Science.gov

Sample records for capsaicin receptor trpv1

  1. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    PubMed Central

    Smutzer, Gregory; Devassy, Roni K.

    2016-01-01

    Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition. PMID:26884754

  2. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics.

    PubMed

    Smutzer, Gregory; Devassy, Roni K

    2016-01-01

    Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition.

  3. Capsaicin receptor: TRPV1 a promiscuous TRP channel.

    PubMed

    Pingle, S C; Matta, J A; Ahern, G P

    2007-01-01

    TRPV1, the archetypal member of the vanilloid TRP family, was initially identified as the receptor for capsaicin, the pungent ingredient in hot chili peppers. The receptor has a diverse tissue distribution, with high expression in sensory neurons. TRPV1 is a nonselective cation channel with significant permeability to calcium, protons, and large polyvalent cations. It is the most polymodal TRP channel, being activated by numerous stimuli, including heat, voltage, vanilloids, lipids, and protons/cations. TRPV1 acts as a molecular integrator of physical and chemical stimuli in peripheral nociceptor terminals and plays a critical role in thermal inflammatory hyperalgesia. In addition, TRPV1 may regulate a variety of physiological functions in different organ systems. Various second messenger systems regulate TRPV1 activity, predominantly by serine-threonine phosphorylation. In this review, we provide a concise summary of the information currently available about this channel.

  4. Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists

    PubMed Central

    Appendino, Giovanni; Harrison, Selena; De Petrocellis, Luciano; Daddario, Nives; Bianchi, Federica; Schiano Moriello, Aniello; Trevisani, Marcello; Benvenuti, Francesca; Geppetti, Pierangelo; Di Marzo, Vincenzo

    2003-01-01

    The C-5 halogenation of the vanillyl moiety of resiniferatoxin, an ultrapotent agonist of vanilloid TRPV1 receptors, results in a potent antagonist for these receptors. Here, we have synthesized a series of halogenated derivatives of ‘synthetic capsaicin' (nonanoyl vanillamide=nordihydrocapsaicin) differing for the nature (iodine, bromine–chlorine) and the regiochemistry (C-5, C-6) of the halogenation.The activity of these compounds was investigated on recombinant human TRPV1 receptors overexpressed in HEK-293 cells. None of the six compounds exerted any significant agonist activity, as assessed by measuring their effect on TRPV1-mediated calcium mobilization. Instead, all compounds antagonized, to various extents, the effect of capsaicin in this assay.All 6-halo-nordihydrocapsaicins behaved as competitive antagonists against human TRPV1 according to the corresponding Schild's plots, and were more potent than the corresponding 5-halogenated analogues. The iodo-derivatives were more potent than the bromo- and chloro-derivatives.Using human recombinant TRPV1, 6-iodo-nordihydrocapsaicin (IC50=10 nM against 100 nM capsaicin) was about four times more potent than the prototypical TRPV1 antagonist, capsazepine, and was tested against capsaicin also on native TRPV1 in: (i) rat dorsal root ganglion neurons in culture; (ii) guinea-pig urinary bladder; and (iii) guinea-pig bronchi. In all cases, except for the guinea-pig bronchi, the compound was significantly more potent than capsazepine as a TRPV1 antagonist.In conclusion, 6-iodo-nordihydrocapsaicin, a stable and easily prepared compound, is a potent TRPV1 antagonist and a convenient replacement for capsazepine in most of the in vitro preparations currently used to assess the activity of putative vanilloid receptor agonists. PMID:12922928

  5. Lactate is a potent inhibitor of the capsaicin receptor TRPV1

    PubMed Central

    de la Roche, Jeanne; Walther, Isabella; Leonow, Waleria; Hage, Axel; Eberhardt, Mirjam; Fischer, Martin; Reeh, Peter W.; Sauer, Susanne; Leffler, Andreas

    2016-01-01

    Tissue ischemia results in an accumulation of lactate and local or systemic lactic acidosis. In nociceptive sensory neurons, lactate was reported to sensitize or activate the transient receptor potential ion channel TRPA1 and acid-sensing ion channels (ASICs). However, it is unclear how lactate modulates the TRPV1 regarded as the main sensor for acidosis in sensory neurons. In this study we investigated the effects of lactate (LA) on recombinant and native TRPV1 channels and on TRPV1-mediated release of neuropeptides from mouse nerves. TRPV1-mediated membrane currents evoked by protons, capsaicin or heat are inhibited by LA at concentrations ranging from 3 μM to 100 mM. LA inhibits TRPV1-mediated proton-induced Ca2+-influx in dorsal root ganglion neurons as well as proton-evoked neuropeptide release from mouse nerves. Inhibition of TRPV1 by LA is significantly stronger on inward currents as compared to outward currents since LA affects channel gating, shifting the activation curve towards more positive potentials. The mutation I680A in the pore lower gate displays no LA inhibition. Cell-attached as well as excised inside- and outside-out patches suggest an interaction through an extracellular binding site. In conclusion, our data demonstrate that lactate at physiologically relevant concentrations is a potent endogenous inhibitor of TRPV1. PMID:27827430

  6. The M-channel blocker linopirdine is an agonist of the capsaicin receptor TRPV1.

    PubMed

    Neacsu, Cristian; Babes, Alexandru

    2010-01-01

    Linopirdine is a well known blocker of voltage-gated potassium channels from the Kv7 (or KCNQ) family that generate the so called M current in mammalian neurons. Kv7 subunits are also expressed in pain-sensing neurons in dorsal root ganglia, in which they modulate neuronal excitability. In this study we demonstrate that linopirdine acts as an agonist of TRPV1 (transient receptor potential vanilloid type 1), another ion channel expressed in nociceptors and involved in pain signaling. Linopirdine induces increases in intracellular calcium concentration in human embryonic kidney 293 (HEK293) cells expressing TRPV1, but not TRPA1 and TRPM8 or in wild-type HEK293 cells. Linopirdine also activates an inward current in TRPV1-expressing HEK293 cells that is almost completely blocked by the selective TRPV1 antagonist capsazepine. At low concentrations linopirdine sensitizes both recombinant and native TRPV1 channels to heat, in a manner that is not prevented by the Kv7-channel opener flupirtine. Taken together, these results indicate that linopirdine exerts an excitatory action on mammalian nociceptors not only through inhibition of the M current but also through activation of the capsaicin receptor TRPV1.

  7. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil.

    PubMed

    Everaerts, Wouter; Gees, Maarten; Alpizar, Yeranddy A; Farre, Ricard; Leten, Cindy; Apetrei, Aurelia; Dewachter, Ilse; van Leuven, Fred; Vennekens, Rudi; De Ridder, Dirk; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2011-02-22

    Mustard oil (MO) is a plant-derived irritant that has been extensively used in experimental models to induce pain and inflammation. The noxious effects of MO are currently ascribed to specific activation of the cation channel TRPA1 in nociceptive neurons. In contrast to this view, we show here that the capsaicin receptor TRPV1 has a surprisingly large contribution to aversive and pain responses and visceral irritation induced by MO. Furthermore, we found that this can be explained by previously unknown properties of this compound. First, MO has a bimodal effect on TRPA1, producing current inhibition at millimolar concentrations. Second, it directly and stably activates mouse and human recombinant TRPV1, as well as TRPV1 channels in mouse sensory neurons. Finally, physiological temperatures enhance MO-induced TRPV1 stimulation. Our results refute the dogma that TRPA1 is the sole nocisensor for MO and motivate a revision of the putative roles of these channels in models of MO-induced pain and inflammation. We propose that TRPV1 has a generalized role in the detection of irritant botanical defensive traits and in the coevolution of multiple mammalian and plant species.

  8. Is thermal nociception only sensed by the capsaicin receptor, TRPV1?

    PubMed

    Hiura, Akio

    2009-09-01

    Mammalian heat pain perception is well documented as a molecular event in the primary afferent neurons expressing TRPV1. Six types of thermo-TRPs were found, i.e., TRPV1-4, TRPM8 and TRPA1. The former TRPV1, 2 and TRPV3, 4 are sensitive to noxious heat and warmth, and the latter two are sensitive to cool or cold, respectively. We attempted to provide a hypothesis to explain the paradox in which TRPV1 knockout mice and capsaicin-pretreated mice with severe loss of small dorsal root ganglion (DRG) neurons behave normally to noxious heat. From the general view that TRPV1 is preferentially expressed in C-fibers responding to a moderate thermal threshold (>43 degrees C) and TRPV2 in Adelta-fibers to high threshold temperatures (>52 degrees C), the above phenomenon is perplexing. Woodbury et al. (J Neurosci 24:6410-6415, 2004) offered two pain transduction mechanisms, one being TRPV1/2-independent and the other TRPV1-dependent. The former detects noxious heat under normal conditions without the presence of TRPV1 or TRPV2, and the latter requires TRPV1 under pathophysiological conditions. Unidentified isolectin B4 (IB4)-positive but TRPV1-negative small neurons with a higher noxious heat threshold are feasible, because a spliced isoform of TRPV1 responsive to noxious heat (47 degrees C) but not responsive to either proton or capsaicin is present in human and rat sensory neurons. Thus, the IB4-positive but TRPV1-negative small sensory neurons must have a crucial role in the noxious heat response.

  9. ThermoTRP channels in nociceptors: taking a lead from capsaicin receptor TRPV1.

    PubMed

    Mandadi, Sravan; Roufogalis, Basil D

    2008-03-01

    Nociceptors with peripheral and central projections express temperature sensitive transient receptor potential (TRP) ion channels, also called thermoTRP's. Chemosensitivity of thermoTRP's to certain natural compounds eliciting pain or exhibiting thermal properties has proven to be a good tool in characterizing these receptors. Capsaicin, a pungent chemical in hot peppers, has assisted in the cloning of the first thermoTRP, TRPV1. This discovery initiated the search for other receptors encoding the response to a wide range of temperatures encountered by the body. Of these, TRPV1 and TRPV2 encode unique modalities of thermal pain when exposed to noxious heat. The ability of TRPA1 to encode noxious cold is presently being debated. The role of TRPV1 in peripheral inflammatory pain and central sensitization during chronic pain is well known. In addition to endogenous agonists, a wide variety of chemical agonists and antagonists have been discovered to activate and inhibit TRPV1. Efforts are underway to determine conditions under which agonist-mediated desensitization of TRPV1 or inhibition by antagonists can produce analgesia. Also, identification of specific second messenger molecules that regulate phosphorylation of TRPV1 has been the focus of intense research, to exploit a broader approach to pain treatment. The search for a role of TRPV2 in pain remains dormant due to the lack of suitable experimental models. However, progress into TRPA1's role in pain has received much attention recently. Another thermoTRP, TRPM8, encoding for the cool sensation and also expressed in nociceptors, has recently been shown to reduce pain via a central mechanism, thus opening a novel strategy for achieving analgesia. The role of other thermoTRP's (TRPV3 and TRPV4) encoding for detection of warm temperatures and expressed in nociceptors cannot be excluded. This review will discuss current knowledge on the role of nociceptor thermoTRPs in pain and therapy and describes the activator and

  10. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin.

    PubMed

    Yang, Fan; Zheng, Jie

    2017-03-01

    Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel's transmembrane segments, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.

  11. Effects of capsaicin on VGSCs in TRPV1-/- mice.

    PubMed

    Cao, Xuehong; Cao, Xuesong; Xie, Hong; Yang, Rong; Lei, Gang; Li, Fen; Li, Ai; Liu, Changjin; Liu, Lieju

    2007-08-13

    Two different mechanisms by which capsaicin blocks voltage-gated sodium channels (VGSCs) were found by using knockout mice for the transient receptor potential V1 (TRPV1(-/-)). Similar with cultured rat trigeminal ganglion (TG) neurons, the amplitude of tetrodotoxin-resistant (TTX-R) sodium current was reduced 85% by 1 muM capsaicin in capsaicin sensitive neurons, while only 6% was blocked in capsaicin insensitive neurons of TRPV1(+/+) mice. The selective effect of low concentration capsaicin on VGSCs was reversed in TRPV1(-/-) mice, which suggested that this effect was dependent on TRPV1 receptor. The blockage effect of high concentration capsaicin on VGSCs in TRPV1(-/-) mice was the same as that in capsaicin insensitive neurons of rats and TRPV1(+/+) mice. It is noted that non-selective effect of capsaicin on VGSCs shares many similarities with local anesthetics. That is, firstly, both blockages are concentration-dependent and revisable. Secondly, being accompanied with the reduction of amplitude, voltage-dependent inactivation curve shifts to hyperpolarizing direction without a shift of activation curve. Thirdly, use-dependent blocks are induced at high stimulus frequency.

  12. 'TRPing' synaptic ribbon function in the rat pineal gland: neuroendocrine regulation involves the capsaicin receptor TRPV1.

    PubMed

    Reuss, Stefan; Disque-Kaiser, Ursula; Binzen, Uta; Greffrath, Wolfgang; Peschke, Elmar

    2010-01-01

    Synaptic ribbons (SRs) are presynaptic structures thought to regulate and facilitate multivesicular release. In the pineal gland, they display a circadian rhythm with higher levels at night paralleling melatonin synthesis. To gain more insight into the processes involved and the possible functions of these structures, a series of experiments were conducted in rodents. We studied the regional distribution of a molecular marker of pineal SRs, the kinesin motor KIF3A in the gland. Respective immunoreactivity was abundant in central regions of the gland where sympathetic fibers were less dense, and vice versa, revealing that intercellular communication between adjacent pinealocytes is enhanced under low sympathetic influence. KIF3A was found to be colocalized to the transient receptor potential channel of the vanilloid receptor family, subtype 1 (TRPV1). The TRPV1 agonist capsaicin increased melatonin secretion from perifused pineals in a dose-dependent manner that was blocked by the competitive TRPV1 antagonist capsazepine. No change in free intracellular calcium was observed in response to TRPV1 ligands applied to pinealocytes responding to norepinephrine, bradykinin and/or depolarization. These data clearly indicate that TRPV1 actively regulates pineal gland function.

  13. Sustained increase of Ca+2 oscillations after chronic TRPV1 receptor activation with capsaicin in cultured spinal neurons.

    PubMed

    Larrucea, Carlos; Castro, Patricio; Sepulveda, Fernando J; Wandersleben, Gretchen; Roa, Jorge; Aguayo, Luis G

    2008-07-07

    Hyperalgesia and allodynia occur as a consequence of peripheral and central sensitization that follows sustained nociceptive activation. The cellular alterations associated to this state of nociceptive network hyperexcitability represent a form of neuronal plasticity, but they are not well understood because of its complexity in situ. In this study, after treating primary spinal neuron cultures with capsaicin (0.5-1 microM) for 48 h fluorimetric recordings were performed. The activation of TRPV1 receptors with capsaicin (0.5-1.0 microM) increased the frequency of calcium transients (0.03+/-0.002 Hz vs. 0.05+/-0.006 Hz, P<0.05), mediated by AMPAergic transmission, as well as the percent of neurons with activity (37+/-3% vs. 65+/-4%, P<0.05). The effect of capsaicin was long lasting and the neurons were found to be hyperfunctional and with increased levels of phosphorylated CREB (cAMP responsive element binding) even after 72 h of treatment with capsaicin (32+/-5% vs. 52+/-5%). The effect of capsaicin was blocked by capsazepine (1 microM), TTX (100 nM) and KN-62 (1 microM), but not by K252a (200 nM) or PD98059 (50 microM) indicating the involvement of TRPV1. The results suggest the participation of Ca2+, CaMKII and CREB on the prolonged enhancement of excitability following chronic exposure to capsaicin. Thus, it is likely that chronic TRPV1 activation is capable of inducing prolonged increases in neurotransmission mediated by glutamatergic receptors.

  14. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain.

    PubMed

    Bohlen, Christopher J; Priel, Avi; Zhou, Sharleen; King, David; Siemens, Jan; Julius, David

    2010-05-28

    Toxins have evolved to target regions of membrane ion channels that underlie ligand binding, gating, or ion permeation, and have thus served as invaluable tools for probing channel structure and function. Here, we describe a peptide toxin from the Earth Tiger tarantula that selectively and irreversibly activates the capsaicin- and heat-sensitive channel, TRPV1. This high-avidity interaction derives from a unique tandem repeat structure of the toxin that endows it with an antibody-like bivalency. The "double-knot" toxin traps TRPV1 in the open state by interacting with residues in the presumptive pore-forming region of the channel, highlighting the importance of conformational changes in the outer pore region of TRP channels during activation.

  15. Tris-hydroxymethyl-aminomethane enhances capsaicin-induced intracellular Ca(2+) influx through transient receptor potential V1 (TRPV1) channels.

    PubMed

    Murakami, Satoshi; Sudo, Yuka; Miyano, Kanako; Nishimura, Hitomi; Matoba, Motohiro; Shiraishi, Seiji; Konno, Hiroki; Uezono, Yasuhito

    2016-02-01

    Non-selective transient receptor potential vanilloid (TRPV) cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM) is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1) and the Ca(2+)-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 μM) and pH 6.5 buffer elicited steep increases in the intracellular Ca(2+) concentration ([Ca(2+)]i), while treatment with THAM (pH 8.5) alone had no effect. However, treatment with THAM (pH 8.5) following capsaicin application elicited a profound, long-lasting increase in [Ca(2+)]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca(2+)]i increases, which could be a mechanism underlying pain induced by basic pH.

  16. N-palmitoyl-vanillamide (palvanil) is a non-pungent analogue of capsaicin with stronger desensitizing capability against the TRPV1 receptor and anti-hyperalgesic activity.

    PubMed

    De Petrocellis, Luciano; Guida, Francesca; Moriello, Aniello Schiano; De Chiaro, Maria; Piscitelli, Fabiana; de Novellis, Vito; Maione, Sabatino; Di Marzo, Vincenzo

    2011-04-01

    N-acyl-vanillamide (NAVAM) analogues of the natural pungent principle of capsicum, capsaicin, were developed several years ago as potential non-pungent analgesic compounds. N-oleoyl-vanillamide (olvanil) and N-arachidonoy-vanillamide (arvanil), in particular, were described in several publications and patents to behave as potent anti-hyperalgesic compounds in experimental models of chronic and inflammatory pain, and to activate both "capsaicin receptors", i.e. the transient receptor potential of vanilloid type-1 (TRPV1) channel, and, either directly or indirectly, cannabinoid receptors of type-1. Here we report the biochemical and pharmacological characterization of a so far neglected NAVAM, N-palmitoyl-vanillamide (palvanil), and propose its possible use instead of capsaicin, as a possible topical analgesic. Palvanil exhibited a kinetics of activation of human recombinant TRPV1-mediated intracellular calcium elevation significantly slower than that of capsaicin (t(1/2)=21s and 8s, respectively at 1μM). Slow kinetics of TRPV1 agonists were previously found to be associated with stronger potencies as TRPV1 desensitizing agents, which in turn are usually associated with lower pungency and stronger anti-hyperalgesic activity. Accordingly, palvanil desensitized the human recombinant TRPV1 to the effect of capsaicin (10nM) with significantly higher potency than capsaicin (IC(50)=0.8nM and 3.8nM, respectively), this effect reaching its maximum more rapidly (50 and 250min, respectively). Palvanil was also more potent than capsaicin at desensitizing the stimulatory effect of TRPV1 by low pH together with anandamide, which mimics conditions occurring during inflammation. In the eye-wiping assay carried out in mice, palvanil was not pungent and instead caused a strong and long-lasting inhibition of capsaicin-induced eye-wiping. Finally, intraplantar palvanil inhibited the second phase of the nociceptive response to formalin in mice. In conclusion, palvanil appears to be a

  17. The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice.

    PubMed

    Leffler, A; Mönter, B; Koltzenburg, M

    2006-05-12

    A local elevation of H+-ion concentrations often occurs in inflammation and usually evokes pain by excitation of primary nociceptive neurons. Expression patterns and functional properties of the capsaicin receptor and acid-sensing ion channels suggest that they may be the main molecular substrates underlying this proton sensitivity. Here, we asked how the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) contribute to the proton response in subpopulations of nociceptive neurons from adult rats and mice (wildtype C57/Bl6, Balb/C and TRPV1-null). In cultured dorsal root ganglion neurons, whole cell patch clamp recordings showed that the majority of capsaicin-sensitive rat dorsal root ganglion neurons displayed large proton-evoked inward currents with transient ASIC-like properties. In contrast, the prevalence of ASIC-like currents was smaller in both mouse wildtype strains and more frequent in capsaicin-insensitive neurons. Transient ASIC-like currents were more frequent in both species among isolectin B4-negative neurons. A significantly reduced proton response was observed for dissociated dorsal root ganglion neurons in TRPV1 deficient mice. Unmyelinated, but not thin myelinated nociceptors recorded extracellularly from TRPV1-null mutants showed a profound reduction of proton sensitivity. Together these findings indicate that there are significant differences between rat and mouse in the contribution of TRPV1 and ASIC subunits to proton sensitivity of sensory neurons. In both species ASIC subunits are more prevalent in the isolectin B4-negative neurons, some of which may represent thin myelinated nociceptors. However, the main acid-sensor in isolectin B4-positive and isolectin B4-negative unmyelinated nociceptors in mice is TRPV1.

  18. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin

    PubMed Central

    Lin, Qing; Li, Dingge; Xu, Xijin; Zou, Xiaoju; Fang, Li

    2007-01-01

    Background Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV1) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV1 receptors initiates neurogenic inflammation via triggering DRRs. Results Here we used pharmacological manipulations to analyze the roles of TRPV1 and neuropeptidergic receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin. The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP) resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or intrathecal administration of the GABAA receptor antagonist, bicuculline, reduced dramatically the capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV1 receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses between 30–150 μg. In contrast, pretreatment of the periphery with different doses of CGRP8–37 (a CGRP receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If both CGRP and NK1 receptors were blocked by co-administration of CGRP8–37 and spantide I, a stronger

  19. Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin.

    PubMed

    Pecze, László; Blum, Walter; Schwaller, Beat

    2013-07-01

    Transient receptor potential vanilloid subtype 1 (TRPV1) receptor is a pain-sensing, ligand-gated, non-selective cation channel expressed in peripheral sensory neurons. Prolonged activation of TRPV1 by capsaicin leads to cell swelling and formation of membrane blebs in rat dorsal root ganglion (DRG) neurons. Similar results were obtained in NIH3T3 fibroblast cells stably expressing TRPV1. Here, we assessed the contribution of Ca(2+) and Na(+) ions to TRPV1-mediated changes. Cell swelling was caused by a substantial influx of extracellular Na(+) via TRPV1 channels, causing concomitant transport of water. In the absence of extracellular Na(+), the membrane blebbing was completely inhibited, but Ca(2+) influx did not change under these conditions. Na(+) influx was modulated by the intracellular Ca(2+) concentration ([Ca(2+)]i). Elevation of [Ca(2+)]i by ionomycin sensitized/activated TRPV1 channels causing cell swelling in TRPV1-positive cells. In the absence of extracellular Ca(2+), capsaicin caused only little increase in [Ca(2+)]i indicating that the increase in [Ca(2+)]i observed after capsaicin application is derived essentially from extracellular Ca(2+) and not from internal Ca(2+) stores. In the absence of extracellular Ca(2+) also the process of cell swelling was considerably slower. Calretinin is a Ca(2+) buffer protein, which is expressed in a subset of TRPV1-positive neurons. Calretinin decreased the amplitude, but slowed down the decay of Ca(2+) signals evoked by ionomycin. Cells co-expressing TRPV1 and calretinin were less sensitive to TRPV1-mediated, capsaicin-induced volume increases. In TRPV1-expressing NIH3T3 cells, calretinin decreased the capsaicin-induced Ca(2+) and Na(+) influx. Swelling and formation of membrane blebs resulted in impaired plasma membrane integrity finally leading to cell death. Our results hint towards a mechanistic explanation for the apoptosis-independent capsaicin-evoked neuronal loss and additionally reveal a protective

  20. Activation of TRPV1 by Dietary Capsaicin Improves Endothelium-Dependent Vasorelaxation and Prevents Hypertension

    PubMed Central

    Yang, Dachun; Luo, Zhidan; Ma, Shuangtao; Wong, Wing Tak; Ma, Liqun; Zhong, Jian; He, Hongbo; Zhao, Zhigang; Cao, Tingbing; Yan, Zhencheng; Liu, Daoyan; Arendshorst, William J.; Huang, Yu; Tepel, Martin; Zhu, Zhiming

    2014-01-01

    SUMMARY Some plant-based diets lower the cardiometabolic risks and prevalence of hypertension. New evidence implies a role for the transient receptor potential vanilloid 1 (TRPV1) cation channel in the pathogenesis of cardiometabolic diseases. Little is known about impact of chronic TRPV1 activation on the regulation of vascular function and blood pressure. Here we report that chronic TRPV1 activation by dietary capsaicin increases the phosphorylation of protein kinase A (PKA) and eNOS and thus production of nitric oxide (NO) in endothelial cells, which is calcium dependent. TRPV1 activation by capsaicin enhances endothelium-dependent relaxation in wild-type mice, an effect absent in TRPV1-deficient mice. Long-term stimulation of TRPV1 can activate PKA, which contributes to increased eNOS phosphorylation, improves vasorelaxation, and lowers blood pressure in genetically hypertensive rats. We conclude that TRPV1 activation by dietary capsaicin improves endothelial function. TRPV1-mediated increase in NO production may represent a promising target for therapeutic intervention of hypertension. PMID:20674858

  1. The cannabinomimetic arachidonyl-2-chloroethylamide (ACEA) acts on capsaicin-sensitive TRPV1 receptors but not cannabinoid receptors in rat joints

    PubMed Central

    Baker, Chris L; McDougall, Jason J

    2004-01-01

    The vasoactive effects of the synthetic cannabinoid (CB) arachidonyl-2-chloroethylamide (ACEA) was tested in the knee joints of urethane-anaesthetised rats. Experiments were also performed to determine whether these vasomotor responses could be blocked by the selective CB1 receptor antagonists AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) (10−9 mol) and AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) (10−8 mol), as well as the selective CB2 receptor antagonist AM630 (6-iodo-2-methyl-1-[2-4(morpholinyl)ethyl]-[1H-indol-3-yl](4-methoxyphenyl)methanone) (10−8 mol). Peripheral application of ACEA (10−14–10−9 mol) onto the exposed surface of the knee joint capsule caused a dose-dependent increase in synovial blood flow. The dilator action of the CB occurred within 1 min after drug administration and rapidly returned to control levels shortly thereafter. The maximal vasodilator effect of ACEA corresponded to a 30% increase in articular perfusion compared to control levels. The hyperaemic action of ACEA was not significantly altered by coadministration of AM251, AM281 or AM630 (P>0.05; two-way ANOVA). The transient receptor potential channel vanilloid receptor 1 (TRPV1) antagonist capsazepine (10−6 mol) significantly reduced the vasodilator effect of ACEA on joint blood vessels (P=0.002). Furthermore, destruction of unmyelinated and thinly myelinated joint sensory nerves by capsaicin (8-methyl-N-vanillyl-6-nonenamide) treatment also attenuated ACEA responses (P<0.0005). These data clearly demonstrate a vasodilator effect of the cannabinomimetic ACEA on knee joint perfusion. Rather than a classic CB receptor pathway, ACEA exerts its vasomotor influence by acting via TRPV1 receptors located on the terminal branches of capsaicin-sensitive afferent nerves innervating the joint. PMID:15277316

  2. Involvement of a capsaicin-sensitive TRPV1-independent mechanism in lipopolysaccharide-induced fever in chickens.

    PubMed

    Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Nikami, Hideki; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2007-11-01

    It has been demonstrated that capsaicin blocks lipopolysaccharide (LPS)-induced fever in mammals. In this study, we investigated TRPV1 (transient receptor potential ion channel of vanilloid subtype-1)-independent action of capsaicin on LPS-induced fever in chickens. The chicken is a valuable model for this purpose because chicken TRPV1 has been shown to be insensitive to capsaicin and thus the effects of capsaicin can be attributed to TRPV1-independent mechanisms. Administration of capsaicin (10 mg/kg, iv) to conscious unrestrained chicks at 5 days of age caused a transient decrease in body temperature. This effect of capsaicin was not observed in chicks that had been pretreated twice with capsaicin, indicating that the capsaicin-sensitive pathway can be desensitized. LPS (2 mg/kg, ip) induced fever that lasted for about 2.5 h, but fever was not induced in chicks that had been pretreated with capsaicin for 2 days. The preventive effect of capsaicin on LPS-induced fever was not blocked by capsazepine, an antagonist for TRPV1, but the antagonist per se blocked the febrile response to LPS. These findings suggest that a capsaicin-sensitive TRPV1-independent mechanism may be involved in LPS-induced fever.

  3. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1.

    PubMed

    Zhang, Ning; Inan, Saadet; Inan, Sadeet; Cowan, Alan; Sun, Ronghua; Wang, Ji Ming; Rogers, Thomas J; Caterina, Michael; Oppenheim, Joost J

    2005-03-22

    Pain, a critical component of host defense, is one hallmark of the inflammatory response. We therefore hypothesized that pain might be exacerbated by proinflammatory chemokines. To test this hypothesis, CCR1 was cotransfected into human embryonic kidney (HEK)293 cells together with transient receptor potential vanilloid 1 (TRPV1), a cation channel required for certain types of thermal hyperalgesia. In these cells, capsaicin and anandamide induced Ca(2+) influx mediated by TRPV1. When CCR1:TRPV1/HEK293 cells were pretreated with CCL3, the sensitivity of TRPV1, as indicated by the Ca(2+) influx, was increased approximately 3-fold. RT-PCR analysis showed that a spectrum of chemokine and cytokine receptors is expressed in rat dorsal root ganglia (DRG). Immunohistochemical staining of DRG showed that CCR1 is coexpressed with TRPV1 in >85% of small-diameter neurons. CCR1 on DRG neurons was functional, as demonstrated by CCL3-induced Ca(2+) ion influx and PKC activation. Pretreatment with CCL3 enhanced the response of DRG neurons to capsaicin or anandamide. This sensitization was inhibited by pertussis toxin, U73122, or chelerythrine chloride, inhibitors of Gi-protein, phospholipase C, and protein kinase C, respectively. Intraplantar injection of mice with CCL3 decreased their hot-plate response latency. That a proinflammatory chemokine, by interacting with its receptor on small-diameter neurons, sensitizes TRPV1 reveals a previously undescribed mechanism of receptor cross-sensitization that may contribute to hyperalgesia during inflammation.

  4. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor.

    PubMed

    Gunthorpe, Martin J; Hannan, Sara Luis; Smart, Darren; Jerman, Jeffrey C; Arpino, Sandra; Smith, Graham D; Brough, Stephen; Wright, Jim; Egerton, Julie; Lappin, Sarah C; Holland, Vicky A; Winborn, Kim; Thompson, Mervyn; Rami, Harshad K; Randall, Andrew; Davis, John B

    2007-06-01

    Vanilloid receptor-1 (TRPV1) is a nonselective cation channel, predominantly expressed by sensory neurons, which plays a key role in the detection of noxious painful stimuli such as capsaicin, acid, and heat. TRPV1 antagonists may represent novel therapeutic agents for the treatment of a range of conditions including chronic pain, migraine, and gastrointestinal disorders. Here we describe the in vitro pharmacology of N-(2-bromophenyl)-N'-[((R)-1-(5-trifluoromethyl-2-pyridyl)pyrrolidin-3-yl)]urea (SB-705498), a novel TRPV1 antagonist identified by lead optimization of N-(2-bromophenyl)-N'-[2-[ethyl(3-methylphenyl)amino]ethyl]urea (SB-452533), which has now entered clinical trials. Using a Ca(2+)-based fluorometric imaging plate reader (FLIPR) assay, SB-705498 was shown to be a potent competitive antagonist of the capsaicin-mediated activation of the human TRPV1 receptor (pK(i) = 7.6) with activity at rat (pK(i) = 7.5) and guinea pig (pK(i) = 7.3) orthologs. Whole-cell patch-clamp electrophysiology was used to confirm and extend these findings, demonstrating that SB-705498 can potently inhibit the multiple modes of receptor activation that may be relevant to the pathophysiological role of TRPV1 in vivo: SB-705498 caused rapid and reversible inhibition of the capsaicin (IC(50) = 3 nM)-, acid (pH 5.3)-, or heat (50 degrees C; IC(50) = 6 nM)-mediated activation of human TRPV1 (at -70 mV). Interestingly, SB-705498 also showed a degree of voltage dependence, suggesting an effective enhancement of antagonist action at negative potentials such as those that might be encountered in neurons in vivo. The selectivity of SB-705498 was defined by broad receptor profiling and other cellular assays in which it showed little or no activity versus a wide range of ion channels, receptors, and enzymes. SB-705498 therefore represents a potent and selective multimodal TRPV1 antagonist, a pharmacological profile that has contributed to its definition as a suitable drug candidate for

  5. Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin

    PubMed Central

    Elokely, Khaled; Velisetty, Phanindra; Delemotte, Lucie; Palovcak, Eugene; Klein, Michael L.; Rohacs, Tibor; Carnevale, Vincenzo

    2016-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) or vanilloid receptor 1 is a nonselective cation channel that is involved in the detection and transduction of nociceptive stimuli. Inflammation and nerve damage result in the up-regulation of TRPV1 transcription, and, therefore, modulators of TRPV1 channels are potentially useful in the treatment of inflammatory and neuropathic pain. Understanding the binding modes of known ligands would significantly contribute to the success of TRPV1 modulator drug design programs. The recent cryo-electron microscopy structure of TRPV1 only provides a coarse characterization of the location of capsaicin (CAPS) and resiniferatoxin (RTX). Herein, we use the information contained in the experimental electron density maps to accurately determine the binding mode of CAPS and RTX and experimentally validate the computational results by mutagenesis. On the basis of these results, we perform a detailed analysis of TRPV1–ligand interactions, characterizing the protein ligand contacts and the role of individual water molecules. Importantly, our results provide a rational explanation and suggestion of TRPV1 ligand modifications that should improve binding affinity. PMID:26719417

  6. New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy.

    PubMed

    Shaqura, Mohammed; Khalefa, Baled I; Shakibaei, Mehdi; Zöllner, Christian; Al-Khrasani, Mahmoud; Fürst, Susanna; Schäfer, Michael; Mousa, Shaaban A

    2014-10-01

    Painful diabetic neuropathy is a disease of the peripheral sensory neuron with impaired opioid responsiveness. Since μ-opioid receptor (MOR) activation can inhibit the transient receptor potential vanilloid 1 (TRPV1) activity in peripherally sensory neurons, this study investigated the mechanisms of impaired opioid inhibitory effects on capsaicin-induced TRPV1 activity in painful diabetic neuropathy. Intravenous injection of streptozotocin (STZ, 45 mg/kg) in Wistar rats led to a degeneration of insulin producing pancreatic β-cells, elevated blood glucose, and mechanical hypersensitivity (allodynia). In these animals, local morphine's inhibitory effects on capsaicin-induced nocifensive behavior as well as on capsaicin-induced TRPV1 current in dorsal root ganglion cells were significantly impaired. These changes were associated with a loss in MOR but not TRPV1 in peripheral sensory neurons. Intrathecal delivery of nerve growth factor in diabetic animals normalized sensory neuron MOR and subsequently rescued morphine's inhibitory effects on capsaicin-induced TRPV1 activity in vivo and in vitro. These findings identify a loss in functional MOR on sensory neurons as a contributing factor for the impaired opioid inhibitory effects on capsaicin-induced TRPV1 activity during advanced STZ-induced diabetes. Moreover, they support growing evidence of a distinct regulation of opioid responsiveness during various painful states of disease (e.g. arthritis, cancer, neuropathy) and may give novel therapeutic incentives.

  7. Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8.

    PubMed

    Takaishi, Masayuki; Uchida, Kunitoshi; Suzuki, Yoshiro; Matsui, Hiroshi; Shimada, Tadashi; Fujita, Fumitaka; Tominaga, Makoto

    2016-03-01

    Transient receptor potential vanilloid 1 (TRPV1) is activated by elevated temperature (>42 °C), and it has been reported that cold temperature decreases capsaicin-induced TRPV1 activity. In contrast, transient receptor potential melastatin 8 (TRPM8) is activated by low temperatures and menthol, and heat stimulation suppresses menthol-evoked TRPM8 currents. These findings suggest that the effects of specific agents on TRPV1 and TRPM8 channels are intricately interrelated. We examined the effects of menthol on human (h)TRPV1 and of capsaicin on hTRPM8. hTRPV1 currents activated by heat and capsaicin were inhibited by menthol, whereas hTRPM8 currents activated by cold and menthol were similarly inhibited by capsaicin. An in vivo sensory irritation test showed that menthol conferred an analgesic effect on the sensory irritation evoked by a capsaicin analogue. These results indicate that in our study the agonists of TRPV1 and TRPM8 interacted with both of these channels and suggest that the anti-nociceptive effects of menthol can be partially explained by this phenomenon.

  8. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.

    PubMed

    Jeong, Keun-Yeong; Seong, Jinsil

    2014-06-15

    The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1.

  9. Tunable Calcium Current through TRPV1 Receptor Channels*S⃞

    PubMed Central

    Samways, Damien S. K.; Khakh, Baljit S.; Egan, Terrance M.

    2008-01-01

    TRPV1 receptors are polymodal cation channels that open in response to diverse stimuli including noxious heat, capsaicin, and protons. Because Ca2+ is vital for TRPV1 signaling, we sought to precisely measure its contribution to TRPV1 responses and discovered that the Ca2+ current was tuned by the mode of activation. Using patch clamp photometry, we found that the fraction of the total current carried by Ca2+ (called the Pf%) was significantly smaller for TRPV1 currents evoked by protons than for those evoked by capsaicin. Using site-directed mutagenesis, we discovered that the smaller Pf% was due to protonation of three acidic amino acids (Asp646, Glu648, and Glu651) that are located in the mouth of the pore. Thus, in keeping with recent reports of time-dependent changes in the ionic permeability of some ligand-gated ion channels, we now show for the first time that the physiologically important Ca2+ current of the TRPV1 receptor is also dynamic and depends on the mode of activation. This current is significantly smaller when the receptor is activated by a change in pH, owing to atomic scale interactions of H+ and Ca2+ with the fixed negative charge of side chains in the pore. PMID:18775990

  10. Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1) by Diacylglycerol (DAG)

    PubMed Central

    Woo, Dong Ho; Jung, Sung Jun; Zhu, Mei Hong; Park, Chul-Kyu; Kim, Yong Ho; Oh, Seog Bae; Lee, C Justin

    2008-01-01

    The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1), is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC). However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG) directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG) neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5)P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C. PMID:18826653

  11. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations.

    PubMed

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir; Wang, KeWei; Zheng, Jie

    2012-04-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.

  12. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate.

    PubMed

    Iida, T; Moriyama, T; Kobata, K; Morita, A; Murayama, N; Hashizume, S; Fushiki, T; Yazawa, S; Watanabe, T; Tominaga, M

    2003-06-01

    Capsiate is a capsaicin-like ingredient of a non-pungent cultivar of red pepper, CH-19 sweet. To elucidate the mechanisms underlying the non-pungency of capsiate, we investigated whether capsiate activates the cloned capsaicin receptor, TRPV1 (VR1). In patch-clamp experiments, capsiate was found to activate TRPV1 expressed transiently in HEK293 cells with a similar potency as capsaicin. Capsiate induced nociceptive responses in mice when injected subcutaneously into their hindpaws with a similar dose dependency as capsaicin. These data indicate that the non-pungent capsiate is an agonist for TRPV1 and could excite peripheral nociceptors. In contrast to this, capsiate did not induce any significant responses when applied to the skin surface, eye or oral cavity of mice, suggesting that capsiate requires direct access to nerve endings to exhibit its effects. Capsiate was proved to have high lipophilicity and to be easily broken down in normal aqueous conditions, leading to less accessibility to nociceptors. Another highly lipophilic capsaicin analogue, olvanil, was similar to capsiate in that it did not produce irritant responses when applied to the skin surface, although it could activate TRPV1. Taken together, high lipophilicity and instability might be critical determinants for pungency and so help in understanding the effects of capsaicin-related compounds.

  13. Effects of a TRPV1 agonist capsaicin on respiratory rhythm generation in brainstem-spinal cord preparation from newborn rats.

    PubMed

    Tani, Mariho; Kotani, Sayumi; Hayakawa, Chikara; Lin, Shih-Tien; Irie, Saki; Ikeda, Keiko; Kawakami, Kiyoshi; Onimaru, Hiroshi

    2017-02-01

    The heat-sensitive transient receptor potential vanilloid 1 (TRPV1) channels are expressed in the peripheral and central nervous systems. However, there is no report on how the activation of TRPV1 causes the modulation of neuronal activity in the medullary respiratory center. We examined effects of capsaicin, a specific agonist of TRPV1 channels, on respiratory rhythm generation in brainstem-spinal cord preparation from newborn rats. Capsaicin induced a biphasic response in the respiratory rhythm (a transient decrease followed by an increase in the C4 rate). The second-phase excitatory effect (but not the initial inhibitory effect) in the biphasic response was partly blocked by capsazepine or AMG9810 (TRPV1 antagonists). Capsaicin caused strong desensitization. After its washout, the strength of C4 burst inspiratory activity was augmented once per four to five respiratory cycles. The preinspiratory and inspiratory neurons showed tonic firings due to membrane depolarization during the initial inhibitory phase. In the presence of TTX, capsaicin increased the fluctuation of the membrane potential of the CO2-sensitive preinspiratory neurons in the parafacial respiratory group (pFRG), accompanied by slight depolarization. The C4 inspiratory activity did not stop, even 60-90 min after the application of 50/100 μM capsaicin. Voltage-sensitive dye imaging demonstrated that the spatiotemporal pattern of the respiratory rhythm generating networks after application of capsaicin (50 μM, 70-90 min) was highly similar to the control. A histochemical analysis using TRPV1 channel protein antibodies and mRNA demonstrated that the TRPV1 channel-positive cells were widely distributed in the reticular formation of the medulla, including the pFRG. Our results showed that the application of capsaicin in the medulla has various influences on the respiratory center: transient inhibitory and subsequent excitatory effects on the respiratory rhythm and periodical augmentation of the

  14. Localization of TRPV1 and contractile effect of capsaicin in mouse large intestine: high abundance and sensitivity in rectum and distal colon.

    PubMed

    Matsumoto, Kenjiro; Kurosawa, Emi; Terui, Hiroyuki; Hosoya, Takuji; Tashima, Kimihito; Murayama, Toshihiko; Priestley, John V; Horie, Syunji

    2009-08-01

    We investigated immunohistochemical differences in the distribution of TRPV1 channels and the contractile effects of capsaicin on smooth muscle in the mouse rectum and distal, transverse, and proximal colon. In the immunohistochemical study, TRPV1 immunoreactivity was found in the mucosa, submucosal, and muscle layers and myenteric plexus. Large numbers of TRPV1-immunoreactive axons were observed in the rectum and distal colon. In contrast, TRPV1-positive axons were sparsely distributed in the transverse and proximal colon. The density of TRPV1-immunoreactive axons in the rectum and distal colon was much higher than those in the transverse and proximal colon. Axons double labeled with TRPV1 and protein gene product (PGP) 9.5 were detected in the myenteric plexus, but PGP 9.5-immunoreactive cell bodies did not colocalize with TRPV1. In motor function studies, capsaicin induced a fast transient contraction, followed by a large long-lasting contraction in the rectum and distal colon, whereas in the transverse and proximal colon only the transient contraction was observed. The capsaicin-induced transient contraction from the proximal colon to the rectum was moderately inhibited by an NK1 or NK2 receptor antagonist. The capsaicin-induced long-lasting contraction in the rectum and distal colon was markedly inhibited by an NK2 antagonist, but not by an NK1 antagonist. The present results suggest that TRPV1 channels located on the rectum and distal colon play a major role in the motor function in the large intestine.

  15. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal.

  16. Capsaicin pretreatment attenuates LPS-induced hypothermia through TRPV1-independent mechanisms in chicken.

    PubMed

    Nikami, Hideki; Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Hirayama, Haruko; Iwami, Momoe; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2008-06-06

    It has been demonstrated that chicken TRPV1 (transient receptor potential vanilloid of subtype-1) is insensitive to capsaicin (CAP), and therefore, a chicken model is suitable to analyze the CAP-sensitive TRPV1-independent pathway. We elucidated here the possible involvement of the pathway in hypothermia induced by bacterial endotoxin (lipopolysaccharide, LPS) in chickens. Chicks were pretreated with CAP (10 mg/kg, iv) at 1, 2 and 3 days of age to desensitize them towards the CAP-sensitive pathway. An intravenous injection of LPS in 4-day-old chicks caused progressive hypothermia, ending with collapse and 78% mortality within 12 h after injection. The CAP pretreatment rescued the LPS-induced endotoxin shock and hypothermia in chicks. LPS-induced iNOS expression as well as NO production in liver and lung was suppressed by CAP pretreatment. CAP pretreatment also attenuated hypothermia due to exposure of chicks to cold ambient temperature. These findings suggest that a CAP-sensitive TRPV1-independent pathway may be involved in pathophysiological hypothermic reactions through the mediation of NO in chickens.

  17. Quantitative characterization of capsaicin-induced TRPV1 ion channel activation in HEK293 cells by impedance spectroscopy.

    PubMed

    Weyer, Maxi; Jahnke, Heinz-Georg; Krinke, Dana; Zitzmann, Franziska D; Hill, Kerstin; Schaefer, Michael; Robitzki, Andrea A

    2016-11-01

    The analysis of receptor activity, especially in its native cellular environment, has always been of great interest to evaluate its intrinsic but also downstream biological activity. An important group of cellular receptors are ion channels. Since they are involved in a broad range of crucial cell functions, they represent important therapeutic targets. Thus, novel analytical techniques for the quantitative monitoring and screening of biological receptor activity are of great interest. In this context, we developed an impedance spectroscopy-based label-free and non-invasive monitoring system that enabled us to analyze the activation of the transient receptor potential channel Vanilloid 1 (TRPV1) in detail. TRPV1 channel activation by capsaicin resulted in a reproducible impedance decrease. Moreover, concentration response curves with an EC50 value of 0.9 μM could be determined. Control experiments with non TRPV1 channel expressing HEK cells as well as experiments with the TRPV1 channel blocker ruthenium red validated the specificity of the observed impedance decrease. More strikingly, through correlative studies with a cytoskeleton restructuring inhibitor mixture and equivalent circuit analysis of the acquired impedance spectra, we could quantitatively discriminate between the direct TRPV1 channel activation and downstream-induced biological effects. In summary, we developed a quantitative impedimetric monitoring system for the analysis of TRPV1 channel activity as well as downstream-induced biological activity in living cells. It has the capabilities to identify novel ion channel activators as well as inhibitors for the TRPV1 channel but could also easily be applied to other ion channel-based receptors.

  18. Capsaicin-induced Ca(2+) signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH.

    PubMed

    Song, Shanshan; Ayon, Ramon J; Yamamura, Aya; Yamamura, Hisao; Dash, Swetaleena; Babicheva, Aleksandra; Tang, Haiyang; Sun, Xutong; Cordery, Arlette G; Khalpey, Zain; Black, Stephen M; Desai, Ankit A; Rischard, Franz; McDermott, Kimberly M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2017-03-01

    Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca(2+) concentration ([Ca(2+)]cyt). A rise in [Ca(2+)]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca(2+)]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca(2+)]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca(2+)]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca(2+)]cyt, and the hypo-osmolarity-induced rise in [Ca(2+)]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca(2+)]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca(2+)]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca(2+)]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca(2+) influx and excessive PASMC proliferation in patients with IPAH.

  19. Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity

    PubMed Central

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Du, Junhui; Yang, Qing; Zhou, Shentai; Yu, Weihua; Du, Guangwei; Clark, Richard B.; Walters, Edgar T.; Carlton, Susan M.; Hu, Hongzhen

    2013-01-01

    Retinoids are structurally related derivatives of vitamin A and are required for normal vision as well as cell proliferation and differentiation. Clinically, retinoids are effective in treating many skin disorders and cancers. Application of retinoids evokes substantial irritating side effects, including pain and inflammation; however, the precise mechanisms accounting for the sensory hypersensitivity are not understood. Here we show that both naturally occurring and synthetic retinoids activate recombinant or native transient receptor potential channel vanilloid subtype 1 (TRPV1), an irritant receptor for capsaicin, the pungent ingredient of chili peppers. In vivo, retinoids produced pain-related behaviors that were either eliminated or significantly reduced by genetic or pharmacological inhibition of TRPV1 function. These findings identify TRPV1 as an ionotropic receptor for retinoids and provide cellular and molecular insights into retinoid-evoked hypersensitivity. These findings also suggest that selective TRPV1 antagonists are potential therapeutic drugs for treating retinoid-induced sensory hypersensitivity. PMID:23925292

  20. Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity.

    PubMed

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Du, Junhui; Yang, Qing; Zhou, Shentai; Yu, Weihua; Du, Guangwei; Clark, Richard B; Walters, Edgar T; Carlton, Susan M; Hu, Hongzhen

    2013-09-01

    Retinoids are structurally related derivatives of vitamin A and are required for normal vision as well as cell proliferation and differentiation. Clinically, retinoids are effective in treating many skin disorders and cancers. Application of retinoids evokes substantial irritating side effects, including pain and inflammation; however, the precise mechanisms accounting for the sensory hypersensitivity are not understood. Here we show that both naturally occurring and synthetic retinoids activate recombinant or native transient receptor potential channel vanilloid subtype 1 (TRPV1), an irritant receptor for capsaicin, the pungent ingredient of chili peppers. In vivo, retinoids produced pain-related behaviors that were either eliminated or significantly reduced by genetic or pharmacological inhibition of TRPV1 function. These findings identify TRPV1 as an ionotropic receptor for retinoids and provide cellular and molecular insights into retinoid-evoked hypersensitivity. These findings also suggest that selective TRPV1 antagonists are potential therapeutic drugs for treating retinoid-induced sensory hypersensitivity.

  1. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion.

    PubMed

    Kurosaka, Mitsutoshi; Ogura, Yuji; Funabashi, Toshiya; Akema, Tatsuo

    2016-10-01

    The mechanisms that underlie the complex process of muscle regeneration after injury remain unknown. Transient receptor potential cation channel vanilloid 1 (TRPV1) is expressed in several cell types, including skeletal muscle, and is activated by high temperature and by certain molecules secreted during tissue inflammation. Severe inflammation and local temperature perturbations are induced during muscle regeneration, which suggests that TRPV1 might be activated and involved in the process. The aim of this study, was to clarify the role of TRPV1 in the myogenic potential of satellite cells responsible for muscle regeneration. We found that mRNA and protein levels of TRPV1 increased during regeneration after cardiotoxin (CTX)-induced muscle injury in mice. Using isolated mouse satellite cells (i.e., myoblasts), we observed that activation of TRPV1 by its agonist capsaicin (CAP) augmented myogenin protein levels. Whereas CAP did not alter myoblast proliferation, it facilitated myoblast fusion (evaluated using myonucleii number per myotube and fusion index). In contrast, suppression of TRPV1 by siRNA impaired myoblast fusion. Using mice, we also demonstrated that intramuscular injection of CAP facilitated muscle repair after CTX-induced muscle injury. Moreover, we showed that these roles of TRPV1 might be mediated by interleukin-4 and calcium signaling during myoblast fusion. Collectively, these results suggest that TRPV1 underlies normal myogenesis through promotion of myoblast fusion. J. Cell. Physiol. 231: 2275-2285, 2016. © 2016 Wiley Periodicals, Inc.

  2. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies

    NASA Astrophysics Data System (ADS)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V.; Pavlyukovets, Vladimir A.; Blumberg, Peter M.; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  3. Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity.

    PubMed

    Ursu, Daniel; Knopp, Kelly; Beattie, Ruth E; Liu, Bin; Sher, Emanuele

    2010-09-01

    TRPV1 (transient receptor potential vanilloid 1) is a ligand-gated ion channel expressed predominantly in nociceptive primary afferents that plays a key role in pain processing. In vivo activation of TRPV1 receptors by natural agonists like capsaicin is associated with a sharp and burning pain, frequently described as pungency. To elucidate the mechanisms underlying pungency we investigated a series of TRPV1 agonists that included both pungent and non-pungent compounds covering a large range of potencies. Pungency of capsaicin, piperine, arvanil, olvanil, RTX (resiniferatoxin) and SDZ-249665 was evaluated in vivo, by determining the increase in the number of eye wipes caused by direct instillation of agonist solutions into the eye. Agonist-induced calcium fluxes were recorded using the FLIPR technique in a recombinant, TRPV1-expressing cell line. Current-clamp recordings were performed in rat DRG (dorsal root ganglia) neurons in order to assess the consequences of TRPV1 activation on neuronal excitability. Using the eye wipe assay the following rank of pungency was obtained: capsaicin>piperine>RTX>arvanil>olvanil>SDZ-249665. We found a strong correlation between kinetics of calcium flux, pungency and lipophilicity of TRPV1 agonists. Current-clamp recordings confirmed that the rate of receptor activation translates in the ability of agonists to generate action potentials in sensory neurons. We have demonstrated that the lipophilicity of the compounds is directly related to the kinetics of TRPV1 activation and that the latter influences their ability to trigger action potentials in sensory neurons and, ultimately, pungency.

  4. Discovery of novel 6,6-heterocycles as transient receptor potential vanilloid (TRPV1) antagonists.

    PubMed

    Blum, Charles A; Caldwell, Timothy; Zheng, Xiaozhang; Bakthavatchalam, Rajagopal; Capitosti, Scott; Brielmann, Harry; De Lombaert, Stéphane; Kershaw, Mark T; Matson, David; Krause, James E; Cortright, Daniel; Crandall, Marci; Martin, William J; Murphy, Beth Ann; Boyce, Susan; Jones, A Brian; Mason, Glenn; Rycroft, Wayne; Perrett, Helen; Conley, Rachael; Burnaby-Davies, Nicola; Chenard, Bertrand L; Hodgetts, Kevin J

    2010-04-22

    The transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is a nonselective cation channel that can be activated by a wide range of noxious stimuli, including capsaicin, acid, and heat. Blockade of TRPV1 activation by selective antagonists is under investigation in an attempt to identify novel agents for pain treatment. The design and synthesis of a series of novel TRPV1 antagonists with a variety of different 6,6-heterocyclic cores is described, and an extensive evaluation of the pharmacological and pharmacokinetic properties of a number of these compounds is reported. For example, the 1,8-naphthyridine 52 was characterized as an orally bioavailable and brain penetrant TRPV1 antagonist. In vivo, 52 fully reversed carrageenan-induced thermal hyperalgesia (CITH) in rats and dose-dependently potently reduced complete Freund's adjuvant (CFA) induced chronic inflammatory pain after oral administration.

  5. Identifying the integrated neural networks involved in capsaicin-induced pain using fMRI in awake TRPV1 knockout and wild-type rats

    PubMed Central

    Yee, Jason R.; Kenkel, William; Caccaviello, John C.; Gamber, Kevin; Simmons, Phil; Nedelman, Mark; Kulkarni, Praveen; Ferris, Craig F.

    2015-01-01

    In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1). Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type vs. knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain. PMID:25745388

  6. Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model

    DTIC Science & Technology

    2012-10-01

    W81XWH-10-2-0093 TITLE: Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model...2. REPORT TYPE Final 3. DATES COVERED (From - To) 30September2010-29September2012 4. TITLE AND SUBTITLE Use of the TRPV1 Agonist Capsaicin to...capsaicin around the fracture site. 15. SUBJECT TERMS Femur fracture, Rat Model, Pain, Capsaicin, Trauma, TRPV1 16. SECURITY CLASSIFICATION OF

  7. Phα1β toxin prevents capsaicin-induced nociceptive behavior and mechanical hypersensitivity without acting on TRPV1 channels.

    PubMed

    Castro-Junior, Celio J; Milano, Julie; Souza, Alessandra H; Silva, Juliana F; Rigo, Flávia K; Dalmolin, Geruza; Cordeiro, Marta N; Richardson, Michael; Barros, Alexandre G A; Gomez, Renato S; Silva, Marco A R; Kushmerick, Christopher; Ferreira, Juliano; Gomez, Marcus V

    2013-08-01

    Phα1β toxin is a peptide purified from the venom of the armed spider Phoneutria nigriventer, with markedly antinociceptive action in models of acute and persistent pain in rats. Similarly to ziconotide, its analgesic action is related to inhibition of high voltage activated calcium channels with more selectivity for N-type. In this study we evaluated the effect of Phα1β when injected peripherally or intrathecally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of Phα1β on Ca²⁺ transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor. Intraplantar or intrathecal administered Phα1β reduced both nocifensive behavior and mechanical hypersensitivity induced by capsaicin similarly to that observed with SB366791, a specific TRPV1 antagonist. Peripheral nifedipine and mibefradil did also decrease nociceptive behavior induced by intraplantar capsaicin. In contrast, ω-conotoxin MVIIA (a selective N-type Ca²⁺ channel blocker) was effective only when administered intrathecally. Phα1β, MVIIA and SB366791 inhibited, with similar potency, the capsaicin-induced Ca²⁺ transients in DRG neurons. The simultaneous administration of Phα1β and SB366791 inhibited the capsaicin-induced Ca²⁺ transients that were additive suggesting that they act through different targets. Moreover, Phα1β did not inhibit capsaicin-activated currents in patch-clamp recordings of HEK293 cells that expressed TRPV1 receptors. Our results show that Phα1β may be effective as a therapeutic strategy for pain and this effect is not related to the inhibition of TRPV1 receptors.

  8. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Largent-Milnes, Tally M; Aicher, Sue A

    2014-11-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings.

  9. Binding Mode Prediction of Evodiamine within Vanilloid Receptor TRPV1

    PubMed Central

    Wang, Zhanli; Sun, Lidan; Yu, Hui; Zhang, Yanhui; Gong, Wuzhuang; Jin, Hongwei; Zhang, Liangren; Liang, Huaping

    2012-01-01

    Accurate assessment of the potential binding mode of drugs is crucial to computer-aided drug design paradigms. It has been reported that evodiamine acts as an agonist of the vanilloid receptor Transient receptor potential vanilloid-1 (TRPV1). However, the precise interaction between evodiamine and TRPV1 was still not fully understood. In this perspective, the homology models of TRPV1 were generated using the crystal structure of the voltage-dependent shaker family K+ channel as a template. We then performed docking and molecular dynamics simulation to gain a better understanding of the probable binding modes of evodiamine within the TRPV1 binding pocket. There are no significant interspecies differences in evodiamine binding in rat, human and rabbit TRPV1 models. Pharmacophore modeling further provided confidence for the validity of the docking studies. This study is the first to shed light on the structural determinants required for the interaction between TRPV1 and evodiamine, and gives new suggestions for the rational design of novel TRPV1 ligands. PMID:22942745

  10. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch

    PubMed Central

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM) could also induce a dose-dependent increase in intracellular Ca2+ ([Ca2+]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+ responses. In addition, immepip-induced [Ca2+]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation. PMID:26819760

  11. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    PubMed

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  12. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model.

    PubMed

    Geng, Shengnan; Zheng, Yaqiu; Meng, Mingjing; Guo, Zhenzhen; Cao, Ning; Ma, Xiaofang; Du, Zhenhua; Li, Jiahuan; Duan, Yongjian; Du, Gangjun

    Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.

  13. Targeting the Transient Receptor Potential Vanilloid Type 1 (TRPV1) Assembly Domain Attenuates Inflammation-induced Hypersensitivity*

    PubMed Central

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-01-01

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184

  14. Targeting the transient receptor potential vanilloid type 1 (TRPV1) assembly domain attenuates inflammation-induced hypersensitivity.

    PubMed

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-06-13

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief.

  15. [Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1].

    PubMed

    Tominaga, Makoto

    2010-03-01

    TRP channels are well recognized for their contributions to sensory transduction, responding to a wide variety of stimuli including temperature, nociceptive stimuli, touch, osmolarity and pheromones. In particular, the involvement of TRP channels in nociception has been extensively studied following the cloning of the capsaicin receptor, TRPV1. Painful diabetic peripheral neuropathy is described as a superficial burning pain, and it is one of the most commonly encountered neuropathic pain syndromes in clinical practice. We found that hypoxic and high glucose conditions commonly observed in diabetes potentiate TRPV1 activity without affecting TRPV1 expression both in native rat sensory neurons and HEK293 cells expressing rat TRPV1. The potentiation seems to be caused by phosphorylation of the serine residues of TRPV1 by PKC. These data indicate that PKC-dependent potentiation of TRPV1 activities under hypoxia and hyperglycemia might be involved in early diabetic neuropathy. Mechanisms for the detection of alkaline pH by sensory neurons are not well understood, although it is well accepted that acidic pH monitoring can be attributed to several ion channels, including TRPV1 and ASICs. We found that alkaline pH activates TRPA1 and that the TRPA1 activation is involved in nociception, using Ca(2+)-imaging and patch-clamp methods. In addition, intracellular alkalization activated TRPA1 at the whole-cell level, and single-channel openings were observed in the inside-out configuration. Furthermore, intraplantar injection of ammonium chloride into the mouse hind paw caused pain-related behaviors, which were not observed in TRPA1-deficient mice. These results suggest that alkaline pH causes pain sensation through activation of TRPA1.

  16. Direct evidence for functional TRPV1/TRPA1 heteromers.

    PubMed

    Fischer, Michael J M; Balasuriya, Dilshan; Jeggle, Pia; Goetze, Tom A; McNaughton, Peter A; Reeh, Peter W; Edwardson, J Michael

    2014-12-01

    Transient receptor potential cation channel, subfamily V, member 1 (TRPV1) plays a key role in sensing environmental hazards and in enhanced pain sensation following inflammation. A considerable proportion of TRPV1-expressing cells also express transient receptor potential cation channel, subfamily A, member 1 (TRPA1). There is evidence for a TRPV1-TRPA1 interaction that is predominantly calcium-dependent, and it has been suggested that the two proteins might form a heteromeric channel. Here, we constructed subunit concatemers to search for direct evidence for such an interaction. We found that a TRPV1::TRPV1 concatemer and TRPV1 formed channels with similar properties. A TRPV1::TRPA1 concatemer was responsive to TRPV1 agonists capsaicin, acidic pH and ethanol, but not to TRPA1 agonists. Isolated TRPV1 and TRPV1::TRPA1 imaged by atomic force microscopy (AFM) both had molecular volumes consistent with the formation of tetrameric channels. Antibodies decorated epitope tags on TRPV1 with a four-fold symmetry, as expected for a homotetramer. In contrast, pairs of antibodies decorated tags on TRPV1::TRPA1 predominantly at 180°, indicating the formation of a channel consisting of two TRPV1::TRPA1 concatemers arranged face to face. TRPV1::TRPA1 was sensitized by PKC activation and could be inhibited by a TRPV1 antagonist. TRPV1::TRPA1 was activated by heat and displayed a threshold and temperature coefficient similar to TRPV1. However, the channel formed by TRPV1::TRPA1 has only two binding sites for capsaicin and shows less total current and a smaller capsaicin-induced shift in voltage-dependent gating than TRPV1::TRPV1 or TRPV1. We conclude that the presence of TRPA1 exerts a functional inhibition on TRPV1.

  17. Lipids as regulators of the activity of transient receptor potential type V1 (TRPV1) channels.

    PubMed

    De Petrocellis, Luciano; Di Marzo, Vincenzo

    2005-08-19

    After 7 years from its cloning, the transient receptor potential vanilloid type-1 (TRPV1) channel remains the sole membrane receptor mediating the pharmacological effects of the hot chilli pepper pungent component, capsaicin, and of the Euphorbia toxin, resiniferatoxin. Yet, this ion channel represents one of the most complex examples of how the activity of a protein can be regulated. Among the several chemicophysical stimuli that can modulate TRPV1 permeability to cations, endogenous lipids appear to play a major role, either as allosteric effectors or as direct agonists, or both. Furthermore, the capability of some mediators, such as the endocannabinoid anandamide, or the eicosanoid precursors 12- and 5-hydroperoxy-eicosatetraenoic acids, to activate TRPV1 receptors provides a striking example of the "site-dependent" and "metabolic" functional plasticity, respectively, typical of bioactive lipids. In this article, the multi-faceted and most recently discovered aspects of TRPV1 regulation are reviewed, with particular emphasis on the interaction between these membrane channels and some lipid molecules.

  18. Overexpression of artemin in the tongue increases expression of TRPV1 and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard oil.

    PubMed

    Elitt, Christopher M; Malin, Sacha A; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2008-09-16

    Artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, supports a subpopulation of trigeminal sensory neurons through activation of the Ret/GFRalpha3 receptor tyrosine kinase complex. In a previous study we showed that artemin is increased in inflamed skin of wildtype mice and that transgenic overexpression of artemin in skin increases TRPV1 and TRPA1 expression in dorsal root ganglia neurons. In this study we examined how transgenic overexpression of artemin in tongue epithelium affects the anatomy, gene expression and calcium handling properties of trigeminal sensory afferents. At the RNA level, trigeminal ganglia of artemin overexpresser mice (ART-OEs) had an 81% increase in GFRalpha3, a 190% increase in TRPV1 and a 403% increase in TRPA1 compared to wildtype (WT) controls. Myelinated and unmyelinated fibers of the lingual nerve were increased in diameter, as was the density of GFRalpha3 and TRPV1-positive innervation to the dorsal anterior tongue and fungiform papilla. Retrograde labeling of trigeminal afferents by WGA injection into the tip of the tongue showed an increased percentage of GFRalpha3, TRPV1 and isolectin B4 afferents in ART-OE mice. ART-OE afferents had larger calcium transients in response to ligands of TRPV1 (capsaicin) and TRPA1 (mustard oil). Behavioral sensitivity was also exhibited by ART-OE mice to capsaicin and mustard oil, measured using a two-choice drinking test. These results suggest a potential role for artemin-responsive GFRalpha3/TRPV1/TRPA1 sensory afferents in mediating sensitivity associated with tissue injury, chemical sensitivity or disease states such as burning mouth syndrome.

  19. Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-2-0093 TITLE: Use of the TRPV1 Agonist Capsaicin to...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair...Trauma, TRPV1 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a

  20. Heat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa.

    PubMed

    De Toni, Luca; Garolla, Andrea; Menegazzo, Massimo; Magagna, Sabina; Di Nisio, Andrea; Šabović, Iva; Rocca, Maria Santa; Scattolini, Valentina; Filippi, Andrea; Foresta, Carlo

    2016-01-01

    The molecular bases of sperm thermotaxis, the temperature-oriented cell motility, are currently under investigation. Thermal perception relies on a subclass of the transient receptor potential [TRP] channels, whose member TRPV1 is acknowledged as the heat sensing receptor. Here we investigated the involvement of TRPV1 in human sperm thermotaxis. We obtained semen samples from 16 normozoospermic subjects attending an infertility survey programme, testis biopsies from 6 patients with testicular germ cell cancer and testis fine needle aspirates from 6 patients with obstructive azoospermia undergoing assisted reproductive technologies. Expression of TRPV1 mRNA was assessed by RT-PCR. Protein expression of TRPV1 was determined by western blot, flow cytometry and immunofluorescence. Sperm motility was assessed by Sperm Class Analyser. Acrosome reaction, apoptosis and intracellular-Ca2+ content were assessed by flow cytometry. We found that TRPV1 mRNA and protein were highly expressed in the testis, in both Sertoli cells and germ-line cells. Moreover, compared to no-gradient controls at 31°C or 37°C (Ctrl 31°C and Ctrl 37°C respectively), sperm migration towards a temperature gradient of 31-37°C (T gradient) in non-capacitated conditions selected a higher number of cells (14,9 ± 4,2×106 cells T gradient vs 5,1± 0,3×106 cells Ctrl 31°C and 5,71±0,74×106 cells Ctrl 37°C; P = 0,039). Capacitation amplified the migrating capability towards the T gradient. Sperms migrated towards the T gradient showed enriched levels of both TRPV1 protein and mRNA. In addition, sperm cells were able to migrate toward a gradient of capsaicin, a specific agonist of TRPV1, whilst capsazepine, a specific agonist of TRPV1, blocked this effect. Finally, capsazepine severely blunted migration towards T gradient without abolishing. These results suggest that TRPV1 may represent a facilitating mediator of sperm thermotaxis.

  1. Heat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa

    PubMed Central

    Menegazzo, Massimo; Magagna, Sabina; Di Nisio, Andrea; Šabović, Iva; Rocca, Maria Santa; Scattolini, Valentina; Filippi, Andrea; Foresta, Carlo

    2016-01-01

    The molecular bases of sperm thermotaxis, the temperature-oriented cell motility, are currently under investigation. Thermal perception relies on a subclass of the transient receptor potential [TRP] channels, whose member TRPV1 is acknowledged as the heat sensing receptor. Here we investigated the involvement of TRPV1 in human sperm thermotaxis. We obtained semen samples from 16 normozoospermic subjects attending an infertility survey programme, testis biopsies from 6 patients with testicular germ cell cancer and testis fine needle aspirates from 6 patients with obstructive azoospermia undergoing assisted reproductive technologies. Expression of TRPV1 mRNA was assessed by RT-PCR. Protein expression of TRPV1 was determined by western blot, flow cytometry and immunofluorescence. Sperm motility was assessed by Sperm Class Analyser. Acrosome reaction, apoptosis and intracellular-Ca2+ content were assessed by flow cytometry. We found that TRPV1 mRNA and protein were highly expressed in the testis, in both Sertoli cells and germ-line cells. Moreover, compared to no-gradient controls at 31°C or 37°C (Ctrl 31°C and Ctrl 37°C respectively), sperm migration towards a temperature gradient of 31–37°C (T gradient) in non-capacitated conditions selected a higher number of cells (14,9 ± 4,2×106 cells T gradient vs 5,1± 0,3×106 cells Ctrl 31°C and 5,71±0,74×106 cells Ctrl 37°C; P = 0,039). Capacitation amplified the migrating capability towards the T gradient. Sperms migrated towards the T gradient showed enriched levels of both TRPV1 protein and mRNA. In addition, sperm cells were able to migrate toward a gradient of capsaicin, a specific agonist of TRPV1, whilst capsazepine, a specific agonist of TRPV1, blocked this effect. Finally, capsazepine severely blunted migration towards T gradient without abolishing. These results suggest that TRPV1 may represent a facilitating mediator of sperm thermotaxis. PMID:27992447

  2. Activation of bitter taste receptors in pulmonary nociceptors sensitizes TRPV1 channels through the PLC and PKC signaling pathway.

    PubMed

    Gu, Qihai David; Joe, Deanna S; Gilbert, Carolyn A

    2017-03-01

    Bitter taste receptors (T2Rs), a G protein-coupled receptor family capable of detecting numerous bitter-tasting compounds, have recently been shown to be expressed and play diverse roles in many extraoral tissues. Here we report the functional expression of T2Rs in rat pulmonary sensory neurons. In anesthetized spontaneously breathing rats, intratracheal instillation of T2R agonist chloroquine (10 mM, 0.1 ml) significantly augmented chemoreflexes evoked by right-atrial injection of capsaicin, a specific activator for transient receptor potential vanilloid receptor 1 (TRPV1), whereas intravenous infusion of chloroquine failed to significantly affect capsaicin-evoked reflexes. In patch-clamp recordings with isolated rat vagal pulmonary sensory neurons, pretreatment with chloroquine (1-1,000 µM, 90 s) concentration dependently potentiated capsaicin-induced TRPV1-mediated inward currents. Preincubating with diphenitol and denatonium (1 mM, 90 s), two other T2R activators, also enhanced capsaicin currents in these neurons but to a lesser extent. The sensitizing effect of chloroquine was effectively prevented by the phospholipase C inhibitor U73122 (1 µM) or by the protein kinase C inhibitor chelerythrine (10 µM). In summary, our study showed that activation of T2Rs augments capsaicin-evoked TRPV1 responses in rat pulmonary nociceptors through the phospholipase C and protein kinase C signaling pathway.

  3. GABA blocks pathological but not acute TRPV1 pain signals.

    PubMed

    Hanack, Christina; Moroni, Mirko; Lima, Wanessa C; Wende, Hagen; Kirchner, Marieluise; Adelfinger, Lisa; Schrenk-Siemens, Katrin; Tappe-Theodor, Anke; Wetzel, Christiane; Kuich, P Henning; Gassmann, Martin; Roggenkamp, Dennis; Bettler, Bernhard; Lewin, Gary R; Selbach, Matthias; Siemens, Jan

    2015-02-12

    Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.

  4. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization.

    PubMed

    Akopian, Armen N; Ruparel, Nikita B; Jeske, Nathaniel A; Hargreaves, Kenneth M

    2007-08-15

    The pharmacological desensitization of receptors is a fundamental mechanism for regulating the activity of neuronal systems. The TRPA1 channel plays a key role in the processing of noxious information and can undergo functional desensitization by unknown mechanisms. Here we show that TRPA1 is desensitized by homologous (mustard oil; a TRPA1 agonist) and heterologous (capsaicin; a TRPV1 agonist) agonists via Ca2+-independent and Ca2+-dependent pathways, respectively, in sensory neurons. The pharmacological desensitization of TRPA1 by capsaicin and mustard oil is not influenced by activation of protein phosphatase 2B. However, it is regulated by phosphatidylinositol-4,5-bisphosphate depletion after capsaicin, but not mustard oil, application. Using a biosensor, we establish that capsaicin, unlike mustard oil, consistently activates phospholipase C in sensory neurons. We next demonstrate that TRPA1 desensitization is regulated by TRPV1, and it appears that mustard oil-induced TRPA1 internalization is prevented by coexpression with TRPV1 in a heterologous expression system and in sensory neurons. In conclusion, we propose novel mechanisms whereby TRPA1 activity undergoes pharmacological desensitization through multiple cellular pathways that are agonist dependent and modulated by TRPV1.

  5. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability.

    PubMed

    Iannotti, Fabio Arturo; Hill, Charlotte L; Leo, Antonio; Alhusaini, Ahlam; Soubrane, Camille; Mazzarella, Enrico; Russo, Emilio; Whalley, Benjamin J; Di Marzo, Vincenzo; Stephens, Gary J

    2014-11-19

    Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg(2+)-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg(2+)-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg(2+)-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.

  6. TRPV1 receptors augment basal synaptic transmission in CA1 and CA3 pyramidal neurons in epilepsy.

    PubMed

    Saffarzadeh, F; Eslamizade, M J; Mousavi, S M M; Abraki, S B; Hadjighassem, M R; Gorji, A

    2016-02-09

    Temporal lobe epilepsy in human and animals is attributed to alterations in brain function especially hippocampus formation. Changes in synaptic activity might be causally related to the alterations during epileptogenesis. Transient receptor potential vanilloid 1 (TRPV1) as one of the non-selective ion channels has been shown to be involved in synaptic transmission. However, the potential role of TRPV1 receptors in synaptic function in the epileptic brain needs to be elucidated. In the present study, we used quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry to assess hippocampal TRPV1 mRNA expression, protein content, and distribution. Moreover, the effects of pharmacologic activation and inhibition of TRPV1 receptors on the slope of evoked field excitatory postsynaptic potentials (fEPSPs) were analyzed in CA1 and CA3 pyramidal neurons, after 3months of pilocarpine-induced status epilepticus (SE). SE induced an upregulation of TRPV1 mRNA and protein content in the whole hippocampal extract, as well as its distribution in both CA1 and CA3 regions. Activation and inhibition of TRPV1 receptors (via capsaicin 1μM and capsazepine 10μM, respectively) did not influence basal synaptic transmission in CA1 and CA3 regions of control slices, however, capsaicin increased and capsazepine decreased synaptic transmission in both regions in tissues from epileptic animals. Taken together, these findings suggest that a higher expression of TRPV1 in the epileptic condition is accompanied by alterations in basal synaptic transmission.

  7. Inhibitory effect of positively charged triazine antagonists of prokineticin receptors on the transient receptor vanilloid type-1 (TRPV1) channel.

    PubMed

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Byun, Joon Seok; Sohn, Joo Mi; Lee, Jae Yeol; Vázquez-Romero, Ana; Garrido, Maria; Messeguer, Angel; Zhang, Fang-Xiong; Zamponi, Gerald W; Deplano, Alessandro; Congiu, Cenzo; Onnis, Valentina; Balboni, Gianfranco; Di Marzo, Vincenzo

    2015-09-01

    Four positively charged compounds, previously shown to produce analgesic activity by interacting with prokineticin receptor or T-type calcium channels, were tested for their ability to inhibit capsaicin-induced elevation of intracellular Ca(2+) in HEK-293 cells stably transfected with the human recombinant TRPV1, with the goal of identifying novel TRPV1 open-pore inhibitors. KYS-05090 showed the highest potency as a TRPV1 antagonist, even higher than that of the open-pore triazine inhibitor 8aA. The latter showed quite remarkable agonist/desensitizer activity at the rat recombinant TRPM8 channel. The activity of KYS-05090 and the other compounds was selective because none of these compounds was able to modulate the rat TRPA1 channel. Open-pore inhibitors of TRPV1 may be a new class of multi-target analgesics with lesser side effects, such as loss of acute pain sensitivity and hyperthermia, than most TRPV1 antagonists developed so far.

  8. Postnatal Excitability Development and Innervation by Functional Transient Receptor Potential Vanilloid 1 (TRPV1) Terminals in Neurons of the Rat Spinal Sacral Dorsal Commissural Nucleus: an Electrophysiological Study.

    PubMed

    Yang, Kun

    2016-11-01

    The sacral dorsal commissural nucleus (SDCN) in the spinal cord receives both somatic and visceral primary afferents. Transient receptor potential vanilloid 1 (TRPV1) channels are preferentially expressed in certain fine primary afferents. However, knowledge of the SDCN neurons postnatal excitability development and their contacts with TRPV1 fibers remains elusive. Here, whole-cell recordings were conducted in spinal cord slices to evaluate the postnatal development of SDCN neurons and their possible contacts with functional TRPV1-expressing terminals. SDCN neurons in neonatal (postnatal day (P) 1-2), young (P8-10), and adult rats (P35-40) have different electrophysiological properties. SDCN neurons in neonatal rats have higher frequency of spontaneous firing, higher resting membrane potential, and lower presynaptic glutamate release probability. However, no difference in quantal release was found. At all developmental stages, TRPV1 activation with the selective agonist capsaicin increases glutamate release in the presence of tetrodotoxin, which blocks action potential-dependent and polysynaptic neurotransmission, indicating that functional TRPV1 fibers innervate SDCN neurons directly. Capsaicin-induced presynaptic glutamate release onto SDCN neurons depends on external Ca(2+) influx through TRPV1 channels; voltage-dependent calcium channels had a slighter impact. In contrast, capsaicin blocked C fiber-evoked synaptic transmission, indicating that TRPV1 activation has opposite effects on spontaneous asynchronous and action potential-dependent synchronous glutamate release. These data indicate that excitability of SDCN neurons undergoes a developmental shift, and these neurons receive functional TRPV1 terminals from early postnatal stage. The opposite action of capsaicin on asynchronous and synchronous glutamate release should be taken into account when TRPV1 channels are considered as therapeutic targets.

  9. Intact Microtubules Preserve Transient Receptor Potential Vanilloid 1 (TRPV1) Functionality through Receptor Binding*

    PubMed Central

    Storti, Barbara; Bizzarri, Ranieri; Cardarelli, Francesco; Beltram, Fabio

    2012-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate TRPV1-microtubule interaction in living cells under the resting or activated state of TRPV1, as well as in presence of structurally intact or depolymerized cytoskeletal microtubules. We combined a toolbox of high resolution/high sensitivity fluorescence imaging techniques (such as FRET, correlation spectroscopy, and fluorescence anisotropy) to monitor TRPV1 aggregation status, membrane mobility, and interaction with microtubules. We found that TRPV1 is a dimeric membrane protein characterized by two populations with different diffusion properties in basal condition. After stimulation with resiniferatoxin, TRPV1 dimers tetramerize. The tetramers and the slower population of TRPV1 dimers bind dynamically to intact microtubules but not to tubulin dimers. Upon microtubule disassembly, the interaction with TRPV1 is lost thereby inducing receptor self-aggregation with partial loss of functionality. Intact microtubules play an essential role in maintaining TRPV1 functionality toward activation stimuli. This previously undisclosed property mirrors the recently reported role of TRPV1 in modulating microtubule assembly/disassembly and suggests the participation of these two players in a feedback cycle linking nociception and cytoskeletal remodeling. PMID:22262838

  10. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s.

    PubMed

    Bhatia, Harsharan S; Roelofs, Nora; Muñoz, Eduardo; Fiebich, Bernd L

    2017-12-01

    Exaggerated inflammatory responses in microglia represent one of the major risk factors for various central nervous system's (CNS) associated pathologies. Release of excessive inflammatory mediators such as prostaglandins and cytokines are the hallmark of hyper-activated microglia. Here we have investigated the hitherto unknown effects of capsaicin (cap) - a transient receptor potential vanilloid 1 (TRPV1) agonist- in murine primary microglia, organotypic hippocampal slice cultures (OHSCs) and human primary monocytes. Results demonstrate that cap (0.1-25 µM) significantly (p < 0.05) inhibited the release of prostaglandin E2 (PGE2), 8-iso-PGF2α, and differentially regulated the levels of cytokines (TNF-α, IL-6 & IL-1β). Pharmacological blockade (via capsazepine & SB366791) and genetic deficiency of TRPV1 (TRPV1(-/-)) did not prevent cap-mediated suppression of PGE2 in activated microglia and OHSCs. Inhibition of PGE2 was partially dependent on the reduced levels of PGE2 synthesising enzymes, COX-2 and mPGES-1. To evaluate potential molecular targets, we discovered that cap significantly suppressed the activation of p38 MAPK and MAPKAPK2 (MK2). Altogether, we demonstrate that cap alleviates excessive inflammatory events by targeting the PGE2 pathway in in vitro and ex vivo immune cell models. These findings have broad relevance in understanding and paving new avenues for ongoing TRPV1 based drug therapies in neuroinflammatory-associated diseases.

  11. Role of Transient Receptor Potential Vanilloid 1 (TRPV1) in the Modulation of Airway Smooth Muscle Tone and Calcium Handling.

    PubMed

    Yocum, Gene T; Chen, Jun; Choi, Christine H; Townsend, Elizabeth A; Zhang, Yi; Xu, Dingbang; Fu, Xiao Wen; Sanderson, Michael J; Emala, Charles W

    2017-03-23

    Asthma is a common disorder characterized, in part, by airway smooth muscle (ASM) hyperresponsiveness. Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel expressed on airway nerve fibers that modulates afferent signals resulting in cough, and potentially bronchoconstriction. In the present study, the TRPV1 transcript was detected by RT-PCR in primary cultured human ASM cells, and the TRPV1 protein was detected in ASM of human trachea by immunohistochemistry. Proximity ligation assays suggest that TRPV1 is expressed in the sarcoplasmic reticulum membrane of human ASM cells in close association with sarco/endoplasmic reticulum Ca2+ ATPase 2. In guinea pig tracheal ring organ bath experiments, the TRPV1 agonist capsaicin led to ASM contraction, but this contraction was significantly attenuated by the sodium-channel inhibitor bupivicaine (N=4, p<0.05) and the NK-2 receptor antagonist GR 159897 (N=4, p<0.05), suggesting that this contraction is neurally-mediated. However, pretreatment of guinea pig and human ASM in organ bath experiments with the TRPV1 antagonist capsazepine inhibited the maintenance phase of an acetylcholine-induced contraction (N=4, p<0.01 for both species). Similarly, capsazepine inhibited methacholine-induced contraction of peripheral airways in mouse precision-cut lung slice (PCLS) experiments (N=4-5, p<0.05). Although capsazepine did not inhibit store-operated calicum entry in mouse ASM cells in PCLS (N=4-7, p=NS), it did inhibit calcium oscillations (N=3, p<0.001). These studies suggest that TRPV1 is expressed on ASM, including the SR, but that ASM TRPV1 activation does not play a significant role in initiation of ASM contraction. However, capsazepine does inhibit maintenance of contraction, likely by inhibiting calcium oscillation.

  12. TRPV1.

    PubMed

    Bevan, Stuart; Quallo, Talisia; Andersson, David A

    2014-01-01

    TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.

  13. Dorsolateral periaqueductal gray matter CB1 and TRPV1 receptors exert opposite modulation on expression of contextual fear conditioning.

    PubMed

    Uliana, D L; Hott, S C; Lisboa, S F; Resstel, L B M

    2016-04-01

    Cannabinoid type 1 (CB1) and Transient Potential Vanilloid type 1 (TRPV1) receptors in the dorsolateral periaqueductal gray (dlPAG) matter are involved in the modulation of conditioned response. Both CB1 and TRPV1 receptors are related to glutamate release and nitric oxide (NO) synthesis. It was previously demonstrated that both NMDA glutamate receptors and NO are involved in the conditioned emotional response. Therefore, one aim of this work was to verify whether dlPAG CB1 and TRPV1 receptors modulate the expression of contextual conditioned emotional response. Moreover, we also investigated the involvement of NMDA receptors and the NO pathway in this response. Male Wistar rats with local dlPAG guide cannula were submitted to contextual fear conditioning. Following 24 h, a polyethylene catheter was implanted in the femoral artery for cardiovascular recordings. After an additional 24 h, drugs were administered in the dlPAG and freezing behavior and autonomic responses were recorded during chamber re-exposure. Both a CB1 antagonist (AM251) and a TRPV1 agonist (Capsaicin; CPS) increased the expression of a conditioned emotional response. This response was prevented by an NMDA antagonist, a preferential neuronal NO synthase inhibitor, an NO scavenger and a soluble guanylate cyclase inhibitor (sGC). Furthermore, pretreatment with a TRPV1 antagonist also prevented the increased conditioned emotional response induced by AM251. Considering that GABA can counterbalance glutamate effects, we also investigated whether GABAA receptors were involved in the effect of a higher dose of AM251. Pretreatment with a GABAA receptor antagonist caused an increased conditioned emotional response by AM251. Our results support the possibility that dlPAG CB1 and TRPV1 receptors are involved in the expression of conditioned emotional response through the NMDA/NO/sGC pathway. Moreover, the opposite effects exerted by GABA and glutamate could produce different outcomes of drugs modulating eCBs.

  14. Transient receptor potential (TRP) A1 activated currents in TRPV1 and cholecystokinin-sensitive cranial visceral afferent neurons.

    PubMed

    Choi, Myung-Jin; Jin, Zhenhua; Park, Yong Seek; Rhee, Young Kyoung; Jin, Young-Ho

    2011-04-06

    Culinary use of the pungent spices has potential health benefits including a reduction in food intake. Pungent spices often contain ingredients that activate members of the transient receptor potential (TRP) family A1 and evoke pain from capsaicin-sensitive somatosensory neurons. TRPA1 channel have also been identified on cranial visceral afferent neurons but their distribution and functional contributions are poorly understood. Visceral vagal neurons transduce mechanical and chemical signals from peripheral organs to the nucleus tractus solitarii. Many capsaicin-sensitive vagal afferents participate in peripheral satiety signaling that includes cholecystokinin (CCK) sensitive neurons. To assess signaling, the TRPA1 selective agonist allyl isothiocyanate (AITC) was tested together with CCK and capsaicin (200nM), a TRPV1 specific agonist. In isolated nodose neurons, AITC (0.05-0.2mM) evoked concentration-dependent inward currents in 38% of the tested neurons. The TRPA1 specific antagonist HC-030031 (10μM) blocked AITC responses. TRPA1 responses were mixed across neurons that were capsaicin-sensitive and -insensitive. However CCK evoked inward currents only on capsaicin-sensitive neurons and 28% of the CCK-sensitive neurons expressed TRPA1. Our results indicate that TRPA1 is co-expressed with TRPV1 in CCK-sensitive nodose neurons. The findings indicate a potential mechanism by which spices can act within cranial visceral afferent pathways mediating satiety and contribute to the reduction of the food intake associated with spiced diets.

  15. Analgesic Compound from Sea Anemone Heteractis crispa Is the First Polypeptide Inhibitor of Vanilloid Receptor 1 (TRPV1)*

    PubMed Central

    Andreev, Yaroslav A.; Kozlov, Sergey A.; Koshelev, Sergey G.; Ivanova, Ekaterina A.; Monastyrnaya, Margarita M.; Kozlovskaya, Emma P.; Grishin, Eugene V.

    2008-01-01

    Venomous animals from distinct phyla such as spiders, scorpions, snakes, cone snails, or sea anemones produce small toxic proteins interacting with a variety of cell targets. Their bites often cause pain. One of the ways of pain generation is the activation of TRPV1 channels. Screening of 30 different venoms from spiders and sea anemones for modulation of TRPV1 activity revealed inhibitors in tropical sea anemone Heteractis crispa venom. Several separation steps resulted in isolation of an inhibiting compound. This is a 56-residue-long polypeptide named APHC1 that has a Bos taurus trypsin inhibitor (BPTI)/Kunitz-type fold, mostly represented by serine protease inhibitors and ion channel blockers. APHC1 acted as a partial antagonist of capsaicin-induced currents (32 ± 9% inhibition) with half-maximal effective concentration (EC50) 54 ± 4 nm. In vivo, a 0.1 mg/kg dose of APHC1 significantly prolonged tail-flick latency and reduced capsaicin-induced acute pain. Therefore, our results can make an important contribution to the research into molecular mechanisms of TRPV1 modulation and help to solve the problem of overactivity of this receptor during a number of pathological processes in the organism. PMID:18579526

  16. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1).

    PubMed

    Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara

    2013-07-01

    Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with

  17. The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin.

    PubMed

    Patwardhan, Amol M; Jeske, Nathaniel A; Price, Theodore J; Gamper, Nikita; Akopian, Armen N; Hargreaves, Kenneth M

    2006-07-25

    Cannabinoids can evoke antihyperalgesia and antinociception at a peripheral site of action. However, the signaling pathways mediating these effects are not clearly understood. We tested the hypothesis that certain cannabinoids directly inhibit peripheral capsaicin-sensitive nociceptive neurons by dephosphorylating and desensitizing transient receptor potential vanilloid 1 (TRPV1) via a calcium calcineurin-dependent mechanism. Application of the cannabinoid WIN 55,212-2 (WIN) to cultured trigeminal (TG) neurons or isolated skin biopsies rapidly and significantly inhibited capsaicin-activated inward currents and neuropeptide exocytosis by a mechanism requiring the presence of extracellular calcium. The inhibitory effect did not involve activation of G protein-coupled cannabinoid receptors, because neither pertussis toxin nor GDPbetaS treatments altered the WIN effect. However, application of WIN-activated calcineurin, as measured by nuclear translocation of the nuclear factor of activated T cells (NFAT)c4 transcription factor, dephosphorylated TRPV1. The WIN-induced desensitization of TRPV1 was mediated by calcineurin, because the application of structurally distinct calcineurin antagonists (calcineurin autoinhibitory peptide and cyclosporine/cyclophilin complex) abolished WIN-induced inhibition of capsaicin-evoked inward currents and neuropeptide exocytosis. This mechanism also contributed to peripheral antinociceptive/antihyperalgesic effects of WIN because pretreatment with the calcineurin antagonist calcineurin autoinhibitory peptide (CAIP) significantly reduced peripherally mediated WIN effects in two behavioral models. Collectively, these data demonstrate that cannabinoids such as WIN directly inhibit TRPV1 functional activities via a calcineurin pathway that represents a mechanism of cannabinoid actions at peripheral sites.

  18. Sex-dependent expression of TRPV1 in bladder arterioles.

    PubMed

    Phan, Thieu X; Ton, Hoai T; Chen, Yue; Basha, Maureen E; Ahern, Gerard P

    2016-11-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a major nociceptive ion channel implicated in bladder physiology and/or pathophysiology. However, the precise expression of TRPV1 in neuronal vs. nonneuronal bladder cells is uncertain. Here we used reporter mouse lines (TRPV1-Cre:tdTomato and TRPV1(PLAP-nlacZ)) to map expression of TRPV1 in postnatal bladder. TRPV1 was not detected in the urothelium, however, we found marked expression of TRPV1 lineage in sensory nerves, and surprisingly, in arterial/arteriolar smooth muscle (ASM) cells. Tomato fluorescence was prominent in the vesical arteries and in small-diameter (15-40 μm) arterioles located in the suburothelial layer with a near equal distribution in bladder dome and base. Notably, arteriolar TRPV1 expression was greater in females than in males and increased in both sexes after 90 days of age, suggesting sex hormone and age dependency. Analysis of whole bladder and vesical artery TRPV1 mRNA revealed a similar sex and developmental dependence. Pharmacological experiments confirmed functional TRPV1 protein expression; capsaicin increased intracellular Ca(2+) in ∼15% of ASM cells from wild-type female bladders, but we observed no responses to capsaicin in bladder arterioles isolated from TRPV1-null mice. Furthermore, capsaicin triggered arteriole constriction that was rapidly reversed by the TRPV1 antagonist, BCTC. These data show that predominantly in postpubertal female mice, bladder ASM cells express functional TRPV1 channels that may act to constrict arterioles. TRPV1 may therefore play an important role in regulating the microcirculation of the female bladder, and this effect may be of significance during inflammatory conditions.

  19. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans.

    PubMed

    Gavva, Narender R; Treanor, James J S; Garami, Andras; Fang, Liang; Surapaneni, Sekhar; Akrami, Anna; Alvarez, Francisco; Bak, Annette; Darling, Mary; Gore, Anu; Jang, Graham R; Kesslak, James P; Ni, Liyun; Norman, Mark H; Palluconi, Gabrielle; Rose, Mark J; Salfi, Margaret; Tan, Edward; Romanovsky, Andrej A; Banfield, Christopher; Davar, Gudarz

    2008-05-01

    The vanilloid receptor TRPV1 has been identified as a molecular target for the treatment of pain associated with inflammatory diseases and cancer. Hence, TRPV1 antagonists have been considered for therapeutic evaluation in such diseases. During Phase I clinical trials with AMG 517, a highly selective TRPV1 antagonist, we found that TRPV1 blockade elicited marked, but reversible, and generally plasma concentration-dependent hyperthermia. Similar to what was observed in rats, dogs, and monkeys, hyperthermia was attenuated after repeated dosing of AMG 517 (at the highest dose tested) in humans during a second Phase I trial. However, AMG 517 administered after molar extraction (a surgical cause of acute pain) elicited long-lasting hyperthermia with maximal body temperature surpassing 40 degrees C, suggesting that TRPV1 blockade elicits undesirable hyperthermia in susceptible individuals. Mechanisms of AMG 517-induced hyperthermia were then studied in rats. AMG 517 caused hyperthermia by inducing tail skin vasoconstriction and increasing thermogenesis, which suggests that TRPV1 regulates vasomotor tone and metabolic heat production. In conclusion, these results demonstrate that: (a) TRPV1-selective antagonists like AMG 517 cannot be developed for systemic use as stand alone agents for treatment of pain and other diseases, (b) individual susceptibility influences magnitude of hyperthermia observed after TRPV1 blockade, and (c) TRPV1 plays a pivotal role as a molecular regulator for body temperature in humans.

  20. Ca(2+) and Calpain Mediate Capsaicin-induced Ablation of Axonal Terminals Expressing Transient Receptor Potential Vanilloid 1.

    PubMed

    Wang, Sheng; Wang, Sen; Asgar, Jamila; Joseph, John; Ro, Jin Y; Wei, Feng; Campbell, James N; Chung, Man-Kyo

    2017-03-30

    Capsaicin is an ingredient in spicy peppers that produces burning pain by activating transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel in nociceptors. Capsaicin also has been used as an analgesic, and its topical administration is approved for the treatment of certain pain conditions. The mechanisms underlying capsaicin-induced analgesia likely involve reversible ablation of nociceptor terminals. However, the mechanisms underlying these effects are not well understood. To visualize TRPV1-lineage axons, a genetically engineered mouse model was used in which a fluorophore is expressed under TRPV1 promoter. Using a combination of these TRPV1-lineage reporter mice and primary afferent cultures, we monitored capsaicin-induced effects on afferent terminals in real time. We found that Ca2+ influx through TRPV1 is necessary for capsaicin-induced ablation of nociceptive terminals. Although capsaicin-induced mitochondrial Ca2+ uptake was TRPV1-dependent, dissipation of the mitochondrial membrane potential, inhibition of the mitochondrial transition permeability pore and scavengers of reactive oxygen species did not attenuate capsaicin-induced ablation. In contrast, MDL28170, an inhibitor of the Ca2+-dependent protease calpain diminished ablation. Furthermore, overexpression of calpastatin, an endogenous inhibitor of calpain, or knockdown of calpain2 also decreased the ablation. Quantitative assessment of TRPV1-lineage afferents in the epidermis of the hind paws of the reporter mice showed that EGTA and MDL28170 diminished capsaicin-induced ablation. Moreover, MDL28170 prevented capsaicin-induced thermal hypoalgesia. These results suggest that TRPV1/Ca2+/calpain-dependent signaling plays a dominant role in capsaicin-induced ablation of nociceptive terminals and further our understanding of the molecular mechanisms underlying effects of capsaicin on nociceptors.

  1. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study

    PubMed Central

    Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946

  2. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia

    PubMed Central

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia. PMID:27064319

  3. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia.

    PubMed

    Masuoka, Takayoshi; Kudo, Makiko; Yoshida, Junko; Ishibashi, Takaharu; Muramatsu, Ikunobu; Kato, Nobuo; Imaizumi, Noriko; Nishio, Matomo

    2016-01-01

    Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.

  4. THE TRPV1 RECEPTOR: TARGET OF TOXICANTS AND THERAPEUTICS

    EPA Science Inventory

    Understanding the structural and functional complexities of the TRPV1 is essential to the therapeutic modulation of inflammation and pain. Because of its central role in initiating inflammatory processes and integrating painful stimuli, there is an understandable interest...

  5. TRPV1 function in health and disease.

    PubMed

    White, John P M; Urban, Laszlo; Nagy, Istvan

    2011-01-01

    The transient receptor potential vanilloid type 1 ion channel (TRPV1) was identified as a receptor responsible for mediating the intense burning sensation following exposure to heat greater than approximately 43°C., or capsaicin, the pungent ingredient of hot chilli peppers. More importantly, however, it has been shown that TRPV1 plays a pivotal role in the development of the burning pain sensation associated with inflammation in peripheral tissues. More recently, there has been a virtual avalanche of sightings of TRPV1 on the anatomical landscape, coupled with association of TRPV1 with a wide range of non-pain-related physiological and pathological conditions. Here, we consider the continuously expanding set of functions in both health and disease which TRPV1 is understood to subserve at present. The widespread expression of TRPV1 in the human suggests that, in addition to the development of burning pain associated with acute exposure to heat or capsaicin, and with inflammation, TRPV1 may also be involved in an array of vitally important functions, such as those of the urinary tract, the respiratory and auditory systems. Moreover, TRPV1 could also be involved in the maintenance of body and cell homeostasis, metabolism, regulation of hair growth, and development of cancer. Thus, controlling TRPV1 function may possess the potential of providing exciting opportunities for therapeutic interventions. At the same time, however, the widespread distribution of these ion channels introduces a tremendous complication in developing a drug to serve in one disease context which may have profound implications for normal TRPV1 functioning in other non-pathological contexts.

  6. TRPV1 antagonists as potential antitussive agents.

    PubMed

    McLeod, Robbie L; Correll, Craig C; Jia, Yanlin; Anthes, John C

    2008-01-01

    Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, "codeine-like" drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current

  7. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists.

    PubMed

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Baraldi, Stefania; Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea

    2016-12-15

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.

  8. Effect of genetic deletion of the vanilloid receptor TRPV1 on the expression of Substance P in sensory neurons of mice with adjuvant-induced arthritis

    PubMed Central

    Willcockson, Helen H.; Chen, Yong; Han, Ji Eun; Valtschanoff, Juli G.

    2010-01-01

    The neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an important role in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release SP from their central and peripheral axons, suggesting a functional link between SP and the capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1). The expression of both TRPV1 and SP have been reported to increase in several models of arthritis but the specific involvement of TRPV1-expressing articular afferents that can release SP is not completely understood. We here wanted to ascertain whether the increase in the number of SP-positive primary afferents in arthritis may be affected by genetic deletion of TRPV1. For this, we used immunohistochemistry to quantify the expression of SP in primary afferent neurons in wild type mice (WT) vs. TRPV1-knockout (KO) mice with adjuvant-induced arthritis (AIA). We found that the expression of SP in DRG 1) increased significantly over naïve level in both WT and KO mice 3 weeks after AIA, 2) was significantly higher in KO mice than in WT mice in naïve mice and 2-3 weeks after AIA, 3) was significantly higheron the side of AIA than on the contralateral, vehicle-injected side at all time points in WT mice, but not in KO mice, and 4) increased predominantly in small-size neurons in KO mice and in small- and medium-size neurons in WT mice. Since the size distribution of SP-positive DRG neurons in arthritic TRPV1-KO mice was not significantly different from that in naïve mice, we speculate that the increased expression of SP is unlikely to reflect recruitment of A-fiber primary afferents and that the higher expression of SP in KO mice may represent a plastic change to compensate for the missing receptor in a major sensory circuit. PMID:20303589

  9. Differences in the Control of Secondary Peristalsis in the Human Esophagus: Influence of the 5-HT4 Receptor versus the TRPV1 Receptor

    PubMed Central

    Yi, Chih-Hsun; Lei, Wei-Yi; Hung, Jui-Sheng; Liu, Tso-Tsai; Orr, William C.; Fabio, Pace; Chen, Chien-Lin

    2016-01-01

    Objective Acute administration of 5-hydroxytryptamine4 (5-HT4) receptor agonist, mosapride or esophageal infusion of the transient receptor potential vanilloid receptor-1 (TRPV1) agonist capsaicin promotes secondary peristalsis. We aimed to investigate whether acute esophageal instillation of capsaicin-containing red pepper sauce or administration of mosapride has different effects on the physiological characteristics of secondary peristalsis. Methods Secondary peristalsis was induced with mid-esophageal air injections in 14 healthy subjects. We compared the effects on secondary peristalsis subsequent to capsaicin-containing red pepper sauce (pure capsaicin, 0.84 mg) or 40 mg oral mosapride. Results The threshold volume for generating secondary peristalsis during slow air distensions was significantly decreased with capsaicin infusion compared to mosapride (11.6 ± 1.0 vs. 14.1 ± 0.8 mL, P = 0.02). The threshold volume required to produce secondary peristalsis during rapid air distension was also significantly decreased with capsaicin infusion (4.6 ± 0.5 vs. 5.2 ± 0.6 mL, P = 0.02). Secondary peristalsis was noted more frequently in response to rapid air distension after capsaicin infusion than mosapride (80% [60–100%] vs. 65% [5–100%], P = 0.04). Infusion of capsaicin or mosapride administration didn’t change any parameters of primary or secondary peristalsis. Conclusions Esophageal infusion with capsaicin-containing red pepper sauce suspension does create greater mechanosensitivity as measured by secondary peristalsis than 5-HT4 receptor agonist mosapride. Capsaicin-sensitive afferents appear to be more involved in the sensory modulation of distension-induced secondary peristalsis. PMID:27438088

  10. Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart.

    PubMed

    Thilo, Florian; Liu, Ying; Schulz, Nico; Gergs, Ulrich; Neumann, Joachim; Loddenkemper, Christoph; Gollasch, Maik; Tepel, Martin

    2010-10-08

    The aim of this study was to compare the expression of transient receptor potential vanilloid type 1 (TRPV1) channels in hypertrophic hearts from transgenic mice showing overexpression of the catalytic subunit alpha of protein phosphatase 2A alpha (PP2Ac alpha) with wild-type mice and with TRPV1-/- mice. Transcripts of TRPV1, matrix metalloproteinase 9 (MMP9), discoidin domain receptor family, member 2 (DDR-2), atrial natriuretic peptide (ANP), GATA 4, and regulatory microRNA (miR-21) were analyzed using quantitative real-time PCR. Ventricle-to-body-weight-ratio was significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice and TRPV1-/- mice (8.6±1.3mg/g; 5.4±0.3mg/g; and 5.4±0.4mg/g; respectively; p<0.05 by Kruskal-Wallis test). TRPV1 transcripts were significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice (1.7±0.2 arbitrary units vs. 0.8±0.1 arbitrary units; p<0.05). TRPV1 protein expression was also significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice. A significant linear correlation was observed between TRPV1 transcripts and the ventricle-to-body-weight-ratio (Spearman r=0.78; p<0.05). The expression of DDR-2 was significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice and TRPV1 knockout mice. The expression of miR21 was significantly higher in PP2Ac alpha transgenic mice compared with TRPV1-/- mice (0.103±0.018 (PP2Ac alpha transgenic mice); 0.089±0.009 (wild-type mice); and 0.045±0.013 (TRPV1-/- mice), respectively; p<0.05). Masson Goldner staining revealed that PP2Ac alpha transgenic mice showed increased heart fibrosis compared with TRPV1 knockout mice. The study suggests an important role of TRPV1 in the pathogenesis of genetically associated heart hypertrophy.

  11. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors.

    PubMed

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; le Coutre, Johannes

    2007-08-01

    Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts.

  12. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk

    PubMed Central

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D.; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-01-01

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction. PMID:27653550

  13. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk.

    PubMed

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-09-22

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction.

  14. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma.

    PubMed

    Cantero-Recasens, Gerard; Gonzalez, Juan R; Fandos, César; Duran-Tauleria, Enric; Smit, Lidwien A M; Kauffmann, Francine; Antó, Josep M; Valverde, Miguel A

    2010-09-03

    Transient receptor potential cation channels of the vanilloid subfamily (TRPV) participate in the generation of Ca(2+) signals at different locations of the respiratory system, thereby controlling its correct functioning. TRPV1 expression and activity appear to be altered under pathophysiological conditions such as chronic cough and airway hypersensitivity, whereas TRPV4 single nucleotide polymorphisms (SNP) are associated with chronic obstructive pulmonary disease. However, to date, there is no information about the genetic impact of either TRPV1 or TRPV4 on asthma pathophysiology. We now report on the association of two functional SNPs, TRPV1-I585V and TRPV4-P19S, with childhood asthma. Both SNPs were genotyped in a population of 470 controls without respiratory symptoms and 301 asthmatics. Although none of the SNPs modified the risk of suffering from asthma, carriers of the TRPV1-I585V genetic variant showed a lower risk of current wheezing (odds ratio = 0.51; p = 0.01), a characteristic of active asthma, or cough (odds ratio = 0.57; p = 0.02). Functional analysis of TRPV1-I585V, using the Ca(2+)-sensitive dye fura-2 to measure intracellular [Ca(2+)] concentrations, revealed a decreased channel activity in response to two typical TRPV1 stimuli, heat and capsaicin. On the other hand, TRPV4-P19S, despite its loss-of-channel function, showed no significant association with asthma or the presence of wheezing. Our data suggest that genetically determined level of TRPV1 activity is relevant for asthma pathophysiology.

  15. Involvement of the TRPV1 receptor in plasma extravasation in airways of rats treated with an angiotensin-converting enzyme inhibitor.

    PubMed

    de Oliveira, Janiana Raíza Jentsch Matias; Otuki, Michel Fleith; Cabrini, Daniela Almeida; Brusco, Indiara; Oliveira, Sara Marchesan; Ferreira, Juliano; André, Eunice

    2016-12-01

    Angiotensin-converting enzyme inhibitors (ACEIs) are widely used in the treatment of hypertension, congestive heart failure and renal disease, and are considered relatively safe and generally well-tolerated drugs. However, adverse effects of ACEIs have been reported, including non-productive cough and angioedema, which can lead to poor adherence to therapy. The mechanisms by which ACEIs promote adverse effects are not fully elucidated, although increased bradykinin plasma levels following ACEI therapy seem to play an important role. Since bradykinin can sensitise the transient potential vanilloid receptor 1 (TRPV1), we investigated the role of TRPV1 in plasma extravasation in the trachea and bronchi of rats treated with the ACEI captopril. We observed that intravenous (i.v.) administration of captopril did not cause plasma extravasation in the trachea or bronchi of spontaneously breathing rats, but induced plasma extravasation in the trachea and bronchi of artificially ventilated rats. The intratracheal (i.t.) instillation of capsaicin or bradykinin also induced an increase in plasma extravasation in the trachea and bronchi of artificially ventilated rats. As expected, capsaicin-induced plasma extravasation was inhibited by i.t. pretreatment with the TRPV1 selective antagonist capsazepine (CPZ) while bradykinin-induced plasma extravasation was reduced by i.t. pretreatment with the selective B2 receptor antagonist Icatibant, originally known as HOE 140 (HOE). Interestingly, bradykinin-induced plasma extravasation was also inhibited by CPZ. The pretreatment with HOE and CPZ, singly or in combination and at doses which do not cause inhibitory effects per se, significantly inhibited the plasma extravasation induced by captopril treatment in artificially ventilated rats. In addition, treatment with a high dose of capsaicin in newborn rats, which induces degeneration of TRPV1-expressing sensory neurons, abolished both capsaicin and captopril-induced plasma extravasation

  16. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons.

    PubMed

    Leffler, Andreas; Fischer, Michael J; Rehner, Dietlinde; Kienel, Stephanie; Kistner, Katrin; Sauer, Susanne K; Gavva, Narender R; Reeh, Peter W; Nau, Carla

    2008-02-01

    Local anesthetics (LAs) block the generation and propagation of action potentials by interacting with specific sites of voltage-gated Na(+) channels. LAs can also excite sensory neurons and be neurotoxic through mechanisms that are as yet undefined. Nonspecific cation channels of the transient receptor potential (TRP) channel family that are predominantly expressed by nociceptive sensory neurons render these neurons sensitive to a variety of insults. Here we demonstrated that the LA lidocaine activated TRP channel family receptors TRPV1 and, to a lesser extent, TRPA1 in rodent dorsal root ganglion sensory neurons as well as in HEK293t cells expressing TRPV1 or TRPA1. Lidocaine also induced a TRPV1-dependent release of calcitonin gene-related peptide (CGRP) from isolated skin and peripheral nerve. Lidocaine sensitivity of TRPV1 required segments of the putative vanilloid-binding domain within and adjacent to transmembrane domain 3, was diminished under phosphatidylinositol 4,5-bisphosphate depletion, and was abrogated by a point mutation at residue R701 in the proximal C-terminal TRP domain. These data identify TRPV1 and TRPA1 as putative key elements of LA-induced nociceptor excitation. This effect is sufficient to release CGRP, a key component of neurogenic inflammation, and warrants investigation into the role of TRPV1 and TRPA1 in LA-induced neurotoxicity.

  17. Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channel.

    PubMed

    Chen, Xingjuan; Sun, Weiyang; Gianaris, Nicholas G; Riley, Ashley M; Cummins, Theodore R; Fehrenbacher, Jill C; Obukhov, Alexander G

    2014-04-04

    Furanocoumarin imperatorin is the major active component of Angelica dahurica root extracts, widely used in traditional medicine to treat headache, toothache, and orbital eye pain. In this study, we investigated the mechanisms that may underlie the pain-relieving effects of the compound. We found that imperatorin significantly inhibited formalin- and capsaicin-induced nocifensive responses but did not alter baseline thermal withdrawal thresholds in the rat. We established that imperatorin is a weak agonist of TRPV1, a channel implicated in detecting several noxious stimuli, exhibiting a 50% effective concentration (EC50) of 12.6 ± 3.2 μM. A specific TRPV1 antagonist, JNJ-17203212 (0.5 μM), potently inhibited imperatorin-induced TRPV1 activation. Site-directed mutagenesis studies revealed that imperatorin most likely acted via a site adjacent to or overlapping with the TRPV1 capsaicin-binding site. TRPV1 recovery from desensitization was delayed in the presence of imperatorin. Conversely, imperatorin sensitized TRPV1 to acid activation but did not affect the current amplitude and/or the activation-inactivation properties of Na(v)1.7, a channel important for transmission of nociceptive information. Thus, our data indicate that furanocoumarins represent a novel group of TRPV1 modulators that may become important lead compounds in the drug discovery process aimed at developing new treatments for pain management.

  18. Somatostatin 4 receptor activation modulates TRPV1[correction of TPRV1] currents in dorsal root ganglion neurons.

    PubMed

    Gorham, Louise; Just, Stefan; Doods, Henri

    2014-06-24

    Somatostatin (sst) is a cyclic neuropeptide known to have inhibitory roles in the central nervous system. It exerts its biological effects via the activation of the 5 sst receptor subtypes, which belong to the family of G-protein coupled receptors (GPCR). This peptide has analgesic properties, specifically via the activation of the sst4 receptor subtype. Although this is established, the precise molecular mechanisms causing this have not yet been fully elucidated. This research aimed to identify a possible anti-nociceptive mechanism, showing functional links to the transient receptor potential vanilloid type 1 (TRPV1) within the pain processing pathway. Calcium imaging and whole cell voltage clamp experiments were conducted on DRG neurons prepared from adult rats, utilizing capsaicin stimulations and the sst4 receptor specific agonist J-2156. The complete Freund's adjuvant (CFA) inflammatory pain model was used to examine if effects are augmented in pain conditions. The sst4 receptor agonist J-2156 was able significantly to inhibit capsaicin induced calcium and sodium influx, where the effect was more potent after CFA treatment. This inhibition identifies a contributory molecular mechanism to the analgesic properties of sst4 receptor activation.

  19. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel

    PubMed Central

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren

    2016-01-01

    Background Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund’s Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. Results We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund’s Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Conclusions Our work identified Hsc70 and its ATPase activity as a central

  20. Molecular cloning and functional characterization of Xenopus tropicalis frog transient receptor potential vanilloid 1 reveal its functional evolution for heat, acid, and capsaicin sensitivities in terrestrial vertebrates.

    PubMed

    Ohkita, Masashi; Saito, Shigeru; Imagawa, Toshiaki; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2012-01-20

    The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca(2+)](i)). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ∼60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca(2+)](i) increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function.

  1. Molecular Cloning and Functional Characterization of Xenopus tropicalis Frog Transient Receptor Potential Vanilloid 1 Reveal Its Functional Evolution for Heat, Acid, and Capsaicin Sensitivities in Terrestrial Vertebrates*

    PubMed Central

    Ohkita, Masashi; Saito, Shigeru; Imagawa, Toshiaki; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2012-01-01

    The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca2+]i). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ∼60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca2+]i increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function. PMID:22130664

  2. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    PubMed

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control.

  3. Structure-activity relationships of 1,4-dihydropyridines that act as enhancers of the vanilloid receptor 1 (TRPV1).

    PubMed

    Roh, Eun Joo; Keller, Jason M; Olah, Zoltan; Iadarola, Michael J; Jacobson, Kenneth A

    2008-10-15

    Vanilloid agonists such as capsaicin activate ion flux through the TRPV1 channel, a heat- and ligand-gated cation channel that transduces painful chemical or thermal stimuli applied to peripheral nerve endings in skin or deep tissues. We have probed the SAR of a variety of 1,4-dihydropyridine (DHP) derivatives as novel 'enhancers' of TRPV1 activity by examining changes in capsaicin-induced elevations in (45)Ca(2+)-uptake in either cells ectopically expressing TRPV1 or in cultured dorsal root ganglion (DRG) neurons. The enhancers increased the maximal capsaicin effect on (45)Ca(2+)-uptake by typically 2- to 3-fold without producing an action when used alone. The DHP enhancers contained 6-aryl substitution and small alkyl groups at the 1 and 4 positions, and a 3-phenylalkylthioester was tolerated. Levels of free intracellular Ca(2+), as measured by calcium imaging, were also increased in DRG neurons when exposed to the combination of capsaicin and the most efficacious enhancer 23 compared to capsaicin alone. Thus, DHPs can modulate TRPV1 channels in a positive fashion.

  4. Expression of TRPV1 in rabbits and consuming hot pepper affects its body weight.

    PubMed

    Yu, Qi; Wang, Yanli; Yu, Ying; Li, Yafeng; Zhao, Sihai; Chen, Yulong; Waqar, Ahmed Bilal; Fan, Jianglin; Liu, Enqi

    2012-07-01

    The capsaicin receptor, known as transient receptor potential vanilloid subfamily member 1 (TRPV1), is an important membrane receptor that has been implicated in obesity, diabetes, metabolic syndrome and cardiovascular diseases. The rabbit model is considered excellent for studying cardiovascular and metabolic diseases, however, the tissue expression of TRPV1 and physiological functions of its ligand capsaicin on diet-induced obesity have not been fully defined in this model. In the current study, we investigated the tissue expression of TRPV1 in normal rabbits using real-time RT-PCR and Western blot analysis. Rabbit TRPV1 mRNA was highly expressed in a variety of organs, including the kidneys, adrenal gland, spleen and brain. A phylogenetic analysis showed that the amino acid sequence of rabbit TRPV1 was closer to human TRPV1 than rodent TRPV1. To examine the effect of capsaicin (a pungent compound in hot pepper) on body weight, rabbits were fed with either a high fat diet (as control) or high fat diet containing 1% hot pepper. We found that the body weight of the hot pepper-fed rabbits was significantly lower than the control group. We conclude that the intake of capsaicin can prevent diet-induced obesity and rabbit model is useful for the study of TRPV1 function in cardiovascular and metabolic diseases.

  5. TRPV1: A Target for Rational Drug Design

    PubMed Central

    Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX). Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures. PMID:27563913

  6. The biophysical and molecular basis of TRPV1 proton gating

    PubMed Central

    Aneiros, Eduardo; Cao, Lishuang; Papakosta, Marianthi; Stevens, Edward B; Phillips, Stephen; Grimm, Christian

    2011-01-01

    The capsaicin receptor TRPV1, a member of the transient receptor potential family of non-selective cation channels is a polymodal nociceptor. Noxious thermal stimuli, protons, and the alkaloid irritant capsaicin open the channel. The mechanisms of heat and capsaicin activation have been linked to voltage-dependent gating in TRPV1. However, until now it was unclear whether proton activation or potentiation or both are linked to a similar voltage-dependent mechanism and which molecular determinants underlie the proton gating. Using the whole-cell patch-clamp technique, we show that protons activate and potentiate TRPV1 by shifting the voltage dependence of the activation curves towards more physiological membrane potentials. We further identified a key residue within the pore region of TRPV1, F660, to be critical for voltage-dependent proton activation and potentiation. We conclude that proton activation and potentiation of TRPV1 are both voltage dependent and that amino acid 660 is essential for proton-mediated gating of TRPV1. PMID:21285946

  7. Expression and functionality of TRPV1 in breast cancer cells

    PubMed Central

    Weber, Lea V; Al-Refae, Klaudia; Wölk, Gerhard; Bonatz, Gabriele; Altmüller, Janine; Becker, Christian; Gisselmann, Günter; Hatt, Hanns

    2016-01-01

    Transient receptor potential (TRP) channels contribute to the regulation of intracellular calcium, which can promote cancer hallmarks in cases of dysregulation of gene transcription and calcium-dependent pro-proliferative or anti-apoptotic mechanisms. Several studies have begun to elucidate the roles of TRPV1, TRPV6, TRPM8, and TRPC1 in cancer progression; however, no study has examined the expression profiles of human TRP channels in breast cancer on a large scale. This study focused on the expression and functionality of TRPV1, a nonselective cation channel that was found to be expressed in different carcinoma tissues. Next-generation sequencing analyses revealed the expression of TRPV1 in several native breast cancer tissues, which was subsequently validated via reverse transcriptase-polymerase chain reaction. Activation of TRPV1 by its ligand capsaicin was associated with the growth inhibition of some cancer cell types; however, the signaling components involved are complex. In this study, stimulation by the TRPV1 agonist, capsaicin, of SUM149PT cells, a model system for the most aggressive breast cancer subtype, triple-negative breast cancer, led to intracellular calcium signals that were diminished by the specific TRPV1 antagonist, capsazepin. Activation of TRPV1 by capsaicin caused significant inhibition of cancer cell growth and induced apoptosis and necrosis. In conclusion, the current study revealed the expression profiles of human TRP channels in 60 different breast cancer tissues and cell lines and furthermore validated the antitumor activity of TRPV1 against SUM149PT breast cancer cells, indicating that activation of TRPV1 could be used as a therapeutic target, even in the most aggressive breast cancer types. PMID:28008282

  8. Expression and functionality of TRPV1 in breast cancer cells.

    PubMed

    Weber, Lea V; Al-Refae, Klaudia; Wölk, Gerhard; Bonatz, Gabriele; Altmüller, Janine; Becker, Christian; Gisselmann, Günter; Hatt, Hanns

    2016-01-01

    Transient receptor potential (TRP) channels contribute to the regulation of intracellular calcium, which can promote cancer hallmarks in cases of dysregulation of gene transcription and calcium-dependent pro-proliferative or anti-apoptotic mechanisms. Several studies have begun to elucidate the roles of TRPV1, TRPV6, TRPM8, and TRPC1 in cancer progression; however, no study has examined the expression profiles of human TRP channels in breast cancer on a large scale. This study focused on the expression and functionality of TRPV1, a nonselective cation channel that was found to be expressed in different carcinoma tissues. Next-generation sequencing analyses revealed the expression of TRPV1 in several native breast cancer tissues, which was subsequently validated via reverse transcriptase-polymerase chain reaction. Activation of TRPV1 by its ligand capsaicin was associated with the growth inhibition of some cancer cell types; however, the signaling components involved are complex. In this study, stimulation by the TRPV1 agonist, capsaicin, of SUM149PT cells, a model system for the most aggressive breast cancer subtype, triple-negative breast cancer, led to intracellular calcium signals that were diminished by the specific TRPV1 antagonist, capsazepin. Activation of TRPV1 by capsaicin caused significant inhibition of cancer cell growth and induced apoptosis and necrosis. In conclusion, the current study revealed the expression profiles of human TRP channels in 60 different breast cancer tissues and cell lines and furthermore validated the antitumor activity of TRPV1 against SUM149PT breast cancer cells, indicating that activation of TRPV1 could be used as a therapeutic target, even in the most aggressive breast cancer types.

  9. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors.

    PubMed

    Zádor, Ferenc; Wollemann, Maria

    2015-12-01

    A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.

  10. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative☆

    PubMed Central

    Khom, Sophia; Strommer, Barbara; Schöffmann, Angela; Hintersteiner, Juliane; Baburin, Igor; Erker, Thomas; Schwarz, Thomas; Schwarzer, Christoph; Zaugg, Janine; Hamburger, Matthias; Hering, Steffen

    2013-01-01

    The action of piperine (the pungent component of pepper) and its derivative SCT-66 ((2E,4E)-5-(1,3-benzodioxol-5-yl))-N,N-diisobutyl-2,4-pentadienamide) on different gamma-aminobutyric acid (GABA) type A (GABAA) receptors, transient-receptor-potential-vanilloid-1 (TRPV1) receptors and behavioural effects were investigated. GABAA receptor subtypes and TRPV1 receptors were expressed in Xenopus laevis oocytes. Modulation of GABA-induced chloride currents (IGABA) by piperine and SCT-66 and activation of TRPV1 was studied using the two-microelectrode-voltage-clamp technique and fast perfusion. Their effects on explorative behaviour, thermoregulation and seizure threshold were analysed in mice. Piperine acted with similar potency on all GABAA receptor subtypes (EC50 range: 42.8 ± 7.6 μM (α2β2)–59.6 ± 12.3 μM (α3β2)). IGABA modulation by piperine did not require the presence of a γ2S-subunit, suggesting a binding site involving only α and β subunits. IGABA activation was slightly more efficacious on receptors formed from β2/3 subunits (maximal IGABA stimulation through α1β3 receptors: 332 ± 64% and α1β2: 271 ± 36% vs. α1β1: 171 ± 22%, p < 0.05) and α3-subunits (α3β2: 375 ± 51% vs. α5β2:136 ± 22%, p < 0.05). Replacing the piperidine ring by a N,N-diisobutyl residue (SCT-66) prevents interactions with TRPV1 and simultaneously increases the potency and efficiency of GABAA receptor modulation. SCT-66 displayed greater efficacy on GABAA receptors than piperine, with different subunit-dependence. Both compounds induced anxiolytic, anticonvulsant effects and reduced locomotor activity; however, SCT-66 induced stronger anxiolysis without decreasing body temperature and without the proconvulsive effects of TRPV1 activation and thus may serve as a scaffold for the development of novel GABAA receptor modulators. PMID:23623790

  11. Partial Activation and Inhibition of TRPV1 Channels by Evodiamine and Rutaecarpine, Two Major Components of the Fruits of Evodia rutaecarpa.

    PubMed

    Wang, Shenglan; Yamamoto, Satoshi; Kogure, Yoko; Zhang, Wensheng; Noguchi, Koichi; Dai, Yi

    2016-05-27

    Evodiamine (1) and rutaecarpine (2) are the two major components of Evodia rutaecarpa, which has long been used in traditional medicine for the treatment of many diseases. Using transient receptor potential vanilloid 1 (TRPV1)-expressing HEK293 cells and patch-clamp recording, the inhibitory actions of 1 and 2 against TRPV1 channels were investigated. The effects of these compounds against capsaicin- or proton-activated TRPV1 activities were evaluated. The results showed that, although 1 and 2 can activate TRPV1, the maximum response was 3.5- or 9-fold lower than that of capsaicin, respectively, suggesting partial agonism. In comparison to capsaicin, coadministration of 1 and capsaicin increased the half-maximal effective concentration (EC50) of capsaicin-activated TRPV1 currents as shown by a right shift in the dose-response curve, whereas coadministration of 1 with protons failed to inhibit the proton-induced current. Moreover, preadministration of 1, but not 2, inhibited both capsaicin- and proton-induced TRPV1 currents, which might involve channel desensitization. Taken together, 1 and 2 may share the same binding site with capsaicin and act as partial agonists (antagonists) of TRPV1. Evodiamine (1), but not rutaecarpine (2), can desensitize or competitively inhibit the activity of TRPV1.

  12. Sensitization by pulmonary reactive oxygen species of rat vagal lung C-fibers: the roles of the TRPV1, TRPA1, and P2X receptors.

    PubMed

    Ruan, Ting; Lin, Yu-Jung; Hsu, Tien-Huan; Lu, Shing-Hwa; Jow, Guey-Mei; Kou, Yu Ru

    2014-01-01

    Sensitization of vagal lung C-fibers (VLCFs) induced by mediators contributes to the pathogenesis of airway hypersensitivity, which is characterized by exaggerated sensory and reflex responses to stimulants. Reactive oxygen species (ROS) are mediators produced during airway inflammation. However, the role of ROS in VLCF-mediated airway hypersensitivity has remained elusive. Here, we report that inhalation of aerosolized 0.05% H2O2 for 90 s potentiated apneic responses to intravenous capsaicin (a TRPV1 receptor agonist), α,β-methylene-ATP (a P2X receptor agonist), and phenylbiguanide (a 5-HT3 receptor agonist) in anesthetized rats. The apneic responses to these three stimulants were abolished by vagatomy or by perivagal capsaicin treatment, a procedure that blocks the neural conduction of VLCFs. The potentiating effect of H2O2 on the apneic responses to these VLCF stimulants was prevented by catalase (an enzyme that degrades H2O2) and by dimethylthiourea (a hydroxyl radical scavenger). The potentiating effect of H2O2 on the apneic responses to capsaicin was attenuated by HC-030031 (a TRPA1 receptor antagonist) and by iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (a P2X receptor antagonist). The potentiating effect of H2O2 on the apneic responses to α,β-methylene-ATP was reduced by capsazepine (a TRPV1 receptor antagonist), and by HC-030031. The potentiating effect of H2O2 on the apneic responses to phenylbiguanide was totally abolished when all three antagonists were combined. Consistently, our electrophysiological studies revealed that airway delivery of aerosolized 0.05% H2O2 for 90 s potentiated the VLCF responses to intravenous capsaicin, α,β-methylene-ATP, and phenylbiguanide. The potentiating effect of H2O2 on the VLCF responses to phenylbiguanide was totally prevented when all antagonists were combined. Inhalation of 0.05% H2O2 indeed increased the level of ROS in the lungs. These results suggest that 1) increased lung ROS sensitizes VLCFs

  13. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction.

    PubMed

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-04-25

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction.

  14. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    PubMed Central

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-01-01

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction. PMID:27120617

  15. Capsaicin, Nociception and Pain.

    PubMed

    Frias, Bárbara; Merighi, Adalberto

    2016-06-18

    Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.

  16. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors

    PubMed Central

    Mrozkova, Petra; Spicarova, Diana; Palecek, Jiri

    2016-01-01

    Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG) neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs) were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%), increase of sEPSC frequency (127.0 ± 5.9%) and eEPSC amplitude (126.9 ± 12.0%) in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception. PMID:27755539

  17. Unique Responses are Observed in Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and TRPV1) Co-Expressing Cells.

    PubMed

    Sadofsky, Laura R; Sreekrishna, Koti T; Lin, Yakang; Schinaman, Renee; Gorka, Kate; Mantri, Yogita; Haught, John Christian; Huggins, Thomas G; Isfort, Robert J; Bascom, Charles C; Morice, Alyn H

    2014-06-11

    Transient receptor potential (TRP) ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are implicated in modulation of cough and nociception. In vivo, TRPA1 and TRPV1 are often co-expressed in neurons and TRPA1V1 hetero-tetramer formation is noted in cells co-transfected with the respective expression plasmids. In order to understand the impact of TRP receptor interaction on activity, we created stable cell lines expressing the TRPA1, TRPV1 and co-expressing the TRPA1 and TRPV1 (TRPA1V1) receptors. Among the 600 compounds screened against these receptors, we observed a number of compounds that activated the TRPA1, TRPV1 and TRPA1V1 receptors; compounds that activated TRPA1 and TRPA1V1; compounds that activated TRPV1 and TRPA1V1; compounds in which TRPA1V1 response was modulated by either TRPA1 or TRPV1; and compounds that activated only TRPV1 or TRPA1 or TRPA1V1; and one compound that activated TRPA1 and TRPV1, but not TRPA1V1. These results suggest that co-expression of TRPA1 and TRPV1 receptors imparts unique activation profiles different from that of cells expressing only TRPA1 or TRPV1.

  18. Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue.

    PubMed

    Kawashima, M; Imura, K; Sato, I

    2012-05-10

    Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expressing terminals.

  19. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP

    PubMed Central

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R.; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  20. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP.

    PubMed

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-07-08

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1(-/-) mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1(-/-) mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP.

  1. POTENTIATION OF PULMONARY REFLEX RESPONSE TO CAPSAICIN 24 HOURS FOLLOWING WHOLE-BODY ACROLEIN EXPOSURE IS MEDIATED BY TRPV1

    EPA Science Inventory

    Pulmonary C-fibers are stimulated by irritant air pollutants producing apnea, bronchospasm, and decrease in HR. C-fiber chemoreflex activation is mediated by TRPV1 and release of substance P. While acrolein has been shown to stimulate C-fibers, the persistence of acrolein effect...

  2. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons

    PubMed Central

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin

    2016-01-01

    Key points Transient receptor potential vanilloid type 1 (TRPV1) receptors transduce noxious thermal stimuli and are responsible for the thermal hyperalgesia associated with inflammatory pain.A large population of dorsal root ganglia (DRG) neurons, including the C low threshold mechanoreceptors (C‐LTMRs), express tyrosine hydroxylase, and probably release dopamine.We found that dopamine and SKF 81297 (an agonist at D1/D5 receptors), but not quinpirole (an agonist at D2 receptors), downregulate the activity of TRPV1 channels in DRG neurons.The inhibitory effect of SKF 81297 on TRPV1 channels was strongly dependent on external calcium and preferentially linked to calcium–calmodulin‐dependent protein kinase II (CaMKII).We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. Abstract The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin‐activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin‐activated current. Inhibition of the capsaicin‐activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin‐activated current was not affected when

  3. Estrogen-dependent up-regulation of TRPA1 and TRPV1 receptor proteins in the rat endometrium.

    PubMed

    Pohóczky, Krisztina; Kun, József; Szalontai, Bálint; Szőke, Éva; Sághy, Éva; Payrits, Maja; Kajtár, Béla; Kovács, Krisztina; Környei, József László; Garai, János; Garami, András; Perkecz, Anikó; Czeglédi, Levente; Helyes, Zsuzsanna

    2016-02-01

    Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly in sensory nerves are activated by inflammatory stimuli and mediate inflammation and pain. Although they have been shown in the human endometrium, their regulation and function are unknown. Therefore, we investigated their estrogen- and progesterone-dependent alterations in the rat endometrium in comparison with the estrogen-regulated inflammatory cytokine macrophage migration inhibitory factor (MIF). Four-week-old (sexually immature) and four-month-old (sexually mature) female rats were treated with the non-selective estrogen receptor (ER) agonist diethylstilboestrol (DES), progesterone and their combination, or ovariectomized. RT-PCR and immunohistochemistry were performed to determine mRNA and protein expression levels respectively. Channel function was investigated with ratiometric [Ca(2+)]i measurement in cultured primary rat endometrial cells. Both TRP receptors and MIF were detected in the endometrium at mRNA and protein levels, and their localizations were similar. Immunostaining was observed in the immature epithelium, while stromal, glandular and epithelial positivity were observed in adults. Functionally active TRP receptor proteins were shown in endometrial cells by activation-induced calcium influx. In adults, Trpa1 and Trpv1 mRNA levels were significantly up-regulated after DES treatment. TRPA1 increased after every treatment, but TRPV1 remained unchanged following the combined treatment and ovariectomy. In immature rats, DES treatment resulted in increased mRNA expression of both channels and elevated TRPV1 immunopositivity. MIF expression changed in parallel with TRPA1/TRPV1 in most cases. DES up-regulated Trpa1, Trpv1 and Mif mRNA levels in endometrial cell cultures, but 17β-oestradiol having ERα-selective potency increased only the expression of Trpv1. We provide the first evidence for TRPA1/TRPV1 expression and their estrogen-induced up

  4. "Hotheaded": the role OF TRPV1 in brain functions.

    PubMed

    Martins, D; Tavares, I; Morgado, C

    2014-10-01

    The TRPV1 (vanilloid 1) channel is best known for its role in sensory transmission in the nociceptive neurons of the peripheral nervous system. Although first studied in the dorsal root ganglia as the receptor for capsaicin, TRPV1 has been recently recognized to have a broader distribution in the central nervous system, where it is likely to constitute an atypical neurotransmission system involved in several functions through modulation of both neuronal and glial activities. The endovanilloid-activated brain TRPV1 channels seem to be involved in somatosensory, motor and visceral functions. Recent studies suggested that TRPV1 channels also account for more complex functions, as addiction, anxiety, mood and cognition/learning. However, more studies are needed before the relevance of TRPV1 in brain activity can be clearly stated. This review highlights the increasing importance of TRPV1 as a regulator of brain function and discusses possible bases for the future development of new therapeutic approaches that by targeting brain TRPV1 receptors might be used for the treatment of several neurological disorders.

  5. TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons

    SciTech Connect

    Shirakawa, Hisashi; Yamaoka, Tomoko; Sanpei, Kazuaki; Sasaoka, Hirotoshi; Nakagawa, Takayuki; Kaneko, Shuji

    2008-12-26

    Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca{sup 2+} influx. Interestingly, nifedipine, a specific L-type Ca{sup 2+} channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 and several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca{sup 2+} channel opening, Ca{sup 2+} influx, ERK phosphorylation, and reactive oxygen species production.

  6. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception.

    PubMed

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E; Nordmann, Grégory C; Schladt, Moritz; Milenkovic, Vladimir M; Kulkarni, Ashok B; Wetzel, Christian H

    2016-02-23

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity.

  7. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception

    PubMed Central

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E.; Nordmann, Grégory C.; Schladt, Moritz; Milenkovic, Vladimir M.; Kulkarni, Ashok B.; Wetzel, Christian H.

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca2+-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  8. TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension.

    PubMed

    Zhang, Ming-Jie; Liu, Yun; Hu, Zi-Cheng; Zhou, Yi; Pi, Yan; Guo, Lu; Wang, Xu; Chen, Xue; Li, Jing-Cheng; Zhang, Li-Li

    2017-04-01

    The phenotypic modulation of contractile vascular smooth muscle cell (VSMC) is widely accepted as the pivotal process in the arterial remodeling induced by hypertension. This study aimed to investigate the potential role of transient receptor potential vanilloid type 1 (TRPV1) on regulating VSMC plasticity and intracranial arteriole remodeling in hypertension. Spontaneously hypertensive rats (SHR), Wistar-Kyoto (WKY) rats and TRPV1(-/-) mice on a C57BL/6J background were used. By microscopic observation of the histopathological sections of vessels from hypertensive SHR and age-matched normotensive WKY control rats, we found that hypertension induced arterial remodeling. Decreased α-smooth muscle actin (α-SMA) and SM22α while increased osteopontin (OPN) were observed in aorta and VSMCs derived from SHR compared with those in WKY, and VSMCs derived from SHR upregulated inflammatory factors. TRPV1 activation by capsaicin significantly increased expression of α-SMA and SM22α, reduced expression of OPN, retarded proliferative and migratory capacities and inhibited inflammatory status in VSMCs from SHR, which was counteracted by TRPV1 antagonist 5'-iodoresiniferatoxin (iRTX) combined with capsaicin. TRPV1 activation by capsaicin ameliorated intracranial arteriole remodeling in SHR and deoxycorticosterone acetate (DOCA)-salt hypertensive mice. However, the attenuation of arteriole remodeling by capsaicin was not observed in TRPV1(-/-) mice. Furthermore, TRPV1 activation significantly decreased the activity of PI3K and phosphorylation level of Akt in SHR-derived VSMCs. Taken together, we provide evidence that TRPV1 activation by capsaicin attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation during hypertension, which may be at least partly attributed to the suppression PI3K/Akt signaling pathway. These findings highlight the prospect of TRPV1 in prevention and treatment of hypertension.

  9. Oxidative stress-induced posttranslational modification of TRPV1 expressed in esophageal epithelial cells.

    PubMed

    Kishimoto, Etsuko; Naito, Yuji; Handa, Osamu; Okada, Hitomi; Mizushima, Katsura; Hirai, Yasuko; Nakabe, Nami; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshida, Norimasa; Yoshikawa, Toshikazu

    2011-08-01

    Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux disease (GERD) or in nonerosive GERD symptoms. In this study, we examined the expression and function of TRPV1 in the human esophageal epithelial cell line Het1A, focusing in particular on the role of oxidative stress. Interleukin-8 (IL-8) secreted by Het1A cells upon stimulation by capsaicin or acid with/without 4-hydroxy-2-nonenal (HNE) was measured by ELISA. Following capsaicin stimulation, the intracellular production of reactive oxygen species (ROS) was determined using a redox-sensitive fluorogenic probe, and ROS- and HNE-modified proteins were determined by Western blotting using biotinylated cysteine and anti-HNE antibody, respectively. HNE modification of TRPV1 proteins was further investigated by immunoprecipitation after treatment with synthetic HNE. Capsaicin and acid induced IL-8 production in Het1A cells, and this production was diminished by antagonists of TRPV1. Capsaicin also significantly increased the production of intracellular ROS and ROS- or HNE-modified proteins in Het1A cells. Moreover, IL-8 production in capsaicin-stimulated Het1A cells was enhanced by synthetic HNE treatment. Immunoprecipitation studies revealed that TRPV1 was modified by HNE in synthetic HNE-stimulated Het1A cells. We concluded that TRPV1 functions in chemokine production in esophageal epithelial cells, and this function may be regulated by ROS via posttranslational modification of TRPV1.

  10. Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material.

    PubMed

    Deering-Rice, Cassandra E; Johansen, Mark E; Roberts, Jessica K; Thomas, Karen C; Romero, Erin G; Lee, Jeewoo; Yost, Garold S; Veranth, John M; Reilly, Christopher A

    2012-03-01

    Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.

  11. [Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].

    PubMed

    Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei

    2014-08-25

    The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.

  12. Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor

    PubMed Central

    Monastyrnaya, Margarita; Peigneur, Steve; Zelepuga, Elena; Sintsova, Oksana; Gladkikh, Irina; Leychenko, Elena; Isaeva, Marina; Tytgat, Jan; Kozlovskaya, Emma

    2016-01-01

    Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1–APHC3 from H. crispa, and clusters with the peptides from so named “analgesic cluster” of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10−7 and 7.0 × 10−7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21–TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides. PMID:27983679

  13. Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons.

    PubMed

    Takayama, Yasunori; Uta, Daisuke; Furue, Hidemasa; Tominaga, Makoto

    2015-04-21

    The capsaicin receptor transient receptor potential cation channel vanilloid 1 (TRPV1) is activated by various noxious stimuli, and the stimuli are converted into electrical signals in primary sensory neurons. It is believed that cation influx through TRPV1 causes depolarization, leading to the activation of voltage-gated sodium channels, followed by the generation of action potential. Here we report that the capsaicin-evoked action potential could be induced by two components: a cation influx-mediated depolarization caused by TRPV1 activation and a subsequent anion efflux-mediated depolarization via activation of anoctamin 1 (ANO1), a calcium-activated chloride channel, resulting from the entry of calcium through TRPV1. The interaction between TRPV1 and ANO1 is based on their physical binding. Capsaicin activated the chloride currents in an extracellular calcium-dependent manner in HEK293T cells expressing TRPV1 and ANO1. Similarly, in mouse dorsal root ganglion neurons, capsaicin-activated inward currents were inhibited significantly by a specific ANO1 antagonist, T16Ainh-A01 (A01), in the presence of a high concentration of EGTA but not in the presence of BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]. The generation of a capsaicin-evoked action potential also was inhibited by A01. Furthermore, pain-related behaviors in mice treated with capsaicin, but not with αβ-methylene ATP, were reduced significantly by the concomitant administration of A01. These results indicate that TRPV1-ANO1 interaction is a significant pain-enhancing mechanism in the peripheral nervous system.

  14. Integrin α6β4 and TRPV1 channel coordinately regulate directional keratinocyte migration.

    PubMed

    Miyazaki, Ayako; Ohkubo, Tsuyako; Hatta, Mitsutoki; Ishikawa, Hiroyuki; Yamazaki, Jun

    2015-02-27

    The directional migration of epithelial cells is crucial for wound healing. Among integrins, a family of cell adhesion receptors, integrin β4 has been assumed to be a promigratory factor, in addition to its role in stable adhesion. In turn, Ca(2+) signaling is also a key coordinator of migration. Keratinocytes reportedly express transient receptor potential vanilloid channels (TRPV1); however, the function of these channels as a regulator of intracellular Ca(2+) level in cell migration has remained uncharacterized. In the present study, we investigated the role of TRPV1 in directional migration related to integrin β4 using a scratch wound assay on a confluent monolayer sheet of murine keratinocytes (Pam212 cells). Double immunofluorescence staining revealed the de novo expression of integrin β4 and TRPV1 in migrating cells at the wound edge in response to scratch wounding, and both expression levels were almost matched. Epidermal growth factor (EGF) not only promoted keratinocyte migration, but also caused the further up-regulation of both integrin β4 and TRPV1. In addition, the knockdown of the integrin β4 or TRPV1 gene significantly impeded wound closure. The TRPV1 agonist capsaicin significantly promoted migration, while a selective TRPV1 antagonist inhibited it. The gene knockdown of TRPV1 inhibited the expression of the integrin β4 gene and that of β4 protein in migrating cells. These findings suggest that TRPV1 may stimulate directional migration directly by eliciting a Ca(2+) signal or indirectly via integrin β4 expression.

  15. Additive antiemetic efficacy of low-doses of the cannabinoid CB(1/2) receptor agonist Δ(9)-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva).

    PubMed

    Darmani, Nissar A; Chebolu, Seetha; Zhong, Weixia; Trinh, Chung; McClanahan, Bryan; Brar, Rajivinder S

    2014-01-05

    Previous studies have shown that cannabinoid CB1/2 and vanilloid TRPV1 agonists (delta-9-tetrahydrocannabinol (Δ(9)-THC) and resiniferatoxin (RTX), respectively) can attenuate the emetic effects of chemotherapeutic agents such as cisplatin. In this study we used the least shrew to demonstrate whether combinations of varying doses of Δ(9)-THC with resiniferatoxin can produce additive antiemetic efficacy against cisplatin-induced vomiting. RTX by itself caused vomiting in a bell-shaped dose-dependent manner with maximal vomiting at 18 μg/kg when administered subcutaneously (s.c.) but not intraperitoneally (i.p.). Δ(9)-THC up to 10 mg/kg provides only 80% protection of least shrews from cisplatin-induced emesis with an ID50 of 0.3-1.8 mg/kg. Combinations of 1 or 5 μg/kg RTX with varying doses of Δ(9)-THC completely suppressed both the frequency and the percentage of shrews vomiting with ID50 dose values 5-50 times lower than Δ(9)-THC doses tested alone against cisplatin. A less potent TRPV1 agonist, capsaicin, by itself did not cause emesis (i.p. or s.c.), but it did significantly reduce vomiting induced by cisplatin given after 30 min but not at 2 h. The TRPV1-receptor antagonist, ruthenium red, attenuated cisplatin-induced emesis at 5mg/kg; however, another TRPV1-receptor antagonist, capsazepine, did not. In summary, we present evidence that combination of CB1/2 and TRPV1 agonists have the capacity to completely abolish cisplatin-induced emesis at doses that are ineffective when used individually.

  16. Involvement of capsaicin-sensitive afferents and the Transient Receptor Potential Vanilloid 1 Receptor in xylene-induced nocifensive behaviour and inflammation in the mouse.

    PubMed

    Sándor, Katalin; Helyes, Zsuzsanna; Elekes, Krisztián; Szolcsányi, János

    2009-02-27

    The inflammatory actions of xylene, an aromatic irritant and sensitizing agent, were described to be predominantly neurogenic in the rat, but the mechanism and the role of the Transient Receptor Potential Vanilloid 1 (TRPV1) capsaicin receptor localized on a subpopulation of sensory nerves has not been elucidated. This paper characterizes the involvement of capsaicin-sensitive afferents and the TRPV1 receptor in nociceptive and acute inflammatory effects of xylene in the mouse. Topical application of xylene on the paw induced a short, intensive nocifensive behaviour characterized by paw liftings and shakings, which was more intensive in Balb/c than in C57Bl/6 mice. Genetic deletion of the TRPV1 receptor as well as destroying capsaicin-sensitive nerve terminals with resiniferatoxin (RTX) pretreatment markedly reduced, but did not abolish nocifensive behaviours. In respect to the xylene-induced plasma protein extravasation detected by Evans blue leakage, significant difference was neither observed between the Balb/c and C57Bl/6 strains, nor the ear and the dorsal paw skin. These inflammatory responses were diminished in the RTX pretreated group, but not in the TRPV1 gene-deleted one. Injection of the antioxidant N-acetylcysteine 15min prior to xylene smearing significantly reduced plasma protein extravasation at both sites. These results demonstrate that xylene-induced acute nocifensive behaviour is mediated by capsaicin-sensitive afferents via TRPV1 receptor activation in mice. Neurogenic inflammatory components play an important role in xylene-induced plasma protein extravasation, but independently of the TRPV1 ion channel. Reactive oxygen or carbonyl species participate in this process presumably via stimulation of the TRPA1 channel.

  17. Lysophosphatidic acid-induced itch is mediated by signaling of LPA5 receptor, phospholipase D and TRPA1/TRPV1.

    PubMed

    Kittaka, Hiroki; Uchida, Kunitoshi; Fukuta, Naomi; Tominaga, Makoto

    2017-02-08

    Intractable and continuous itch sensations often accompany diseases such as atopic dermatitis, neurogenic lesions, uremia and cholestasis. Lysophosphatidic acid (LPA) is an itch mediator found in cholestatic itch patients and it induces acute itch and pain in the experimental rodent models. However, the molecular mechanism by which LPA activates peripheral sensory neurons remains unknown. In this study, we used a cheek injection method in mice to reveal that LPA induced itch-related behaviors but not pain-related behaviors. The LPA-induced itch behavior and cellular effects were dependent on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which are important for itch signal transduction. We also found that, among the 6 LPA receptors, the LPA5 receptor had the greatest involvement in itching. Furthermore, we demonstrated that phospholipase D (PLD) plays a critical role downstream of LPA5 and that LPA directly and intracellularly activates TRPA1 and TRPV1. These results suggest a unique mechanism that cytoplasmic LPA produced de novo could activate TRPA1 and TRPV1. We conclude that LPA-induced itch is mediated by LPA5 , PLD, TRPA1 and TRPV1 signaling, and thus targeting TRPA1, TRPV1 or PLD could be effective for cholestatic itch interventions. This article is protected by copyright. All rights reserved.

  18. Transient receptor potential vanilloid type-1 (TRPV-1) channels contribute to cutaneous thermal hyperaemia in humans.

    PubMed

    Wong, Brett J; Fieger, Sarah M

    2010-11-01

    The initial, rapid increase in skin blood flow in response to direct application of heat is thought to be mediated by an axon reflex, which is dependent on intact cutaneous sensory nerves. We tested the hypothesis that inhibition of transient receptor potential vanilloid type 1 (TRPV-1) channels, which are putative channels located on sensory nerves, would attenuate the skin blood flow response to local heating in humans. Ten subjects were equipped with four microdialysis fibres which were randomly assigned one of four treatments: (1) vehicle control (90% propylene glycol + 10% lactated Ringer solution); (2) 20 mm capsazepine to inhibit TRPV-1 channels; (3) 10 mm l-NAME to inhibit NO synthase; and (4) combined 20 mm capsazepine + 10 mm l-NAME. Following baseline measurements, the temperature of skin heaters was increased from 33°C to 42°C at a rate of 1.0°C every 10 s and local temperature was held at 42°C for 20-30 min until a stable plateau in skin blood flow was achieved. An index of skin blood flow was measured directly over each microdialysis site via laser-Doppler flowmetry (LDF). Beat-by-beat blood pressure was measured via photoplethysmography and verified via automated brachial auscultation. At the end of the local heating protocol, temperature of the heaters was increased to 43°C and 28 mm nitroprusside was infused to achieve maximal vasodilatation. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure and normalized to maximal values (%CVCmax). Initial peak in capsazepine (44 ± 4%CVCmax), l-NAME (56 ± 4%CVCmax) and capsazepine + l-NAME (32 ± 6%CVCmax) sites was significantly attenuated compared to control (87 ± 5%CVCmax; P < 0.001 for all conditions). The plateau phase of thermal hyperaemia was significantly attenuated in capsazepine (73 ± 6%CVCmax), l-NAME (47 ± 5%CVCmax) and capsazepine + l-NAME (31 ± 7%CVCmax) sites compared to control (92 ± 5%CVCmax; P < 0.001 for all conditions). These data suggest TRPV-1

  19. Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease.

    PubMed

    González-Aparicio, Ramiro; Moratalla, Rosario

    2014-02-01

    The long-term use of levodopa (L-DOPA) in Parkinson's disease (PD) results in the development of abnormal involuntary movements called L-DOPA-induced dyskinesias. Increasing evidences suggest that the endocannabinoid system may play a role in the modulation of dyskinesias. In this work, we assessed the antidyskinetic effect of the endocannabinoid analog oleoylethanolamide (OEA), an agonist of PPARα and antagonist of TRPV1 receptors. We used a hemiparkinsonian model of PD in mice with 6-OHDA striatal lesion. The chronic L-DOPA treatment developed intense axial, forelimb and orolingual dyskinetic symptoms, as well as contralateral rotations. Treatment with OEA reduced all these symptoms without reducing motor activity or the therapeutic motor effects of L-DOPA. Moreover, the OEA-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates of dyskinesia. OEA reduced FosB striatal overexpression and phosphoacetylation of histone 3, both molecular markers of L-DOPA-induced dyskinesias. We found that OEA antidyskinetic properties were mediated by TRPV1 receptor, as pretreatment with capsaicin, a TRPV1 agonist, blocked OEA antidyskinetic actions, as well as the reduction in FosB- and pAcH3-overexpression induced by L-DOPA. This study supports the hypothesis that the endocannabinoid system plays an important role in the development and expression of dyskinesias and might be an effective target for the treatment of L-DOPA-induced dyskinesias. Importantly, there was no development of tolerance to OEA in any of the parameters we examined, which has important implications for the therapeutic potential of drugs targeting the endocannabinoid system.

  20. Competitive inhibition of TRPV1-calmodulin interaction by vanilloids.

    PubMed

    Hetényi, Anasztázia; Németh, Lukács; Wéber, Edit; Szakonyi, Gerda; Winter, Zoltán; Jósvay, Katalin; Bartus, Éva; Oláh, Zoltán; Martinek, Tamás A

    2016-08-01

    There is enormous interest toward vanilloid agonists of the pain receptor TRPV1 in analgesic therapy, but the mechanisms of their sensory neuron-blocking effects at high or repeated doses are still a matter of debate. Our results have demonstrated that capsaicin and resiniferatoxin form nanomolar complexes with calmodulin, and competitively inhibit TRPV1-calmodulin interaction. These interactions involve the protein recognition interface of calmodulin, which is responsible for all of the cell-regulatory calmodulin-protein interactions. These results draw attention to a previously unknown vanilloid target, which may contribute to the explanation of the paradoxical pain-modulating behavior of these important pharmacons.

  1. The general anesthetic propofol excites nociceptors by activating TRPV1 and TRPA1 rather than GABAA receptors.

    PubMed

    Fischer, Michael J M; Leffler, Andreas; Niedermirtl, Florian; Kistner, Katrin; Eberhardt, Mirjam; Reeh, Peter W; Nau, Carla

    2010-11-05

    Anesthetic agents can induce a paradox activation and sensitization of nociceptive sensory neurons and, thus, potentially facilitate pain processing. Here we identify distinct molecular mechanisms that mediate an activation of sensory neurons by 2,6-diisopropylphenol (propofol), a commonly used intravenous anesthetic known to elicit intense pain upon injection. Clinically relevant concentrations of propofol activated the recombinant transient receptor potential (TRP) receptors TRPA1 and TRPV1 heterologously expressed in HEK293t cells. In dorsal root ganglion (DRG) neurons, propofol-induced activation correlated better to expression of TRPA1 than of TRPV1. However, pretreatment with the protein kinase C activator 4β-phorbol 12-myristate 13-acetate (PMA) resulted in a significantly sensitized propofol-induced activation of TRPV1 in DRG neurons as well as in HEK293t cells. Pharmacological and genetic silencing of both TRPA1 and TRPV1 only partially abrogated propofol-induced responses in DRG neurons. The remaining propofol-induced activation was abolished by the selective γ-aminobutyric acid, type A (GABA(A)) receptor antagonist picrotoxin. Propofol but not GABA evokes a release of calcitonin gene-related peptide, a key component of neurogenic inflammation, from isolated peripheral nerves of wild-type but not TRPV1 and TRPA1-deficient mice. Moreover, propofol but not GABA induced an intense pain upon intracutaneous injection. As both the release of calcitonin gene-related peptide and injection pain by propofol seem to be independent of GABA(A) receptors, our data identify TRPV1 and TRPA1 as key molecules for propofol-induced excitation of sensory neurons. This study warrants further investigations into the role of anesthetics to induce nociceptor sensitization and to foster postoperative pain.

  2. Effects of TRPV1 on the hippocampal synaptic plasticity in the epileptic rat brain.

    PubMed

    Saffarzadeh, Fatemeh; Eslamizade, Mohammad J; Ghadiri, Tahereh; Modarres Mousavi, Sayed Mostafa; Hadjighassem, Mahmoudreza; Gorji, Ali

    2015-07-01

    Temporal lobe epilepsy is often presented by medically intractable recurrent seizures due to dysfunction of temporal lobe structures, mostly the temporomesial structures. The role of transient receptor potential vaniloid 1 (TRPV1) activity on synaptic plasticity of the epileptic brain tissues was investigated. We studied hippocampal TRPV1 protein content and distribution in the hippocampus of epileptic rats. Furthermore, the effects of pharmacologic modulation of TRPV1 receptors on field excitatory postsynaptic potentials have been analyzed after induction of long term potentiation (LTP) in the hippocampal CA1 and CA3 areas after 1 day (acute phase) and 3 months (chronic phase) of pilocarpine-induced status epilepticus (SE). A higher expression of TRPV1 protein in the hippocampus as well as a higher distribution of this channel in CA1 and CA3 areas in both acute and chronic phases of pilocarpine-induced SE was observed. Activation of TRPV1 using capsaicin (1 µM) enhanced LTP induction in CA1 region in non-epileptic rats. Inhibition of TRPV1 by capsazepine (10 µM) did not affect LTP induction in non-epileptic rats. In acute phase of SE, activation of TRPV1 enhanced LTP in both CA1 and CA3 areas but TRPV1 inhibition did not affect LTP. In chronic phase of SE, application of TRPV1 antagonist enhanced LTP induction in CA1 and CA3 regions but TRPV1 activation had no effect on LTP. These findings indicate that a higher expression of TRPV1 in epileptic conditions is accompanied by a functional impact on the synaptic plasticity in the hippocampus. This suggests TRPV1 as a potential target in treatment of seizure attacks.

  3. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    PubMed

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  4. TRPV1 activation prevents high-salt diet-induced nocturnal hypertension in mice.

    PubMed

    Hao, Xinzhong; Chen, Jing; Luo, Zhidan; He, Hongbo; Yu, Hao; Ma, Liqun; Ma, Shuangtao; Zhu, Tianqi; Liu, Daoyan; Zhu, Zhiming

    2011-03-01

    High dietary salt-caused hypertension is associated with increasing reactive oxygen species generation and reduced nitric oxide (NO) bioavailability. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, is proposed to be involved in Dahl salt-sensitive hypertension, as determined in acute or short-term experiments. However, it remains unknown whether activation of TRPV1 by dietary capsaicin could prevent the vascular oxidative stress and hypertension induced by a high-salt diet. Here, we report that consumption of a high-salt diet blunted endothelium-dependent relaxation in mesenteric resistance arteries and elevated nocturnal blood pressure in mice. These effects were associated with increased superoxide anion generation and reduced NO levels in mesenteric vessels in mice on a high-salt diet. However, chronic administration of capsaicin reduced the high-salt diet-induced endothelial dysfunction and nocturnal hypertension in part by preventing the generation of superoxide anions and NO reduction of mesenteric arteries through vascular TRPV1 activation. Our findings provide new insights into the role of TRPV1 channels in the long-term regulation of blood pressure in response to high-salt intake. TRPV1 activation through chronic dietary capsaicin may represent a promising lifestyle intervention in populations with salt-sensitive hypertension.

  5. Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice.

    PubMed

    Sałat, Kinga; Filipek, Barbara

    2015-03-01

    The aim of this research was to assess the antinociceptive activity of the transient receptor potential (TRP) channel TRPV1, TRPM8, and TRPA1 antagonists in neurogenic, tonic, and neuropathic pain models in mice. For this purpose, TRP channel antagonists were administered into the dorsal surface of a hind paw 15 min before capsaicin, allyl isothiocyanate (AITC), or formalin. Their antiallodynic and antihyperalgesic efficacies after intraperitoneal administration were also assessed in a paclitaxel-induced neuropathic pain model. Motor coordination of paclitaxel-treated mice that received these TRP channel antagonists was investigated using the rotarod test. TRPV1 antagonists, capsazepine and SB-366791, attenuated capsaicin-induced nociceptive reaction in a concentration-dependent manner. At 8 µg/20 µl, this effect was 51% (P<0.001) for capsazepine and 37% (P<0.05) for SB-366791. A TRPA1 antagonist, A-967079, reduced pain reaction by 48% (P<0.05) in the AITC test and by 54% (P<0.001) in the early phase of the formalin test. The test compounds had no influence on the late phase of the formalin test. In paclitaxel-treated mice, they did not attenuate heat hyperalgesia but N-(3-aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt (AMTB), a TRPM8 antagonist, reduced cold hyperalgesia and tactile allodynia by 31% (P<0.05) and 51% (P<0.01), respectively. HC-030031, a TRPA1 channel antagonist, attenuated tactile allodynia in the von Frey test (62%; P<0.001). In conclusion, distinct members of TRP channel family are involved in different pain models in mice. Antagonists of TRP channels attenuate nocifensive responses of neurogenic, tonic, and neuropathic pain, but their efficacies strongly depend on the pain model used.

  6. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1.

    PubMed

    Zhu, Weiguo; Oxford, Gerry S

    2007-04-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells co-expressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wild-type or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 co-expressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85alpha (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF.

  7. TRPV1 channels are involved in niacin-induced cutaneous vasodilation in mice.

    PubMed

    Clifton, Heather L; Inceoglu, Bora; Ma, Linlin; Zheng, Jie; Schaefer, Saul

    2015-02-01

    Niacin is effective in treating dyslipidemias but causes cutaneous vasodilation or flushing, a side effect that limits its clinical use. Blocking prostaglandins in humans reduces but does not consistently eliminate flushing, indicating additional mechanisms may contribute to flushing. The transient receptor potential vanilloid 1 (TRPV1) channel, when activated, causes cutaneous vasodilation and undergoes tachyphylaxis similar to that seen with niacin. Using a murine model, early phase niacin-induced flushing was examined and TRPV1 channel involvement demonstrated using pharmacologic blockade, desensitization, and genetic knockouts (TRPV1 KO). The TRPV1 antagonist AMG9810 reduced the magnitude of the initial and secondary peaks and the rapidity of the vasodilatory response (slope). TRPV1 desensitization by chronic capsaicin reduced the initial peak and slope. TRPV1 KO mice had a lower initial peak, secondary peak, and slope compared with wild-type mice. Chronic niacin reduced the initial peak, secondary peak, and slope in wild-type mice but had no effect in knockout mice. Furthermore, chronic niacin diminished the response to capsaicin in wild-type mice. Overall, these data demonstrate an important role for TRPV1 channels in niacin-induced flushing, both in the acute response and with chronic administration. That niacin-induced flushing is a complex cascade of events, which should inform pharmacological intervention against this side effect.

  8. Nociception, neurogenic inflammation and thermoregulation in TRPV1 knockdown transgenic mice.

    PubMed

    Tóth, Dániel Márton; Szoke, Eva; Bölcskei, Kata; Kvell, Krisztián; Bender, Balázs; Bosze, Zsuzsanna; Szolcsányi, János; Sándor, Zoltán

    2011-08-01

    Transgenic mice with a small hairpin RNA construct interfering with the expression of transient receptor potential vanilloid 1 (TRPV1) were created by lentiviral transgenesis. TRPV1 expression level in transgenic mice was reduced to 8% while the expression of ankyrin repeat domain 1 (TRPA1) was unchanged. Ear oedema induced by topical application of TRPV1 agonist capsaicin was completely absent in TRPV1 knockdown mice. Thermoregulatory behaviour in relation to environmental thermopreference (30 vs. 35°C) was slightly impaired in male knockdown mice, but the reduction of TRPV1 function was not associated with enhanced hyperthermia. TRPV1 agonist resiniferatoxin induced hypothermia and tail vasodilatation was markedly inhibited in knockdown mice. In conclusion, shRNA-mediated knock down of the TRPV1 receptor in mice induced robust inhibition of the responses to TRPV1 agonists without altering the expression, gating function or neurogenic oedema provoked by TRPA1 activation. Thermoregulatory behaviour in response to heat was inhibited, but enhanced hyperthermia was not observed.

  9. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells.

    PubMed

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F; Lundy, Fionnuala; McGarvey, Lorcan P A; Cosby, S Louise

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough.

  10. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells

    PubMed Central

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F.; Lundy, Fionnuala; McGarvey, Lorcan P. A.

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough. PMID:28187208

  11. Interference of TRPV1 function altered the susceptibility of PTZ-induced seizures.

    PubMed

    Jia, Yun-Fang; Li, Ying-Chao; Tang, Yan-Ping; Cao, Jun; Wang, Li-Ping; Yang, Yue-Xiong; Xu, Lin; Mao, Rong-Rong

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is widely distributed in the central nervous system (CNS) including hippocampus, and regulates the balance of excitation and inhibition in CNS, which imply its important role in epilepsy. We used both pharmacological manipulations and transgenic mice to disturb the function of TRPV1 and then studied the effects of these alterations on the susceptibility of pentylenetetrazol (PTZ)-induced seizures. Our results showed that systemic administration of TRPV1 agonist capsaicin (CAP, 40 mg/kg) directly induced tonic-clonic seizures (TCS) without PTZ induction. The severity of seizure was increased in lower doses of CAP groups (5 and 10 mg/kg), although the latency to TCS was delayed. On the other hand, systemic administration of TRPV1 antagonist capsazepine (CPZ, 0.05 and 0.5 mg/kg) and TRPV1 knockout mice exhibited delayed latency to TCS and reduced mortality. Furthermore, hippocampal administration of CPZ (10 and 33 nmol/μL/side) was firstly reported to increase the latency to TCS, decrease the maximal grade of seizure and mortality. It is worth noting that decreased susceptibility of PTZ-induced seizures was observed in hippocampal TRPV1 overexpression mice and hippocampal CAP administration (33 nmol/μL/side), which is opposite from results of systemic agonist CAP. Our findings suggest that the systemic administration of TRPV1 antagonist may be a novel therapeutic target for epilepsy, and alteration of hippocampal TRPV1 function exerts a critical role in seizure susceptibility.

  12. Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception.

    PubMed

    Nita, Iulia I; Caspi, Yaki; Gudes, Sagi; Fishman, Dimitri; Lev, Shaya; Hersfinkel, Michal; Sekler, Israel; Binshtok, Alexander M

    2016-12-01

    The nociceptive noxious heat-activated receptor - TRPV1, conducts calcium and sodium, thus producing a depolarizing receptor potential, leading to activation of nociceptive neurons. TRPV1-mediated calcium and sodium influx is negatively modulated by calcium, via calcium-dependent desensitization of TRPV1 channels. A mitochondrial Ca(2+) uniporter - MCU, controls mitochondrial Ca(2+) entry while a sodium/calcium transporter - NCLX shapes calcium and sodium transients by mediating sodium entry into and removing calcium from the mitochondria. The functional interplay between TRPV1, MCU and NCLX, in controlling the cytosolic and mitochondrial calcium and sodium transients and subsequently the nociceptive excitability, is poorly understood. Here, we used cytosolic and mitochondrial fluorescent calcium and sodium imaging together with electrophysiological recordings of TRPV1-induced currents in HEK293T cells and nociceptor-like dissociated rat dorsal root ganglion neurons, while modulating NCLX or MCU expression using specific small interfering RNA (siNCLX). We show that the propagation of the TRPV1-induced cytosolic calcium and sodium fluxes into mitochondria is dependent on coordinated activity of NCLX and MCU. Thus, knocking-down of NCLX triggers down regulation of MCU dependent mitochondrial Ca(2+) uptake. This in turn decreases rate and amplitude of TRPV1-mediated cytosolic calcium, which inhibits capsaicin-induced inward current and neuronal firing. TRPV1-mediated currents were fully rescued by intracellular inclusion of the fast calcium chelator BAPTA. Finally, NCLX controls capsaicin-induced cell death, by supporting massive mitochondrial Ca(2+) shuttling. Altogether, our results suggest that NCLX, by regulating cytosolic and mitochondrial ionic transients, modulates calcium-dependent desensitization of TRPV1 channels, thereby, controlling nociceptive signaling.

  13. Anionic linear aliphatic surfactants activate TRPV1: a possible endpoint for estimation of detergent induced eye nociception?

    PubMed

    Lindegren, H; Mogren, H; El Andaloussi-Lilja, J; Lundqvist, J; Forsby, A

    2009-12-01

    The transient receptor potential vanilloid type 1 (TRPV1) has been reported as one of the key components in the pain pathway. Activation of the receptor causes a Ca(2+) influx in sensory C-fibres with secondary effects leading to neurogenic inflammation in the surrounding tissue. We have earlier reported specific activation of TRPV1 by surfactant-containing hygiene products. We have continued this project by investigating activation of the TRPV1 by shampoo and soap ingredients in low concentrations measured as intracellular Ca(2+) influxes in stably TRPV1-expressing neuroblastoma SH-SY5Y cells. As a TRPV1 specific control, the TRPV1 antagonist capsazepine was used. The response was quantified as the product induced Ca(2+) influx during 2 min in relation to the maximum response induced by the TRPV1 agonist capsaicin. The results show that anionic alkyl linear surfactant ingredients such as sodium lauryl sulphate, sodium laureth sulphate, ammonium lauryl sulphate, sodium C12-15 pareth sulphate and N-lauroylsarcosine concentration-dependently induced Ca(2+) influx that could be addressed to TRPV1. The cationic surfactants benzalkonium chloride and cetylpyridinium chloride induced a Ca(2+) influx that was not TRPV1 mediated as well as the zwitterionic surfactant cocamidopropyl betaine, the non-linear anionic surfactant sodium deoxycholate and the non-ionic surfactant Triton-X. These results reveal a new mechanistic pathway for surfactant-induced nociception.

  14. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938.

    PubMed

    Perez-Burgos, Azucena; Wang, Lu; McVey Neufeld, Karen-Anne; Mao, Yu-Kang; Ahmadzai, Mustafa; Janssen, Luke J; Stanisz, Andrew M; Bienenstock, John; Kunze, Wolfgang A

    2015-09-01

    Certain probiotic bacteria have been shown to reduce distension-dependent gut pain, but the mechanisms involved remain obscure. Live luminal Lactobacillus reuteri (DSM 17938) and its conditioned medium dose dependently reduced jejunal spinal nerve firing evoked by distension or capsaicin, and 80% of this response was blocked by a specific TRPV1 channel antagonist or in TRPV1 knockout mice. The specificity of DSM action on TRPV1 was further confirmed by its inhibition of capsaicin-induced intracellular calcium increases in dorsal root ganglion neurons. Another lactobacillus with ability to reduce gut pain did not modify this response. Prior feeding of rats with DSM inhibited the bradycardia induced by painful gastric distension. These results offer a system for the screening of new and improved candidate bacteria that may be useful as novel therapeutic adjuncts in gut pain. Certain bacteria exert visceral antinociceptive activity, but the mechanisms involved are not determined. Lactobacillus reuteri DSM 17938 was examined since it may be antinociceptive in children. Since transient receptor potential vanilloid 1 (TRPV1) channel activity may mediate nociceptive signals, we hypothesized that TRPV1 current is inhibited by DSM. We tested this by examining the effect of DSM on the firing frequency of spinal nerve fibres in murine jejunal mesenteric nerve bundles following serosal application of capsaicin. We also measured the effects of DSM on capsaicin-evoked increase in intracellular Ca(2+) or ionic current in dorsal root ganglion (DRG) neurons. Furthermore, we tested the in vivo antinociceptive effects of oral DSM on gastric distension in rats. Live DSM reduced the response of capsaicin- and distension-evoked firing of spinal nerve action potentials (238 ± 27.5% vs. 129 ± 17%). DSM also reduced the capsaicin-evoked TRPV1 ionic current in DRG neuronal primary culture from 83 ± 11% to 41 ± 8% of the initial response to capsaicin only. Another lactobacillus

  15. Sulphur-containing compounds of durian activate the thermogenesis-inducing receptors TRPA1 and TRPV1.

    PubMed

    Terada, Yuko; Hosono, Takashi; Seki, Taiichiro; Ariga, Toyohiko; Ito, Sohei; Narukawa, Masataka; Watanabe, Tatsuo

    2014-08-15

    Durian (Durio zibethinus Murr.) is classified as a body-warming food in Indian herbalism, and its hyperthermic effect is empirically known in Southeast Asia. To investigate the mechanism underlying this effect, we focused on the thermogenesis-inducing receptors, TRPA1 and TRPV1. Durian contains sulphides similar to the TRPA1 and TRPV1 agonists of garlic. Accordingly, we hypothesized that the thermogenic effect of durian is driven by sulphide-induced TRP channel activation. To investigate our hypothesis, we measured the TRPA1 and TRPV1 activity of the sulphur-containing components of durian and quantified their content in durian pulp. These sulphur-containing components had a stronger effect on TRPA1 than TRPV1. Furthermore, sulphide content in the durian pulp was sufficient to evoke TRP channel activation and the main agonist was diethyl disulphide. From these results, we consider that the body-warming effect of durian is elicited by TRPA1 activation with its sulphides, as can be seen in spices.

  16. Severe ulceration with impaired induction of growth factors and cytokines in keratinocytes after trichloroacetic acid application on TRPV1-deficient mice.

    PubMed

    Li, Hong-jin; Kanazawa, Nobuo; Kimura, Ayako; Kaminaka, Chikako; Yonei, Nozomi; Yamamoto, Yuki; Furukawa, Fukumi

    2012-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a highly polymodal TRP channel activated by various stimuli, including capsaicin, heat and acids. TRPV1 expression can be detected widely but is highest in sensory neurons and its activation alerts the body to noxious signals via neurogenic pain. Although TRPV1 is reportedly localized in the epidermis, it remains unclear how TRPV1 is involved in the chemical peeling processes with cytotoxic acids. Therefore, in this study, the role of TRPV1 on the effects of trichloroacetic acid (TCA) peeling was assessed using TRPV1-deficient mice. Following the confirmation of TRPV1 expression in murine keratinocytes with reverse transcription-polymerase chain reaction and immunohistochemistry, the effects of TCA on TRPV1-deficient mouse skin were compared with those on wild-type mouse skin. Our results indicated that TRPV1 expression was not required for TCA-induced DNA damage, as shown by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling, but was indispensable for the TCA-induced production of distinct growth factors and cytokines by keratinocytes. Ulceration after TCA peeling was actually more severe in the absence of TRPV1, suggesting that the TRPV1-mediated epidermal production of growth factors and cytokines affected the damaging and healing processes of TCA-peeled skin to induce rejuvenation.

  17. Conservation of Tubulin-Binding Sequences in TRPV1 throughout Evolution

    PubMed Central

    Sardar, Puspendu; Kumar, Abhishek; Bhandari, Anita; Goswami, Chandan

    2012-01-01

    Background Transient Receptor Potential Vanilloid sub type 1 (TRPV1), commonly known as capsaicin receptor can detect multiple stimuli ranging from noxious compounds, low pH, temperature as well as electromagnetic wave at different ranges. In addition, this receptor is involved in multiple physiological and sensory processes. Therefore, functions of TRPV1 have direct influences on adaptation and further evolution also. Availability of various eukaryotic genomic sequences in public domain facilitates us in studying the molecular evolution of TRPV1 protein and the respective conservation of certain domains, motifs and interacting regions that are functionally important. Methodology and Principal Findings Using statistical and bioinformatics tools, our analysis reveals that TRPV1 has evolved about ∼420 million years ago (MYA). Our analysis reveals that specific regions, domains and motifs of TRPV1 has gone through different selection pressure and thus have different levels of conservation. We found that among all, TRP box is the most conserved and thus have functional significance. Our results also indicate that the tubulin binding sequences (TBS) have evolutionary significance as these stretch sequences are more conserved than many other essential regions of TRPV1. The overall distribution of positively charged residues within the TBS motifs is conserved throughout evolution. In silico analysis reveals that the TBS-1 and TBS-2 of TRPV1 can form helical structures and may play important role in TRPV1 function. Conclusions and Significance Our analysis identifies the regions of TRPV1, which are important for structure – function relationship. This analysis indicates that tubulin binding sequence-1 (TBS-1) near the TRP-box forms a potential helix and the tubulin interactions with TRPV1 via TBS-1 have evolutionary significance. This interaction may be required for the proper channel function and regulation and may also have significance in the context of Taxol

  18. TRPV1 receptor in the human trigeminal ganglion and spinal nucleus: immunohistochemical localization and comparison with the neuropeptides CGRP and SP.

    PubMed

    Quartu, Marina; Serra, Maria Pina; Boi, Marianna; Poddighe, Laura; Picci, Cristina; Demontis, Roberto; Del Fiacco, Marina

    2016-12-01

    This work presents new data concerning the immunohistochemical occurrence of the transient receptor potential vanilloid type-1 (TRPV1) receptor in the human trigeminal ganglion (TG) and spinal nucleus of subjects at different ontogenetic stages, from prenatal life to postnatal old age. Comparisons are made with the sensory neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). TRPV1-like immunoreactive (LI) material was detected by western blot in homogenates of TG and medulla oblongata of subjects at prenatal and adult stages of life. Immunohistochemistry showed that expression of the TRPV1 receptor is mostly restricted to the small- and medium-sized TG neurons and to the caudal subdivision of the spinal trigeminal nucleus (Sp5C). The extent of the TRPV1-LI TG neuronal subpopulation was greater in subjects at early perinatal age than at late perinatal age and in postnatal life. Centrally, the TRPV1 receptor localized to fibre tracts and punctate elements, which were mainly distributed in the spinal tract, lamina I and inner lamina II of the Sp5C, whereas stained cells were rare. The TRPV1 receptor colocalized partially with CGRP and SP in the TG, and was incompletely codistributed with both neuropeptides in the spinal tract and in the superficial laminae of the Sp5C. Substantial differences were noted with respect to the distribution of the TRPV1-LI structures described in the rat Sp5C and with respect to the temporal expression of the receptor during the development of the rat spinal dorsal horn. The distinctive localization of TRPV1-LI material supports the concept of the involvement of TRPV1 receptor in the functional activity of the protopathic compartment of the human trigeminal sensory system, i.e. the processing and neurotransmission of thermal and pain stimuli.

  19. Impairment of opiate-mediated behaviors by the selective TRPV1 antagonist SB366791.

    PubMed

    Ma, Shi-Xun; Kwon, Seung-Hwan; Seo, Jee-Yeon; Hwang, Ji-Young; Hong, Sa-Ik; Kim, Hyoung-Chun; Lee, Seok-Yong; Jang, Choon-Gon

    2016-10-11

    Transient receptor potential vanilloid type 1 (TRPV1), the archetypal member of the vanilloid TRP family, was initially identified as the receptor for capsaicin, the pungent ingredient in hot chili peppers. We previously demonstrated that TRPV1 in the dorsal striatum significantly contributes to morphine reward by using the conditioned place preference paradigm in mice; however, it is unknown whether TRPV1 has the same effect in other reward models. In this study, we investigated the role of TRPV1 in morphine reward by using a self-administration paradigm in rats. We found that treatment with a selective TRPV1 antagonist, SB366791, significantly decreased morphine self-administration on a fixed-ratio 1 schedule or a progressive ratio schedule of reinforcement. In addition, treatment with another selective TRPV1 antagonist, AMG9810, not only significantly prevented morphine self-administration but also prevented morphine-induced c-fos expression in the nucleus accumbens. Furthermore, administration of SB366791 decreased an anxiolytic-like effect during the morphine abstinence period. Moreover, treatment with SB366791 significantly decreased morphine-priming reinstatement. Taken together, our findings suggest that blockade of TRPV1 receptors could provide an approach to limiting morphine addiction.

  20. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors.

    PubMed

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-01-01

    Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 μg/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat).

  1. Persistent Nociception Triggered by Nerve Growth Factor (NGF) Is Mediated by TRPV1 and Oxidative Mechanisms.

    PubMed

    Eskander, Michael A; Ruparel, Shivani; Green, Dustin P; Chen, Paul B; Por, Elaine D; Jeske, Nathaniel A; Gao, Xiaoli; Flores, Eric R; Hargreaves, Kenneth M

    2015-06-03

    Nerve growth factor (NGF) is elevated in certain chronic pain conditions and is a sufficient stimulus to cause lasting pain in humans, but the actual mechanisms underlying the persistent effects of NGF remain incompletely understood. We developed a rat model of NGF-induced persistent thermal hyperalgesia and mechanical allodynia to determine the role of transient receptor potential vanilloid 1 (TRPV1) and oxidative mechanisms in the persistent effects of NGF. Persistent thermal hypersensitivity and mechanical allodynia require de novo protein translation and are mediated by TRPV1 and oxidative mechanisms. By comparing effects after systemic (subcutaneous), spinal (intrathecal) or hindpaw (intraplantar) injections of test compounds, we determined that TRPV1 and oxidation mediate persistent thermal hypersensitivity via peripheral and spinal sites of action and mechanical allodynia via only a spinal site of action. Therefore, NGF-evoked thermal and mechanical allodynia are mediated by spatially distinct mechanisms. NGF treatment evoked sustained increases in peripheral and central TRPV1 activity, as demonstrated by increased capsaicin-evoked nocifensive responses, increased calcitonin gene-related peptide release from hindpaw skin biopsies, and increased capsaicin-evoked inward current and membrane expression of TRPV1 protein in dorsal root ganglia neurons. Finally, we showed that NGF treatment increased concentrations of linoleic and arachidonic-acid-derived oxidized TRPV1 agonists in spinal cord and skin biopsies. Furthermore, increases in oxidized TRPV1-active lipids were reduced by peripheral and spinal injections of compounds that completely blocked persistent nociception. Collectively, these data indicate that NGF evokes a persistent nociceptive state mediated by increased TRPV1 activity and oxidative mechanisms, including increased production of oxidized lipid TRPV1 agonists.

  2. Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey.

    PubMed

    Madasu, Manish K; Okine, Bright N; Olango, Weredeselam M; Rea, Kieran; Lenihan, Róisín; Roche, Michelle; Finn, David P

    2016-11-01

    Negative affective state has a significant impact on pain, and genetic background is an important moderating influence on this interaction. The Wistar-Kyoto (WKY) inbred rat strain exhibits a stress-hyperresponsive, anxiety/depressive-like phenotype and also displays a hyperalgesic response to noxious stimuli. Transient receptor potential subfamily V member 1 (TRPV1) within the midbrain periaqueductal grey (PAG) plays a key role in regulating both aversive and nociceptive behaviour. In the present study, we investigated the role of TRPV1 in the sub-columns of the PAG in formalin-evoked nociceptive behaviour in WKY versus Sprague-Dawley (SD) rats. TRPV1 mRNA expression was significantly lower in the dorsolateral (DL) PAG and higher in the lateral (L) PAG of WKY rats, compared with SD counterparts. There were no significant differences in TRPV1 mRNA expression in the ventrolateral (VL) PAG between the two strains. TRPV1 mRNA expression significantly decreased in the DLPAG and increased in the VLPAG of SD, but not WKY rats upon intra-plantar formalin administration. Intra-DLPAG administration of either the TRPV1 agonist capsaicin, or the TRPV1 antagonist 5'-Iodoresiniferatoxin (5'-IRTX), significantly increased formalin-evoked nociceptive behaviour in SD rats, but not in WKY rats. The effects of capsaicin were likely due to TRPV1 desensitisation, given their similarity to the effects of 5'-IRTX. Intra-VLPAG administration of capsaicin or 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, and similar effects were seen with 5'-IRTX in WKY rats. Intra-LPAG administration of 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, but not in WKY rats. These results indicate that modulation of inflammatory pain by TRPV1 in the PAG occurs in a sub-column-specific manner. The data also provide evidence for differences in the expression of TRPV1, and differences in the effects of pharmacological modulation of TRPV1

  3. Enhanced ability of TRPV1 channels in regulating glutamatergic transmission after repeated morphine exposure in the nucleus accumbens of rat.

    PubMed

    Zhang, Haitao; Jia, Dong; Wang, Yuan; Qu, Liang; Wang, Xuelian; Song, Jian; Heng, Lijun; Gao, Guodong

    2017-04-01

    Glutamatergic projections to nucleus accumbens (NAc) drive drug-seeking behaviors during opioids withdrawal. Modulating glutamatergic neurotransmission provides a novel pharmacotherapeutic avenue for treatment of opioids dependence. Great deals of researches have verified that transient receptor potential vanilloid 1 (TRPV1) channels alters synaptic transmitter release and regulate neural plasticity. In the present study, whole-cell patch clamp recordings were adopted to examine the activity of TRPV1 Channels in regulating glutamate-mediated excitatory postsynaptic currents (EPSCs) in NAc of rat during morphine withdrawal for 3days and 3weeks. The data showed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and the amplitudes of evoked excitatory postsynaptic currents (eEPSCs) were increased during morphine withdrawal after applied with capsaicin (TRPV1 agonist). Capsaicin decreased the paired pulse ratio (PPR) and increased sEPSCs frequency but not their amplitudes suggesting a presynaptic locus of action during morphine withdrawal. All these effects were fully blocked by the TRPV1 antagonist Capsazepine. Additionally, In the presence of AM251 (CB1 receptor antagonist), depolarization-induced release of endogenous cannabinoids activated TRPV1 channels to enhance glutamatergic neurotransmission during morphine withdrawal. The functional enhancement of TRPV1 Channels in facilitating glutamatergic transmission was not recorded in dorsal striatum. Our findings demonstrate the ability of TRPV1 in regulating excitatory glutamatergic transmission is enhanced during morphine withdrawal in NAc, which would deepen our understanding of glutamatergic modulation during opioids withdrawal.

  4. Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum.

    PubMed

    Trevisan, Gabriela; Rossato, Mateus F; Hoffmeister, Carin; Oliveira, Sara M; Silva, Cássia R; Matheus, Filipe C; Mello, Gláucia C; Antunes, Edson; Prediger, Rui D S; Ferreira, Juliano

    2013-08-15

    Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation.

  5. TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular Ca2+ with Exposure to Hydrostatic Pressure

    PubMed Central

    Sappington, Rebecca M.; Sidorova, Tatiana; Long, Daniel J.; Calkins, David J.

    2013-01-01

    Purpose Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca2+-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca2+. Methods trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca2+ improves survival and whether, with the Ca2+ dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca2+. Results RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P ≤ 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P ≤ 0.01). Chelation of extracellular Ca2+ reduced RGC apoptosis at elevated pressure by nearly twofold (P ≤ 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca2+ that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. Conclusions RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca2+. PMID:18952924

  6. Hypernatremia-induced vasopressin secretion is not altered in TRPV1-/- rats.

    PubMed

    Tucker, Andrew Blake; Stocker, Sean D

    2016-09-01

    Changes in osmolality or extracellular NaCl concentrations are detected by specialized neurons in the hypothalamus to increase vasopressin (VP) and stimulate thirst. Recent in vitro evidence suggests this process is mediated by an NH2-terminal variant of the transient receptor potential vanilloid type 1 (TRPV1) channel expressed by osmosensitive neurons of the lamina terminalis and vasopressinergic neurons of the supraoptic nucleus. The present study tested this hypothesis in vivo by analysis of plasma VP levels during acute hypernatremia in awake control and TRPV1(-/-) rats. TRPV1(-/-) rats were produced by a Zinc-finger-nuclease 2-bp deletion in exon 13. Intravenous injection of the TRPV1 agonist capsaicin produced hypotension and bradycardia in control rats, but this response was absent in TRPV1(-/-) rats. Infusion of 2 M NaCl (1 ml/h iv) increased plasma osmolality, electrolytes, and VP levels in both control and TRPV1(-/-) rats. However, plasma VP levels did not differ between strains at any time. Furthermore, a linear regression between plasma VP versus osmolality revealed a significant correlation in both control and TRPV1(-/-) rats, but the slope of the regression lines was not attenuated in TRPV1(-/-) versus control rats. Hypotension produced by intravenous injection of minoxidil decreased blood pressure and increased plasma VP levels similarly in both groups. Finally, both treatments stimulated thirst; however, cumulative water intakes in response to hypernatremia or hypotension were not different between control and TRPV1(-/-) rats. These findings suggest that TRPV1 channels are not necessary for VP secretion and thirst stimulated by hypernatremia.

  7. Novel therapeutics in the field of capsaicin and pain.

    PubMed

    Evangelista, Stefano

    2015-01-01

    Capsaicin, a pharmacologically active agent found in chili peppers, causes burning and itching sensation due to binding at the transient receptor potential vanilloid-1 (TRPV-1) receptor, a polymodal receptor critical to the sensing of a variety of stimuli (e.g., noxious heat, bidirectional pH), and subsequent activation of polymodal C and A-δ nociceptive fibers. Acutely, TRPV-1 activation with peripheral capsaicin produces pronociceptive effects, which extends to the development of hyperalgesia and allodynia. However, capsaicin has been reported to display antinociceptive properties as well, largely through TRPV-1-dependent mechanisms. Local application of high concentration of capsaicin is used for neuropathic pain and repeated stimulation of TRPV-1 induced an improvement of epigastric pain in irritable bowel syndrome and dyspepsia patients by desensitization of nociceptive pathways. New TRPV-1 agonists are currently under preclinical study and TRPV-1 antagonists are in early clinical development as analgesics. The TRPV-1 pathway might be a novel target for therapeutics in pain sensitivity.

  8. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels

    PubMed Central

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Fontana, Gabriele; Sacchetti, Alessandro; Passarella, Daniele; Appendino, Giovanni; Di Marzo, Vincenzo

    2014-01-01

    Background and Purpose Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. Experimental Approach To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca2+ elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. Key Results S-(+) evodiamine was more efficacious and potent than R-(−) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. Conclusions and Implications Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:23902373

  9. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel

    SciTech Connect

    Lau, Sze-Yi; Procko, Erik; Gaudet, Rachelle

    2012-11-01

    Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca2+–CaM) in complex with the TRPV1-CT segment, determined to 1.95-Å resolution. The two lobes of Ca2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca2+–CaM, respectively. This structure is similar to canonical Ca2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms.

  10. Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy.

    PubMed

    Nazıroğlu, M; Övey, İ S

    2015-05-07

    Calcium ion accumulation into the cytosol of the hippocampus and dorsal root ganglion (DRG) are main reasons in etiology of epilepsy. Transient receptor potential vanilloid type 1 (TRPV1) channel is a cation-permeable calcium channel found in the DRG and hippocampus. Although previous studies implicate TRPV1 channels in the generation of epilepsy, suppression of ongoing seizures by TRPV1 antagonists has not yet been investigated. We tested the effects of TRPV1-specific antagonists, capsazepine (CPZ) and 5'-iodoresiniferatoxin (IRTX) on the modulation of calcium accumulation, apoptosis and anticonvulsant properties in the hippocampus and DRG of pentylentetrazol (PTZ) and capsaicin (CAP) administrated rats. Forty rats were divided into five groups as follows; control, PTZ, CAP+PTZ, IRTX, and IRTX+PTZ. Fura-2 and patch-clamp experiments were performed on neurons dissected from treated animals by CAP and CPZ. PTZ and CAP+PTZ administrations increased intracellular free Ca(2+) concentrations, TRPV1 current densities, apoptosis, caspase 3 and 9 values although the values were reduced by IRTX and CPZ treatments. Latency time was extended by application CPZ and IRTX although CAP produced acceleration of epileptic seizures. Taken together, these results support a role for TRPV1 channels in the inhibition of apoptosis, epileptic seizures and calcium accumulation, indicating that TRPV1 inhibition may possibly be a novel target in the DRG and hippocampus for prevention of epileptic seizures and peripheral pain.

  11. TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision

    PubMed Central

    Ryskamp, Daniel A.; Redmon, Sarah; Jo, Andrew O.; Križaj, David

    2014-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators. PMID:25222270

  12. Vanilloids selectively sensitize thermal glutamate release from TRPV1 expressing solitary tract afferents.

    PubMed

    Hofmann, Mackenzie E; Andresen, Michael C

    2016-02-01

    Vanilloids, high temperature, and low pH activate the transient receptor potential vanilloid type 1 (TRPV1) receptor. In spinal dorsal root ganglia, co-activation of one of these gating sites on TRPV1 sensitized receptor gating by other modes. Here in rat brainstem slices, we examined glutamate synaptic transmission in nucleus of the solitary tract (NTS) neurons where most cranial primary afferents express TRPV1, but TRPV1 sensitization is unknown. Electrical shocks to the solitary tract (ST) evoked EPSCs (ST-EPSCs). Activation of TRPV1 with capsaicin (100 nM) increased spontaneous EPSCs (sEPSCs) but inhibited ST-EPSCs. High concentrations of the ultra-potent vanilloid resiniferatoxin (RTX, 1 nM) similarly increased sEPSC rates but blocked ST-EPSCs. Lowering the RTX concentration to 150 pM modestly increased the frequency of the sEPSCs without causing failures in the evoked ST-EPSCs. The sEPSC rate increased with raising bath temperature to 36 °C. Such thermal responses were larger in 150 pM RTX, while the ST-EPSCs remained unaffected. Vanilloid sensitization of thermal responses persisted in TTX but was blocked by the TRPV1 antagonist capsazepine. Our results demonstrate that multimodal activation of TRPV1 facilitates sEPSC responses in more than the arithmetic sum of the two activators, i.e. co-activation sensitizes TRPV1 control of spontaneous glutamate release. Since action potential evoked glutamate release is unaltered, the work provides evidence for cooperativity in gating TRPV1 plus a remarkable separation of calcium mechanisms governing the independent vesicle pools responsible for spontaneous and evoked release at primary afferents in the NTS.

  13. Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314.

    PubMed

    Puopolo, Michelino; Binshtok, Alexander M; Yao, Gui-Lan; Oh, Seog Bae; Woolf, Clifford J; Bean, Bruce P

    2013-04-01

    QX-314 (N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage-dependent sodium channels when applied internally to axons or neuronal cell bodies. Coapplication of external QX-314 with the transient receptor potential vanilloid 1 protein (TRPV1) agonist capsaicin produces long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX-314 entry into the neurons. We asked whether QX-314 entry occurs directly through TRPV1 channels or through a different pathway (e.g., pannexin channels) activated downstream of TRPV1 and whether QX-314 entry requires the phenomenon of "pore dilation" previously reported for TRPV1. With external solutions containing 10 or 20 mM QX-314 as the only cation, inward currents were activated by stimulation of both heterologously expressed and native TRPV1 channels in rat dorsal root ganglion neurons. QX-314-mediated inward current did not require pore dilation, as it activated within several seconds and in parallel with Cs-mediated outward current, with a reversal potential consistent with PQX-314/PCs = 0.12. QX-314-mediated current was no different when TRPV1 channels were expressed in C6 glioma cells, which lack expression of pannexin channels. Rapid addition of QX-314 to physiological external solutions produced instant partial inhibition of inward currents carried by sodium ions, suggesting that QX-314 is a permeant blocker. Maintained coapplication of QX-314 with capsaicin produced slowly developing reduction of outward currents carried by internal Cs, consistent with intracellular accumulation of QX-314 to concentrations of 50-100 μM. We conclude that QX-314 is directly permeant in the "standard" pore formed by TRPV1 channels and does not require either pore dilation or activation of additional downstream channels for entry.

  14. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARα agonist palmitoylethanolamide

    PubMed Central

    Ambrosino, Paolo; Soldovieri, Maria Virginia; Russo, Claudio; Taglialatela, Maurizio

    2013-01-01

    Background and Purpose Palmitoylethanolamide (PEA) is an endogenous fatty acid amide displaying anti-inflammatory and analgesic actions. To investigate the molecular mechanism responsible for these effects, the ability of PEA and of pain-inducing stimuli such as capsaicin (CAP) or bradykinin (BK) to influence intracellular calcium concentrations ([Ca2+]i) in peripheral sensory neurons, has been assessed in the present study. The potential involvement of the transcription factor PPARα and of TRPV1 channels in PEA-induced effects was also studied. Experimental Approach [Ca2+]i was evaluated by single-cell microfluorimetry in differentiated F11 cells. Activation of TRPV1 channels was assessed by imaging and patch-clamp techniques in CHO cells transiently-transfected with rat TRPV1 cDNA. Key Results In F11 cells, PEA (1–30 μM) dose-dependently increased [Ca2+]i. The TRPV1 antagonists capsazepine (1 μM) and SB-366791 (1 μM), as well as the PPARα antagonist GW-6471 (10 μM), inhibited PEA-induced [Ca2+]i increase; blockers of cannabinoid receptors were ineffective. PEA activated TRPV1 channels heterologously expressed in CHO cells; this effect appeared to be mediated at least in part by PPARα. When compared with CAP, PEA showed similar potency and lower efficacy, and caused stronger TRPV1 currents desensitization. Sub-effective PEA concentrations, closer to those found in vivo, counteracted CAP- and BK-induced [Ca2+]i transients, as well as CAP-induced TRPV1 activation. Conclusions and Implications Activation of PPARα and TRPV1 channels, rather than of cannabinoid receptors, largely mediate PEA-induced [Ca2+]i transients in sensory neurons. Differential TRPV1 activation and desensitization by CAP and PEA might contribute to their distinct pharmacological profile, possibly translating into potentially relevant clinical differences. PMID:23083124

  15. Opposing roles for cannabinoid receptor type-1 (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1) on the modulation of panic-like responses in rats.

    PubMed

    Casarotto, Plínio C; Terzian, Ana Luisa B; Aguiar, Daniele C; Zangrossi, Hélio; Guimarães, Francisco S; Wotjak, Carsten T; Moreira, Fabrício A

    2012-01-01

    The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety- and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB₁ and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB₁-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB₁-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB₁ and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB₁ receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders.

  16. Activation of endogenous TRPV1 fails to induce overstimulation-based cytotoxicity in breast and prostate cancer cells but not in pain-sensing neurons.

    PubMed

    Pecze, László; Jósvay, Katalin; Blum, Walter; Petrovics, György; Vizler, Csaba; Oláh, Zoltán; Schwaller, Beat

    2016-08-01

    Vanilloids including capsaicin and resiniferatoxin are potent transient receptor potential vanilloid type 1 (TRPV1) agonists. TRPV1 overstimulation selectively ablates capsaicin-sensitive sensory neurons in animal models in vivo. The cytotoxic mechanisms are based on strong Na(+) and Ca(2+) influx via TRPV1 channels, which leads to mitochondrial Ca(2+) accumulation and necrotic cell swelling. Increased TRPV1 expression levels are also observed in breast and prostate cancer and derived cell lines. Here, we examined whether potent agonist-induced overstimulation mediated by TRPV1 might represent a means for the eradication of prostate carcinoma (PC-3, Du 145, LNCaP) and breast cancer (MCF7, MDA-MB-231, BT-474) cells in vitro. While rat sensory neurons were highly vanilloid-sensitive, normal rat prostate epithelial cells were resistant in vivo. We found TRPV1 to be expressed in all cancer cell lines at mRNA and protein levels, yet protein expression levels were significantly lower compared to sensory neurons. Treatment of all human carcinoma cell lines with capsaicin didn't lead to overstimulation cytotoxicity in vitro. We assume that the low vanilloid-sensitivity of prostate and breast cancer cells is associated with low expression levels of TRPV1, since ectopic TRPV1 expression rendered them susceptible to the cytotoxic effect of vanilloids evidenced by plateau-type Ca(2+) signals, mitochondrial Ca(2+) accumulation and Na(+)- and Ca(2+)-dependent membrane disorganization. Moreover, long-term monitoring revealed that merely the ectopic expression of TRPV1 stopped cell proliferation and often induced apoptotic processes via strong activation of caspase-3 activity. Our results indicate that specific targeting of TRPV1 function remains a putative strategy for cancer treatment.

  17. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations

    PubMed Central

    Kim, Seungil; Barry, Devin M.; Liu, Xian-Yu; Yin, Shijin; Munanairi, Admire; Meng, Qing-Tao; Cheng, Wei; Mo, Ping; Wan, Li; Liu, Shen-Bin; Ratnayake, Kasun; Zhao, Zhong-Qiu; Gautam, Narasimhan; Zheng, Jie; Ajith Karunarathne, W. K.; Chen, Zhou-Feng

    2017-01-01

    The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine-and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca2+ response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca2+ responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons. PMID:27436359

  18. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations.

    PubMed

    Kim, Seungil; Barry, Devin M; Liu, Xian-Yu; Yin, Shijin; Munanairi, Admire; Meng, Qing-Tao; Cheng, Wei; Mo, Ping; Wan, Li; Liu, Shen-Bin; Ratnayake, Kasun; Zhao, Zhong-Qiu; Gautam, Narasimhan; Zheng, Jie; Karunarathne, W K Ajith; Chen, Zhou-Feng

    2016-07-19

    The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine- and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca(2+) response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca(2+) responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons.

  19. Spicing up the sensation of stretch: TRPV1 controls mechanosensitive Piezo channels.

    PubMed

    Altier, Christophe

    2015-02-10

    Piezo proteins--a family of mammalian cation-selective ion channels that respond to mechanical stretch--are molecular mediators of biological processes, including vascular tone, hearing, touch, and pain. In this issue of Science Signaling, Rohacs and colleagues demonstrate that activation of the heat-sensitive transient receptor potential vanilloid 1 (TRPV1), another cation channel, inhibits Piezo channels through a calcium-induced depletion of phosphoinositides. This regulation could contribute to the cellular mechanisms by which the TRPV1 activator capsaicin mitigates mechanical hypersensitivity.

  20. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice.

    PubMed

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca(2+) permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia.

  1. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.

    PubMed

    Adamczyk, Przemysław; Miszkiel, Joanna; McCreary, Andrew C; Filip, Małgorzata; Papp, Mariusz; Przegaliński, Edmund

    2012-03-20

    There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor

  2. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    PubMed

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  3. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel – an overview of the current mutational data

    PubMed Central

    2013-01-01

    This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232

  4. Low-Level Blast Exposure Increases Transient Receptor Potential Vanilloid 1 (TRPV1) Expression in the Rat Cornea

    PubMed Central

    Por, Elaine D.; Choi, Jae-Hyek; Lund, Brian J.

    2016-01-01

    ABSTRACT Background: Blast-related ocular injuries sustained by military personnel have led to rigorous efforts to elucidate the effects of blast exposure on neurosensory function. Recent studies have provided some insight into cognitive and visual deficits sustained following blast exposure; however, limited data are available on the effects of blast on pain and inflammatory processes. Investigation of these secondary effects of blast exposure is necessary to fully comprehend the complex pathophysiology of blast-related injuries. The overall purpose of this study is to determine the effects of single and repeated blast exposure on pain and inflammatory mediators in ocular tissues. Methods: A compressed air shock tube was used to deliver a single or repeated blast (68.0 ± 2.7 kPa) to anesthetized rats daily for 5 days. Immunohistochemistry was performed on ocular tissues to determine the expression of the transient receptor potential vanilloid 1 (TRPV1) channel, calcitonin gene-related peptide (CGRP), substance P (SP), and endothelin-1 (ET-1) following single and repeated blast exposure. Neutrophil infiltration and myeloperoxidase (MPO) expression were also assessed in blast tissues via immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) analysis, respectively. Results: TRPV1 expression was increased in rat corneas exposed to both single and repeated blast. Increased secretion of CGRP, SP, and ET-1 was also detected in rat corneas as compared to control. Moreover, repeated blast exposure resulted in neutrophil infiltration in the cornea and stromal layer as compared to control animals. Conclusion: Single and repeated blast exposure resulted in increased expression of TRPV1, CGRP, SP, and ET-1 as well as neutrophil infiltration. Collectively, these findings provide novel insight into the activation of pain and inflammation signaling mediators following blast exposure. PMID:27049881

  5. The Effect of Capsaicin on Salivary Gland Dysfunction.

    PubMed

    Shin, Yong-Hwan; Kim, Jin Man; Park, Kyungpyo

    2016-06-25

    Capsaicin (trans-8-methyl-N-vanilyl-6-nonenamide) is a unique alkaloid isolated from hot chili peppers of the capsicum family. Capsaicin is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), which is expressed in nociceptive sensory neurons and a range of secretory epithelia, including salivary glands. Capsaicin has analgesic and anti-inflammatory properties in sensory neurons. Recently, increasing evidence has indicated that capsaicin also affects saliva secretion and inflammation in salivary glands. Applying capsaicin increases salivary secretion in human and animal models. Capsaicin appears to increase salivation mainly by modulating the paracellular pathway in salivary glands. Capsaicin activates TRPV1, which modulates the permeability of tight junctions (TJ) by regulating the expression and function of putative intercellular adhesion molecules in an ERK (extracelluar signal-regulated kinase) -dependent manner. Capsaicin also improved dysfunction in transplanted salivary glands. Aside from the secretory effects of capsaicin, it has anti-inflammatory effects in salivary glands. The anti-inflammatory effect of capsaicin is, however, not mediated by TRPV1, but by inhibition of the NF-κB pathway. In conclusion, capsaicin might be a potential drug for alleviating dry mouth symptoms and inflammation of salivary glands.

  6. A painful link between the TRPV1 channel and lysophosphatidic acid.

    PubMed

    Morales-Lázaro, Sara L; Rosenbaum, Tamara

    2015-03-15

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed mainly by sensory neurons that detect noxious stimuli from the environment such as high temperatures and pungent compounds (such as allicin and capsaicin) and has been extensively linked to painful and inflammatory processes. This extraordinary protein also responds to endogenous stimuli among which we find molecules of a lipidic nature. We recently described that lysophosphatidic acid (LPA), a bioactive lysophospholipid linked to the generation and maintenance of pain, can directly activate TRPV1 and produce pain by binding to the channels' C-terminal region, specifically to residue K710. In an effort to further understand how activation of TRPV1 is achieved by this negatively-charged lipid, we used several synthetic and naturally-occurring lipids to determine the structural requirements that need to be met by these charged lipids in order to produce the activation of TRPV1. In this review, we detail the findings obtained by other research groups and our own on the field of TRPV1-regulation by negatively-charged lipids and discuss the possible therapeutic relevance of these findings on the basis of the role of TRPV1 in pathophysiological processes.

  7. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch

    PubMed Central

    Morales-Lázaro, Sara L.; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E.; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A.; Islas, León D.; Rosenbaum, Tamara

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation. PMID:27721373

  8. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch.

    PubMed

    Morales-Lázaro, Sara L; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A; Islas, León D; Rosenbaum, Tamara

    2016-10-10

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation.

  9. Involvement of CB1 and TRPV1 receptors located in the ventral medial prefrontal cortex in the modulation of stress coping behavior.

    PubMed

    Sartim, A G; Moreira, F A; Joca, S R L

    2017-01-06

    Cannabinoid type-1 (CB1) and transient receptor potential vanilloid type-1 (TRPV1) receptors may have opposite roles in modulating neural activity and, consequently, in regulating the stress response. These receptors are widely expressed in several brain structures, including the ventral medial prefrontal cortex (vmPFC). The functional consequences of the interaction between CB1 and TRPV1, however, have scarcely been explored. Therefore, we investigated if CB1 and TRPV1 receptors located in the vmPFC would be involved in the behavioral changes induced by the stress of the forced swim test (FST). Rats with cannulae implanted into the vmPFC were given the dual blocker of TRPV1 receptors and fatty acid amide hydrolase (FAAH), Arachidonyl serotonin (AA-5HT, 0.125/0.25/0.5nmol), TRPV1 antagonist, SB366791 (0.5/1/10nmol), FAAH inhibitor, URB597 (0.001/0.01/0.1/1nmol), or vehicle and were submitted to the FST, or to the open-field test. Another group received intra-vmPFC injection of SB366791 or vehicle, followed by a second injection of URB597 or vehicle, and was submitted to the FST. Lastly, a group received intra-vmPFC injection of a CB1 antagonist, in sub-effective dose or vehicle, followed by AA-5HT, SB366791 or vehicle. The results showed that AA-5HT, SB366791 and URB597 significantly reduced the immobility time without changing the locomotor activity. Furthermore, the co-administration of URB597 and SB366791 in sub-effective doses induced an antidepressant-like effect in the FST. Additionally, the antidepressant-like effect of AA-5HT was prevented by the CB1 antagonist. Together, these results suggest that both, CB1 and TRPV1 receptors located in the vmPFC are involved in the behavioral responses to stress, although in opposite ways.

  10. Gain-of-function mutations in the transient receptor potential channels TRPV1 and TRPA1: how painful?

    PubMed

    Boukalova, S; Touska, F; Marsakova, L; Hynkova, A; Sura, L; Chvojka, S; Dittert, I; Vlachova, V

    2014-01-01

    Gain-of-function (GOF) mutations in ion channels are rare events, which lead to increased agonist sensitivity or altered gating properties, and may render the channel constitutively active. Uncovering and following characterization of such mutants contribute substantially to the understanding of the molecular basis of ion channel functioning. Here we give an overview of some GOF mutants in polymodal ion channels specifically involved in transduction of painful stimuli--TRPV1 and TRPA1, which are scrutinized by scientists due to their important role in development of some pathological pain states. Remarkably, a substitution of single amino acid in the S4-S5 region of TRPA1 (N855S) has been recently associated with familial episodic pain syndrome. This mutation increases chemical sensitivity of TRPA1, but leaves the voltage sensitivity unchanged. On the other hand, mutations in the analogous region of TRPV1 (R557K and G563S) severely affect all aspects of channel activation and lead to spontaneous activity. Comparison of the effects induced by mutations in homologous positions in different TRP receptors (or more generally in other distantly related ion channels) may elucidate the gating mechanisms conserved during evolution.

  11. Endogenous TRPV1 stimulation leads to the activation of the inositol phospholipid pathway necessary for sustained Ca(2+) oscillations.

    PubMed

    Pecze, László; Blum, Walter; Henzi, Thomas; Schwaller, Beat

    2016-12-01

    Sensory neuron subpopulations as well as breast and prostate cancer cells express functional transient receptor potential vanilloid type 1 (TRPV1) ion channels; however little is known how TRPV1 activation leads to biological responses. Agonist-induced activation of TRPV1 resulted in specific spatiotemporal patterns of cytoplasmic Ca(2+) signals in breast and prostate cancer-derived cells. Capsaicin (CAPS; 50μM) evoked intracellular Ca(2+) oscillations and/or intercellular Ca(2+) waves in all cell lines. As evidenced in prostate cancer Du 145 cells, oscillations were largely dependent on the expression of functional TRPV1 channels in the plasma membrane, phospholipase C activation and on the presence of extracellular Ca(2+) ions. Concomitant oscillations of the mitochondrial matrix Ca(2+) concentration resulted in mitochondria energization evidenced by increased ATP production. CAPS-induced Ca(2+) oscillations also occurred in a subset of sensory neurons, yet already at lower CAPS concentrations (1μM). Stimulation of ectopically expressed TRPV1 channels in CAPS-insensitive NIH-3T3 cells didn't provoke CAPS-triggered Ca(2+) oscillations; rather it resulted in low-magnitude, long-lasting elevations of the cytosolic Ca(2+) concentration. This indicates that sole TRPV1 activation is not sufficient to generate Ca(2+) oscillations. Instead the initial TRPV1-mediated signal leads to the activation of the inositol phospholipid pathway. This in turn suffices to generate a biologically relevant frequency-modulated Ca(2+) signal.

  12. Mechanistic Studies of Capsaicin-Induced Apnea in Rodents.

    PubMed

    Ren, Jun; Ding, Xiuqing; Greer, John J

    2017-02-01

    Inhalation of capsaicin-based sprays can cause central respiratory depression and lethal apneas. There are contradictory reports regarding the sites of capsaicin action. Furthermore, an understanding of the neurochemical mechanisms underlying capsaicin-induced apneas and the development of pharmacological interventions is lacking. The main objectives of this study were to perform a systematic study of the mechanisms of action of capsaicin-induced apneas and to provide insights relevant to pharmacological intervention. In vitro and in vivo rat and transient receptor potential vanilloid superfamily member 1 (TRPV1)-null mouse models were used to measure respiratory parameters and seizure-like activity in the presence of capsaicin and compounds that modulate glutamatergic neurotransmission. Administration of capsaicin to in vitro and in vivo rat and wild-type mouse models induced dose-dependent apneas and the production of seizure-like activity. No significant changes were observed in TRPV1-null mice or rat medullary slice preparations. The capsaicin-induced effects were inhibited by the TRPV1 antagonist capsazepine, amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonists CNQX, NBQX, perampanel, and riluzole, a drug that inhibits glutamate release and increases glutamate uptake. The capsaicin-induced effects on breathing and seizure-like activity were accentuated by positive allosteric modulators of the AMPA receptors, CX717 and cyclothiazide. To summarize, capsaicin-induced apneas and seizure-like behaviors are mediated via TRPV1 activation acting at lung afferents, spinal cord-ascending tracts, and medullary structures (including nucleus tractus solitarius). AMPA receptor-mediated conductances play an important role in capsaicin-induced apneas and seizure-like activity. A pharmaceutical strategy targeted at reducing AMPA receptor-mediated glutamatergic signaling may reduce capsaicin-induced deleterious effects.

  13. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4

    PubMed Central

    Li, Yan; Adamek, Pavel; Zhang, Haijun; Tatsui, Claudio Esteves; Rhines, Laurence D.; Mrozkova, Petra; Li, Qin; Kosturakis, Alyssa K.; Cassidy, Ryan M.; Harrison, Daniel S.; Cata, Juan P.; Sapire, Kenneth; Zhang, Hongmei; Kennamer-Chapman, Ross M.; Jawad, Abdul Basit; Ghetti, Andre; Yan, Jiusheng; Palecek, Jiri

    2015-01-01

    Peripheral neuropathy is dose limiting in paclitaxel cancer chemotherapy and can result in both acute pain during treatment and chronic persistent pain in cancer survivors. The hypothesis tested was that paclitaxel produces these adverse effects at least in part by sensitizing transient receptor potential vanilloid subtype 1 (TRPV1) through Toll-like receptor 4 (TLR4) signaling. The data show that paclitaxel-induced behavioral hypersensitivity is prevented and reversed by spinal administration of a TRPV1 antagonist. The number of TRPV1+ neurons is increased in the dorsal root ganglia (DRG) in paclitaxel-treated rats and is colocalized with TLR4 in rat and human DRG neurons. Cotreatment of rats with lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS), a TLR4 inhibitor, prevents the increase in numbers of TRPV1+ neurons by paclitaxel treatment. Perfusion of paclitaxel or the archetypal TLR4 agonist LPS activated both rat DRG and spinal neurons directly and produced acute sensitization of TRPV1 in both groups of cells via a TLR4-mediated mechanism. Paclitaxel and LPS sensitize TRPV1 in HEK293 cells stably expressing human TLR4 and transiently expressing human TRPV1. These physiological effects also are prevented by LPS-RS. Finally, paclitaxel activates and sensitizes TRPV1 responses directly in dissociated human DRG neurons. In summary, TLR4 was activated by paclitaxel and led to sensitization of TRPV1. This mechanism could contribute to paclitaxel-induced acute pain and chronic painful neuropathy. SIGNIFICANCE STATEMENT In this original work, it is shown for the first time that paclitaxel activates peripheral sensory and spinal neurons directly and sensitizes these cells to transient receptor potential vanilloid subtype 1 (TRPV1)-mediated capsaicin responses via Toll-like receptor 4 (TLR4) in multiple species. A direct functional interaction between TLR4 and TRPV1 is shown in rat and human dorsal root ganglion neurons, TLR4/TRPV1

  14. Trpv1 mediates spontaneous firing and heat sensitization of cutaneous primary afferents after plantar incision.

    PubMed

    Banik, Ratan K; Brennan, Timothy J

    2009-01-01

    TrpV1, the receptor for capsaicin, contributes to nociception in animals but appears to be much more important for signaling increased behavioral sensitivity in the injured state. The current study examined the relationship between the marked reduction in heat hyperalgesia after incision in TrpV1 knockout (KO) mice and the activity of the nociceptors in these same mice. Also, the role of TrpV1 in spontaneous activity (SA) of afferents after incision was examined. Standard teased-fiber techniques were used to record from glabrous skin afferents from incised and control TrpV1 KO and C57Bl6 mice. The loss of TrpV1 had minimal effect on the responses of mechano-heat-sensitive C-fiber afferents in the normal and incised states. However, a different group of heat sensitive afferents, termed unclassified afferents, was sensitized to heat by incision and had markedly reduced sensitization in the TrpV1 KO mice. These unclassified afferents also developed SA after incision, and generally had a lower threshold temperature compared to unclassified afferents without SA. The rate of SA was inversely correlated to the threshold temperature for heat; afferents that exhibited a higher rate of SA had a lower heat threshold. The proportion of unclassified afferents with SA was also reduced in incised TrpV1 KO mice compared to incised C57Bl6 mice. We conclude that a distinct class of afferents outside the mechano-heat-sensitive afferent population likely contributes to heat hypersensitivity after plantar incision. KO of TrpV1 influences SA in these unclassified afferents in incised skin. SA in these afferents is perhaps a manifestation of heat sensitization.

  15. Inhibition of TRPV1 channels enables long-term potentiation in the entorhinal cortex.

    PubMed

    Banke, Tue G

    2016-04-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a non-selective cation channel that is mainly found in nociceptive neurons of the peripheral nervous system; however, these channels have also been located within the CNS, including the entorhinal cortex. Whole-cell patch-clamp recordings of principal entorhinal cortex (EC) layers II/III neurons revealed that evoked inhibitory postsynaptic currents were depressed by application of the TRPV1 agonist capsaicin (CAP), accompanied by a change in the pair-pulse ratio (PPR). In addition, recordings of miniature inhibitory postsynaptic currents (mIPSCs) revealed that inter-event intervals but not amplitude were decreased in wild-type (WT) after application of CAP. This suggests that TRPV1 channels are functional in the entorhinal cortex and are located on inhibitory neurons with their axonal arborization within layers II/III. In order to study TRPV1 channels and their involvement in long-term potentiation (LTP) induction in a more intact circuit, extracellular field potential recordings were performed in EC layers II/III. It was found that activated TRPV1 channels preclude induction of long-term potentiation. In sharp contrast, clear LTP was observed when antagonizing TRPV1 channels or recording from TRPV1 knock-out mice. Thus, these results suggests that signaling through activating inhibitory presynaptic TRPV1 channels represents a novel mechanism by which a shift in feed-forward inhibition of layers II/III cortical principal neurons prompt changes in synaptic strength and thereby contribute to a change of information storage within the brain.

  16. Involvement of peripheral TRPV1 channels in the analgesic effects of thalidomide.

    PubMed

    Song, Tieying; Wang, Liwen; Gu, Kunfeng; Yang, Yunliang; Yang, Lijun; Ma, Pengyu; Ma, Xiaojing; Zhao, Jianhui; Yan, Ruyv; Guan, Jiao; Wang, Chunping; Qi, Yan; Ya, Jian

    2015-01-01

    Thalidomide was introduced to the market in 1957 as a sedative and antiemetic agent, and returned to the market for the treatment of myelodysplastic syndrome and multiple myeloma. There are reports and studies of thalidomide as an analgesic or analgesic adjuvant in clinic. However, the underlying mechanism is quite elusive. Many studies suggest that the analgesic effect of thalidomide may be due to its immunomodulatory and anti-inflammatory properties as it suppresses the production of tumor necrosis factor α (TNF-α) selectively. However, it is not clear whether any other mechanisms are implicated in the pain relief. In this study, we demonstrated that the peripheral vanilloid receptor 1 (TRPV1) channel was also involved in the analgesic effect of thalidomide in different cell and animal models. During the activation by its agonist capsaicin, the cation inward influx through TRPV1 channels and the whole-cell current significantly decreased after TRPV1-overexpressed HEK293 cells or dorsal root ganglion (DRG) neurons were pre-treated with thalidomide for 20 minutes. And such attenuation in the TRPV1 activity was in a dose-dependent manner of thalidomide. In an acetic acid writhing test, pre-treatment of thalidomide decreased the writhing number in the wild type mice, while it did not happen in TRPV1 knockout mice, suggesting that the TRPV1 channel was involved in the pain relief by thalidomide. Taken together, the study showed that TRPV1 channels were involved in the analgesic effects of thalidomide. Such alteration in the action of TRPV1 channels by thalidomide may help understand how thalidomide takes analgesic effect in the body in addition to its selective inhibition of TNF-α production.

  17. Synthesis and biological evaluation of [6]-gingerol analogues as transient receptor potential channel TRPV1 and TRPA1 modulators.

    PubMed

    Morera, Enrico; De Petrocellis, Luciano; Morera, Ludovica; Moriello, Aniello Schiano; Nalli, Marianna; Di Marzo, Vincenzo; Ortar, Giorgio

    2012-02-15

    In order to explore the structural determinants for the TRPV1 and TRPA1 agonist properties of gingerols, a series of nineteen analogues (1b-5) of racemic [6]-gingerol (1a) was synthesized and tested on TRPV1 and TRPA1 channels. The exploration of the structure-activity relationships, by modulating the three pharmacophoric regions of [6]-gingerol, led to the identification of some selective TRPV1 agonists/desensitizers of TRPV1 channels (3a, 3f, and 4) and of some full TRPA1 antagonists (2c, 2d, 3b, and 3d).

  18. Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control

    PubMed Central

    Bessac, Bret F.; Jordt, Sven-Eric

    2009-01-01

    New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough and airway inflammation in asthma, COPD and reactive airway dysfunction syndrome. PMID:19074743

  19. Development of PAC-14028, a novel transient receptor potential vanilloid type 1 (TRPV1) channel antagonist as a new drug for refractory skin diseases.

    PubMed

    Lim, Kyung-Min; Park, Young-Ho

    2012-03-01

    The transient receptor potential vanilloid 1 (TRPV1) is a member of nonselective cation channels and has been implicated in the progression of neurogenic inflammation and nociception. Through the synthesis of over 2,000 new compounds, a novel non-vanilloid TRPV1 antagonist PAC-14028 was discovered. As well as ideal physicochemical and pharmacokinetic properties, PAC-14028 showed meaningful efficacies against diverse disease models that include visceral pain, inflammatory bowel disease, and inflammatory pain. Of note, PAC-14028 effectively attenuates atopic dermatitis and pruritus without significant adverse effects, which is a substantial benefit over conventional pharmacotherapy. This report introduces the potential of a novel TRPV1 antagonist PAC-14028 as a new drug for atopic dermatitis and pruritus.

  20. Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation

    PubMed Central

    Saunders, CJ

    2013-01-01

    Polymodal neurons of the trigeminal nerve innervate the nasal cavity, nasopharynx, oral cavity and cornea. Trigeminal nociceptive fibers express a diverse collection of receptors and are stimulated by a wide variety of chemicals. However, the mechanism of stimulation is known only for relatively few of these compounds. Capsaicin, for example, activates transient receptor potential vanilloid 1 (TRPV1) channels. In the present study, wildtype (C57Bl/6J) and TRPV1 knockout mice were tested in three behavioral assays for irritation to determine if TRPV1 is necessary to detect trigeminal irritants in addition to capsaicin. In one assay mice were presented with a chemical via a cotton swab and their response scored on a 5 level scale. In another assay, a modified two bottle preference test, which avoids the confound of mixing irritants with the animal’s drinking water, was used to assess aversion. In the final assay, an air dilution olfactometer was used to administer volatile compounds to mice restrained in a double-chambered plethysmograph where respiratory reflexes were monitored. TRPV1 knockouts showed deficiencies in the detection of benzaldehyde, cyclohexanone and eugenol in at least one assay. However, cyclohexanone was the only substance tested that appears to act solely through TRPV1. PMID:24358880

  1. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain

    PubMed Central

    Han, Liang; Li, Man; Li, Zhe; LaVinka, Pamela Colleen; Sun, Shuohao; Tang, Zongxiang; Park, Kyoungsook; Caterina, Michael J.; Ren, Ke; Dubner, Ronald; Wei, Feng; Dong, Xinzhong

    2014-01-01

    SUMMARY The peripheral terminals of primary nociceptive neurons play an essential role in pain detection mediated by membrane receptors like TRPV1, a molecular sensor of heat and capsaicin. However, the contribution of central terminal TRPV1 in the dorsal horn to chronic pain has not been investigated directly. Combining primary sensory neuron-specific GCaMP3 imaging with a trigeminal neuropathic pain model, we detected robust neuronal hyperactivity in injured and uninjured nerves in the skin, soma in trigeminal ganglion, and central terminals in the spinal trigeminal nucleus. Extensive TRPV1 hyperactivity was observed in central terminals innervating all dorsal horn laminae. The central terminal TRPV1 sensitization was maintained by descending serotonergic (5-HT) input from the brainstem. Central blockade of TRPV1 or 5-HT/5-HT3A receptors attenuated central terminal sensitization, excitatory primary afferent inputs, and mechanical hyperalgesia in the territories of injured and uninjured nerves. Our results reveal new central mechanisms facilitating central terminal sensitization underlying chronic pain. PMID:24462040

  2. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain.

    PubMed

    Kim, Yu Shin; Chu, Yuxia; Han, Liang; Li, Man; Li, Zhe; Lavinka, Pamela Colleen; Sun, Shuohao; Tang, Zongxiang; Park, Kyoungsook; Caterina, Michael J; Ren, Ke; Dubner, Ronald; Wei, Feng; Dong, Xinzhong

    2014-02-19

    The peripheral terminals of primary nociceptive neurons play an essential role in pain detection mediated by membrane receptors like TRPV1, a molecular sensor of heat and capsaicin. However, the contribution of central terminal TRPV1 in the dorsal horn to chronic pain has not been investigated directly. Combining primary sensory neuron-specific GCaMP3 imaging with a trigeminal neuropathic pain model, we detected robust neuronal hyperactivity in injured and uninjured nerves in the skin, soma in trigeminal ganglion, and central terminals in the spinal trigeminal nucleus. Extensive TRPV1 hyperactivity was observed in central terminals innervating all dorsal horn laminae. The central terminal TRPV1 sensitization was maintained by descending serotonergic (5-HT) input from the brainstem. Central blockade of TRPV1 or 5-HT/5-HT3A receptors attenuated central terminal sensitization, excitatory primary afferent inputs, and mechanical hyperalgesia in the territories of injured and uninjured nerves. Our results reveal central mechanisms facilitating central terminal sensitization underlying chronic pain.

  3. Mediator mechanisms involved in TRPV1, TRPA1 and P2X receptor-mediated sensory transduction of pulmonary ROS by vagal lung C-fibers in rats.

    PubMed

    Lin, Yu-Jung; Hsu, Hsao-Hsun; Ruan, Ting; Kou, Yu Ru

    2013-10-01

    We investigated the mediator mechanisms involved in the sensory transduction of pulmonary reactive oxygen species (ROS) by vagal lung C-fibers in anesthetized rats. Airway challenge of aerosolized H₂O₂ (0.4%) stimulated these afferent fibers. The H₂O₂-induced responses were reduced by a cyclooxygenase inhibitor or ATP scavengers and also attenuated by an antagonist of TRPV1, TRPA1 or P2X receptors. The suppressive effect of the cyclooxygenase inhibitor was not affected by a combined treatment with the TRPV1 or TRPA1 antagonist, but was amplified by a combined treatment with the P2X antagonists. The suppressive effect of ATP scavengers was not affected by a combined treatment with the P2X antagonist, but was amplified by a combined treatment with the TRPV1 or TRPA1 antagonist. Thus, the actions of cyclooxygenase metabolites are mediated through the functioning of the TRPV1 and TRPA1 receptors, whereas the action of ATP is mediated through the functioning of P2X receptors.

  4. Lipopolysaccharide fever is initiated via a capsaicin-sensitive mechanism independent of the subtype-1 vanilloid receptor.

    PubMed

    Dogan, M Devrim; Patel, Shreya; Rudaya, Alla Y; Steiner, Alexandre A; Székely, Miklós; Romanovsky, Andrej A

    2004-12-01

    As pretreatment with intraperitoneal capsaicin (8-methyl-N-vanillyl-6-nonenamide, CAP), an agonist of the vanilloid receptor known as VR1 or transient receptor potential channel-vanilloid receptor subtype 1 (TRPV-1), has been shown to block the first phase of lipopolysaccharide (LPS) fever in rats, this phase is thought to depend on the TRPV-1-bearing sensory nerve fibers originating in the abdominal cavity. However, our recent studies suggest that CAP blocks the first phase via a non-neural mechanism. In the present work, we studied whether this mechanism involves the TRPV-1. Adult Long-Evans rats implanted with chronic jugular catheters were used. Pretreatment with CAP (5 mg kg(-1), i.p.) 10 days before administration of LPS (10 microg kg(-1), i.v.) resulted in the loss of the entire first phase and a part of the second phase of LPS fever. Pretreatment with the ultrapotent TRPV-1 agonist resiniferatoxin (RTX; 2, 20, or 200 microg kg(-1), i.p.) 10 days before administration of LPS had no effect on the first and second phases of LPS fever, but it exaggerated the third phase at the highest dose. The latter effect was presumably due to the known ability of high doses of TRPV-1 agonists to cause a loss of warm sensitivity, thus leading to uncontrolled, hyperpyretic responses. Pretreatment with the selective competitive TRPV-1 antagonist capsazepine (N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamidem, CPZ; 40 mg kg(-1), i.p.) 90 min before administration of LPS (10 microg kg(-1), i.v.) or CAP (1 mg kg(-1), i.p.) did not affect LPS fever, but blocked the immediate hypothermic response to acute administration of CAP. It is concluded that LPS fever is initiated via a non-neural mechanism, which is CAP-sensitive but RTX- and CPZ-insensitive. The action of CAP on this mechanism is likely TRPV-1-independent. It is speculated that this mechanism may be the production of prostaglandin E(2) by macrophages in LPS-processing organs.

  5. TRPV1 and TRPA1 function and modulation are target tissue dependent.

    PubMed

    Malin, Sacha; Molliver, Derek; Christianson, Julie A; Schwartz, Erica S; Cornuet, Pam; Albers, Kathryn M; Davis, Brian M

    2011-07-20

    The nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) families of growth factors regulate the sensitivity of sensory neurons. The ion channels transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential channel, subfamily A, member 1 (TRPA1), are necessary for development of inflammatory hypersensitivity and are functionally potentiated by growth factors. We have shown previously that inflamed skin exhibits rapid increases in artemin mRNA with slower, smaller increases in NGF mRNA. Here, using mice, we show that, in inflamed colon, mRNA for both growth factors increased with a pattern distinct from that seen in skin. Differences were also seen in the pattern of TRPV1 and TRPA1 mRNA expression in DRG innervating inflamed skin and colon. Growth factors potentiated capsaicin (a specific TRPV1 agonist) and mustard oil (a specific TRPA1 agonist) behavioral responses in vivo, raising the question as to how these growth factors affect individual afferents. Because individual tissues are innervated by afferents with unique properties, we investigated modulation of TRPV1 and TRPA1 in identified afferents projecting to muscle, skin, and colon. Muscle and colon afferents are twice as likely as skin afferents to express functional TRPV1 and TRPA1. TRPV1 and TRPA1 responses were potentiated by growth factors in all afferent types, but compared with skin afferents, muscle afferents were twice as likely to exhibit NGF-induced potentiation and one-half as likely to exhibit artemin-induced potentiation of TRPV1. Furthermore, skin afferents showed no GDNF-induced potentiation of TRPA1, but 43% of muscle and 38% of colon afferents exhibited GDNF-induced potentiation. These results show that interpretation of afferent homeostatic mechanisms must incorporate properties that are specific to the target tissue.

  6. Small Molecule Positive Allosteric Modulation of TRPV1 Activation by Vanilloids and Acidic pHS⃞

    PubMed Central

    Kaszas, Krisztian; Keller, Jason M.; Coddou, Claudio; Mishra, Santosh K.; Hoon, Mark A.; Stojilkovic, Stanko; Jacobson, Kenneth A.

    2012-01-01

    Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a high-conductance, nonselective cation channel strongly expressed in nociceptive primary afferent neurons of the peripheral nervous system and functions as a multimodal nociceptor gated by temperatures greater than 43°C, protons, and small-molecule vanilloid ligands such as capsaicin. The ability to respond to heat, low pH, vanilloids, and endovanilloids and altered sensitivity and expression in experimental inflammatory and neuropathic pain models made TRPV1 a major target for the development of novel, nonopioid analgesics and resulted in the discovery of potent antagonists. In human clinical trials, observations of hyperthermia and the potential for thermal damage by suppressing the ability to sense noxious heat suggested that full-scale blockade of TRPV1 function can be counterproductive and subtler pharmacological approaches are necessary. Here we show that the dihydropyridine derivative 4,5-diethyl-3-(2-methoxyethylthio)-2-methyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1477) behaves as a positive allosteric modulator of both proton and vanilloid activation of TRPV1. Under inflammatory-mimetic conditions of low pH (6.0) and protein kinase C phosphorylation, addition of MRS1477 further increased sensitivity of already sensitized TPRV1 toward capsaicin. MRS1477 does not affect inhibition by capsazepine or ruthenium red and remains effective in potentiating activation by pH in the presence of an orthosteric vanilloid antagonist. These results indicate a distinct site on TRPV1 for positive allosteric modulation that may bind endogenous compounds or novel pharmacological agents. Positive modulation of TRPV1 sensitivity suggests that it may be possible to produce a selective analgesia through calcium overload restricted to highly active nociceptive nerve endings at sites of tissue damage and inflammation. PMID:22005042

  7. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB1 receptors and TRPV1 channels

    PubMed Central

    Capasso, Raffaele; Orlando, Pierangelo; Pagano, Ester; Aveta, Teresa; Buono, Lorena; Borrelli, Francesca; Di Marzo, Vincenzo; Izzo, Angelo A

    2014-01-01

    Background and Purpose Palmitoylethanolamide (PEA), a naturally occurring acylethanolamide chemically related to the endocannabinoid anandamide, interacts with targets that have been identified in peripheral nerves controlling gastrointestinal motility, such as cannabinoid CB1 and CB2 receptors, TRPV1 channels and PPARα. Here, we investigated the effect of PEA in a mouse model of functional accelerated transit which persists after the resolution of colonic inflammation (post-inflammatory irritable bowel syndrome). Experimental Approach Intestinal inflammation was induced by intracolonic administration of oil of mustard (OM). Mice were tested for motility and biochemical and molecular biology changes 4 weeks later. PEA, oleoylethanolamide and endocannabinoid levels were measured by liquid chromatography-mass spectrometry and receptor and enzyme mRNA expression by qRT-PCR. Key Results OM induced transient colitis and a functional post-inflammatory increase in upper gastrointestinal transit, associated with increased intestinal anandamide (but not 2-arachidonoylglycerol, PEA or oleoylethanolamide) levels and down-regulation of mRNA for TRPV1 channels. Exogenous PEA inhibited the OM-induced increase in transit and tended to increase anandamide levels. Palmitic acid had a weaker effect on transit. Inhibition of transit by PEA was blocked by rimonabant (CB1 receptor antagonist), further increased by 5′-iodoresiniferatoxin (TRPV1 antagonist) and not significantly modified by the PPARα antagonist GW6471. Conclusions and Implications Intestinal endocannabinoids and TRPV1 channel were dysregulated in a functional model of accelerated transit exhibiting aspects of post-inflammatory irritable bowel syndrome. PEA counteracted the accelerated transit, the effect being mediated by CB1 receptors (possibly via increased anandamide levels) and modulated by TRPV1 channels. PMID:24818658

  8. TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons.

    PubMed

    Wu, Ying; Liu, Yongfeng; Hou, Panpan; Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping

    2013-01-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca(2+)). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca(2+) influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the "pain" signal transduction pathway in the peripheral nervous system.

  9. TRPV1 Channels Are Functionally Coupled with BK(mSlo1) Channels in Rat Dorsal Root Ganglion (DRG) Neurons

    PubMed Central

    Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping

    2013-01-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca2+). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the “pain” signal transduction pathway in the peripheral nervous system. PMID:24147119

  10. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain

    PubMed Central

    Grandl, Jörg; Kim, Sung Eun; Uzzell, Valerie; Bursulaya, Badry; Petrus, Matt; Bandell, Michael; Patapoutian, Ardem

    2010-01-01

    Summary TRPV1 is the founding and best-studied member of the family of temperature-activated transient receptor potential ion channels (thermoTRPs). Voltage, chemicals, and heat amongst other agonists allosterically gate TRPV1. Molecular determinants for TRPV1 activation by capsaicin, allicin, acid, ammonia, and voltage have been identified. However, the structures and mechanisms mediating its pronounced temperature-sensitivity remain unclear. Recent studies of the related channel TRPV3 identified residues within the pore region required for heat activation. Here we use both random and targeted mutagenesis screens of TRPV1 and identify point mutations in the outer pore region that specifically impair temperature-activation. Single channel analysis shows that TRPV1 mutations disrupt heat-sensitivity by ablating long channel openings, that are part of the temperature-gating pathway. We propose that sequential occupancy of short and long open states upon activation provides a mechanism to enhance temperature-sensitivity. Our study suggests that the outer pore plays a general role in heat-sensitivity of thermoTRPs. PMID:20414199

  11. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1.

    PubMed

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-09-30

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  12. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    NASA Astrophysics Data System (ADS)

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, Kewei; Lai, Ren

    2015-09-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  13. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    PubMed Central

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx–TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  14. Mechanisms and clinical uses of capsaicin.

    PubMed

    Sharma, Surinder Kumar; Vij, Amarjit Singh; Sharma, Mohit

    2013-11-15

    Capsaicin is the active ingredient of chili peppers and gives them the characteristic pungent flavor. Understanding the actions of capsaicin led to the discovery of its receptor, transient receptor potential vanilloid subfamily member 1 (TRPV1). This receptor is found on key sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been studied in animal and human models for various indications. Capsaicin is unique among naturally occurring irritant compounds because the initial neuronal excitation evoked by it is followed by a long-lasting refractory period, during which the previously excited neurons are no longer responsive to a broad range of stimuli. This process known as defunctionalisation has been exploited for therapeutic use of capsaicin in various painful conditions. We reviewed different studies on mechanisms of action of capsaicin and its utility in different clinical conditions. A beneficial role of capsaicin has been reported in obesity, cardiovascular and gastrointestinal conditions, various cancers, neurogenic bladder, and dermatologic conditions. Various theories have been put forth to explain these effects. Interestingly many of these pharmacological actions are TRPV1 independent. This review is aimed at providing an overview of these mechanisms and to also present literature which contradicts the proposed beneficial effects of capsaicin. Most of the literature comes from animal studies and since many of these mechanisms are poorly understood, more investigation is required in human subjects.

  15. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels

    PubMed Central

    Laursen, Willem J.; Merriman, Dana K.; Bagriantsev, Sviatoslav N.; Gracheva, Elena O.

    2016-01-01

    The ability to sense heat is crucial for survival. Increased heat tolerance may prove beneficial by conferring the ability to inhabit otherwise prohibitive ecological niches. This phenomenon is widespread and is found in both large and small animals. For example, ground squirrels and camels can tolerate temperatures more than 40 °C better than many other mammalian species, yet a molecular mechanism subserving this ability is unclear. Transient receptor potential vanilloid 1 (TRPV1) is a polymodal ion channel involved in the detection of noxious thermal and chemical stimuli by primary afferents of the somatosensory system. Here, we show that thirteen-lined ground squirrels (Ictidomys tridecemlineatus) and Bactrian camels (Camelus ferus) express TRPV1 orthologs with dramatically reduced temperature sensitivity. The loss of sensitivity is restricted to temperature and does not affect capsaicin or acid responses, thereby maintaining a role for TRPV1 as a detector of noxious chemical cues. We show that heat sensitivity can be reengineered in both TRPV1 orthologs by a single amino acid substitution in the N-terminal ankyrin-repeat domain. Conversely, reciprocal mutations suppress heat sensitivity of rat TRPV1, supporting functional conservation of the residues. Our studies suggest that squirrels and camels co-opt a common molecular strategy to adapt to hot environments by suppressing the efficiency of TRPV1-mediated heat detection at the level of somatosensory neurons. Such adaptation is possible because of the remarkable functional flexibility of the TRPV1 molecule, which can undergo profound tuning at the minimal cost of a single amino acid change. PMID:27638213

  16. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels.

    PubMed

    Laursen, Willem J; Schneider, Eve R; Merriman, Dana K; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2016-10-04

    The ability to sense heat is crucial for survival. Increased heat tolerance may prove beneficial by conferring the ability to inhabit otherwise prohibitive ecological niches. This phenomenon is widespread and is found in both large and small animals. For example, ground squirrels and camels can tolerate temperatures more than 40 °C better than many other mammalian species, yet a molecular mechanism subserving this ability is unclear. Transient receptor potential vanilloid 1 (TRPV1) is a polymodal ion channel involved in the detection of noxious thermal and chemical stimuli by primary afferents of the somatosensory system. Here, we show that thirteen-lined ground squirrels (Ictidomys tridecemlineatus) and Bactrian camels (Camelus ferus) express TRPV1 orthologs with dramatically reduced temperature sensitivity. The loss of sensitivity is restricted to temperature and does not affect capsaicin or acid responses, thereby maintaining a role for TRPV1 as a detector of noxious chemical cues. We show that heat sensitivity can be reengineered in both TRPV1 orthologs by a single amino acid substitution in the N-terminal ankyrin-repeat domain. Conversely, reciprocal mutations suppress heat sensitivity of rat TRPV1, supporting functional conservation of the residues. Our studies suggest that squirrels and camels co-opt a common molecular strategy to adapt to hot environments by suppressing the efficiency of TRPV1-mediated heat detection at the level of somatosensory neurons. Such adaptation is possible because of the remarkable functional flexibility of the TRPV1 molecule, which can undergo profound tuning at the minimal cost of a single amino acid change.

  17. Transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) participate in visceral hyperalgesia in chronic water avoidance stress rat model.

    PubMed

    Yu, Yan-Bo; Yang, Jing; Zuo, Xiu-Li; Gao, Li-Jun; Wang, Peng; Li, Yan-Qing

    2010-05-01

    Stressfull life events have powerful influences on visceral perception of certain IBS patients. In the present study, we aimed to examine the involvement of TRPV1 and TRPA1 in the stress-induced visceral hyperalgesia. Rats were exposed to 1-h water avoidance stress (WAS) daily for 10 consecutive days. The abdominal withdrawal reflex (AWR) to colorectal distension was assessed at the end of the 10-day period. Western-blotting analysis was applied to investigate the alterations of TRPV1 and TRPA1 in the colonic afferent dorsal root ganglia (DRG). Compared with control rats, the WAS-treated rats demonstrated a significant increase in the AWR with the pressure > or = 40 mm Hg (P < 0.05). Meanwhile, in the WAS-treated rats, western-blotting analysis showed significant upregulation of TRPV1 and TRPA1 in the colonic afferent DRG. The results indicate that WAS could induce the upregulation of TRPV1 and TRPA1 in the colonic afferent DRG, and both receptors may be candidate molecules involved in the stress-induced visceral hyperalgesia in rats.

  18. Hyaluronan modulates TRPV1 channel opening, reducing peripheral nociceptor activity and pain

    PubMed Central

    Caires, Rebeca; Luis, Enoch; Taberner, Francisco J.; Fernandez-Ballester, Gregorio; Ferrer-Montiel, Antonio; Balazs, Endre A.; Gomis, Ana; Belmonte, Carlos; de la Peña, Elvira

    2015-01-01

    Hyaluronan (HA) is present in the extracellular matrix of all body tissues, including synovial fluid in joints, in which it behaves as a filter that buffers transmission of mechanical forces to nociceptor nerve endings thereby reducing pain. Using recombinant systems, mouse-cultured dorsal root ganglia (DRG) neurons and in vivo experiments, we found that HA also modulates polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channels. HA diminishes heat, pH and capsaicin (CAP) responses, thus reducing the opening probability of the channel by stabilizing its closed state. Accordingly, in DRG neurons, HA decreases TRPV1-mediated impulse firing and channel sensitization by bradykinin. Moreover, subcutaneous HA injection in mice reduces heat and capsaicin nocifensive responses, whereas the intra-articular injection of HA in rats decreases capsaicin joint nociceptor fibres discharge. Collectively, these results indicate that extracellular HA reduces the excitability of the ubiquitous TRPV1 channel, thereby lowering impulse activity in the peripheral nociceptor endings underlying pain. PMID:26311398

  19. Photoswitchable fatty acids enable optical control of TRPV1

    PubMed Central

    Frank, James Allen; Moroni, Mirko; Moshourab, Rabih; Sumser, Martin; Lewin, Gary R.; Trauner, Dirk

    2015-01-01

    Fatty acids (FAs) are not only essential components of cellular energy storage and structure, but play crucial roles in signalling. Here we present a toolkit of photoswitchable FA analogues (FAAzos) that incorporate an azobenzene photoswitch along the FA chain. By modifying the FAAzos to resemble capsaicin, we prepare a series of photolipids targeting the Vanilloid Receptor 1 (TRPV1), a non-selective cation channel known for its role in nociception. Several azo-capsaicin derivatives (AzCAs) emerge as photoswitchable agonists of TRPV1 that are relatively inactive in the dark and become active on irradiation with ultraviolet-A light. This effect can be rapidly reversed by irradiation with blue light and permits the robust optical control of dorsal root ganglion neurons and C-fibre nociceptors with precision timing and kinetics not available with any other technique. More generally, we expect that photolipids will find many applications in controlling biological pathways that rely on protein–lipid interactions. PMID:25997690

  20. The capsaicin receptor participates in artificial sweetener aversion.

    PubMed

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; Damak, Sami; le Coutre, Johannes

    2008-11-28

    Artificial sweeteners such as saccharin, aspartame, acesulfame-K, and cyclamate produce at high concentrations an unpleasant after-taste that is generally attributed to bitter and metallic taste sensations. To identify receptors involved with the complex perception of the above compounds, preference tests were performed in wild-type mice and mice lacking the TRPV1 channel or the T1R3 receptor, the latter being necessary for the perception of sweet taste. The sweeteners, including cyclamate, displayed a biphasic response profile, with the T1R3 mediated component implicated in preference. At high concentrations imparting off-taste, omission of TRPV1 reduced aversion. In a heterologous expression system the Y511A point mutation in the vanilloid pocket of TRPV1 did not affect saccharin and aspartame responses but abolished cyclamate and acesulfame-K activities. The results rationalize artificial sweetener tastes and off-tastes by showing that at low concentrations, these molecules stimulate the gustatory system through the hedonically positive T1R3 pathway, and at higher concentrations, their aversion is partly mediated by TRPV1.

  1. Effect of capsaicin on thermoregulation: an update with new aspects

    PubMed Central

    Szolcsányi, János

    2015-01-01

    Capsaicin, a selective activator of the chemo- and heat-sensitive transient receptor potential (TRP) V1 cation channel, has characteristic feature of causing long-term functional and structural impairment of neural elements supplied by TRPV1/capsaicin receptor. In mammals, systemic application of capsaicin induces complex heat-loss response characteristic for each species and avoidance of warm environment. Capsaicin activates cutaneous warm receptors and polymodal nociceptors but has no effect on cold receptors or mechanoreceptors. In this review, thermoregulatory features of capsaicin-pretreated rodents and TRPV1-mediated neural elements with innocuous heat sensitivity are summarized. Recent data support a novel hypothesis for the role of visceral warmth sensors in monitoring core body temperature. Furthermore, strong evidence suggests that central presynaptic nerve terminals of TRPV1-expressing cutaneous, thoracic and abdominal visceral receptors are activated by innocuous warmth stimuli and capsaicin. These responses are absent in TRPV1 knockout mice. Thermoregulatory disturbance induced by systemic capsaicin pretreatment lasts for months and is characterized by a normal body temperature at cool environment up to a total dose of 150 mg/kg s.c. Upward differential shift of set points for activation vasodilation, other heat-loss effectors and thermopreference develops. Avoidance of warm ambient temperature (35°C, 40°C) is severely impaired but thermopreference at cool ambient temperatures (Tas) are not altered. TRPV1 knockout or knockdown and genetically altered TRPV1, TRPV2 and TRPM8 knockout mice have normal core temperature in thermoneutral or cool environments, but the combined mutant mice have impaired regulation in warm or cold (4°C) environments. Several lines of evidence support that in the preoptic area warmth sensitive neurons are activated and desensitized by capsaicin, but morphological evidence for it is controversial. It is suggested that these

  2. TRPA1 contributes to capsaicin-induced facial cold hyperalgesia in rats.

    PubMed

    Honda, Kuniya; Shinoda, Masamichi; Furukawa, Akihiko; Kita, Kozue; Noma, Noboru; Iwata, Koichi

    2014-12-01

    Orofacial cold hyperalgesia is known to cause severe persistent pain in the face following trigeminal nerve injury or inflammation, and transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankylin 1 (TRPA1) are thought to be involved in cold hyperalgesia. However, how these two receptors are involved in cold hyperalgesia is not fully understood. To clarify the mechanisms underlying facial cold hyperalgesia, nocifensive behaviors to cold stimulation, the expression of TRPV1 and TRPA1 in trigeminal ganglion (TG) neurons, and TG neuronal excitability to cold stimulation following facial capsaicin injection were examined in rats. The head-withdrawal reflex threshold (HWRT) to cold stimulation of the lateral facial skin was significantly decreased following facial capsaicin injection. This reduction of HWRT was significantly recovered following local injection of TRPV1 antagonist as well as TRPA1 antagonist. Approximately 30% of TG neurons innervating the lateral facial skin expressed both TRPV1 and TRPA1, and about 64% of TRPA1-positive neurons also expressed TRPV1. The TG neuronal excitability to noxious cold stimulation was significantly increased following facial capsaicin injection and this increase was recovered by pretreatment with TRPA1 antagonist. These findings suggest that TRPA1 sensitization via TRPV1 signaling in TG neurons is involved in cold hyperalgesia following facial skin capsaicin injection.

  3. High-Concentration Piperine: Capsaicin-Sensitive and -Insensitive Effects on Isolated Organs.

    PubMed

    Bencsik, Timea; Sandor, Zsolt; Bartho, Lorand

    2015-01-01

    Piperine (P), a sensory stimulant in black pepper, is an agonist on TRPV1 receptors. Earlier work has showed capsaicin-sensitive and -insensitive mechanisms of the contractile action of P on the intestine. The current isolated organ study in the guinea-pig ileum, urinary bladder and trachea (a) confirms the presence of such components of effect (ileum and bladder); (b) indicates TRPV1 involvement in the effect of 5 or 30 µmol/l of P on the basis of an inhibitory action of the antagonist BCTC (ileum); (c) indicates that HC 030031-sensitive TRPA1 receptors and nifedipine-sensitive Ca(2+) channels contribute to the capsaicin-resistant contraction to 30 µmol/l P (ileum) and (d) shows that the contractile effect of P up to 100 µmol/l (guinea-pig trachea) or 30 µmol/l (guinea-pig urinary bladder) is capsaicin-sensitive and mediated by TRPV1 receptors/channels.

  4. Molecular Determinants of Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Binding to Transient Receptor Potential V1 (TRPV1) Channels*

    PubMed Central

    Poblete, Horacio; Oyarzún, Ingrid; Olivero, Pablo; Comer, Jeffrey; Zuñiga, Matías; Sepulveda, Romina V.; Báez-Nieto, David; González Leon, Carlos; González-Nilo, Fernando; Latorre, Ramón

    2015-01-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate. PMID:25425643

  5. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization.

    PubMed

    Zhuang, Zhi-Ye; Xu, Haoxing; Clapham, David E; Ji, Ru-Rong

    2004-09-22

    Although the PI3K (phosphatidylinositol 3-kinase) pathway typically regulates cell growth and survival, increasing evidence indicates the involvement of this pathway in neural plasticity. It is unknown whether the PI3K pathway can mediate pain hypersensitivity. Intradermal injection of capsaicin and NGF produce heat hyperalgesia by activating their respective TRPV1 (transient receptor potential vanilloid receptor-1) and TrkA receptors on nociceptor sensory nerve terminals. We examined the activation of PI3K in primary sensory DRG neurons by these inflammatory agents and the contribution of PI3K activation to inflammatory pain. We further investigated the correlation between the PI3K and the ERK (extracellular signal-regulated protein kinase) pathway. Capsaicin and NGF induce phosphorylation of the PI3K downstream target AKT (protein kinase B), which is blocked by the PI3K inhibitors LY294002 and wortmannin, indicative of the activation of PI3K by both agents. ERK activation by capsaicin and NGF was also blocked by PI3K inhibitors. Similarly, intradermal capsaicin in rats activated PI3K and ERK in C-fiber DRG neurons and epidermal nerve fibers. Injection of PI3K or MEK (ERK kinase) inhibitors into the hindpaw attenuated capsaicin- and NGF-evoked heat hyperalgesia but did not change basal heat sensitivity. Furthermore, PI3K, but not ERK, inhibition blocked early induction of hyperalgesia. In acutely dissociated DRG neurons, the capsaicin-induced TRPV1 current was strikingly potentiated by NGF, and this potentiation was completely blocked by PI3K inhibitors and primarily suppressed by MEK inhibitors. Therefore, PI3K induces heat hyperalgesia, possibly by regulating TRPV1 activity, in an ERK-dependent manner. The PI3K pathway also appears to play a role that is distinct from ERK by regulating the early onset of inflammatory pain.

  6. Inhibition of TRPV1 for the treatment of sensitive skin.

    PubMed

    Kueper, Thomas; Krohn, Michael; Haustedt, Lars Ole; Hatt, Hanns; Schmaus, Gerhard; Vielhaber, Gabriele

    2010-11-01

    During the past years, the topic sensitive skin became one of the most important fields in dermatology. The tremendous interest is based on several studies showing that about 50% of the population declares to have sensitive skin. The human thermoreceptor hTRPV1 was previously identified to contribute to this skin condition while facilitating neurogenic inflammation leading to hyperalgesia. Furthermore, skin sensitivity towards capsaicin, a natural activator of TRPV1, was shown to correlate with sensitive skin. In a screening campaign based on recombinant HEK293-cells stably transfected with hTRPV1, the selective antagonist trans-4-tert-butylcyclohexanol was identified. This antagonist is able to inhibit capsaicin-induced hTRPV1 activation with an IC(50) value of 34 ± 5 μm tested in HEK293-cells as well as in electrophysiological recordings performed in oocytes expressing hTRPV1. Strikingly, in a clinical study with 30 women using topical treatment with o/w emulsions containing 31.6 ppm capsaicin, we were able to show that 0.4% of this inhibitor significantly reduces capsaicin-induced burning (P < 0.0001) in vivo. Thus trans-4-tert-butylcyclohexanol has the potential as a novel bioactive for the treatment of sensitive skin.

  7. Differential effects of substance P or hemokinin-1 on transient receptor potential channels, TRPV1, TRPA1 and TRPM8, in the rat.

    PubMed

    Naono-Nakayama, Rumi; Sunakawa, Natsuki; Ikeda, Tetsuya; Nishimori, Toshikazu

    2010-02-01

    Two tachykinin peptides, substance P (SP) and hemokinin-1 (HK-1), and three transient receptor potential (TRP) channels, TRPV1, TRPA1 and TRPM8, are similarly localized in the spinal dorsal horn and dorsal root ganglion, suggesting that TRP channels may be related or modulated by these tachykinin peptides. Thus, to clarify whether the responses of TRP channels are modulated by SP or HK-1, the effects of pretreatment with SP or HK-1 on the induction of scratching behavior by TRP channel agonists were examined. Pretreatment with SP or HK-1 enhanced the induction of scratching behavior by resiniferatoxin, a TRPV1 agonist, whereas scratching behavior induced by menthol, a TRPM8 agonist, was suppressed by pretreatment with these peptides. On the other hand, pretreatment with SP, but not HK-1, suppressed the induction of scratching behavior by cinnamaldehyde, a TRPA1 agonist. Taken together, the present results indicate that SP or HK-1 differentially modulated the response of TRPV1, TRPA1 or TRPM8 channel.

  8. Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG neurons in vitro.

    PubMed

    Sui, Feng; Lin, Na; Guo, Jian-You; Zhang, Chang-Bin; Du, Xin-Liang; Zhao, Bao-Sheng; Liu, Hong-Bin; Yang, Na; Li, Lan-Fang; Guo, Shu-Ying; Huo, Hai-Ru; Jiang, Ting-Liang

    2010-01-01

    Cinnamaldehyde (1) is a pharmacologically active ingredient isolated from cassia twig (Ramulus Cinnamomi), which is commonly used in herbal remedies to treat fever-related diseases. Both TRPV1 and TRPM8 ion channel proteins are abundantly expressed in sensory neurons, and are assumed to act as a thermosensor, with the former mediating the feeling of warmth and the latter the feeling of cold in the body. Both of them have recently been reported to be involved in thermoregulation. The purpose of this paper is to further uncover the antipyretic mechanisms of 1 by investigating its effects on the mRNA expression levels and functions of both TRPV1 and TRPM8. The results showed that 1 could up-regulate the mRNA expression levels of TRPV1 at both 37 and 39 degrees C, and its calcium-mediating function was significantly increased at 39 degrees C, all of which could not be blocked by pretreatment of the neuronal cells with ruthenium red, a general transient receptor potential (TRP) blocker, indicating that the action of 1 was achieved through a non-TRPA1 channel pathway. In conclusion, the findings in our in vitro studies might account for part of the peripheral molecular mechanisms for the antipyretic action of 1.

  9. Transient receptor potential vanilloid-1-mediated calcium responses are inhibited by the alkylamine antihistamines dexbrompheniramine and chlorpheniramine.

    PubMed

    Sadofsky, Laura R; Campi, Barbara; Trevisani, Marcello; Compton, Steven J; Morice, Alyn H

    2008-12-01

    American guidelines, unlike European guidelines, support the use of antihistamines as a first line of treatment for some causes of chronic cough. Transient receptor potential vanilloid-1 (TRPV1) is an ion channel activated by the tussive agents capsaicin, resiniferatoxin, and protons. It is predominantly expressed by C-fiber and some Adelta -fiber sensory neurons and is thought to be a cough receptor. By measuring increases in intracellular calcium as an indicator of TRPV1 activation, the authors sought to determine whether antihistamines could antagonise TRPV1 permanently expressed in HEK and Pro5 cells and TRPV1 endogenously expressed in rat dorsal root ganglia neurons. In human TRPV1-expressing HEK cells (hTRPV1-HEK), diphenhydramine and fexofenadine failed to inhibit capsaicin-triggered calcium responses. However, both dexbrompheniramine and chlorpheniramine significantly inhibited capsaicin-evoked responses in hTRPV1-HEK. Dexbrompheniramine also inhibited activation of rat TRPV1 expressed in HEK and Pro5 cells, without interfering with TRPA1 and proteinase-activated receptor-2 (PAR(2)) activation. Finally, in rat dorsal root ganglia neuron preparations, dexbrompheniramine dose-dependently inhibited capsaicin-evoked calcium responses. Thus, the inhibition of TRPV1 activation by dexbrompheniramine may provide one potential mechanism whereby this antihistamine exerts its therapeutic effect in chronic cough.

  10. Innervation of TRPV1-, PGP-, and CGRP-immunoreactive nerve fibers in the subepithelial layer of a whole mount preparation of the rat cornea.

    PubMed

    Hiura, Akio; Nakagawa, Hiroshi

    2012-01-01

    The pattern of innervation of capsaicin receptor, TRPV1-(transient receptor protein vanilloid 1), PGP 9.5-(protein gene product, a marker of peripheral nerve fibers)-, and CGRP (calcitonin gene-related peptide)-immunoreactive (IR) nerve fibers was examined by immunohistological staining of whole mount preparations of the adult rat cornea. The outer corneoscleral limbus toward the central cornea in the subepithelial (stromal) layer was richly innervated by a meshwork of PGP- and CGRP-IR nerve fibers. Sparse innervation was observed in the central cornea, presumably owing to insufficient staining. Dense innervation of TRPV1-IR nerve fibers were demonstrated in addition to innervation of PGP- and CGRP-IR nerve fibers, running from the corneoscleral margin to the central cornea. Although the density of TRPV1-IR nerve fibers appeared to gradually diminish, immunostaining of TRPV1-IR nerve fibers was not as clear as that of PGP- and CGRP-IR nerve fibers. The TRPV1-IR nerve fibers appeared to be thinner than the PGP- and CGRP-IR nerve fibers. The TRPV1-IR leash fibers were observed in the basal epithelial layer, presumably ensuring effective corneal reflex, response to noxious stimuli, and repair of cornea injury.

  11. Diallyl sulfides in garlic activate both TRPA1 and TRPV1.

    PubMed

    Koizumi, Kanako; Iwasaki, Yusaku; Narukawa, Masataka; Iitsuka, Yuji; Fukao, Tomomi; Seki, Taiichiro; Ariga, Toyohiko; Watanabe, Tatsuo

    2009-05-08

    We searched for novel agonists of TRP receptors especially for TRPA1 and TRPV1 in foods. We focused attention on garlic compounds, diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). In TRPA1 or TRPV1 heterogeneously expressed CHO cells, all of those compounds increased [Ca(2+)](i) in concentration-dependent manner. The EC(50) values of DADS and DATS were similar to that of allyl isothiocyanate (AITC) and that of DAS was 170-fold larger than that of AITC. Maximum responses of these sulfides were equal to that of AITC. The EC(50) values of these compounds for TRPV1 were around 100 microM against that of capsaicin (CAP), 25.6 nM and maximum responses of garlic compounds were half to that of CAP. The Ca(2+) responses were significantly suppressed by co-application of antagonist. We conclude that DAS, DADS, and DATS are agonist of both TRPA1 and TRPV1 but with high affinity for TRPA1.

  12. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity.

    PubMed

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun; Luo, Zhi Dan; Cao, Ting Bing; Zhong, Jian; Yan, Zhen Cheng; Wang, Li Juan; Zhao, Zhi Gang; Zhu, Shan Jun; Schrader, Mark; Thilo, Florian; Zhu, Zhi Ming; Tepel, Martin

    2007-04-13

    We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.

  13. Some like it hot: The emerging role of spicy food (capsaicin) in autoimmune diseases.

    PubMed

    Deng, Yaxiong; Huang, Xin; Wu, Haijing; Zhao, Ming; Lu, Qianjin; Israeli, Eitan; Dahan, Shani; Blank, Miri; Shoenfeld, Yehuda

    2016-05-01

    Autoimmune diseases refer to a spectrum of diseases characterized by an active immune response against the host, which frequently involves increased autoantibody production. The pathogenesis of autoimmune diseases is multifactorial and the exploitation of novel effective treatment is urgent. Capsaicin is a nutritional factor, the active component of chili peppers, which is responsible for the pungent component of chili pepper. As a stimuli, capsaicin selectively activate transient receptor potential vanilloid subfamily 1(TRPV1) and exert various biological effects. This review discusses the effect of capsaicin through its receptor on the development and modulation of autoimmune diseases, which may shed light upon potential therapies in capsaicin-targeted approaches.

  14. A novel form of capsaicin-modified amygdala LTD mediated by TRPM1.

    PubMed

    Gebhardt, Christine; von Bohlen Und Halbach, Oliver; Hadler, Michael D; Harteneck, Christian; Albrecht, Doris

    2016-12-01

    Recently we have shown that capsaicin attenuates the strength of LTP in the lateral amygdala (LA) and demonstrated that this effect is mediated by the transient receptor potential (TRP) channel TRPV1. Here we further show that capsaicin, which is thought to act primarily through TRPV1, modifies long term depression (LTD) in the LA. Yet the application of various TRPV1 antagonists does not reverse this effect and it remains in TRPV1-deficient mice. In addition, voltage gated calcium channels, nitric oxide and CB1 receptors are not involved. Using pharmacology and TRPM1(-/-) mice, our electrophysiological data indicate that capsaicin-induced activation of TRPM1 channels contribute to the induction of LA-LTD. Whereas LA-LTD in general depends on the acitvation of NMDA receptors- and group II metabotropic glutamate receptors (mGluR), the modifying effect of capsaicin on LA-LTD via TRPM1 appears to be specifically mediated by group I mGluRs and in interaction with another member of the TRP family, TRPC5. Additionally, intact GABAergic transmission is required for the capsaicin-effect to take place. This is the first documentation that beside their function in the retina TRPM1 proteins are expressed in the brain and have a functional relevance in modifying synaptic plasticity.

  15. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  16. Marine Cyclic Guanidine Alkaloids Monanchomycalin B and Urupocidin A Act as Inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 Receptors.

    PubMed

    Korolkova, Yuliya; Makarieva, Tatyana; Tabakmakher, Kseniya; Shubina, Larisa; Kudryashova, Ekaterina; Andreev, Yaroslav; Mosharova, Irina; Lee, Hyi-Seung; Lee, Yeon-Ju; Kozlov, Sergey

    2017-03-23

    Marine sponges contain a variety of low-molecular-weight compounds including guanidine alkaloids possessing different biological activities. Monanchomycalin B and urupocidin A were isolated from the marine sponge Monanchora pulchra. We found that they act as inhibitors of the TRPV1, TRPV2, and TRPV3 channels, but are inactive against the TRPA1 receptor. Monanchomycalin B is the most active among all published marine alkaloids (EC50 6.02, 2.84, and 3.25 μM for TRPV1, TRPV2, and TRPV3, correspondingly). Moreover, monanchomycalin B and urupocidin A are the first samples of marine alkaloids affecting the TRPV2 receptor. Two semi-synthetic urupocidin A derivatives were also obtained and tested against TRP (Transient Receptor Potential) receptors that allowed us to collect some data concerning the structure-activity relationship in this series of compounds. We showed that the removal of one of three side chains or double bonds in the other side chains in urupocidin A led to a decrease of the inhibitory activities. New ligands specific to the TRPV subfamily may be useful for the design of medicines as in the study of TRP channels biology.

  17. An HSV-based library screen identifies PP1α as a negative TRPV1 regulator with analgesic activity in models of pain

    PubMed Central

    Reinhart, Bonnie; Goins, William F; Harel, Asaff; Chaudhry, Suchita; Goss, James R; Yoshimura, Naoki; de Groat, William C; Cohen, Justus B; Glorioso, Joseph C

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a pronociceptive cation channel involved in persistent inflammatory and neuropathic pain. Herpes simplex virus (HSV) vector expression of TRPV1 causes cell death in the presence of capsaicin, thereby completely blocking virus replication. Here we describe a selection system for negative regulators of TRPV1 based on rescue of virus replication. HSV-based coexpression of TRPV1 and a PC12 cell-derived cDNA library identified protein phosphatase 1α (PP1α) as a negative regulator of TRPV1, mimicking the activity of “poreless” (PL), a dominant-negative mutant of TRPV1. Vectors expressing PP1α or PL reduced thermal sensitivity following virus injection into rat footpads, but failed to reduce the nocifensive responses to menthol/icilin-activated cold pain or formalin, demonstrating that the activity identified in vitro is functional in vivo with a degree of specificity. This system should prove powerful for identifying other cellular factors that can inhibit ion channel activity. PMID:27382601

  18. Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology.

    PubMed

    Tóth, Balázs I; Géczy, Tamás; Griger, Zoltán; Dózsa, Anikó; Seltmann, Holger; Kovács, László; Nagy, László; Zouboulis, Christos C; Paus, Ralf; Bíró, Tamás

    2009-02-01

    Transient receptor potential vanilloid-1 (TRPV1), originally described as a central integrator of nociception, is expressed on human epidermal and hair follicle keratinocytes and is involved in regulation of cell growth and death. In human pilosebaceous units, we had shown that TRPV1 stimulation inhibits hair shaft elongation and matrix keratinocyte proliferation, and induces premature hair follicle regression and keratinocyte apoptosis. In the current study, we have explored the role of TRPV1-mediated signaling in sebaceous gland (SG) biology, using a human sebocyte cell culture model (SZ95 sebocytes). Demonstrating that human skin SG in situ and SZ95 sebocytes in vitro express TRPV1, we show that the prototypic TRPV1 agonist, capsaicin, selectively inhibits basal and arachidonic acid-induced lipid synthesis in a dose-, time-, and extracellular calcium-dependent and a TRPV1-specific manner. Low-dose capsaicin stimulates cellular proliferation via TRPV1, whereas higher concentrations inhibit sebocyte growth and induce cell death independent of TRPV1. Moreover, capsaicin suppresses the expression of genes involved in lipid homeostasis and of selected proinflammatory cytokines. Collectively, these findings support the concept that TRPV1 signaling is a significant, previously unreported player in human sebocyte biology and identify TRPV1 as a promising target in the clinical management of inflammatory SG disorders (for example, acne vulgaris).

  19. 4-Hydroxynonenal dependent alteration of TRPV1-mediated coronary microvascular signaling.

    PubMed

    DelloStritto, Daniel J; Sinharoy, Pritam; Connell, Patrick J; Fahmy, Joseph N; Cappelli, Holly C; Thodeti, Charles K; Geldenhuys, Werner J; Damron, Derek S; Bratz, Ian N

    2016-12-01

    We demonstrated previously that TRPV1-dependent regulation of coronary blood flow (CBF) is disrupted in diabetes. Further, we have shown that endothelial TRPV1 is differentially regulated, ultimately leading to the inactivation of TRPV1, when exposed to a prolonged pathophysiological oxidative environment. This environment has been shown to increase lipid peroxidation byproducts including 4-Hydroxynonenal (4-HNE). 4-HNE is notorious for producing protein post-translation modification (PTM) via reactions with the amino acids: cysteine, histidine and lysine. Thus, we sought to determine if 4-HNE mediated post-translational modification of TRPV1 could account for dysfunctional TRPV1-mediated signaling observed in diabetes. Our initial studies demonstrate 4-HNE infusion decreases TRPV1-dependent coronary blood flow in C57BKS/J (WT) mice. Further, we found that TRPV1-dependent vasorelaxation was suppressed after 4-HNE treatment in isolated mouse coronary arterioles. Moreover, we demonstrate 4-HNE significantly inhibited TRPV1 currents and Ca(2+) entry utilizing patch-clamp electrophysiology and calcium imaging respectively. Using molecular modeling, we identified potential pore cysteines residues that, when mutated, could restore TRPV1 function in the presence of 4-HNE. Specifically, complete rescue of capsaicin-mediated activation of TRPV1 was obtained following mutation of pore Cysteine 621. Finally, His tag pull-down of TRPV1 in HEK cells treated with 4-HNE demonstrated a significant increase in 4-HNE binding to TRPV1, which was reduced in the TRPV1 C621G mutant. Taken together these data suggest that 4-HNE decreases TRPV1-mediated responses, at both the in vivo and in vitro levels and this dysfunction can be rescued via mutation of the pore Cysteine 621. Our results show the first evidence of an amino acid specific modification of TRPV1 by 4-HNE suggesting this 4-HNE-dependent modification of TRPV1 may contribute to microvascular dysfunction and tissue perfusion

  20. Activation of TRPM2 and TRPV1 Channels in Dorsal Root Ganglion by NADPH Oxidase and Protein Kinase C Molecular Pathways: a Patch Clamp Study.

    PubMed

    Nazıroğlu, Mustafa

    2017-03-01

    Despite considerable research, the mechanisms of neuropathic pain induced by excessive oxidative stress production and overload calcium ion (Ca(2+)) entry in dorsal root ganglion (DRG) remain substantially unidentified. The transient receptor potential melastatin 2 (TRPM2) and vanilloid 1 (TRPV1) channels are activated with different stimuli including oxidative stress. TRPM2 and TRPV1 have been shown to be involved in induction of neuropathic pain. However, the activation mechanisms of TRPM2 and TRPV1 via NADPH oxidase and protein kinase C (PKC) pathways are poorly understood. In this study, I investigated the roles of NADPH oxidase and PKC on Ca(2+) entry through TRPM2 and TRPV1 channels in in vitro DRG neurons of rats. Rat DRG neurons were used in whole-cell patch clamp experiments. The H2O2-induced TRPM2 current densities were decreased by N-(p-amylcinnamoyl)anthranilic acid (ACA), and dose-dependent capsaicin (CAP) and H2O2-induced TRPV1 currents were inhibited by capsazepine (CPZ). The TRPV1 channel is activated in the DRG neurons by 0.01 mM capsaicin but not 0.001 mM or 0.05 mM capsaicin. TRPM2 and TRPV1 currents were increased by the PKC activator, phorbol myristate acetate (PMA), although the currents were decreased by ACA, CPZ, and the PKC inhibitor, bisindolylmaleimide I (BIM). Both channel currents were further increased by PMA + H2O2 as compared to H2O2 only. In the combined presence of PMA + BIM, no TRPM2 or TRPV1 currents were observed. The CAP and H2O2-induced TRPM2 current densities were also decreased by the NADPH oxidase inhibitors apocynin and N-Acetylcysteine. In conclusion, these results demonstrate a protective role for NADPH oxidase and PKC inhibitors on Ca(2+) entry through TRPM2 and TRPV1 channels in DRG neurons. Since excessive oxidative stress production and Ca(2+) entry are implicated in the pathophysiology of neuropathic pain, the findings may be relevant to the etiology and treatment of neuropathology in DRG neurons.

  1. Comparison of TRPA1-versus TRPV1-mediated cough in guinea pigs.

    PubMed

    Brozmanova, Mariana; Mazurova, Lenka; Ru, Fei; Tatar, Milos; Kollarik, Marian

    2012-08-15

    TRPA1 receptor is activated by endogenous inflammatory mediators and exogenous pollutant molecules relevant to respiratory diseases. Previous studies have implicated TRPA1 as a drug target for antitussive therapy. Here we evaluated the relative efficacy of TRPA1 activation to evoke cough. In conscious guinea pigs the TRPA1 agonist allyl-isothiocyanate (AITC) evoked cough with a maximally effective concentration of 10mM that was abolished by the selective TRPA1 antagonist AP-18. AITC (10mM) was approximately 3-times less effective in inducing cough than capsaicin (50 μM). Ex vivo single fiber extracellular recordings revealed that, similarly to capsaicin, AITC evoked activation in airway jugular C-fibers, but not in airway nodose Aδ-fibers. Consistent with the cough studies, AITC was approximately 3-times less effective than capsaicin in evoking sustained activation of the jugular C-fibers. Another TRPA1 agonist, cinnamaldehyde, was approximately twofold more effective than AITC in inducing cough. However, the cinnamaldehyde (10mM)-induced cough was only partially inhibited by the TRPA1 antagonist AP-18, and was abolished by combination of AP-18 and the TRPV1 antagonist I-RTX. We conclude that in naïve guinea pigs, TRPA1 activation initiates cough that is relatively modest compared to the cough initiated by TRPV1, likely due to lower efficacy of TRPA1 stimulation to induce sustained activation of airway C-fibers.

  2. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors.

    PubMed

    Gregus, Ann M; Doolen, Suzanne; Dumlao, Darren S; Buczynski, Matthew W; Takasusuki, Toshifumi; Fitzsimmons, Bethany L; Hua, Xiao-Ying; Taylor, Bradley K; Dennis, Edward A; Yaksh, Tony L

    2012-04-24

    Peripheral inflammation initiates changes in spinal nociceptive processing leading to hyperalgesia. Previously, we demonstrated that among 102 lipid species detected by LC-MS/MS analysis in rat spinal cord, the most notable increases that occur after intraplantar carrageenan are metabolites of 12-lipoxygenases (12-LOX), particularly hepoxilins (HXA(3) and HXB(3)). Thus, we examined involvement of spinal LOX enzymes in inflammatory hyperalgesia. In the current work, we found that intrathecal (IT) delivery of the LOX inhibitor nordihydroguaiaretic acid prevented the carrageenan-evoked increase in spinal HXB(3) at doses that attenuated the associated hyperalgesia. Furthermore, IT delivery of inhibitors targeting 12-LOX (CDC, Baicalein), but not 5-LOX (Zileuton) dose-dependently attenuated tactile allodynia. Similarly, IT delivery of 12-LOX metabolites of arachidonic acid 12(S)-HpETE, 12(S)-HETE, HXA(3), or HXB(3) evoked profound, persistent tactile allodynia, but 12(S)-HpETE and HXA(3) produced relatively modest, transient heat hyperalgesia. The pronociceptive effect of HXA(3) correlated with enhanced release of Substance P from primary sensory afferents. Importantly, HXA(3) triggered sustained mobilization of calcium in cells stably overexpressing TRPV1 or TRPA1 receptors and in acutely dissociated rodent sensory neurons. Constitutive deletion or antagonists of TRPV1 (AMG9810) or TRPA1 (HC030031) attenuated this action. Furthermore, pretreatment with antihyperalgesic doses of AMG9810 or HC030031 reduced spinal HXA(3)-evoked allodynia. These data indicate that spinal HXA(3) is increased by peripheral inflammation and promotes initiation of facilitated nociceptive processing through direct activation of TRPV1 and TRPA1 at central terminals.

  3. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors

    PubMed Central

    Gregus, Ann M.; Doolen, Suzanne; Dumlao, Darren S.; Buczynski, Matthew W.; Takasusuki, Toshifumi; Fitzsimmons, Bethany L.; Hua, Xiao-Ying; Taylor, Bradley K.; Dennis, Edward A.; Yaksh, Tony L.

    2012-01-01

    Peripheral inflammation initiates changes in spinal nociceptive processing leading to hyperalgesia. Previously, we demonstrated that among 102 lipid species detected by LC-MS/MS analysis in rat spinal cord, the most notable increases that occur after intraplantar carrageenan are metabolites of 12-lipoxygenases (12-LOX), particularly hepoxilins (HXA3 and HXB3). Thus, we examined involvement of spinal LOX enzymes in inflammatory hyperalgesia. In the current work, we found that intrathecal (IT) delivery of the LOX inhibitor nordihydroguaiaretic acid prevented the carrageenan-evoked increase in spinal HXB3 at doses that attenuated the associated hyperalgesia. Furthermore, IT delivery of inhibitors targeting 12-LOX (CDC, Baicalein), but not 5-LOX (Zileuton) dose-dependently attenuated tactile allodynia. Similarly, IT delivery of 12-LOX metabolites of arachidonic acid 12(S)-HpETE, 12(S)-HETE, HXA3, or HXB3 evoked profound, persistent tactile allodynia, but 12(S)-HpETE and HXA3 produced relatively modest, transient heat hyperalgesia. The pronociceptive effect of HXA3 correlated with enhanced release of Substance P from primary sensory afferents. Importantly, HXA3 triggered sustained mobilization of calcium in cells stably overexpressing TRPV1 or TRPA1 receptors and in acutely dissociated rodent sensory neurons. Constitutive deletion or antagonists of TRPV1 (AMG9810) or TRPA1 (HC030031) attenuated this action. Furthermore, pretreatment with antihyperalgesic doses of AMG9810 or HC030031 reduced spinal HXA3-evoked allodynia. These data indicate that spinal HXA3 is increased by peripheral inflammation and promotes initiation of facilitated nociceptive processing through direct activation of TRPV1 and TRPA1 at central terminals. PMID:22493235

  4. No relevant modulation of TRPV1-mediated trigeminal pain by intranasal carbon dioxide in healthy humans

    PubMed Central

    2013-01-01

    Background Nasal insufflation of CO2 has been shown to exert antinociceptive respectively antihyperalgesic effects in animal pain models using topical capsaicin with activation of TRPV1-receptor positive nociceptive neurons. Clinical benefit from CO2 inhalation in patients with craniofacial pain caused by a putative activation of TRPV1 receptor positive trigeminal neurons has also been reported. These effects are probably mediated via an activation of TRPV1 receptor - positive neurons in the nasal mucosa with subsequent central inhibitory effects (such as conditioned pain modulation). In this study, we aimed to examine the effects of intranasal CO2 on a human model of craniofacial pain elicited by nasal application of capsaicin. Methods In a first experiment, 48 healthy volunteers without previous craniofacial pain received intranasal capsaicin to provoke trigeminal pain elicited by activation of TRVP1 positive nociceptive neurons. Then, CO2 or air was insufflated alternatingly into the nasal cavity at a flow rate of 1 l/min for 60 sec each. In the subsequent experiment, all participants were randomized into 2 groups of 24 each and received either continuous nasal insufflation of CO2 or placebo for 18:40 min after nociceptive stimulation with intranasal capsaicin. In both experiments, pain was rated on a numerical rating scale every 60 sec. Results Contrary to previous animal studies, the effects of CO2 on experimental trigeminal pain were only marginal. In the first experiment, CO2 reduced pain ratings only minimally by 5.3% compared to air if given alternatingly with significant results for the main factor GROUP (F1,47 = 4.438; p = 0.041) and the interaction term TIME*GROUP (F2.6,121.2 = 3.3; p = 0.029) in the repeated-measures ANOVA. However, these effects were abrogated after continuous insufflation of CO2 or placebo with no significant changes for the main factors or the interaction term. Conclusions Although mild modulatory effects of low

  5. Short-Term Ketamine Treatment Decreases Oxidative Stress Without Influencing TRPM2 and TRPV1 Channel Gating in the Hippocampus and Dorsal Root Ganglion of Rats.

    PubMed

    Demirdaş, Arif; Nazıroğlu, Mustafa; Övey, Ishak Suat

    2017-01-01

    Calcium ions (Ca(2+)) are important second messengers in neurons. Ketamine (KETAM) is an anesthetic and analgesic, with psychotomimetic effects and abuse potential. KETAM modulates the entry of Ca(2+) in neurons through glutamate receptors, but its effect on transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels has not been clarified. This study investigated the short-term effects of KETAM on oxidative stress and TRPM2 and TRPV1 channel gating in hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with KETAM (0.3 mM). The TRPM2 channel antagonist, N-(p-amylcinnamoyl)anthranilic acid (ACA), inhibited cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons, and capsazepine (CPZ) inhibited capsaicin-induced TRPV1 currents. The TRPM2 and TRPV1 channel current densities and intracellular free calcium ion concentration of the neurons were lower in the neurons exposed to ACA and CPZ compared to the control neurons, respectively. However, the values were not further decreased by the KETAM + CPZ and KETAM + ACA treatments. KETAM decreased lipid peroxidation levels in the neurons but increased glutathione peroxidase activity. In conclusion, short-term KETAM treatment decreased oxidative stress levels but did not seem to influence TRPM2- and TRPV1-mediated Ca(2+) entry.

  6. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    PubMed

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism.

  7. Heat induces interleukin-6 in skeletal muscle cells via TRPV1/PKC/CREB pathways.

    PubMed

    Obi, Syotaro; Nakajima, Toshiaki; Hasegawa, Takaaki; Kikuchi, Hironobu; Oguri, Gaku; Takahashi, Masao; Nakamura, Fumitaka; Yamasoba, Tatsuya; Sakuma, Masashi; Toyoda, Shigeru; Tei, Chuwa; Inoue, Teruo

    2017-03-01

    Interleukin-6 (IL-6) is released from skeletal muscle cells and induced by exercise, heat, catecholamine, glucose, lipopolysaccharide, reactive oxygen species, and inflammation. However, the mechanism that induces release of IL-6 from skeletal muscle cells remains unknown. Thermosensitive transient receptor potential (TRP) proteins such as TRPV1-4 play vital roles in cellular functions. In this study we hypothesized that TRPV1 senses heat, transmits a signal into the nucleus, and produces IL-6. The purpose of the present study is to investigate the underlying mechanisms whereby skeletal muscle cells sense and respond to heat. When mouse myoblast cells were exposed to 37-42°C for 2 h, mRNA expression of IL-6 increased in a temperature-dependent manner. Heat also increased IL-6 secretion in myoblast cells. A fura 2 fluorescence dual-wavelength excitation method showed that heat increased intracellular calcium flux in a temperature-dependent manner. Intracellular calcium flux and IL-6 mRNA expression were increased by the TRPV1 agonists capsaicin and N-arachidonoyldopamine and decreased by the TRPV1 antagonists AMG9810 and SB366791 and siRNA-mediated knockdown of TRPV1. TRPV2, 3, and 4 agonists did not change intracellular calcium flux. Western blotting with inhibitors demonstrated that heat increased phosphorylation levels of TRPV1, followed by PKC and cAMP response element-binding protein (CREB). PKC inhibitors, Gö6983 and staurosporine, CREB inhibitors, curcumin and naphthol AS-E, and knockdown of CREB suppressed the heat-induced increases in IL-6. These results indicate that heat increases IL-6 in skeletal muscle cells through the TRPV1, PKC, and CREB signal transduction pathway.NEW & NOTEWORTHY Heat increases the release of interleukin-6 (IL-6) from skeletal muscle cells. IL-6 has been shown to serve immune responses and metabolic functions in muscle. It can be anti-inflammatory as well as proinflammatory. However, the mechanism that induces release of IL-6

  8. Neurovascular microcirculatory vasodilation mediated by C-fibers and Transient receptor potential vanilloid-type-1 channels (TRPV 1) is impaired in type 1 diabetes.

    PubMed

    Marche, P; Dubois, S; Abraham, P; Parot-Schinkel, E; Gascoin, L; Humeau-Heurtier, A; Ducluzeau, P H; Mahe, G

    2017-03-13

    Microvascular dysfunction may have an early onset in type 1 diabetes (T1D) and can precede major complications. Our objectives were to assess the endothelial-dependent (acetylcholine, ACh; and post-occlusive hyperemia, PORH), non-endothelial-dependent (sodium nitroprusside, SNP) and neurovascular-dependent (local heating, LH and current induced vasodilation, CIV) microcirculatory vasodilation in T1D patients compared with matched control subjects using a laser speckle contrast imager. Seventeen T1D patients - matched with 17 subjects according to age, gender, Body-Mass-Index, and smoking status - underwent macro- and microvascular investigations. The LH early peak assessed the transient receptor potential vanilloid type 1 channels (TRPV1) mediated vasodilation, whereas the plateau assessed the Nitirc-Oxyde (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways. PORH explored sensory nerves and (EDHF), while CIV assessed sensory nerves (C-fibers) and prostaglandin-mediated vasodilation. Using neurological investigations, we observed that C-fiber and A-delta fiber functions in T1D patients were similar to control subjects. PORH, CIV, LH peak and plateau vasodilations were significantly decreased in T1D patients compared to controls, whereas there was no difference between the two groups for ACh and SNP vasodilations. Neurovascular microcirculatory vasodilations (C-fibers and TRPV 1-mediated vasodilations) are impaired in TD1 patients whereas no abnormalities were found using clinical neurological investigations. Clinicaltrials: No. NCT02538120.

  9. Neurovascular microcirculatory vasodilation mediated by C-fibers and Transient receptor potential vanilloid-type-1 channels (TRPV 1) is impaired in type 1 diabetes

    PubMed Central

    Marche, P.; Dubois, S.; Abraham, P.; Parot-Schinkel, E.; Gascoin, L.; Humeau-Heurtier, A.; Ducluzeau, PH.; Mahe, G.

    2017-01-01

    Microvascular dysfunction may have an early onset in type 1 diabetes (T1D) and can precede major complications. Our objectives were to assess the endothelial-dependent (acetylcholine, ACh; and post-occlusive hyperemia, PORH), non-endothelial-dependent (sodium nitroprusside, SNP) and neurovascular-dependent (local heating, LH and current induced vasodilation, CIV) microcirculatory vasodilation in T1D patients compared with matched control subjects using a laser speckle contrast imager. Seventeen T1D patients - matched with 17 subjects according to age, gender, Body-Mass-Index, and smoking status - underwent macro- and microvascular investigations. The LH early peak assessed the transient receptor potential vanilloid type 1 channels (TRPV1) mediated vasodilation, whereas the plateau assessed the Nitirc-Oxyde (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways. PORH explored sensory nerves and (EDHF), while CIV assessed sensory nerves (C-fibers) and prostaglandin-mediated vasodilation. Using neurological investigations, we observed that C-fiber and A-delta fiber functions in T1D patients were similar to control subjects. PORH, CIV, LH peak and plateau vasodilations were significantly decreased in T1D patients compared to controls, whereas there was no difference between the two groups for ACh and SNP vasodilations. Neurovascular microcirculatory vasodilations (C-fibers and TRPV 1-mediated vasodilations) are impaired in TD1 patients whereas no abnormalities were found using clinical neurological investigations. Clinicaltrials: No. NCT02538120. PMID:28287157

  10. A Randomised Trial Evaluating the Effects of the TRPV1 Antagonist SB705498 on Pruritus Induced by Histamine, and Cowhage Challenge in Healthy Volunteers

    PubMed Central

    Gibson, Rachel A.; Robertson, Jon; Mistry, Harshna; McCallum, Stewart; Fernando, Disala; Wyres, Melody; Yosipovitch, Gil

    2014-01-01

    Background Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel widely expressed in skin tissues, and peripheral sensory nerve fibres. Activation of TRPV1 releases neuropeptides; the resulting neurogenic inflammation is believed to contribute to the development of pruritus. A TRPV1 antagonist has the potential to perform as an anti-pruritic agent. SB705498 is a TRPV1 antagonist that has demonstrated in vitro activity against cloned TRPV1 human receptors and when orally administered has demonstrated pharmacodynamic activity in animal models and clinical studies. Objectives To select a topical dose of SB705498 using the TRPV1 agonist capsaicin; to confirm engagement of the TRPV1 antagonistic action of SB705498 and assess whether the dose selected has an effect on itch induced by two challenge agents. Methods A clinical study was conducted in 16 healthy volunteers to assess the effects of 3 doses of SB705498 on skin flare induced by capsaicin. Subjects with a robust capsaicin response were chosen to determine if the selected topical formulation of SB705498 had an effect on challenge agent induced itch. Results Following capsaicin challenge the greatest average reduction in area of flare was seen for the 3% formulation. This dose was selected for further investigation. Itch intensity induced by two challenge agents (cowhage and histamine) was assessed on the Computerised Visual Analogue Scale. The difference in average itch intensity (Weighted Mean Over 15 Mins) between the 3% dose of SB705498 and placebo for the cowhage challenge was −0.64, whilst the histamine challenge showed on average a −4.65 point change. Conclusions The 3% topical formulation of SB705498 cream was clinically well tolerated and had target specific pharmacodynamic activity. However there were no clinically significant differences on pruritus induced by either challenge agent in comparison to placebo. SB705498 is unlikely to be of symptomatic benefit for

  11. α,β-Unsaturated aldehyde crotonaldehyde triggers cardiomyocyte contractile dysfunction: role of TRPV1 and mitochondrial function.

    PubMed

    Pei, Zhaohui; Zhuang, Zhiqiang; Sang, Hanfei; Wu, Zhenbiao; Meng, Rongsen; He, Emily Y; Scott, Glenda I; Maris, Jackie R; Li, Ruiman; Ren, Jun

    2014-04-01

    Recent evidence has suggested that cigarette smoking is associated with an increased prevalence of heart diseases. Given that cigarette smoking triggers proinflammatory response via stimulation of the capsaicin-sensitive transient receptor potential cation channel TRPV1, this study was designed to evaluate the effect of an essential α,β-unsaturated aldehyde from cigarette smoke crotonaldehyde on myocardial function and the underlying mechanism with a focus on TRPV1 and mitochondria. Cardiomyocyte mechanical and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), fura-2 fluorescence intensity (FFI), intracellular Ca2+ decay and SERCA activity. Apoptosis and TRPV1 were evaluated using Western blot analysis. Production of reactive oxygen species (ROS) and DNA damage were measured using the intracellular fluoroprobe 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and 8-hydroxy-2'-deoxyguanosine (8-OHdG), respectively. Our data revealed that crotonaldehyde interrupted cardiomyocyte contractile and intracellular Ca2+ property including depressed PS, ±dL/dt, ΔFFI and SERCA activity, as well as prolonged TR90 and intracellular Ca2+ decay. Crotonaldehyde exposure increased TRPV1 and NADPH oxidase levels, promoted apoptosis, mitochondrial injury (decreased aconitase activity, PGC-1α and UCP-2) as well as production of ROS and 8-OHdG. Interestingly, crotonaldehyde-induced cardiac defect was obliterated by the ROS scavenger glutathione and the TRPV1 inhibitor capsazepine. Capsazepine (not glutathione) ablated crotonaldehyde-induced mitochondrial damage. Capsazepine, glutathione and the NADPH inhibitor apocynin negated crotonaldehyde-induced ROS accumulation. Our data suggest a role of crotonaldehyde compromises cardiomyocyte mechanical function possibly through a TRPV1- and mitochondria-dependent oxidative stress mechanism.

  12. Unravelling the Mystery of Capsaicin: A Tool to Understand and Treat Pain

    PubMed Central

    Brock, Christina; Olesen, Anne Estrup; Andresen, Trine; Nilsson, Matias; Dickenson, Anthony H.

    2012-01-01

    A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes. PMID:23023032

  13. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction.

    PubMed

    DelloStritto, Daniel J; Connell, Patrick J; Dick, Gregory M; Fancher, Ibra S; Klarich, Brittany; Fahmy, Joseph N; Kang, Patrick T; Chen, Yeong-Renn; Damron, Derek S; Thodeti, Charles K; Bratz, Ian N

    2016-03-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.

  14. Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels.

    PubMed

    Övey, I S; Naziroğlu, M

    2015-01-22

    Oxidative stress and apoptosis were induced in neuronal cultures by inhibition of glutathione (GSH) biosynthesis with d,l-buthionine-S,R-sulfoximine (BSO). Transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) cation channels are gated by oxidative stress. The oxidant effects of homocysteine (Hcy) may induce activation of TRPV1 and TRPM2 channels in aged mice as a model of Alzheimer's disease (AD). We tested the effects of Hcy, BSO and GSH on oxidative stress, apoptosis and Ca2+ and influx via TRPM2 and TRPV1 channels in the hippocampus of mice. Native mice hippocampal neurons were divided into five groups as follows; control, Hcy, BSO, Hcy+BSO and Hcy+BSO+GSH groups. The neurons in TRPM2 and TRPV1 experiments were stimulated by hydrogen peroxide and capsaicin, respectively. BSO and Hcy incubations increased intracellular free Ca2+ concentrations, reactive oxygen species, apoptosis, mitochondrial depolarization, and levels of caspase 3 and 9. All of these increases were reduced by GSH treatments. Treatment with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA) as potent inhibitors of TRPM2, capsazepine as a potent inhibitor of TRPV1, verapamil+diltiazem (V+D) as inhibitors of the voltage-gated Ca2+ channels (VGCC) and MK-801 as a N-methyl-d-aspartate (NMDA) channel antagonist indicated that GSH depletion and Hcy elevation activated Ca2+ entry into the neurons through TRPM2, TRPV1, VGCC and NMDA channels. Inhibitor roles of 2-APB and capsazepine on the Ca2+ entry higher than in V+D and MK-801 antagonists. In conclusion, these findings support the idea that GSH depletion and Hcy elevation can have damaging effects on hippocampal neurons by perturbing calcium homeostasis, mainly through TRPM2 and TRPV1 channels. GSH treatment can partially reverse these effects.

  15. Different types of toxins targeting TRPV1 in pain.

    PubMed

    Min, Jia-Wei; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

    2013-09-01

    The transient receptor potential vanilloid 1(TRPV1) channels are members of the transient receptor potential (TRP) superfamily. Members of this family are expressed in primary sensory neurons and are best known for their role in nociception and sensory transmission. Multiple painful stimuli can activate these channels. In this review, we discussed the mechanisms of different types of venoms that target TRPV1, such as scorpion venom, botulinum neurotoxin, spider toxin, ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning (NSP). Some of these toxins activate TRPV1; however, some do not. Regardless of TRPV1 inhibition or activation, they occur through different pathways. For example, BoNT/A decreases TRPV1 expression levels by blocking TRPV1 trafficking to the plasma membrane, although the exact mechanism is still under debate. Vanillotoxins from tarantula (Psalmopoeus cambridgei) are proposed to activate TRPV1 via interaction with a region of TRPV1 that is homologous to voltage-dependent ion channels. Here, we offer a description of the present state of knowledge for this complex subject.

  16. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx.

    PubMed

    Kichko, Tatjana I; Kobal, Gerd; Reeh, Peter W

    2015-10-15

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1(-/-) and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1(-/-) and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research.

  17. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx

    PubMed Central

    Kichko, Tatjana I.; Kobal, Gerd

    2015-01-01

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1−/− and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1−/− and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research. PMID:26472811

  18. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons.

    PubMed

    Langeslag, Michiel; Constantin, Cristina E; Andratsch, Manfred; Quarta, Serena; Mair, Norbert; Kress, Michaela

    2011-12-23

    Oncostatin M (OSM) is a member of the interleukin-6 cytokine family and regulates eg. gene activation, cell survival, proliferation and differentiation. OSM binds to a receptor complex consisting of the ubiquitously expressed signal transducer gp130 and the ligand binding OSM receptor subunit, which is expressed on a specific subset of primary afferent neurons. In the present study, the effect of OSM on heat nociception was investigated in nociceptor-specific gp130 knock-out (SNS-gp130-/-) and gp130 floxed (gp130fl/fl) mice.Subcutaneous injection of pathophysiologically relevant concentrations of OSM into the hind-paw of C57BL6J wild type mice significantly reduced paw withdrawal latencies to heat stimulation. In contrast to gp130fl/fl mice, OSM did not induce heat hypersensitivity in vivo in SNS-gp130-/- mice. OSM applied at the receptive fields of sensory neurons in in vitro skin-nerve preparations showed that OSM significantly increased the discharge rate during a standard ramp-shaped heat stimulus. The capsaicin- and heat-sensitive ion channel TRPV1, expressed on a subpopulation of nociceptive neurons, has been shown to play an important role in inflammation-induced heat hypersensitivity. Stimulation of cultured dorsal root ganglion neurons with OSM resulted in potentiation of capsaicin induced ionic currents. In line with these recordings, mice with a null mutation of the TRPV1 gene did not show any signs of OSM-induced heat hypersensitivity in vivo.The present data suggest that OSM induces thermal hypersensitivity by directly sensitizing nociceptors via OSMR-gp130 receptor mediated potentiation of TRPV1.

  19. Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy.

    PubMed

    Carletti, Fabio; Gambino, Giuditta; Rizzo, Valerio; Ferraro, Giuseppe; Sardo, Pierangelo

    2016-05-01

    The exogenous cannabinoid agonist WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), has revealed to play a role on modulating the hyperexcitability phenomena in the hippocampus. Cannabinoid-mediated mechanisms of neuroprotection have recently been found to imply the modulation of transient receptor potential vanilloid 1 (TRPV1), a cationic channel subfamily that regulate synaptic excitation. In our study, we assessed the influence of pharmacological manipulation of TRPV1 function, alone and on WIN antiepileptic activity, in the Maximal Dentate Activation (MDA) acute model of temporal lobe epilepsy. Our results showed that the TRPV1 agonist, capsaicin, increased epileptic outcomes; whilst antagonizing TRPV1 with capsazepine exerts a protective role on paroxysmal discharge. When capsaicin is co-administered with WIN effective dose of 10mg/kg is able to reduce its antiepileptic strength, especially on the triggering of MDA response. Accordingly, capsazepine at the protective dose of 2mg/kg managed to potentiate WIN antiepileptic effects, when co-treated. Moreover, WIN subeffective dose of 5mg/kg was turned into effective when capsazepine comes into play. This evidence suggests that systemic administration of TRPV1-active drugs influences electrically induced epilepsy, with a noticeable protective activity for capsazepine. Furthermore, results from the pharmacological interaction with WIN support an interplay between cannabinoid and TRPV1 signaling that could represent a promising approach for a future pharmacological strategy to challenge hyperexcitability-based diseases.

  20. Versatile Roles of Intracellularly Located TRPV1 Channel.

    PubMed

    Zhao, Rui; Tsang, Suk Ying

    2016-11-27

    The ubiquitous expression in many organs throughout the body and the ability to respond to a wide variety of physical and chemical stimuli have brought transient receptor potential (TRP) channels to the vanguards of our sensory systems. TRP vanilloid-1 (TRPV1) is the founding member of the TRPV subfamily. TRPV1 can be activated by noxious heat, protons, and vanilloids. Previous studies have shown that TRPV1 is located on the plasma membrane, serving to non-selectively permeate calcium ion from the extracellular region to the cytoplasm. Interestingly, increasing evidence suggests that TRPV1 is also located intracellularly in various cell types such as neurons, myocytes, and numerous cancer cells. By immunocytochemistry and/or fractionation followed by Western blotting, TRPV1 was found to express on the endoplasmic reticulum/sarcoplasmic reticulum and the mitochondria. By using various pharmacological and molecular tools, intracellular TRPV1 was also found to functionally express to control calcium level both inside the organelles and in the cytoplasm. Recent studies have shown that intracellularly located TRPV1 serves versatile functions in various physiological and pathological conditions (e.g., exercise endurance and hypertrophy). In this review, we not only have summarized the well-characterized roles of TRPV1, but also have highlighted the increasing importance of intracellular TRPV1-mediated pathways. Lastly, we have pointed out future research direction for answering several important questions that have remained unanswered. Vigorous investigation of the emerging roles of intracellular TRPV1 can allow a better understanding of how TRPV1 controls the cellular calcium homeostasis and its role in various physiological and pathophysiological conditions. J. Cell. Physiol. 9999: 1-9, 2016. © 2016 Wiley Periodicals, Inc.

  1. Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats.

    PubMed

    Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnazi; Tsagareli, Merab G

    2016-02-01

    A sensitive response of the nervous system to changes in temperature is of predominant importance for homeotherms to maintain a stable body temperature. A number of temperature-sensitive transient receptor potential (TRP) ion channels have been studied as nociceptors that respond to extreme temperatures and harmful chemicals. Recent findings in the field of pain have established a family of six thermo-TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4) that exhibit sensitivity to increases or decreases in temperature, as well as to chemical substances eliciting the respective hot or cold sensations. In this study, we used behavioral methods to investigate whether mustard oil (allyl isothiocyanate) and capsaicin affect the sensitivity to heat, innocuous and noxious cold, and mechanical stimuli in male rats. The results obtained indicate that TRPA1 and TRPV1 channels are clearly involved in pain reactions, and the TRPA1 agonist allyl isothiocyanate enhances the heat pain sensitivity, possibly by indirectly modulating TRPV1 channels coexpressed in nociceptors with TRPA1. Overall, our data support the role of thermosensitive TRPA1 and TRPV1 channels in pain modulation and show that these two thermoreceptor channels are in a synergistic and/or conditional relationship with noxious heat and cold cutaneous stimulation.

  2. CT-guided injection of a TRPV1 agonist around dorsal root ganglia decreases pain transmission in swine

    PubMed Central

    Brown, Jacob D.; Saeed, Maythem; Do, Loi; Braz, Joao; Basbaum, Allan I.; Iadarola, Michael J.; Wilson, David M.; Dillon, William P.

    2016-01-01

    One approach to analgesia is to block pain at the site of origin or along the peripheral pathway by selectively ablating pain-transmitting neurons or nerve terminals directly. The heat/capsaicin receptor (TRPV1) expressed by nociceptive neurons is a compelling target for selective interventional analgesia because it leaves somatosensory and proprioceptive neurons intact. Resiniferatoxin (RTX), like capsaicin, is a TRPV1 agonist but has greater potency. We combine RTX-mediated inactivation with the precision of computed tomography (CT)–guided delivery to ablate peripheral pain fibers in swine. Under CT guidance, RTX was delivered unilaterally around the lumbar dorsal root ganglia (DRG), and vehicle only was administered to the contralateral side. During a 4-week observation period, animals demonstrated delayed or absent withdrawal responses to infrared laser heat stimuli delivered to sensory dermatomes corresponding to DRG receiving RTX treatment. Motor function was unimpaired as assessed by disability scoring and gait analysis. In treated DRG, TRPV1 mRNA expression was reduced, as were nociceptive neuronal perikarya in ganglia and their nerve terminals in the ipsilateral dorsal horn. CT guidance to precisely deliver RTX to sites of peripheral pain transmission in swine may be an approach that could be tailored to block an array of clinical pain conditions in patients. PMID:26378245

  3. Functional expression of TRPV1 and TRPA1 in rat vestibular ganglia.

    PubMed

    Kamakura, Takefumi; Ishida, Yusuke; Nakamura, Yukiko; Yamada, Takahiro; Kitahara, Tadashi; Takimoto, Yasumitsu; Horii, Arata; Uno, Atsuhiko; Imai, Takao; Okazaki, Suzuyo; Inohara, Hidenori; Shimada, Shoichi

    2013-09-27

    Both TRPV1 and TRPA1 are non-selective cation channels. They are co-expressed, and interact in sensory neurons such as dorsal root ganglia (DRG) and trigeminal ganglia (TG), and are involved in nociception, being activated by nociceptive stimuli. Immunohistological localization of TRPV1 in vestibular ganglion (VG) neurons has been reported. Although TRPA1 is co-expressed with TRPV1 in DRG and TG neurons, it is unclear whether TRPA1 channels are expressed in VG neurons. Moreover, it is unknown whether TRPV1 and TRPA1 channels are functional in VG neurons. We investigated the expression of TRPV1 and TRPA1 in rat VG neurons by RT-PCR, in situ hybridization, immunohistochemistry, and Ca(2+) imaging experiments. Both TRPV1 and TRPA1 RT-PCR products were amplified from the mRNA of rat VG neurons. In situ hybridization experiments showed TRPV1 and TRPA1 mRNA expression in the majority of VG neurons. Immunohistochemistry experiments confirmed TRPV1 protein expression. In Ca(2+) imaging experiments, capsaicin, a TRPV1 agonist, induced a significant increase in intracellular calcium ion concentration ([Ca(2+)]i) in rat primary cultured VG neurons, which was almost completely blocked by capsazepine, a TRPV1-specific antagonist. Cinnamaldehyde, a TRPA1 agonist, also caused an increase in [Ca(2+)]i, which was completely inhibited by HC030031, a TRPA1-specific antagonist. Moreover, in some VG neurons, a [Ca(2+)]i increase was evoked by both capsaicin and cinnamaldehyde in the same neuron. In summary, our histological and physiological studies reveal that TRPV1 and TRPA1 are expressed in VG neurons. It is suggested that TRPV1 and TRPA1 in VG neurons might participate in vestibular function and/or dysfunction such as vertigo.

  4. Transient receptor potential vanilloid 1 and xenobiotics.

    PubMed

    Cuypers, E; Dabrowski, M; Horoszok, L; Terp, G E; Tytgat, J

    2008-04-01

    Over the last couple of years, transient receptor potential vanilloid 1(TRPV1) channels have been a hot topic in ion channel research. Since this research field is still rather new, there is not much known about the working mechanism of TRPV1 and its ligands. Nevertheless, the important physiological role and therapeutic potential are promising. Therefore, extensive research is going on and a lot of natural as well as synthetic compounds are already described. In this review, we briefly give an overview of capsaicin's history and the current knowledge of its working mechanism and physiological role. We discuss the best known plant molecules acting on TRPV1 and highlight the latest discovery in TRPV1 research: animal venoms and toxins acting on TRPV1 channels. In an effort to give the complete image of TRPV1 ligands known today, the most promising synthetic compounds are presented. Finally, we present a novel pharmacophore model describing putative ligand binding domains.

  5. SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons.

    PubMed

    Han, Qingjian; Kim, Yong Ho; Wang, Xiaoming; Liu, Di; Zhang, Zhi-Jun; Bey, Alexandra L; Lay, Mark; Chang, Wonseok; Berta, Temugin; Zhang, Yan; Jiang, Yong-Hui; Ji, Ru-Rong

    2016-12-21

    Abnormal pain sensitivity is commonly associated with autism spectrum disorders (ASDs) and affects the life quality of ASD individuals. SHANK3 deficiency was implicated in ASD and pain dysregulation. Here, we report functional expression of SHANK3 in mouse dorsal root ganglion (DRG) sensory neurons and spinal cord presynaptic terminals. Homozygous and heterozygous Shank3 complete knockout (Δe4-22) results in impaired heat hyperalgesia in inflammatory and neuropathic pain. Specific deletion of Shank3 in Nav1.8-expressing sensory neurons also impairs heat hyperalgesia in homozygous and heterozygous mice. SHANK3 interacts with transient receptor potential subtype V1 (TRPV1) via Proline-rich region and regulates TRPV1 surface expression. Furthermore, capsaicin-induced spontaneous pain, inward currents in DRG neurons, and synaptic currents in spinal cord neurons are all reduced after Shank3 haploinsufficiency. Finally, partial knockdown of SHANK3 expression in human DRG neurons abrogates TRPV1 function. Our findings reveal a peripheral mechanism of SHANK3, which may underlie pain deficits in SHANK3-related ASDs.

  6. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels.

    PubMed

    Ma, Linlin; Lee, Bo Hyun; Clifton, Heather; Schaefer, Saul; Zheng, Jie

    2015-03-10

    Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2-4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1-4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels.

  7. Capsaicin Induces “Brite” Phenotype in Differentiating 3T3-L1 Preadipocytes

    PubMed Central

    Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

    2014-01-01

    Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and

  8. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    PubMed Central

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  9. Interaction between TRPA1 and TRPV1: Synergy on pulmonary sensory nerves.

    PubMed

    Lee, Lu-Yuan; Hsu, Chun-Chun; Lin, Yu-Jung; Lin, Ruei-Lung; Khosravi, Mehdi

    2015-12-01

    Transient receptor potential ankyrin type 1 (TRPA1) and vanilloid type 1 (TRPV1) receptors are co-expressed in vagal pulmonary C-fiber sensory nerves. Because both these ligand-gated non-selective cation channels are sensitive to a number of endogenous inflammatory mediators, it is highly probable that they can be activated simultaneously during airway inflammation. Studies were carried out to investigate whether there is an interaction between these two polymodal transducers upon simultaneous activation, and how it modulates the activity of vagal pulmonary C-fiber sensory nerves. Our studies showed a distinct potentiating effect induced abruptly by simultaneous activations of TRPA1 and TRPV1 by their respective selective agonists, allyl isothiocyanate (AITC) and capsaicin (Cap), at near-threshold concentrations. This synergistic effect was demonstrated in the studies of single-unit recording of vagal bronchopulmonary C-fiber afferents and the reflex responses elicited by activation of these afferents in intact animals, as well as in the isolated nodose and jugular bronchopulmonary sensory neurons. This potentiating effect was absent when either AITC or Cap was replaced by non-TRPA1 and non-TRPV1 chemical activators of these neurons, demonstrating the selectivity of the interaction between these two TRP channels. Furthermore, the synergism was dependent upon the extracellular Ca(2+), and the rapid onset of the action further suggests that the interaction probably occurred locally at the sites of these channels. These findings suggest that the TRPA1-TRPV1 interaction may play an important role in regulating the function and excitability of pulmonary sensory neurons during airway inflammation, but the mechanism underlying this positive interaction is not yet fully understood.

  10. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses.

    PubMed

    Hudson, A S R; Kunstetter, A C; Damasceno, W C; Wanner, S P

    2016-01-01

    Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training.

  11. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses

    PubMed Central

    Hudson, A.S.R.; Kunstetter, A.C.; Damasceno, W.C.; Wanner, S.P.

    2016-01-01

    Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training. PMID:27191606

  12. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release.

    PubMed

    Weller, K; Reeh, P W; Sauer, S K

    2011-12-01

    Vagal sensory afferents innervating airways and abdominal tissues express TRPV1 and TRPA1, two depolarizing calcium permeable ion channels playing a major role in sensing environmental irritants and endogenous metabolites which cause neuropeptide release and neurogenic inflammation. Here we have studied axonal chemosensitivity and control of neuropeptide release from the isolated rat and mouse vagus nerve by using prototypical agonists of these transduction channels - capsaicin, mustard oil and the specific endogenous activators, anandamide (methyl arachidonyl ethanolamide, mAEA), and acrolein, respectively. Capsaicin evoked iCGRP release from the rat vagus nerve with an EC₅₀ of 0.12 μM. Co-application of mAEA had a dual effect: nanomolar concentrations of mAEA (0.01 μM) significantly reduced capsaicin-evoked iCGRP release while concentrations ≥ 1 μM mAEA had sensitizing effects. Only 100 μM mAEA directly augmented iCGRP release by itself. In the mouse, 310 μM mAEA increased release in wildtype and TRPA1-/- mice which could be inhibited by capsazepine (10 μM) and was completely absent in TRPV1-/- mice. CB1-/- and CB1/CB2 double -/- mice equally displayed increased sensitivity to mAEA (100 μM) and a sensitizing effect to capsaicin, in contrast to wildtypes. Acrolein and mustard oil (MO)--at μM concentrations--induced a TRPA1-dependent iCGRP release; however, millimolar concentrations of mustard oil (>1mM) evoked iCGRP release by activating TRPV1, confirming recent evidence for TRPV1 agonism of high mustard oil concentrations. Taken together, we present evidence for functional expression of excitatory TRPV1, TRPA1, and inhibitory CB1 receptors along the sensory fibers of the vagus nerve which lend pathophysiological relevance to the axonal membrane and the control of neuropeptide release that may become important in cases of inflammation or neuropathy. Sensitization and possible ectopic discharge may contribute to the development of autonomic

  13. Role of TRPV1 channels of the dorsal periaqueductal gray in the modulation of nociception and open elevated plus maze-induced antinociception in mice.

    PubMed

    Mascarenhas, Diego Cardozo; Gomes, Karina Santos; Nunes-de-Souza, Ricardo Luiz

    2015-10-01

    Recent findings have identified the presence of transient receptor potential vanilloid-1 (TRPV1) channels within the dorsal portion of the periaqueductal gray (dPAG), suggesting their involvement in the control of pain and environmentally-induced antinociception. Environmentally, antinociception may be achieved through the use of an open elevated plus maze (oEPM, an EPM with 4 open arms), a highly aversive environmental situation. Here, we investigated the role of these TRPV1 channels within the dPAG in the modulation of a tonic pain and in the oEPM-induced antinociception. Male Swiss mice, under the nociceptive effect of 2.5% formalin injected into the right hind paw, received intra-dPAG injections of the TRPV1 agonist (capsaicin: 0, 0.01, 0.1 or 1.0 nmol/0.2 μL; Experiment 1) or antagonist (capsazepine: 0, 10 or 30 nmol/0.2 μL; Experiment 2) or combined injections of capsazepine (30 nmol) and capsaicin (1.0 nmol) (Experiment 3) and the time spent licking the formalin-injected paw was recorded. In Experiment 4, mice received intra-dPAG capsazepine (0 or 30 nmol) and were exposed to the oEPM or to a control situation, an enclosed EPM (eEPM; an EPM with 4 enclosed arms). Results showed that while capsaicin (1 nmol) decreased the time spent licking the formalin-injected paw, capsazepine did not change nociceptive response. Capsazepine (30 nmol) blocked pain inhibition induced by capsaicin and mildly attenuated the oEPM-induced antinociception. Our results revealed an important role of TRPV1 channels within the dPAG in the modulation of pain and in the phenomenon known as fear-induced antinociception in mice.

  14. Phenotyping the Function of TRPV1-Expressing Sensory Neurons by Targeted Axonal Silencing

    PubMed Central

    Brenneis, Christian; Kistner, Katrin; Puopolo, Michelino; Segal, David; Roberson, David; Sisignano, Marco; Labocha, Sandra; Ferreirós, Nerea; Strominger, Amanda; Cobos, Enrique J.; Ghasemlou, Nader; Geisslinger, Gerd; Reeh, Peter W.; Bean, Bruce P.; Woolf, Clifford J.

    2013-01-01

    Specific somatosensations may be processed by different subsets of primary afferents. C-fibers expressing heat-sensitive TRPV1 channels are proposed, for example, to be heat but not mechanical pain detectors. To phenotype in rats the sensory function of TRPV1+ afferents, we rapidly and selectively silenced only their activity, by introducing the membrane-impermeant sodium channel blocker QX-314 into these axons via the TRPV1 channel pore. Using tandem mass spectrometry we show that upon activation with capsaicin, QX-314 selectively accumulates in the cytosol only of TRPV1-expressing cells, and not in control cells. Exposure to QX-314 and capsaicin induces in small DRG neurons a robust sodium current block within 30 s. In sciatic nerves, application of extracellular QX-314 with capsaicin persistently reduces C-fiber but not A-fiber compound action potentials and this effect does not occur in TRPV1−/− mice. Behavioral phenotyping after selectively silencing TRPV1+ sciatic nerve axons by perineural injections of QX-314 and capsaicin reveals deficits in heat and mechanical pressure but not pinprick or light touch perception. The response to intraplantar capsaicin is substantially reduced, as expected. During inflammation, silencing TRPV1+ axons abolishes heat, mechanical, and cold hyperalgesia but tactile and cold allodynia remain following peripheral nerve injury. These results indicate that TRPV1-expressing sensory neurons process particular thermal and mechanical somatosensations, and that the sensory channels activated by mechanical and cold stimuli to produce pain in naive/inflamed rats differ from those in animals after peripheral nerve injury. PMID:23283344

  15. Role of calcium ions in the positive interaction between TRPA1 and TRPV1 channels in bronchopulmonary sensory neurons.

    PubMed

    Hsu, Chun-Chun; Lee, Lu-Yuan

    2015-06-15

    Both transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are abundantly expressed in bronchopulmonary C-fiber sensory nerves and can be activated by a number of endogenous inflammatory mediators. A recent study has reported a synergistic effect of simultaneous TRPA1 and TRPV1 activations in vagal pulmonary C-fiber afferents in anesthetized rats, but its underlying mechanism was not known. This study aimed to characterize a possible interaction between these two TRP channels and to investigate the potential role of Ca(2+) as a mediator of this interaction in isolated rat vagal pulmonary sensory neurons. Using the perforated patch-clamp recording technique, our study demonstrated a distinct positive interaction occurring abruptly between TRPA1 and TRPV1 when they were activated simultaneously by their respective agonists, capsaicin (Cap) and allyl isothiocyanate (AITC), at near-threshold concentrations in these neurons. AITC at this low concentration evoked only minimal or undetectable responses, but it markedly amplified the Cap-evoked current in the same neurons. This potentiating effect was eliminated when either AITC or Cap was replaced by non-TRPA1 and non-TRPV1 chemical activators of these neurons, demonstrating the selectivity of the interaction between these two TRP channels. Furthermore, when Ca(2+) was removed from the extracellular solution, the synergistic effect of Cap and AITC on pulmonary sensory neurons was completely abrogated, clearly indicating a critical role of Ca(2+) in mediating the action. These results suggest that this TRPA1-TRPV1 interaction may play a part in regulating the sensitivity of pulmonary sensory neurons during airway inflammatory reaction.

  16. Allyl isothiocyanate sensitizes TRPV1 to heat stimulation.

    PubMed

    Alpizar, Yeranddy A; Boonen, Brett; Gees, Maarten; Sanchez, Alicia; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2014-03-01

    The powerful plant-derived irritant allyl isothiocyanate (AITC, aka mustard oil) induces hyperalgesia to heat in rodents and humans through mechanisms that are not yet fully understood. It is generally believed that AITC activates the broadly tuned chemosensory cation channel transient receptor potential cation channel subfamily A member 1 (TRPA1), triggering an inflammatory response that sensitizes the heat sensor transient receptor potential cation channel subfamily V member 1 (TRPV1). In the view of recent data demonstrating that AITC can directly activate TRPV1, we here explored the possibility that this compound sensitizes TRPV1 to heat stimulation in a TRPA1-independent manner. Patch-clamp recordings and intracellular Ca(2+) imaging experiments in HEK293T cells over-expressing mouse TRPV1 revealed that the increase in channel activation induced by heating is larger in the presence of AITC than in control conditions. The analysis of the effects of AITC and heat on the current-voltage relationship of TRPV1 indicates that the mechanism of sensitization is based on additive shifts of the voltage dependence of activation towards negative voltages. Finally, intracellular Ca(2+) imaging experiments in mouse sensory neurons isolated from Trpa1 KO mice yielded that AITC enhances the response to heat, specifically in the subpopulation expressing TRPV1. Furthermore, this effect was strongly reduced by the TRPV1 inhibitor capsazepine and virtually absent in neurons isolated from double Trpa1/Trpv1 KO mice. Taken together, these findings demonstrate that TRPV1 is a locus for cross sensitization between AITC and heat in sensory neurons and may help explaining, at least in part, the role of this channel in AITC-induced hyperalgesia to heat.

  17. A re-evaluation of 9-HODE activity at TRPV1 channels in comparison with anandamide: enantioselectivity and effects at other TRP channels and in sensory neurons

    PubMed Central

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Imperatore, Roberta; Cristino, Luigia; Starowicz, Katarzyna; Di Marzo, Vincenzo

    2012-01-01

    Background and Purpose Two oxidation products of linoleic acid, 9- and 13-hydroxy-octadecadienoic acids (HODEs), have recently been suggested to act as endovanilloids, that is, endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) channels, thereby contributing to inflammatory hyperalgesia in rats. However, HODE activity at rat TRPV1 in comparison with the best established endovanilloid, anandamide, and its enantioselectivity and selectivity towards other TRP channels that are also abundant in sensory neurons have never been investigated. Experimental Approach We studied the effect of 9(R)-HODE, 9(S)-HODE, (+/–)13-HODE, 15(S)-hydroxyanandamide and anandamide on [Ca2+]i in HEK-293 cells stably expressing the rat or human recombinant TRPV1, or rat recombinant TRPV2, TRPA1 or TRPM8, and also the effect of 9(S)-HODE in rat dorsal root ganglion (DRG) neurons by calcium imaging. Key Results Anandamide and 15(S)-hydroxyanandamide were the most potent endovanilloids at human TRPV1, whereas 9(S)-HODE was approximately threefold less efficacious and 75- and 3-fold less potent, respectively, and did not perform much better at rat TRPV1. The 9(R)-HODE and (+/–)13-HODE were almost inactive at TRPV1. Unlike anandamide and 15(S)-hydroxyanandamide, all HODEs were very weak at desensitizing TRPV1 to the action of capsaicin, but activated rat TRPV2 [only (+/–)13-HODE] and rat TRPA1, and antagonized rat TRPM8, at concentrations higher than those required to activate TRPV1. Finally, 9(S)-HODE elevated [Ca2+]i in DRG neurons almost exclusively in capsaicin-sensitive cells but only at concentrations between 25 and 100 μM. Conclusions and Implications The present data suggest that HODEs are less important endovanilloids than anandamide. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22861649

  18. Topical capsaicin application causes cold hypersensitivity in awake monkeys.

    PubMed

    Kamo, Hiroshi; Honda, Kuniya; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Kondo, Masahiro; Taira, Masato; Yamashita, Akiko; Katsuyama, Narumi; Masuda, Yuji; Kato, Takafumi; Iwata, Koichi

    2008-06-01

    Recent animal studies have demonstrated that many trigeminal ganglion neurons co-express TRPV1 and TRPA1 receptors following peripheral inflammation. In the present study, we examined whether cold receptors were sensitized by capsaicin in awake monkeys. Two monkeys were trained to detect a change in cold stimulus temperature (30 degrees C to 0.5, 1.0, 1.5 or 2.0 degrees C) applied to the facial skin. A total of 589 trials were studied, and the number of escape and hold-through trials and detection latency were measured. The number of escape trials was increased after capsaicin treatment, whereas that of hold-through trials was decreased. Detection latency was significantly decreased after capsaicin treatment. The present findings suggest that topical application of capsaicin to the facial skin induces reversible hypersensitivity to a facial cold stimulus in behaving monkeys.

  19. Duloxetine Reduces Oxidative Stress, Apoptosis, and Ca(2+) Entry Through Modulation of TRPM2 and TRPV1 Channels in the Hippocampus and Dorsal Root Ganglion of Rats.

    PubMed

    Demirdaş, Arif; Nazıroğlu, Mustafa; Övey, İshak Suat

    2016-07-21

    Overload of Ca(2+) entry and excessive oxidative stress in neurons are the two main causes of depression. Activation of transient receptor potential (TRP) vanilloid type 1 (TRPV1) and TRP melastatin 2 (TRPM2) during oxidative stress has been linked to neuronal survival. Duloxetine (DULOX) in neurons reduced the effects of Ca(2+) entry and reactive oxygen species (ROS) through glutamate receptors, and this reduction of effects may also occur through TRPM2 and TRPV1 channels. In order to better characterize the actions of DULOX in peripheral pain and hippocampal oxidative injury through modulation of TRPM2 and TRPV1, we tested the effects of DULOX on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with DULOX. In whole-cell patch-clamp and intracellular-free calcium ([Ca(2+)]) concentration (Fura-2) experiments, cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons were inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and capsaicin-induced TRPV1 currents were inhibited by capsazepine (CPZ) incubations. TRPM2 and TRPV1 channel current densities, [Ca(2+)] concentration, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, and intracellular ROS production values in the neurons were lower in the DULOX group than in controls. In addition, the above values were further decreased by DULOX + CPZ and DULOX + ACA treatments. In conclusion, TRPM2 and TRPV1 channels are involved in Ca(2+) entry-induced neuronal death and modulation of the activity of these channels by DULOX treatment may account for their neuroprotective activity against apoptosis, excessive ROS production, and Ca(2+) entry.

  20. TRPA1 and TRPV1 Antagonists Do Not Inhibit Human Acidosis-Induced Pain.

    PubMed

    Schwarz, Matthias G; Namer, Barbara; Reeh, Peter W; Fischer, Michael J M

    2017-01-03

    Acidosis occurs in a variety of pathophysiological and painful conditions where it is thought to excite or contribute to excitation of nociceptive neurons. Despite potential clinical relevance the principal receptor for sensing acidosis is unclear, but several receptors have been proposed. We investigated the contribution of the acid-sensing ion channels, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin type 1 (TRPA1) to peripheral pain signaling. We first established a human pain model using intraepidermal injection of the TRPA1 agonist carvacrol. This resulted in concentration-dependent pain sensations, which were reduced by experimental TRPA1 antagonist A-967079. Capsaicin-induced pain was reduced by the TRPV1 inhibitor BCTC. Amiloride was used to block acid-sensing ion channels. Testing these antagonists in a double-blind and randomized experiment, we probed the contribution of the respective channels to experimental acidosis-induced pain in 15 healthy human subjects. A continuous intraepidermal injection of pH 4.3 was used to counter the buffering capacity of tissue and generate a prolonged painful stimulation. In this model, addition of A-967079, BCTC or amiloride did not reduce the reported pain. In conclusion, target-validated antagonists, applied locally in human skin, have excluded the main hypothesized targets and the mechanism of the human acidosis-induced pain remains unclear.

  1. Capsaicin- and mustard oil-induced extracellular signal-regulated protein kinase phosphorylation in sensory neurons in vivo: effects of neurokinins 1 and 2 receptor antagonists and of a nitric oxide synthase inhibitor.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid; Schuligoi, Rufina

    2009-01-01

    Stimulation of primary sensory neurons with capsaicin or mustard oil leads to phosphorylation of extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) via activation of transient receptor potential V1 (TRPV1) or TRPA1, respectively. p-ERK1/2 was determined by Western immunoblotting in the dorsal root ganglia and in the sciatic nerve of rats following either systemic or perineural capsaicin treatment, or mustard oil application to the hind paw skin. To investigate the possible involvement of neurokinin 1 (NK(1)) and NK(2) receptors as well as of nitric oxide, the selective antagonists, SR140333 for NK(1) and SR48968 for NK(2), and the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), were employed. The increase of p-ERK1/2 after systemic capsaicin treatment was markedly attenuated by SR140333, while only the increase in the dorsal root ganglia was impaired by SR48968; in contrast, inhibition of nitric oxide synthase had no effect. Perineural capsaicin induced an increase in p-ERK1/2 in the ipsilateral sciatic nerve and in the dorsal root ganglia. This effect was not influenced by SR140333 or L-NAME. We found for the first time that mustard oil application to the hind paw skin caused an increase in p-ERK1/2 in the sciatic nerve and in the dorsal root ganglia and only the phosphorylation in the latter was attenuated by SR140333 while L-NAME showed no effect. From the present results, it may be assumed that capsaicin- or mustard oil-induced p-ERK1/2 in sensory neurons is not solely directly linked to TRPV1 or TRPA1 channels, but under certain conditions NK(1)- and NK(2)-mediated mechanisms are involved.

  2. TRPV1 is important for mechanical and heat sensitivity in uninjured animals and development of heat hypersensitivity after muscle inflammation.

    PubMed

    Walder, Roxanne Y; Radhakrishnan, Rajan; Loo, Lipin; Rasmussen, Lynn A; Mohapatra, Durga P; Wilson, Steven P; Sluka, Kathleen A

    2012-08-01

    Inflammatory thermal hyperalgesia is principally mediated through transient receptor potential vanilloid 1 (TRPV1) channels, as demonstrated by prior studies using models of cutaneous inflammation. Muscle pain is significantly different from cutaneous pain, and the involvement of TRPV1 in hyperalgesia induced by muscle inflammation is unknown. We tested whether TRPV1 contributes to the development of mechanical and heat hypersensitivity of the paw in TRPV1(-/-) mice after muscle inflammation. Because TRPV1(-/-) mice lack TRPV1 at the site of inflammation (muscle) and at the testing site (paw), we do not know whether TRPV1 is important as a mediator of nociceptor sensitization in the muscle or as a heat sensor in the paw. Using recombinant herpesviruses, we reexpressed TRPV1 in TRPV1(-/-) mice in primary afferents innervating skin, muscle, or both to determine which sites were important for the behavioral deficits. Responses to repeated application of noxious mechanical stimuli to the hind paw were enhanced in TRPV1(-/-) mice; this was restored by reexpression of TRPV1 into skin. Withdrawal latencies to noxious heat were increased in TRPV1(-/-) mice; normal latencies were restored by reexpression of TRPV1 in both skin and muscle. Heat hypersensitivity induced by muscle inflammation did not develop in TRPV1(-/-) mice; mechanical hypersensitivity was similar between TRPV1(-/-) and TRPV1(+/+) mice. Heat hypersensitivity induced by muscle inflammation was restored by reexpression of TRPV1 into both muscle and skin of TRPV1(-/-) mice. These results suggest that TRPV1 serves as both a mediator of nociceptor sensitization at the site of inflammation and as a heat sensor at the paw.

  3. Capsaicin-induced, capsazepine-insensitive relaxation of the guinea-pig ileum.

    PubMed

    Fujimoto, Seigo; Mori, Mayumi; Tsushima, Hiromi; Kunimatsu, Mitoshi

    2006-01-13

    The mechanisms underlying transient receptor potential vanilloid receptor type 1 (TRPV1)-independent relaxation elicited by capsaicin were studied by measuring isometric force and phosphorylation of 20-kDa regulatory light chain subunit of myosin (MLC(20)) in ileum longitudinal smooth muscles of guinea-pigs. In acetylcholine-stimulated tissues, capsaicin (1-100 microM) and resiniferatoxin (10 nM-1 microM) produced a concentration-dependent relaxation. The relaxant response was attenuated by 4-aminopyridine and high-KCl solution, but not by capsazepine, tetraethylammonium, Ba(2+), glibenclamide, charybdotoxin plus apamin nor antagonists of cannabinoid receptor type 1 and calcitonin-gene related peptide. A RhoA kinase inhibitor reduced the relaxant effect of capsaicin at 30 microM. Capsaicin and resiniferatoxin reduced acetylcholine- and caffeine-induced transient contractions in a Ca(2+)-free, EGTA solution. Capsaicin at 30 microM for 20 min did not alter basal levels of MLC(20) phosphorylation, but abolished an increase by acetylcholine in MLC(20) phosphorylation. It is suggested that the relaxant effect of capsaicin at concentrations used is not mediated by TRPV1, but by 4-aminopyridine-sensitive K(+) channels, and that capsaicin inhibits contractile mechanisms involving Ca(2+) release from intracellular storage sites. The relaxation could be explained by a decrease in phosphorylation of MLC(20).

  4. Potent and orally efficacious benzothiazole amides as TRPV1 antagonists.

    PubMed

    Besidski, Yevgeni; Brown, William; Bylund, Johan; Dabrowski, Michael; Dautrey, Sophie; Harter, Magali; Horoszok, Lucy; Hu, Yin; Johnson, Dean; Johnstone, Shawn; Jones, Paul; Leclerc, Sandrine; Kolmodin, Karin; Kers, Inger; Labarre, Maryse; Labrecque, Denis; Laird, Jennifer; Lundström, Therese; Martino, John; Maudet, Mickaël; Munro, Alexander; Nylöf, Martin; Penwell, Andrea; Rotticci, Didier; Slaitas, Andis; Sundgren-Andersson, Anna; Svensson, Mats; Terp, Gitte; Villanueva, Huascar; Walpole, Christopher; Zemribo, Ronald; Griffin, Andrew M

    2012-10-01

    Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.

  5. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    PubMed Central

    Park, Chul-Kyu

    2015-01-01

    In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region. PMID:26617436

  6. Synthesis of novel 13α-18-norandrostane-ferrocene conjugates via homogeneous catalytic methods and their investigation on TRPV1 receptor activation.

    PubMed

    Szánti-Pintér, Eszter; Wouters, Johan; Gömöry, Ágnes; Sághy, Éva; Szőke, Éva; Helyes, Zsuzsanna; Kollár, László; Skoda-Földes, Rita

    2015-12-01

    13α-Steroid-ferrocene derivatives were synthesized via two reaction pathways starting from an unnatural 16-keto-18-nor-13α-steroid. The unnatural steroid was converted to ferrocene derivatives via copper-catalyzed azide-alkyne cycloaddition or palladium-catalyzed aminocarbonylation. 16-Azido- and 16-N-(prop-2-ynyl)-carboxamido-steroids were synthesized as starting materials for azide-alkyne cycloaddition with the appropriate ferrocene derivatives. Based on our earlier work, aminocarbonylation of 16-iodo-16-ene and 16-iodo-15-ene derivatives was studied with ferrocenylmethylamine. The new products were obtained in moderate to good yields and were characterized by (1)H and (13)C NMR, IR and MS. The solid state structure of the starting material 13α-18-norandrostan-16-one and two carboxamide products were determined by X-ray crystallography. Evidences were provided that the N-propargyl-carboxamide compound as well as its ferrocenylmethyltriazole derivative are able to decrease the activation of TRPV1 receptor on TRG neurons.

  7. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.

  8. Capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of botulinum neurotoxin a.

    PubMed

    Thyagarajan, Baskaran; Krivitskaya, Natalia; Potian, Joseph G; Hognason, Kormakur; Garcia, Carmen C; McArdle, Joseph J

    2009-11-01

    Botulinum neurotoxin A (BoNT/A), the most toxic, naturally occurring protein, cleaves synapse-associated protein of 25 kDa and inhibits acetylcholine release from motor nerve endings (MNEs). This leads to paralysis of skeletal muscles. Our study demonstrates that capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of BoNT/A. Bilateral injection of BoNT/A near the innervation of the Extensor digitorum longus (EDL) muscle of adult Swiss-Webster mice inhibited the toe spread reflex (TSR). However, when capsaicin was coinjected bilaterally, or injected 4 or 8 h before injecting BoNT/A, the TSR remained normal. In animals that were pretreated with capsazepine, capsaicin failed to protect against the neuroparalytic effects of BoNT/A. In vivo analyses demonstrated that capsaicin protected muscle functions and electromygraphic activity from the incapacitating effects of BoNT/A. The twitch response to nerve stimulation was greater for EDL preparations isolated from mice injected with capsaicin before BoNT/A. Capsaicin pretreatment also prevented the inhibitory effects of BoNT/A on end-plate currents. Furthermore, pretreatment of Neuro 2a cells with capsaicin significantly preserved labeling of synaptic vesicles by FM 1-43. This protective effect of capsaicin was observed only in the presence of extracellular Ca(2+) and was inhibited by capsazepine. Immunohistochemistry demonstrated that MNEs express transient receptor potential protein of the vanilloid subfamily, TRPV1, the capsaicin receptor. Capsaicin pretreatment, in vitro, reduced nerve stimulation or KCl-induced uptake of BoNT/A into motor nerve endings and cholinergic Neuro 2a cells. These data demonstrate that capsaicin interacts with TRPV1 receptors on MNEs to reduce BoNT/A uptake via a Ca(2+)-dependent mechanism.

  9. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  10. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors.

    PubMed

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca(2+)-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels.

  11. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors

    PubMed Central

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca2+-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels. PMID:27445816

  12. ARA 290 relieves pathophysiological pain by targeting TRPV1 channel: Integration between immune system and nociception.

    PubMed

    Zhang, Wenjia; Yu, Guanling; Zhang, Mengyuan

    2016-02-01

    ARA 290 is an erythropoietin-derived polypeptide that possesses analgesic and tissue protective effect in many diseases such as diabetes and cancer. The analgesic effect of ARA 290 is mediated by its anti-inflammatory and immunomodulatory functions, or more specifically, by targeting the innate repair receptor (IRR) to down-regulate inflammation to alleviate neuropathic pain. However, whether other mechanisms or pathways are involved in ARA 290-mediated analgesic effect remains elusive. In this study, we are particularly interested in whether ARA 290 could directly target peripheral nociceptors by blocking or influencing receptors in pain sensation. Using calcium imaging, cell culture and behavioral tests, we demonstrated that ARA 290 was able to specifically inhibit TRPV1 channel activity, and relieve the mechanical hypersensitivity induced by capsaicin. Our study suggested that ARA 290 could potentially function as a novel antagonist for TRPV1 channel. This finding would not only contribute to the development of new pain treatment using ARA 290, but also help to improve our understanding of the integration between the immune system and the peripheral nervous system.

  13. Prolactin regulates TRPV1, TRPA1, and TRPM8 in sensory neurons in a sex-dependent manner: Contribution of prolactin receptor to inflammatory pain.

    PubMed

    Patil, Mayur J; Ruparel, Shivani B; Henry, Michael A; Akopian, Armen N

    2013-11-01

    Prolactin (PRL) is a hormone produced in the anterior pituitary but also synthesized extrapituitary where it can influence diverse cellular processes, including inflammatory responses. Females experience greater pain in certain inflammatory conditions, but the contribution of the PRL system to sex-dependent inflammatory pain is unknown. We found that PRL regulates transient receptor potential (TRP) channels in a sex-dependent manner in sensory neurons. At >20 ng/ml, PRL sensitizes TRPV1 in female, but not male, neurons. This effect is mediated by PRL receptor (PRL-R). Likewise, TRPA1 and TRPM8 were sensitized by 100 ng/ml PRL only in female neurons. We showed that complete Freund adjuvant (CFA) upregulated PRL levels in the inflamed paw of both male and female rats, but levels were higher in females. In contrast, CFA did not change mRNA levels of long and short PRL-R in the dorsal root ganglion or spinal cord. Analysis of PRL and PRL-R knockout (KO) mice demonstrated that basal responses to cold stimuli were only altered in females, and with no significant effects on heat and mechanical responses in both sexes. CFA-induced heat and cold hyperalgesia were not changed in PRL and PRL-R KO compared with wild-type (WT) males, whereas significant reduction of heat and cold post-CFA hyperalgesia was detected in PRL and PRL-R KO females. Attenuation of CFA-induced mechanical allodynia was observed in both PRL and PRL-R KO females and males. Thermal hyperalgesia in PRL KO females was restored by administration of PRL into hindpaws. Overall, we demonstrate a sex-dependent regulation of peripheral inflammatory hyperalgesia by the PRL system.

  14. Capsaicin affects brain function in a model of hepatic encephalopathy associated with fulminant hepatic failure in mice

    PubMed Central

    Avraham, Y; Grigoriadis, NC; Magen, I; Poutahidis, T; Vorobiav, L; Zolotarev, O; Ilan, Y; Mechoulam, R; Berry, EM

    2009-01-01

    Background and purpose: Hepatic encephalopathy is a neuropsychiatric syndrome caused by liver failure. In view of the effects of cannabinoids in a thioacetamide-induced model of hepatic encephalopathy and liver disease and the beneficial effect of capsaicin (a TRPV1 agonist) in liver disease, we assumed that capsaicin may also affect hepatic encephalopathy. Experimental approach: Fulminant hepatic failure was induced in mice by thioacetamide and 24 h later, the animals were injected with one of the following compound(s): 2-arachidonoylglycerol (CB1, CB2 and TRPV1 receptor agonist); HU308 (CB2 receptor agonist), SR141716A (CB1 receptor antagonist); SR141716A+2-arachidonoylglycerol; SR144528 (CB2 receptor antagonist); capsaicin; and capsazepine (TRPV1 receptor agonist and antagonist respectively). Their neurological effects were evaluated on the basis of activity in the open field, cognitive function in an eight-arm maze and a neurological severity score. The mice were killed 3 or 14 days after thioacetamide administration. 2-arachidonoylglycerol and 5-hydroxytryptamine (5-HT) levels were determined by gas chromatography-mass spectrometry and high-performance liquid chromatography with electrochemical detection, respectively. Results: Capsaicin had a neuroprotective effect in this animal model as shown by the neurological score, activity and cognitive function. The effect of capsaicin was blocked by capsazepine. Thioacetamide induced astrogliosis in the hippocampus and the cerebellum and raised brain 5-hydroxytryptamine levels, which were decreased by capsaicin, SR141716A and HU-308. Thioacetamide lowered brain 2-arachidonoylglycerol levels, an effect reversed by capsaicin. Conclusions: Capsaicin improved both liver and brain dysfunction caused by thioacetamide, suggesting that both the endocannabinoid and the vanilloid systems play important roles in hepatic encephalopathy. Modulation of these systems may have therapeutic value. PMID:19764982

  15. Wu-tou decoction inhibits chronic inflammatory pain in mice: participation of TRPV1 and TRPA1 ion channels.

    PubMed

    Wang, Chao; Liu, Chunfang; Wan, Hongye; Wang, Danhua; Sun, Danni; Xu, Tengfei; Yang, Yue; Qu, Yakun; Xu, Ying; Jing, Xianghong; Liu, Junling; Chen, Shuping; Liu, Zhiqiang; Lin, Na

    2015-01-01

    Wu-tou decoction (WTD) is a classic traditional Chinese medicine formula and has been used effectively to treat joint diseases clinically. Previous reports indicated that WTD possesses anti-inflammatory activity; however, its actions on pain have not been clarified. Here, we investigated the antinociceptive activity of WTD in CFA-induced mice, and its possible mechanism of the action associated with transient receptor potential (TRP) ion channels was also explored. Our results showed that 1.58, 3.15, and 6.30 g/kg WTD significantly attenuated mechanical, cold, and heat hypersensitivities. Moreover, WTD effectively inhibited spontaneous nociceptive responses to intraplantar injections of capsaicin and cinnamaldehyde, respectively. WTD also effectively suppressed jumping and wet-dog-shake behaviors to intraperitoneal injection of icilin. Additionally, WTD significantly reduced protein expression of TRPV1 and TRPA1 in dorsal root ganglia and skins of injured paw. Collectively, our data demonstrate firstly that WTD exerts antinociceptive activity in inflammatory conditions by attenuating mechanical, cold, and heat hypersensitivities. This antinociceptive effect may result in part from inhibiting the activities of TRPV1, TRPA1, and TRPM8, and the suppression of TRPV1 and TRPA1 protein by WTD was also highly effective. These findings suggest that WTD might be an attractive and suitable therapeutic agent for the management of chronic inflammatory pain.

  16. 4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities

    PubMed Central

    Takayama, Yasunori; Furue, Hidemasa; Tominaga, Makoto

    2017-01-01

    Interactions between calcium-activated chloride channel anoctamin 1 (ANO1) and transient receptor potential vanilloid 1 (TRPV1) enhance pain sensations in mice, suggesting that ANO1 inhibition could have analgesic effects. Here we show that menthol and the menthol analogue isopropylcyclohexane (iPr-CyH) inhibited ANO1 channels in mice. The iPr-CyH derivative 4-isopropylcyclohexanol (4-iPr-CyH-OH) inhibited mouse ANO1 currents more potently than iPr-CyH. Moreover, 4-iPr-CyH-OH inhibited the activities of TRPV1, TRP ankyrin 1 (TRPA1), TRP melastatin 8 (TRPM8) and TRPV4. Single-channel analysis revealed that 4-iPr-CyH-OH reduced TRPV1 and TRPA1 current open-times without affecting unitary amplitude or closed-time, suggesting that it affected gating rather than blocking the channel pore. The ability of 4-iPr-CyH-OH to inhibit action potential generation and reduce pain-related behaviors induced by capsaicin in mice suggests that 4-iPr-CyH-OH could have analgesic applications. Thus, 4-iPr-CyH-OH is a promising base chemical to develop novel analgesics that target ANO1 and TRP channels. PMID:28225032

  17. 4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities.

    PubMed

    Takayama, Yasunori; Furue, Hidemasa; Tominaga, Makoto

    2017-02-22

    Interactions between calcium-activated chloride channel anoctamin 1 (ANO1) and transient receptor potential vanilloid 1 (TRPV1) enhance pain sensations in mice, suggesting that ANO1 inhibition could have analgesic effects. Here we show that menthol and the menthol analogue isopropylcyclohexane (iPr-CyH) inhibited ANO1 channels in mice. The iPr-CyH derivative 4-isopropylcyclohexanol (4-iPr-CyH-OH) inhibited mouse ANO1 currents more potently than iPr-CyH. Moreover, 4-iPr-CyH-OH inhibited the activities of TRPV1, TRP ankyrin 1 (TRPA1), TRP melastatin 8 (TRPM8) and TRPV4. Single-channel analysis revealed that 4-iPr-CyH-OH reduced TRPV1 and TRPA1 current open-times without affecting unitary amplitude or closed-time, suggesting that it affected gating rather than blocking the channel pore. The ability of 4-iPr-CyH-OH to inhibit action potential generation and reduce pain-related behaviors induced by capsaicin in mice suggests that 4-iPr-CyH-OH could have analgesic applications. Thus, 4-iPr-CyH-OH is a promising base chemical to develop novel analgesics that target ANO1 and TRP channels.

  18. Nitro-oleic acid desensitizes TRPA1 and TRPV1 agonist responses in adult rat DRG neurons.

    PubMed

    Zhang, Xiulin; Koronowski, Kevin B; Li, Lu; Freeman, Bruce A; Woodcock, Stephen; de Groat, William C

    2014-01-01

    Nitro-oleic acid (OA-NO2), an electrophilic fatty acid nitroalkene byproduct of redox reactions, activates transient receptor potential ion channels (TRPA1 and TRPV1) in primary sensory neurons. To test the possibility that signaling actions of OA-NO2 might modulate TRP channels, we examined: (1) interactions between OA-NO2 and other agonists for TRPA1 (allyl-isothiocyanate, AITC) and TRPV1 (capsaicin) in rat dissociated dorsal root ganglion cells using Ca(2+) imaging and patch clamp techniques and (2) interactions between these agents on sensory nerves in the rat hindpaw. Ca(2+) imaging revealed that brief application (15-30 s) of each of the three agonists induced homologous desensitization. Heterologous desensitization also occurred when one agonist was applied prior to another agonist. OA-NO2 was more effective in desensitizing the response to AITC than the response to capsaicin. Prolonged exposure to OA-NO2 (20 min) had a similar desensitizing effect on AITC or capsaicin. Homologous and heterologous desensitizations were also demonstrated with patch clamp recording. Deltamethrin, a phosphatase inhibitor, reduced the capsaicin or AITC induced desensitization of OA-NO2 but did not suppress the OA-NO2 induced desensitization of AITC or capsaicin, indicating that heterologous desensitization induced by either capsaicin or AITC occurs by a different mechanism than the desensitization produced by OA-NO2. Subcutaneous injection of OA-NO2 (2.5mM, 35 μl) into a rat hindpaw induced delayed and prolonged nociceptive behavior. Homologous desensitization occurred with AITC and capsaicin when applied at 15 minute intervals, but did not occur with OA-NO2 when applied at a 30 min interval. Pretreatment with OA-NO2 reduced AITC-evoked nociceptive behaviors but did not alter capsaicin responses. These results raise the possibility that OA-NO2 might be useful clinically to reduce neurogenic inflammation and certain types of painful sensations by desensitizing TRPA1 expressing

  19. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    PubMed

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.

  20. Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia.

    PubMed

    Ro, Jin Y; Lee, Jong-Seok; Zhang, Youping

    2009-08-01

    The involvement of TRPV1 and TRPA1 in mediating craniofacial muscle nociception and mechanical hyperalgesia was investigated in male Sprague-Dawley rats. First, we confirmed the expression of TRPV1 in masseter afferents in rat trigeminal ganglia (TG), and provided new data that TRPA1 is also expressed in primary afferents innervating masticatory muscles in double-labeling immunohistochemistry experiments. We then examined whether the activation of each TRP channel in the masseter muscle evokes acute nocifensive responses and leads to the development of masseter hypersensitivity to mechanical stimulation using the behavioral models that have been specifically designed and validated for the craniofacial system. Intramuscular injections with specific agonists for TRPV1 and TRPA1, capsaicin and mustard oil (MO), respectively, produced immediate nocifensive hindpaw responses followed by prolonged mechanical hyperalgesia in a concentration-dependent manner. Pretreatment of the muscle with a TRPV1 antagonist, capsazepine, effectively attenuated the capsaicin-induced muscle nociception and mechanical hyperalgesia. Similarly, pretreatment of the muscle with a selective TRPA1 antagonist, AP18, significantly blocked the MO-induced muscle nociception and mechanical hyperalgesia. We confirmed these data with another set of selective antagonist for TRPV1 and TRPA1, AMG9810 and HC030031, respectively. Collectively, these results provide compelling evidence that TRPV1 and TRPA1 can functionally contribute to muscle nociception and hyperalgesia, and suggest that TRP channels expressed in muscle afferents can engage in the development of pathologic muscle pain conditions.

  1. TRPV1 dysfunction in cystinosis patients harboring the homozygous 57 kb deletion.

    PubMed

    Buntinx, L; Voets, T; Morlion, B; Vangeel, L; Janssen, M; Cornelissen, E; Vriens, J; de Hoon, J; Levtchenko, E

    2016-10-13

    Cystinosis is a rare autosomal recessive disorder characterized by lysosomal cystine accumulation due to loss of function of the lysosomal cystine transporter (CTNS). The most common mutation in cystinosis patients of Northern Europe consists of a 57-kb deletion. This deletion not only inactivates the CTNS gene but also extends into the non-coding region upstream of the start codon of the TRPV1 gene, encoding the capsaicin- and heat-sensitive ion channel TRPV1. To evaluate the consequences of the 57-kb deletion on functional TRPV1 expression, we compared thermal, mechanical and chemical sensitivity of cystinosis patients with matched healthy controls. Whereas patients heterozygous for the 57-kb deletion showed normal sensory responses, homozygous subjects exhibited a 60% reduction in vasodilation and pain evoked by capsaicin, as well as an increase in heat detection threshold. Responses to cold, mechanical stimuli or cinnamaldehyde, an agonist of the related nociceptor channel TRPA1, were unaltered. We conclude that cystinosis patients homozygous for the 57-kb deletion exhibit a strong reduction of TRPV1 function, leading to sensory deficiencies akin to the phenotype of TRPV1-deficient mice. These deficits may account for the reported sensory alterations and thermoregulatory deficits in these patients, and provide a paradigm for life-long TRPV1 deficiency in humans.

  2. TRPV1 dysfunction in cystinosis patients harboring the homozygous 57 kb deletion

    PubMed Central

    Buntinx, L.; Voets, T.; Morlion, B.; Vangeel, L.; Janssen, M.; Cornelissen, E.; Vriens, J.; de Hoon, J.; Levtchenko, E.

    2016-01-01

    Cystinosis is a rare autosomal recessive disorder characterized by lysosomal cystine accumulation due to loss of function of the lysosomal cystine transporter (CTNS). The most common mutation in cystinosis patients of Northern Europe consists of a 57-kb deletion. This deletion not only inactivates the CTNS gene but also extends into the non-coding region upstream of the start codon of the TRPV1 gene, encoding the capsaicin- and heat-sensitive ion channel TRPV1. To evaluate the consequences of the 57-kb deletion on functional TRPV1 expression, we compared thermal, mechanical and chemical sensitivity of cystinosis patients with matched healthy controls. Whereas patients heterozygous for the 57-kb deletion showed normal sensory responses, homozygous subjects exhibited a 60% reduction in vasodilation and pain evoked by capsaicin, as well as an increase in heat detection threshold. Responses to cold, mechanical stimuli or cinnamaldehyde, an agonist of the related nociceptor channel TRPA1, were unaltered. We conclude that cystinosis patients homozygous for the 57-kb deletion exhibit a strong reduction of TRPV1 function, leading to sensory deficiencies akin to the phenotype of TRPV1-deficient mice. These deficits may account for the reported sensory alterations and thermoregulatory deficits in these patients, and provide a paradigm for life-long TRPV1 deficiency in humans. PMID:27734949

  3. TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1.

    PubMed

    Salas, Margaux M; Hargreaves, Kenneth M; Akopian, Armen N

    2009-04-01

    The transient receptor potential (TRP)A1 channel is involved in the transduction of inflammation-induced noxious stimuli from the periphery. Previous studies have characterized the properties of TRPA1 in heterologous expression systems. However, there is little information on the properties of TRPA1-mediated currents in sensory neurons. A capsaicin-sensitive subset of rat and mouse trigeminal ganglion sensory neurons was activated with TRPA1-specific agonists, mustard oil and the cannabinoid WIN55,212. Mustard oil- and WIN55,212-gated currents exhibited marked variability in their kinetics of activation and acute desensitization. TRPA1-mediated responses in neurons also possess a characteristic voltage dependency with profound outward rectification that is influenced by extracellular Ca(2+) and the type and concentration of TRPA1-specific agonists. Examination of TRPA1-mediated responses in TRPA1-containing cells indicated that the features of neuronal TRPA1 are not duplicated in cells expressing only TRPA1 and, instead, can be restored only when TRPA1 and TRPV1 channels are coexpressed. In summary, our results suggest that TRPA1-mediated responses in sensory neurons have distinct characteristics that can be accounted for by the coexpression of the TRPV1 and TRPA1 channels.

  4. Role of pre-junctional CB1, but not CB2 , TRPV1 or GPR55 receptors in anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats.

    PubMed

    Marichal-Cancino, Bruno A; Altamirano-Espinoza, Alain H; Manrique-Maldonado, Guadalupe; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2014-03-01

    Stimulation of the perivascular sensory outflow in pithed rats produces vasodepressor responses mediated by CGRP release. Interestingly, endocannabinoids such as anandamide (which interacts with CB1 , CB2 , TRPV1 and GPR55 receptors) can regulate the activity of perivascular sensory nerves in dural blood vessels by modulating CGRP release. Yet, as no publication has reported whether this mechanism is operative in the healthy systemic vasculature, this study has specifically analysed the receptors mediating the potential inhibitory effects of the cannabinoid (CB) receptor agonists anandamide (non-selective), JWH-015 (CB2 ) and lysophosphatidylinositol (GPR55) on the rat vasodepressor sensory CGRPergic outflow (an index of systemic vasodilatation). Healthy pithed rats were pre-treated with consecutive i.v. continuous infusions of hexamethonium, methoxamine and the above agonists. Electrical spinal (T9 -T12 ) stimulation of the vasodepressor sensory CGRPergic outflow or i.v. injections of α-CGRP produced frequency-dependent or dose-dependent vasodepressor responses. The infusions of anandamide in a dose-dependent manner inhibited the vasodepressor responses by electrical stimulation (remaining unaffected by JWH-015 or lysophosphatidylinositol), but not those by α-CGRP. After i.v. administration of antagonists, the inhibition by 3.1 μg/kg min anandamide was: (i) potently blocked by 31-100 μg/kg NIDA41020 (CB1 ), (ii) unaffected by 180 μg/kg AM630 (CB2 ), 31 μg/kg cannabidiol (GPR55) or 31-100 μg/kg capsazepine (TRPV1) and (iii) slightly blocked by 310 μg/kg AM630. The above doses of antagonists were enough to block their respective receptors. These results suggest that anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow is mainly mediated by pre-junctional activation of CB1 receptors, with no pharmacological evidence for the role of CB2 , TRPV1 or GPR55 receptors.

  5. Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels

    PubMed Central

    Rossi, Francesca; Perrotta, Silverio; Bellini, Giulia; Luongo, Livio; Tortora, Chiara; Siniscalco, Dario; Francese, Matteo; Torella, Marco; Nobili, Bruno; Di Marzo, Vincenzo; Maione, Sabatino

    2014-01-01

    The pathogenesis of bone resorption in β-thalassemia major is multifactorial and our understanding of the underlying molecular and cellular mechanisms remains incomplete. Considering the emerging importance of the endocannabinoid/endovanilloid system in bone metabolism, it may be instructive to examine a potential role for this system in the development of osteoporosis in patients with β-thalassemia major and its relationship with iron overload and iron chelation therapy. This study demonstrates that, in thalassemic-derived osteoclasts, tartrate-resistant acid phosphatase expression inversely correlates with femoral and lumbar bone mineral density, and directly correlates with ferritin levels and liver iron concentration. The vanilloid agonist resiniferatoxin dramatically reduces cathepsin K levels and osteoclast numbers in vitro, without affecting tartrate-resistant acid phosphatase expression. The iron chelators deferoxamine, deferiprone and deferasirox decrease both tartrate-resistant acid phosphatase and cathepsin K expression, as well as osteoclast activity. Taken together, these data show that transient receptor potential vanilloid type 1 activation/desensitization influences tartrate-resistant acid phosphatase expression and activity, and this effect is dependent on iron, suggesting a pivotal role for iron overload in the dysregulation of bone metabolism in patients with thalassemia major. Our applied pharmacology provides evidence for the potential of iron chelators to abrogate these effects by reducing osteoclast activity. Whether iron chelation therapy is capable of restoring bone health in humans requires further study, but the potential to provide dual benefits for patients with β-thalassemia major –preventing iron-overload and alleviating associated osteoporotic changes – is exciting. PMID:25216685

  6. Increases in transient receptor potential vanilloid-1 mRNA and protein in primary afferent neurons stimulated by protein kinase C and their possible role in neurogenic inflammation

    PubMed Central

    Xu, Xijin; Wang, Peng; Zou, Xiaoju; Li, Dingge; Fang, Li; Lin, Qing

    2008-01-01

    A recent study by our group demonstrates pharmacologically that the transient receptor potential vanilloid-1 (TRPV1) is activated by intradermal injection of capsaicin to initiate neurogenic inflammation by the release of neuropeptides in the periphery. In this study, expression of TRPV1, phosphorylated protein kinase C (p-PKC) and calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons were visualized using immunofluorescence, real-time PCR and Western blots to examine whether increases in TRPV1 mRNA and protein levels evoked by capsaicin injection are subject to modulation by the activation of PKC and to analyze the role of this process in the pathogenesis of neurogenic inflammation. Capsaicin injection into the hindpaw skin of anesthetized rats evoked increases in the expression of TRPV1, CGRP and p-PKC in mRNA and/or protein levels and in the number of single labeled TRPV1, p-PKC and CGRP neurons in ipsilateral L4–5 DRGs. Co-expressions of TRPV1 with p-PKC and/or CGRP in DRG neurons were also significantly increased after CAP injection. These evoked expressions both at molecular and cellular levels were significantly inhibited after TRPV1 receptors were blocked by 5′-iodoresiniferatoxin (5 μg) or PKC was inhibited by chelerythrine chloride (5 μg). Taken together, these results provide evidence that up-regulation of TRPV1 mRNA and protein levels under inflammatory conditions evoked by capsaicin injection is subject to modulation by the PKC cascade in which increased CGRP level in DRG neurons may be related to the initiation of neurogenic inflammation. Thus, up-regulation of TRPV1 receptors in DRG neurons seems critical for initiating acute neurogenic inflammation. PMID:18752301

  7. Inhibition of nitric oxide synthesis blocks the inhibitory response to capsaicin in intestinal circular muscle preparations from different species.

    PubMed

    Benko, Rita; Lazar, Zsofia; Undi, Sarolta; Illenyi, Laszlo; Antal, Andras; Horvath, Ors-Peter; Rumbus, Zoltan; Wolf, Matyas; Maggi, Carlo A; Bartho, Lorand

    2005-04-29

    Moderate concentrations of the sensory stimulant drug capsaicin caused relaxation in human and animal intestinal circular muscle preparations (guinea-pig proximal, mouse distal colon, human small intestine and appendix) in vitro. With the exception of the guinea-pig colon, the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 10(-4) M) strongly inhibited the relaxant effect of capsaicin. Tetrodotoxin, an inhibitor of voltage-sensitive Na+ channels failed to significantly reduce the inhibitory effect of capsaicin in the guinea-pig colon, human ileum and appendix; it caused an approximately 50% reduction in the mouse colon. The relaxant effect of capsaicin was strongly reduced in colonic preparations from transient receptor potential vanilloid type (TRPV1) receptor knockout mice as compared to their wildtype controls. It is concluded that nitric oxide, possibly of sensory origin, is involved in the relaxant action of capsaicin in the circular muscle of the mouse and human intestine.

  8. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates.

    PubMed

    Saito, Shigeru; Nakatsuka, Kazumasa; Takahashi, Kenji; Fukuta, Naomi; Imagawa, Toshiaki; Ohta, Toshio; Tominaga, Makoto

    2012-08-31

    Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1.

  9. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages.

    PubMed

    Ninomiya, Yuki; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2017-03-11

    Sepsis is a systemic inflammatory response syndrome triggered by lipopolysaccharide (LPS), an outer membrane component of gram-negative bacteria, and cytokine production via LPS-induced macrophage activation is deeply involved in its pathogenesis. Effective therapy of sepsis has not yet been established. However, it was reported that transient receptor potential vanilloid 1 (TRPV1) channel antagonist capsazepine (CPZ; a capsaicin analogue) attenuates sepsis in a murine model [Ang et al., PLoS ONE 6(9) (2011) e24535; J. Immunol. 187 (2011) 4778-4787]. Here, we profiled the effects of four TRPV1 channel antagonists, AMG9810, SB366791, BCTC and CPZ, on the release of IL-6, IL-1β and IL-18, and on expression of cyclooxygenase 2 (COX-2) in LPS-activated macrophages. Treatment of murine macrophage J774.1 cells or BALB/c mouse-derived intraperitoneal immune cells with LPS induced pro-inflammatory cytokines production and COX-2 expression. Pretreatment with AMG9810 or CPZ significantly suppressed the release of IL-6, IL-1β and IL-18, and COX-2 expression, whereas SB366791 and BCTC were less effective. These results support a role of TRPV1 channel in macrophage activation, but also indicate that only a subset of TRPV1 channel antagonists may be effective in suppressing inflammatory responses. These results suggest that at least some TRPV1 channel antagonists, such as AMG9810 and CPZ, may be candidate anti-inflammatory agents for treatment of sepsis.

  10. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.

    PubMed

    Özdemir, Ümit Sinan; Nazıroğlu, Mustafa; Şenol, Nilgün; Ghazizadeh, Vahid

    2016-08-01

    Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through

  11. Aggravated renal inflammatory responses in TRPV1 gene knockout mice subjected to DOCA-salt hypertension.

    PubMed

    Wang, Youping; Wang, Donna H

    2009-12-01

    To test the hypothesis that deletion of the transient receptor potential vanilloid type 1 (TRPV1) channel exaggerates hypertension-induced renal inflammatory response, wild-type (WT) or TRPV1-null mutant (TRPV1(-/-)) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for 4 wk. Mean arterial pressure (MAP) determined by radiotelemetry increased in DOCA-salt-treated WT or TRPV1(-/-) mice, whereas there was no difference in MAP between two strains at the baseline or after DOCA-salt treatment. DOCA-salt treatment increased urinary excretion of albumin and 8-isoprostane in both WT and TRPV1(-/-) mice, and the increases were greater in magnitude in the latter strain. Periodic acid-Schiff and Mason's trichrome staining showed that kidneys of DOCA-salt-treated TRPV1(-/-) mice exhibited more severe glomerulosclerosis and tubulointerstitial injury compared with DOCA-salt-treated WT mice. NF-kappaB assay showed that DOCA-salt treatment increased renal activated NF-kappaB concentrations in TRPV1(-/-) mice compared with WT mice. Immunostaining and ELISA assay revealed that DOCA-salt-treated TRPV1(-/-) mice had enhanced renal infiltration of monocyte/macrophage and lymphocyte, as well as increased renal levels of proinflammatory cytokine (TNF-alpha, IL-6) and chemokine (MCP-1) compared with DOCA-salt-treated WT mice. Renal ICAM-1 but not VCAM-1 expression was also greater in DOCA-salt-treated TRPV1(-/-) than WT mice. Dexamethasone (DEXA), an immunosuppressive drug, conveyed a renoprotective effect that was greater in DOCA-salt-treated TRPV1(-/-) compared with WT mice. These data show that renal inflammation is exacerbated in DOCA-salt hypertension when TRPV1 gene is deleted and that the deterioration is ameliorated by DEXA treatment, indicating that TRPV1 may act as a potential regulator of the inflammatory process to lessen renal injury in DOCA-salt hypertension.

  12. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model.

    PubMed

    Fang, Dong; Kong, Ling-Yu; Cai, Jie; Li, Song; Liu, Xiao-Dan; Han, Ji-Sheng; Xing, Guo-Gang

    2015-06-01

    Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the pathogenesis of bone cancer pain still remain largely unknown. Previously, we have reported that sensitization of primary sensory dorsal root ganglion (DRG) neurons contributes to the pathogenesis of bone cancer pain in rats. In addition, numerous preclinical and clinical studies have revealed the pathological roles of interleukin-6 (IL-6) in inflammatory and neuropathic hyperalgesia. In this study, we investigated the role and the underlying mechanisms of IL-6 in the development of bone cancer pain using in vitro and in vivo approaches. We first demonstrated that elevated IL-6 in DRG neurons plays a vital role in the development of nociceptor sensitization and bone cancer-induced pain in a rat model through IL-6/soluble IL-6 receptor (sIL-6R) trans-signaling. Moreover, we revealed that functional upregulation of transient receptor potential vanilloid channel type 1 (TRPV1) in DRG neurons through the activation of Janus kinase (JAK)/phosphatidylinositol 3-kinase (PI3K) signaling pathway contributes to the effects of IL-6 on the pathogenesis of bone cancer pain. Therefore, suppression of functional upregulation of TRPV1 in DRG neurons by the inhibition of JAK/PI3K pathway, either before surgery or after surgery, reduces the hyperexcitability of DRG neurons and pain hyperalgesia in bone cancer rats. We here disclose a novel intracellular pathway, the IL-6/JAK/PI3K/TRPV1 signaling cascade, which may underlie the development of peripheral sensitization and bone cancer-induced pain.

  13. Optical stimulation in mice lacking the TRPV1 channel

    NASA Astrophysics Data System (ADS)

    Suh, Eul; Izzo Matic, Agnella; Otting, Margarete; Walsh, Joseph T., Jr.; Richter, Claus-Peter

    2009-02-01

    Lasers can be used to stimulate neural tissue, including the sciatic nerve or auditory neurons. Wells and coworkers suggested that neural tissue is likely stimulated by heat.[1,2] Ion channels that can be activated by heat are the TRPV channels, a subfamily of the Transient Receptor Potential (TRP) ion channels. TRPV channels are nonselective cation channels found in sensory neurons involved in nociception. In addition to various chemicals, TRPV channels can also be thermally stimulated. The activation temperature for the different TRPV channels varies and is 43°C for TRPV1 and 39°C for TRPV3. By performing an immunohistochemical staining procedure on frozen 20 μm cochlear slices using a primary TRPV1 antibody, we observed specific immunostaining of the spiral ganglion cells. Here we show that in mice that lack the gene for the TRPV1 channel optical radiation cannot evoke action potentials on the auditory nerve.

  14. Confocal microscopy with double immunofluorescence staining reveals the functional transient receptor potential vanilloid subtype 1 expressed in myoepithelial cells of human submandibular glands.

    PubMed

    Ding, Qianwen; Zhang, Yan; Cong, Xin; Cai, Zhigang; Han, Jingyan; Su, Yunchao; Wu, Li-Ling; Yu, Guan-Gyan

    2012-05-01

    Myoepithelial cells (MECs) mainly surround acini and intercalated ducts in the human salivary glands. The contraction of MECs provides the expulsive force to promote salivation. We previously found functional transient receptor potential vanilloid subtype 1 (TRPV1) was expressed in rabbit and human submandibular glands and increased saliva secretion. However, it was unknown whether TRPV1 was expressed in MECs of submandibular glands. In this study, we observed the immunoflourescence of TRPV1 was not only located in serous acini and ducts but also surround the basal layer of the acinus and intercalated ducts of human submandibular glands. Double immunofluorescence staining revealed colocalization of TRPV1 with calponin, vimentin, and α-smooth muscle actin, which indicated the myoepithelial expression of TRPV1. Treating submandibular gland tissues with capsaicin, an agonist of TRPV1, substantially increased the phosphorylation of the 20-kDa regulatory light-chain subunit of myosin (MLC(20) ), a crucial molecule for contraction of smooth muscle cells, in MECs. Pretreatment with capsazepine, a specific TRPV1 inhibitor, blocked capsaicin-induced MLC(20) phosphorylation. These results suggest that TRPV1 is expressed in MECs of the human submandibular gland and mediates myoepithelial contraction via a mechanism involving MLC(20) phosphorylation.

  15. Capsaicin partially mimics heat in mouse fibroblast cells in vitro.

    PubMed

    Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Nakamura, Hiroyuki; Yachie, Akihiro; Shido, Osamu

    2017-03-01

    Capsaicin activates transient receptor potential vanilloid 1 (TRPV1), a cation channel in the transient receptor potential family, resulting in the transient entry of Ca(2+) and Mg(2+) and a warm sensation. However, the effects of capsaicin on cells have not fully elucidated in fibroblasts. In this study, we investigated whether capsaicin could induce signal transduction in mouse fibroblast cells and compared the effect with that of heat-induced signal transduction. The activation of the mitogen-activated protein kinases (MAPKs) ERK and p38 MAPK, expression levels of heat shock protein 70 (HSP70) and HSP90, actin assembly, and cell proliferation were analyzed in NIH3T3 mouse fibroblast cells. A 15-min stimulation with capsaicin (∼100 μM) phosphorylated ERK and p38 MAPK and induced actin assembly. A 2-day stimulation with capsaicin increased the level of HSP70, but not HSP90, and the 2-day stimulation with capsaicin (∼100 μM) did not affect cell proliferation. A 15-min exposure to moderate heat (39.5 °C) phosphorylated both ERK and p38 MAPK and induced actin assembly to similar degrees as stimulation with capsaicin. A 2-day exposure to moderate heat increased the levels of both HSP70 and HSP90 and prevented cell proliferation. However, the 2-day stimulation with capsaicin (100 μM) failed to prevent heat shock-induced cell death. Thus, our results suggest that the effects of capsaicin on fibroblast cells partially differ from those of heat. Notably, the 2-day stimulation with capsaicin was not sufficient to develop heat tolerance in fibroblast cells.

  16. A synergistic effect of simultaneous TRPA1 and TRPV1 activations on vagal pulmonary C-fiber afferents.

    PubMed

    Lin, Yu-Jung; Lin, Ruei-Lung; Ruan, Ting; Khosravi, Mehdi; Lee, Lu-Yuan

    2015-02-01

    Transient receptor potential ankyrin type 1 (TRPA1) and vanilloid type 1 (TRPV1) receptors are coexpressed in vagal pulmonary C-fiber sensory nerves. Because both these receptors are sensitive to a number of endogenous inflammatory mediators, it is conceivable that they can be activated simultaneously during airway inflammation. This study aimed to determine whether there is an interaction between these two polymodal transducers upon simultaneous activation, and how it modulates the activity of vagal pulmonary C-fiber sensory nerves. In anesthetized, spontaneously breathing rats, the reflex-mediated apneic response to intravenous injection of a combined dose of allyl isothiocyanate (AITC, a TRPA1 activator) and capsaicin (Cap, a TRPV1 activator) was ∼202% greater than the mathematical sum of the responses to AITC and Cap when they were administered individually. Similar results were also observed in anesthetized mice. In addition, the synergistic effect was clearly demonstrated when the afferent activity of single vagal pulmonary C-fiber afferents were recorded in anesthetized, artificially ventilated rats; C-fiber responses to AITC, Cap and AITC + Cap (in combination) were 0.6 ± 0.1, 0.8 ± 0.1, and 4.8 ± 0.6 impulses/s (n = 24), respectively. This synergism was absent when either AITC or Cap was replaced by other chemical activators of pulmonary C-fiber afferents. The pronounced potentiating effect was further demonstrated in isolated vagal pulmonary sensory neurons using the Ca(2+) imaging technique. In summary, this study showed a distinct positive interaction between TRPA1 and TRPV1 when they were activated simultaneously in pulmonary C-fiber sensory nerves.

  17. TRPV1: on the road to pain relief.

    PubMed

    Jara-Oseguera, Andrés; Simon, Sidney A; Rosenbaum, Tamara

    2008-11-01

    Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.

  18. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  19. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways

    PubMed Central

    Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J.; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O.M. Zack

    2014-01-01

    Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and antiinflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

  20. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice.

    PubMed

    Luvisetto, Siro; Vacca, Valentina; Cianchetti, Carlo

    2015-02-01

    We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists.

  1. TRPV1 agonist monoacylglycerol increases UCP1 content in brown adipose tissue and suppresses accumulation of visceral fat in mice fed a high-fat and high-sucrose diet.

    PubMed

    Iwasaki, Yusaku; Tamura, Yasuko; Inayoshi, Kimiko; Narukawa, Masataka; Kobata, Kenji; Chiba, Hiroshige; Muraki, Etsuko; Tsunoda, Nobuyo; Watanabe, Tatsuo

    2011-01-01

    The administration of such a transient receptor potential vanilloid 1 (TRPV1) agonist as capsaicin, which is a pungent ingredient of red pepper, promotes energy metabolism and suppresses visceral fat accumulation. We have recently identified monoacylglycerols (MGs) having an unsaturated long-chain fatty acid as the novel TRPV1 agonist in foods. We investigated in this present study the effects of dietary MGs on uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT) and on fat accumulation in mice fed with a high-fat, high-sucrose diet. The MG30 diet that substituted 30% of all lipids for MGs (a mixture of 1-oleoylglycerol, 1-linoleoylglycerol and 1-linolenoylglycerol) significantly increased the UCP1 content of IBAT and decreased the weight of epididymal white adipose tissue, and the serum glucose, total cholesterol and free fatty acid levels. The diet containing only 1-oleoylglycerol as MG also increased UCP1 expression in IBAT. MGs that activated TRPV1 also therefore induced the expression of UCP 1 and prevented visceral fat accumulation as well as capsaicin.

  2. Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons.

    PubMed

    Jeske, Nathaniel A; Patwardhan, Amol M; Gamper, Nikita; Price, Theodore J; Akopian, Armen N; Hargreaves, Kenneth M

    2006-10-27

    Cannabinoids are known to have multiple sites of action in the nociceptive system, leading to reduced pain sensation. However, the peripheral mechanism(s) by which this phenomenon occurs remains an issue that has yet to be resolved. Because phosphorylation of TRPV1 (transient receptor potential subtype V1) plays a key role in the induction of thermal hyperalgesia in inflammatory pain models, we evaluated whether the cannabinoid agonist WIN 55,212-2 (WIN) regulates the phosphorylation state of TRPV1. Here, we show that treatment of primary rat trigeminal ganglion cultures with WIN led to dephosphorylation of TRPV1, specifically at threonine residues. Utilizing Chinese hamster ovary cell lines, we demonstrate that Thr(144) and Thr(370) were dephosphorylated, leading to desensitization of the TRPV1 receptor. This post-translational modification occurred through activation of the phosphatase calcineurin (protein phosphatase 2B) following WIN treatment. Furthermore, knockdown of TRPA1 (transient receptor potential subtype A1) expression in sensory neurons by specific small interfering RNA abolished the WIN effect on TRPV1 dephosphorylation, suggesting that WIN acts through TRPA1. We also confirm the importance of TRPA1 in WIN-induced dephosphorylation of TRPV1 in Chinese hamster ovary cells through targeted expression of one or both receptor channels. These results imply that the cannabinoid WIN modulates the sensitivity of sensory neurons to TRPV1 activation by altering receptor phosphorylation. In addition, our data could serve as a useful strategy in determining the potential use of certain cannabinoids as peripheral analgesics.

  3. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch

    PubMed Central

    Anand, P.; Bley, K.

    2011-01-01

    Summary Topical capsaicin formulations are used for pain management. Safety and modest efficacy of low-concentration capsaicin formulations, which require repeated daily self-administration, are supported by meta-analyses of numerous studies. A high-concentration capsaicin 8% patch (Qutenza™) was recently approved in the EU and USA. A single 60-min application in patients with neuropathic pain produced effective pain relief for up to 12 weeks. Advantages of the high-concentration capsaicin patch include longer duration of effect, patient compliance, and low risk for systemic effects or drug–drug interactions. The mechanism of action of topical capsaicin has been ascribed to depletion of substance P. However, experimental and clinical studies show that depletion of substance P from nociceptors is only a correlate of capsaicin treatment and has little, if any, causative role in pain relief. Rather, topical capsaicin acts in the skin to attenuate cutaneous hypersensitivity and reduce pain by a process best described as ‘defunctionalization’ of nociceptor fibres. Defunctionalization is due to a number of effects that include temporary loss of membrane potential, inability to transport neurotrophic factors leading to altered phenotype, and reversible retraction of epidermal and dermal nerve fibre terminals. Peripheral neuropathic hypersensitivity is mediated by diverse mechanisms, including altered expression of the capsaicin receptor TRPV1 or other key ion channels in affected or intact adjacent peripheral nociceptive nerve fibres, aberrant re-innervation, and collateral sprouting, all of which are defunctionalized by topical capsaicin. Evidence suggests that the utility of topical capsaicin may extend beyond painful peripheral neuropathies. PMID:21852280

  4. Nociceptors lacking TRPV1 and TRPV2 have normal heat responses.

    PubMed

    Woodbury, C Jeffery; Zwick, Melissa; Wang, Shuying; Lawson, Jeffrey J; Caterina, Michael J; Koltzenburg, Martin; Albers, Kathryn M; Koerber, H Richard; Davis, Brian M

    2004-07-14

    Vanilloid receptor 1 (TRPV1) has been proposed to be the principal heat-responsive channel for nociceptive neurons. The skin of both rat and mouse receives major projections from primary sensory afferents that bind the plant lectin isolectin B4 (IB4). The majority of IB4-positive neurons are known to be heat-responsive nociceptors. Previous studies suggested that, unlike rat, mouse IB4-positive cutaneous afferents did not express TRPV1 immunoreactivity. Here, multiple antisera were used to confirm that mouse and rat have different distributions of TRPV1 and that TRPV1 immunoreactivity is absent in heat-sensitive nociceptors. Intracellular recording in TRPV1(-/-) mice was then used to confirm that TRPV1 was not required for detecting noxious heat. TRPV1(-/-) mice had more heat-sensitive neurons, and these neurons had normal temperature thresholds and response properties. Moreover, in TRPV1(-/-) mice, 82% of heat-responsive neurons did not express immunoreactivity for TRPV2, another putative noxious heat channel.

  5. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  6. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    SciTech Connect

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang; Li, Junying

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  7. Sensitization of Primary Afferent Nociceptors Induced by Intradermal Capsaicin Involves the Peripheral Release of Calcitonin Gene-Related Peptide Driven by Dorsal Root Reflexes

    PubMed Central

    Li, Dingge; Ren, Yong; Xu, Xijin; Zou, Xiaoju; Fang, Li; Lin, Qing

    2008-01-01

    Neuropeptides released from axons of primary afferent nociceptive neurons are the key elements for the incidence of neurogenic inflammation and their release is associated with dorsal root reflexes (DRRs). However, whether the release is due to the triggering of DRRs and plays a role in inflammation-induced pain still remain to be determined. The present study assessed the role of calcitonin gene-related peptide (CGRP) in sensitization of primary afferent nociceptors induced by activation of transient receptor potential vanilloid-1 (TRPV1) following intradermal injection of capsaicin and determined if this release is due to activation of primary afferent neurons antidromically by triggering of DRRs. Under dorsal root intact conditions, primary afferent nociceptive fibers recorded in anesthetized rats could be sensitized by capsaicin injection, as shown by an increase in afferent responses and lowering of the response threshold to mechanical stimuli. After DRRs were removed by dorsal rhizotomy, the capsaicin-evoked sensitization was significantly reduced. In dorsal root intact rats, peripheral pretreatment with a CGRP receptor antagonist could dose-dependently reduce the capsaicin-induced sensitization. Peripheral post-treatment with CGRP could dose-dependently restore the capsaicin-induced sensitization under dorsal rhizotomized conditions. Capsaicin injection evoked increases in numbers of single and double labeled TRPV1 and CGRP neurons in ipsilateral dorsal root ganglia (DRG). After dorsal rhizotomy, these evoked expressions were significantly inhibited. Perspective These data indicate that the DRR-mediated neurogenic inflammation enhances sensitization of primary afferent nociceptors induced by capsaicin injection. The underlying mechanism involves antidromic activation of DRG neurons via up-regulation of TRPV1 receptors whereby CGRP is released peripherally. PMID:18701354

  8. "Epithelial Cell TRPV1-Mediated Airway Sensitivity as a Mechanism for Respiratory Symptoms Associated with Gulf War Illness?

    DTIC Science & Technology

    2010-06-01

    TITLE: “Epithelial Cell TRPV1 -Mediated Airway Sensitivity as a Mechanism for Respiratory Symptoms Associated with Gulf War Illness” PRINCIPAL...66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH 01-06-2010 Annual Report 1 JUN 2009 - 31 MAY 2010 Epithelial Cell TRPV1 -Mediated Airway...express functional TRPV1 . More recently we found that these cells also express another important irritant receptor, namely TRPA1. Activation of

  9. Effects of some natural carotenoids on TRPA1- and TRPV1-induced neurogenic inflammatory processes in vivo in the mouse skin.

    PubMed

    Horváth, Györgyi; Kemény, Ágnes; Barthó, Loránd; Molnár, Péter; Deli, József; Szente, Lajos; Bozó, Tamás; Pál, Szilárd; Sándor, Katalin; Szőke, Éva; Szolcsányi, János; Helyes, Zsuzsanna

    2015-05-01

    Mechanisms of the potent anti-inflammatory actions of carotenoids are unknown. Since carotenoids are incorporated into membranes, they might modulate transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1) activation predominantly on peptidergic sensory nerves. We therefore investigated the effects of three carotenoids (β-carotene, lutein and lycopene) on cutaneous neurogenic inflammation. Acute neurogenic edema and inflammatory cell recruitment were induced by smearing the TRPA1 agonist mustard oil (5%) or the TRPV1 activator capsaicin (2.5%) on the mouse ear. Ear thickness was then determined by micrometry, microcirculation by laser Doppler imaging and neutrophil accumulation by histopathology and spectrophotometric determination of myeloperoxidase activity. The effects of lutein on the stimulatory action of the TRPA1 agonist mustard oil were also tested on the guinea-pig small intestine, in isolated organ experiments. Mustard oil evoked 50-55% ear edema and granulocyte influx, as shown by histology and myeloperoxidase activity. Swelling was significantly reduced between 2 and 4 h after administration of lutein or β-carotene (100 mg/kg subcutane three times during 24 h). Lutein also decreased neutrophil accumulation induced by TRPA1 activation, but did not affect mustard oil-evoked intestinal contraction. Lycopene had no effect on any of these parameters. None of the three carotenoids altered capsaicin-evoked inflammation. It is proposed that the dihydroxycarotenoid lutein selectively inhibits TRPA1 activation and consequent neurogenic inflammation, possibly by modulating lipid rafts.

  10. Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries

    PubMed Central

    Gupta, Saurabh; Lozano-Cuenca, Jair; Villalón, Carlos M.; de Vries, René; Garrelds, Ingrid M.; Avezaat, Cees J. J.; van Kats, Jorge P.; Saxena, Pramod R.

    2007-01-01

    Capsaicin, a pungent constituent from red chilli peppers, activates sensory nerve fibres via transient receptor potential vanilloid receptors type 1 (TRPV1) to release neuropeptides like calcitonin gene-related peptide (CGRP) and substance P. Capsaicin-sensitive nerves are widely distributed in human and porcine vasculature. In this study, we examined the mechanism of capsaicin-induced relaxations, with special emphasis on the role of CGRP, using various pharmacological tools. Segments of human and porcine proximal and distal coronary arteries, as well as cranial arteries, were mounted in organ baths. Concentration response curves to capsaicin were constructed in the absence or presence of the CGRP receptor antagonist olcegepant (BIBN4096BS, 1 μM), the neurokinin NK1 receptor antagonist L-733060 (0.5 μM), the voltage-sensitive calcium channel blocker ruthenium red (100 μM), the TRPV1 receptor antagonist capsazepine (5 μM), the nitric oxide synthetase inhibitor Nω-nitro-l-arginine methyl ester HCl (l-NAME; 100 μM), the gap junction blocker 18α-glycyrrhetinic acid (10 μM), as well as the RhoA kinase inhibitor Y-27632 (1 μM). Further, we also used the K+ channel inhibitors 4-aminopyridine (1 mM), charybdotoxin (0.5 μM) + apamin (0.1 μM) and iberiotoxin (0.5 μM) + apamin (0.1 μM). The role of the endothelium was assessed by endothelial denudation in distal coronary artery segments. In distal coronary artery segments, we also measured levels of cyclic adenosine monophosphate (cAMP) after exposure to capsaicin, and in human segments, we also assessed the amount of CGRP released in the organ bath fluid after exposure to capsaicin. Capsaicin evoked concentration-dependent relaxant responses in precontracted arteries, but none of the above-mentioned inhibitors did affect these relaxations. There was no increase in the cAMP levels after exposure to capsaicin, unlike after (exogenously administered) α-CGRP. Interestingly, there were

  11. Functional and Structural Divergence in Human TRPV1 Channel Subunits by Oxidative Cysteine Modification.

    PubMed

    Ogawa, Nozomi; Kurokawa, Tatsuki; Fujiwara, Kenji; Polat, Onur Kerem; Badr, Heba; Takahashi, Nobuaki; Mori, Yasuo

    2016-02-19

    Transient receptor potential vanilloid 1 (TRPV1) channel is a tetrameric protein that acts as a sensor for noxious stimuli such as heat and for diverse inflammatory mediators such as oxidative stress to mediate nociception in a subset of sensory neurons. In TRPV1 oxidation sensing, cysteine (Cys) oxidation has been considered as the principle mechanism; however, its biochemical basis remains elusive. Here, we characterize the oxidative status of Cys residues in differential redox environments and propose a model of TRPV1 activation by oxidation. Through employing a combination of non-reducing SDS-PAGE, electrophysiology, and mass spectrometry we have identified the formation of subunit dimers carrying a stable intersubunit disulfide bond between Cys-258 and Cys-742 of human TRPV1 (hTRPV1). C258S and C742S hTRPV1 mutants have a decreased protein half-life, reflecting the role of the intersubunit disulfide bond in supporting channel stability. Interestingly, the C258S hTRPV1 mutant shows an abolished response to oxidants. Mass spectrometric analysis of Cys residues of hTRPV1 treated with hydrogen peroxide shows that Cys-258 is highly sensitive to oxidation. Our results suggest that Cys-258 residues are heterogeneously modified in the hTRPV1 tetrameric complex and comprise Cys-258 with free thiol for oxidation sensing and Cys-258, which is involved in the disulfide bond for assisting subunit dimerization. Thus, the hTRPV1 channel has a heterogeneous subunit composition in terms of both redox status and function.

  12. Functional and Structural Divergence in Human TRPV1 Channel Subunits by Oxidative Cysteine Modification*

    PubMed Central

    Ogawa, Nozomi; Kurokawa, Tatsuki; Fujiwara, Kenji; Polat, Onur Kerem; Badr, Heba; Takahashi, Nobuaki; Mori, Yasuo

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1) channel is a tetrameric protein that acts as a sensor for noxious stimuli such as heat and for diverse inflammatory mediators such as oxidative stress to mediate nociception in a subset of sensory neurons. In TRPV1 oxidation sensing, cysteine (Cys) oxidation has been considered as the principle mechanism; however, its biochemical basis remains elusive. Here, we characterize the oxidative status of Cys residues in differential redox environments and propose a model of TRPV1 activation by oxidation. Through employing a combination of non-reducing SDS-PAGE, electrophysiology, and mass spectrometry we have identified the formation of subunit dimers carrying a stable intersubunit disulfide bond between Cys-258 and Cys-742 of human TRPV1 (hTRPV1). C258S and C742S hTRPV1 mutants have a decreased protein half-life, reflecting the role of the intersubunit disulfide bond in supporting channel stability. Interestingly, the C258S hTRPV1 mutant shows an abolished response to oxidants. Mass spectrometric analysis of Cys residues of hTRPV1 treated with hydrogen peroxide shows that Cys-258 is highly sensitive to oxidation. Our results suggest that Cys-258 residues are heterogeneously modified in the hTRPV1 tetrameric complex and comprise Cys-258 with free thiol for oxidation sensing and Cys-258, which is involved in the disulfide bond for assisting subunit dimerization. Thus, the hTRPV1 channel has a heterogeneous subunit composition in terms of both redox status and function. PMID:26702055

  13. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal.

    PubMed

    Taylor-Clark, T E; McAlexander, M A; Nassenstein, C; Sheardown, S A; Wilson, S; Thornton, J; Carr, M J; Undem, B J

    2008-07-15

    Transient receptor potential (TRP) A1 channels are cation channels found preferentially on nociceptive sensory neurones, including capsaicin-sensitive TRPV1-expressing vagal bronchopulmonary C-fibres, and are activated by electrophilic compounds such as mustard oil and cinnamaldehyde. Oxidative stress, a pathological feature of many respiratory diseases, causes the endogenous formation of a number of reactive electrophilic alkenals via lipid peroxidation. One such alkenal, 4-hydroxynonenal (4HNE), activates TRPA1 in cultured sensory neurones. However, our data demonstrate that 100 microm 4HNE was unable to evoke significant action potential discharge or tachykinin release from bronchopulmonary C-fibre terminals. Instead, another endogenously produced alkenal, 4-oxononenal (4ONE, 10 microm), which is far more electrophilic than 4HNE, caused substantial action potential discharge and tachykinin release from bronchopulmonary C-fibre terminals. The activation of mouse bronchopulmonary C-fibre terminals by 4ONE (10-100 microm) was mediated entirely by TRPA1 channels, based on the absence of responses in C-fibre terminals from TRPA1 knockout mice. Interestingly, although the robust increases in calcium caused by 4ONE (0.1-10 microm) in dissociated vagal neurones were essentially abolished in TRPA1 knockout mice, at 100 microm 4ONE caused a large TRPV1-dependent response. Furthermore, 4ONE (100 microm) was shown to activate TRPV1 channel-expressing HEK cells. In conclusion, the data support the hypothesis that 4-ONE is a relevant endogenous activator of vagal C-fibres via an interaction with TRPA1, and at less relevant concentrations, it may activate nerves via TRPV1.

  14. Trans-activation of TRPV1 by D1R in mouse dorsal root ganglion neurons.

    PubMed

    Lee, Dong Woo; Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Jung, Sung Jun; Oh, Seog Bae

    2015-10-02

    TRPV1, a ligand-gated ion channel expressed in nociceptive sensory neurons is modulated by a variety of intracellular signaling pathways. Dopamine is a neurotransmitter that plays important roles in motor control, cognition, and pain modulation in the CNS, and acts via a variety of dopamine receptors (D1R-D5R), a class of GPCRs. Although nociceptive sensory neurons express D1-like receptors, very little is known about the effect of dopamine on TRPV1 in the peripheral nervous system. Therefore, in this study, we examined the effects of D1R activation on TRPV1 in mouse DRG neurons using Ca(2+) imaging and immunohistochemical analysis. The D1R agonist SKF-38393 induced reproducible Ca(2+) responses via Ca(2+) influx through TRPV1 rather than Ca(2+) mobilization from intracellular Ca(2+) stores. Immunohistochemical analysis revealed co-expression of D1R and TRPV1 in mouse DRG neurons. The PLC-specific inhibitor blocked the SKF-38393-induced Ca(2+) response, whereas the PKC, DAG lipase, AC, and PKA inhibitors had no effect on the SKF-38393-induced Ca(2+) response. Taken together, our results suggest that the SKF-38393-induced Ca(2+) response results from the direct activation of TRPV1 by a PLC/DAG-mediated membrane-delimited pathway. These results provide evidence that the trans-activation of TRPV1 following D1R activation may contribute to the modulation of pain signaling in nociceptive sensory neurons.

  15. TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation

    PubMed Central

    Xiao, Ying; Chen, Xiaoqi; Zhang, Ping-An; Xu, Qiya; Zheng, Hang; Xu, Guang-Yin

    2016-01-01

    The central mechanisms of visceral hypersensitivity remain largely unknown. It’s reported that there are highest densities of TRPV1 labeled neurons within basolateral amygdala (BLA). The aim of this study was to explore the role and mechanisms of TRPV1 in BLA in development of visceral hypersensitivity. Visceral hypersensitivity was induced by neonatal maternal deprivation (NMD) and was quantified by abdominal withdrawal reflex. Expression of TRPV1 was determined by Western blot. The synaptic transmission of neurons in BLA was recorded by patch clamping. It was found that the expression of TRPV1 in BLA was significantly upregulated in NMD rats; glutamatergic synaptic activities in BLA were increased in NMD rats; application of capsazepine (TRPV1 antagonist) decreased glutamatergic synaptic activities of BLA neurons in NMD slices through a presynaptic mechanism; application of capsaicin (TRPV1 agonist) increased glutamatergic synaptic activities of BLA neurons in control slices through presynaptic mechanism without affecting GABAergic synaptic activities; microinjecting capsazepine into BLA significantly increased colonic distension threshold both in control and NMD rats. Our data suggested that upregulation of TRPV1 in BLA contributes to visceral hypersensitivity of NMD rats through enhancing excitation of BLA, thus identifying a potential target for treatment of chronic visceral pain. PMID:27364923

  16. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    PubMed

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2016-03-28

    Inhibition of Ca(2+) entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca(2+)-permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca(2+) concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  17. TRPV1 and TRPA1 Function and Modulation are Target Tissue-Dependent

    PubMed Central

    Malin, Sacha; Molliver, Derek; Christianson, Julie A.; Schwartz, Erica S.; Cornuet, Pam; Albers, Kathryn M.; Davis, Brian M.

    2011-01-01

    The NGF and GDNF families of growth factors regulate the sensitivity of sensory neurons. The ion channels TRPV1 and TRPA1 are necessary for development of inflammatory hypersensitivity and are functionally potentiated by growth factors. We have shown previously that inflamed skin exhibits rapid increases in artemin mRNA with slower, smaller increases in NGF mRNA. Here, using mice we show that in inflamed colon, mRNA for both growth factors increased with a pattern distinct from that seen in skin. Differences were also seen in the pattern of TRPV1 and TRPA1 mRNA expression in DRG innervating inflamed skin and colon. Growth factors potentiated capsaicin (a specific TRPV1 agonist) and mustard oil (a specific TRPA1 agonist) behavioral responses in vivo, raising the question as to how these growth factors affect individual afferents. Because individual tissues are innervated by afferents with unique properties, we investigated modulation of TRPV1 and TRPA1 in identified afferents projecting to muscle, skin and colon. Muscle and colon afferents are twice as likely as skin afferents to express functional TRPV1 and TRPA1. TRPV1 and TRPA1 responses were potentiated by growth factors in all afferent types, but compared to skin afferents, muscle afferents were twice as likely to exhibit NGF-induced potentiation and half as likely to exhibit artemin-induced potentiation of TRPV1. Furthermore, skin afferents showed no GDNF-induced potentiation of TRPA1, but 43% of muscle and 38% of colon afferents exhibited GDNF-induced potentiation. These results show that interpretation of afferent homeostatic mechanisms must incorporate properties that are specific to the target tissue. PMID:21775597

  18. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties.

    PubMed

    Gomtsyan, Arthur; Bayburt, Erol K; Schmidt, Robert G; Zheng, Guo Zhu; Perner, Richard J; Didomenico, Stanley; Koenig, John R; Turner, Sean; Jinkerson, Tammie; Drizin, Irene; Hannick, Steven M; Macri, Bryan S; McDonald, Heath A; Honore, Prisca; Wismer, Carol T; Marsh, Kennan C; Wetter, Jill; Stewart, Kent D; Oie, Tetsuro; Jarvis, Michael F; Surowy, Carol S; Faltynek, Connie R; Lee, Chih-Hung

    2005-02-10

    Novel transient receptor potential vanilloid 1 (TRPV1) receptor antagonists with various bicyclic heteroaromatic pharmacophores were synthesized, and their in vitro activity in blocking capsaicin activation of TRPV1 was assessed. On the basis of the contribution of these pharmacophores to the in vitro potency, they were ranked in the order of 5-isoquinoline > 8-quinoline = 8-quinazoline > 8-isoquinoline > or = cinnoline approximately phthalazine approximately quinoxaline approximately 5-quinoline. The 5-isoquinoline-containing compound 14a (hTRPV1 IC50 = 4 nM) exhibited 46% oral bioavailability and in vivo activity in animal models of visceral and inflammatory pain. Pharmacokinetic and pharmacological properties of 14a are substantial improvements over the profile of the high-throughput screening hit 1 (hTRPV1 IC50 = 22 nM), which was not efficacious in animal pain models and was not orally bioavailable.

  19. Post-operative pain behavior in rats is reduced after single high-concentration capsaicin application.

    PubMed

    Pospisilova, Eva; Palecek, Jiri

    2006-12-05

    Surgical procedures associated with tissue injury are often followed by increased sensitivity to innocuous and noxious stimuli in the vicinity of the surgical wound. The aim of this study was to evaluate the role of transient receptor potential vanilloid 1 receptor (TRPV1) containing nociceptors in this process, by their functional inactivation using a high-concentration intradermal injection of capsaicin in a rat plantar incision model. Paw withdrawal responses to mechanical stimuli (von Frey filaments 10-367mN) and to radiant heat applied on plantar skin were tested in animals treated with capsaicin or the vehicle 6 days and 24h before or 2h after the incision was made. In the vehicle-treated animals, mechanical and thermal sensitivity increased significantly 1-96h following the incision. Capsaicin applied 24h before the surgery was most effective and significantly diminished the development of post-incisional mechanical allodynia and hyperalgesia. Thermal hypoalgesia was present in the incised paw after the capsaicin treatment. Capsaicin application 6 days before the incision induced thermal hypoalgesia before the incision but did not prevent completely the thermal hyperalgesia after the incision, while there was also a reduction of mechanical hypersensitivity. Application of the capsaicin injection after the incision showed its first effect at 2h after the injection and at 24h the effect was comparable with the 6 days pretreatment. Our results show an important role of TRPV1-containing nociceptors in the development of post-surgical hypersensitivity and suggest that local, high-concentration capsaicin treatment could be used to reduce it.

  20. Selective Activation of hTRPV1 by N-Geranyl Cyclopropylcarboxamide, an Amiloride-Insensitive Salt Taste Enhancer

    PubMed Central

    Kim, Min Jung; Son, Hee Jin; Kim, Yiseul; Kweon, Hae-Jin; Suh, Byung-Chang; Lyall, Vijay; Rhyu, Mee-Ra

    2014-01-01

    TRPV1t, a variant of the transient receptor potential vanilloid-1 (TRPV1) has been proposed as a constitutively active, non-selective cation channel as a putative amiloride-insensitive salt taste receptor and shares many properties with TRPV1. Based on our previous chorda tympani taste nerve recordings in rodents and human sensory evaluations, we proposed that N-geranylcyclopropylcarboxamide (NGCC), a novel synthetic compound, acts as a salt taste enhancer by modulating the amiloride/benzamil-insensitive Na+ entry pathways. As an extension of this work, we investigated NGCC-induced human TRPV1 (hTRPV1) activation using a Ca2+-flux signaling assay in cultured cells. NGCC enhanced Ca2+ influx in hTRPV1-expressing cells in a dose-dependent manner (EC50 = 115 µM). NGCC-induced Ca2+ influx was significantly attenuated by ruthenium red (RR; 30 µM), a non-specific blocker of TRP channels and capsazepine (CZP; 5 µM), a specific antagonist of TRPV1, implying that NGCC directly activates hTRPV1. TRPA1 is often co-expressed with TRPV1 in sensory neurons. Therefore, we also investigated the effects of NGCC on hTRPA1-expressing cells. Similar to hTRPV1, NGCC enhanced Ca2+ influx in hTRPA1-expressing cells (EC50 = 83.65 µM). The NGCC-induced Ca2+ influx in hTRPA1-expressing cells was blocked by RR (30 µM) and HC-030031 (100 µM), a specific antagonist of TRPA1. These results suggested that NGCC selectively activates TRPV1 and TRPA1 in cultured cells. These data may provide additional support for our previous hypothesis that NGCC interacts with TRPV1 variant cation channel, a putative amiloride/benzamil-insensitive salt taste pathway in the anterior taste receptive field. PMID:24586504

  1. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease

    PubMed Central

    Chung, Young C; Baek, Jeong Y; Kim, Sang R; Ko, Hyuk W; Bok, Eugene; Shin, Won-Ho; Won, So-Yoon; Jin, Byung K

    2017-01-01

    The effects of capsaicin (CAP), a transient receptor potential vanilloid subtype 1 (TRPV1) agonist, were determined on nigrostriatal dopamine (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). The results showed that TRPV1 activation by CAP rescued nigrostriatal DA neurons, enhanced striatal DA functions and improved behavioral recovery in MPTP-treated mice. CAP neuroprotection was associated with reduced expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and reactive oxygen species/reactive nitrogen species from activated microglia-derived NADPH oxidase, inducible nitric oxide synthase or reactive astrocyte-derived myeloidperoxidase. These beneficial effects of CAP were reversed by treatment with the TRPV1 antagonists capsazepine and iodo-resiniferatoxin, indicating TRPV1 involvement. This study demonstrates that TRPV1 activation by CAP protects nigrostriatal DA neurons via inhibition of glial activation-mediated oxidative stress and neuroinflammation in the MPTP mouse model of PD. These results suggest that CAP and its analogs may be beneficial therapeutic agents for the treatment of PD and other neurodegenerative disorders that are associated with neuroinflammation and glial activation-derived oxidative damage. PMID:28255166

  2. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease.

    PubMed

    Chung, Young C; Baek, Jeong Y; Kim, Sang R; Ko, Hyuk W; Bok, Eugene; Shin, Won-Ho; Won, So-Yoon; Jin, Byung K

    2017-03-03

    The effects of capsaicin (CAP), a transient receptor potential vanilloid subtype 1 (TRPV1) agonist, were determined on nigrostriatal dopamine (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). The results showed that TRPV1 activation by CAP rescued nigrostriatal DA neurons, enhanced striatal DA functions and improved behavioral recovery in MPTP-treated mice. CAP neuroprotection was associated with reduced expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and reactive oxygen species/reactive nitrogen species from activated microglia-derived NADPH oxidase, inducible nitric oxide synthase or reactive astrocyte-derived myeloidperoxidase. These beneficial effects of CAP were reversed by treatment with the TRPV1 antagonists capsazepine and iodo-resiniferatoxin, indicating TRPV1 involvement. This study demonstrates that TRPV1 activation by CAP protects nigrostriatal DA neurons via inhibition of glial activation-mediated oxidative stress and neuroinflammation in the MPTP mouse model of PD. These results suggest that CAP and its analogs may be beneficial therapeutic agents for the treatment of PD and other neurodegenerative disorders that are associated with neuroinflammation and glial activation-derived oxidative damage.

  3. Resolvin E1 Inhibits Substance P-Induced Potentiation of TRPV1 in Primary Sensory Neurons

    PubMed Central

    Jo, Youn Yi; Lee, Ji Yeon

    2016-01-01

    The neuropeptide substance P (SP) is expressed in primary sensory neurons and is commonly regarded as a “pain” neurotransmitter. Upon peripheral inflammation, SP activates the neurokinin-1 (NK-1) receptor and potentiates activity of transient receptor potential vanilloid subtype 1 (TRPV1), which is coexpressed by nociceptive neurons. Therefore, SP functions as an important neurotransmitter involved in the hypersensitization of inflammatory pain. Resolvin E1 (RvE1), derived from omega-3 polyunsaturated fatty acids, inhibits TRPV1 activity via activation of the chemerin 23 receptor (ChemR23)—an RvE1 receptor located in dorsal root ganglion neurons—and therefore exerts an inhibitory effect on inflammatory pain. We demonstrate here that RvE1 regulates the SP-induced potentiation of TRPV1 via G-protein coupled receptor (GPCR) on peripheral nociceptive neurons. SP-induced potentiation of TRPV1 inhibited by RvE1 was blocked by the Gαi-coupled GPCR inhibitor pertussis toxin and the G-protein inhibitor GDPβ-S. These results indicate that a low concentration of RvE1 strongly inhibits the potentiation of TRPV1, induced by the SP-mediated activation of NK-1, via a GPCR signaling pathway activated by ChemR23 in nociceptive neurons. RvE1 might represent a new therapeutic target for the treatment of inflammatory pain as a prospective endogenous inhibitor that strongly inhibits TRPV1 activity associated with peripheral inflammation. PMID:27738388

  4. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels

    PubMed Central

    van der Stelt, Mario; Trevisani, Marcello; Vellani, Vittorio; De Petrocellis, Luciano; Schiano Moriello, Aniello; Campi, Barbara; McNaughton, Peter; Geppetti, Piero; Di Marzo, Vincenzo

    2005-01-01

    The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca2+-ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1-dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1-mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1-mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5-triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release. PMID:16107881

  5. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance.

    PubMed

    Lee, Eunjung; Jung, Dae Young; Kim, Jong Hun; Patel, Payal R; Hu, Xiaodi; Lee, Yongjin; Azuma, Yoshihiro; Wang, Hsun-Fan; Tsitsilianos, Nicholas; Shafiq, Umber; Kwon, Jung Yeon; Lee, Hyong Joo; Lee, Ki Won; Kim, Jason K

    2015-08-01

    Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity.

  6. Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons.

    PubMed

    Kurogi, Mako; Kawai, Yasushi; Nagatomo, Katsuhiro; Tateyama, Michihiro; Kubo, Yoshihiro; Saitoh, Osamu

    2015-01-01

    The sensation of astringency is elicited by catechins and their polymers in wine and tea. It has been considered that catechins in green tea are unstable and auto-oxidized to induce more astringent taste. Here, we examined how mammalian transient receptor potential V1 (TRPV1) and TRPA1, which are nociceptive sensors, are activated by green tea catechins during the auto-oxidation process. Neither TRPV1 nor TRPA1 could be activated by any of the freshly prepared catechin. When one of the major catechin, epigallocatechin gallate (EGCG), was preincubated for 3h in Hank's balanced salt solution, it significantly activated both TRP channels expressed in HEK293 cells. Even after incubation, other catechins showed much less effects. Results suggest that only oxidative products of EGCG activate both TRPV1 and TRPA1. Dorsal root ganglion (DRG) sensory neurons were also activated by the incubated EGCG through TRPV1 and TRPA1 channels. Liquid chromatography-mass spectrometry revealed that theasinensins A and D are formed during incubation of EGCG. We found that purified theasinensin A activates both TRPV1 and TRPA1, and that it stimulates DRG neurons through TRPV1 and TRPA1 channels. Results suggested a possibility that TRPV1 and TRPA1 channels are involved in the sense of astringent taste of green tea.

  7. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis.

    PubMed

    Kong, Wei-Lin; Peng, Yuan-Yuan; Peng, Bi-Wen

    2017-03-22

    Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.

  8. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes

    PubMed Central

    Nolden, Alissa A.; McGeary, John E.; Hayes, John E.

    2016-01-01

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. PMID:26785164

  9. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes.

    PubMed

    Nolden, Alissa A; McGeary, John E; Hayes, John E

    2016-03-15

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds.

  10. Modulation of Diabetes-Induced Oxidative Stress, Apoptosis, and Ca(2+) Entry Through TRPM2 and TRPV1 Channels in Dorsal Root Ganglion and Hippocampus of Diabetic Rats by Melatonin and Selenium.

    PubMed

    Kahya, Mehmet Cemal; Nazıroğlu, Mustafa; Övey, İshak Suat

    2017-04-01

    Neuropathic pain and hippocampal injury can arise from the overload of diabetes-induced calcium ion (Ca(2+)) entry and oxidative stress. The transient receptor potential (TRP) melastatin 2 (TRPM2) and TRP vanilloid type 1 (TRPV1) are expressed in sensory neurons and hippocampus. Moreover, activations of TRPM2 and TRPV1 during oxidative stress have been linked to neuronal death. Melatonin (MEL) and selenium (Se) have been considered potent antioxidants that detoxify a variety of reactive oxygen species (ROS) in neurological diseases. In order to better characterize the actions of MEL and Se in diabetes-induced peripheral pain and hippocampal injury through modulation of TRPM2 and TRPV1, we tested the effects of MEL and Se on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of streptozotocin (STZ)-induced diabetic rats. Fifty-eight rats were divided into six groups. The first group was used as control. The second group was used as the diabetic group. The third and fourth groups received Se and MEL, respectively. Intraperitoneal Se and MEL were given to diabetic rats in the fifth and sixth groups. On the 14th day, hippocampal and DRG neuron samples were freshly taken from all animals. The neurons were stimulated with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We observed a modulator role of MEL and Se on intracellular free Ca(2+) concentrations, current densities of TRPM2 and TRPV1 channels, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, reduced glutathione, glutathione peroxidase, lipid peroxidation, and intracellular ROS production values in the neurons. In addition, procaspase 3 and 9 activities in western blot analyses of the brain cortex were also decreased by MEL and Se treatments. In conclusion, in our diabetes experimental model, TRPM2 and TRPV1 channels are involved in the Ca(2+) entry-induced neuronal death and modulation of this channel activity by MEL and

  11. Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury

    PubMed Central

    Thomas, Karen C.; Roberts, Jessica K.; Deering-Rice, Cassandra E.; Romero, Erin G.; Dull, Randal O.; Lee, Jeewoo; Yost, Garold S.

    2012-01-01

    Endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) (endovanilloids) are implicated as mediators of lung injury during inflammation. This study tested the hypothesis that endovanilloids produced following lipopolysaccharide (LPS) treatment activate TRPV1 and cause endoplasmic reticulum stress/GADD153 expression in lung cells, representing a mechanistic component of lung injury. The TRPV1 agonist nonivamide induced GADD153 expression and caused cytotoxicity in immortalized and primary human bronchial, bronchiolar/alveolar, and microvascular endothelial cells, proportional to TRPV1 mRNA expression. In CF-1 mice, Trpv1 mRNA was most abundant in the alveoli, and intratracheal nonivamide treatment promoted Gadd153 expression in the alveolar region. Treatment of CF-1 mice with LPS increased Gadd153 in the lung, lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, and lung wet-to-dry weight ratio. Cotreating mice with LPS and the TRPV1 antagonist LJO-328 reduced Gadd153 induction and LDH in BAL but did not inhibit increases in lung wet-to-dry ratio. In Trpv1−/− mice treated with LPS, Gadd153 induction and LDH in BAL were reduced relative to wild-type mice, and the wet-to-dry weight ratios of lungs from both wild-type and Trpv1−/− mice decreased. Organic extracts of blood collected from LPS-treated mice were more cytotoxic to TRPV1-overexpressing cells compared with BEAS-2B cells and extracts from control mice, however, most pure endovanilloids did not produce cytotoxicity in a characteristic TRPV1-dependent manner. Collectively, these data indicate a role for TRPV1, and endogenous TRPV1 agonists, in ER stress and cytotoxicity in lung cells but demonstrate that ER stress and cytotoxicity are not essential for pulmonary edema. PMID:21949157

  12. Spermatogonial stem cell sensitivity to capsaicin: An in vitro study

    PubMed Central

    Mizrak, Sefika C; Gadella, Bart M; Erdost, Hatice; Ozer, Aytekin; van Pelt, Ana MM; van Dissel-Emiliani, Federica MF

    2008-01-01

    Background Conflicting reports have been published on the sensitivity of spermatogenesis to capsaicin (CAP), the pungent ingredient of hot chili peppers. Here, the effect of CAP on germ cell survival was investigated by using two testis germ cell lines as a model. As CAP is a potent agonist of the transient receptor potential vanilloid receptor 1 (TRPV1) and no information was available of its expression in germ cells, we also studied the presence of TRPV1 in the cultured cells and in germ cells in situ. Methods The rat spermatogonial stem cell lines Gc-5spg and Gc-6spg were used to study the effects of different concentrations of CAP during 24 and 48 h. The response to CAP was first monitored by phase-contrast microscopy. As germ cells appear to undergo apoptosis in the presence of CAP, the activation of caspase 3 was studied using an anti activated caspase 3 antibody or by quantifying the amount of cells with DNA fragmentation using flow cytometry. Immunolocalization was done with an anti-TRPV1 antibody either with the use of confocal microscopy to follow live cell labeling (germ cells) or on Bouin fixed paraffin embedded testicular tissues. The expression of TRPV1 by the cell lines and germ cells was confirmed by Western blots. Results Initial morphological observations indicated that CAP at concentrations ranging from 150 uM to 250 uM and after 24 and 48 h of exposure, had deleterious apoptotic-like effects on both cell lines: A large population of the CAP treated cell cultures showed signs of DNA fragmentation and caspase 3 activation. Quantification of the effect demonstrated a significant effect of CAP with doses of 150 uM in the Gc-5spg cell line and 200 uM in the Gc-6spg cell line, after 24 h of exposure. The effect was dose and time dependent in both cell lines. TRPV1, the receptor for CAP, was found to be expressed by the spermatogonial stem cells in vitro and also by premeiotic germ cells in situ. Conclusion CAP adversely affects spermatogonial survival

  13. SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea) inhibits TNF-alpha production through the activation of capsaicin-sensitive afferent neurons mediated via transient receptor potential vanilloid 1 in vivo.

    PubMed

    Murai, Masaaki; Tsuji, Fumio; Nose, Masafumi; Seki, Iwao; Oki, Kenji; Setoguchi, Chikako; Suhara, Hiroshi; Sasano, Minoru; Aono, Hiroyuki

    2008-07-07

    Tumor necrosis factor-alpha (TNF-alpha) is known to play a crucial role in the pathogenesis of rheumatoid arthritis. In the present study, we demonstrate the effects of SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea), a novel orally active inhibitor of TNF-alpha production, in animal models, and its mechanism of action on TNF-alpha production. SA13353 significantly inhibited lipopolysaccharide (LPS)-induced TNF-alpha production in a dose-dependent manner in rats. Moreover, SA13353 exhibited a binding affinity for the rat vanilloid receptor and increased neuropeptide release from the rat dorsal root ganglion neurons. However, its effects were blocked by pretreatment with the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. The ability of SA13353 and capsaicin to inhibit LPS-induced TNF-alpha production was eliminated by sensory denervation or capsazepine pretreatment in vivo. Although they inhibited LPS-induced TNF-alpha production in mice, these effects were not observed in TRPV1 knockout mice. SA13353 provoked the release of neuropeptides without nerve inactivation, even when chronically administered to rats. These results suggest that SA13353 inhibits TNF-alpha production through activation of capsaicin-sensitive afferent neurons mediated via TRPV1 in vivo. Post-onset treatment of SA13353 strongly reduced the hindpaw swelling and joint destruction associated with collagen-induced arthritis in rats. Thus, SA13353 is expected to be a novel anti-arthritic agent with a unique mechanism of action.

  14. Capsaicin for Rhinitis.

    PubMed

    Fokkens, Wytske; Hellings, Peter; Segboer, Christine

    2016-08-01

    Rhinitis is a multifactorial disease characterized by symptoms of sneezing, rhinorrhea, postnasal drip, and nasal congestion. Non-allergic rhinitis is characterized by rhinitis symptoms without systemic sensitization of infectious etiology. Based on endotypes, we can categorize non-allergic rhinitis into an inflammatory endotype with usually eosinophilic inflammation encompassing at least NARES and LAR and part of the drug induced rhinitis (e.g., aspirin intolerance) and a neurogenic endotype encompassing idiopathic rhinitis, gustatory rhinitis, and rhinitis of the elderly. Patients with idiopathic rhinitis have a higher baseline TRPV1 expression in the nasal mucosa than healthy controls. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is the active component of chili peppers, plants of the genus Capsicum. Capsaicin is unique among naturally occurring irritant compounds because the initial neuronal excitation evoked by it is followed by a long-lasting refractory period, during which the previously excited neurons are no longer responsive to a broad range of stimuli. Patients with idiopathic rhinitis benefit from intranasal treatment with capsaicin. Expression of TRPV1 is reduced in patients with idiopathic rhinitis after capsaicin treatment. Recently, in a Cochrane review, the effectiveness of capsaicin in the management of idiopathic rhinitis was evaluated and the authors concluded that given that many other options do not work well in non-allergic rhinitis, capsaicin is a reasonable option to try under physician supervision. Capsaicin has not been shown to be effective in allergic rhinitis nor in other forms of non-allergic rhinitis like the inflammatory endotypes or other neurogenic endotypes like rhinitis of the elderly or smoking induced rhinitis.

  15. Propofol restores TRPV1 sensitivity via a TRPA1-, nitric oxide synthase-dependent activation of PKCε.

    PubMed

    Sinharoy, Pritam; Zhang, Hongyu; Sinha, Sayantani; Prudner, Bethany C; Bratz, Ian N; Damron, Derek S

    2015-08-01

    We previously demonstrated that the intravenous anesthetic, propofol, restores the sensitivity of transient receptor potential vanilloid channel subtype-1 (TRPV1) receptors via a protein kinase C epsilon (PKCε)-dependent and transient receptor potential ankyrin channel subtype-1 (TRPA1)-dependent pathway in sensory neurons. The extent to which the two pathways are directly linked or operating in parallel has not been determined. Using a molecular approach, our objectives of the current study were to confirm that TRPA1 activation directly results in PKCε activation and to elucidate the cellular mechanism by which this occurs. F-11 cells were transfected with complimentary DNA (cDNA) for TRPV1 only or both TRPV1 and TRPA1. Intracellular Ca(2+) concentration was measured in individual cells via fluorescence microscopy. An immunoblot analysis of the total and phosphorylated forms of PKCε, nitric oxide synthase (nNOS), and TRPV1 was also performed. In F-11 cells containing both channels, PKCε inhibition prevented the propofol- and allyl isothiocyanate (AITC)-induced restoration of TRPV1 sensitivity to agonist stimulation as well as increased phosphorylation of PKCε and TRPV1. In cells containing TRPV1 only, neither agonist induced PKCε or TRPV1 phosphorylation. Moreover, NOS inhibition blocked propofol-and AITC-induced restoration of TRPV1 sensitivity and PKCε phosphorylation, and PKCε inhibition prevented the nitric oxide donor, SNAP, from restoring TRPV1 sensitivity. Also, propofol-and AITC-induced phosphorylation of nNOS and nitric oxide (NO) production were blocked with the TRPA1-antagonist, HC-030031. These data indicate that the AITC- and propofol-induced restoration of TRPV1 sensitivity is mediated by a TRPA1-dependent, nitric oxide synthase-dependent activation of PKCε.

  16. TRPV1 and SP: key elements for sepsis outcome?

    PubMed Central

    Bodkin, Jennifer Victoria; Fernandes, Elizabeth Soares

    2013-01-01

    Sensory neurons play important roles in many disorders, including inflammatory diseases, such as sepsis. Sepsis is a potentially lethal systemic inflammatory reaction to a local bacterial infection, affecting thousands of patients annually. Although associated with a high mortality rate, sepsis outcome depends on the severity of systemic inflammation, which can be directly influenced by several factors, including the immune response of the patient. Currently, there is a lack of effective drugs to treat sepsis, and thus there is a need to develop new drugs to improve sepsis outcome. Several mediators involved in the formation of sepsis have now been identified, but the mechanisms underlying the pathology remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) receptor and the neuropeptide substance P (SP) have recently been demonstrated as important targets for sepsis and are located on sensory neurones and non-neuronal cells. Herein, we highlight and review the importance of sensory neurones for the modulation of sepsis, with specific focus on recent findings relating to TRPV1 and SP, with their distinct abilities to alter the transition from local to systemic inflammation and also modify the overall sepsis outcome. We also emphasize the protective role of TRPV1 in this context. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 PMID:23145480

  17. Activation of TRPV1 and TRPA1 by black pepper components.

    PubMed

    Okumura, Yukiko; Narukawa, Masataka; Iwasaki, Yusaku; Ishikawa, Aiko; Matsuda, Hisashi; Yoshikawa, Masayuki; Watanabe, Tatsuo

    2010-01-01

    We searched in this study for novel agonists of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in pepper, focusing attention on 19 compounds contained in black pepper. Almost all the compounds in HEK cells heterogeneously expressed TRPV1 or TRPA1, increased the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a concentration-dependent manner. Among these, piperine, isopiperine, isochavicine, piperanine, pipernonaline, dehydropipernonaline, retrofractamide C, piperolein A, and piperolein B relatively strongly activated TRPV1. The EC(50) values of these compounds for TRPV1 were 0.6-128 microM. Piperine, isopiperine, isochavicine, piperanine, piperolein A, piperolein B, and N-isobutyl-(2E,4E)-tetradeca-2,4-diamide also relatively strongly activated TRPA1, the EC(50) values of these compounds for TRPA1 were 7.8-148 microM. The Ca(2+) responses of these compounds for TRPV1 and TRPA1 were significantly suppressed by co-applying each antagonist. We identified in this study new transient receptor potential (TRP) agonists present in black pepper and found that piperine, isopiperine, isochavicine, piperanine, piperolein A, and piperolein B activated both TRPV1 and TRPA1.

  18. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis

    PubMed Central

    Son, Hye Ran; Rhee, Yun-Hee; Kim, Eun Hee; Kim, Ji Hye; Bae, Jun-Sang; Chung, Young-Jun; Chung, Phil-Sang; Raz, Eyal; Mo, Ji-Hun

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1), which has been identified as a molecular target for the activation of sensory neurons by various painful stimuli, was reported to regulate the signaling and activation of CD4+ T cells. However, the role of TRPV1 in CD4+ T cell in allergic rhinitis remains poorly understood. In this study, TRPV1 expression was localized in CD4+ T cells. Both knockout and chemical inhibition of TRPV1 suppressed Th2/Th17 cytokine production in CD4 T cells and Jurkat T cells, respectively, and can suppress T cell receptor signaling pathways including NF-κB, MAP kinase, and NFAT. In TRPV1 knockout allergic rhinitis (AR) mice, eosinophil infiltration, Th2/Th17 cytokines in the nasal mucosa, and total and ova-specific IgE levels in serum decreased, compared with wild-type AR mice. The TRPV1 antagonists, BCTC or theobromine, showed similar inhibitory immunologic effects on AR mice models. In addition, the number of TRPV1+/CD4+ inflammatory cells increased in the nasal mucosa of patients with AR, compared with that of control subjects. Thus, TRPV1 activation on CD4+ T cells is involved in T cell receptor signaling, and it could be a novel therapeutic target in AR. PMID:26700618

  19. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis.

    PubMed

    Samivel, Ramachandran; Kim, Dae Woo; Son, Hye Ran; Rhee, Yun-Hee; Kim, Eun Hee; Kim, Ji Hye; Bae, Jun-Sang; Chung, Young-Jun; Chung, Phil-Sang; Raz, Eyal; Mo, Ji-Hun

    2016-01-05

    Transient receptor potential vanilloid 1 (TRPV1), which has been identified as a molecular target for the activation of sensory neurons by various painful stimuli, was reported to regulate the signaling and activation of CD4+ T cells. However, the role of TRPV1 in CD4+ T cell in allergic rhinitis remains poorly understood. In this study, TRPV1 expression was localized in CD4+ T cells. Both knockout and chemical inhibition of TRPV1 suppressed Th2/Th17 cytokine production in CD4 T cells and Jurkat T cells, respectively, and can suppress T cell receptor signaling pathways including NF-κB, MAP kinase, and NFAT. In TRPV1 knockout allergic rhinitis (AR) mice, eosinophil infiltration, Th2/Th17 cytokines in the nasal mucosa, and total and ova-specific IgE levels in serum decreased, compared with wild-type AR mice. The TRPV1 antagonists, BCTC or theobromine, showed similar inhibitory immunologic effects on AR mice models. In addition, the number of TRPV1+/CD4+ inflammatory cells increased in the nasal mucosa of patients with AR, compared with that of control subjects. Thus, TRPV1 activation on CD4+ T cells is involved in T cell receptor signaling, and it could be a novel therapeutic target in AR.

  20. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    PubMed

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO2, however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but possibly

  1. Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site.

    PubMed

    Nieto-Posadas, Andrés; Picazo-Juárez, Giovanni; Llorente, Itzel; Jara-Oseguera, Andrés; Morales-Lázaro, Sara; Escalante-Alcalde, Diana; Islas, León D; Rosenbaum, Tamara

    2011-11-20

    Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein-coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.

  2. TRPV1 ligands with hyperthermic, hypothermic and no temperature effects in rats.

    PubMed

    Gomtsyan, Arthur; McDonald, Heath A; Schmidt, Robert G; Daanen, Jerome F; Voight, Eric A; Segreti, Jason A; Puttfarcken, Pamela S; Reilly, Regina M; Kort, Michael E; Dart, Michael J; Kym, Philip R

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a multifunctional ion channel playing important roles in a numerous biological processes including the regulation of body temperature. Within distinct and tight chemical space of chromanyl ureas TRPV1 ligands were identified that exhibit distinctive pharmacology and a spectrum of thermoregulatory effects ranging from hypothermia to hyperthermia. The ability to manipulate these effects by subtle structural modifications of chromanyl ureas may serve as a productive approach in TRPV1 drug discovery programs addressing either side effect or desired target profiles of the compounds. Because chromanyl ureas in the TRPV1 context are generally antagonists, we verified observed partial agonist effects of a subset of compounds within that chemotype by comparing the in vitro profile of Compound 3 with known partial agonist 5'-I-RTX.

  3. Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor

    SciTech Connect

    Szallasi, A.; Blumberg, P.M. )

    1990-01-01

    Capsaicin, the pungent constituent of chili peppers, represents the paradigm for the capsaicinoids or vanilloids, a family of compounds shown to stimulate and then desensitize specific subpopulations of sensory receptors, including C-polymodal nociceptors, A-delta mechanoheat nociceptors and warm receptors of the skin, as well as enteroceptors of thin afferent fibers. An exciting recent advance in the field has been the finding that resiniferatoxin (RTX), a naturally occurring diterpene containing a homovanillic acid ester, a key structural motif of capsaicin, functions as an ultrapotent capsaicin analog. For most of the responses characteristic of capsaicin, RTX is 100-10,000 fold more potent. Structure/activity analysis indicates, however, that RTX and related homovanillyl-diterpene esters display distinct spectra of activity. Specific ({sup 3}H)RTX binding provides the first direct proof for the existence of vanilloid receptors. We expect that the RTX class of vanilloids will promote rapid progress in understanding of vanilloid structure/activity requirements and mechanism.

  4. TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity.

    PubMed

    Sosa-Pagán, Jason O; Iversen, Edwin S; Grandl, Jörg

    2017-04-03

    Several transient receptor potential (TRP) ion channels can be directly activated by hot or cold temperature with high sensitivity. However, the structures and molecular mechanism giving rise to their high temperature sensitivity are not fully understood. One hypothesized mechanism assumes that temperature activation is driven by the exposure of hydrophobic residues to solvent. This mechanism further predicts that residues are exposed to solvent in a coordinated fashion, but without necessarily being located in close proximity to each other. However, there is little experimental evidence supporting this mechanism in TRP channels. Here, we combined high-throughput mutagenesis, functional screening, and deep sequencing to identify mutations from a total of ~7,300 TRPV1 random mutant clones. We found that strong decreases in hydrophobicity of amino acids are better tolerated for activation by capsaicin than for activation by hot temperature, suggesting that strong hydrophobicity might be specifically required for temperature activation. Altogether, our work provides initial correlative support for a previously hypothesized temperature mechanism in TRP ion channels.

  5. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization

    SciTech Connect

    Hu Fen; Sun Wenwu; Zhao Xiao Ting; Cui Zongjie Yang Wenxiu

    2008-05-16

    Synoviocyte hyperplasia is critical for rheumatoid arthritis, therefore, potentially an important target for therapeutics. It was found in this work that a TRPV1 agonist capsaicin, and acidic solution (pH 5.5) induced increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) and reactive oxygen species (ROS) production in synoviocytes isolated from a rat model of collagen-induced arthritis. The increases in both [Ca{sup 2+}]{sub c} and ROS production were completely abolished in calcium-free buffer or by a TRPV1 antagonist capsazepine. Further experiments revealed that capsaicin and pH 5.5 solution caused mitochondrial membrane depolarization and reduction in cell viability; such effects were inhibited by capsazepine, or the NAD(P)H oxidase inhibitor diphenylene iodonium. Both capsaicin and pH 5.5 buffer induced apoptosis as shown by nuclear condensation and fragmentation. Furthermore, RT-PCR readily detected TRPV1 mRNA expression in the isolated synoviocytes. Taken together, these data indicated that TRPV1 activation triggered synoviocyte death by [Ca{sup 2+}]{sub c} elevation, ROS production, and mitochondrial membrane depolarization.

  6. The functions of TRPA1 and TRPV1: moving away from sensory nerves.

    PubMed

    Fernandes, E S; Fernandes, M A; Keeble, J E

    2012-05-01

    The transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) channels are members of the TRP superfamily of structurally related, non-selective cation channels. It is rapidly becoming clear that the functions of TRPV1 and TRPA1 interlink with each other to a considerable extent. This is especially clear in relation to pain and neurogenic inflammation where TRPV1 is coexpressed on the vast majority of TRPA1-expressing sensory nerves and both integrate a variety of noxious stimuli. The more recent discovery that both TRPV1 and TRPA1 are expressed on a multitude of non-neuronal sites has led to a plethora of research into possible functions of these receptors. Non-neuronal cells on which TRPV1 and TRPA1 are expressed vary from vascular smooth muscle to keratinocytes and endothelium. This review will discuss the expression, functionality and roles of these non-neuronal TRP channels away from sensory nerves to demonstrate the diverse nature of TRPV1 and TRPA1 in addition to a direct role in pain and neurogenic inflammation.

  7. NOX3 NADPH Oxidase Couples Transient Receptor Potential Vanilloid 1 to Signal Transducer and Activator of Transcription 1-Mediated Inflammation and Hearing Loss

    PubMed Central

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P.

    2011-01-01

    Abstract Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss. Antioxid. Redox Signal. 14, 999–1010. PMID:20712533

  8. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss.

    PubMed

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P; Ramkumar, Vickram

    2011-03-15

    Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss.

  9. Dissociation and trafficking of rat GABAB receptor heterodimer upon chronic capsaicin stimulation.

    PubMed

    Laffray, Sophie; Tan, Kelly; Dulluc, Josette; Bouali-Benazzouz, Rabia; Calver, Andrew R; Nagy, Frédéric; Landry, Marc

    2007-03-01

    Gamma-aminobutyric acid type B receptors (GABAB) are G-protein-coupled receptors that mediate GABAergic inhibition in the brain. Their functional expression is dependent upon the formation of heterodimers between GABAB1 and GABAB2 subunits, a process that occurs within the endoplasmic reticulum. However, the mechanisms that regulate GABAB receptor oligomerization at the plasma membrane remain largely unknown. We first characterized the functional cytoarchitecture of an organotypic co-culture model of rat dorsal root ganglia and spinal cord. Subsequently, we studied the interactions between GABAB subunits after chronic stimulation of sensory fibres with capsaicin. Surface labelling of recombinant proteins showed a decrease in subunit co-localization and GABAB2 labelling, after capsaicin treatment. In these conditions, fluorescence lifetime imaging measurements further demonstrated a loss of interactions between green fluorescent protein-GABAB1b and t-dimer discosoma sp red fluorescent protein-GABAB2 subunits. Finally, we established that the GABAB receptor undergoes clathrin-dependent internalization and rapid recycling to the plasma membrane following activation with baclofen, a GABAB agonist. However, in cultures chronically stimulated with capsaicin, the agonist-induced endocytosis was decreased, reflecting changes in the dimeric state of the receptor. Taken together, our results indicate that the chronic stimulation of sensory fibres can dissociate the GABAB heterodimer and alters its responsiveness to the endogenous ligand. Chronic stimulation thus modulates receptor oligomerization, providing additional levels of control of signalling.

  10. Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms.

    PubMed

    Starowicz, K; Makuch, W; Osikowicz, M; Piscitelli, F; Petrosino, S; Di Marzo, V; Przewlocka, B

    2012-03-01

    The endocannabinoid anandamide (AEA) activates also transient receptor potential vanilloid-1 (TRPV1) channels. However, no data exist on the potential role of spinal TRPV1 activation by AEA in neuropathic pain. We tested the effect of: 1) AEA (5-100 μg), alone or in the presence of an inhibitor of its hydrolysis, and 2) elevated levels of endogenous AEA (following inhibition of AEA hydrolysis), in CCI rats, and the involvement of TRPV1 or cannabinoid CB(1) receptors in the observed effects. Levels of AEA in the spinal cord of CCI rats were measured following all treatments. AEA (50 μg) displayed anti-allodynic and anti-hyperalgesic effects which were abolished by previous antagonism of TRPV1, but not CB(1), receptors. Depending on the administered dose, the selective inhibitor of AEA enzymatic hydrolysis, URB597 (10-100 μg), reduced thermal and tactile nociception via CB(1) or CB(1)/TRPV1 receptors. The anti-nociceptive effects of co-administered per se ineffective doses of AEA (5 μg) and URB597 (5 μg) was abolished by antagonism of CB(1), but not TRPV1, receptors. Spinal AEA levels were increased after CCI, slightly increased further by URB597, 10 μg i.t., and strongly elevated by URB597, 100 μg. Injection of AEA (50 μg) into the lumbar spinal cord led to its dramatic elevation in this tissue, whereas, when a lower dose was used (5 μg) AEA endogenous levels were elevated only in the presence of URB597 (5 μg). We suggest that spinal AEA reduces neuropathic pain via CB(1) or TRPV1, depending on its local concentration.

  11. Zingerone enhances glutamatergic spontaneous excitatory transmission by activating TRPA1 but not TRPV1 channels in the adult rat substantia gelatinosa.

    PubMed

    Yue, Hai-Yuan; Jiang, Chang-Yu; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-08-01

    Transient receptor potential (TRP) channels are thought to play a role in regulating nociceptive transmission to spinal substantia gelatinosa (SG) neurons. It remains to be unveiled whether the TRP channels in the central nervous system are different in property from those involved in receiving nociceptive stimuli in the peripheral nervous system. We examined the effect of the vanilloid compound zingerone, which activates TRPV1 channels in the cell body of a primary afferent neuron, on glutamatergic excitatory transmission in the SG neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. Bath-applied zingerone reversibly and concentration-dependently increased spontaneous excitatory postsynaptic current (EPSC) frequency. This effect was accompanied by an inward current at -70 mV that was resistant to glutamate receptor antagonists. These zingerone effects were repeated and persisted in Na(+)-channel blocker tetrodotoxin-, La(3+)-, or IP3-induced Ca(2+)-release inhibitor 2-aminoethoxydiphenyl borate-containing or Ca(2+)-free Krebs solution. Zingerone activity was resistant to the selective TRPV1 antagonist capsazepine but sensitive to the nonselective TRP antagonist ruthenium red, the TRPA1 antagonist HC-030031, and the Ca(2+)-induced Ca(2+)-release inhibitor dantrolene. TRPA1 agonist allyl isothiocyanate but not capsaicin inhibited the facilitatory effect of zingerone. On the other hand, zingerone reduced monosynaptically evoked EPSC amplitudes, as did TRPA1 agonists. Like allyl isothiocyanate, zingerone enhanced GABAergic spontaneous inhibitory transmission in a manner sensitive to tetrodotoxin. We conclude that zingerone presynaptically facilitates spontaneous excitatory transmission, probably through Ca(2+)-induced Ca(2+)-release mechanisms, and produces a membrane depolarization in SG neurons by activating TRPA1 but not TRPV1 channels.

  12. Transient receptor potential vanilloid 1 - a polymodal nociceptive receptor - plays a crucial role in formaldehyde-induced skin inflammation in mice.

    PubMed

    Usuda, Haruki; Endo, Takumi; Shimouchi, Ayumi; Saito, Asaka; Tominaga, Makoto; Yamashita, Hirotaka; Nagai, Hiroichi; Inagaki, Naoki; Tanaka, Hiroyuki

    2012-01-01

    Formaldehyde (FA) is irritating to the skin and is the main cause of sick building syndrome. However, the cutaneous reaction induced by long-term FA exposure has not been fully investigated. In our previous study, we demonstrated that repeated painting of 2% - 10% FA on mouse ears caused marked ear swelling and increased mRNA expression of transient receptor potential vanilloid 1 (TRPV1) and neurotrophins in the ear. TRPV1 is reported to be involved in neurogenic inflammation; therefore, in the present study, we investigated the role of TRPV1 in FA-induced skin inflammation using TRPV1 gene-knockout mice. Mice were painted with 5% FA once a week for 5 weeks, and ear swelling and mRNA expression were investigated. Ear swelling and increased expression of neurotrophins mRNA by FA provocation in wild-type mice were attenuated by disruption of the TRPV1 gene. Furthermore, painting with a threshold dose of capsaicin, which does not induce ear swelling in intact mice, caused marked ear swelling after painting the ear 5 times with FA, indicating that inflamed tissues after FA application are hypersensitive to various ligands of TRPV1 in mice. These results demonstrated that neurogenic inflammation via TRPV1 and neurotrophins could be involved in FA-induced dermatitis.

  13. Opioids and TRPV1 in the peripheral control of neuropathic pain--Defining a target site in the injured nerve.

    PubMed

    Labuz, Dominika; Spahn, Viola; Celik, Melih Özgür; Machelska, Halina

    2016-02-01

    Targeting peripheral neuropathic pain at its origin may prevent the development of hypersensitivity. Recently we showed this can be mediated by opioid receptors at the injured nerve trunk. Here, we searched for the most relevant peripheral site to block transient receptor potential vanilloid 1 (TRPV1), and investigated analgesic interactions between TRPV1 and opioids in neuropathy. In a chronic constriction injury (CCI) of the sciatic nerve in mice, we assessed the effects of μ-, δ- and κ-opioid receptor agonists and TRPV1 antagonist (SB366791) injected at the CCI site or into the injured nerve-innervated paw on spontaneous paw lifting, heat and mechanical sensitivity. We also examined TRPV1 expression in total membrane and plasma membrane fractions from nerves and paws. We found that opioids and SB366791 co-injected in per se nonanalgesic doses at the CCI site or into the paw diminished heat and mechanical sensitivity. SB366791 alone dose-dependently alleviated heat and mechanical sensitivity. TRPV1 blockade in the paw was more effective than at the CCI site. None of the treatments diminished spontaneous paw lifting. TRPV1 expression analysis suggests that the levels of functional TRPV1 do not critically determine the TRPV1 antagonist-mediated analgesia. Together, the identification of the primary action site in damaged nerves is crucial for effective pain control. Contrary to opioids, the TRPV1 blockade in the injured nerve peripheral terminals, rather than at the nerve trunk, appears promising against heat pain. Opioid/TRPV1 antagonist combinations at both locations partially reduced neuropathy-triggered heat and mechanical pain.

  14. The capsaicin VR1 receptor mediates substance P release in toxin A-induced enteritis in rats.

    PubMed

    McVey, D C; Vigna, S R

    2001-09-01

    The mechanism by which Clostridium difficile toxin A causes substance P (SP) release and subsequent inflammation in the rat ileum is unknown. Pretreatment with the vanilloid receptor subtype 1 (VR1) antagonist, capsazepine, before toxin A administration significantly inhibited toxin A-induced SP release and intestinal inflammation. Intraluminal administration of the VR1 agonist capsaicin caused intestinal inflammation similar to the effects of toxin A. Pretreatment with capsazepine before capsaicin administration also significantly inhibited capsaicin-induced intestinal inflammation. These results suggest that intraluminal toxin A causes SP release from primary sensory neurons via stimulation of VR1 receptors resulting in intestinal inflammation.

  15. Capsaicin