inhibited the production of pro-inflammatory mediators through NF-kappaB inactivation in LPS-stimulated macrophages. In order to further clarify the mechanism underlying the anti-inflammatory action of capsaicin, we investigated whether capsaicin alters PPARgamma activity, which regulates the production of the pro-inflammatory cytokine TNFalpha. Capsaicin significantly inhibited the production of TNFalpha by macrophages in a dose-dependent manner. Simultaneous exposure of the cells to capsaicin and PPARgamma agonist troglitazone or RXR agonist LG100268 resulted in stronger inhibition of TNFalpha production compared to the cells treated with either capsaicin, troglitazone, or LG100268 alone. Luciferase reporter assay revealed that capsaicin induced GAL4/PPARgamma chimera and full length PPARgamma (PPRE) transactivations in a dose-dependent manner. Furthermore, a specific PPARgamma antagonist T0070907 abrogated the inhibitory action of capsaicin on LPS-induced TNFalpha production by RAW 264.7 cells, indicating that capsaicin acts like a ligand for PPARgamma. Our data demonstrate for the first time that the anti-inflammatory action of capsaicin may be mediated by PPARgamma activation in LPS-stimulated RAW 264.7 cells.

  8. No relevant modulation of TRPV1-mediated trigeminal pain by intranasal carbon dioxide in healthy humans.

    PubMed

    Jürgens, Tim P; Reetz, Romy; May, Arne

    2013-04-10

    Nasal insufflation of CO2 has been shown to exert antinociceptive respectively antihyperalgesic effects in animal pain models using topical capsaicin with activation of TRPV1-receptor positive nociceptive neurons. Clinical benefit from CO2 inhalation in patients with craniofacial pain caused by a putative activation of TRPV1 receptor positive trigeminal neurons has also been reported. These effects are probably mediated via an activation of TRPV1 receptor - positive neurons in the nasal mucosa with subsequent central inhibitory effects (such as conditioned pain modulation). In this study, we aimed to examine the effects of intranasal CO2 on a human model of craniofacial pain elicited by nasal application of capsaicin. In a first experiment, 48 healthy volunteers without previous craniofacial pain received intranasal capsaicin to provoke trigeminal pain elicited by activation of TRVP1 positive nociceptive neurons. Then, CO2 or air was insufflated alternatingly into the nasal cavity at a flow rate of 1 l/min for 60 sec each. In the subsequent experiment, all participants were randomized into 2 groups of 24 each and received either continuous nasal insufflation of CO2 or placebo for 18:40 min after nociceptive stimulation with intranasal capsaicin. In both experiments, pain was rated on a numerical rating scale every 60 sec. Contrary to previous animal studies, the effects of CO2 on experimental trigeminal pain were only marginal. In the first experiment, CO2 reduced pain ratings only minimally by 5.3% compared to air if given alternatingly with significant results for the main factor GROUP (F1,47=4.438; p=0.041) and the interaction term TIME*GROUP (F2.6,121.2=3.3; p=0.029) in the repeated-measures ANOVA. However, these effects were abrogated after continuous insufflation of CO2 or placebo with no significant changes for the main factors or the interaction term. Although mild modulatory effects of low-flow intranasal CO2 could be seen in this human model of TRPV-1

  9. No relevant modulation of TRPV1-mediated trigeminal pain by intranasal carbon dioxide in healthy humans

    PubMed Central

    2013-01-01

    Background Nasal insufflation of CO2 has been shown to exert antinociceptive respectively antihyperalgesic effects in animal pain models using topical capsaicin with activation of TRPV1-receptor positive nociceptive neurons. Clinical benefit from CO2 inhalation in patients with craniofacial pain caused by a putative activation of TRPV1 receptor positive trigeminal neurons has also been reported. These effects are probably mediated via an activation of TRPV1 receptor - positive neurons in the nasal mucosa with subsequent central inhibitory effects (such as conditioned pain modulation). In this study, we aimed to examine the effects of intranasal CO2 on a human model of craniofacial pain elicited by nasal application of capsaicin. Methods In a first experiment, 48 healthy volunteers without previous craniofacial pain received intranasal capsaicin to provoke trigeminal pain elicited by activation of TRVP1 positive nociceptive neurons. Then, CO2 or air was insufflated alternatingly into the nasal cavity at a flow rate of 1 l/min for 60 sec each. In the subsequent experiment, all participants were randomized into 2 groups of 24 each and received either continuous nasal insufflation of CO2 or placebo for 18:40 min after nociceptive stimulation with intranasal capsaicin. In both experiments, pain was rated on a numerical rating scale every 60 sec. Results Contrary to previous animal studies, the effects of CO2 on experimental trigeminal pain were only marginal. In the first experiment, CO2 reduced pain ratings only minimally by 5.3% compared to air if given alternatingly with significant results for the main factor GROUP (F1,47 = 4.438; p = 0.041) and the interaction term TIME*GROUP (F2.6,121.2 = 3.3; p = 0.029) in the repeated-measures ANOVA. However, these effects were abrogated after continuous insufflation of CO2 or placebo with no significant changes for the main factors or the interaction term. Conclusions Although mild modulatory effects of low

  10. Diabetic rats show reduced cardiac-somatic reflex evoked by intrapericardial capsaicin.

    PubMed

    Liu, Xiao-Hua; Qin, Chao; Du, Jian-Qing; Xu, Yan; Sun, Na; Tang, Jing-Shi; Li, Qiang; Foreman, Robert D

    2011-01-25

    Painless myocardial infarction is a serious complication of diabetes. The present study examined whether cardiac nociception was altered in the streptozotocin-induced diabetic rat model by assessing intrapericardial capsaicin-evoked electromyography (EMG) responses in the spinotrapezius muscle. Somatic sensitivities to mechanical and thermal stimulation of the skin were also determined. Intrapericardial administration of capsaicin evoked a concentration-dependent EMG response, which was reproducible with repeated administration. However, the capsaicin-induced EMG responses were different in streptozotocin-induced diabetic rats and controls. Intrapericardial capsaicin produced fewer EMG responses, which were delayed and reduced in streptozotocin-treated rats compared to controls. Pretreatment with capsazepine, a TRPV1 antagonist, significantly decreased capsaicin-evoked EMG activity in both streptozotocin-treated and control rats. In addition, streptozotocin-treated rats showed a decreased paw withdrawal threshold in response to mechanical stimulation but no change in response to radiant heat stimulation. These results suggest that streptozotocin-induced diabetic rats develop somatic mechanical hypersensitivity (allodynia), but reduced cardiac nociception. Decreased TRPV1 function may contribute to the reduction of cardiac nociception in the diabetic rat.

  11. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.

    PubMed

    Jeong, Keun-Yeong; Seong, Jinsil

    2014-06-15

    The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis: attenuated by KYNA derivate (SZR72).

    PubMed

    Lukács, M; Warfvinge, K; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2017-12-01

    Migraine is a debilitating neurological disorder where trigeminovascular activation plays a key role. We have previously reported that local application of Complete Freund's Adjuvant (CFA) onto the dura mater caused activation in rat trigeminal ganglion (TG) which was abolished by a systemic administration of kynurenic acid (KYNA) derivate (SZR72). Here, we hypothesize that this activation may extend to the trigeminal complex in the brainstem and is attenuated by treatment with SZR72. Activation in the trigeminal nucleus caudalis (TNC) and the trigeminal tract (Sp5) was achieved by application of CFA onto the dural parietal surface. SZR72 was given intraperitoneally (i.p.), one dose prior CFA deposition and repeatedly daily for 7 days. Immunohistochemical studies were performed for mapping glutamate, c-fos, PACAP, substance P, IL-6, IL-1β and TNFα in the TNC/Sp5 and other regions of the brainstem and at the C1-C2 regions of the spinal cord. We found that CFA increased c-fos and glutamate immunoreactivity in TNC and C1-C2 neurons. This effect was mitigated by SZR72. PACAP positive fibers were detected in the fasciculus cuneatus and gracilis. Substance P, TNFα, IL-6 and IL-1β immunopositivity were detected in fibers of Sp5 and neither of these molecules showed any change in immunoreactivity following CFA administration. This is the first study demonstrating that dural application of CFA increases the expression of c-fos and glutamate in TNC neurons. Treatment with the KYNA analogue prevented this expression.

  13. Trigeminal neuralgia - diagnosis and treatment.

    PubMed

    Maarbjerg, Stine; Di Stefano, Giulia; Bendtsen, Lars; Cruccu, Giorgio

    2017-01-01

    Introduction Trigeminal neuralgia (TN) is characterized by touch-evoked unilateral brief shock-like paroxysmal pain in one or more divisions of the trigeminal nerve. In addition to the paroxysmal pain, some patients also have continuous pain. TN is divided into classical TN (CTN) and secondary TN (STN). Etiology and pathophysiology Demyelination of primary sensory trigeminal afferents in the root entry zone is the predominant pathophysiological mechanism. Most likely, demyelination paves the way for generation of ectopic impulses and ephaptic crosstalk. In a significant proportion of the patients, the demyelination is caused by a neurovascular conflict with morphological changes such as compression of the trigeminal root. However, there are also other unknown etiological factors, as only half of the CTN patients have morphological changes. STN is caused by multiple sclerosis or a space-occupying lesion affecting the trigeminal nerve. Differential diagnosis and treatment Important differential diagnoses include trigeminal autonomic cephalalgias, posttraumatic or postherpetic pain and other facial pains. First line treatment is prophylactic medication with sodium channel blockers, and second line treatment is neurosurgical intervention. Future perspectives Future studies should focus on genetics, unexplored etiological factors, sensory function, the neurosurgical outcome and complications, combination and neuromodulation treatment as well as development of new drugs with better tolerability.

  14. [Oxidative modification of rat blood proteins after destruction capsaicin-sensitive nerve and change of nitric oxide level].

    PubMed

    Tolochko, Z S; Spiridonov, V K

    2010-01-01

    Content of blood protein carbonyl derivates in rats are determined to assess oxidative modification of protein after destruction of capsaicin-sensitive nerve and change of nitric oxide (NO) level. Deafferentation of these nerves produces increase of the protein carbonyl derivates content. The increase of NO by L-arginine does not affect protein oxidative destruction produced by ablation of capsaicin-sensitive nerve. Selective inhibitor of neuronal synthase NO (n-NOS) 7-nitroindazole (7-NI) results in similar effect. L-NAME increased oxidative destruction of proteins. These results demonstrate that deafferentation of capsaicin-sensitive nerve induces oxidative destruction of proteins. NO has party to mediating oxidative modification of proteins.

  15. Cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator muscle are located in the mesencephalic trigeminal nucleus in rats.

    PubMed

    Fujita, Kenya; Matsuo, Kiyoshi; Yuzuriha, Shunsuke; Kawagishi, Kyutaro; Moriizumi, Tetsuji

    2012-12-01

    Since the levator and frontalis muscles lack interior muscle spindles despite being antigravity mixed muscles to involuntarily sustain eyelid opening and eyebrow lifting, this study has proposed a hypothetical mechanism to compensate for this anatomical defect. The voluntary contraction of fast-twitch fibres of the levator muscle stretches the mechanoreceptors in Müller's muscle to evoke proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study confirmed the presence of cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator and frontalis muscles. After confirming that severing the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induced ipsilateral eyelid ptosis, Fluorogold was applied as a tracer to the proximal stump of the trigeminal proprioceptive nerve in rats. Fluorogold labelled the cell bodies of the trigeminal proprioceptive neurons, not in any regions of the rat brain including the trigeminal ganglion, but in the ipsilateral mesencephalic trigeminal nucleus neighbouring the locus ceruleus. Some Fluorogold particles accumulated in the area of the locus ceruleus. The trigeminal proprioceptive neurons could be considered centrally displaced ganglion cells to transmit afferent signal from the mechanoreceptors in Müller's muscle to the mesencephalon, where they may be able to make excitatory synaptic connections with both the oculomotor neurons and the frontalis muscle motoneurons for the involuntary coordination of the eyelid and eyebrow activities, and potentially to the locus ceruleus.

  16. Chemical and pharmacological aspects of capsaicin.

    PubMed

    Reyes-Escogido, Maria de Lourdes; Gonzalez-Mondragon, Edith G; Vazquez-Tzompantzi, Erika

    2011-01-28

    Capsaicin is a unique alkaloid found primarily in the fruit of the Capsicum genus and is what provides its spicy flavor. Generally extracted directly from fruit, high demand has driven the use of established methods to increase production through extraction and characterization. Over time these methods have improved, usually be applying existing techniques in conjunction. An increasingly wide range of potential applications has increased interest in capsaicin. Especially compelling are the promising results of medical studies showing possible beneficial effects in many diseases. Capsaicin's pungency has limited its use in clinical trials to support its biological activity. Characterization and extraction/ synthesis of non-pungent analogues is in progress. A review is made of capsaicin research focusing mainly on its production, synthesis, characterization and pharmacology, including some of its main potential clinical uses in humans.

  17. The role of capsaicin in dermatology.

    PubMed

    Boyd, Katherine; Shea, Sofia M; Patterson, James W

    2014-01-01

    Neurogenic pain and pruritus are the common chief complaints at dermatology office visits. Unfortunately, they are also notoriously difficult conditions to treat. Topical capsaicin used as a single therapy or as an adjuvant offers a low-risk option for patients who do not achieve control on other therapies. This chapter presents the evidence behind topical capsaicin use in dermatologic conditions characterized by neurogenic pain or pruritus, including postherpetic neuralgia, notalgia paresthetica, brachioradial pruritus, lichen simplex chronicus, prurigo nodularis, pruritus ani, pruritus of hemodialysis, aquagenic pruritus, apocrine chromhidrosis, lipodermatosclerosis, alopecia areata, and psoriasis. It presents the most common capsaicin formulations, dosages, and durations of treatment for each condition. Additionally, the chapter addresses various adverse effects and limitations in the use of topical capsaicin in dermatology.

  18. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice.

    PubMed

    Song, Jun-Xian; Ren, Hui; Gao, Yuan-Feng; Lee, Chong-You; Li, Su-Fang; Zhang, Feng; Li, Long; Chen, Hong

    2017-01-01

    levels as compared with the normal diet. Conclusions: The beneficial effects of dietary capsaicin on glucose homeostasis are likely associated with the alterations of specific bacteria at the genus level. These alterations in bacteria induced by dietary capsaicin contribute to improved glucose homeostasis through increasing short-chain fatty acids, regulating gastrointestinal hormones and inhibiting pro-inflammatory cytokines. However, our results should be interpreted cautiously due to the lower caloric intake at the initial stage after capsaicin diet administration.

  19. Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review

    PubMed Central

    Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L

    2013-01-01

    Abstract Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain. PMID:24701256

  20. Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review.

    PubMed

    Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L

    2013-01-01

    Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain.

  1. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    PubMed Central

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-01-01

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction. PMID:27120617

  2. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction.

    PubMed

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-04-25

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction.

  3. Effects of perineural capsaicin treatment of the abdominal vagus on endotoxin fever and on a non-febrile thermoregulatory event.

    PubMed

    Pétervári, Erika; Garami, András; Pákai, Eszter; Székely, Miklós

    2005-01-01

    Following perineural capsaicin pretreatment of the main trunks of the abdominal vagus of rats, the first and the second phases of the polyphasic febrile response to intravenous lipopolysaccharide were unaltered, while the third phase of fever course (peak at 5 h) was attenuated. In rats desensitized by intraperitoneal (i.p.) capsaicin (i.e. abdominal non-systemic desensitization), mainly the first but not the later fever phases were reduced. The postprandial hyperthermia to intragastric injection of BaSO4 suspension was attenuated by either i.p. or perineural capsaicin treatment. It is concluded that, in contrast to the accepted model of postprandial hyperthermia, which is mediated by capsaicin-sensitive fibers of the abdominal vagus, in the early phase of polyphasic fever the vagal afferent nerves appear to play no role. The influence of i.p. capsaicin-desensitization on this initiating fever phase is independent of the vagus, and a capsaicin-induced alteration of endotoxin action in the liver, prior to vagal nerve endings, is more likely. The late febrile phase is probably influenced by efferent vagal fibers, which might be damaged more easily by perineural than i.p. capsaicin treatment.

  4. Inhibitory control of nociceptive responses of trigeminal spinal nucleus cells by somatosensory corticofugal projection in rat.

    PubMed

    Malmierca, E; Martin, Y B; Nuñez, A

    2012-09-27

    The caudal division of the trigeminal spinal nucleus (Sp5C) is an important brainstem relay station of orofacial pain transmission. The aim of the present study was to examine the effect of cortical electrical stimulation on nociceptive responses in Sp5C neurons. Extracellular recordings were performed in the Sp5C nucleus by tungsten microelectrodes in urethane-anesthetized Sprague-Dawley rats. Nociceptive stimulation was produced by application of capsaicin cream on the whisker pad or by constriction of the infraorbital nerve. Capsaicin application evoked a long-lasting increase in the spontaneous firing rate from 1.4±0.2 to 3.4±0.6 spikes/s. Non-noxious tactile responses from stimuli delivered to the receptive field (RF) center decreased 5 min. after capsaicin application (from 2.3±0.1 to 1.6±0.1 spikes/stimulus) while responses from the whisker located at the RF periphery increased (from 1.3±0.2 to 2.0±0.1 spikes/stimulus under capsaicin). Electrical train stimulation of the primary (S1) or secondary (S2) somatosensory cortical areas reduced the increase in the firing rate evoked by capsaicin. Also, S1, but not S2, cortical stimulation reduced the increase in non-noxious tactile responses from the RF periphery. Inhibitory cortical effects were mediated by the activation of GABAergic and glycinergic neurons because they were blocked by bicuculline or strychnine. The S1 and S2 cortical stimulation also inhibited Sp5C neurons in animals with constriction of the infraorbital nerve. Consequently, the corticofugal projection from S1 and S2 cortical areas modulates nociceptive responses of Sp5C neurons and may control the transmission of nociceptive sensory stimulus.

  5. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms.

    PubMed

    Purkiss, J; Welch, M; Doward, S; Foster, K

    2000-06-01

    Capsaicin, the pungent component of "hot" chili peppers, selectively activates a distinct population of primary sensory neurons responsive to noxious stimuli. Many of these fibres express neuropeptides including the tachykinin, substance P. Using cultured dorsal root ganglion neurons, we found that capsaicin (10 microM) stimulated a 2-fold increase in release of substance P in the absence of extracellular Ca(2+). Elevated potassium (75 mM) was unable to induce release under these conditions. The introduction of Ca(2+) enhanced capsaicin-induced release and brought about a robust response to potassium. Preincubation of cells with botulinum neurotoxin A (100 nM) completely blocked potassium-induced release but the capsaicin response, in the absence of Ca(2+), was unaffected. However, toxin treatment dramatically reduced capsaicin-stimulated release in the presence of Ca(2+). It is concluded that capsaicin induces release of substance P from dorsal root ganglion neurons via two mechanisms, one requiring extracellular Ca(2+) and the intact synaptosomal-associated protein 25 kDa (SNAP-25), and the other independent of extracellular Ca(2+) and not involving SNAP-25.

  6. Post-operative pain behavior in rats is reduced after single high-concentration capsaicin application.

    PubMed

    Pospisilova, Eva; Palecek, Jiri

    2006-12-05

    Surgical procedures associated with tissue injury are often followed by increased sensitivity to innocuous and noxious stimuli in the vicinity of the surgical wound. The aim of this study was to evaluate the role of transient receptor potential vanilloid 1 receptor (TRPV1) containing nociceptors in this process, by their functional inactivation using a high-concentration intradermal injection of capsaicin in a rat plantar incision model. Paw withdrawal responses to mechanical stimuli (von Frey filaments 10-367mN) and to radiant heat applied on plantar skin were tested in animals treated with capsaicin or the vehicle 6 days and 24h before or 2h after the incision was made. In the vehicle-treated animals, mechanical and thermal sensitivity increased significantly 1-96h following the incision. Capsaicin applied 24h before the surgery was most effective and significantly diminished the development of post-incisional mechanical allodynia and hyperalgesia. Thermal hypoalgesia was present in the incised paw after the capsaicin treatment. Capsaicin application 6 days before the incision induced thermal hypoalgesia before the incision but did not prevent completely the thermal hyperalgesia after the incision, while there was also a reduction of mechanical hypersensitivity. Application of the capsaicin injection after the incision showed its first effect at 2h after the injection and at 24h the effect was comparable with the 6 days pretreatment. Our results show an important role of TRPV1-containing nociceptors in the development of post-surgical hypersensitivity and suggest that local, high-concentration capsaicin treatment could be used to reduce it.

  7. [Reflexotherapy in neuralgias of the trigeminal nerve].

    PubMed

    Grechko, V E; Puzin, M N; Mamedbekov, F N

    1986-01-01

    Acupuncture was used in 82 patients with trigeminal neuralgila. In 17 patients trigeminal neuralgia was predominantly of the central and in 65 of the peripheral genesis. Selection of points for acupuncture was based on the findings about electrical conductivity of symmetrical acupuncture points on the patient's face. The study has shown that the method of acupuncture in patients with trigeminal neuralgia should be used differentially. It is effective only in patients with peripheral trigeminal neuralgia.

  8. MRI of the Trigeminal Nerve in Patients With Trigeminal Neuralgia Secondary to Vascular Compression.

    PubMed

    Hughes, Marion A; Frederickson, Andrew M; Branstetter, Barton F; Zhu, Xiao; Sekula, Raymond F

    2016-03-01

    Trigeminal neuralgia is a debilitating facial pain disorder, frequently caused by vascular compression of the trigeminal nerve. Vascular compression that results in trigeminal neuralgia occurs along the cisternal segment of the nerve. Imaging combined with clinical information is critical to correctly identify patients who are candidates for microvascular decompression. The purpose of this article is to review trigeminal nerve anatomy and to provide strategies for radiologists to recognize important MRI findings in patients with trigeminal neuralgia.

  9. Effect of persistent monoarthritis of the temporomandibular joint region on acute mustard oil-induced excitation of trigeminal subnucleus caudalis neurons in male and female rats.

    PubMed

    Bereiter, David A; Okamoto, Keiichiro; Bereiter, Dominique F

    2005-09-01

    The effect of persistent inflammation of the temporomandibular (TMJ) region on Fos-like immunoreactivity (Fos-LI) evoked by acute noxious stimulation of the same or opposite TMJ was assessed in male and cycling female rats. Two weeks after inflammation of the TMJ by complete Freund's adjuvant (CFA, 25 microg) the selective small fiber excitant, mustard oil (MO, 20%), was injected into the arthritic or opposite TMJ under barbiturate anesthesia. MO stimulation of the arthritic TMJ increased Fos-LI ipsilateral, but not contralateral, to MO compared to naïve subjects in superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C2) junction independent of sex hormone status. Unexpectedly, MO stimulation of the opposite TMJ in arthritic rats also produced a greater Fos-LI response ipsilateral to MO than naïve animals. Fos-LI produced in the dorsal paratrigeminal region (dPa5) and Vc/C2 junction after MO stimulation of the normal TMJ was significantly greater in proestrous than diestrous females or male monoarthritic rats. In contrast to naïve animals, Fos-LI was produced in deep laminae at the Vc/C2 junction ipsilateral to MO in CFA-treated animals independent of the site of prior CFA inflammation or sex hormone status. These results indicated that persistent monoarthritis of the TMJ region enhanced the excitability of trigeminal brainstem neurons to subsequent TMJ injury that occurred bilaterally in multiple regions of the lower trigeminal brainstem complex and depended on sex hormone status.

  10. Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation.

    PubMed

    Saunders, C J; Li, Winston Y; Patel, Tulsi D; Muday, Jeffrey A; Silver, Wayne L

    2013-01-01

    Polymodal neurons of the trigeminal nerve innervate the nasal cavity, nasopharynx, oral cavity and cornea. Trigeminal nociceptive fibers express a diverse collection of receptors and are stimulated by a wide variety of chemicals. However, the mechanism of stimulation is known only for relatively few of these compounds. Capsaicin, for example, activates transient receptor potential vanilloid 1 (TRPV1) channels. In the present study, wildtype (C57Bl/6J) and TRPV1 knockout mice were tested in three behavioral assays for irritation to determine if TRPV1 is necessary to detect trigeminal irritants in addition to capsaicin. In one assay mice were presented with a chemical via a cotton swab and their response scored on a 5 level scale. In another assay, a modified two bottle preference test, which avoids the confound of mixing irritants with the animal's drinking water, was used to assess aversion. In the final assay, an air dilution olfactometer was used to administer volatile compounds to mice restrained in a double-chambered plethysmograph where respiratory reflexes were monitored. TRPV1 knockouts showed deficiencies in the detection of benzaldehyde, cyclohexanone and eugenol in at least one assay. However, cyclohexanone was the only substance tested that appears to act solely through TRPV1.

  11. Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation

    PubMed Central

    Saunders, CJ

    2013-01-01

    Polymodal neurons of the trigeminal nerve innervate the nasal cavity, nasopharynx, oral cavity and cornea. Trigeminal nociceptive fibers express a diverse collection of receptors and are stimulated by a wide variety of chemicals. However, the mechanism of stimulation is known only for relatively few of these compounds. Capsaicin, for example, activates transient receptor potential vanilloid 1 (TRPV1) channels. In the present study, wildtype (C57Bl/6J) and TRPV1 knockout mice were tested in three behavioral assays for irritation to determine if TRPV1 is necessary to detect trigeminal irritants in addition to capsaicin. In one assay mice were presented with a chemical via a cotton swab and their response scored on a 5 level scale. In another assay, a modified two bottle preference test, which avoids the confound of mixing irritants with the animal’s drinking water, was used to assess aversion. In the final assay, an air dilution olfactometer was used to administer volatile compounds to mice restrained in a double-chambered plethysmograph where respiratory reflexes were monitored. TRPV1 knockouts showed deficiencies in the detection of benzaldehyde, cyclohexanone and eugenol in at least one assay. However, cyclohexanone was the only substance tested that appears to act solely through TRPV1. PMID:24358880

  12. Historical characterization of trigeminal neuralgia.

    PubMed

    Eboli, Paula; Stone, James L; Aydin, Sabri; Slavin, Konstantin V

    2009-06-01

    TRIGEMINAL NEURALGIA IS a well known clinical entity characterized by agonizing, paroxysmal, and lancinating facial pain, often triggered by movements of the mouth or eating. Historical reviews of facial pain have attempted to describe this severe pain over the past 2.5 millennia. The ancient Greek physicians Hippocrates, Aretaeus, and Galen, described kephalalgias, but their accounts were vague and did not clearly correspond with what we now term trigeminal neuralgia. The first adequate description of trigeminal neuralgia was given in 1671, followed by a fuller description by physician John Locke in 1677. André described the convulsive-like condition in 1756, and named it tic douloureux; in 1773, Fothergill described it as "a painful affection of the face;" and in 1779, John Hunter more clearly characterized the entity as a form of "nervous disorder" with reference to pain of the teeth, gums, or tongue where the disease "does not reside." One hundred fifty years later, the neurological surgeon Walter Dandy equated neurovascular compression of the trigeminal nerve with trigeminal neuralgia.

  13. Changes in Levels of Nerve Growth Factor in Nasal Secretions after Capsaicin Inhalation in Patients with Airway Symptoms from Scents and Chemicals

    PubMed Central

    Millqvist, Eva; Ternesten-Hasséus, Ewa; Ståhl, Arne; Bende, Mats

    2005-01-01

    Patients complaining of upper and lower airway symptoms caused by scents and chemicals have previously been shown to have increased cough sensitivity to inhaled capsaicin, but the precise mechanisms behind this reaction are unknown. Hypothesizing that a neurochemical alteration related to sensory hyperreactivity (SHR) of the airway mucosa occurs, we measured levels of nerve growth factor (NGF) in nasal lavage fluid (NAL) before and after capsaicin inhalation provocations and related the capsaicin cough sensitivity to the NGF levels. Thirteen patients with SHR and 14 control subjects were provoked with capsaicin inhalation at three different doses. We measured NGF in NAL before and after provocation and recorded cough and capsaicin-induced symptoms. All subjects demonstrated a dose-dependent cough response to capsaicin inhalation, with a more pronounced effect in patients than in controls. Basal levels of NGF were significantly lower in the patient group than in the control subjects (p < 0.01). After capsaicin provocation, the patients showed a significant increase in NGF (p < 0.01), which was related to capsaicin cough sensitivity. The findings demonstrate that, in patients with airway symptoms induced by scents and chemicals, SHR is real and measurable, demonstrating a pathophysiology in the airways of these patients compared to healthy subjects. PMID:16002371

  14. Roles of capsaicin-sensitive primary afferents in differential rat models of inflammatory pain: a systematic comparative study in conscious rats.

    PubMed

    Chen, Hui-Sheng; He, Xiang; Wang, Yang; Wen, Wei-Wei; You, Hao-Jun; Arendt-Nielsen, Lars

    2007-03-01

    To characterize the role of capsaicin-sensitive primary afferents in inflammatory pain, the effects of subcutaneous (s.c.) injection of 0.15% capsaicin on different chemical irritants-induced pathological nociception including persistent spontaneous nociception, primary thermal and mechanical hyperalgesia, and inflammatory response were systematically investigated in unanesthetized conscious rats. Four different animal models of inflammatory pain: the bee venom (BV) test, the formalin test, the carrageenan model, and the complete Freund's adjuvant (CFA) model, were employed and compared. Local pre-treatment with capsaicin produced a significant inhibition on the s.c. BV and formalin induced long-lasting persistent spontaneous nociception. However, this capsaicin-induced inhibitory effect on spontaneous nociception in the BV test was only found within the late phase (tonic nociception; 11-60 min), but not the early phase (acute nociception; 0-10 min). A complete preventing effect of capsaicin on the decreased thermal paw withdrawal latency was found in the BV, carrageenan, and CFA models. Nevertheless, pre-treatment with capsaicin only produced complete blocking effects on the decreased mechanical paw withdrawal threshold in the BV and carrageenan models, but not in the CFA model. For inflammatory response, a significant inhibition of the BV-elicited paw swelling was found following capsaicin treatment. In marked contrast, capsaicin did not produce any effects on the paw inflammation during exposure to carrageenan, CFA, and formalin. These data suggest that capsaicin-sensitive primary afferents may play differential roles in the induction and development of pathological nociception in differential inflammatory pain models. In contrast to other chemical irritants, BV-induced long-term spontaneous nociception, facilitated nociceptive behavior, and inflammation are modulated by peripheral capsaicin-sensitive afferents.

  15. Voltage-Dependent Interaction of Capsaicine and Protons on TRPV1-Receptors.

    PubMed

    Tsvetkov, E A; Potatieva, N N; Bolshakov, K V

    2017-01-01

    The interaction of TRPV1-receptors agonists (capsaicin and protons) has been studied on cultured CHO cells transfected by TRPV1-receptors. Using the whole-cell patch-clamp approach, it was shown that summation of the currents induced by agonist application was dependent on the membrane potential. The TRPV1-mediated currents induced by the pH and Capsaicin demonstrated arithmetical summation at potentials between 40--40 mV, while they were potentiated at potentials below -40 mV. Currents induced by the pH and Capsaicin combined were higher in comparison with the arithmetic sum of the currents induced by the pH and Capsaicin applied separately at such potentials. Such a potential dependence seems to be a base of the sensitization that is induced by inflammation or pain, when concentrations of proinflammatory mediators acting as TRPV1 agonists are increasing. Further depolarization induced by TRPV1 activation doesn't generate potentiation, which might serve as a protective mechanism to restrict their activity.

  16. Capsaicin affects brain function in a model of hepatic encephalopathy associated with fulminant hepatic failure in mice

    PubMed Central

    Avraham, Y; Grigoriadis, NC; Magen, I; Poutahidis, T; Vorobiav, L; Zolotarev, O; Ilan, Y; Mechoulam, R; Berry, EM

    2009-01-01

    Background and purpose: Hepatic encephalopathy is a neuropsychiatric syndrome caused by liver failure. In view of the effects of cannabinoids in a thioacetamide-induced model of hepatic encephalopathy and liver disease and the beneficial effect of capsaicin (a TRPV1 agonist) in liver disease, we assumed that capsaicin may also affect hepatic encephalopathy. Experimental approach: Fulminant hepatic failure was induced in mice by thioacetamide and 24 h later, the animals were injected with one of the following compound(s): 2-arachidonoylglycerol (CB1, CB2 and TRPV1 receptor agonist); HU308 (CB2 receptor agonist), SR141716A (CB1 receptor antagonist); SR141716A+2-arachidonoylglycerol; SR144528 (CB2 receptor antagonist); capsaicin; and capsazepine (TRPV1 receptor agonist and antagonist respectively). Their neurological effects were evaluated on the basis of activity in the open field, cognitive function in an eight-arm maze and a neurological severity score. The mice were killed 3 or 14 days after thioacetamide administration. 2-arachidonoylglycerol and 5-hydroxytryptamine (5-HT) levels were determined by gas chromatography-mass spectrometry and high-performance liquid chromatography with electrochemical detection, respectively. Results: Capsaicin had a neuroprotective effect in this animal model as shown by the neurological score, activity and cognitive function. The effect of capsaicin was blocked by capsazepine. Thioacetamide induced astrogliosis in the hippocampus and the cerebellum and raised brain 5-hydroxytryptamine levels, which were decreased by capsaicin, SR141716A and HU-308. Thioacetamide lowered brain 2-arachidonoylglycerol levels, an effect reversed by capsaicin. Conclusions: Capsaicin improved both liver and brain dysfunction caused by thioacetamide, suggesting that both the endocannabinoid and the vanilloid systems play important roles in hepatic encephalopathy. Modulation of these systems may have therapeutic value. PMID:19764982

  17. Capsaicin Displays Anti-Proliferative Activity against Human Small Cell Lung Cancer in Cell Culture and Nude Mice Models via the E2F Pathway

    PubMed Central

    Hardman, W. Elaine; Luo, Haitao; Chen, Yi C.; Carpenter, A. Betts; Lau, Jamie K.; Dasgupta, Piyali

    2010-01-01

    Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs. PMID:20421925

  18. Botulinum toxin in trigeminal neuralgia.

    PubMed

    Castillo-Álvarez, Federico; Hernando de la Bárcena, Ignacio; Marzo-Sola, María Eugenia

    2017-01-06

    Trigeminal neuralgia is one of the most disabling facial pain syndromes, with a significant impact on patients' quality of life. Pharmacotherapy is the first choice for treatment but cases of drug resistance often require new strategies, among which various interventional treatments have been used. In recent years a new therapeutic strategy consisting of botulinum toxin has emerged, with promising results. We reviewed clinical cases and case series, open-label studies and randomized clinical trials examining the use of botulinum toxin for drug-refractory trigeminal neuralgia published in the literature. The administration of botulinum toxin has proven to be a safe and effective therapeutic strategy in patients with drug-refractory idiopathic trigeminal neuralgia, but many questions remain unanswered as to the precise role of botulinum toxin in the treatment of this disease. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  19. Trigeminal neuralgia: a new therapy?

    PubMed

    Collet, C; Haen, P; Laversanne, S; Brignol, L; Thiéry, G

    2013-12-01

    Trigeminal neuralgia (TN) is a rare form of neuropathic pain that results in sudden, unilateral and recurrent pains in the distribution of one or more branches of the trigeminal nerve. The aetiology of TN remains unclear and several theories have been proposed. Many medical and surgical methods have been applied with only partial effectiveness and several side effects. New hypotheses and therapeutic methods are urgently needed. Using evidence presented in a literature review and in our own case report, we hypothesize that pain resulting from trigeminal neuralgia can be caused by demyelinating lesions in the trigger zone. These lesions can be repaired through the injection of fat containing Adipose-Derived Stem Cells (ADSC). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Alterations in capsaicin-evoked electrolyte transport during the evolution of guinea pig TNBS ileitis.

    PubMed

    Miceli, Paula; Morris, Gerald P; MacNaughton, Wallace K; Vanner, Stephen

    2002-06-01

    The efferent secretomotor activity of capsaicin-sensitive nerves was monitored during the evolution of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced ileitis in the guinea pig by recording changes in short-circuit current (DeltaI(sc)) in response to capsaicin, substance P (SP), and carbachol. Submucosal-mucosal preparations mounted in standard Ussing chambers were studied at time 0, at 8 h, and 1, 3, 5, 7, 14, and 30 days following the intraluminal instillation of TNBS or saline. Maximal DeltaI(sc) responses to capsaicin were dramatically attenuated (54%) by 24 h. By day 7, SP- and TTX-insensitive carbachol-stimulated DeltaI(sc) were also significantly reduced. Similar attenuation in capsaicin and carbachol responses was observed in jejunal tissue 20 cm proximal to the inflamed site at day 7. These studies demonstrate that efferent secretomotor function of capsaicin-sensitive nerves is maintained early in TNBS ileitis but significantly reduced by 24 h. By day 7, defects in enterocyte secretory function at inflamed and noninflamed sites also occurred, an effect that may be mediated by circulating cytokines.

  1. A novel form of capsaicin-modified amygdala LTD mediated by TRPM1.

    PubMed

    Gebhardt, Christine; von Bohlen Und Halbach, Oliver; Hadler, Michael D; Harteneck, Christian; Albrecht, Doris

    2016-12-01

    Recently we have shown that capsaicin attenuates the strength of LTP in the lateral amygdala (LA) and demonstrated that this effect is mediated by the transient receptor potential (TRP) channel TRPV1. Here we further show that capsaicin, which is thought to act primarily through TRPV1, modifies long term depression (LTD) in the LA. Yet the application of various TRPV1 antagonists does not reverse this effect and it remains in TRPV1-deficient mice. In addition, voltage gated calcium channels, nitric oxide and CB1 receptors are not involved. Using pharmacology and TRPM1(-/-) mice, our electrophysiological data indicate that capsaicin-induced activation of TRPM1 channels contribute to the induction of LA-LTD. Whereas LA-LTD in general depends on the acitvation of NMDA receptors- and group II metabotropic glutamate receptors (mGluR), the modifying effect of capsaicin on LA-LTD via TRPM1 appears to be specifically mediated by group I mGluRs and in interaction with another member of the TRP family, TRPC5. Additionally, intact GABAergic transmission is required for the capsaicin-effect to take place. This is the first documentation that beside their function in the retina TRPM1 proteins are expressed in the brain and have a functional relevance in modifying synaptic plasticity.

  2. Capsaicin pretreatment prevents disruption of the blood-aqueous barrier in the rabbit eye

    SciTech Connect

    Bynke, G.

    1983-06-01

    Capsaicin, the irritating agent of red pepper, produces ocular inflammation through a neurogenic mechanism. The present study is concerned with the long-term effects of capsaicin pretreatment on the capacity of the eye to respond to different inflammatory stimuli. Following retrobulbar injection of capsaicin to rabbits the aqueous flare response induced by subsequent infrared irradiation (IR) of the iris, subcutaneously administered alpha-melanocyte-stimulating hormone (alpha-MSH) and exogenously administered prostaglandin E2 (PGE2) was reduced greatly. In the case of IR and alpha-MSH the reduced responsiveness was manifest for several weeks after capsaicin pretreatment, involving first the capsaicin-treated eye, but later also the contralateral control eye. After 2-3 months the aqueous flare response was normal in both eyes. In the case of PGE2 the responsiveness was reduced for a shorter time; after 3 weeks the response was normal in both eyes. The results indicate that all three stimuli tested are at least partly dependent upon an intact sensory innervation to disrupt the blood-aqueous barrier, but that the mechanism of action of PGE2 is different from that of IR and alpha-MSH.

  3. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    PubMed

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  4. Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium

    PubMed Central

    Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.

    2012-01-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615

  5. [Effects of capsaicin on oxidative modification of blood plasma proteins and arterial blood pressure in fructose-fed rats].

    PubMed

    Tolochko, Z S; Spiridonov, V K

    2012-01-01

    The influence of the activation of capsaicin-sensitive nerves with capsaicin on the oxidative modification of blood plasma proteins and arterial blood pressure was studied in Wistar rats fed with 12.5% fructose in drinking water for 10 weeks. The obtained results indicate that fructose feeding induces an increase in the arterial blood pressure and the content of plasma blood protein carbonyl derivates. At the same time, in hypertensive rats, the stimulation of sensory nerves by capsaicin (1 mg/kg, i.p.) decreases the content of oxidized proteins in the plasma and normalizes the arterial blood pressure. It is suggested that capsaicin-sensitive nerves are involved in the regulation of oxidative destruction of proteins as well as in blood pressure control under metabolic disturbances produced by prolonged fructose feeding.

  6. Double peak sensory responses: effects of capsaicin.

    PubMed

    Aprile, I; Tonali, P; Stalberg, E; Di Stasio, E; Caliandro, P; Foschini, M; Vergili, G; Padua, L

    2007-10-01

    The aim of this study is to verify whether degeneration of skin receptors or intradermal nerve endings by topical application of capsaicin modifies the double peak response obtained by submaximal anodal stimulation. Five healthy volunteers topically applied capsaicin to the finger-tip of digit III (on the distal phalanx) four times daily for 4-5 weeks. Before and after local capsaicin applications, we studied the following electrophysiological findings: compound sensory action potential (CSAP), double peak response, sensory threshold and double peak stimulus intensity. Local capsaicin application causes disappearance or decrease of the second component of the double peak, which gradually increases after the suspension of capsaicin. Conversely, no significant differences were observed for CSAP, sensory threshold and double peak stimulus intensity. This study suggests that the second component of the double peak may be a diagnostic tool suitable to show an impairment of the extreme segments of sensory nerve fibres in distal sensory axonopathy in the early stages of damage, when receptors or skin nerve endings are impaired but undetectable by standard nerve conduction studies.

  7. Repeat Gamma Knife Radiosurgery for Trigeminal Neuralgia

    SciTech Connect

    Aubuchon, Adam C.; Chan, Michael D.; Lovato, James F.; Balamucki, Christopher J.; Ellis, Thomas L.; Tatter, Stephen B.; McMullen, Kevin P.; Munley, Michael T.; Deguzman, Allan F.; Ekstrand, Kenneth E.; Bourland, J. Daniel; Shaw, Edward G.

    2011-11-15

    Purpose: Repeat gamma knife stereotactic radiosurgery (GKRS) for recurrent or persistent trigeminal neuralgia induces an additional response but at the expense of an increased incidence of facial numbness. The present series summarized the results of a repeat treatment series at Wake Forest University Baptist Medical Center, including a multivariate analysis of the data to identify the prognostic factors for treatment success and toxicity. Methods and Materials: Between January 1999 and December 2007, 37 patients underwent a second GKRS application because of treatment failure after a first GKRS treatment. The mean initial dose in the series was 87.3 Gy (range, 80-90). The mean retreatment dose was 84.4 Gy (range, 60-90). The dosimetric variables recorded included the dorsal root entry zone dose, pons surface dose, and dose to the distal nerve. Results: Of the 37 patients, 81% achieved a >50% pain relief response to repeat GKRS, and 57% experienced some form of trigeminal dysfunction after repeat GKRS. Two patients (5%) experienced clinically significant toxicity: one with bothersome numbness and one with corneal dryness requiring tarsorraphy. A dorsal root entry zone dose at repeat treatment of >26.6 Gy predicted for treatment success (61% vs. 32%, p = .0716). A cumulative dorsal root entry zone dose of >84.3 Gy (72% vs. 44%, p = .091) and a cumulative pons surface dose of >108.5 Gy (78% vs. 44%, p = .018) predicted for post-GKRS numbness. The presence of any post-GKRS numbness predicted for a >50% decrease in pain intensity (100% vs. 60%, p = .0015). Conclusion: Repeat GKRS is a viable treatment option for recurrent trigeminal neuralgia, although the patient assumes a greater risk of nerve dysfunction to achieve maximal pain relief.

  8. The Brain Mechanisms Underlying the Perception of Pungent Taste of Capsaicin and the Subsequent Autonomic Responses

    PubMed Central

    Kawakami, Shinpei; Sato, Hajime; Sasaki, Akihiro T.; Tanabe, Hiroki C.; Yoshida, Yumiko; Saito, Mitsuru; Toyoda, Hiroki; Sadato, Norihiro; Kang, Youngnam

    2016-01-01

    In a human fMRI study, it has been demonstrated that tasting and ingesting capsaicin activate the ventral part of the middle and posterior short gyri (M/PSG) of the insula which is known as the primary gustatory area, suggesting that capsaicin is recognized as a taste. Tasting and digesting spicy foods containing capsaicin induce various physiological responses such as perspiration from face, salivation, and facilitation of cardiovascular activity, which are thought to be caused through viscero-visceral autonomic reflexes. However, this does not necessarily exclude the possibility of the involvement of higher-order sensory-motor integration between the M/PSG and anterior short gyrus (ASG) known as the autonomic region of the insula. To reveal a possible functional coordination between the M/PSG and ASG, we here addressed whether capsaicin increases neural activity in the ASG as well as the M/PSG using fMRI and a custom-made taste delivery system. Twenty subjects participated in this study, and three tastant solutions: capsaicin, NaCl, and artificial saliva (AS) were used. Group analyses with the regions activated by capsaicin revealed significant activations in the bilateral ASG and M/PSG. The fMRI blood oxygenation level-dependent (BOLD) signals in response to capsaicin stimulation were significantly higher in ASG than in M/PSG regardless of the side. Concomitantly, capsaicin increased the fingertip temperature significantly. Although there was no significant correlation between the fingertip temperatures and BOLD signals in the ASG or M/PSG when the contrast [Capsaicin–AS] or [Capsaicin–NaCl] was computed, a significant correlation was found in the bilateral ASG when the contrast [2 × Capsaicin–NaCl–AS] was computed. In contrast, there was a significant correlation in the hypothalamus regardless of the contrasts. Furthermore, there was a significant correlation between M/PSG and ASG. These results indicate that capsaicin increases neural activity in the

  9. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate.

    PubMed

    Iida, T; Moriyama, T; Kobata, K; Morita, A; Murayama, N; Hashizume, S; Fushiki, T; Yazawa, S; Watanabe, T; Tominaga, M

    2003-06-01

    Capsiate is a capsaicin-like ingredient of a non-pungent cultivar of red pepper, CH-19 sweet. To elucidate the mechanisms underlying the non-pungency of capsiate, we investigated whether capsiate activates the cloned capsaicin receptor, TRPV1 (VR1). In patch-clamp experiments, capsiate was found to activate TRPV1 expressed transiently in HEK293 cells with a similar potency as capsaicin. Capsiate induced nociceptive responses in mice when injected subcutaneously into their hindpaws with a similar dose dependency as capsaicin. These data indicate that the non-pungent capsiate is an agonist for TRPV1 and could excite peripheral nociceptors. In contrast to this, capsiate did not induce any significant responses when applied to the skin surface, eye or oral cavity of mice, suggesting that capsiate requires direct access to nerve endings to exhibit its effects. Capsiate was proved to have high lipophilicity and to be easily broken down in normal aqueous conditions, leading to less accessibility to nociceptors. Another highly lipophilic capsaicin analogue, olvanil, was similar to capsiate in that it did not produce irritant responses when applied to the skin surface, although it could activate TRPV1. Taken together, high lipophilicity and instability might be critical determinants for pungency and so help in understanding the effects of capsaicin-related compounds.

  10. Ascending projections of nociceptive neurons from trigeminal subnucleus caudalis: A population approach.

    PubMed

    Saito, Hiroto; Katagiri, Ayano; Okada, Shinji; Mikuzuki, Lou; Kubo, Asako; Suzuki, Tatsuro; Ohara, Kinuyo; Lee, Jun; Gionhaku, Nobuhito; Iinuma, Toshimitsu; Bereiter, David A; Iwata, Koichi

    2017-07-01

    Second-order neurons in trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1) are critical for craniofacial pain processing and project rostrally to terminate in: ventral posteromedial thalamic nucleus (VPM), medial thalamic nuclei (MTN) and parabrachial nuclei (PBN). The contribution of each region to trigeminal nociception was assessed by the number of phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons co-labeled with fluorogold (FG). The phenotype of pERK-IR neurons was further defined by the expression of neurokinin 1 receptor (NK1). The retrograde tracer FG was injected into VPM, MTN or PBN of the right hemisphere and after seven days, capsaicin was injected into the left upper lip in male rats. Nearly all pERK-IR neurons were found in superficial laminae of Vc-C1 ipsilateral to the capsaicin injection. Nearly all VPM and MTN FG-labeled neurons in Vc-C1 were found contralateral to the injection site, whereas FG-labeled neurons were found bilaterally after PBN injection. The percentage of FG-pERK-NK1-IR neurons was significantly greater (>10%) for PBN projection neurons than for VPM and MTN projection neurons (<3%). pERK-NK1-IR VPM projection neurons were found mainly in the middle-Vc, while pERK-NK1-immunoreactive MTN or PBN projection neurons were found in the middle-Vc and caudal Vc-C1. These results suggest that a significant percentage of capsaicin-responsive neurons in superficial laminae of Vc-C1 project directly to PBN, while neurons that project to VPM and MTN are subject to greater modulation by pERK-IR local interneurons. Furthermore, the rostrocaudal distribution differences of FG-pERK-NK1-IR neurons in Vc-C1 may reflect functional differences between these projection areas regarding craniofacial pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The effect of codeine on the Urge-to-Cough response to inhaled capsaicin

    PubMed Central

    Davenport, P.W.; Bolser, D.C.; Vickroy, T.; Berry, R.B.; Martin, A.D.; Hey, John A.; Danzig, M.

    2011-01-01

    We have shown previously in normal subjects that a sensory measure, the Urge-to-Cough rating, increases at concentrations of inhaled capsaicin that are lower than those necessary to elicit reflex cough. This finding suggests that the Urge-to-Cough may represent an index of the cough response. Research on cough in the human has most often employed challenge with inhaled capsaicin to induce reflex cough. Current measures of cough sensitivity in the human provide no information regarding the intensity of cough. The influence of codeine on cough perceptual sensitivity and the relationship to cough intensity with capsaicin-induced cough in normal subjects has not been evaluated. This study determined the effect of codeine on capsaicin-induced cough perceptual sensitivity and motor response in normal subjects in a double-blind, placebo-controlled, crossover study. This approach investigated the relevance of cough sensitivity, intensity, and sensory modalities in the assessment of cough suppression in humans. This study consisted of three experimental trials: administration of placebo, 30 mg codeine and 60 mg codeine. The study was double-blinded. The order of the three trials was randomized. Respiratory motor pattern was recorded with EMGs from the rectus abdominis, lateral abdominal muscles and eighth intercostal space. The subjects leaned into a fume hood to inspire deeply for 2 s once through a mouthpiece connected to the nebulizer. A modified Borg scale was used to estimate their Urge-to-Cough. The experimental trial consisted of eight test solutions of 0–200 μM capsaicin. Each solution was presented three times in a randomized block order for a total of 24 presentations. The lowest capsaicin concentration to elicit a cough was determined. The lowest capsaicin concentration to elicit an Urge-to-Cough greater than zero was identified. The Urge-to-Cough sensitivity was determined from the log–log slope. For placebo, the Urge-to-Cough was zero with inhalation of

  12. Inhibitory effect of capsaicin on B16-F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway

    PubMed Central

    Shin, Dong-Hoon; Kim, Ok-Hee; Jun, Hye-Seung

    2008-01-01

    Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), the major pungent ingredient of red pepper, has been reported to possess anti-carcinogenic and anti-mutagenic activities. In this study, the anti-migration activity of capsaicin on highly metastatic B16-F10 melanoma cells was investigated. Capsaicin significantly inhibited the migration of melanoma cells without showing obvious cellular cytotoxicity at low doses. This effect correlated with the down-regulation of phosphatidylinositol 3-kinase (PI3-K) and its downstream target, Akt. Although B16-F10 cell migration was increased by the PI3-K activator through the activation of Akt, these PI3-K activator-induced phenomena were attenuated by capsaicin. Moreover, capsaicin was found to significantly inhibit Rac1 activity in a pull-down assay. These results demonstrate that capsaicin inhibits the migration of B16-F10 cells through the inhibition of the PI3-K/Akt/Rac1 signal pathway. The present investigation suggests that capsaicin targets PI3-K/Akt/Rac1-mediated cellular events in B16-F10 melanoma cells. Consequently, capsaicin administration should be considered an effective approach for the suppression of invasion and metastasis in malignant melanoma chemotherapy. PMID:18985006

  13. Inflammation and hyperalgesia in rats neonatally treated with capsaicin: effects on two classes of nociceptive neurons in the superficial dorsal horn.

    PubMed

    Ren, K; Williams, G M; Ruda, M A; Dubner, R

    1994-11-01

    To address the mechanisms of hyperalgesia and dorsal horn plasticity following peripheral tissue inflammation, the effects of adjuvant-induced inflammation of the rat hindpaw on behavioral nociception and nociceptive neuronal activity in the superficial dorsal horn were examined in neonatally capsaicin-treated rats 6-8 weeks of age. Capsaicin treatment resulted in an 82% loss of unmyelinated fibers in L5 dorsal roots, a dramatic reduction of substance P-like immunoreactivity in the spinal cord, and a significant decrease in the percentage of dorsal horn nociceptive neurons that responded to C-fiber stimulation and noxious heating of the skin. The thermal nociceptive threshold was significantly increased in capsaicin-treated rats, but behavioral hyperalgesia to thermal stimuli still developed in response to inflammation. Following inflammation, there was a significant decrease in mechanical threshold and an increase in response duration to mechanical stimuli in both vehicle- and capsaicin-treated rats, suggesting that a state of mechanical hyperalgesia was also induced. The capsaicin treatment appears to have differential effects on nociceptive specific (NS) and wide-dynamic-range (WDR) neurons in inflamed rats. Expansion of the receptive fields of nociceptive neurons, a measure of the effect of inflammation-induced CNS plasticity, was less extensive for NS than for WDR neurons in capsaicin-treated rats. Compared to vehicle-treated rats, a smaller population of NS neurons, but a similar percentage of WDR neurons, had background activity in inflamed capsaicin-treated rats. C-fiber strength electrical stimulation of the sciatic nerve produced expansion of the receptive fields in a greater portion of NS neurons (53%, P < 0.05) in capsaicin- than in vehicle-treated rats (32%). There was no difference in stimulation-induced expansion of the receptive fields for WDR neurons between vehicle- or capsaicin-treated rats. An N-methyl-D-aspartate receptor antagonist, MK-801

  14. Adaptation to capsaicin within and across days.

    PubMed

    McBurney, D H; Balaban, C D; Christopher, D E; Harvey, C

    1997-02-01

    Subjects judged the time-course of the burn caused by 100 ppm capsaicin applied to the tongue on Day 1 and Day 5. On Days 2-4, they tasted hard candy containing capsaicin. Most subjects did not show adaptation within Day 1, but either plateaued after about 16 min or rose monotonically for the entire 34 min. Intensity was less on Day 5 and levelled off or declined for most subjects. Data were fit to a mathematical model of adaptation. Adaptation across days was accounted for by changes in the gains of the three processes.

  15. Pharmacological treatment of trigeminal neuralgia.

    PubMed

    Di Stefano, Giulia; Truini, Andrea

    2017-10-01

    Unique among the different neuropathic pain conditions, trigeminal neuralgia frequently has an excellent response to some selected drugs, which, on the other hand, often entail disabling side effects. Physicians should be therefore acquainted with the management of these drugs and the few alternative options. Areas covered: This article, based on a systematic literature review, describes the pharmacological options, and indicates the future perspectives for treating trigeminal neuralgia. The article therefore provides current, evidence-based knowledge about the pharmacological treatment of trigeminal neuralgia, and suggests a practical approach to the various drugs, including starting dose, titration and side effects. Expert commentary: Carbamazepine and oxcarbazepine are the reference standard drugs for treating patients with trigeminal neuralgia. They are effective in most patients. The undesired effects however cause withdrawal from treatment or a dosage reduction to an insufficient level in many patients. Sodium channel blockers selective for the sodium channel 1.7 (Nav1.7) receptor, currently under development, might be an alternative, better-tolerated pharmacological option in the next future.

  16. Effect of highly purified capsaicin on articular cartilage and rotator cuff tendon healing: An in vivo rabbit study.

    PubMed

    Friel, Nicole A; McNickle, Allison G; DeFranco, Michael J; Wang, FanChia; Shewman, Elizabeth F; Verma, Nikhil N; Cole, Brian J; Bach, Bernard R; Chubinskaya, Susan; Kramer, Susan M; Wang, Vincent M

    2015-12-01

    Highly purified capsaicin has emerged as a promising injectable compound capable of providing sustained pain relief following a single localized treatment during orthopedic surgical procedures. To further assess its reliability for clinical use, the potential effect of highly purified capsaicin on articular cartilage metabolism as well as tendon structure and function warrants clarification. In the current study, rabbits received unilateral supraspinatus transection and repair with a single 1 ml injection of capsaicin (R+C), PEG-only placebo (R+P), or saline (R+S) into the glenohumeral joint (GHJ). An additional group received 1 ml capsaicin onto an intact rotator cuff (I+C). At 18 weeks post-op, cartilage proteoglycan (PG) synthesis and content as well as cell viability were similar (p>0.05) across treatment groups. Biomechanical testing revealed no differences (p>0.05) among tendon repair treatment groups. Similarly, histologic features of both cartilage and repaired tendons showed minimal differences across groups. Hence, in this rabbit model, a single injection of highly purified capsaicin into the GHJ does not induce a deleterious response with regard to cartilage matrix metabolism and cell viability, or rotator cuff healing. These data provide further evidence supporting the use of injectable, highly purified capsaicin as a safe alternative for management of postoperative pain following GHJ surgery. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. [The effect of destruction of rat capsaicin-sensitive nerves on blood pressure in rats with metabolic syndrome].

    PubMed

    Spiridonov, V K; Tolochko, Z S; Kostina, N E

    2013-09-01

    The effect of destruction of capsaicin-sensitive nerve (capsaicin 150 mg/kg, s/c) on blood pre- ssure was investigated in rats with metabolic syndrome induced by fructose (12.5% in drinking water for 10 weeks). The blood plasma concentrations of glucose, triglyceride (TG) and products of lipid perioxidation were defined in these rats. The systolic blood pressure was measured by non-invasive method using the Coda system (Coda, Kent Scientific, USA). The fructose diet caused impaired tolerance glucose, arterial hypertension, increased the contents of TG and products of lipid peroxidation. In capsaicin--pretreated rats (deafferentiation of capsaicin-sensitive nerve) the fructose intake did not evoke impairment tolerance glucose, the increase of systolic blood pressure and the plasma content of triglyceride. The increase of lipid perioxidation in fructose fed rats was not prevented by capsaicin pretreatment. The authors suggest that capsaicin-sensitive nerves contribute to the development of insulin resistance and arterial hypertension in the metabolic syndrome.

  18. The Effect of Capsaicin on Salivary Gland Dysfunction.

    PubMed

    Shin, Yong-Hwan; Kim, Jin Man; Park, Kyungpyo

    2016-06-25

    Capsaicin (trans-8-methyl-N-vanilyl-6-nonenamide) is a unique alkaloid isolated from hot chili peppers of the capsicum family. Capsaicin is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), which is expressed in nociceptive sensory neurons and a range of secretory epithelia, including salivary glands. Capsaicin has analgesic and anti-inflammatory properties in sensory neurons. Recently, increasing evidence has indicated that capsaicin also affects saliva secretion and inflammation in salivary glands. Applying capsaicin increases salivary secretion in human and animal models. Capsaicin appears to increase salivation mainly by modulating the paracellular pathway in salivary glands. Capsaicin activates TRPV1, which modulates the permeability of tight junctions (TJ) by regulating the expression and function of putative intercellular adhesion molecules in an ERK (extracelluar signal-regulated kinase) -dependent manner. Capsaicin also improved dysfunction in transplanted salivary glands. Aside from the secretory effects of capsaicin, it has anti-inflammatory effects in salivary glands. The anti-inflammatory effect of capsaicin is, however, not mediated by TRPV1, but by inhibition of the NF-κB pathway. In conclusion, capsaicin might be a potential drug for alleviating dry mouth symptoms and inflammation of salivary glands.

  19. Spontaneous trigeminal allodynia in rats: a model of primary headache.

    PubMed

    Oshinsky, Michael L; Sanghvi, Menka M; Maxwell, Christina R; Gonzalez, Dorian; Spangenberg, Rebecca J; Cooper, Marnie; Silberstein, Stephen D

    2012-10-01

    Animal models are essential for studying the pathophysiology of headache disorders and as a screening tool for new therapies. Most animal models modify a normal animal in an attempt to mimic migraine symptoms. They require manipulation to activate the trigeminal nerve or dural nociceptors. At best, they are models of secondary headache. No existing model can address the fundamental question: How is a primary headache spontaneously initiated? In the process of obtaining baseline periorbital von Frey thresholds in a wild-type Sprague-Dawley rat, we discovered a rat with spontaneous episodic trigeminal allodynia (manifested by episodically changing periorbital pain threshold). Subsequent mating showed that the trait is inherited. Animals with spontaneous trigeminal allodynia allow us to study the pathophysiology of primary recurrent headache disorders. To validate this as a model for migraine, we tested the effects of clinically proven acute and preventive migraine treatments on spontaneous changes in rat periorbital sensitivity. Sumatriptan, ketorolac, and dihydroergotamine temporarily reversed the low periorbital pain thresholds. Thirty days of chronic valproic acid treatment prevented spontaneous changes in trigeminal allodynia. After discontinuation, the rats returned to their baseline of spontaneous episodic threshold changes. We also tested the effects of known chemical human migraine triggers. On days when the rats did not have allodynia and showed normal periorbital von Frey thresholds, glycerol trinitrate and calcitonin gene related peptide induced significant decreases in the periorbital pain threshold. This model can be used as a predictive model for drug development and for studies of putative biomarkers for headache diagnosis and treatment.

  20. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats.

    PubMed

    Kumar Sarwa, Khomendra; Rudrapal, Mithun; Mazumder, Bhaskar

    2015-12-01

    In this study, topical ethosomal formulation of capsaicin was prepared and evaluated for bio-efficacy in arthritic rats. Physical and biological characterizations of prepared capsaicin-loaded nano vesicular systems were also carried out. Ethosomal capsaicin showed significant reduction of rat paw edema along with promising antinociceptive action. The topical antiarthritic efficacy of prepared formulation of capsaicin was found more than that of Thermagel, a marketed gel of capsaicin. From toxicological study, no predictable signs of toxicity such as skin irritation (of experimental rats) were observed. Based on this finding, ethosomal capsaicin could be proposed as an effective as well as a safe topical delivery system for the long-term treatment of arthritis and associated inflammo-musculoskeletal disorders. Such exciting result would eventually enlighten the analgesic and anti-inflammatory potential of capsaicin for topical remedy.

  1. The non-peptide neurokinin-1 antagonist, RPR 100893, decreases c-fos expression in trigeminal nucleus caudalis following noxious chemical meningeal stimulation.

    PubMed

    Cutrer, F M; Moussaoui, S; Garret, C; Moskowitz, M A

    1995-02-01

    The effect of RPR 100893, a selective and specific neurokinin-1 antagonist, or its enantiomer RPR 103253 was examined on c-fos antigen expression in brain stem and upper cervical cord 2 h after intracisternal capsaicin injection (30.5 micrograms/ml) in pentobarbital-anesthetized Hartley guinea-pigs. Positive cells were counted at three levels corresponding to obex, -2.25 mm and -6.75 mm in 18 sections (50 microns). Immunoreactivity was strongly expressed within laminae I and IIo of trigeminal nucleus caudalis, area postrema and the leptomeninges. Moderate labeling was present in the nucleus of the solitary tract and the medullary lateral reticular nucleus, whereas few positive cells were found in the ventral portion of the medullary reticular nucleus and Rexed laminae III-V and X. The distribution of labeled cells was consistent with previously reported results following subarachnoid placement of the noxious agents, blood or carrageenin. Pretreatment with RPR 100893 (1, 10 and 100 micrograms/kg, i.v.) but not its enantiomer (100 micrograms/kg, i.v.) 30 min prior to capsaicin injection significantly reduced the number of positive cells in the trigeminal nucleus caudalis (P < 0.01) in a dose-dependent manner, but not within area postrema or nucleus of the solitary tract. These results indicate that (i) the instillation of capsaicin into the subarachnoid space is an effective stimulus for the induction of c-fos antigen within trigeminal nucleus caudalis, presumably through activation of trigeminovascular afferents, and (ii) the neurokinin-1 antagonist RPR 100893 reduces the number of positive cells selectively within this nucleus. The findings are significant because drugs which alleviate vascular headaches decrease the number of c-fos-positive cells within trigeminal nucleus caudalis following noxious meningeal stimulation. Hence, strategies aimed at blocking the neurokinin-1 receptor may be useful for treating migraine and cluster headache.

  2. Inhibition of bradykinin-evoked trigeminal nerve stimulation by the non-peptide bradykinin B2 receptor antagonist WIN 64338 in vivo and in vitro.

    PubMed Central

    Hall, J. M.; Figini, M.; Butt, S. K.; Geppetti, P.

    1995-01-01

    1. This study investigated the effect of the recently described non-peptide bradykinin B2 receptor antagonist, WIN 64338 ([[4-[[2- [[bis(cyclohexylamino)methylene]amino]-3-(2-naphthalenyl)-1-oxopropyl] amino]phenyl]methyl]tributylphosphoniumchloride monohydrochloride), in experimental models of bradykinin-evoked sensory nerve stimulation. 2. In the rabbit isolated iris sphincter in vitro, bradykinin-evoked contractile responses are mediated via tachykinins released from peripheral endings of the trigeminal sensory nerve. WIN 64338 (1-10 microM) competitively antagonised contractile responses to bradykinin with a pKB estimate of 6.6 +/- 0.1 (n = 11). The antagonism was selective since WIN 64338 (10 microM) did not significantly inhibit submaximal contractile responses to the direct-acting spasmogens substance P (10 nM), neurokinin A (3 nM), substance P methyl ester (10 nM) or senktide (100 nM); nor by sensory non-adrenergic non-cholinergic nerve stimulation evoked by capsaicin (10 microM), or electrical field-stimulation (3, 10, 30 Hz) (P > 0.05; n = 3-11). 3. Topical application of bradykinin to the conjunctiva and to the nasal mucosa of the guinea-pig in vivo causes plasma extravasation predominantly via the release of tachykinins from peripheral endings of the trigeminal nerve. The increases in plasma extravasation (measured by extravasation of Evans blue dye) induced by bradykinin in the guinea-pig conjunctiva (20 nmol) and nasal mucosa (50 nmol) were markedly reduced (by 81 +/- 3% and 69 +/- 5%, respectively) following pretreatment with WIN 64338 (30 nmol kg-1, i.v.) (n = 5-6; P < 0.05), with almost complete inhibition at a higher dose of WIN 64338 (300 nmol kg-1, i.v.; n = 5-6). This inhibition was selective since at 300 nmol kg-1, WIN 64338 did not inhibit plasma extravasation evoked by substance P in the conjunctiva (5 nmol; P > 0.05; n = 6) or in the nasal mucosa (50 nmol; P > 0.05; n = 5). 4. This study demonstrates that WIN 64338 is a selective and

  3. MRI as an essential diagnostic approach for trigeminal neuralgia.

    PubMed

    Kedarnath, N S; Shruthi, R

    2015-03-01

    Trigeminal neuralgia is a well recognised disorder frequently reported to the dentist. The diagnosis of trigeminal neuralgia is primarily based on history and clinical criteria. The clinical findings do not differentiate idiopathic trigeminal neuralgia from symptomatic trigeminal neuralgia. We describe a case of cliviopetrosal meningioma presenting as trigeminal neuralgia and discuss the importance of magnetic resonance imaging as an essential diagnostic approach when trigeminal neuralgia occurs concurrently with a brain tumour.

  4. Trigeminal trophic syndrome with histopathologic correlation.

    PubMed

    Dolohanty, Lindsey B; Richardson, Steven J; Herrmann, David N; Markman, John; Mercurio, Mary Gail

    2015-03-01

    We present the case of a 49-year-old woman with trigeminal trophic syndrome (TTS), also known as trophic trigeminal neuralgia, trigeminal neurotrophic ulceration, and/or trigeminal neuropathy with nasal ulceration. Our case represents an uncommon report of intractable itching and chronic pain associated with TTS. Emphasis was placed on skin biopsy histology, which revealed no neuronal innervation of the affected scalp despite reports of intractable itching and chronic pain. Trigeminal trophic syndrome of the V1 branch of the trigeminal nerve secondary to herpes zoster (HZ) with correlated histology is described. This article provides a discussion of TTS and correlated histology as well as a brief discussion of intractable itching and postherpetic neuralgia.

  5. [Trigeminal neuralgia secondary to petrous endostosis].

    PubMed

    Mata-Gómez, Jacinto; Royano-Sánchez, Manuel; Bejarano-Parra, Macarena; Gilete-Tejero, Ignacio; Rico-Cotelo, María; Ortega-Martínez, Marta

    2017-03-10

    Arterial neurovascular compression is hypothesised to be the main cause of primary trigeminal neuralgia. Although it is the most common cause, other pathologies, such as tumours in the cerebellopontine angle, can cause trigeminal pain. We report a case of a 44-year-old female patient with right trigeminal neuralgia without satisfactory response to medical treatment. Cerebral MRI showed no structural injuries. During microvascular decompression of the trigeminal nerve, endostosis of the internal aspect of the petrous bone was found to compress the trigeminal nerve. The pain disappeared completely in the early postsurgical period, after the complete drilling of the endostosis and microvascular decompression. The patient remains asymptomatic one year later. Endostosis of the petrous bone is a rare cause of trigeminal neuralgia. A proper review of preoperative studies would enable the definitive surgical approach to be optimised.

  6. The enhanced anti-obesity effect and reduced gastric mucosa irritation of capsaicin-loaded nanoemulsions.

    PubMed

    Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong

    2017-05-24

    Capsaicin (CAP), the major active component of chili peppers, is known to have thermogenic and weight-loss potential. The aim of this study was to investigate the anti-obesity effects of capsaicin-loaded nanoemulsions (C-NE) on male Sprague Dawley (SD) rats treated with a high-fat diet (HFD). The food grade C-NE was prepared using capsaicin, medium chain triacylglycerols (MCT) (Neobee 1053), sucrose stearate S-370, Tween 80 and distilled water with an emulsion droplet size of 168 nm and a capsaicin loading of 80.4 mg mL(-1). Results showed that C-NE effectively decreased body weight gain and hypercholesterolemia induced by HFD in a dose-dependent manner. Histological evaluations of the liver and adipose tissue confirmed that C-NE had significant effects on inhibiting diet-induced hepatic steatosis, reducing epididymal adipocyte size and tissue mass. A gastric mucosa irritation test demonstrated that C-NE was effective in alleviating the gastric inflammation caused by free unformulated CAP crystals.

  7. Morphine Increases Acetylcholine Release in the Trigeminal Nuclear Complex

    PubMed Central

    Zhu, Zhenghong; Bowman, Heather R.; Baghdoyan, Helen A.; Lydic, Ralph

    2008-01-01

    Study Objectives: The trigeminal nuclear complex (V) contains cholinergic neurons and includes the principal sensory trigeminal nucleus (PSTN) which receives sensory input from the face and jaw, and the trigeminal motor nucleus (MoV) which innervates the muscles of mastication. Pain associated with pathologies of V is often managed with opioids but no studies have characterized the effect of opioids on acetylcholine (ACh) release in PSTN and MoV. Opioids can increase or decrease ACh release in brainstem nuclei. Therefore, the present experiments tested the 2-tailed hypothesis that microdialysis delivery of opioids to the PSTN and MoV significantly alters ACh release. Design: Using a within-subjects design and isoflurane-anesthetized Wistar rats (n = 53), ACh release in PSTN during microdialysis with Ringer's solution (control) was compared to ACh release during dialysis delivery of the sodium channel blocker tetrodotoxin, muscarinic agonist bethanechol, opioid agonist morphine, mu opioid agonist DAMGO, antagonists for mu (naloxone) and kappa (nor-binaltorphimine; nor-BNI) opioid receptors, and GABAA antagonist bicuculline. Measurements and Results: Tetrodotoxin decreased ACh, confirming action potential-dependent ACh release. Bethanechol and morphine caused a concentration-dependent increase in PSTN ACh release. The morphine-induced increase in ACh release was blocked by nor-BNI but not by naloxone. Bicuculline delivered to the PSTN also increased ACh release. ACh release in the MoV was increased by morphine, and this increase was not blocked by naloxone or nor-BNI. Conclusions: These data comprise the first direct measures of ACh release in PSTN and MoV and suggest synaptic disinhibition as one possible mechanism by which morphine increases ACh release in the trigeminal nuclei. Citation: Zhu Z; Bowman HR; Baghdoyan HA; Lydic R. Morphine increases acetylcholine release in the trigeminal nuclear complex. SLEEP 2008;31(12):1629–1637. PMID:19090318

  8. Post-apopletic trigeminal trophic syndrome.

    PubMed

    Ferrara, G; Argenziano, G; Cicarelli, G; Cusano, F; Delfino, M

    2001-03-01

    Trigeminal trophic syndrome is an uncommon clinical entity in which cutaneous trophic ulceration develops with continuous manipulation of trigeminal dermatomes. Patients spontaneously refer picking, rubbing and/or scratching at the affected areas because of hypo-anaesthesia, paraesthesia and/or pain following damage of the sensory trigeminal fibres or nuclei. We herein describe a patient who developed the syndrome as a sequela of brain stem infarction. Diagnosis by scrape cytology in ruling-out basal cell carcinoma and other ulcerative skin diseases is discussed and the importance of neurological examination in disclosing hemi-anaesthesia of trigeminal dermatome(s) is emphasized.

  9. Capsaicin augments synaptic transmission in the rat medial preoptic nucleus.

    PubMed

    Karlsson, Urban; Sundgren-Andersson, Anna K; Johansson, Staffan; Krupp, Johannes J

    2005-05-10

    The medial preoptic nucleus (MPN) is the major nucleus of the preoptic area (POA), a hypothalamic area involved in the regulation of body-temperature. Injection of capsaicin into this area causes hypothermia in vivo. Capsaicin also causes glutamate release from hypothalamic slices. However, no data are available on the effect of capsaicin on synaptic transmission within the MPN. Here, we have studied the effect of exogenously applied capsaicin on spontaneous synaptic activity in hypothalamic slices of the rat. Whole-cell patch-clamp recordings were made from visually identified neurons located in the MPN. In a subset of the studied neurons, capsaicin enhanced the frequency of spontaneous glutamatergic EPSCs. Remarkably, capsaicin also increased the frequency of GABAergic IPSCs, an effect that was sensitive to removal of extracellular calcium, but insensitive to tetrodotoxin. This suggests an action of capsaicin at presynaptic GABAergic terminals. In contrast to capsaicin, the TRPV4 agonist 4alpha-PDD did not affect GABAergic IPSCs. Our results show that capsaicin directly affects synaptic transmission in the MPN, likely through actions at presynaptic terminals as well as on projecting neurons. Our data add to the growing evidence that capsaicin receptors are not only expressed in primary afferent neurons, but also contribute to synaptic processing in some CNS regions.

  10. Controlled thermocoagulation in trigeminal neuralgia.

    PubMed Central

    Mittal, B; Thomas, D G

    1986-01-01

    Results of 280 radiofrequency lesions on 229 patients with trigeminal neuralgia are presented with three months to eight years (average 3.8 years) follow up. The patients were aged from 18-91 years. There was a high overall success rate of 94%. The complication rate has been low, with sensory paraesthesiae the commonest (15%) and cranial nerve palsies very rare (2.4%) compared to other reported series. PMID:3746327

  11. CAPSAICIN-SENSITIVE SENSORY NERVE FIBERS CONTRIBUTE TO THE GENERATION AND MAINTENANCE OF SKELETAL FRACTURE PAIN

    PubMed Central

    Jimenez-Andrade, Juan Miguel; Bloom, Aaron P.; Mantyh, William G.; Koewler, Nathan J.; Freeman, Katie T.; Delong, David; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2009-01-01

    Although skeletal pain can have a marked impact on a patient’s functional status and quality of life, relatively little is known about the specific populations of peripheral nerve fibers that drive non-malignant bone pain. In the present report, neonatal male Sprague Dawley rats were treated with capsaicin or vehicle and femoral fracture was produced when the animals were young adults (15–16 weeks old). Capsaicin treatment, but not vehicle, resulted in a significant (>70%) depletion in the density of calcitonin-gene related peptide positive (CGRP+) sensory nerve fibers, but not 200 kD neurofilament H positive (NF200+) sensory nerve fibers in the periosteum. The periosteum is a thin, cellular and fibrous tissue that tightly adheres to the outer surface of all but the articulated surface of bone and appears to play a pivotal role in driving fracture pain. In animals treated with capsaicin, but not vehicle, there was a 50% reduction in the severity, but no change in the time course, of fracture-induced skeletal pain related behaviors as measured by spontaneous flinching, guarding and weight bearing. These results suggest that both capsaicin-sensitive (primarily CGRP+ C-fibers) and capsaicin-insensitive (primarily NF200+ A-delta fibers) sensory nerve fibers participate in driving skeletal fracture pain. Skeletal pain can be a significant impediment to functional recovery following trauma-induced fracture, osteoporosis-induced fracture and orthopedic surgery procedures such as knee and hip replacement. Understanding the specific populations of sensory nerve fibers that need to be targeted to inhibit the generation and maintenance of skeletal pain may allow the development of more specific mechanism-based therapies that can effectively attenuate acute and chronic skeletal pain. PMID:19486928

  12. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    PubMed

    Lübbert, Matthias; Kyereme, Jessica; Schöbel, Nicole; Beltrán, Leopoldo; Wetzel, Christian Horst; Hatt, Hanns

    2013-01-01

    Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants), environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants). In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  13. Transient Receptor Potential Channels Encode Volatile Chemicals Sensed by Rat Trigeminal Ganglion Neurons

    PubMed Central

    Schöbel, Nicole; Beltrán, Leopoldo; Wetzel, Christian Horst; Hatt, Hanns

    2013-01-01

    Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual’s physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants), environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants). In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia. PMID:24205061

  14. Rehabilitation of the trigeminal nerve

    PubMed Central

    Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank

    2005-01-01

    When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060

  15. Multimodality Management of Trigeminal Schwannomas.

    PubMed

    Niranjan, Ajay; Barnett, Samuel; Anand, Vijay; Agazzi, Siviero

    2016-08-01

    Patients presenting with trigeminal schwannomas require multimodality management by a skull base surgical team that can offer expertise in both transcranial and transnasal approaches as well as radiosurgical and microsurgical strategies. Improvement in neurologic symptoms, preservation of cranial nerve function, and control of mass effect are the primary goals of management for trigeminal schwannomas. Complete surgical resection is the treatment of choice but may not be possible in all cases. Radiosurgery is an option as primary management for small- to moderate-sized tumors and can be used for postoperative residuals or recurrences. Planned surgical resection followed by SRS for residual tumor is an effective option for larger trigeminal schwannomas. The endoscopic resection is an excellent approach for patients with an extradural tumor or tumors isolated to the Meckel cave. A detailed analysis of a tumor and its surroundings based on high-quality imaging can help better estimate the expected outcome from each treatment. An expert skull base team should be able to provide precise counseling for each patient's situation for selecting the best option.

  16. The Effects of Pregabalin and the Glial Attenuator Minocycline on the Response to Intradermal Capsaicin in Patients with Unilateral Sciatica

    PubMed Central

    Sumracki, Nicole M.; Hutchinson, Mark R.; Gentgall, Melanie; Briggs, Nancy; Williams, Desmond B.; Rolan, Paul

    2012-01-01

    Background Patients with unilateral sciatica have heightened responses to intradermal capsaicin compared to pain-free volunteers. No studies have investigated whether this pain model can screen for novel anti-neuropathic agents in patients with pre-existing neuropathic pain syndromes. Aim This study compared the effects of pregabalin (300 mg) and the tetracycline antibiotic and glial attenuator minocycline (400 mg) on capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia in patients with unilateral sciatica on both their affected and unaffected leg. Methods/Results Eighteen patients with unilateral sciatica completed this randomised, double-blind, placebo-controlled, three-way cross-over study. Participants received a 10 µg dose of capsaicin into the middle section of their calf on both their affected and unaffected leg, separated by an interval of 75 min. Capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were recorded pre-injection and at 5, 20, 40, 60 and 90 min post-injection. Minocycline tended to reduce pre-capsaicin injection values of hyperalgesia in the affected leg by 28% (95% CI 0% to 56%). The area under the effect time curves for capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were not affected by either treatment compared to placebo. Significant limb differences were observed for flare (AUC) (−38% in affected leg, 95% CI for difference −19% to −52%). Both hand dominance and sex were significant covariates of response to capsaicin. Conclusions It cannot be concluded that minocycline is unsuitable for further evaluation as an anti-neuropathic pain drug as pregabalin, our positive control, failed to reduce capsaicin-induced neuropathic pain. However, the anti-hyperalgesic effect of minocycline observed pre-capsaicin injection is promising pilot information to support ongoing research into glial-mediated treatments for neuropathic pain. The differences in flare response between limbs may

  17. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment.

    PubMed

    Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo

    2017-07-21

    a novel type of desensitization analgesia. Transient receptor potential vanilloid 1 receptors also respond to noxious stimuli, such as heat (>43 °C), acids (pH <6), pain, change in osmolarity, and endovanilloids. The action of topical capsaicin may mimic the effect of heat-activation of transient receptor potential vanilloid 1. Endocannabinoid system and transient receptor potential vanilloid 1: Cannabinoid hyperemesis syndrome may result from a derangement in the endocannabinoid system secondary to chronic exogenous stimulation. The relief of cannabinoid hyperemesis syndrome symptoms from heat and use of transient receptor potential vanilloid 1 agonists suggests a complex interrelation between the endocannabinoid system and transient receptor potential vanilloid 1. Temperature regulation: Hot water hydrotherapy is a mainstay of self-treatment for cannabinoid hyperemesis syndrome patients. This may be explained by heat-induced transient receptor potential vanilloid 1 activation. "Sensocrine" antiemetic effects: Transient receptor potential vanilloid 1 activation by heat or capsaicin results in modulation of tachykinins, somatostatin, pituitary adenylate-cyclase activating polypeptide, and calcitonin gene-related peptide as well as histaminergic, cholinergic, and serotonergic transmission. These downstream effects represent further possible explanations for transient receptor potential vanilloid 1-associated antiemesis. These complex interactions between the endocannabinoid systems and transient receptor potential vanilloid 1, in the setting of cannabinoid receptor desensitization, may yield important clues into the pathophysiology and treatment of cannabinoid hyperemesis syndrome. This knowledge can provide clinicians caring for these patients with additional treatment options that may reduce length of stay, avoid unnecessary imaging and laboratory testing, and decrease the use of potentially harmful medications such as opioids.

  18. Bioavailability of capsaicin and its implications for drug delivery

    PubMed Central

    Rollyson, William D.; Stover, Cody A.; Brown, Kathleen C.; Perry, Haley E.; Stevenson, Cathryn D.; McNees, Christopher A.; Ball, John G.; Valentovic, Monica A.; Dasgupta, Piyali

    2014-01-01

    The dietary compound capsaicin is responsible for the “hot and spicy” taste of chili peppers and pepper extracts. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation. Emerging studies show that it displays potent anti-tumor activity in several human cancers. On a more basic research level, capsaicin has been used as a ligand to activate several types of ion-channel receptors. The pharmacological activity of capsaicin-like compounds is dependent on several factors like the dose, the route of administration and most importantly on its concentration at target tissues. The present review describes the current knowledge involving the metabolism and bioavailability of capsaicinoids in rodents and humans. Novel drug delivery strategies used to improve the bioavailability and therapeutic index of capsaicin are discussed in detail. The generation of novel capsaicin-mimetics and improved drug delivery methods will foster the hope of innovative applications of capsaicin in human disease. PMID:25307998

  19. The sensory response to capsaicin during repeated topical exposures: differential effects on sensations of itching and pungency.

    PubMed

    Green, B G; Shaffer, G S

    1993-06-01

    Changes in sensory irritation were measured during repeated topical exposures to capsaicin over 2 days. The perceived intensities of itching and pungent sensations, predominantly burning and stinging/pricking, were assessed every 60 sec during 5 applications of capsaicin at inter-stimulus intervals (ISI) of 90 min (Exp. 1) or 15 min (Exp. 2) and in follow-up tests 24 h later. Psychophysical measurements were obtained with a hand-held dynamometer in conjunction with the method of magnitude production. When the ISI was 90 min, itching and pungency were both significantly reduced (i.e., desensitization occurred) by the fifth exposure; however, the reduction occurred more rapidly and dramatically for itching. After 24 h, desensitization remained significant only for itching. When the ISI was 15 min, the sensations on day 1 first intensified in a manner consistent with sensitization, then declined in a manner consistent with desensitization; compared to pungency, itch exhibited less sensitization and more desensitization. On day 2, overall intensity was less for both categories of sensation, primarily because of a reduction in sensitization. Marked individual differences were observed in the overall sensitivity to capsaicin, the time course of sensation, the susceptibility to capsaicin-induced itch, and the rate and duration of sensitization and desensitization. The results are discussed in terms of current hypotheses about the sensory mechanisms that underlie chemically induced itch and the use of capsaicin as a topical analgesic and antipruritic.

  20. Depletion of substance P, neurokinin A and calcitonin gene-related peptide from the contralateral and ipsilateral caudal trigeminal nucleus following unilateral electrical stimulation of the trigeminal ganglion; a possible neurophysiological and neuroanatomical link to generalized head pain.

    PubMed

    Samsam, M; Coveñas, R; Csillik, B; Ahangari, R; Yajeya, J; Riquelme, R; Narváez, J A; Tramu, G

    2001-03-01

    Primary trigeminal neurons of the trigeminal ganglion (TG) innervate major parts of the face and head, including the dura. Electrical stimulation of the TG at specific parameters, can activate its nociceptive neurons and may serve as an experimental pain model. Markowitz [J. Neurosci. 7 (1987) 4129] reported that electrical stimulation of the trigeminal ganglion (TG) causes extravasation of plasma proteins from venules of the trigeminally innervated domain possibly due to the release of vasoactive substances. Neurogenic inflammation (vasodilatation, plasma protein extravasation, release of vasoactive peptides) in dura may serve as one of the possible pathomechanisms underlying vascular head pain [Moskowitz, Ann. Neurol. 16 (1984) 157]. We performed a unilateral electrical stimulation (7.5 Hz, 5 ms, 0.8-1.4 mA for 5 min) of the TG in rat, to induce a neurogenic inflammation in the peripheral trigeminal domain including the dura, looking for calcitonin gene related peptide (CGRP), substance P (SP) and neurokinin A (NKA) immunoreactivity (IR) in the caudal trigeminal nucleus (CTN) into which massive central trigeminal processes terminate. Here, we show patchy depletion(s) of CGRP-, SP- and NKA-IRs in the contralateral CTN of the rat in addition to their ipsilateral depletion. Such depletion is due to the release of these neuropeptides in the CTN leading to the activation of bilateral trigeminal nociceptive pathway. These data afford the possibility that under specific frequencies (which may roughly correlate to the intensity of the painful stimulus) and/or specific intensities (may correlate to specific areas of the peripheral trigeminal domain) of stimulation, activation of one side of the TG may activate bilateral trigeminal nociceptive pathway leading to the perception of an ill localized/generalized pain or headache rather than a unilateral one.

  1. Neuronal plasticity of trigeminal ganglia in mice following nerve injury

    PubMed Central

    Lynds, Randi; Lyu, Chuang; Lyu, Gong-Wei; Shi, Xie-Qi; Rosén, Annika; Mustafa, Kamal; Shi, Tie-Jun Sten

    2017-01-01

    Background Nerve injury may induce neuropathic pain. In studying the mechanisms of orofacial neuropathic pain, attention has been paid to the plastic changes that occur in the trigeminal ganglia (TGs) and nucleus in response to an injury of the trigeminal nerve branches. Previous studies have explored the impact of sciatic nerve injury on dorsal root ganglia (DRGs) and it has shown dramatic changes in the expression of multiple biomarkers. In large, the changes in biomarker expression in TGs after trigeminal nerve injury are similar to that in DRGs after sciatic nerve injury. However, important differences exist. Therefore, there is a need to study the plasticity of biomarkers in TGs after nerve injury in the context of the development of neuropathic pain-like behaviors. Aim The aim of this study was to investigate the plasticity of biomarkers associated with chronic persistent pain in TGs after trigeminal nerve injury. Materials and methods To mimic the chronic nature of the disorder, we used an intraoral procedure to access the infraorbital nerve (ION) and induced a nerve injury in mice. Immunohistochemistry and quantification were used for revealing the expression level of each biomarker in TGs after nerve injury. Results Two weeks after partial ION injury, immunohistochemistry results showed strongly upregulated expressions of activating transcription factor 3 and neuropeptide Y (NPY) in the ipsilateral TGs. Microglial cells were also activated after nerve injury. In regard to positive neuronal profile counting, however, no significant difference in expression was observed in galanin, substance P, calcitonin gene-related peptide, neuronal nitric oxide synthase, phosphorylated AKT, or P2X3 in ipsilateral TGs when compared to contralateral TGs. Conclusion In this study, the expression and regulation of biomarkers in TGs have been observed in response to trigeminal nerve injury. Our results suggest that NPY and Iba1 might play crucial roles in the pathogenesis of

  2. Treatment of notalgia paresthetica with capsaicin.

    PubMed

    Leibsohn, E

    1992-05-01

    Twenty-four patients with notalgia paresthetica were treated with topical capsaicin (Zostrix) in a concentration of 0.025 percent for four months. In approximately 70 percent of the patients who remained in the study, relief of pruritus was achieved up to the 90 percent level. In the majority of these patients pruritus returned when use of the medication was stopped. The history, causes, and prevalence of the condition are reviewed. This treatment is the first described that is relatively effective.

  3. Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism

    PubMed Central

    Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke

    2015-01-01

    Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands

  4. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor.

    PubMed

    Chen, Yong; Kanju, Patrick; Fang, Quan; Lee, Suk Hee; Parekh, Puja K; Lee, Whasil; Moore, Carlene; Brenner, Daniel; Gereau, Robert W; Wang, Fan; Liedtke, Wolfgang

    2014-12-01

    Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many antipain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally innervated territories in mice. In addition, we examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, and because we have recently defined TRPV4's role in response to airborne irritants and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whisker pad injections. This conclusion is supported by studies with Trpv4(-/-) mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca(2+). Using TRPA1-blocker and Trpa1(-/-) mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, temporomandibular joint, facial, and dental pain, and irritation of trigeminally innervated surface epithelia.

  5. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor

    PubMed Central

    Chen, Yong; Kanju, Patrick; Fang, Quan; Lee, Suk Hee; Parekh, Puja K.; Lee, Whasil; Moore, Carlene; Brenner, Daniel; Gereau, Robert W.; Wang, Fan; Liedtke, Wolfgang

    2014-01-01

    Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin-model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many anti-pain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally-innervated territories in mice. Also, we have examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior, because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, also because we have recently defined TRPV4’s role in response to air-borne irritants, and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whiskerpad injections. This conclusion is supported by studies with Trpv4−/− mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca++. Using TRPA1-blocker and Trpa1−/− mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, TMJ, facial and dental pain, and irritation of trigeminally-innervated surface epithelia. PMID:25281928

  6. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway

    PubMed Central

    Ma, Lihua; Trinh, Thu; Ren, Yanfang; Dirksen, Robert T.; Liu, Xiuxin

    2016-01-01

    ATP induces pain via activation of purinergic receptors in nociceptive sensory nerves. ATP signaling is terminated by ATP hydrolysis mediated by cell surface-localized ecto-nucleotidases. Using enzymatic histochemical staining, we show that ecto-ATPase activity is present in mouse trigeminal nerves. Using immunofluorescence staining, we found that ecto-NTPDase3 is expressed in trigeminal nociceptive neurons and their projections to the brainstem. In addition, ecto-ATPase activity and ecto-NTPDase3 are also detected in the nociceptive outermost layer of the trigeminal subnucleus caudalis. Furthermore, we demonstrate that incubation with anti-NTPDase3 serum reduces extracellular ATP degradation in the nociceptive lamina of both the trigeminal subnucleus caudalis and the spinal cord dorsal horn. These results are consistent with neuronal NTPDase3 activity modulating pain signal transduction and transmission by affecting extracellular ATP hydrolysis within the trigeminal nociceptive pathway. Thus, disruption of trigeminal neuronal NTPDase3 expression and localization to presynaptic terminals during chronic inflammation, local constriction and injury may contribute to the pathogenesis of orofacial neuropathic pain. PMID:27706204

  7. Microsurgical anatomy of the trigeminal nerve.

    PubMed

    Joo, Wonil; Yoshioka, Fumitaka; Funaki, Takeshi; Mizokami, Koji; Rhoton, Albert L

    2014-01-01

    The objective of this study is to review surgical anatomy of the trigeminal nerve. We also demonstrate some pictures involving the trigeminal nerve and its surrounding connective and neurovascular structures. Ten adult cadaveric heads were studied, using a magnification ranging from 3× to 40×, after perfusion of the arteries and veins with colored latex. The trigeminal nerve is the largest and most complex of the cranial nerves. It serves as a major conduit of sensory input from the face and provides motor innervation to the muscles of mastication. Because of its size and complexity, it is essential to have thorough knowledge of the nerve before diagnoses and treatment of the pathologic processes in the orofacial, temporomandibular, infratemporal, and pterygopalatine areas. The trigeminal nerve is encountered with imaging or surgery of the skull base surgery. Thus, a comprehensive knowledge of the anatomy of the trigeminal nerve is crucial for performing the surgical procedures without significant complication.

  8. Trigeminal neuralgia caused by a trigeminocerebellar artery.

    PubMed

    Amagasaki, Kenichi; Abe, Shoko; Watanabe, Saiko; Naemura, Kazuaki; Nakaguchi, Hiroshi

    2014-10-01

    This 31-year-old woman presented with typical right trigeminal neuralgia caused by a trigeminocerebellar artery, manifesting as pain uncontrollable with medical treatment. Preoperative neuroimaging studies demonstrated that the offending artery had almost encircled the right trigeminal nerve. This finding was confirmed intraoperatively, and decompression was completed. The neuralgia resolved after the surgery; the patient had slight transient hypesthesia, which fully resolved within the 1st month after surgery. The neuroimaging and intraoperative findings showed that the offending artery directly branched from the upper part of the basilar artery and, after encircling and supplying tiny branches to the nerve root, maintained its diameter and coursed toward the rostral direction of the cerebellum, which indicated that the artery supplied both the trigeminal nerve and the cerebellum. The offending artery was identified as the trigeminocerebellar artery. This case of trigeminal neuralgia caused by a trigeminocerebellar artery indicates that this variant is important for a better understanding of the vasculature of the trigeminal nerve root.

  9. Trigeminal neuralgia and facial pain imaging.

    PubMed

    Graff-Radford, Steven; Gordon, Rachael; Ganal, John; Tetradis, Sotirois

    2015-06-01

    The trigeminal nerve or fifth cranial nerve has an extensive distribution in the head and face. It is the source for pain conduction and thereby is often implicated in a variety of disorders including inflammatory and neoplastic diseases. To determine the disease source, understanding the trigeminal nerve anatomy is essential, and further being able to image the trigeminal nerve provides insight into the location and type of pathology. The best approach to imaging is to consider the nerve in segments. The nerve segments may be divided into the brainstem, cisternal, Meckel's cave, cavernous sinus, and peripheral divisions. This review utilizes these segments to explore imaging options to help understand trigeminal neuralgia and pain in the trigeminal nerve distribution.

  10. Transcriptional repressor DREAM regulates trigeminal noxious perception.

    PubMed

    Benedet, Tomaso; Gonzalez, Paz; Oliveros, Juan C; Dopazo, Jose M; Ghimire, Kedar; Palczewska, Malgorzata; Mellstrom, Britt; Naranjo, Jose R

    2017-05-01

    Expression of the downstream regulatory element antagonist modulator (DREAM) protein in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons, high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that transgenic mice expressing a dominant active mutant of DREAM in trigeminal neurons show increased responses following orofacial sensory stimulation, which correlates with a decreased expression of prodynorphin and brain-derived neurotrophic factor in trigeminal ganglia. Genome-wide analysis of trigeminal neurons in daDREAM transgenic mice identified cathepsin L and the monoglyceride lipase as two new DREAM transcriptional targets related to pain. Our results suggest a role for DREAM in the regulation of trigeminal nociception. This article is part of the special article series "Pain". © 2016 International Society for Neurochemistry.

  11. Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity

    NASA Technical Reports Server (NTRS)

    Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.

    2001-01-01

    Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.

  12. Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity

    NASA Technical Reports Server (NTRS)

    Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.

    2001-01-01

    Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.

  13. Nocifensive Behaviors in Mice with Radiation-Induced Oral Mucositis.

    PubMed

    Nolan, Michael W; Long, C Tyler; Marcus, Karen L; Sarmadi, Shayan; Roback, Donald M; Fukuyama, Tomoki; Baeumer, Wolfgang; Lascelles, B Duncan X

    2017-02-10

    Oral mucositis can result in significant dysphagia, and is the most common dose-limiting acute toxicity in head and neck cancer patients receiving chemoradiotherapy. There is a critical need to determine the cellular and molecular mechanisms that underlie radiotherapy-associated discomfort in patients with mucositis. The objective was to induce oral mucositis in mice, using a clinical linear accelerator, and to quantify resultant discomfort, and characterize peripheral sensitization. A clinical linear accelerator was used to deliver ionizing radiation to the oral cavity of mice. Mucositis severity scoring, and various behavioral assays were performed to quantify bouts of orofacial wiping and scratching, bite force, gnawing behavior and burrowing activity. Calcium imaging was performed on neurons of the trigeminal ganglia. Glossitis was induced with a single fraction of at least 27 Gy. Body weight decreased and subsequently returned to baseline, in concert with development and resolution of mucositis, which was worst at day 10 and 11 postirradiation, however was resolved within another 10 days. Neither bite force, nor gnawing behavior were measurably affected. However, burrowing activity was decreased, and both facial wiping and scratching were increased while mice had visible mucositis lesions. Sensory nerves of irradiated mice were more responsive to histamine, tumor necrosis factor alpha and capsaicin. Radiation-induced glossitis is associated with hyper-reactivity of sensory neurons in the trigeminal ganglia of mice, and is accompanied by several behaviors indicative of both itch and pain. These data validate an appropriate model for cancer treatment related discomfort in humans.

  14. Role of calcitonin gene-related peptide in the sensitization of dorsal horn neurons to mechanical stimulation after intradermal injection of capsaicin.

    PubMed

    Sun, Rui-Qing; Lawand, Nada B; Lin, Qing; Willis, William D

    2004-07-01

    This study was designed to assess the role of calcitonin gene-related peptide (CGRP) and its receptor in the sensitization of dorsal horn neurons induced by intradermal injection of capsaicin in rats. Extracellular recordings were made from wide dynamic range (WDR) dorsal horn neurons with receptive fields on the hindpaw in the lumbar enlargement of anesthetized rats. The background activity and responses to brushing, pressing, and pinching the skin were assessed. A postsuperfusion or a presuperfusion of CGRP(8-37) paradigm was followed. When tested 30 min after capsaicin injection, there was an increase in background activity and responses to brush, press, and pinch applied to the receptive field. Superfusion of CGRP(8-37) into the spinal cord at 45 min after capsaicin injection significantly reversed the increased background activity and responses to brush, press, and pinch applied to the receptive field. On the other hand, spinal superfusion of CGRP(8-37) prior to capsaicin injection prevented the increased background activity and responses to brush, press, and pinch of WDR neurons that occurred following capsaicin injection in control experiments. A sensitization of spinal dorsal horn neurons could also be induced by superfusion of the spinal cord with CGRP. The effect could be blocked by CGRP(8-37) dose-dependently. Collectively, these results suggest that CGRP and its receptors are involved in the spinal cord central sensitization induced by intradermal injection of capsaicin.

  15. Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.).

    PubMed

    Prasad, B C Narasimha; Kumar, Vinod; Gururaj, H B; Parimalan, R; Giridhar, P; Ravishankar, G A

    2006-09-05

    Capsaicin is a unique alkaloid of the plant kingdom restricted to the genus Capsicum. Capsaicin is the pungency factor, a bioactive molecule of food and of medicinal importance. Capsaicin is useful as a counterirritant, antiarthritic, analgesic, antioxidant, and anticancer agent. Capsaicin biosynthesis involves condensation of vanillylamine and 8-methyl nonenoic acid, brought about by capsaicin synthase (CS). We found that CS activity correlated with genotype-specific capsaicin levels. We purified and characterized CS ( approximately 35 kDa). Immunolocalization studies confirmed that CS is specifically localized to the placental tissues of Capsicum fruits. Western blot analysis revealed concomitant enhancement of CS levels and capsaicin accumulation during fruit development. We determined the N-terminal amino acid sequence of purified CS, cloned the CS gene (csy1) and sequenced full-length cDNA (981 bp). The deduced amino acid sequence of CS from full-length cDNA was 38 kDa. Functionality of csy1 through heterologous expression in recombinant Escherichia coli was also demonstrated. Here we report the gene responsible for capsaicin biosynthesis, which is unique to Capsicum spp. With this information on the CS gene, speculation on the gene for pungency is unequivocally resolved. Our findings have implications in the regulation of capsaicin levels in Capsicum genotypes.

  16. Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.)

    PubMed Central

    Prasad, B. C. Narasimha; Kumar, Vinod; Gururaj, H. B.; Parimalan, R.; Giridhar, P.; Ravishankar, G. A.

    2006-01-01

    Capsaicin is a unique alkaloid of the plant kingdom restricted to the genus Capsicum. Capsaicin is the pungency factor, a bioactive molecule of food and of medicinal importance. Capsaicin is useful as a counterirritant, antiarthritic, analgesic, antioxidant, and anticancer agent. Capsaicin biosynthesis involves condensation of vanillylamine and 8-methyl nonenoic acid, brought about by capsaicin synthase (CS). We found that CS activity correlated with genotype-specific capsaicin levels. We purified and characterized CS (≈35 kDa). Immunolocalization studies confirmed that CS is specifically localized to the placental tissues of Capsicum fruits. Western blot analysis revealed concomitant enhancement of CS levels and capsaicin accumulation during fruit development. We determined the N-terminal amino acid sequence of purified CS, cloned the CS gene (csy1) and sequenced full-length cDNA (981 bp). The deduced amino acid sequence of CS from full-length cDNA was 38 kDa. Functionality of csy1 through heterologous expression in recombinant Escherichia coli was also demonstrated. Here we report the gene responsible for capsaicin biosynthesis, which is unique to Capsicum spp. With this information on the CS gene, speculation on the gene for pungency is unequivocally resolved. Our findings have implications in the regulation of capsaicin levels in Capsicum genotypes. PMID:16938870

  17. Characterization of a reproducible gastric pain model using oral capsaicin titration in healthy volunteers.

    PubMed

    Cao, Y; Wilder-Smith, C H; Li, X H; Wong, R K M; Hammer, J; Ho, K Y

    2011-07-01

      Sensory sensitization is one of the main pathophysiological hypotheses in functional gastrointestinal disorders (FGIDs). As sensitization may affect various sensory modalities, we aimed to develop a reproducible gastric pain model utilizing polymodal pathways for use in functional and other pain disorders. In this double-blind, cross-over study 42 healthy subjects swallowed one capsule containing either capsaicin 0.5mg or nocebo every 15min until moderate pain (intensity >30 on 100mm visual analogue scale) was attained for at least 5min. Pain was rated every minute. Capsaicin titration was repeated thrice for reliability calculation. Moderate pain in the upper abdomen was successfully achieved in 38 of 42 subjects (90%) with capsaicin titration and in one of 42 (2%) with nocebo. The median dosage required to induce moderate pain for at least 5min was two capsules (interquartile range 1-3) and the median gastric pain intensity was 47 (41-53). The median duration of moderate pain was 8min (5-12). Moderate pain was successfully reproduced with capsaicin in all subjects on study days 2 and 3, with an excellent Cronbach reliability coefficient of >0.8. Standardized gastric pain can be conveniently achieved in a majority of healthy subjects using a simple oral capsaicin titration, with minimal adverse events. The between-test reproducibility is high and nocebo responses are negligible. This technique stimulating a multimodal physiological pathway will be useful in the investigation of sensory changes in FGIDs, including functional dyspepsia. © 2011 Blackwell Publishing Ltd.

  18. Altered thermal grill response and paradoxical heat sensations after topical capsaicin application.

    PubMed

    Schaldemose, Ellen L; Horjales-Araujo, Emilia; Svensson, Peter; Finnerup, Nanna B

    2015-06-01

    The thermal grill illusion, where interlaced warm and cold bars cause an unusual burning sensation, and paradoxical heat sensations (PHS), where cold is perceived as warm when alternating warm and cold, are examples of a complex integration of thermal sensations. Here, we investigated the effect of sensitization of heat-sensitive neurons on cold and warm integration. We examined thermal thresholds, PHS, and warm, cold, and pain sensations to alternating cold (10°C) and warm (40°C) bars (the thermal grill [TG]) in the primary area (application site) after topical application with capsaicin and vehicle control (ethanol) on the volar forearms in randomized order in 80 healthy participants. As expected, capsaicin induced heat allodynia and hyperalgesia and decreased cold and cold pain sensation. In addition, we found that after capsaicin application, the TG caused less pain and burning than the 40°C bars alone in contrast to the control side where the TG caused more pain and burning, consistent with the thermal grill illusion. In both situations, the pain intensity during the TG correlated inversely with both cold and warm pain thresholds but not with detection thresholds. Paradoxical heat sensation was only seen in 3 participants after control application but in 19 participants after capsaicin. Those with PHS after capsaicin application had higher detection thresholds to both cold and warm than those without PHS, but there was no difference in thermal pain threshold. These results suggest that a complex cross talk among several cold and warm sensitive pathways shapes thermal perception.

  19. Persistent trigeminal artery supply to an intrinsic trigeminal nerve arteriovenous malformation: a rare cause of trigeminal neuralgia.

    PubMed

    Choudhri, Omar; Heit, Jeremy J; Feroze, Abdullah H; Chang, Steven D; Dodd, Robert L; Steinberg, Gary K

    2015-02-01

    Infratentorial arteriovenous malformations (AVM) associated with the trigeminal nerve root entry zone are a known cause of secondary trigeminal neuralgia (TN). The treatment of both TN and AVM can be challenging, especially if the AVM is embedded within the trigeminal nerve. A persistent trigeminal artery (PTA) can rarely supply these intrinsic trigeminal nerve AVM. We present a 64-year-old man with TN from a right trigeminal nerve AVM supplied by a PTA variant. The patient underwent microvascular decompression and a partial resection of the AVM with relief of facial pain symptoms. His residual AVM was subsequently treated with CyberKnife radiosurgery (Accuray, Sunnyvale, CA, USA). A multimodality approach may be required for the treatment of trigeminal nerve associated PTA AVM and important anatomic patterns need to be recognized before any treatment. Herein, we report to our knowledge the third documented patient with a posterior fossa AVM supplied by a PTA and the first PTA AVM presenting as facial pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8.

    PubMed

    Takaishi, Masayuki; Uchida, Kunitoshi; Suzuki, Yoshiro; Matsui, Hiroshi; Shimada, Tadashi; Fujita, Fumitaka; Tominaga, Makoto

    2016-03-01

    Transient receptor potential vanilloid 1 (TRPV1) is activated by elevated temperature (>42 °C), and it has been reported that cold temperature decreases capsaicin-induced TRPV1 activity. In contrast, transient receptor potential melastatin 8 (TRPM8) is activated by low temperatures and menthol, and heat stimulation suppresses menthol-evoked TRPM8 currents. These findings suggest that the effects of specific agents on TRPV1 and TRPM8 channels are intricately interrelated. We examined the effects of menthol on human (h)TRPV1 and of capsaicin on hTRPM8. hTRPV1 currents activated by heat and capsaicin were inhibited by menthol, whereas hTRPM8 currents activated by cold and menthol were similarly inhibited by capsaicin. An in vivo sensory irritation test showed that menthol conferred an analgesic effect on the sensory irritation evoked by a capsaicin analogue. These results indicate that in our study the agonists of TRPV1 and TRPM8 interacted with both of these channels and suggest that the anti-nociceptive effects of menthol can be partially explained by this phenomenon.

  1. Capsaicin failed in suppressing cortical processing of CO2 laser pain in migraine patients.

    PubMed

    de Tommaso, Marina; Losito, Luciana; Difruscolo, Olimpia; Sardaro, Michele; Libro, Giuseppe; Guido, Marco; Lamberti, Paolo; Livrea, Paolo

    The aim of this study was to compare the properties of the nociceptive system in eight migraine without aura patients in the pain-free phase with 10 healthy controls, by evaluating the topography and the source of the CO2 laser-evoked potentials (LEPs) obtained by the right supraorbital skin, during and after capsaicin topical application. In healthy subjects the acute cutaneous pain induced by capsaicin reduced the amplitude of the vertex LEPs and induced a posterior shifting of the P2 wave dipolar source within the anterior cingulate cortex. These functional changes seemed significantly reduced in migraine patients, for a disturbed pattern of pain modulation at the cortical level, which may subtend the onset and persistence of migraine.

  2. Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant, Cell-Invasive Group A Streptococci.

    PubMed

    Marini, Emanuela; Magi, Gloria; Mingoia, Marina; Pugnaloni, Armanda; Facinelli, Bruna

    2015-01-01

    Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is the active component of Capsicum plants (chili peppers), which are grown as food and for medicinal purposes since ancient times, and is responsible for the pungency of their fruit. Besides its multiple pharmacological and physiological properties (pain relief, cancer prevention, and beneficial cardiovascular, and gastrointestinal effects) capsaicin has recently attracted considerable attention because of its antimicrobial and anti-virulence activity. This is the first study of its in vitro antibacterial and anti-virulence activity against Streptococcus pyogenes (Group A streptococci, GAS), a major human pathogen. The test strains were previously characterized, erythromycin-susceptible (n = 5) and erythromycin-resistant (n = 27), cell-invasive pharyngeal isolates. The MICs of capsaicin were 64-128 μg/mL (the most common MIC was 128 μg/mL). The action of capsaicin was bactericidal, as suggested by MBC values that were equal or close to the MICs, and by early detection of dead cells in the live/dead assay. No capsaicin-resistant mutants were obtained in single-step resistance selection studies. Interestingly, growth in presence of sublethal capsaicin concentrations induced an increase in biofilm production (p ≤ 0.05) and in the number of bacteria adhering to A549 monolayers, and a reduction in cell-invasiveness and haemolytic activity (both p ≤ 0.05). Cell invasiveness fell so dramatically that a highly invasive strain became non-invasive. The dose-response relationship, characterized by opposite effects of low and high capsaicin doses, suggests a hormetic response. The present study documents that capsaicin has promising bactericidal activity against erythromycin-resistant, cell-invasive pharyngeal GAS isolates. The fact that sublethal concentrations inhibited cell invasion and reduced haemolytic activity, two important virulence traits of GAS, is also interesting, considering that cell

  3. In Vitro and Sensory Evaluation of Capsaicin-Loaded Nanoformulations

    PubMed Central

    Kaiser, Mathias; Kirsch, Benedikt; Hauser, Hannah; Schneider, Désirée; Seuß-Baum, Ingrid; Goycoolea, Francisco M.

    2015-01-01

    Capsaicin has known health beneficial and therapeutic properties. It is also able to enhance the permeability of drugs across epithelial tissues. Unfortunately, due to its pungency the oral administration of capsaicin is limited. To this end, we assessed the effect of nanoencapsulation of capsaicin, under the hypothesis that this would reduce its pungency. Core-shell nanocapsules with an oily core and stabilized with phospholipids were used. This system was used with or without chitosan coating. In this work, we investigated the in vitro release behavior of capsaicin-loaded formulations in different physiological media (including simulated saliva fluid). We also evaluated the influence of encapsulation of capsaicin on the cell viability of buccal cells (TR146). To study the changes in pungency after encapsulation we carried out a sensory analysis with a trained panel of 24 students. The in vitro release study showed that the systems discharged capsaicin slowly in a monotonic manner and that the chitosan coating had an effect on the release profile. The cytotoxic response of TR146 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, was reduced following its encapsulation. The sensory study revealed that a chitosan coating results in a lower threshold of perception of the formulation. The nanoencapsulation of capsaicin resulted in attenuation of the sensation of pungency significantly. However, the presence of a chitosan shell around the nanoformulations did not mask the pungency, when compared with uncoated systems. PMID:26492045

  4. In Vitro and Sensory Evaluation of Capsaicin-Loaded Nanoformulations.

    PubMed

    Kaiser, Mathias; Kirsch, Benedikt; Hauser, Hannah; Schneider, Désirée; Seuß-Baum, Ingrid; Goycoolea, Francisco M

    2015-01-01

    Capsaicin has known health beneficial and therapeutic properties. It is also able to enhance the permeability of drugs across epithelial tissues. Unfortunately, due to its pungency the oral administration of capsaicin is limited. To this end, we assessed the effect of nanoencapsulation of capsaicin, under the hypothesis that this would reduce its pungency. Core-shell nanocapsules with an oily core and stabilized with phospholipids were used. This system was used with or without chitosan coating. In this work, we investigated the in vitro release behavior of capsaicin-loaded formulations in different physiological media (including simulated saliva fluid). We also evaluated the influence of encapsulation of capsaicin on the cell viability of buccal cells (TR146). To study the changes in pungency after encapsulation we carried out a sensory analysis with a trained panel of 24 students. The in vitro release study showed that the systems discharged capsaicin slowly in a monotonic manner and that the chitosan coating had an effect on the release profile. The cytotoxic response of TR146 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, was reduced following its encapsulation. The sensory study revealed that a chitosan coating results in a lower threshold of perception of the formulation. The nanoencapsulation of capsaicin resulted in attenuation of the sensation of pungency significantly. However, the presence of a chitosan shell around the nanoformulations did not mask the pungency, when compared with uncoated systems.

  5. The use of capsaicin cream in a case of erythromelalgia.

    PubMed Central

    Muhiddin, K. A.; Gallen, I. W.; Harries, S.; Pearce, V. R.

    1994-01-01

    We present a case of erythromelalgia in a 68 year old lady who responded, within 48 hours, to a twice daily topical application of capsaicin cream 0.025%. Capsaicin cream was stopped after 2 months, and 6 months later the patient continued to have the symptomatic relief she experienced initially. Images Figure 1 PMID:7824425

  6. Spontaneous Trigeminal Allodynia in Rats: A Model of Primary Headache

    PubMed Central

    Oshinsky, Michael L.; Sanghvi, Menka M.; Maxwell, Christina R.; Gonzalez, Dorian; Spangenberg, Rebecca J.; Cooper, Marnie; Silberstein, Stephen D.

    2014-01-01

    Animal models are essential for studying the pathophysiology of headache disorders and as a screening tool for new therapies. Most animal models modify a normal animal in an attempt to mimic migraine symptoms. They require manipulation to activate the trigeminal nerve or dural nociceptors. At best, they are models of secondary headache. No existing model can address the fundamental question: How is a primary headache spontaneously initiated? In the process of obtaining baseline periorbital von Frey thresholds in a wild-type Sprague-Dawley rat, we discovered a rat with spontaneous episodic trigeminal allodynia (manifested by episodically changing periorbital pain threshold). Subsequent mating showed that the trait is inherited. Animals with spontaneous trigeminal allodynia allow us to study the pathophysiology of primary recurrent headache disorders. To validate this as a model for migraine, we tested the effects of clinically proven acute and preventive migraine treatments on spontaneous changes in rat periorbital sensitivity. Sumatriptan, ketorolac, and dihydroergotamine temporarily reversed the low periorbital pain thresholds. Thirty days of chronic valproic acid treatment prevented spontaneous changes in trigeminal allodynia. After discontinuation, the rats returned to their baseline of spontaneous episodic threshold changes. We also tested the effects of known chemical human migraine triggers. On days when the rats did not have allodynia and showed normal periorbital von Frey thresholds, glycerol trinitrate and calcitonin gene related peptide induced significant decreases in the periorbital pain threshold. This model can be used as a predictive model for drug development and for studies of putative biomarkers for headache diagnosis and treatment. PMID:22963523

  7. [Update on the management of trigeminal neuralgia].

    PubMed

    Alcántara Montero, A; Sánchez Carnerero, C I

    2016-01-01

    Trigeminal neuralgia is one of the most severe facial pain syndromes. The annual incidence varies between 4-13% and has a significant effect on patient quality of life. The initial treatment of trigeminal neuralgia is pharmacological, and although other drugs have demonstrated efficacy, albeit in more limited form, carbamazepine is the only drug with sufficient level of evidence. When medical treatment fails, surgery should be considered and can opt for open surgery or minimally invasive percutaneous techniques. This paper reviews the medical and surgical therapeutic options for the treatment of trigeminal neuralgia, based on current available evidence.

  8. Overview and History of Trigeminal Neuralgia.

    PubMed

    Patel, Smruti K; Liu, James K

    2016-07-01

    Although the symptoms associated with trigeminal neuralgia have been well documented, the root cause of this disease initially eluded most surgeons. Although early remedies were haphazard because of a lack of understanding about the condition, near the 20th century both medical and procedural therapies were established for the treatment of trigeminal neuralgia. These treatments include a variety of medications, chemoneurolysis, radiofrequency lesioning, percutaneous ablative procedures, stereotactic radiosurgery, and open rhizotomy and microvascular decompression. This report recounts the history of trigeminal neuralgia, from its earliest descriptions to the historical evolution of nonsurgical and surgical therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Role of peripheral and central TRPV1 receptors in facial heat hyperalgesia in streptozotocin-induced diabetic rats.

    PubMed

    Araya, Erika Ivanna; Nones, Carina Fernanda Mattedi; Ferreira, Luiz Eduardo Nunes; Kopruszinski, Caroline Machado; Cunha, Joice Maria da; Chichorro, Juliana Geremias

    2017-09-01

    There is increasing evidence that diabetes may be related to sensory changes in the trigeminal system. Long lasting facial heat hyperalgesia has been described in diabetic rats, but the mechanisms remain to be elucidated. Herein, the contribution of peripheral and central TRPV1 receptors to facial heat hyperalgesia in diabeticrats was investigated. Diabetes was induced in male Wistar rats by streptozotocin (60mg/kg, i.p) and facial heat hyperalgesia was assessed once a week up to four weeks. The role of TRPV1 receptors in the heat hyperalgesia in diabetic rats was evaluated through: 1) the ablation of TRPV1 receptors by resiniferatoxin (RTX) treatment and 2) injection of the TRPV1 antagonist, capsazepine, into the upper lip, trigeminal ganglion or medullary subarachnoid space, at doses that completed prevented the heat hyperalgesia induced by capsaicin in naïve rats. Western blot was used to estimate the changes in TRPV1 expression in diabetic rats. Diabetic rats exhibited facial heat hyperalgesia from the first up to the fourth week after streptozotocin injection, which was prevented by insulin treatment. Ablation of TRPV1-expressing fibers prevented facial hyperalgesia in diabetic rats. Capsazepine injection in all sites resulted in significant reduction of facial heat hyperalgesia in diabetic rats. Diabetic rats exhibited a significant decrease in TRPV1 expression in the trigeminal nerve, increased expression in the trigeminal ganglion and no changes in subnucleus caudalis when compared to normoglycemic ones. In conclusion, our results suggest that facial heat hyperalgesia in diabetic rats is maintained by peripheral and central TRPV1 receptors activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin.

    PubMed

    Yang, Fan; Zheng, Jie

    2017-03-01

    Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel's transmembrane segments, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.

  11. Capsaicin: From Plants to a Cancer-Suppressing Agent.

    PubMed

    Chapa-Oliver, Angela M; Mejía-Teniente, Laura

    2016-07-27

    Capsaicinoids are plant secondary metabolites, capsaicin being the principal responsible for the pungency of chili peppers. It is biosynthesized through two pathways involved in phenylpropanoid and fatty acid metabolism. Plant capsaicin concentration is mainly affected by genetic, environmental and crop management factors. However, its synthesis can be enhanced by the use of elicitors. Capsaicin is employed as food additive and in pharmaceutical applications. Additionally, it has been found that capsaicin can act as a cancer preventive agent and shows wide applications against various types of cancer. This review is an approach in contextualizing the use of controlled stress on the plant to increase the content of capsaicin, highlighting its synthesis and its potential use as anticancer agent.

  12. TRIGEMINAL UPTAKE AND CLEARANCE OF INHALED MANGANESECHLORIDE IN RATS AND MICE

    SciTech Connect

    Lewis, J; Bench, G; Myers, O; Tinner, B; Staines, W; Barr, E; Divine, K K; Barrington, W; Karlsson, J

    2003-12-09

    Inhaled manganese (Mn) can enter the olfactory bulbs via the olfactory epithelium, and can then be further transported trans-synaptically to deeper brain structures. In addition to olfactory neurons, the nasal cavity is innervated by the maxillary division of the trigeminal nerve that projects to the spinal trigeminal nucleus. Direct uptake and transport of inhaled metal particles in the trigeminal system has not been investigated previously. We studied the uptake, deposition, and clearance of soluble Mn in the trigeminal system following nose-only inhalation of environmentally relevant concentrations. Rats and mice were exposed for 10 days (6 hours/day, 5 days/week) to air or MnCl2 aerosols containing 2.3 {+-} 1.3mg Mn/m{sup 3} with mass median aerodynamic diameter (MMAD) of 3.1 {+-} 1.4 {micro}m for rats and 2.0 {+-} 0.09 mg Mn/m{sup 3} MnCl{sup 2} with MMAD of 1.98 {+-} 0.12 {micro}m for mice. Mn concentrations in the trigeminal ganglia and spinal trigeminal nucleus were measured 2 hours (0 day), 7, 14, or 30 days post-exposure using Proton Induced X-ray Emission (PIXE). Manganese-exposed rats and mice showed statistically elevated levels of Mn in trigeminal ganglia 0, 7 and 14 days after the 10 day exposure period when compared to control animals. The Mn concentration gradually decreased over time with a clearance rate (t{sub 1/2}) of 7-8 days. Rats and mice were similar in both average accumulated Mn levels in trigeminal ganglia and in rates of clearance. We also found a small but significant elevation of Mn in the spinal trigeminal nucleus of mice 7 days post-exposure and in rats 0 and 7 days post-exposure. Our data demonstrate that the trigeminal nerve can serve as a pathway for entry of inhaled Mn to the brain in rodents following nose-only exposure and raise the question of whether entry of toxicants via this pathway may contribute to development of neurodegenerative diseases.

  13. [Sensitivity of cough with capsaicin in smokers].

    PubMed

    Yildirim, Cetin Aydin; Celik, Pinar; Havlucu, Yavuz; Coşkun, Evşen; Yorgancioğlu, Arzu; Sakar, Ayşin; Dinç, Gönül

    2008-01-01

    In this study, effect of long term smoking on sensitivity of cough reflex was investigated. Healthy, current smoker male and female was evaluated by capsaicin cough challenge test and they were compared with healthy, non-smoker persons with similar age and gender, prospectively. In current smokers, there were 50 male and 39 female, in non-smoker control group, there were 20 male and 21 female. Mean and log C5 dosage in current smoker and non-smoker groups and mean and log C5 dosage in current smoker according to gender were calculated by using Mann-Whitney U-test. Results of capsaicin cough challenge test in current and non-smoker groups were evaluated by using Pearson Chi-Square test and Fisher's Exact test. In current smokers comparison of results of capsaicin cough challenge test with smoking history (age with first smoking, duration, pocket year and smoking per day) was evaluated by using Mann-Whitney U-test. Mean C5 and mean log C5 dosage were found decreased in current smokers when they were compared to control group (p< 0.00). In current smoker group mean C5 and mean log C5 dosage were found decreased in male (p< 0.002). When the results of capsaicin cough challenge test were compared between current smoker and control groups, sensitivity of cough reflex in concentration with 0.49, 0.98, 1.95, 3.9, 7.8, 15.6 microM was significantly decreased in current smoker group. Also there was a significant correlation between concentration with 0.98, 1.95, 3.9, 7.8, 15.6, 31.2 microM, and duration of smoking and pocket year of smoking. Also there was a correlation between concentration with 15.6, 31.2, 62.5, 125 microM and smoking per day. This results were correlated with hypothesis about inhibition of C-fibers with nicotin or decrease of C-fibers' sensitivity due to induction of neuropeptide wasting.

  14. [Aural Stimulation with Capsaicin Ointment Improved the Swallowing Function in Patients with Dysphagia: Evaluation by the SMRC Scale].

    PubMed

    Kondo, Eiji; Jinnouchi, Osamu; Ohnishi, Hiroki; Kawata, Ikuji; Takeda, Noriaki

    2015-11-01

    Cough and swallowing reflexes are important airway-protective mechanisms against aspiration. Angiotensin-converting enzyme (ACE) inhibitors, one of the side effects of which is cough, have been reported to reduce the incidence of aspiration pneumonia in hypertensive patients with stroke. ACE inhibitors have also been reported to improve the swallowing function in post-stroke patients. On the other hand, stimulation of the Arnold nerve, the auricular branch of the vagus, triggers the cough reflex (Arnold's ear-cough reflex). Capsaicin, an agonist of Transient Receptor Potential Vanilloid 1 (TRPV1), has been shown to activate the peripheral sensory C-fibers. Stimulation of the sensory branches of the vagus in the laryngotracheal mucosa with capsaicin induces the cough reflex and has been reported to improve the swallowing function in patients with dysphagia. In our previous study, we showed that aural stimulation of the Arnold nerve with 0.025% capsaicin ointment improved the swallowing function, as evaluated by the endoscopic swallowing score, in 26 patients with dysphagia. In the present study, the video images of swallowing recorded in the previous study were re-evaluated using the SMRC scale by an independent otolaryngologist who was blinded to the information about the patients and the endoscopic swallowing score. The SMRC scale is used to evaluate four aspects of the swallowing function: 1) Sensory: the initiation of the swallowing reflex as assessed by the white-out timing; 2) Motion: the ability to hold blue-dyed water in the oral cavity and induce laryngeal elevation; 3) Reflex: glottal closure and the cough reflex induced by touching the epiglottis or arytenoid with the endoscope; 4) Clearance: pharyngeal clearance of the blue-dyed water after swallowing. Accordingly, we demonstrated that a single application of capsaicin ointment to the external auditory canal of patients with dysphagia significantly improved the R, but not the S, M or C scores, and this

  15. Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing.

    PubMed

    Nguyen, Minh Q; Wu, Youmei; Bonilla, Lauren S; von Buchholtz, Lars J; Ryba, Nicholas J P

    2017-01-01

    The trigeminal ganglion contains somatosensory neurons that detect a range of thermal, mechanical and chemical cues and innervate unique sensory compartments in the head and neck including the eyes, nose, mouth, meninges and vibrissae. We used single-cell sequencing and in situ hybridization to examine the cellular diversity of the trigeminal ganglion in mice, defining thirteen clusters of neurons. We show that clusters are well conserved in dorsal root ganglia suggesting they represent distinct functional classes of somatosensory neurons and not specialization associated with their sensory targets. Notably, functionally important genes (e.g. the mechanosensory channel Piezo2 and the capsaicin gated ion channel Trpv1) segregate into multiple clusters and often are expressed in subsets of cells within a cluster. Therefore, the 13 genetically-defined classes are likely to be physiologically heterogeneous rather than highly parallel (i.e., redundant) lines of sensory input. Our analysis harnesses the power of single-cell sequencing to provide a unique platform for in silico expression profiling that complements other approaches linking gene-expression with function and exposes unexpected diversity in the somatosensory system.

  16. Effects of inhaled histamine, methacholine and capsaicin on sputum levels of alpha 2-macroglobulin

    PubMed Central

    Halldorsdottir, H.; Greiff, L.; Wollmer, P.; Andersson, M.; Svensson, C.; Alkner, U.; Persson, C. G.

    1997-01-01

    BACKGROUND: Plasma exudation-derived proteins and peptides contribute significantly to inflammation in the airway mucosa in vivo. In the guinea pig trachea both histamine and the neurogenic stimulant capsaicin produce acute mucosal tissue distribution and luminal entry of bulk plasma, whereas cholinergic agonists fail to produce this effect. Of these agents, only histamine induces mucosal exudation of plasma in human nasal airways. The exudative effect of the above agents on human bronchi remains unknown. METHODS: The bronchial exudative responses to inhalation of histamine, methacholine, and capsaicin were examined in two groups of healthy volunteers. Sputum was induced on three occasions in each study group by inhalation of hypertonic saline (4.5%) given as an aerosol for 40 minutes using an ultrasonic nebuliser. The second and third occasions were preceded by histamine and capsaicin challenges in the first study group, and by histamine and methacholine challenges in the second study group. Histamine and methacholine were given in cumulative doses (total doses 3160 micrograms, respectively) or until a 20% reduction in forced expiratory volume in one second (FEV1) was achieved. Cumulative doses of capsaicin were inhaled until coughing prevented the subjects from drawing a full breath. Sputum levels of alpha 2-macroglobulin (729 kDa) were measured as an index of mucosal exudation of bulk plasma. RESULTS: Histamine increased mean (SE) sputum levels of alpha 2-macroglobulin from 2.72 (1.01) micrograms/ml (95% confidence interval (CI) 0.49 to 4.94) to 18.38 (8.03) micrograms/ml (95% CI 0.49 to 36.27) in the first group, and from 1.66 (0.84) micrograms/ml (95% CI -0.18 to 3.49) to 9.43 (3.63) micrograms/ml (95% CI 1.59 to 17.27) in the second group. In contrast, capsaicin evoked no exudation (sputum levels of alpha 2- macroglobulin 1.21 (0.28) micrograms/ml (95% CI 0.59 to 1.83)) and methacholine produced a minor increase in sputum levels of alpha 2- macroglobulin (2

  17. In vivo pharmacology of SDZ 249-665, a novel, non-pungent capsaicin analogue.

    PubMed

    Urban, L; Campbell, E A; Panesar, M; Patel, S; Chaudhry, N; Kane, S; Buchheit, K; Sandells, B; James, I F

    2000-12-15

    Capsaicin and analogues are valuable analgesic agents when administered to mammals, including humans. However, their pungency and the effects on the cardiovascular and respiratory systems through their general activation of small calibre (nociceptive) primary afferents severely limit their use. Recently, structure activity analysis revealed that the initial pungent and general excitatory effects can be prevented by structural modifications in such a way that the analgesic activity is retained. In this paper we present SDZ 249-665, a capsaicin analogue which produced analgesia in the mouse and anti-hyperalgesic effects in the rat and guinea pig. SDZ 249-665 was administered p.o., s.c. and i.v. in models of nociceptive pain, such as tail flick latency in response to a noxious thermal stimulus and acetic acid-induced writhing in mice, and in models of inflammatory mechanical hyperalgesia induced by turpentine or carrageenan in the rat and guinea pig, respectively. SDZ 249-665 was effective in the tail flick and the writhing assays and produced significant anti-hyperalgesic effects in the inflammatory models. The efficacy of SDZ 245-665 was similar to that of capsaicin, however, it was significantly more potent. SDZ 249-665 did not produce any irritancy in a nose wipe assay in guinea pigs or an eye irritancy assay in rats, while capsaicin was clearly irritant in both cases. Furthermore, unlike capsaicin, SDZ 249-665 did not produce unwanted side effects such as bronchoconstriction and blood pressure changes in the analgesic/anti-hyperalgesic dose range. Thus, a clear analgesic therapeutic window exists for SDZ 249-665. In summary, SDZ 249-665 is a potent orally active, analgesic/anti-hyperalgesic agent in mouse, rat and guinea pig. It lacks the excitatory effects associated with capsaicin and other close analogues, and therefore provides a clear therapeutic window for use in painful conditions. In addition to this favourable profile, no sign of tolerance was detected

  18. Central effect of histamine in a rat model of acute trigeminal pain.

    PubMed

    Tamaddonfard, Esmaeal; Khalilzadeh, Emad; Hamzeh-Gooshchi, Nasrin; Seiednejhad-Yamchi, Sona

    2008-01-01

    In conscious rats implanted with an intracerebroventricular (icv) cannula, effect of icv injections of histamine, chlorpheniramine (H(1)-receptor antagonist) and ranitidine (H(2)-receptor blocker) was investigated in a rat model of acute trigeminal pain. Acute trigeminal pain was induced by putting a drop of 5 M NaCl solution on the corneal surface of the eye and the numbers of eye wipes were counted during the first 30 s. Histamine (20, 40 microg) and chlorpheniramine (80 microg) significantly decreased the numbers of eye wipes. Ranitidine alone had no effect. Pretreatment with chlorpheniramine did not change the histamine-induced analgesia, whereas the histamine effect on pain was inhibited with ranitidine pretreatment. These results indicate that the brain histamine, through central H(2) receptors, may be involved in the modulation of the acute trigeminal pain in rats.

  19. Minocycline inhibits the enhancement of antidromic primary afferent stimulation-evoked vasodilation following intradermal capsaicin injection.

    PubMed

    Gong, Kerui; Yue, Yue; Zou, Xiaoju; Li, Dingge; Lin, Qing

    2010-09-27

    Neurogenic inflammation is induced by inflammatory mediators released in peripheral tissue from primary afferent nociceptors. Our previous studies suggest that neurogenic inflammation induced by intradermal injection of capsaicin results from the enhancement of dorsal root reflexes (DRRs), which involve antidromic activation of dorsal root ganglion (DRG) neurons. Numerous studies have reported the important role of glial modulation in pain. However, it remains unclear whether glial cells participate in the process of neurogenic inflammation-induced pain. Here we tested the role of DRG satellite glial cells (SGCs) in this process in anesthetized rats by administration of a glial inhibitor, minocycline. Electrical stimuli (ES, frequency 10 Hz; duration 1 ms; strength 3 mA) were applied to the cut distal ends of the L4-5 dorsal roots. The stimuli evoked antidromic action potentials designed to mimic DRRs. Local cutaneous blood flow in the hindpaw was measured using a Doppler flow meter. Antidromic ES for 10 min evoked a significant vasodilation that could be inhibited dose-dependently by local administration of the calcitonin gene-related peptide receptor antagonist, CGRP8-37. Pretreatment with capsaicin intradermally injected into the hindpaw 2h before the ES enhanced greatly the vasodilation evoked by antidromic ES, and this enhancement could be reversed by minocycline pretreatment. Our findings support the view that neurogenic inflammation following capsaicin injection involves antidromic activation of DRG neurons via the generation of DRRs. Inhibition of neurogenic inflammation by minocycline is suggested to be associated with its inhibitory effect on SGCs that are possibly activated following capsaicin injection.

  20. Estrogens Exacerbate Nociceptive Pain via Up-Regulation of TRPV1 and ANO1 in Trigeminal Primary Neurons of Female Rats.

    PubMed

    Yamagata, Kazuaki; Sugimura, Mitsutaka; Yoshida, Miki; Sekine, Shinichi; Kawano, Akiyo; Oyamaguchi, Aiko; Maegawa, Hiroharu; Niwa, Hitoshi

    2016-11-01

    Several trigeminal pain disorders show sex differences, and high levels of estrogens may underlie these differences. The interaction between transient receptor potential vanilloid 1 (TRPV1) and anoctamin 1 (ANO1) plays an important role in peripheral nociception. However, whether TRPV1 and ANO1 are involved in estrogen-modulated trigeminal pain sensitivity is unclear. In this study, we examined estradiol (E2) modulation of nociception through behavioral and immunohistological experiments after application of capsaicin (Cap), a selective TRPV1 agonist, onto the ocular surface in ovariectomized rats treated with high-dose E2 (HE) or low-dose E2 (LE) for 2 days. In addition, we used real-time PCR to study the effects of E2 on the expression levels of TRPV1 and ANO1 mRNA in trigeminal ganglia. In the behavioral experiment, the HE group showed significant potentiation of Cap-evoked nocifensive behavior compared with the LE group. Immunohistochemistry showed that Cap evoked a significantly greater number of cells that were immunoreactive for c-Fos, a marker of nociceptive activation, in the trigeminal subnucleus caudalis/upper cervical cord in the HE group than in the LE group. The number of c-Fos-immunoreactive cells in the ventral trigeminal interpolaris/caudalis were similar in the 2 groups. Real-time PCR showed that the levels of TRPV1 and ANO1 mRNA in the HE group were significantly higher than levels in the LE group. Thus, high levels of estrogens may be a risk factor for Cap-evoked nociceptive pain, and estrogen-dependent increases in TRPV1 and ANO1 are likely involved in modulating the nociceptive response in the trigeminal area.

  1. Effective Management of Trigeminal Neuralgia by Neurostimulation

    PubMed Central

    Abd-Elsayed, Alaa A.; Grandhi, Ravi; Sachdeva, Harsh

    2015-01-01

    Background Treatment of trigeminal neuralgia can be challenging for many physicians; patients who do not respond to conventional treatments and traditional surgical approaches often continue to suffer with pain. The peripheral nerve stimulator (PNS) has been used to treat many chronic pain conditions, but few reports exist about its use to treat trigeminal neuralgia. Case Report We present the case of a patient with trigeminal neuralgia resistant to conventional techniques of pain management. Conservative pain management was attempted but was ineffective. As a result, a PNS was placed with minimally invasive surgery. Pain scores were recorded before and after the procedure, and the patient reported complete resolution of her pain. Conclusion PNS implantation can be a safe and effective method to treat trigeminal neuralgia. More research is needed to define its mechanism of action. PMID:26130986

  2. Chemosensory properties of the trigeminal system.

    PubMed

    Viana, Félix

    2011-01-19

    The capacity of cutaneous, including trigeminal endings, to detect chemicals is known as chemesthesis or cutaneous chemosensation. This sensory function involves the activation of nociceptor and thermoreceptor endings and