Science.gov

Sample records for capsaicin-sensitive primary sensory

  1. Impaired basal thermal homeostasis in rats lacking capsaicin-sensitive peripheral small sensory neurons.

    PubMed

    Yamashita, Hitoshi; Wang, Zuocheng; Wang, Youxue; Furuyama, Tatsuo; Kontani, Yasuhide; Sato, Yuzo; Mori, Nozomu

    2008-03-01

    We studied the effects of selective loss of capsaicin-sensitive primary sensory neurons on thermosensation and thermoregulation in rats. Neonatal capsaicin treatment in rats caused a remarkable decrease in the number of small-diameter neurons in the dorsal root ganglion (DRG) compared with their number in the control rats. Gene expression analysis for various thermo-sensitive transient receptor potential (TRP) channels indicated marked reductions in the mRNA levels of TRPV1 (70%), TRPM8 (46%) and TRPA1 (64%), but not of TRPV2, in the DRG of capsaicin-treated rats compared with those in the control rats. In addition to the heat and cold insensitivity, capsaicin-treated rats showed lower rectal core temperature, higher skin temperature and decreased sensitivity to ambient temperature alteration under normal housing at room temperature, suggesting impaired thermosensation and change in thermoregulation in the rats. Uncoupling protein 1 (UCP1) expression and the thermogenic ability in brown adipose tissues were attenuated in the capsaicin-treated rats. These results indicate a critical role of capsaicin-sensitive sensory neurons in both heat and cool sensation and hence in basal thermal homeostasis, which is balanced by heat release and production including UCP1 thermogenesis, following sensation of the ambient temperature.

  2. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons.

    PubMed

    Drew, Liam J; Wood, John N; Cesare, Paolo

    2002-06-15

    Mechanical stimulation of the somata of cultured neonatal rat dorsal root ganglia (DRG) neurons evoked inward cationic currents that displayed distinct properties between different subsets of cells. The presumptive nociceptor population, defined by capsaicin sensitivity, showed higher thresholds for the induction of an inward current and lower peak currents than other mechanosensitive neurons. A subset of capsaicin-sensitive IB4-positive sensory neurons was refractory to mechanical stimulation. All mechanically activated currents were blocked by gadolinium (IC50 approximately 8 microm) and ruthenium red (IC50 approximately 3 microm). Disruption of the actin cytoskeleton by acute application of 10 microm cytochalasin B inhibited currents much more effectively in capsaicin-insensitive (61%) than capsaicin-sensitive neurons (20%). Extracellular calcium also attenuated mechanosensitive currents and to a greater degree in capsaicin-insensitive neurons than capsaicin-sensitive neurons. These data demonstrate that the somata of different types of cultured sensory neurons have distinct mechanosensitive phenotypes that retain properties associated with nerve terminal mechanosensors in vivo.

  3. Melittin selectively activates capsaicin-sensitive primary afferent fibers.

    PubMed

    Shin, Hong Kee; Kim, Jin Hyuk

    2004-08-06

    Whole bee venom (WBV)-induced pain model has been reported to be very useful for the study of pain. However, the major constituent responsible for the production of pain by WBV is not apparent. Intraplantar injection of WBV and melittin dramatically reduced mechanical threshold, and increased flinchings and paw thickness. In behavioral experiments, capsaicin pretreatment almost completely prevented WBV- and melittin-induced reduction of mechanical threshold and flinchings. Intraplantar injection of melittin increased discharge rate of dorsal horn neurons only with C fiber input from peripheral receptive field, which was completely blocked by topical application of capsaicin to sciatic nerve. These results suggest that both melittin and WBV induce nociceptive responses by selective activation of capsaicin-sensitive afferent fibers.

  4. Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves.

    PubMed

    Wang, Youping; Wang, Donna H

    2007-03-01

    Hypertension is a major risk factor leading to devastating cardiovascular events such as myocardial infarction, stroke, heart failure, and renal failure. Despite intensive research in this area, mechanisms underlying essential hypertension remain to be defined. Accumulating evidence indicates that neural components including both sympathetic and sensory nerves innervating the cardiovascular and renal tissues play a key role in regulating water and sodium homeostasis and blood pressure, and that abnormalities in these nervous systems contribute to increased salt sensitivity and development of hypertension. In contrast to relatively well-defined sympathetic nervous system, the role of sensory nerves in the control of cardiovascular homeostasis is largely unknown. Data from our laboratory show that degeneration of capsaicin-sensitive sensory nerves renders a rat salt sensitive in terms of blood pressure regulation. Evidence is also available indicating that sensory nerves, in interacting with other neurohormonal systems including the sympathetic nervous system, the renin-angiotensin aldosterone system, the endothelin system, and superoxide, regulate cardiovascular and renal function in such that they play a counter-balancing role in preventing salt-induced increases in blood pressure under pathophysiological conditions. Altered activity of the sensory nervous system, a condition existed in both genetic and experimental models of hypertension, contributes to the development of hypertension. This article focuses on reviewing the current knowledge regarding the possible role of sensory nerves in regulating blood pressure homeostasis as well as the function and regulation of novel molecules expressed in sensory nerves.

  5. CAPSAICIN-SENSITIVE SENSORY NERVE FIBERS CONTRIBUTE TO THE GENERATION AND MAINTENANCE OF SKELETAL FRACTURE PAIN

    PubMed Central

    Jimenez-Andrade, Juan Miguel; Bloom, Aaron P.; Mantyh, William G.; Koewler, Nathan J.; Freeman, Katie T.; Delong, David; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2009-01-01

    Although skeletal pain can have a marked impact on a patient’s functional status and quality of life, relatively little is known about the specific populations of peripheral nerve fibers that drive non-malignant bone pain. In the present report, neonatal male Sprague Dawley rats were treated with capsaicin or vehicle and femoral fracture was produced when the animals were young adults (15–16 weeks old). Capsaicin treatment, but not vehicle, resulted in a significant (>70%) depletion in the density of calcitonin-gene related peptide positive (CGRP+) sensory nerve fibers, but not 200 kD neurofilament H positive (NF200+) sensory nerve fibers in the periosteum. The periosteum is a thin, cellular and fibrous tissue that tightly adheres to the outer surface of all but the articulated surface of bone and appears to play a pivotal role in driving fracture pain. In animals treated with capsaicin, but not vehicle, there was a 50% reduction in the severity, but no change in the time course, of fracture-induced skeletal pain related behaviors as measured by spontaneous flinching, guarding and weight bearing. These results suggest that both capsaicin-sensitive (primarily CGRP+ C-fibers) and capsaicin-insensitive (primarily NF200+ A-delta fibers) sensory nerve fibers participate in driving skeletal fracture pain. Skeletal pain can be a significant impediment to functional recovery following trauma-induced fracture, osteoporosis-induced fracture and orthopedic surgery procedures such as knee and hip replacement. Understanding the specific populations of sensory nerve fibers that need to be targeted to inhibit the generation and maintenance of skeletal pain may allow the development of more specific mechanism-based therapies that can effectively attenuate acute and chronic skeletal pain. PMID:19486928

  6. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis

    PubMed Central

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-01-01

    Objective The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro–immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Methods Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. Results In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Conclusions Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody

  7. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis.

    PubMed

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-03-01

    The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important

  8. Evidence for a role of capsaicin-sensitive sensory nerves in the lung oedema induced by Tityus serrulatus venom in rats.

    PubMed

    Andrade, Marcus V M; Souza, Danielle G; de A Castro, Maria Salete; Cunha-Melo, José R; Teixeira, Mauro M

    2002-03-01

    In the most severe cases of human envenoming by Tityus serrulatus, pulmonary oedema is a frequent finding and can be the cause of death. We have previously demonstrated a role for neuropeptides acting on tachykinin NK(1) receptors in the development of lung oedema following i.v. injection of T. serrulatus venom (TsV) in experimental animals. The present work was designed to investigate whether capsaicin-sensitive primary afferent neurons were a potential source of NK(1)-acting neuropeptides. To this end, sensory nerves were depleted of neuropeptides by neonatal treatment of rats with capsaicin. The effectiveness of this strategy at depleting sensory nerves was demonstrated by the inhibition of the neuropeptide-dependent response to intraplantar injection of formalin. Pulmonary oedema, as assessed by the levels of extravasation of Evans blue dye in the bronchoalveolar lavage and in the left lung, was markedly inhibited in capsaicin-treated animals. In contrast, capsaicin treatment failed to alter the increase in arterial blood pressure or the lethality following i.v. injection of TsV. Our results demonstrate an important role for capsaicin-sensitive sensory nerves in the cascade of events leading to lung injury following the i.v. administration of TsV.

  9. Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons

    PubMed Central

    Shutov, Leonid P; Kim, Man-Su; Houlihan, Patrick R; Medvedeva, Yuliya V; Usachev, Yuriy M

    2013-01-01

    The central processes of primary nociceptors form synaptic connections with the second-order nociceptive neurons located in the dorsal horn of the spinal cord. These synapses gate the flow of nociceptive information from the periphery to the CNS, and plasticity at these synapses contributes to centrally mediated hyperalgesia and allodynia. Although exocytosis and synaptic plasticity are controlled by Ca2+ at the release sites, the mechanisms underlying presynaptic Ca2+ signalling at the nociceptive synapses are not well characterized. We examined the presynaptic mechanisms regulating Ca2+ clearance following electrical stimulation in capsaicin-sensitive nociceptors using a dorsal root ganglion (DRG)/spinal cord neuron co-culture system. Cytosolic Ca2+ concentration ([Ca2+]i) recovery following electrical stimulation was well approximated by a monoexponential function with a τ∼2 s. Inhibition of sarco-endoplasmic reticulum Ca2+-ATPase did not affect presynaptic [Ca2+]i recovery, and blocking plasmalemmal Na+/Ca2+ exchange produced only a small reduction in the rate of [Ca2+]i recovery (∼12%) that was independent of intracellular K+. However, [Ca2+]i recovery in presynaptic boutons strongly depended on the plasma membrane Ca2+-ATPase (PMCA) and mitochondria that accounted for ∼47 and 40%, respectively, of presynaptic Ca2+ clearance. Measurements using a mitochondria-targeted Ca2+ indicator, mtPericam, demonstrated that presynaptic mitochondria accumulated Ca2+ in response to electrical stimulation. Quantitative analysis revealed that the mitochondrial Ca2+ uptake is highly sensitive to presynaptic [Ca2+]i elevations, and occurs at [Ca2+]i levels as low as ∼200–300 nm. Using RT-PCR, we detected expression of several putative mitochondrial Ca2+ transporters in DRG, such as MCU, Letm1 and NCLX. Collectively, this work identifies PMCA and mitochondria as the major regulators of presynaptic Ca2+ signalling at the first sensory synapse, and underlines the high

  10. Increased susceptibility of gastric mucosa to ulcerogenic stimulation in diabetic rats–role of capsaicin-sensitive sensory neurons

    PubMed Central

    Tashima, Kimihito; Korolkiewicz, Roman; Kubomi, Masafumi; Takeuchi, Koji

    1998-01-01

    We examined the gastric mucosal blood flow (GMBF) and ulcerogenic responses following barrier disruption induced by sodium taurocholate (TC) in diabetic rats and investigated the role of capsaicin-sensitive sensory neurons in these responses.Animals were injected streptozotocin (STZ: 70 mg kg−1, i.p.) and used after 5, 10 and 15 weeks of diabetes with blood glucose levels of >350 mg dl−1. The stomach was mounted on an ex-vivo chamber under urethane anaesthesia and exposed to 20 mM TC plus 50 mM HCl for 30 min in the presence of omeprazole. Gastric transmucosal potential difference (PD), GMBF, and luminal acid loss (H+ back-diffusion) were measured before and after exposure to 20 mM TC, and the mucosa was examined for lesions 90 min after TC treatment.Mucosal application of TC caused PD reduction in all groups; the degree of PD reduction was similar between normal and diabetic rats, although basal PD values were lower in diabetic rats. In normal rats, TC treatment caused luminal acid loss, followed by an increase of GMBF, resulting in minimal damage in the mucosa.The increased GMBF responses associated with H+ back-diffusion were mitigated in STZ-treated rats, depending on the duration of diabetes, and severe haemorrhagic lesions occurred in the stomach after 10 weeks of diabetes.Intragastric application of capsaicin increased GMBF in normal rats, but such responses were mitigated in STZ diabetic rats. The amount of CGRP released in the isolated stomach in response to capsaicin was significantly lower in diabetic rats when compared to controls.The deleterious influences on GMBF and mucosal ulcerogenic responses in STZ-diabetic rats were partially but significantly antagonized by daily insulin (4 units rat−1) treatment.These results suggest that the gastric mucosa of diabetic rats is more vulnerable to acid injury following barrier disruption, and this change is insulin-sensitive and may be partly accounted for by the impairment of GMBF

  11. Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse.

    PubMed

    Elekes, Krisztián; Helyes, Zsuzsanna; Németh, József; Sándor, Katalin; Pozsgai, Gábor; Kereskai, László; Börzsei, Rita; Pintér, Erika; Szabó, Arpád; Szolcsányi, János

    2007-06-07

    Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration. SP and CGRP were determined with radioimmunoassay, myeloperoxidase activity with spectrophotometry, interleukin-1beta with ELISA and histopathological changes with semiquantitative scoring from lung samples. Treatments with resiniferatoxin for selective destruction of capsaicin-sensitive afferents, NK(1) antagonist SR 140333, NK(2) antagonist SR 48968, their combination, or CGRP1 receptor antagonist CGRP(8-37) were performed. Lipopolysaccharide significantly increased lung SP and CGRP concentrations, which was prevented by resiniferatoxin pretreatment. Resiniferatoxin-desensitization markedly enhanced inflammation, but decreased bronchoconstriction. CGRP(8-37) or combination of SR 140333 and SR 48968 diminished neutrophil accumulation, MPO levels and IL-1beta production, airway hyperresponsiveness was inhibited only by SR 48968. This is the first evidence that capsaicin-sensitive afferents exert a protective role in endotoxin-induced airway inflammation, but contribute to increased bronchoconstriction. Activation of CGRP1 receptors or NK(1)+NK(2) receptors participate in granulocyte accumulation, but NK(2) receptors play predominant role in enhanced airway resistance.

  12. Capsaicin-sensitive sensory neurons are involved in bicarbonate secretion induced by lansoprazole, a proton pump inhibitor, in rats.

    PubMed

    Inada, I; Satoh, H

    1996-04-01

    Lansoprazole, a proton pump inhibitor, exerts prominent antiulcer activity via both antisecretory and mucosal protective actions. Although the antisecretory action has been explained by inactivation of (H+, K+)-ATPase in parietal cells, the mode of mucosal protective action remains to be elucidated. In the present study, the effect of lansoprazole on duodenal bicarbonate secretion was studied in anesthetized rats to clarify the mode of the mucosal protective action. Lansoprazole (0.1 mM) applied topically to the duodenum significantly (P < 0.01) increased bicarbonate secretion by 0.36 +/- 0.11 microeq/15 min (21 +/- 5%) compared with the value in the vehicle control. Topical administration of capsaicin (10 mg/ml) in the duodenum and intravenous infusion of vasoactive intestinal peptide (10 micrograms/kg/hr) increased bicarbonate secretion. Five-minute perfusion of the duodenal loop with 100 mM HCl increased bicarbonate secretion. Administration of lansoprazole (0.3 and 1 mg/kg, intravenously) 60 min before luminal acidification enhanced the acid-induced bicarbonate secretion dose-dependently and significantly (P < 0.01). In the capsaicin-pretreated rats, the effects of lansoprazole on basal and acid-induced bicarbonate secretion were significantly (P < 0.05) decreased compared with that of control group. These results indicate that lansoprazole increases basal and acid-induced bicarbonate secretion in the duodenum in rats and that capsaicin-sensitive sensory neurons may be involved in the mode of action for these effects.

  13. Functional depletion of capsaicin-sensitive primary afferent fibers attenuates rat pain-related behaviors and paw edema induced by the venom of scorpion Buthus martensi Karch.

    PubMed

    Bai, Zhan-Tao; Liu, Tong; Pang, Xue-Yan; Jiang, Feng; Cheng, Ming; Ji, Yong-Hua

    2008-10-01

    The role of capsaicin-sensitive primary afferent fibers in rat pain-related behaviors and paw edema induced by scorpion Buthus martensi Karch (BmK) venom was investigated in this study. It was found that functional depletion of capsaicin-sensitive primary afferent fibers with a single systemic injection of resiniferatoxin (RTX) dramatically decreased spontaneous nociceptive behaviors, prevented the development of primary mechanical and thermal hyperalgesia as well as mirror-image mechanical hyperalgesia. RTX treatment significantly attenuated BmK venom-induced c-Fos expression in all laminaes of bilateral L4-L5 lumbar spinal cord, especially in superficial laminaes. Moreover, RTX treatment markedly reduced the early paw edema induced by BmK venom. Thus, the results indicate that capsaicin-sensitive primary afferent fibers play a critical role in various pain-related behaviors and paw edema induced by BmK venom in rats.

  14. Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones.

    PubMed

    Kwong, Kevin; Lee, Lu-Yuan

    2005-04-15

    Capsaicin-sensitive vagal pulmonary neurones (pulmonary C neurones) play an important role in regulating airway function. During airway inflammation, the level of prostaglandin E(2) (PGE(2)) increases in the lungs and airways. PGE(2) has been shown to sensitize isolated pulmonary C neurones. The somatosensory correlate of the pulmonary C neurone, the small-diameter nociceptive neurone of the dorsal root ganglion, contains a high percentage of tetrodotoxin-resistant sodium currents (TTX-R I(Na)). Therefore, this study was carried out to determine whether these channel currents are involved in the PGE(2)-induced sensitization of pulmonary C neurones. We used the perforated patch-clamp technique to study the effects of PGE(2) on the TTX-R I(Na) in acutely cultured capsaicin-sensitive pulmonary neurones that were identified by retrograde labelling with a fluorescent tracer, DiI. We found that the pulmonary neurones sensitive to capsaicin had a higher percentage of TTX-R I(Na) than that of capsaicin-insensitive pulmonary neurones. PGE(2) exposure increased the evoked TTX-R I(Na) when experiments were performed at both room temperature and at 37 degrees C. Furthermore, stimulation of the adenylyl cyclase/protein kinase A pathway with either forskolin or Sp-5,6-DCl-cBiMPS potentiated the TTX-R I(Na) in a manner similar to that of PGE(2). We conclude that these modulatory effects of PGE(2) on TTX-R I(Na) play an important role in the sensitization of pulmonary C neurones.

  15. Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release.

    PubMed

    Hajna, Zsófia; Sághy, Éva; Payrits, Maja; Aubdool, Aisah A; Szőke, Éva; Pozsgai, Gábor; Bátai, István Z; Nagy, Lívia; Filotás, Dániel; Helyes, Zsuzsanna; Brain, Susan D; Pintér, Erika

    2016-10-01

    It is supposed that TRPA1 receptor can be activated by hydrogen sulphide (H2S). Here, we have investigated the role of TRPA1 receptor in H2S-induced [Ca(2+)]i increase in trigeminal ganglia (TRG) neurons, and the involvement of capsaicin-sensitive sensory nerves in H2S-evoked cutaneous vasodilatation. [Ca(2+)]i was measured with ratiometric technique on TRG neurons of TRPA1(+/+) and TRPA1(-/-) mice after NaHS, Na2S, allylisothiocyanate (AITC) or KCl treatment. Microcirculatory changes in the ear were detected by laser Doppler imaging in response to topical NaHS, AITC, NaOH, NaSO3 or NaCl. Mice were either treated with resiniferatoxin (RTX), or CGRP antagonist BIBN4096, or NK1 receptor antagonist CP99994, or K(+) ATP channel blocker glibenclamide. Alpha-CGRP(-/-) and NK1 (-/-) mice were also investigated. NaHS and Na2S increased [Ca(2+)]i in TRG neurons derived from TRPA(+/+) but not from TRPA1(-/-) mice. NaHS increased cutaneous blood flow, while NaOH, NaSO3 and NaCl did not cause significant changes. NaHS-induced vasodilatation was reduced in RTX-treated animals, as well as by pre-treatment with BIBN4096 or CP99994 alone or in combination. NaHS-induced vasodilatation was significantly smaller in alpha-CGRP(-/-) or NK1 (-/-) mice compared to wild-types. H2S activates capsaicin-sensitive sensory nerves through TRPA1 receptors and the resultant vasodilatation is mediated by the release of vasoactive sensory neuropeptides CGRP and substance P.

  16. Roles of capsaicin-sensitive primary afferents in differential rat models of inflammatory pain: a systematic comparative study in conscious rats.

    PubMed

    Chen, Hui-Sheng; He, Xiang; Wang, Yang; Wen, Wei-Wei; You, Hao-Jun; Arendt-Nielsen, Lars

    2007-03-01

    To characterize the role of capsaicin-sensitive primary afferents in inflammatory pain, the effects of subcutaneous (s.c.) injection of 0.15% capsaicin on different chemical irritants-induced pathological nociception including persistent spontaneous nociception, primary thermal and mechanical hyperalgesia, and inflammatory response were systematically investigated in unanesthetized conscious rats. Four different animal models of inflammatory pain: the bee venom (BV) test, the formalin test, the carrageenan model, and the complete Freund's adjuvant (CFA) model, were employed and compared. Local pre-treatment with capsaicin produced a significant inhibition on the s.c. BV and formalin induced long-lasting persistent spontaneous nociception. However, this capsaicin-induced inhibitory effect on spontaneous nociception in the BV test was only found within the late phase (tonic nociception; 11-60 min), but not the early phase (acute nociception; 0-10 min). A complete preventing effect of capsaicin on the decreased thermal paw withdrawal latency was found in the BV, carrageenan, and CFA models. Nevertheless, pre-treatment with capsaicin only produced complete blocking effects on the decreased mechanical paw withdrawal threshold in the BV and carrageenan models, but not in the CFA model. For inflammatory response, a significant inhibition of the BV-elicited paw swelling was found following capsaicin treatment. In marked contrast, capsaicin did not produce any effects on the paw inflammation during exposure to carrageenan, CFA, and formalin. These data suggest that capsaicin-sensitive primary afferents may play differential roles in the induction and development of pathological nociception in differential inflammatory pain models. In contrast to other chemical irritants, BV-induced long-term spontaneous nociception, facilitated nociceptive behavior, and inflammation are modulated by peripheral capsaicin-sensitive afferents.

  17. H2S-induced HCO3- secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons.

    PubMed

    Takeuchi, Koji; Ise, Fumitaka; Takahashi, Kento; Aihara, Eitaro; Hayashi, Shusaku

    2015-04-30

    Hydrogen sulfide (H2S) is known to be an important gaseous mediator that affects various functions under physiological and pathological conditions. We examined the effects of NaHS, a H2S donor, on HCO3(-) secretion in rat stomachs and investigated the mechanism involved in this response. Under urethane anesthesia, rat stomachs were mounted on an ex vivo chamber and perfused with saline. Acid secretion had been inhibited by omeprazole. The secretion of HCO3(-) was measured at pH 7.0 using a pH-stat method and by the addition of 10 mM HCl. NaHS (0.5-10 mM) was perfused in the stomach for 5 min. Indomethacin or L-NAME was administered s.c. before NaHS treatment, while glibenclamide (a KATP channel blocker), ONO-8711 (an EP1 antagonist), or propargylglycine (a cystathionine γ-lyase inhibitor) was given i.p. before. The mucosal perfusion of NaHS dose-dependently increased the secretion of HCO3(-), and this effect was significantly attenuated by indomethacin, L-NAME, and sensory deafferentation, but not by glibenclamide or ONO-8711. The luminal output of nitric oxide, but not the mucosal production of prostaglandin E2, was increased by the perfusion of NaHS. Mucosal acidification stimulated HCO3(-) secretion, and this response was inhibited by sensory deafferentation, indomethacin, L-NAME, and ONO-8711, but not by propargylglycine. These results suggested that H2S increased HCO3(-) secretion in the stomach, and this effect was mediated by capsaicin-sensitive afferent neurons and dependent on nitric oxide and prostaglandins, but not ATP-sensitive K(+) channels. Further study is needed to define the role of endogenous H2S in the mechanism underlying acid-induced gastric HCO3(-) secretion. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Experimental colitis in rats induces de novo synthesis of cytokines at distant intestinal sites: role of capsaicin-sensitive primary afferent fibers.

    PubMed

    Mourad, Fadi H; Hamdi, Tamim; Barada, Kassem A; Saadé, Nayef E

    2016-06-01

    Increased levels of pro- and anti-inflammatory cytokines were observed in various segments of histologically-intact small intestine in animal models of acute and chronic colitis. Whether these cytokines are produced locally or spread from the inflamed colon is not known. In addition, the role of gut innervation in this upregulation is not fully understood. To examine whether cytokines are produced de novo in the small intestine in two rat models of colitis; and to investigate the role of capsaicin-sensitive primary afferents in the synthesis of these inflammatory cytokines. Colitis was induced by rectal instillation of iodoacetamide (IA) or trinitrobenzene sulphonic acid (TNBS) in adult Sprague-Dawley rats. Using reverse transcriptase (RT) and real-time PCR, TNF-α, and IL-10 mRNA expression was measured in mucosal scrapings of the duodenum, jejunum, ileum and colon at different time intervals after induction of colitis. Capsaicin-sensitive primary afferents (CSPA) were ablated using subcutaneous injections of capsaicin at time 0, 8 and 32 h, and the experiment was repeated at specific time intervals to detect any effect on cytokines expression. TNF-α mRNA expression increased by 3-40 times in the different intestinal segments (p<0.05 to p<0.001), 48h after IA-induced colitis. CSPA ablation completely inhibited this upregulation in the small intestine, but not in the colon. Similar results were obtained in TNBS-induced colitis at 24 h. Intestinal IL-10 mRNA expression significantly decreased at 12 h and then increased by 6-43 times (p<0.05 to p<0.001) 48h after IA administration. This increase was abolished in rats subjected to CSPA ablation except in the colon, where IL-10 further increased by twice (p<0.05). In the TNBS group, there was 4-12- and 4-7-fold increases in small intestinal IL-10 mRNA expression at 1 and 21 days after colitis induction, respectively (both p<0.01). This increase was not observed in rats pretreated with capsaicin. Capsaicin-treated and

  19. Oxytocin Inhibits the Membrane Depolarization-Induced Increase in Intracellular Calcium in Capsaicin Sensitive Sensory Neurons: A Peripheral Mechanism of Analgesic Action

    PubMed Central

    Hobo, Shotaro; Hayashida, Ken-ichiro; Eisenach, James C.

    2011-01-01

    Background Lumbar intrathecal injection of oxytocin produces antinociception in rats and analgesia in humans. Classically, oxytocin receptors couple to stimulatory G proteins, increase inositol-3-phosphate production, and result in neuronal excitation. Most work to date has focused on a spinal site of oxytocin to excite γ-aminobutyric acid interneurons to produce analgesia. Here we ask whether oxytocin might also affect primary sensory afferents by modulating high voltage-gated calcium channels, such as it does in the brain. Methods Dorsal root ganglion cells from adult rats were acutely dissociated and cultured, and changes in intracellular calcium determined by fluorescent microscopy using an indicator dye. The effects of oxytocin alone and in the presence of transient depolarization from increased extracellular KCl concentration were determined, then the pharmacology of these effects were studied. Cells from injured dorsal root ganglion cells after spinal nerve ligation were also studied. Results Oxytocin produced a concentration-dependent inhibition of the increase in intracellular calcium from membrane depolarization, an effect blocked more efficiently by oxytocin- than vasopressin-receptor selective antagonists. Oxytocin-induced inhibition was present in cells responding to capsaicin, and when internal stores of calcium were depleted with thapsigargin. Oxytocin produced similar inhibition in cells from animals with spinal nerve ligation. Conclusions These data suggest that oxytocin produces antinociception after intrathecal delivery in part by reducing excitatory neurotransmitter release from the central terminals of nociceptors. PMID:22104073

  20. Capsaicin-Sensitive Sensory Nerves Are Necessary for the Protective Effect of Ghrelin in Cerulein-Induced Acute Pancreatitis in Rats

    PubMed Central

    Bonior, Joanna; Warzecha, Zygmunt; Ceranowicz, Piotr; Gajdosz, Ryszard; Pierzchalski, Piotr; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Trąbka, Rafał; Kuśnierz-Cabala, Beata; Dembiński, Artur; Jaworek, Jolanta

    2017-01-01

    Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect. PMID:28665321

  1. Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/⁻ mice.

    PubMed

    Wang, Yue; Duan, J-H; Hingtgen, C M; Nicol, G D

    2010-04-01

    Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates conversion of active Ras-GTP to inactive Ras-GDP. Sensory neurons with reduced levels of neurofibromin likely have augmented Ras-GTP activity. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/⁻) exhibited greater excitability compared with wild-type mice. To determine the mechanism giving rise to the augmented excitability, differences in specific membrane currents were examined. Consistent with the enhanced excitability of Nf1+/⁻ neurons, peak current densities of both tetrodotoxin-resistant sodium current (TTX-R I(Na)) and TTX-sensitive (TTX-S) I(Na) were significantly larger in Nf1+/⁻ than in wild-type neurons. Although the voltages for half-maximal activation (V(0.5)) were not different, there was a significant depolarizing shift in the V(0.5) for steady-state inactivation of both TTX-R and TTX-S I(Na) in Nf1+/⁻ neurons. In addition, levels of persistent I(Na) were significantly larger in Nf1+/⁻ neurons. Neither delayed rectifier nor A-type potassium currents were altered in Nf1+/⁻ neurons. These results demonstrate that enhanced production of action potentials in Nf1+/⁻ neurons results, in part, from larger current densities and a depolarized voltage dependence of steady-state inactivation for I(Na) that potentially leads to a greater availability of sodium channels at voltages near the firing threshold for the action potential.

  2. High-Concentration Piperine: Capsaicin-Sensitive and -Insensitive Effects on Isolated Organs.

    PubMed

    Bencsik, Timea; Sandor, Zsolt; Bartho, Lorand

    2015-01-01

    Piperine (P), a sensory stimulant in black pepper, is an agonist on TRPV1 receptors. Earlier work has showed capsaicin-sensitive and -insensitive mechanisms of the contractile action of P on the intestine. The current isolated organ study in the guinea-pig ileum, urinary bladder and trachea (a) confirms the presence of such components of effect (ileum and bladder); (b) indicates TRPV1 involvement in the effect of 5 or 30 µmol/l of P on the basis of an inhibitory action of the antagonist BCTC (ileum); (c) indicates that HC 030031-sensitive TRPA1 receptors and nifedipine-sensitive Ca(2+) channels contribute to the capsaicin-resistant contraction to 30 µmol/l P (ileum) and (d) shows that the contractile effect of P up to 100 µmol/l (guinea-pig trachea) or 30 µmol/l (guinea-pig urinary bladder) is capsaicin-sensitive and mediated by TRPV1 receptors/channels.

  3. Transganglionic transport of choleragenoid by capsaicin-sensitive C-fibre afferents to the substantia gelatinosa of the spinal dorsal horn after peripheral nerve section.

    PubMed

    Sántha, P; Jancsó, G

    2003-01-01

    Choleratoxin B subunit-binding thick myelinated, A-fibre and unmyelinated, capsaicin-sensitive nociceptive C-fibre primary afferent fibres terminate in a strict topographic and somatotopic manner in the spinal cord dorsal horn. Injection of choleratoxin B subunit-horseradish peroxidase conjugate into injured but not intact peripheral nerves produced transganglionic labelling of primary afferents not only in the deeper layers (Rexed's laminae III-IV), but also in the substantia gelatinosa (Rexed's laminae II) of the spinal dorsal horn. This was interpreted in terms of a sprouting response of the Abeta-myelinated afferents and suggested a contribution to the pathogenesis of neuropathic pain [Nature 355 (1992) 75; J Comp Neurol 360 (1995) 121]. By utilising the selective neurotoxic effect of capsaicin, we examined the role of C-fibre sensory ganglion neurons in the mechanism of this phenomenon. Elimination of these particular, capsaicin-sensitive C-fibre afferents by prior intrathecal or systemic capsaicin treatment inhibited transganglionic labelling by the choleratoxin B subunit-horseradish peroxidase conjugate of the substantia gelatinosa evoked by chronic sciatic nerve section. More importantly, prior perineural capsaicin treatment of the transected nerve proximal to the anticipated site of injection of choleragenoid 12 hours later prevented the labelling of the substantia gelatinosa, but not that of the deeper layers. Electron microscopic examination of the dorsal roots revealed no significant difference in the proportion of labelled myelinated fibres relating to the intact (54.4+/-5.5%) and the transected (62.4+/-5.4%) sciatic nerves. In contrast, the proportion of labelled unmyelinated dorsal root axons relating to the transected, but not the intact nerves showed a significant, six-fold increase after sciatic nerve transection (intact: 4.9+/-1.3%; transected: 35+/-6.7%). These observations indicate that peripheral nerve lesion-induced transganglionic labelling

  4. The influence of alpha1-adrenoreceptors on neuropeptide release from primary sensory neurons of the lower urinary tract.

    PubMed

    Trevisani, Marcello; Campi, Barbara; Gatti, Raffaele; André, Eunice; Materazzi, Serena; Nicoletti, Paola; Gazzieri, David; Geppetti, Pierangelo

    2007-09-01

    Adrenergic alpha(1)-receptors agonists and antagonists have been reported to increase and reduce, respectively, neurogenic inflammatory responses mediated by capsaicin-sensitive sensory neurons. However, the precise role and localization of the alpha(1)-adrenoceptors involved in these effects are not known. We have studied in the rat whether functional alpha(1)-adrenoreceptors are expressed in primary sensory neurons, and whether they regulate neurogenic inflammation and nociceptive responses in the urinary bladder. The alpha(1)-adrenoreceptor agonist phenylephrine (1 micromol/l) (1) mobilized intracellular Ca(2+) in cultured lumbar and sacral dorsal root ganglia neurons, (2) caused the release of substance P (SP) from terminals of capsaicin-sensitive sensory neurons from the lumbar enlargement of the dorsal spinal cord and urinary bladder, and (3) increased plasma protein extravasation in the urinary bladder. All these effects were abolished by the alpha(1)-adrenoceptor antagonist alfuzosin (10 micromol/l). Furthermore, alfuzosin (30 microg/kg, i.v.) partially, but significantly, inhibited cyclophosphamide-induced plasma protein extravasation in the rat urinary bladder. Phenylephrine-induced Ca(2+) mobilization in cultured dorsal root ganglia neurons was exaggerated by pretreating the rats in vivo with cyclophosphamide. Finally, cyclophosphamide increased c-fos expression in the rat lumbar spinal cord. Also these in vitro and in vivo effects were inhibited by pretreatment with alfuzosin. Alpha(1)-adrenoceptors are functionally expressed by capsaicin-sensitive, nociceptive, primary sensory neurons of the rat urinary tract, and their activation may contribute to signal irritative and nociceptive responses arising from the urinary tract. It is possible that, at least, part of the beneficial effects of alpha(1)-adrenoceptor antagonists in the amelioration of storage symptoms in the lower urinary tract derives from their inhibitory effect on neurogenic inflammatory

  5. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.

    PubMed

    Reidelberger, Roger; Haver, Alvin; Anders, Krista; Apenteng, Bettye

    2014-10-15

    Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.

  6. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons.

    PubMed

    Matak, Ivica; Rossetto, Ornella; Lacković, Zdravko

    2014-08-01

    Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A's central antinociceptive activity following its application into the rat whisker pad was examined in trigeminal nucleus caudalis (TNC) and higher-level nociceptive brain areas using BoNT/A-cleaved synaptosomal-associated protein 25 (SNAP-25) and c-Fos immunohistochemistry. Occurrence of cleaved SNAP-25 in TNC was examined after nonselective ganglion ablation with formalin or selective denervation of capsaicin-sensitive (vanilloid receptor-1 or TRPV1-expressing) neurons, and in relation to different cellular and neuronal markers. Regional c-Fos activation and effect of TRPV1-expressing afferent denervation on toxin's antinociceptive action were studied in formalin-induced orofacial pain. BoNT/A-cleaved SNAP-25 was observed in TNC, but not in higher-level nociceptive nuclei. Cleaved SNAP-25 in TNC disappeared after formalin-induced trigeminal ganglion ablation or capsaicin-induced sensory denervation. Occurrence of cleaved SNAP-25 in TNC and BoNT/A antinociceptive activity in formalin-induced orofacial pain were prevented by denervation with capsaicin. Cleaved SNAP-25 localization demonstrated toxin's presynaptic activity in TRPV1-expressing neurons. BoNT/A reduced the c-Fos activation in TNC, locus coeruleus, and periaqueductal gray. Present experiments suggest that BoNT/A alters the nociceptive transmission at the central synapse of primary afferents. Targeting of TRPV1-expressing neurons might be associated with observed selectivity of BoNT/A action only in certain types of pain.

  7. Regulation of early and delayed radiation responses in rat small intestine by capsaicin-sensitive nerves

    SciTech Connect

    Wang Junru; Zheng Huaien; Kulkarni, Ashwini; Ou Xuemei; Hauer-Jensen, Martin . E-mail: mhjensen@life.uams.edu

    2006-04-01

    Purpose: Mast cells protect against the early manifestations of intestinal radiation toxicity, but promote chronic intestinal wall fibrosis. Intestinal sensory nerves are closely associated with mast cells, both anatomically and functionally, and serve an important role in the regulation of mucosal homeostasis. This study examined the effect of sensory nerve ablation on the intestinal radiation response in an established rat model. Methods and Materials: Rats underwent sensory nerve ablation with capsaicin or sham ablation. Two weeks later, a localized segment of ileum was X-irradiated or sham irradiated. Structural, cellular, and molecular changes were examined 2 weeks (early injury) and 26 weeks (chronic injury) after irradiation. The mast cell dependence of the effect of sensory nerve ablation on intestinal radiation injury was assessed using c-kit mutant (Ws/Ws) mast cell-deficient rats. Results: Capsaicin treatment caused a baseline reduction in mucosal mast cell density, crypt cell proliferation, and expression of substance P and calcitonin gene-related peptide, two neuropeptides released by sensory neurons. Sensory nerve ablation strikingly exacerbated early intestinal radiation toxicity (loss of mucosal surface area, inflammation, intestinal wall thickening), but attenuated the development of chronic intestinal radiation fibrosis (collagen I accumulation and transforming growth factor {beta} immunoreactivity). In mast cell-deficient rats, capsaicin treatment exacerbated postradiation epithelial injury (loss of mucosal surface area), but none of the other aspects of radiation injury were affected by capsaicin treatment. Conclusions: Ablation of capsaicin-sensitive enteric neurons exacerbates early intestinal radiation toxicity, but attenuates development of chronic fibroproliferative changes. The effect of capsaicin treatment on the intestinal radiation response is partly mast cell dependent.

  8. Primary processes in sensory cells: current advances.

    PubMed

    Frings, Stephan

    2009-01-01

    In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth's magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.

  9. Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing.

    PubMed

    Wang, Jingya; Kollarik, Marian; Ru, Fei; Sun, Hui; McNeil, Benjamin; Dong, Xinzhong; Stephens, Geoffrey; Korolevich, Susana; Brohawn, Philip; Kolbeck, Roland; Undem, Bradley

    2017-01-01

    Capsaicin-sensitive sensory C-fibers derived from vagal ganglia innervate the visceral organs, and respond to inflammatory mediators and noxious stimuli. These neurons play an important role in maintenance of visceral homeostasis, and contribute to the symptoms of visceral inflammatory diseases. Vagal sensory neurons are located in two ganglia, the jugular ganglia (derived from the neural crest), and the nodose ganglia (from the epibranchial placodes). The functional difference, especially in response to immune mediators, between jugular and nodose neurons is not fully understood. In this study, we microscopically isolated murine nodose and jugular capsaicin-sensitive / Trpv1-expressing C-fiber neurons and performed transcriptome profiling using ultra-low input RNA sequencing. RNAseq detected genes with significantly differential expression in jugular and nodose neurons, which were mostly involved in neural functions. Transcriptional regulators, including Cited1, Hoxb5 and Prdm12 showed distinct expression patterns in the two C-fiber neuronal populations. Common and specific expression of immune receptor proteins was characterized in each neuronal type. The expression of immune receptors that have received little or no attention from vagal sensory biologists is highlighted including receptors for certain chemokines (CXCLs), interleukins (IL-4) and interferons (IFNα, IFNγ). Stimulation of immune receptors with their cognate ligands led to activation of the C-fibers in isolated functional assays.

  10. Involvement of capsaicin-sensitive afferents and the Transient Receptor Potential Vanilloid 1 Receptor in xylene-induced nocifensive behaviour and inflammation in the mouse.

    PubMed

    Sándor, Katalin; Helyes, Zsuzsanna; Elekes, Krisztián; Szolcsányi, János

    2009-02-27

    The inflammatory actions of xylene, an aromatic irritant and sensitizing agent, were described to be predominantly neurogenic in the rat, but the mechanism and the role of the Transient Receptor Potential Vanilloid 1 (TRPV1) capsaicin receptor localized on a subpopulation of sensory nerves has not been elucidated. This paper characterizes the involvement of capsaicin-sensitive afferents and the TRPV1 receptor in nociceptive and acute inflammatory effects of xylene in the mouse. Topical application of xylene on the paw induced a short, intensive nocifensive behaviour characterized by paw liftings and shakings, which was more intensive in Balb/c than in C57Bl/6 mice. Genetic deletion of the TRPV1 receptor as well as destroying capsaicin-sensitive nerve terminals with resiniferatoxin (RTX) pretreatment markedly reduced, but did not abolish nocifensive behaviours. In respect to the xylene-induced plasma protein extravasation detected by Evans blue leakage, significant difference was neither observed between the Balb/c and C57Bl/6 strains, nor the ear and the dorsal paw skin. These inflammatory responses were diminished in the RTX pretreated group, but not in the TRPV1 gene-deleted one. Injection of the antioxidant N-acetylcysteine 15min prior to xylene smearing significantly reduced plasma protein extravasation at both sites. These results demonstrate that xylene-induced acute nocifensive behaviour is mediated by capsaicin-sensitive afferents via TRPV1 receptor activation in mice. Neurogenic inflammatory components play an important role in xylene-induced plasma protein extravasation, but independently of the TRPV1 ion channel. Reactive oxygen or carbonyl species participate in this process presumably via stimulation of the TRPA1 channel.

  11. Primary ciliary dyskinesia and associated sensory ciliopathies

    PubMed Central

    Horani, Amjad; Ferkol, Thomas W

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a genetic disease of motile cilia, which belongs to a group of disorders resulting from dysfunction of cilia, collectively known as ciliopathies. Insights into the genetics and phenotypes of PCD have grown over the last decade, in part propagated by the discovery of a number of novel cilia-related genes. These genes encode proteins that segregate into structural axonemal, regulatory, as well as cytoplasmic assembly proteins. Our understanding of primary (sensory) cilia has also expanded, and an ever-growing list of diverse conditions has been linked to defective function and signaling of the sensory cilium. Recent multicenter clinical and genetic studies have uncovered the heterogeneity of motile and sensory ciliopathies, and in some cases, the overlap between these conditions. In this review, we will describe the genetics and pathophysiology of ciliopathies in children, focusing on PCD, review emerging genotype-phenotype relationships, and diagnostic tools available for the clinician. PMID:26967669

  12. [Oxidative modification of rat blood proteins after destruction capsaicin-sensitive nerve and change of nitric oxide level].

    PubMed

    Tolochko, Z S; Spiridonov, V K

    2010-01-01

    Content of blood protein carbonyl derivates in rats are determined to assess oxidative modification of protein after destruction of capsaicin-sensitive nerve and change of nitric oxide (NO) level. Deafferentation of these nerves produces increase of the protein carbonyl derivates content. The increase of NO by L-arginine does not affect protein oxidative destruction produced by ablation of capsaicin-sensitive nerve. Selective inhibitor of neuronal synthase NO (n-NOS) 7-nitroindazole (7-NI) results in similar effect. L-NAME increased oxidative destruction of proteins. These results demonstrate that deafferentation of capsaicin-sensitive nerve induces oxidative destruction of proteins. NO has party to mediating oxidative modification of proteins.

  13. Chronic stress-induced mechanical hyperalgesia is controlled by capsaicin-sensitive neurones in the mouse.

    PubMed

    Scheich, B; Vincze, P; Szőke, É; Borbély, É; Hunyady, Á; Szolcsányi, J; Dénes, Á; Környei, Zs; Gaszner, B; Helyes, Zs

    2017-09-01

    Clinical studies demonstrated peripheral nociceptor deficit in stress-related chronic pain states, such as fibromyalgia. The interactions of stress and nociceptive systems have special relevance in chronic pain, but the underlying mechanisms including the role of specific nociceptor populations remain unknown. We investigated the role of capsaicin-sensitive neurones in chronic stress-related nociceptive changes. Capsaicin-sensitive neurones were desensitized by the capsaicin analogue resiniferatoxin (RTX) in CD1 mice. The effects of desensitization on chronic restraint stress (CRS)-induced responses were analysed using behavioural tests, chronic neuronal activity assessment in the central nervous system with FosB immunohistochemistry and peripheral cytokine concentration measurements. Chronic restraint stress induced mechanical and cold hypersensitivity and increased light preference in the light-dark box test. Open-field and tail suspension test activities were not altered. Adrenal weight increased, whereas thymus and body weights decreased in response to CRS. FosB immunopositivity increased in the insular cortex, dorsomedial hypothalamic and dorsal raphe nuclei, but not in the spinal cord dorsal horn after the CRS. CRS did not affect the cytokine concentrations of hindpaw tissues. Surprisingly, RTX pretreatment augmented stress-induced mechanical hyperalgesia, abolished light preference and selectively decreased the CRS-induced neuronal activation in the insular cortex. RTX pretreatment alone increased the basal noxious heat threshold without influencing the CRS-evoked cold hyperalgesia and augmented neuronal activation in the somatosensory cortex and interleukin-1α and RANTES production. Chronic restraint stress induces hyperalgesia without major anxiety, depression-like behaviour or peripheral inflammatory changes. Increased stress-induced mechanical hypersensitivity in RTX-pretreated mice is presumably mediated by central mechanisms including cortical plastic

  14. Peripheral nerve lesion-induced uptake and transport of choleragenoid by capsaicin-sensitive c-fibre spinal ganglion neurons.

    PubMed

    Jancsó, G; Sántha, P; Gecse, Krisztina

    2002-01-01

    In the present experiments the effect of systemic capsaicin treatment on the retrograde labelling of sensory ganglion cells was studied following the injection of choleratoxin B subunit-horseradish peroxidase conjugate (CTX-HRP) into intact and chronically transected peripheral nerves. In the control rats CTX-HRP injected into intact sciatic nerves labelled medium and large neurons with a mean cross-sectional area of 1,041 +/- 39 gm2. However, after injection of the conjugate into chronically transected sciatic nerves of the control rats, many small cells were also labelled, shifting the mean cross-sectional area of the labelled cells to 632 +/- 118 microm2. Capsaicin pretreatment per se induced a moderate but significant decrease in the mean cross-sectional area of the labelled neurons (879 +/- 79 microm2). More importantly, systemic pretreatment with capsaicin prevented the peripheral nerve lesion-induced labelling of small cells. Thus, the mean cross-sectional areas of labelled neurons relating to the intact and transected sciatic nerves, respectively, did not differ significantly. These findings provide direct evidence for a phenotypic switch of capsaicin-sensitive nociceptive neurons after peripheral nerve injury, and suggest that lesion-induced morphological changes in the spinal cord may be related to specific alterations in the chemistry of C-fibre afferent neurons rather than to a sprouting response of A-fibre afferents.

  15. The stimulation of capsaicin-sensitive neurones in a vanilloid receptor-mediated fashion by pungent terpenoids possessing an unsaturated 1,4-dialdehyde moiety.

    PubMed Central

    Szallasi, A.; Jonassohn, M.; Acs, G.; Bíró, T.; Acs, P.; Blumberg, P. M.; Sterner, O.

    1996-01-01

    1. The irritant fungal terpenoid isovelleral caused protective eye-wiping movements in the rat upon intraocular instillation and showed cross-tachyphylaxis with capsaicin, the pungent principle in hot pepper. 2. Isovelleral induced a dose-dependent calcium uptake by rat dorsal root ganglion neurones cultured in vitro with an EC50 of 95 nM, which was fully inhibited by the competitive vanilloid receptor antagonist capsazepine. 3. Isovelleral inhibited specific binding of [3H]-resiniferatoxin (RTX), an ultrapotent capsaicin analogue, to rat trigeminal ganglion or spinal cord preparations with an IC50 of 5.2 microM; in experiments in which the concentration of [3H]-RTX was varied, isovelleral changed both the apparent affinity (from 16 pM to 37 pM) and the co-operativity index (from 2.1 to 1.5), but not the Bmax. 4. The affinity of isovelleral for inducing calcium uptake or inhibiting RTX binding was in very good agreement with the threshold dose (2.2. nmol) at which it provoked pungency on the human tongue. 5. For a series of 14 terpenoids with an unsaturated 1,4-dialdehyde, a good correlation was found between pungency on the human tongue and affinity for vanilloid receptors on the rat spinal cord. 6. The results suggest that isovelleral-like compounds produce their irritant effect by interacting with vanilloid receptors on capsaicin-sensitive sensory neurones. Since these pungent diterpenes are structurally distinct from the known classes of vanilloids, these data provide new insights into structure-activity relations and may afford new opportunities for the development of drugs targeting capsaicin-sensitive pathways. PMID:8886410

  16. Cross-modal synaptic plasticity in adult primary sensory cortices.

    PubMed

    Lee, Hey-Kyoung; Whitt, Jessica L

    2015-12-01

    Sensory loss leads to widespread adaptation of brain circuits to allow an organism to navigate its environment with its remaining senses, which is broadly referred to as cross-modal plasticity. Such adaptation can be observed even in the primary sensory cortices, and falls into two distinct categories: recruitment of the deprived sensory cortex for processing the remaining senses, which we term 'cross-modal recruitment', and experience-dependent refinement of the spared sensory cortices referred to as 'compensatory plasticity.' Here we will review recent studies demonstrating that cortical adaptation to sensory loss involves LTP/LTD and homeostatic synaptic plasticity. Cross-modal synaptic plasticity is observed in adults, hence cross-modal sensory deprivation may be an effective way to promote plasticity in adult primary sensory cortices.

  17. Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    PubMed Central

    Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

    2012-01-01

    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (INaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of INaT and a decrease of potassium currents, especially slowly inactivating potassium currents (IAS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of INaT and total potassium current as well as IAS currents induced by STZ were normalized by GAS. This study provides a clear

  18. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations

    PubMed Central

    Bogdanov, Volodymyr B.; Middleton, Natalie A.; Theriot, Jeremy J.; Parker, Patrick D.; Abdullah, Osama M.; Ju, Y. Sungtaek; Hartings, Jed A.

    2016-01-01

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. SIGNIFICANCE STATEMENT Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations

  19. Bypassing primary sensory cortices--a direct thalamocortical pathway for transmitting salient sensory information.

    PubMed

    Liang, M; Mouraux, A; Iannetti, G D

    2013-01-01

    Detection and appropriate reaction to sudden and intense events happening in the sensory environment is crucial for survival. By combining Bayesian model selection with dynamic causal modeling of functional magnetic resonance imaging data, a novel analysis approach that allows inferring the causality between neural activities in different brain areas, we demonstrate that salient sensory information reaches the multimodal cortical areas responsible for its detection directly from the thalamus, without being first processed in primary and secondary sensory-specific areas. This direct thalamocortical transmission of multimodal salient information is parallel to the processing of finer stimulus attributes, which are transmitted in a modality-specific fashion from the thalamus to the relevant primary sensory areas. Such direct thalamocortical connections bypassing primary sensory cortices provide a fast and efficient way for transmitting information from subcortical structures to multimodal cortical areas, to allow the early detection of salient events and, thereby, trigger immediate and appropriate behavior.

  20. Action potential broadening in capsaicin-sensitive DRG neurons from frequency-dependent reduction of Kv3 current.

    PubMed

    Liu, Pin; Blair, Nathaniel T; Bean, Bruce P

    2017-09-06

    Action potential shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the action potentials. Stimulation at 10 Hz for three seconds resulted in an increase in action potential width by an average of 76 ± 7% at 22 °C and by 38 ± 3% at 35 °C. Action potential clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC50 <100 μM) and block by the peptide inhibitor BDS-I. There was a small component of Kv1-mediated current during action potential repolarization but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could underlie the frequency-dependent increases in conduction velocity typical of C-fiber axons.SIGNIFICANCE STATEMENTSmall-diameter dorsal root ganglion neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We find that action potentials of small-diameter rat dorsal root

  1. [The effect of destruction of rat capsaicin-sensitive nerves on blood pressure in rats with metabolic syndrome].

    PubMed

    Spiridonov, V K; Tolochko, Z S; Kostina, N E

    2013-09-01

    The effect of destruction of capsaicin-sensitive nerve (capsaicin 150 mg/kg, s/c) on blood pre- ssure was investigated in rats with metabolic syndrome induced by fructose (12.5% in drinking water for 10 weeks). The blood plasma concentrations of glucose, triglyceride (TG) and products of lipid perioxidation were defined in these rats. The systolic blood pressure was measured by non-invasive method using the Coda system (Coda, Kent Scientific, USA). The fructose diet caused impaired tolerance glucose, arterial hypertension, increased the contents of TG and products of lipid peroxidation. In capsaicin--pretreated rats (deafferentiation of capsaicin-sensitive nerve) the fructose intake did not evoke impairment tolerance glucose, the increase of systolic blood pressure and the plasma content of triglyceride. The increase of lipid perioxidation in fructose fed rats was not prevented by capsaicin pretreatment. The authors suggest that capsaicin-sensitive nerves contribute to the development of insulin resistance and arterial hypertension in the metabolic syndrome.

  2. Identifying local and descending inputs for primary sensory neurons

    PubMed Central

    Zhang, Yi; Zhao, Shengli; Rodriguez, Erica; Takatoh, Jun; Han, Bao-Xia; Zhou, Xiang; Wang, Fan

    2015-01-01

    Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses–based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission. PMID:26426077

  3. [ROLE OF CAPSAICIN-SENSITIVE NERVES IN THE REGULATION OF DEHYDROEPIANDROSTERONE SULFATE BLOOD CONTENT UNDER NORMAL AND FRUCTOSE-INDUCED METABOLIC SYNDROME].

    PubMed

    Spiridonov, V K; Tolochko, Z S; Ovcjukova, M V; Kostina, N E; Obut, T A

    2015-08-01

    The effects of the stimulation of capsaicin-sensitive nerves (capsaicin, 1 mg/kg, s/c) and their eafferentation (capsaicin, 150 mg/kg, s/c) on the blood content of dehydroepiandrosterone sulfate (DHEAS) was investigated in normal rats and rats with fructose-induced metabolic syndrome (12.5% fructose solution, 10 weeks). An increase in blood of tryglyceride, lipid peroxidation, glucose (fasting and after loading glucose, 2 mg/kg, i/p) was considered as symptoms of metabolic syndrome. It was shown that in normal rats drinking tap water the stimulation of capsaicin-sensitive nerves resulted in the increase of DHEAS content while their deafferentation reduced the concentration of this hormone in the blood. The fructose diet caused the decrease in content of DHEAS, triglyceridemia, lipid peroxidation, impaired tolerance glucose. In rats with the metabolic syndrome the stimulation capsaicin-sensitive nerves prevented the fructose-induced decrease of DHEAS content as well as decreased the symptoms of metabolic syndrome. In fructose fed rats the stimulation-induced effects were prevented by the deafferentation of capsaicin-sensitive nerves. It is suggested that capsaicin-sensitive nerves contribute both to the regulation of blood content of DHEAS under normal and fructose-induced metabolic syndrome.

  4. Intrinsic and synaptic long-term depression of NTS relay of nociceptin- and capsaicin-sensitive cardiopulmonary afferents hyperactivity.

    PubMed

    Bantikyan, Armenak; Song, Gang; Feinberg-Zadek, Paula; Poon, Chi-Sang

    2009-03-01

    The nucleus tractus solitarius (NTS) in the caudal medulla is a gateway for a variety of cardiopulmonary afferents important for homeostatic regulation and defense against airway and cardiovascular insults and is a key central target potentially mediating the response habituation to these inputs. Here, whole-cell and field population action potential recordings and infrared imaging in rat brainstem slices in vitro revealed a compartmental pain-pathway-like organization of capsaicin-facilitated vs. nocistatin-facilitated/nociceptin-suppressed neuronal clusters in an NTS region, which receives cardiopulmonary A- and C-fiber afferents with differing capsaicin sensitivities. All capsaicin-sensitive neurons and a fraction of nociceptin-sensitive neurons expressed N-methyl-D: -aspartate (NMDA) receptor-dependent synaptic long-term depression (LTD) following afferent stimulation. All neurons also expressed activity-dependent decrease of excitability (intrinsic LTD), which converted to NMDA receptor-dependent intrinsic long-term potentiation after GABA(A) receptor blockade. Thus, distinct intrinsic and synaptic LTD mechanisms in the NTS specific to the relay of A- or C-fiber afferents may underlie the response habituation to persistent afferents hyperactivity that are associated with varying physiologic challenges and cardiopulmonary derangements-including hypertension, chronic cough, asthmatic bronchoconstriction, sustained elevated lung volume in chronic obstructive pulmonary disease or in continuous positive-airway-pressure therapy for sleep apnea, metabolic acidosis, and prolonged exposure to hypoxia at high altitude.

  5. Involvement of a capsaicin-sensitive TRPV1-independent mechanism in lipopolysaccharide-induced fever in chickens.

    PubMed

    Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Nikami, Hideki; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2007-11-01

    It has been demonstrated that capsaicin blocks lipopolysaccharide (LPS)-induced fever in mammals. In this study, we investigated TRPV1 (transient receptor potential ion channel of vanilloid subtype-1)-independent action of capsaicin on LPS-induced fever in chickens. The chicken is a valuable model for this purpose because chicken TRPV1 has been shown to be insensitive to capsaicin and thus the effects of capsaicin can be attributed to TRPV1-independent mechanisms. Administration of capsaicin (10 mg/kg, iv) to conscious unrestrained chicks at 5 days of age caused a transient decrease in body temperature. This effect of capsaicin was not observed in chicks that had been pretreated twice with capsaicin, indicating that the capsaicin-sensitive pathway can be desensitized. LPS (2 mg/kg, ip) induced fever that lasted for about 2.5 h, but fever was not induced in chicks that had been pretreated with capsaicin for 2 days. The preventive effect of capsaicin on LPS-induced fever was not blocked by capsazepine, an antagonist for TRPV1, but the antagonist per se blocked the febrile response to LPS. These findings suggest that a capsaicin-sensitive TRPV1-independent mechanism may be involved in LPS-induced fever.

  6. Role of capsaicin sensitive nerves in epidermal growth factor effects on gastric mucosal injury and blood flow

    PubMed Central

    Kang, J; Teng, C; Chen, F; Wee, A

    1998-01-01

    Background—Epidermal growth factor (EGF) and capsaicin protect against experimental gastric mucosal injury. Capsaicin exerts its gastroprotective effect by stimulating afferent neurones leading to release of calcitonin gene related peptide (CGRP) which causes gastric hyperaemia. EGF also causes gastric hyperaemia but whether it acts via capsaicin sensitive neurones is unknown. 
Aims—To assess the influence of: (1) capsaicin desensitisation on EGF effects on gastric mucosal injury and gastric mucosal blood flow; and (2) close arterial infusion of hCGRP8-37, a CGRP antagonist, on EGF effects on gastric mucosal blood flow. 
Methods—The absolute ethanol induced gastric mucosal injury model in the rat was used. Gastric mucosal damage was assessed by planimetry and light microscopy. Gastric mucosal blood flow was measured by laser Doppler flowmetry in a gastric chamber preparation. 
Results—Capsaicin desensitisation abolished the gastroprotective and gastric hyperaemic effects of EGF. Close arterial infusion of hCGRP8-37 antagonised the hyperaemic effect of both capsaicin and EGF. 
Conclusion—Results show that EGF may exert its gastroprotective and gastric hyperaemic effects via capsaicin sensitive afferent neurones. 

 Keywords: capsaicin; epidermal growth factor; gastric mucosal injury; gastric mucosal blood flow; calcitonin gene related peptide antagonist; rat PMID:9577339

  7. Increased vascular permeability in rat nasal mucosa induced by substance P and stimulation of capsaicin-sensitive trigeminal neurons.

    PubMed

    Lundblad, L; Saria, A; Lundberg, J M; Anggård, A

    1983-01-01

    Electrical stimulation of the maxillary branches of the trigeminal nerve induced an increase in vascular permeability to macromolecules and an interstitial edema in the nasal mucosa of the rat, as indicated by extravasation of Evans blue. In animals that had been treated neonatally with capsaicin, the effect of trigeminal nerve stimulation was abolished. Local application of capsaicin or substance P (SP) also induced a significant Evans blue extravasation in the nasal mucosa. In capsaicin-pretreated animals the effect of SP was still present, while the permeability increase induced by capsaicin was abolished. In conclusion, chemogenic irritation of the nasal mucosa by capsaicin induces edema probably via a local axon reflex inducing release of SP. Capsaicin-sensitive SP-containing afferents in the nasal mucosa may also be involved in the pathogenesis of nasal congestion seen in various types of rhinitis.

  8. Body temperature dependency in baclofen-induced gastric acid secretion in rats relation to capsaicin-sensitive afferent neurons.

    PubMed

    Kato, S; Araki, H; Kawauchi, S; Takeuchi, K

    2001-03-16

    Body temperature dependency in gastric functional responses to baclofen, a GABA(B) agonist, such as acid secretion, mucosal blood flow (GMBF) and motor activity, was examined in urethane-anesthetized rats under normal (37+/-1 degrees C) and hypothermic (31+/-1 degrees C) conditions. A rat stomach was mounted in an ex-vivo chamber, perfused with saline, and the acid secretion was measured using a pH-stat method, simultaneously with GMBF by a laser Doppler flowmeter. Gastric motility was measured using a miniature balloon as intraluminal pressure recordings. Intravenous administration of baclofen significantly increased acid secretion at the doses > 0.3 mg/kg under hypothermic conditions, yet it caused a significant stimulation only at doses > 10 mg/kg under normothermic conditions. The increases in gastric motility and GMBF were similarly induced by baclofen, irrespective of whether the animals were subjected to normothermic or hypothermic conditions. These functional responses to baclofen under hypothermic conditions were totally attenuated by either bilateral vagotomy or atropine (3 mg/kg, s.c.). Baclofen at a lower dose (1 mg/kg i.v.) significantly increased the acid secretion even under normothermic conditions when the animals were subjected to chemical deafferenation of capsaicin-sensitive neurons or pretreatment with intracisternal injection of CGRP8-37 (30 ng/rat). These results suggest that 1) gastric effects of baclofen are dependent on body temperature in stimulating acid secretion but not GMBF or motor activity, 2) the acid stimulatory action of baclofen is enhanced under hypothermic conditions, and 3) the suppression of baclofen-induced acid response under normothermic conditions may be related to capsaicin-sensitive afferent neuronal activity, probably mediated by central release

  9. The effects of desensitization of capsaicin-sensitive afferent neurons on the microcirculation in the stomach in rats depend on the blood glucocorticoid hormone level.

    PubMed

    Podvigina, T T; Bobryshev, P Yu; Bagaeva, T R; Mal'tsev, N A; Levkovich, Yu I; Filaretova, L P

    2009-07-01

    The effects of densensitization of capsaicin-sensitive afferent neurons on the microcirculation in the stomach were studied before and after administration of indomethacin at an ulcerogenic dose in adrenalectomized rats receiving and not receiving replacement therapy with corticosterone and in sham-operated animals. Measures of the microcirculation consisted of blood flow rates in microvessels in the submucous layer of the stomach and the diameter and permeability of microvessels in the mucosa. Desensitization of capsaicin-sensitive afferent neurons was performed by administration of capsaicin at a dose of 100 mg/kg for two weeks and adrenalectomy one week before the experiment. Blood flow rates in microvessels and microvessel diameters were assessed in non-anesthetized rats by direct video recording methods using a special optical system with a contact dark-field epiobjective. Administration of indomethacin at an ulcerogenic dose led to decreases in blood flow rate in microvessels in the submucous layer, dilation of superficial microvessels in the mucosa of the stomach, and an increase in their permeability. Desensitization of capsaicin-sensitive neurons potentiated indomethacin-induced impairments to the microcirculation in the submucous layer and the mucosa of the stomach. These effects of densensitization were significantly enhanced in conditions of glucocorticoid hormone deficiency. Thus, glucocorticoid hormones have favorable effects on the gastric microcirculation in rats with desensitization of capsaicin-sensitive afferent neurons.

  10. Isolation, Purification, and Culture of Primary Murine Sensory Neurons

    PubMed Central

    Katzenell, Sarah; Cabrera, Jorge R.; North, Brian J.; Leib, David A.

    2017-01-01

    Cultured primary neurons have been of extraordinary value for the study of neuronal anatomy, cell biology, and physiology. While use of neuronal cell lines has ease and utility, there are often caveats that arise due to their mitotic nature. This methods article presents detailed methodology for the preparation, purification, and culture of adult murine sensory neurons for the study of herpes simplex virus lytic and latent infections. While virology is the application for our laboratory, these cultures also have broad utility for neurobiologists and cell biologists. While these primary cultures have been highly informative, the methodology is challenging to many investigators. Through publication of this highly detailed protocol, it is our hope that the use of this culture system can spread in the field to allow more rapid progress in furthering our understanding of neurotropic virus infection. PMID:28808974

  11. GABAA receptor-mediated positive inotropism in guinea-pig isolated left atria: evidence for the involvement of capsaicin-sensitive nerves.

    PubMed

    Maggi, C A; Giuliani, S; Manzini, S; Meli, A

    1989-05-01

    . After exposure to capsaicin (1 microM), no effect of GABA could be detected. 7. We conclude that, in the guinea-pig heart, GABAA receptors, presumably located on the preterminal region of capsaicin-sensitive sensory nerves, initiate a conducted impulse (since it is tetrodotoxin-sensitive) which leads to transmitter release (endogenous CGRP-like material) by activation of omega-conotoxin-sensitive, voltage-sensitive calcium channels and a functional response.

  12. The cannabinomimetic arachidonyl-2-chloroethylamide (ACEA) acts on capsaicin-sensitive TRPV1 receptors but not cannabinoid receptors in rat joints

    PubMed Central

    Baker, Chris L; McDougall, Jason J

    2004-01-01

    The vasoactive effects of the synthetic cannabinoid (CB) arachidonyl-2-chloroethylamide (ACEA) was tested in the knee joints of urethane-anaesthetised rats. Experiments were also performed to determine whether these vasomotor responses could be blocked by the selective CB1 receptor antagonists AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) (10−9 mol) and AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) (10−8 mol), as well as the selective CB2 receptor antagonist AM630 (6-iodo-2-methyl-1-[2-4(morpholinyl)ethyl]-[1H-indol-3-yl](4-methoxyphenyl)methanone) (10−8 mol). Peripheral application of ACEA (10−14–10−9 mol) onto the exposed surface of the knee joint capsule caused a dose-dependent increase in synovial blood flow. The dilator action of the CB occurred within 1 min after drug administration and rapidly returned to control levels shortly thereafter. The maximal vasodilator effect of ACEA corresponded to a 30% increase in articular perfusion compared to control levels. The hyperaemic action of ACEA was not significantly altered by coadministration of AM251, AM281 or AM630 (P>0.05; two-way ANOVA). The transient receptor potential channel vanilloid receptor 1 (TRPV1) antagonist capsazepine (10−6 mol) significantly reduced the vasodilator effect of ACEA on joint blood vessels (P=0.002). Furthermore, destruction of unmyelinated and thinly myelinated joint sensory nerves by capsaicin (8-methyl-N-vanillyl-6-nonenamide) treatment also attenuated ACEA responses (P<0.0005). These data clearly demonstrate a vasodilator effect of the cannabinomimetic ACEA on knee joint perfusion. Rather than a classic CB receptor pathway, ACEA exerts its vasomotor influence by acting via TRPV1 receptors located on the terminal branches of capsaicin-sensitive afferent nerves innervating the joint. PMID:15277316

  13. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex

    PubMed Central

    Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.

    2015-01-01

    Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421

  14. Extinction reveals that primary sensory cortex predicts reinforcement outcome.

    PubMed

    Bieszczad, Kasia M; Weinberger, Norman M

    2012-02-01

    Primary sensory cortices are traditionally regarded as stimulus analysers. However, studies of associative learning-induced plasticity in the primary auditory cortex (A1) indicate involvement in learning, memory and other cognitive processes. For example, the area of representation of a tone becomes larger for stronger auditory memories and the magnitude of area gain is proportional to the degree that a tone becomes behaviorally important. Here, we used extinction to investigate whether 'behavioral importance' specifically reflects a sound's ability to predict reinforcement (reward or punishment) vs. to predict any significant change in the meaning of a sound. If the former, then extinction should reverse area gains as the signal no longer predicts reinforcement. Rats (n = 11) were trained to bar-press to a signal tone (5.0 kHz) for water-rewards, to induce signal-specific area gains in A1. After subsequent withdrawal of reward, A1 was mapped to determine representational areas. Signal-specific area gains, estimated from a previously established brain-behavior quantitative function, were reversed, supporting the 'reinforcement prediction' hypothesis. Area loss was specific to the signal tone vs. test tones, further indicating that withdrawal of reinforcement, rather than unreinforced tone presentation per se, was responsible for area loss. Importantly, the amount of area loss was correlated with the amount of extinction (r = 0.82, P < 0.01). These findings show that primary sensory cortical representation can encode behavioral importance as a signal's value to predict reinforcement, and that the number of cells tuned to a stimulus can dictate its ability to command behavior.

  15. Extinction reveals that primary sensory cortex predicts reinforcement outcome

    PubMed Central

    Bieszczad, Kasia M.; Weinberger, Norman M.

    2011-01-01

    Primary sensory cortices are traditionally regarded as stimulus analyzers. However, studies of associative learning-induced plasticity in the primary auditory cortex (A1) indicate involvement in learning, memory and other cognitive processes. For example, the area of representation of a tone becomes larger for stronger auditory memories and the magnitude of area gain is proportional to the degree that a tone becomes behaviorally important. Here, we used extinction to investigate whether “behavioral importance” specifically reflects a sound’s ability to predict reinforcement (reward or punishment) vs. to predict any significant change in the meaning of a sound. If the former, then extinction should reverse area gains as the signal no longer predicts reinforcement. Rats (n = 11) were trained to bar-press to a signal tone (5.0 kHz) for water-rewards, to induce signal-specific area gains in A1. After subsequent withdrawal of reward, A1 was mapped to determine representational areas. Signal-specific area gains — estimated from a previously established brain–behavior quantitative function — were reversed, supporting the “reinforcement prediction” hypothesis. Area loss was specific to the signal tone vs. test tones, further indicating that withdrawal of reinforcement, rather than unreinforced tone presentation per se, was responsible for area loss. Importantly, the amount of area loss was correlated with the amount of extinction (r = 0.82, p < 0.01). These findings show that primary sensory cortical representation can encode behavioral importance as a signal’s value to predict reinforcement, and that the number of cells tuned to a stimulus can dictate its ability to command behavior. PMID:22304434

  16. Control of hair cell excitability by vestibular primary sensory neurons

    PubMed Central

    Brugeaud, Aurore; Travo, Cécile; Demêmes, Danielle; Lenoir, Marc; Llorens, Jordi; Puel, Jean-Luc; Chabbert, Christian

    2007-01-01

    In the rat utricle, synaptic contacts between hair cells and the nerve fibers arising from the vestibular primary neurons form during the first week after birth. During that period, the sodium-based excitability that characterizes neonate utricle sensory cells is switched off. To investigate whether the establishment of synaptic contacts was responsible for the modulation of the hair cell excitability, we used an organotypic culture of rat utricle in which the setting of synapses was prevented. Under this condition, the voltage-gated sodium current and the underlying action potentials persisted in a large proportion of non-afferented hair cells. We then studied whether impairment of nerve terminals in utricle of adult rats may also affect hair cell excitability. We induced selective and transient damages of afferent terminals using glutamate excitotoxicity in vivo. The efficiency of the excitotoxic injury was attested by selective swellings of the terminals and underlying altered vestibular behavior. Under this condition, the sodium-based excitability transiently recovered in hair cells. These results indicate that the modulation of hair cells excitability depends on the state of the afferent terminals. In adult utricle hair cells this property may be essential to set the conditions required for restoration of the sensory network after damage. This is achieved via re-expression of a biological process that occurs during synaptogenesis. PMID:17392466

  17. A randomized study of the effect of oral lamotrigine and hydromorphone on pain and hyperalgesia following heat/capsaicin sensitization.

    PubMed

    Petersen, Karin L; Maloney, Alan; Hoke, Frank; Dahl, Jørgen B; Rowbotham, Michael C

    2003-09-01

    In this randomized double-blind placebo-controlled study, the analgesic effect of oral lamotrigine (400 mg) on cutaneous sensitization induced with the heat/capsaicin sensitization model was compared with the effect of oral hydromorphone (8 mg) in healthy volunteers. In a separate session, intravenous remifentanil (0.10 microg.kg(-1).min(-1)) and placebo were administered. This session was used as an additional reference comparator. Outcome measures were the areas of secondary hyperalgesia to brush and von Frey hair stimulation and the painfulness of noxious thermal stimulation in nonsensitized skin. Compared with placebo, both intravenous remifentanil and oral hydromorphone significantly suppressed secondary hyperalgesia and acute thermal nociception. Oral lamotrigine did not reduce secondary hyperalgesia or acute thermal nociception but produced side effects of severity comparable with that of oral hydromorphone. Although lamotrigine is efficacious in the management of some types of chronic neuropathic pain, the lack of effect of this agent on human experimental pain suggests that its analgesic effects depend on nerve injury-associated abnormalities, which cannot be simulated in healthy human volunteers.

  18. Sensory tricks in primary cervical dystonia depend on visuotactile temporal discrimination.

    PubMed

    Kägi, Georg; Katschnig, Petra; Fiorio, Mirta; Tinazzi, Michele; Ruge, Diane; Rothwell, John; Bhatia, Kailash P

    2013-03-01

    A characteristic feature of primary cervical dystonia is the presence of "sensory tricks" as well as the impairment of temporal and spatial sensory discrimination on formal testing. The aim of the present study was to test whether the amount of improvement of abnormal head deviation due to a sensory trick is associated with different performance of temporal sensory discrimination in patients with cervical dystonia. We recruited 32 patients with cervical dystonia. Dystonia severity was assessed using the Toronto Western Spasmodic Torticollis Rating Scale. Patients were rated according to clinical improvement to a sensory trick and assigned to 1 of the following groups: (1) no improvement (n = 6), (2) partial improvement (n = 17), (3) complete improvement (n = 9). Temporal discrimination thresholds were assessed for visual, tactile, and visuotactile modalities. Disease duration was shorter (P = .026) and dystonia severity lower (P = .033) in the group with complete improvement to sensory tricks compared with the group with partial improvement to sensory tricks. A significant effect for group and modality and a significant interaction between group × modality were found, with lower visuotactile discrimination thresholds in the group with complete improvement to sensory tricks compared with the other groups. In primary cervical dystonia, a complete resolution of dystonia during a sensory trick is associated with better visuotactile discrimination and shorter disease duration compared with patients with less effective sensory tricks, which may reflect progressive loss of adaptive mechanisms to basal ganglia dysfunction.

  19. Pungent products from garlic activate the sensory ion channel TRPA1

    PubMed Central

    Bautista, Diana M.; Movahed, Pouya; Hinman, Andrew; Axelsson, Helena E.; Sterner, Olov; Högestätt, Edward D.; Julius, David; Jordt, Sven-Eric; Zygmunt, Peter M.

    2005-01-01

    Garlic belongs to the Allium family of plants that produce organosulfur compounds, such as allicin and diallyl disulfide (DADS), which account for their pungency and spicy aroma. Many health benefits have been ascribed to Allium extracts, including hypotensive and vasorelaxant activities. However, the molecular mechanisms underlying these effects remain unknown. Intriguingly, allicin and DADS share structural similarities with allyl isothiocyanate, the pungent ingredient in wasabi and other mustard plants that induces pain and inflammation by activating TRPA1, an excitatory ion channel on primary sensory neurons of the pain pathway. Here we show that allicin and DADS excite an allyl isothiocyanate-sensitive subpopulation of sensory neurons and induce vasodilation by activating capsaicin-sensitive perivascular sensory nerve endings. Moreover, allicin and DADS activate the cloned TRPA1 channel when expressed in heterologous systems. These and other results suggest that garlic excites sensory neurons primarily through activation of TRPA1. Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence. PMID:16103371

  20. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    PubMed Central

    Stehberg, Jimmy; Dang, Phat T.; Frostig, Ron D.

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed. PMID:25309339

  1. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    SciTech Connect

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-02-15

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  2. Coupled variability in primary sensory areas and the hippocampus during spontaneous activity

    PubMed Central

    de Vasconcelos, Nivaldo A. P.; Soares-Cunha, Carina; Rodrigues, Ana João; Ribeiro, Sidarta; Sousa, Nuno

    2017-01-01

    The cerebral cortex is an anatomically divided and functionally specialized structure. It includes distinct areas, which work on different states over time. The structural features of spiking activity in sensory cortices have been characterized during spontaneous and evoked activity. However, the coordination among cortical and sub-cortical neurons during spontaneous activity across different states remains poorly characterized. We addressed this issue by studying the temporal coupling of spiking variability recorded from primary sensory cortices and hippocampus of anesthetized or freely behaving rats. During spontaneous activity, spiking variability was highly correlated across primary cortical sensory areas at both small and large spatial scales, whereas the cortico-hippocampal correlation was modest. This general pattern of spiking variability was observed under urethane anesthesia, as well as during waking, slow-wave sleep and rapid-eye-movement sleep, and was unchanged by novel stimulation. These results support the notion that primary sensory areas are strongly coupled during spontaneous activity. PMID:28393914

  3. Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas

    PubMed Central

    Zembrzycki, Andreas; Stocker, Adam M; Leingärtner, Axel; Sahara, Setsuko; Chou, Shen-Ju; Kalatsky, Valery; May, Scott R; Stryker, Michael P; O'Leary, Dennis DM

    2015-01-01

    In mammals, the neocortical layout consists of few modality-specific primary sensory areas and a multitude of higher order ones. Abnormal layout of cortical areas may disrupt sensory function and behavior. Developmental genetic mechanisms specify primary areas, but mechanisms influencing higher order area properties are unknown. By exploiting gain-of and loss-of function mouse models of the transcription factor Emx2, we have generated bi-directional changes in primary visual cortex size in vivo and have used it as a model to show a novel and prominent function for genetic mechanisms regulating primary visual area size and also proportionally dictating the sizes of surrounding higher order visual areas. This finding redefines the role for intrinsic genetic mechanisms to concomitantly specify and scale primary and related higher order sensory areas in a linear fashion. DOI: http://dx.doi.org/10.7554/eLife.11416.001 PMID:26705332

  4. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain.

    PubMed

    Berta, Temugin; Qadri, Yawar; Tan, Ping-Heng; Ji, Ru-Rong

    2017-07-01

    Currently the treatment of chronic pain is inadequate and compromised by debilitating central nervous system side effects. Here we discuss new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. Areas covered: The DRGs contain the cell bodies of primary sensory neurons including nociceptive neurons. After painful injuries, primary sensory neurons demonstrate maladaptive molecular changes in DRG cell bodies and in their axons. These changes result in hypersensitivity and hyperexcitability of sensory neurons (peripheral sensitization) and are crucial for the onset and maintenance of chronic pain. We discuss the following new strategies to target DRGs and primary sensory neurons as a means of alleviating chronic pain and minimizing side effects: inhibition of sensory neuron-expressing ion channels such as TRPA1, TRPV1, and Nav1.7, selective blockade of C- and Aβ-afferent fibers, gene therapy, and implantation of bone marrow stem cells. Expert opinion: These peripheral pharmacological treatments, as well as gene and cell therapies, aimed at DRG tissues and primary sensory neurons can offer better and safer treatments for inflammatory, neuropathic, cancer, and other chronic pain states.

  5. Sensory Systems Neuroscientists Face One Fundamental Puzzle on Their Desks: How Primary Sensory Cortex Balances the Weights on Extrinsic and Intrinsic Sources of Information?

    DTIC Science & Technology

    2013-09-25

    Final Report for AOARD Grant FA2386-12-1-4090 “Sensory systems neuroscientists face one fundamental puzzle on their desks: How primary sensory...results, we are planning to conduct further experiments, wherein Cho signals in V1 and the basal forebrain area were measured while top-down factors...fidelity sensory signals carried within the afferent currents while, concurrently, their activity levels are modulated either by local currents flowing from

  6. Cortico-Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine.

    PubMed

    Hodkinson, Duncan J; Veggeberg, Rosanna; Kucyi, Aaron; van Dijk, Koene R A; Wilcox, Sophie L; Scrivani, Steven J; Burstein, Rami; Becerra, Lino; Borsook, David

    2016-01-01

    Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino-vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico-cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients (N = 40) and matched healthy control subjects (N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico-cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms.

  7. Cortico–Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine

    PubMed Central

    Veggeberg, Rosanna; Wilcox, Sophie L.; Scrivani, Steven J.; Borsook, David

    2016-01-01

    Abstract Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino–vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico–cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients (N = 40) and matched healthy control subjects (N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico–cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms. PMID:28101529

  8. Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole.

    PubMed

    Meseguer, Victor; Karashima, Yuji; Talavera, Karel; D'Hoedt, Dieter; Donovan-Rodríguez, Tansy; Viana, Felix; Nilius, Bernd; Voets, Thomas

    2008-01-16

    Clotrimazole (CLT) is a widely used drug for the topical treatment of yeast infections of skin, vagina, and mouth. Common side effects of topical CLT application include irritation and burning pain of the skin and mucous membranes. Here, we provide evidence that transient receptor potential (TRP) channels in primary sensory neurons underlie these unwanted effects of CLT. We found that clinically relevant CLT concentrations activate heterologously expressed TRPV1 and TRPA1, two TRP channels that act as receptors of irritant chemical and/or thermal stimuli in nociceptive neurons. In line herewith, CLT stimulated a subset of capsaicin-sensitive and mustard oil-sensitive trigeminal neurons, and evoked nocifensive behavior and thermal hypersensitivity with intraplantar injection in mice. Notably, CLT-induced pain behavior was suppressed by the TRPV1-antagonist BCTC [(N-(-4-tertiarybutylphenyl)-4-(3-cholorpyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide)] and absent in TRPV1-deficient mice. In addition, CLT inhibited the cold and menthol receptor TRPM8, and blocked menthol-induced responses in capsaicin- and mustard oil-insensitive trigeminal neurons. The concentration for 50% inhibition (IC50) of inward TRPM8 current was approximately 200 nM, making CLT the most potent known TRPM8 antagonist and a useful tool to discriminate between TRPM8- and TRPA1-mediated responses. Together, our results identify TRP channels in sensory neurons as molecular targets of CLT, and offer means to develop novel CLT preparations with fewer unwanted sensory side effects.

  9. Associative fear learning enhances sparse network coding in primary sensory cortex

    PubMed Central

    Gdalyahu, Amos; Tring, Elaine; Polack, Pierre-Olivier; Gruver, Robin; Golshani, Peyman; Fanselow, Michael S.; Silva, Alcino J.; Trachtenberg, Joshua T.

    2012-01-01

    Summary Several models of associative learning predict that stimulus processing changes during association formation. How associative learning reconfigures neural circuits in primary sensory cortex to "learn" associative attributes of a stimulus remains unknown. Using 2-photon in-vivo calcium imaging to measure responses of networks of neurons in primary somatosensory cortex, we discovered that associative fear learning, in which whisker stimulation is paired with foot shock, enhances sparse population coding and robustness of the conditional stimulus, yet decreases total network activity. Fewer cortical neurons responded to stimulation of the trained whisker than in controls, yet their response strength was enhanced. These responses were not observed in mice exposed to a non-associative learning procedure. Our results define how the cortical representation of a sensory stimulus is shaped by associative fear learning. These changes are proposed to enhance efficient sensory processing after associative learning. PMID:22794266

  10. Painful focal sensory seizure arising from the primary somatosensory cortex.

    PubMed

    Yazawa, Shogo; Ikeda, Akio; Sawamoto, Nobukatsu; Terada, Kiyohito; Fukuyama, Hidenao; Tanaka, Mayako; Shibasaki, Hiroshi

    2003-09-01

    A 31-year-old, right-handed woman had frequent focal painful seizures involving the right hand without any movement. EEG demonstrated an ictal activity arising from the left centroparietal region. No cerebral structural abnormality was seen on MRI. Ictal single photon emission CT showed markedly increased activity in the left perirolandic cortex, which remained active following the ictal symptoms when the EEG seizure pattern had completely disappeared. It is concluded that the painful seizures in the present patient originated from the primary somatosensory cortex. The prolonged increase of regional blood flow in the perirolandic area may reflect the possibility of persistent subclinical epileptogenicity.

  11. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons.

    PubMed

    Bao, Lan

    2015-09-30

    Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.

  12. PRINCIPLES UNDERLYING SENSORY MAP TOPOGRAPHY IN PRIMARY VISUAL CORTEX

    PubMed Central

    Kremkow, Jens; Jin, Jianzhong; Wang, Yushi; Alonso, Jose M.

    2016-01-01

    The primary visual cortex contains a detailed map of the visual scene, which is represented according to multiple stimulus dimensions including spatial location, ocular dominance and orientation. The maps for spatial location and ocular dominance originate from the spatial arrangement of thalamic axons in cortex. However, the origin of the other maps remains unclear. Here we demonstrate that the cortical maps for orientation, direction and retinal disparity are all strongly related to the organization for spatial location of light (ON) and dark (OFF) stimuli, an organization that we show is OFF-dominated, OFF-centric and runs orthogonal to ocular dominance columns. Because this ON/OFF organization originates from the clustering of ON and OFF thalamic afferents in visual cortex, we conclude that all main features of cortical topography, including orientation, direction and retinal disparity, follow a common organizing principle that arranges thalamic axons with similar retinotopy and ON/OFF polarity in neighboring cortical regions. PMID:27120164

  13. Sensory perception changes induced by transcranial magnetic stimulation over the primary somatosensory cortex in Parkinson's disease.

    PubMed

    Palomar, Francisco J; Díaz-Corrales, Francisco; Carrillo, Fatima; Fernández-del-Olmo, Miguel; Koch, Giacomo; Mir, Pablo

    2011-09-01

    Sensory symptoms are common nonmotor manifestations of Parkinson's disease. It has been hypothesized that abnormal central processing of sensory signals occurs in Parkinson's disease and is related to dopaminergic treatment. The objective of this study was to investigate the alterations in sensory perception induced by transcranial magnetic stimulation of the primary somatosensory cortex in patients with Parkinson's disease and the modulatory effects of dopaminergic treatment. Fourteen patients with Parkinson's disease with and without dopaminergic treatment and 13 control subjects were included. Twenty milliseconds after peripheral electrical tactile stimuli in the contralateral thumb, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex was delivered. We evaluated the perception of peripheral electrical tactile stimuli at 2 conditioning stimulus intensities, set at 70% and 90% of the right resting motor threshold, using different interstimulus intervals. At 70% of the resting motor threshold, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex induced an increase in positive responses at short interstimulus intervals (1-7 ms) in controls but not in patients with dopaminergic treatment. At 90% of the resting motor threshold, controls and patients showed similar transcranial magnetic stimulation effects. Changes in peripheral electrical tactile stimuli perception after paired-pulse transcranial magnetic stimulation over the primary somatosensory cortex are altered in patients with Parkinson's disease with dopaminergic treatment compared with controls. These findings suggest that primary somatosensory cortex excitability could be involved in changes in somatosensory integration in Parkinson's disease with dopaminergic treatment.

  14. Interhemispheric modulation of sensory transmission in the primary somatosensory cortex of rats.

    PubMed

    Shin, H C; Won, C K; Jung, S C; Oh, S; Park, S; Sohn, J H

    1997-07-18

    Single unit responses of the primary somatosensory (SI) cortical neurons to the stimulation of the forepaw single digit were monitored in anesthetized rats before and after subcutaneous injection of lidocaine to an ipsilateral homologous receptive field (IHRF). Quantitative determination of the temporal changes of afferent sensory transmission was done by analyzing poststimulus time histograms of unit responses. Temporary deafferentation to the IHRF induced immediate, but reversible suppression of afferent sensory transmission in the SI cortex and this suppression lasts up to 35 min post-deafferentation period (during 10-15 min, -21.81 +/- 5.9%, P < 0.01). This result suggests that temporary absence of afferent inflow from the digit to the SI cortex may exert interhemispheric modulation of afferent sensory transmission in the opposite somatosensory cortex of anesthetized rats.

  15. Lipopolysaccharide fever is initiated via a capsaicin-sensitive mechanism independent of the subtype-1 vanilloid receptor.

    PubMed

    Dogan, M Devrim; Patel, Shreya; Rudaya, Alla Y; Steiner, Alexandre A; Székely, Miklós; Romanovsky, Andrej A

    2004-12-01

    As pretreatment with intraperitoneal capsaicin (8-methyl-N-vanillyl-6-nonenamide, CAP), an agonist of the vanilloid receptor known as VR1 or transient receptor potential channel-vanilloid receptor subtype 1 (TRPV-1), has been shown to block the first phase of lipopolysaccharide (LPS) fever in rats, this phase is thought to depend on the TRPV-1-bearing sensory nerve fibers originating in the abdominal cavity. However, our recent studies suggest that CAP blocks the first phase via a non-neural mechanism. In the present work, we studied whether this mechanism involves the TRPV-1. Adult Long-Evans rats implanted with chronic jugular catheters were used. Pretreatment with CAP (5 mg kg(-1), i.p.) 10 days before administration of LPS (10 microg kg(-1), i.v.) resulted in the loss of the entire first phase and a part of the second phase of LPS fever. Pretreatment with the ultrapotent TRPV-1 agonist resiniferatoxin (RTX; 2, 20, or 200 microg kg(-1), i.p.) 10 days before administration of LPS had no effect on the first and second phases of LPS fever, but it exaggerated the third phase at the highest dose. The latter effect was presumably due to the known ability of high doses of TRPV-1 agonists to cause a loss of warm sensitivity, thus leading to uncontrolled, hyperpyretic responses. Pretreatment with the selective competitive TRPV-1 antagonist capsazepine (N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamidem, CPZ; 40 mg kg(-1), i.p.) 90 min before administration of LPS (10 microg kg(-1), i.v.) or CAP (1 mg kg(-1), i.p.) did not affect LPS fever, but blocked the immediate hypothermic response to acute administration of CAP. It is concluded that LPS fever is initiated via a non-neural mechanism, which is CAP-sensitive but RTX- and CPZ-insensitive. The action of CAP on this mechanism is likely TRPV-1-independent. It is speculated that this mechanism may be the production of prostaglandin E(2) by macrophages in LPS-processing organs.

  16. Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices.

    PubMed

    Bieler, Malte; Sieben, Kay; Cichon, Nicole; Schildt, Sandra; Röder, Brigitte; Hanganu-Opatz, Ileana L

    2017-01-01

    Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta-beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing.

  17. IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-β/Smad signaling.

    PubMed

    Han, Qing-Jian; Gao, Nan-Nan; Guo-QiangMa; Zhang, Zhen-Ning; Yu, Wen-Hui; Pan, Jing; Wang, Qiong; Zhang, Xu; Bao, Lan

    2013-01-15

    During nerve regeneration, neurite growth is regulated by both intrinsic molecules and extracellular factors. Here, we found that inhibitor 5 of protein phosphatase 1 (IPP5), a newly identified inhibitory subunit of protein phosphatase 1 (PP1), inhibited neurite growth in primary sensory neurons as an intrinsic regulator. IPP5 was highly expressed in the primary sensory neurons of rat dorsal root ganglion (DRG) and was downregulated after sciatic nerve axotomy. Knocking down IPP5 with specific shRNA increased the length of the longest neurite, the total neurite length and the number of neurite ends in cultured rat DRG neurons. Mutation of the PP1-docking motif K(8)IQF(11) or the PP1-inhibiting motif at Thr(34) eliminated the IPP5-induced inhibition of neurite growth. Furthermore, biochemical experiments showed that IPP5 interacted with type I transforming growth factor-β receptor (TβRI) and PP1 and enhanced transforming growth factor-β (TGF-β)/Smad signaling in a PP1-dependent manner. Overexpressing IPP5 in DRG neurons aggravated TGF-β-induced inhibition of neurite growth, which was abolished by blocking PP1 or IPP5 binding to PP1. Blockage of TGF-β signaling with the TβRI inhibitor SB431542 or Smad2 shRNA attenuated the IPP5-induced inhibition of neurite growth. Thus, these data indicate that selectively expressed IPP5 inhibits neurite growth by maintaining TGF-β signaling in primary sensory neurons.

  18. Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices

    PubMed Central

    Sieben, Kay; Cichon, Nicole; Schildt, Sandra; Röder, Brigitte

    2017-01-01

    Abstract Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta–beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing. PMID:28374008

  19. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics.

    PubMed

    Sousa-Valente, J; Andreou, A P; Urban, L; Nagy, I

    2014-05-01

    The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators.

  20. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold.

    PubMed

    McCoy, Eric S; Taylor-Blake, Bonnie; Street, Sarah E; Pribisko, Alaine L; Zheng, Jihong; Zylka, Mark J

    2013-04-10

    Calcitonin gene-related peptide (CGRP) is a classic molecular marker of peptidergic primary somatosensory neurons. Despite years of research, it is unknown whether these neurons are required to sense pain or other sensory stimuli. Here, we found that genetic ablation of CGRPα-expressing sensory neurons reduced sensitivity to noxious heat, capsaicin, and itch (histamine and chloroquine) and impaired thermoregulation but did not impair mechanosensation or β-alanine itch-stimuli associated with nonpeptidergic sensory neurons. Unexpectedly, ablation enhanced behavioral responses to cold stimuli and cold mimetics without altering peripheral nerve responses to cooling. Mechanistically, ablation reduced tonic and evoked activity in postsynaptic spinal neurons associated with TRPV1/heat, while profoundly increasing tonic and evoked activity in spinal neurons associated with TRPM8/cold. Our data reveal that CGRPα sensory neurons encode heat and itch and tonically cross-inhibit cold-responsive spinal neurons. Disruption of this crosstalk unmasks cold hypersensitivity, with mechanistic implications for neuropathic pain and temperature perception.

  1. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold

    PubMed Central

    McCoy, Eric S.; Taylor-Blake, Bonnie; Street, Sarah E.; Pribisko, Alaine L.; Zheng, Jihong; Zylka, Mark J.

    2013-01-01

    SUMMARY Calcitonin gene-related peptide (CGRP) is a classic molecular marker of peptidergic primary somatosensory neurons. Despite years of research, it is unknown if these neurons are required to sense pain or other sensory stimuli. Here, we found that genetic ablation of CGRPα-expressing sensory neurons reduced sensitivity to noxious heat, capsaicin and itch (histamine and chloroquine) and impaired thermoregulation but did not impair mechanosensation or β-alanine itch—stimuli associated with nonpeptidergic sensory neurons. Unexpectedly, ablation enhanced behavioral responses to cold stimuli and cold mimetics without altering peripheral nerve responses to cooling. Mechanistically, ablation reduced tonic and evoked activity in postsynaptic spinal neurons associated with TRPV1/heat, while profoundly increasing tonic and evoked activity in spinal neurons associated with TRPM8/cold. Our data reveal that CGRPα sensory neurons encode heat and itch and tonically cross-inhibit cold-responsive spinal neurons. Disruption of this crosstalk unmasks cold hypersensitivity, with mechanistic implications for neuropathic pain and temperature perception. PMID:23523592

  2. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K.; Bunge, Mary Bartlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin; Rouchka, Eric C.; Moon, Lawrence; Petruska, Jeffrey C.

    2015-01-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the “spared dermatome” model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact (“naïve”) sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  3. [Immunoreactivity of the synapses on the primary afferent axons and sensory neurons of the spinal cord Lampetra fluviatilis].

    PubMed

    Adanina, V O; Rio, J P; Adanina, A S; Reperan, J; Veselkin, N P

    2008-01-01

    The existence of GABA-like immunoreactivity in the synapses on the primary afferent axons and GABA- and glutamate immunoreactive synapses on the dorsal cell somatic membrane was shown using double postembedding immunogold cytochemistry. These morphological findings suggest that control of the sensory information in the lamprey spinal cord is realized by means of presynaptic inhibition through the synapses on the primary afferent axons as well as directly through the synapses on the somata of the sensory neurons.

  4. Combined LTP and LTD of modulatory inputs controls neuronal processing of primary sensory inputs.

    PubMed

    Doiron, Brent; Zhao, Yanjun; Tzounopoulos, Thanos

    2011-07-20

    A hallmark of brain organization is the integration of primary and modulatory pathways by principal neurons. However, the pathway interactions that shape primary input processing remain unknown. We investigated this problem in mouse dorsal cochlear nucleus (DCN) where principal cells integrate primary, auditory nerve input with modulatory, parallel fiber input. Using a combined experimental and computational approach, we show that combined LTP and LTD of parallel fiber inputs to DCN principal cells and interneurons, respectively, broaden the time window within which synaptic inputs summate. Enhanced summation depolarizes the resting membrane potential and thus lowers the response threshold to auditory nerve inputs. Combined LTP and LTD, by preserving the variance of membrane potential fluctuations and the membrane time constant, fixes response gain and spike latency as threshold is lowered. Our data reveal a novel mechanism mediating adaptive and concomitant homeostatic regulation of distinct features of neuronal processing of sensory inputs.

  5. Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neurons.

    PubMed

    Wu, Dongsheng; Zhang, Yi; Bo, Xuenong; Huang, Wenlong; Xiao, Fang; Zhang, Xinyu; Miao, Tizong; Magoulas, Charalambos; Subang, Maria C; Richardson, Peter M

    2007-03-01

    A conditioning lesion to peripheral axons of primary sensory neurons accelerates regeneration of their central axons in vivo or neurite outgrowth if the neurons are grown in vitro. Previous evidence has implicated neuropoietic cytokines and also cyclic AMP in regenerative conditioning. In experiments reported here, delivery through a lentivirus vector of ciliary neurotrophic factor to the appropriate dorsal root ganglion in rats was sufficient to mimic the conditioning effect of peripheral nerve injury on the regeneration of dorsal spinal nerve root axons. Regeneration in this experimental preparation was also stimulated by intraganglionic injection of dibutyryl cyclic AMP but the effects of ciliary neurotrophic factor and dibutyryl cyclic AMP were not additive. Dibutyryl cyclic AMP injection into the dorsal root ganglion induced mRNAs for two other neuropoietic cytokines, interleukin-6 and leukemia inhibitory factor and increased the accumulation of phosphorylated STAT3 in neuronal nuclei. The in vitro conditioning action of dibutyryl cyclic AMP was partially blocked by a pharmacological inhibitor of Janus kinase 2, a neuropoietic cytokine signaling molecule. We suggest that the beneficial actions of increased cyclic AMP activity on axonal regeneration of primary sensory neurons are mediated, at least in part, through the induction of neuropoietic cytokine synthesis within the dorsal root ganglion.

  6. Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana.

    PubMed

    Watanabe, Hidehiro; Nishino, Hiroshi; Nishikawa, Michiko; Mizunami, Makoto; Yokohari, Fumio

    2010-10-01

    Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe (AL) glomeruli based on detailed innervation patterns of sensory tracts in addition to the shape, size, and locations in the cockroach. The number of glomeruli is approximately 205, and no sex-specific difference is observed. Anterograde dye injections into the antennal nerves revealed that axons supplying the AL are divided into 10 sensory tracts (T1-T10). Each of T1-T3 innervates small, oval glomeruli in the anteroventral region of the AL, with sensory afferents invading each glomerulus from multiple directions, whereas each of T4-T10 innervates large glomeruli with various shapes in the posterodorsal region, with a bundle of sensory afferents invading each glomerulus from one direction. The topographic branching patterns of all these tracts are conserved among individuals. Sensory afferents in a sub-tract of T10 had axon terminals in the dorsal margin of the AL and the protocerebrum, where they form numerous small glomerular structures. Sensory nerve branching pattern should reflect developmental processes to determine spatial arrangement of glomeruli, and thus the complete map of glomeruli based on sensory nerve branching pattern should provide a basis for studying the functional significance of spatial arrangement of glomeruli and its developmental basis.

  7. Quantitative thermal sensory testing and sympathetic skin response in primary Restless legs syndrome - A prospective study on 57 Indian patients.

    PubMed

    Shukla, Garima; Goyal, Vinay; Srivastava, Achal; Behari, Madhuri

    2012-10-01

    Patients with restless leg syndrome present with sensory symptoms similar to peripheral neuropathy. While there is evidence of abnormalities of dopaminergic pathways, the peripheral nervous system has been studied infrequently. We studied conventional nerve conduction studies, quantitative thermal sensory testing and sympathetic skin response in 57 patients with primary restless leg syndrome. Almost two third patients demonstrated abnormalities in the detailed testing of the peripheral nervous system. Sbtle abnormalities of the peripheral nervous system may be more common than previously believed.

  8. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  9. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  10. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    SciTech Connect

    Richardson, P.M.; Riopelle, R.J.

    1984-07-01

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, (/sup 125/I)NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of (/sup 125/I)NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. (/sup 125/I)NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little (/sup 125/I)NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of (/sup 125/I) cytochrome C or (/sup 125/I)oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of (/sup 125/I)NGF by intraspinal axons arising from dorsal root ganglia. Following injection of (/sup 125/I)NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration.

  11. Dopamine-Modulated Recurrent Corticoefferent Feedback in Primary Sensory Cortex Promotes Detection of Behaviorally Relevant Stimuli

    PubMed Central

    Handschuh, Juliane

    2014-01-01

    Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection. PMID:24453315

  12. Task-relevant modulation of primary somatosensory cortex suggests a prefrontal-cortical sensory gating system.

    PubMed

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael

    2005-08-01

    Increasing evidence suggests that somatosensory information is modulated cortically for task-specific sensory inflow: Several studies report short-term adaptation of representational maps in primary somatosensory cortex (SI) due to attention or induced by task-related motor activity such as handwriting. Recently, it has been hypothesized that the frontal or prefrontal cortex may modulate SI. In order to test this hypothesis, we studied the functional organization of SI while subjects performed the Tower of Hanoi task. This task is known to be related to activation of frontal or prefrontal areas. The functional organization of SI while performing the Tower of Hanoi task was compared to the organization of SI during performing the same movements but without the Tower of Hanoi task and with rest. Topography of SI was assessed using neuromagnetic source imaging based on tactile stimulation of the first (D1) and fifth digits (D5). Performing the Tower of Hanoi task was accompanied by plastic changes in SI as indicated by significant shifts in the cortical representations of D1 and D5: They moved further apart during the Tower of Hanoi task compared to the control task containing the same movements but without the cognitive characteristic. Thus, we conclude that SI maps undergo dynamic modulation depending on motor tasks with different cognitive demands. The results suggest that this short-term plasticity may be regulated by a prefrontal-cortical sensory gating system.

  13. Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization.

    PubMed

    Werner, Sebastian; Noppeney, Uta

    2010-02-17

    Multisensory interactions have been demonstrated in a distributed neural system encompassing primary sensory and higher-order association areas. However, their distinct functional roles in multisensory integration remain unclear. This functional magnetic resonance imaging study dissociated the functional contributions of three cortical levels to multisensory integration in object categorization. Subjects actively categorized or passively perceived noisy auditory and visual signals emanating from everyday actions with objects. The experiment included two 2 x 2 factorial designs that manipulated either (1) the presence/absence or (2) the informativeness of the sensory inputs. These experimental manipulations revealed three patterns of audiovisual interactions. (1) In primary auditory cortices (PACs), a concurrent visual input increased the stimulus salience by amplifying the auditory response regardless of task-context. Effective connectivity analyses demonstrated that this automatic response amplification is mediated via both direct and indirect [via superior temporal sulcus (STS)] connectivity to visual cortices. (2) In STS and intraparietal sulcus (IPS), audiovisual interactions sustained the integration of higher-order object features and predicted subjects' audiovisual benefits in object categorization. (3) In the left ventrolateral prefrontal cortex (vlPFC), explicit semantic categorization resulted in suppressive audiovisual interactions as an index for multisensory facilitation of semantic retrieval and response selection. In conclusion, multisensory integration emerges at multiple processing stages within the cortical hierarchy. The distinct profiles of audiovisual interactions dissociate audiovisual salience effects in PACs, formation of object representations in STS/IPS and audiovisual facilitation of semantic categorization in vlPFC. Furthermore, in STS/IPS, the profiles of audiovisual interactions were behaviorally relevant and predicted subjects

  14. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial.

    PubMed

    Abrams, D I; Jay, C A; Shade, S B; Vizoso, H; Reda, H; Press, S; Kelly, M E; Rowbotham, M C; Petersen, K L

    2007-02-13

    To determine the effect of smoked cannabis on the neuropathic pain of HIV-associated sensory neuropathy and an experimental pain model. Prospective randomized placebo-controlled trial conducted in the inpatient General Clinical Research Center between May 2003 and May 2005 involving adults with painful HIV-associated sensory neuropathy. Patients were randomly assigned to smoke either cannabis (3.56% tetrahydrocannabinol) or identical placebo cigarettes with the cannabinoids extracted three times daily for 5 days. Primary outcome measures included ratings of chronic pain and the percentage achieving >30% reduction in pain intensity. Acute analgesic and anti-hyperalgesic effects of smoked cannabis were assessed using a cutaneous heat stimulation procedure and the heat/capsaicin sensitization model. Fifty patients completed the entire trial. Smoked cannabis reduced daily pain by 34% (median reduction; IQR = -71, -16) vs 17% (IQR = -29, 8) with placebo (p = 0.03). Greater than 30% reduction in pain was reported by 52% in the cannabis group and by 24% in the placebo group (p = 0.04). The first cannabis cigarette reduced chronic pain by a median of 72% vs 15% with placebo (p < 0.001). Cannabis reduced experimentally induced hyperalgesia to both brush and von Frey hair stimuli (p < or = 0.05) but appeared to have little effect on the painfulness of noxious heat stimulation. No serious adverse events were reported. Smoked cannabis was well tolerated and effectively relieved chronic neuropathic pain from HIV-associated sensory neuropathy. The findings are comparable to oral drugs used for chronic neuropathic pain.

  15. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation.

    PubMed

    Schabrun, Siobhan M; Ridding, Michael C; Galea, Mary P; Hodges, Paul W; Chipchase, Lucinda S

    2012-01-01

    Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30-50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N(20)-P(25) component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P(14)-N(20) SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES.

  16. Primary Sensory and Motor Cortex Excitability Are Co-Modulated in Response to Peripheral Electrical Nerve Stimulation

    PubMed Central

    Schabrun, Siobhan M.; Ridding, Michael C.; Galea, Mary P.; Hodges, Paul W.; Chipchase, Lucinda S.

    2012-01-01

    Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30–50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N20-P25 component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P14-N20 SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES. PMID:23227260

  17. SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea) inhibits TNF-alpha production through the activation of capsaicin-sensitive afferent neurons mediated via transient receptor potential vanilloid 1 in vivo.

    PubMed

    Murai, Masaaki; Tsuji, Fumio; Nose, Masafumi; Seki, Iwao; Oki, Kenji; Setoguchi, Chikako; Suhara, Hiroshi; Sasano, Minoru; Aono, Hiroyuki

    2008-07-07

    Tumor necrosis factor-alpha (TNF-alpha) is known to play a crucial role in the pathogenesis of rheumatoid arthritis. In the present study, we demonstrate the effects of SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea), a novel orally active inhibitor of TNF-alpha production, in animal models, and its mechanism of action on TNF-alpha production. SA13353 significantly inhibited lipopolysaccharide (LPS)-induced TNF-alpha production in a dose-dependent manner in rats. Moreover, SA13353 exhibited a binding affinity for the rat vanilloid receptor and increased neuropeptide release from the rat dorsal root ganglion neurons. However, its effects were blocked by pretreatment with the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. The ability of SA13353 and capsaicin to inhibit LPS-induced TNF-alpha production was eliminated by sensory denervation or capsazepine pretreatment in vivo. Although they inhibited LPS-induced TNF-alpha production in mice, these effects were not observed in TRPV1 knockout mice. SA13353 provoked the release of neuropeptides without nerve inactivation, even when chronically administered to rats. These results suggest that SA13353 inhibits TNF-alpha production through activation of capsaicin-sensitive afferent neurons mediated via TRPV1 in vivo. Post-onset treatment of SA13353 strongly reduced the hindpaw swelling and joint destruction associated with collagen-induced arthritis in rats. Thus, SA13353 is expected to be a novel anti-arthritic agent with a unique mechanism of action.

  18. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    PubMed

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV1.1, predominantly in sensory terminals together with NaV1.6 and for NaV1.7, mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles.NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site involved in

  19. Cortical involvement in the sensory and motor symptoms of primary restless legs syndrome.

    PubMed

    Tyvaert, L; Houdayer, E; Devanne, H; Bourriez, J L; Derambure, P; Monaca, C

    2009-12-01

    Restless legs syndrome (RLS) is characterized by closely interrelated motor and sensory disorders. Two types of involuntary movement can be observed: periodic leg movements during wakefulness (PLMW) and periodic leg movements during sleep (PLMS). Basal ganglia dysfunction in primary RLS has often been suggested. However, clinical observations raise the hypothesis of sensorimotor cortical involvement in RLS symptoms. Here, we explored cortical function via movement-related beta and mu rhythm reactivity. Twelve patients with idiopathic, primary RLS were investigated and compared with 10 healthy subjects. In the patient group, we analyzed event-related beta and mu (de)synchronization (ERD/S) for PLMS and PLMW during a suggested immobilization test (SIT). An ERD/S analysis was also performed in patients and controls during self-paced right ankle dorsal flexion at 8:30 PM (i.e., the symptomatic period for patients) and 8:30 AM (the asymptomatic period). Before PLMS, there was no ERD. Intense ERS was recorded after PLMS. As with voluntary movement, cortical ERD was always observed before PLMW. After PLMW, ERS had a diffuse scalp distribution. Furthermore, the ERS and ERD amplitudes and durations for voluntary movement were greater during the symptomatic period than during the asymptomatic period and in comparison with healthy controls, who presented an evening decrease in these parameters. Patients and controls had similar ERD and ERS patterns in the morning. On the basis of a rhythm reactivity study, we conclude that the symptoms of RLS are related to cortical sensorimotor dysfunction.

  20. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.

    PubMed

    Schabrun, S M; Ridding, M C; Miles, T S

    2008-02-01

    Human precision grip requires precise scaling of the grip force to match the weight and frictional conditions of the object. The ability to produce an accurately scaled grip force prior to lifting an object is thought to be the result of an internal feedforward model. However, relatively little is known about the roles of various brain regions in the control of such precision grip-lift synergies. Here we investigate the role of the primary motor (M1) and sensory (S1) cortices during a grip-lift task using inhibitory transcranial magnetic theta-burst stimulation (TBS). Fifteen healthy individuals received 40 s of either (i) M1 TBS, (ii) S1 TBS or (iii) sham stimulation. Following a 5-min rest, subjects lifted a manipulandum five times using a precision grip or completed a simple reaction time task. Following S1 stimulation, the duration of the pre-load phase was significantly longer than following sham stimulation. Following M1 stimulation, the temporal relationship between changes in grip and load force was altered, with changes in grip force coming to lag behind changes in load force. This result contrasts with that seen in the sham condition where changes in grip force preceded changes in load force. No significant difference was observed in the simple reaction task following either M1 or S1 stimulation. These results further quantify the contribution of the M1 to anticipatory grip-force scaling. In addition, they provide the first evidence for the contribution of S1 to object manipulation, suggesting that sensory information is not necessary for optimal functioning of anticipatory control.

  1. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas

    SciTech Connect

    D'Amato, R.J.; Blue, M.E.; Largent, B.L.; Lynch, D.R.; Ledbetter, D.J.; Molliver, M.E.; Snyder, S.H.

    1987-06-01

    The development of serotonergic innervation to rat cerebral cortex was characterized by immunohistochemical localization of serotonin combined with autoradiographic imaging of serotonin-uptake sites. In neonatal rat, a transient, dense, serotonergic innervation appears in all primary sensory areas of cortex. In somatosensory cortex, dense patches of serotonergic innervation are aligned with specialized cellular aggregates called barrels. The dense patches are not apparent after 3 weeks of age, and the serotonergic innervation becomes more uniform in adult neocortex. This precocious neonatal serotonergic innervation may play a transient physiologic role in sensory areas of cortex or may exert a trophic influence on the development of cortical circuitry and thalamocortical connections.

  2. Resolvin E1 Inhibits Substance P-Induced Potentiation of TRPV1 in Primary Sensory Neurons

    PubMed Central

    Jo, Youn Yi; Lee, Ji Yeon

    2016-01-01

    The neuropeptide substance P (SP) is expressed in primary sensory neurons and is commonly regarded as a “pain” neurotransmitter. Upon peripheral inflammation, SP activates the neurokinin-1 (NK-1) receptor and potentiates activity of transient receptor potential vanilloid subtype 1 (TRPV1), which is coexpressed by nociceptive neurons. Therefore, SP functions as an important neurotransmitter involved in the hypersensitization of inflammatory pain. Resolvin E1 (RvE1), derived from omega-3 polyunsaturated fatty acids, inhibits TRPV1 activity via activation of the chemerin 23 receptor (ChemR23)—an RvE1 receptor located in dorsal root ganglion neurons—and therefore exerts an inhibitory effect on inflammatory pain. We demonstrate here that RvE1 regulates the SP-induced potentiation of TRPV1 via G-protein coupled receptor (GPCR) on peripheral nociceptive neurons. SP-induced potentiation of TRPV1 inhibited by RvE1 was blocked by the Gαi-coupled GPCR inhibitor pertussis toxin and the G-protein inhibitor GDPβ-S. These results indicate that a low concentration of RvE1 strongly inhibits the potentiation of TRPV1, induced by the SP-mediated activation of NK-1, via a GPCR signaling pathway activated by ChemR23 in nociceptive neurons. RvE1 might represent a new therapeutic target for the treatment of inflammatory pain as a prospective endogenous inhibitor that strongly inhibits TRPV1 activity associated with peripheral inflammation. PMID:27738388

  3. Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons.

    PubMed

    Qiu, Fang; Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Yang, Zhifan; Hu, Wang-Ping

    2014-05-15

    Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are believed to mediate pain caused by extracellular acidification. Gastrodin is a main bioactive constituent of the traditional herbal Gastrodia elata Blume, which has been widely used in Oriental countries for centuries. As an analgesic, gastrodin has been used clinically to treat pain such as migraine and headache. However, the mechanisms underlying analgesic action of gastrodin are still poorly understood. Here, we have found that gastrodin inhibited the activity of native ASICs in rat dorsal root ganglion (DRG) neurons. Gastrodin dose-dependently inhibited proton-gated currents mediated by ASICs. Gastrodin shifted the proton concentration-response curve downwards, with a decrease of 36.92 ± 6.23% in the maximum current response but with no significant change in the pH0.5 value. Moreover, gastrodin altered acid-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral applied gastrodin relieved pain evoked by intraplantar injection of acetic acid in rats. Our results indicate that gastrodin can inhibit the activity of ASICs in the primary sensory neurons, which provided a novel mechanism underlying analgesic action of gastrodin.

  4. Bilateral Neuropathy of Primary Sensory Neurons by the Chronic Compression of Multiple Unilateral DRGs.

    PubMed

    Xie, Ya-Bin; Zhao, Huan; Wang, Ying; Song, Kai; Zhang, Ming; Meng, Fan-Cheng; Yang, Yu-Jie; He, Yang-Song; Kuang, Fang; You, Si-Wei; You, Hao-Jun; Xu, Hui

    2016-01-01

    To mimic multilevel nerve root compression and intervertebral foramina stenosis in human, we established a new animal model of the chronic compression of unilateral multiple lumbar DRGs (mCCD) in the rat. A higher occurrence of signs of spontaneous pain behaviors, such as wet-dog shaking and spontaneous hind paw shrinking behaviors, was firstly observed from day 1 onward. In the meantime, the unilateral mCCD rat exhibited significant bilateral hind paw mechanical and cold allodynia and hyperalgesia, as well as a thermal preference to 30°C plate between 30 and 35°C. The expression of activating transcription factor 3 (ATF3) was significantly increased in the ipsilateral and contralateral all-sized DRG neurons after the mCCD. And the expression of CGRP was significantly increased in the ipsilateral and contralateral large- and medium-sized DRG neurons. ATF3 and CGRP expressions correlated to evoked pain hypersensitivities such as mechanical and cold allodynia on postoperative day 1. The results suggested that bilateral neuropathy of primary sensory neurons might contribute to bilateral hypersensitivity in the mCCD rat.

  5. Bilateral Neuropathy of Primary Sensory Neurons by the Chronic Compression of Multiple Unilateral DRGs

    PubMed Central

    Xie, Ya-Bin; Zhao, Huan; Wang, Ying; Song, Kai; Zhang, Ming; Meng, Fan-Cheng; Yang, Yu-Jie; He, Yang-Song; Kuang, Fang; You, Si-Wei; You, Hao-Jun; Xu, Hui

    2016-01-01

    To mimic multilevel nerve root compression and intervertebral foramina stenosis in human, we established a new animal model of the chronic compression of unilateral multiple lumbar DRGs (mCCD) in the rat. A higher occurrence of signs of spontaneous pain behaviors, such as wet-dog shaking and spontaneous hind paw shrinking behaviors, was firstly observed from day 1 onward. In the meantime, the unilateral mCCD rat exhibited significant bilateral hind paw mechanical and cold allodynia and hyperalgesia, as well as a thermal preference to 30°C plate between 30 and 35°C. The expression of activating transcription factor 3 (ATF3) was significantly increased in the ipsilateral and contralateral all-sized DRG neurons after the mCCD. And the expression of CGRP was significantly increased in the ipsilateral and contralateral large- and medium-sized DRG neurons. ATF3 and CGRP expressions correlated to evoked pain hypersensitivities such as mechanical and cold allodynia on postoperative day 1. The results suggested that bilateral neuropathy of primary sensory neurons might contribute to bilateral hypersensitivity in the mCCD rat. PMID:26819761

  6. Genetic ablation of GINIP-expressing primary sensory neurons strongly impairs Formalin-evoked pain

    PubMed Central

    Urien, Louise; Gaillard, Stéphane; Lo Re, Laure; Malapert, Pascale; Bohic, Manon; Reynders, Ana; Moqrich, Aziz

    2017-01-01

    Primary sensory neurons are heterogeneous by myriad of molecular criteria. However, the functional significance of this remarkable heterogeneity is just emerging. We precedently described the GINIP+ neurons as a new subpopulation of non peptidergic C-fibers encompassing the free nerve ending cutaneous MRGPRD+ neurons and C-LTMRs. Using our recently generated ginip mouse model, we have been able to selectively ablate the GINIP+ neurons and assess their functional role in the somatosensation. We found that ablation of GINIP+ neurons affected neither the molecular contents nor the central projections of the spared neurons. GINIP-DTR mice exhibited impaired sensation to gentle mechanical stimuli applied to their hairy skin and had normal responses to noxious mechanical stimuli applied to their glabrous skin, under acute and injury-induced conditions. Importantly, loss of GINIP+ neurons significantly altered formalin-evoked first pain and drastically suppressed the second pain response. Given that MRGPRD+ neurons have been shown to be dispensable for formalin-evoked pain, our study suggest that C-LTMRs play a critical role in the modulation of formalin-evoked pain. PMID:28240741

  7. Swelling-activated calcium signalling in cultured mouse primary sensory neurons.

    PubMed

    Viana, F; de la Peña, E; Pecson, B; Schmidt, R F; Belmonte, C

    2001-02-01

    The effects of hypo-osmotic membrane stretch on intracellular calcium concentration ([Ca(2+)](i)), cell volume and cellular excitability were investigated in cultured mouse primary sensory trigeminal neurons. Hypotonic solutions (15--45%) led to rapid cell swelling in all neurons. Swelling was accompanied by dose-dependent elevations in [Ca(2+)](i) in a large fraction of neurons. Responses could be classified into three categories. (i) In 57% of the neurons [Ca(2+)](i) responses had a slow rise time and were generally of small amplitude. (ii) In 21% of the neurons, responses had a faster rise and were larger in amplitude. (iii) The remaining cells (22%) did not show [Ca(2+)](i) responses to hypo-osmotic stretch. Slow and fast [Ca(2+)](i) changes were observed in trigeminal neurons of different sizes with variable responses to capsaicin (0.5 microM). The swelling-induced [Ca(2+)](i) responses were not abolished after depletion of intracellular Ca2+ stores with cyclopiazonic acid or preincubation in thapsigargin, but were suppressed in the absence of external Ca(2+). They were strongly attenuated by extracellular nickel and gadolinium. Hypotonic stimulation led to a decrease in input resistance and to membrane potential depolarization. Under voltage-clamp, the [Ca(2+)](i) elevation produced by hypotonic stimulation was accompanied by the development of an inward current and a conductance increase. The time course and amplitude of the [Ca(2+)](i) response to hypo-osmotic stimulation showed a close correlation with electrophysiological properties of the neurons. Fast [Ca(2+)](i) responses were characteristic of trigeminal neurons with short duration action potentials and marked inward rectification. These findings suggest that hypo-osmotic stimulation activates several Ca(2+)-influx pathways, including Gd(3+)-sensitive stretch-activated ion channels, in a large fraction of trigeminal ganglion neurons. Opening of voltage-gated Ca(2+) channels also contributes to the

  8. Nicotinic receptor activation on primary sensory afferents modulates autorhythmicity in the mouse renal pelvis

    PubMed Central

    Nguyen, M J; Angkawaijawa, S; Hashitani, H; Lang, R J

    2013-01-01

    BACKGROUND AND PURPOSE The modulation of the spontaneous electrical and Ca2+ signals underlying pyeloureteric peristalsis upon nicotinic receptor activation located on primary sensory afferents (PSAs) was investigated in the mouse renal pelvis. EXPERIMENTAL APPROACH Contractile activity was followed using video microscopy, electrical and Ca2+ signals in typical and atypical smooth muscle cells (TSMCs and ASMCs) within the renal pelvis were recorded separately using intracellular microelectrodes and Fluo-4 Ca2+ imaging. KEY RESULTS Nicotine and carbachol (CCh; 1–100 μM) transiently reduced the frequency and increased the amplitude of spontaneous phasic contractions in a manner unaffected by muscarininc antagonists, 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) and pirenzipine (10 nM) or L-NAME (L-Nω-nitroarginine methyl ester; 200 μM), inhibitor of NO synthesis, but blocked by the nicotinic antagonist, hexamethonium or capsaicin, depletor of PSA neuropeptides. These negative chronotropic and delayed positive inotropic effects of CCh on TSMC contractions, action potentials and Ca2+ transients were inhibited by glibenclamide (Glib; 1 μM), blocker of ATP-dependent K (KATP) channels. Nicotinic receptor-evoked inhibition of the spontaneous Ca2+ transients in ASMCs was prevented by capsaicin but not Glib. In contrast, the negative inotropic and chronotropic effects of the non-selective COX inhibitor indomethacin were not prevented by Glib. CONCLUSIONS AND IMPLICATIONS The negative chronotropic effect of nicotinic receptor activation results from the release of calcitonin gene-related peptide (CGRP) from PSAs, which suppresses Ca2+ signalling in ASMCs. PSA-released CGRP also evokes a transient hyperpolarization in TSMCs upon the opening of KATP channels, which reduces contraction propagation but promotes the recruitment of TSMC Ca2+ channels that underlie the delayed positive inotropic effects of CCh. PMID:24004375

  9. Substance P suppresses GABAA receptor function via protein kinase C in primary sensory neurones of bullfrogs.

    PubMed Central

    Yamada, K; Akasu, T

    1996-01-01

    1. The effects of substance P (SP) and related tachykinins on the function of gamma-aminobutyric acid-A (GABAA) receptors were examined in acutely dissociated neurones of bullfrog dorsal root ganglia (DRG) by using whole-cell voltage-clamp techniques. 2. Application of SP (10 nM to 1 microM) depressed inward currents produced by GABAA receptor activation (IGABA). Neurokinin A (NKA) and neurokinin B (NKB) also depressed IGABA; the rank order of agonist potency was SP > NKA > NKB. Spantide ([D-Arg1, D-Trp7,9,Leu11]SP) and L-703,606, NK1 receptor antagonists, blocked the SP-induced depression of IGABA. 3. SP irreversibly depressed IGABA, when neurones were intracellularly dialysed with GTP gamma S. Intracellular application of GDP beta S prevented the SP-induced depression of IGABA. Pertussis toxin (PTX) did not block the inhibitory effect of SP on IGABA. 4. The depression of IGABA produced by SP was inhibited by H-7 and PKC(19-36), protein kinase C (PKC) inhibitors, but not by H-9 and HA-1004, protein kinase A inhibitors. IGABA was suppressed by application of sn-1,2-dioctanoyl glycerol (DOG), a PKC activator. 5. It is concluded that activation of neurokinin-1 (NK1) receptors downregulates the function of the GABAA receptor of primary sensory neurones through a PTX-insensitive G-protein. PKC may be involved in the transduction pathway of the tachykinin-induced inhibition of the GABAA receptor. PMID:8910228

  10. Interhemispheric Inhibition Induced by Transcranial Magnetic Stimulation Over Primary Sensory Cortex

    PubMed Central

    Iwata, Yasuyuki; Jono, Yasutomo; Mizusawa, Hiroki; Kinoshita, Atsushi; Hiraoka, Koichi

    2016-01-01

    The present study investigated whether the long-interval interhemispheric inhibition (LIHI) is induced by the transcranial magnetic stimulation over the primary sensory area (S1-TMS) without activation of the conditioning side of the primary motor area (M1) contributing to the contralateral motor evoked potential (MEP), whether the S1-TMS-induced LIHI is dependent on the status of the S1 modulated by the tactile input, and whether the pathways mediating the LIHI are different from those mediating the M1-TMS-induced LIHI. In order to give the TMS over the S1 without eliciting the MEP, the intensity of the S1-TMS was adjusted to be the sub-motor-threshold level and the trials with the MEP response elicited by the S1-TMS were discarded online. The LIHI was induced by the S1-TMS given 40 ms before the test TMS in the participants with the attenuation of the tactile perception of the digit stimulation (TPDS) induced by the S1-TMS, indicating that the LIHI is induced by the S1-TMS without activation of the conditioning side of the M1 contributing to the contralateral MEP in the participants in which the pathways mediating the TPDS is sensitive to the S1-TMS. The S1-TMS-induced LIHI was positively correlated with the attenuation of the TPDS induced by the S1-TMS, indicating that the S1-TMS-induced LIHI is dependent on the effect of the S1-TMS on the pathways mediating the TPDS at the S1. In another experiment, the effect of the digit stimulation given before the conditioning TMS on the S1- or M1-TMS-induced LIHI was examined. The digit stimulation produces tactile input to the S1 causing change in the status of the S1. The S1-TMS-induced LIHI was enhanced when the S1-TMS was given in the period in which the tactile afferent volley produced by the digit stimulation just arrived at the S1, while the LIHI induced by above-motor-threshold TMS over the contralateral M1 was not enhanced by the tactile input. Thus, the S1-TMS-induced LIHI is dependent on the status of the S1

  11. Surgical extraction of human dorsal root ganglia from organ donors and preparation of primary sensory neuron cultures

    PubMed Central

    Valtcheva, Manouela V.; Copits, Bryan A.; Davidson, Steve; Sheahan, Tayler D.; Pullen, Melanie Y.; McCall, Jordan G.; Dikranian, Krikor; Gereau, Robert W.

    2016-01-01

    Primary cultures of rodent sensory neurons are widely used to investigate the cellular and molecular mechanisms involved in pain, itch, nerve injury, and regeneration. However, translation of these preclinical findings may be greatly improved by direct validation in human tissues. We have developed an approach to extract and culture human sensory neurons in collaboration with a local organ procurement organization. Here we describe the surgical procedure for extraction of human dorsal root ganglia (hDRG) and the necessary modifications to existing culture techniques to prepare viable adult human sensory neurons for functional studies. Dissociated sensory neurons can be maintained in culture for >10 days, and are amenable to electrophysiological recording, calcium imaging, and viral gene transfer. The entire process of extraction and culturing can be completed in less than 7 hours, and can be performed by trained graduate students. This approach can be applied at any institution with access to organ donors consenting to tissue donation for research and provides an invaluable resource for improving translational research. PMID:27606776

  12. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations.

    PubMed

    Reid, Adam J; Shawcross, Susan G; Hamilton, Alex E; Wiberg, Mikael; Terenghi, Giorgio

    2009-10-01

    Novel approaches are required in peripheral nerve injury management because current surgical techniques, which do not address axotomy-induced neuronal death, lead to deficient sensory recovery. Sensory neuronal death has functional preference with cutaneous neurons dying in great numbers whilst muscle afferents survive axotomy. This offers the potential of comparing similar cell types that suffer distinct fates upon nerve injury. Here, a novel approach, combining in vivo rat nerve injury model with laser microdissection and quantitative real-time polymerase chain reaction, identifies crucial disparities in apoptotic gene expression attributable to subpopulations of differing sensory modalities and examines the response to N-acetylcysteine (NAC) therapy. We show that axotomised muscle afferent neurons survive injury due to a neuroprotective response which markedly downregulates Bax and caspase-3 mRNA. In contrast, axotomised cutaneous sensory neurons significantly upregulate caspase-3 and alter both Bcl-2 and Bax expression such that pro-apoptotic Bax predominates. N-Acetylcysteine (NAC) intervention promotes neuroprotection of cutaneous sensory neurons through considerable upregulation of Bcl-2 and downregulation of both Bax and caspase-3 mRNA. The data presented identifies differential activation of apoptotic genes in axotomised neuronal subpopulations. Furthermore, NAC therapy instigates apoptotic gene expression changes in axotomised neurons, thereby offering pharmacotherapeutic potential in the clinical treatment of nerve injury.

  13. Imaging tactile imagery: changes in brain connectivity support perceptual grounding of mental images in primary sensory cortices.

    PubMed

    Schmidt, Timo Torsten; Ostwald, Dirk; Blankenburg, Felix

    2014-09-01

    Constructing mental representations in the absence of sensory stimulation is a fundamental ability of the human mind and has been investigated in numerous brain imaging studies. However, it is still unclear how brain areas facilitating mental construction processes interact with brain regions related to specific sensory representations. In this fMRI study subjects formed mental representations of tactile stimuli either from memory (imagery) or from presentation of actual corresponding vibrotactile patterned stimuli. First our analysis addressed the question of whether tactile imagery recruits primary somatosensory cortex (SI), because the activation of early perceptual areas is classically interpreted as perceptual grounding of the mental image. We also tested whether a network, referred to as 'core construction system', is involved in the generation of mental representations in the somatosensory domain. In fact, we observed imagery-induced activation of SI. We further found support for the notion of a modality independent construction network with the retrosplenial cortices and the precuneus as core components, which were supplemented with the left inferior frontal gyrus (IFG). Finally, psychophysiological interaction (PPI) analyses revealed robust imagery-modulated changes in the connectivity of these construction related areas, which suggests that they orchestrate the assembly of an abstract mental representation. Interestingly, we found increased coupling between prefrontal cortex (left IFG) and SI during mental imagery, indicating the augmentation of an abstract mental representation by reactivating perceptually grounded sensory details. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons.

    PubMed

    Veress, Gabor; Meszar, Zoltan; Muszil, Dora; Avelino, Antonio; Matesz, Klara; Mackie, Ken; Nagy, Istvan

    2013-05-01

    The cannabinoid 1 (CB1) receptor is expressed by a sub-population of primary sensory neurons. However, data on the neurochemical identity of the CB1 receptor-expressing cells, and CB1 receptor expression by the peripheral and central terminals of these neurons are inconsistent and limited. We characterised CB1 receptor expression in dorsal root ganglia (DRG) and spinal cord at the lumbar 4-5 level, as well as in the urinary bladder and glabrous skin of the hindpaw. About 1/3 of DRG neurons exhibited immunopositivity for the CB1 receptor, the majority of which showed positivity for the nociceptive markers calcitonin gene-related peptide (CGRP) or/and Griffonia (bandeiraea) simplicifolia IB4 isolectin-binding. Virtually all CB1 receptor-immunostained fibres showed immunopositivity for CGRP in the skin, while very few did in the urinary bladder. No CB1 receptor-immunopositive nerve fibres were IB4 positive in either peripheral tissue. Spinal laminae I and II-outer showed the highest density of CB1 receptor-immunopositive punctae, the majority of which showed positivity for CGRP or/and IB4 binding. These data indicate that a major sub-population of nociceptive primary sensory neurons expresses CB1 receptors that are transported to both peripheral and central terminals of these cells. Therefore, the present data suggest that manipulation of endogenous CB1 receptor agonist levels in these areas may significantly reduce nociceptive input into the spinal cord.

  15. Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies

    PubMed Central

    Arce-McShane, Fritzie I.; Ross, Callum F.; Takahashi, Kazutaka; Sessle, Barry J.; Hatsopoulos, Nicholas G.

    2016-01-01

    Skilled movements rely on sensory information to shape optimal motor responses, for which the sensory and motor cortical areas are critical. How these areas interact to mediate sensorimotor integration is largely unknown. Here, we measure intercortical coherence between the orofacial motor (MIo) and somatosensory (SIo) areas of cortex as monkeys learn to generate tongue-protrusive force. We report that coherence between MIo and SIo is reciprocal and that neuroplastic changes in coherence gradually emerge over a few days. These functional networks of coherent spiking and local field potentials exhibit frequency-specific spatiotemporal properties. During force generation, theta coherence (2–6 Hz) is prominent and exhibited by numerous paired signals; before or after force generation, coherence is evident in alpha (6–13 Hz), beta (15–30 Hz), and gamma (30–50 Hz) bands, but the functional networks are smaller and weaker. Unlike coherence in the higher frequency bands, the distribution of the phase at peak theta coherence is bimodal with peaks near 0° and ±180°, suggesting that communication between somatosensory and motor areas is coordinated temporally by the phase of theta coherence. Time-sensitive sensorimotor integration and plasticity may rely on coherence of local and large-scale functional networks for cortical processes to operate at multiple temporal and spatial scales. PMID:27091982

  16. SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons.

    PubMed

    Han, Qingjian; Kim, Yong Ho; Wang, Xiaoming; Liu, Di; Zhang, Zhi-Jun; Bey, Alexandra L; Lay, Mark; Chang, Wonseok; Berta, Temugin; Zhang, Yan; Jiang, Yong-Hui; Ji, Ru-Rong

    2016-12-21

    Abnormal pain sensitivity is commonly associated with autism spectrum disorders (ASDs) and affects the life quality of ASD individuals. SHANK3 deficiency was implicated in ASD and pain dysregulation. Here, we report functional expression of SHANK3 in mouse dorsal root ganglion (DRG) sensory neurons and spinal cord presynaptic terminals. Homozygous and heterozygous Shank3 complete knockout (Δe4-22) results in impaired heat hyperalgesia in inflammatory and neuropathic pain. Specific deletion of Shank3 in Nav1.8-expressing sensory neurons also impairs heat hyperalgesia in homozygous and heterozygous mice. SHANK3 interacts with transient receptor potential subtype V1 (TRPV1) via Proline-rich region and regulates TRPV1 surface expression. Furthermore, capsaicin-induced spontaneous pain, inward currents in DRG neurons, and synaptic currents in spinal cord neurons are all reduced after Shank3 haploinsufficiency. Finally, partial knockdown of SHANK3 expression in human DRG neurons abrogates TRPV1 function. Our findings reveal a peripheral mechanism of SHANK3, which may underlie pain deficits in SHANK3-related ASDs.

  17. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons

    NASA Astrophysics Data System (ADS)

    Neumann, Simona; Doubell, Tim P.; Leslie, Tabi; Woolf, Clifford J.

    1996-11-01

    PAIN is normally evoked only by stimuli that are sufficiently intense to activate high-threshold Aδ and C sensory fibres, which relay the signal to the spinal cord. Peripheral inflammation leads to profoundly increased pain sensitivity: noxious stimuli generate a greater response and stimuli that are normally innocuous elicit pain. Inflammation increases the sensitivity of the peripheral terminals of Aδ and C fibres at the site of inflammation1. It also increases the excitability of spinal cord neurons2,3, which now amplify all sensory inputs including the normally innocuous tactile stimuli that are conveyed by low-threshold Aβ fibres. This central sensitization has been attributed to the enhanced activity of C fibres4, which increase the excitability of their postsynaptic targets by releasing glutamate and the neuropeptide substance P5-7. Here we show that inflammation results in Aβ fibres also acquiring the capacity to increase the excitability of spinal cord neurons. This is due to a phenotypic switch in a subpopulation of these fibres so that they, like C-fibres, now express substance P. Aβ fibres thus appear to contribute to inflammatory hypersensitivity by switching their phenotype to one resembling pain fibres, thereby enhancing synaptic transmission in the spinal cord and exaggerating the central response to innocuous stimuli.

  18. A Magnetoencephalography study of multi-modal processing of pain anticipation in primary sensory cortices

    PubMed Central

    Gopalakrishnan, Raghavan; Burgess, Richard C.; Plow, Ela B.; Floden, Darlene; Machado, Andre G

    2015-01-01

    Pain anticipation plays a critical role in pain chronification and results in disability due to pain avoidance. It is important to understand how different sensory modalities (auditory, visual or tactile) may influence pain anticipation as different strategies could be applied to mitigate anticipatory phenomena and chronification. In this study, using a countdown paradigm, we evaluated with magnetoencephalography the neural networks associated with pain anticipation elicited by different sensory modalities in normal volunteers. When encountered with well-established cues that signaled pain, visual and somatosensory cortices engaged the pain neuromatrix areas early during the countdown process, whereas auditory cortex displayed delayed processing. In addition, during pain anticipation, visual cortex displayed independent processing capabilities after learning the contextual meaning of cues from associative and limbic areas. . Interestingly, cross-modal activation was also evident and strong when visual and tactile cues signaled upcoming pain. Dorsolateral prefrontal cortex and mid-cingulate cortex showed significant activity during pain anticipation regardless of modality. Our results show pain anticipation is processed with great time efficiency by a highly specialized and hierarchical network. The highest degree of higher-order processing is modulated by context (pain) rather than content (modality) and rests within the associative limbic regions, corroborating their intrinsic role in chronification. PMID:26210576

  19. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons.

    PubMed

    Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S

    2017-02-07

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.

  20. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons

    PubMed Central

    Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.

    2017-01-01

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213

  1. Sensory nerves contribute to cutaneous vasodilator response to cathodal stimulation in healthy rats.

    PubMed

    Gohin, Stéphanie; Decorps, Johanna; Sigaudo-Roussel, Dominique; Fromy, Bérengère

    2015-09-01

    Cutaneous current-induced vasodilation (CIV) in response to galvanic current application is an integrative model of neurovascular interaction that relies on capsaicin-sensitive fiber activation. The upstream and downstream mechanisms related to the activation of the capsaicin-sensitive fibers involved in CIV are not elucidated. In particular, the activation of cutaneous transient receptor potential vanilloid type-1 (TRPV1) channels and/or acid-sensing ion channels (ASIC) (activators mechanisms) and the release of calcitonin gene-related peptide (CGRP) and substance P (SP) (effector mechanisms) have been tested. To assess cathodal CIV, we measured cutaneous blood flow using laser Doppler flowmetry for 20min following cathodal current application (240s, 100μA) on the skin of the thigh in anesthetized healthy rats for 20min. CIV was studied in rats treated with capsazepine and amiloride to inhibit TRPV1 and ASIC channels, respectively; CGRP8-37 and SR140333 to antagonize CGRP and neurokinin-1 (NK1) receptors, respectively; compared to their respective controls. Cathodal CIV was attenuated by capsazepine (12±2% vs 54±6%, P<0.001), amiloride (19±8% vs 61±6%, P<0.01), CGRP8-37 (15±6% vs 61±6%, P<0.001) and SR140333 (9±5% vs 54±6%, P<0.001) without changing local acidification. This is the first integrative study performed in healthy rats showing that cutaneous vasodilation in response to cathodal stimulation is initiated by activation of cutaneous TRPV1 and ASIC channels likely through local acidification. The involvement of CGRP and NK1 receptors suggests that cathodal CIV is the result of CGRP and SP released through activated capsaicin-sensitive fibers. Therefore cathodal CIV could be a valuable method to assess sensory neurovascular function in the skin, which would be particularly relevant to evaluate the presence of small nerve fiber disorders and the effectiveness of treatments.

  2. Morphine, but not sodium cromoglycate, modulates the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro.

    PubMed Central

    Ray, N. J.; Jones, A. J.; Keen, P.

    1991-01-01

    1. Opioids have been shown to inhibit substance P (SP) release from primary afferent neurones (PAN). In addition, opioid receptors have been identified on PAN of the vagus nerves. Sodium cromoglycate (SCG) decreases the excitability of C-fibres in the lung of the dog in vivo. We have utilised a multi-superfusion system to investigate the effect of opioids and SCG on the release of SP from the rat trachea in vitro. 2. Pretreatment of newborn rats with capsaicin (50 mg kg-1 s.c. at day 1 and 2 of life) resulted in a 93.2 +/- 6.3% reduction in tracheal substance P-like immunoreactivity (SP-LI) content when determined by radioimmunoassay in the adult. 3. Exposure to isotonically elevated potassium concentrations (37-90 mM), capsaicin (100 nM-10 microM), and bradykinin (BK; 10nm-1 microM) but not des-Arg9-BK (1 microM) stimulated SP-LI release by a calcium-dependent mechanism. 4. SCG (1 microM and 100 microM) did not affect spontaneous, potassium (60 mM)- or BK (1 microM)-stimulated SP-LI release. 5. Morphine (0.1-100 microM) caused dose-related inhibition of potassium (60 mM)-stimulated SP-LI release with the greatest inhibition of 60.4 +/- 13.7% at 100 microM. The effect of morphine was not mimicked by the kappa-opioid receptor agonist, U50,488H (10 microM) or the delta-opioid receptor agonist, Tyr-(D-Pen)-Gly-Phe-(D-Pen) (DPDPE). 6. The effect of morphine was totally abolished by prior and concomitant exposure to naloxone (100 nM) which had no effect on control release values.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1713104

  3. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.

    PubMed

    Jiang, Yu-Qiu; Zaaimi, Boubker; Martin, John H

    2016-01-06

    after injury. Axons of the major descending motor pathway for motor skills, the corticospinal tract (CST), sprout after brain or spinal cord injury. This contributes to spontaneous spinal motor circuit repair and partial motor recovery. Knowing the determinants that enhance this plasticity is critical for functional rehabilitation. Here we examine the remodeling of CST axons directed by sensory fibers. We found that the CST projection is regulated dynamically in maturity by the competitive, activity-dependent actions of sensory fibers. Knowledge of the properties of this competition enables prediction of the remodeling of CST connections and spinal circuits after injury and informs ways to engineer target-specific control of CST connections to promote recovery. Copyright © 2016 the authors 0270-6474/16/360193-11$15.00/0.

  4. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    , but it is promoted after injury. Axons of the major descending motor pathway for motor skills, the corticospinal tract (CST), sprout after brain or spinal cord injury. This contributes to spontaneous spinal motor circuit repair and partial motor recovery. Knowing the determinants that enhance this plasticity is critical for functional rehabilitation. Here we examine the remodeling of CST axons directed by sensory fibers. We found that the CST projection is regulated dynamically in maturity by the competitive, activity-dependent actions of sensory fibers. Knowledge of the properties of this competition enables prediction of the remodeling of CST connections and spinal circuits after injury and informs ways to engineer target-specific control of CST connections to promote recovery. PMID:26740661

  5. [Ataxic sensory and autonomic neuropathies associated with primary Sjögren's syndrome: a case report].

    PubMed

    Oobayashi, Y; Miyawaki, S

    1995-02-01

    A 49-year-old woman had xerostomia and foreign body sensation of eye since 27 years old. Since the age of 30 she developed occasional fever attack released by cooling body without medication. Three years later she began to complain difficulty to maintain standing position with closed eyes. Upon admission axillary lymph node swelling, anisocoria and Adie's pupils were evident. She had reddish and atrophic dry tongue. Peripheral reflexes of upper extremities were decreased. Patellar and achilles tendon reflexes were diminished. Perception of pain and temperature were reduced on the right peripheral upper and lateral lower extremities. Deep sensation of four extremities were also decreased. Romberg's sign was positive. She had ataxic gait, orthostatic hypotension, Valsarlva abnormalities and hypohidrosis. Laboratory findings revealed elevated erythrocyte sedimentation rate, high IgG and rheumatoid factor levels, leukopenia, positive anti SS-A/Ro antibody and positive minor salivary gland biopsy. Axillary skin biopsy, CT scan cerebrospinal fluid were normal. Sensory nerve conduction velocity and amplitude were decreased, but motor nerve conduction velocity was normal. Sural nerve biopsy was characterized by loss of large and small myelinated fibers. All findings found in our patient were consistent with those of thirteen patients reported by Griffin et al in 1990 who postulated that T-cell inflammation of the dorsal root ganglion was an extraglandular site of autoimmune attack in Sjögren's syndrome.

  6. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue.

    PubMed

    Mbiene, Joseph-Pascal

    2004-12-01

    Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.

  7. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish.

    PubMed

    Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus. These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.

  8. [A case report of bilateral trigeminal sensory neuropathy as one of the initial manifestation of systemic scleroderma (the difficulties of early diagnosis of the primary disease)].

    PubMed

    Grachev, Ju V; Anan'eva, L P; Tjurnikov, V M; Zaharova, A Ju

    2015-01-01

    The article describes the case of a patient with bilateral trigeminal sensory neuropathy (TSN), as a possible neurological manifestation of systemic scleroderma (SS). In this patient, intense non-paroxysmal facial pain caused by TSN, subjectively dominated over other manifestations of SS, including Raynaud's syndrome, for at least 1.5 years, thus hampering the diagnosis of the primary disease. In addition to pain, which was not relieved by analgesic medication, TSN was manifested by marked sensory deficit on the face (hypoesthesia / anesthesia) and bilateral sensory deficits in the oral cavity, including the anterior third of the tongue. TSN was also combined with disorders of taste perception. The assumption of rheumatic origin of TSN occurred during a primary neurological examination: a standard examination revealed generalized sensory polyneuropathy with bilateral involvement of the trigeminal nerve; the additional study identified no neurological signs of rheumatic diseases, including Raynaud's phenomenon. SS met all the criteria for the diagnosis (2013), high titers of nuclear ribonucleoprotein were determined as well. Thus, TSN as early and subjectively dominant manifestation of SS can complicate the diagnosis of primary rheumatic diseases. Therefore, in cases of distal sensory polyneuropathy with bilateral involvement of the trigeminal nerve, it is necessary to conduct an additional survey to identify the signs of possible rheumatic diseases: signs of vascular lesion (Raynaud's syndrome), lesions of skin, joints and muscles.

  9. A tingling sanshool derivative excites primary sensory neurons and elicits nocifensive behavior in rats

    PubMed Central

    Klein, Amanda H.; Sawyer, Carolyn M.; Zanotto, Karen L.; Ivanov, Margaret A.; Cheung, Susan; Carstens, Mirela Iodi; Furrer, Stephan; Simons, Christopher T.; Slack, Jay P.

    2011-01-01

    Szechuan peppers contain hydroxy-α-sanshool that imparts desirable tingling, cooling, and numbing sensations. Hydroxy-α-sanshool activates a subset of sensory dorsal root ganglion (DRG) neurons by inhibiting two-pore potassium channels. We presently investigated if a tingle-evoking sanshool analog, isobutylalkenyl amide (IBA), excites rat DRG neurons and, if so, if these neurons are also activated by agonists of TRPM8, TRPA1, and/or TRPV1. Thirty-four percent of DRG neurons tested responded to IBA, with 29% of them also responding to menthol, 29% to cinnamic aldehyde, 66% to capsaicin, and subsets responding to two or more transient receptor potential (TRP) agonists. IBA-responsive cells had similar size distributions regardless of whether they responded to capsaicin or not; cells only responsive to IBA were larger. Responses to repeated application of IBA at a 5-min interstimulus interval exhibited self-desensitization (tachyphylaxis). Capsaicin did not cross-desensitize responses to IBA to any greater extent than the tachyphylaxis observed with repeated IBA applications. These findings are consistent with psychophysical observations that IBA elicits tingle sensation accompanied by pungency and cooling, with self-desensitization but little cross-desensitization by capsaicin. Intraplantar injection of IBA elicited nocifensive responses (paw licking, shaking-flinching, and guarding) in a dose-related manner similar to the effects of intraplantar capsaicin and serotonin. IBA had no effect on thermal sensitivity but enhanced mechanical sensitivity at the highest dose tested. These observations suggest that IBA elicits an unfamiliar aversive sensation that is expressed behaviorally by the limited response repertoire available to the animal. PMID:21273322

  10. Moderate hypoxia influences excitability and blocks dendrotoxin sensitive K+ currents in rat primary sensory neurones

    PubMed Central

    Gruss, Marco; Ettorre, Giovanni; Stehr, Annette Jana; Henrich, Michael; Hempelmann, Gunter; Scholz, Andreas

    2006-01-01

    Hypoxia alters neuronal function and can lead to neuronal injury or death especially in the central nervous system. But little is known about the effects of hypoxia in neurones of the peripheral nervous system (PNS), which survive longer hypoxic periods. Additionally, people have experienced unpleasant sensations during ischemia which are dedicated to changes in conduction properties or changes in excitability in the PNS. However, the underlying ionic conductances in dorsal root ganglion (DRG) neurones have not been investigated in detail. Therefore we investigated the influence of moderate hypoxia (27.0 ± 1.5 mmHg) on action potentials, excitability and ionic conductances of small neurones in a slice preparation of DRGs of young rats. The neurones responded within a few minutes non-uniformly to moderate hypoxia: changes of excitability could be assigned to decreased outward currents in most of the neurones (77%) whereas a smaller group (23%) displayed increased outward currents in Ringer solution. We were able to attribute most of the reduction in outward-current to a voltage-gated K+ current which activated at potentials positive to -50 mV and was sensitive to 50 nM α-dendrotoxin (DTX). Other toxins that inhibit subtypes of voltage gated K+ channels, such as margatoxin (MgTX), dendrotoxin-K (DTX-K), r-tityustoxin Kα (TsTX-K) and r-agitoxin (AgTX-2) failed to prevent the hypoxia induced reduction. Therefore we could not assign the hypoxia sensitive K+ current to one homomeric KV channel type in sensory neurones. Functionally this K+ current blockade might underlie the increased action potential (AP) duration in these neurones. Altogether these results, might explain the functional impairment of peripheral neurones under moderate hypoxia. PMID:16579848

  11. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish

    PubMed Central

    Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Abstract Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus. These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory–motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner. PMID:27844054

  12. Primary sensory afferent innervation of the developing superficial dorsal horn in the South American opossum Monodelphis domestica.

    PubMed

    Kitchener, Peter D; Hutton, Elspeth J; Knott, Graham W

    2006-03-01

    The development of the primary sensory innervation of the superficial dorsal horn (SDH) was studied in postnatal opossums Monodelphis domestica by using DiI labelling of primary afferents and with GSA-IB(4) lectin binding and calcitonin gene-related peptide (CGRP) immunoreactivity to label primary afferent subpopulations. We also compared the timing of SDH innervation in the cervical and lumbar regions of the spinal cord. The first primary afferent projections to SDH emerge from the most lateral part of the dorsal root entry zone at postnatal day 5 and project around the lateral edge of the SDH toward lamina V. Innervation of the SDH occurs slowly over the second and third postnatal weeks, with the most dorsal aspect becoming populated by mediolaterally oriented varicose fibers before the rest of the dorsoventral thickness of the SDH becomes innervated by fine branching varicose fibers. Labelling with GSA-IB(4) lectin also labelled fibers at the lateral edge of the dorsal horn and SDH at P5, indicating that the GSA-IB(4) is expressed on SDH/lamina V primary afferents at the time when they are making their projections into the spinal cord. In contrast, CGRP-immunoreactive afferents were not evident until postnatal day 7, when a few short projections into the lateral dorsal horn were observed. These afferents then followed a pattern similar to the development of GSA-IB(4) projects but with a latency of several days. The adult pattern of labelling by GSA-IB(4) is achieved by about postnatal day 20, whereas the adult pattern of CGRP labelling was not seen until postnatal day 30. Electron microscopy revealed a few immature synapses in the region of the developing SDH at postnatal day 10, and processes considered to be precursors of glomerular synapses (and thus of primary afferent origin) were first seen at postnatal day 16 and adopted their definitive appearance between postnatal days 28 and 55. Although structural and functional development of forelimbs of neonatal

  13. Primary structural response in tryptophan residues of Anabaena sensory rhodopsin to photochromic reactions of the retinal chromophore

    NASA Astrophysics Data System (ADS)

    Inada, Seisuke; Mizuno, Misao; Kato, Yoshitaka; Kawanabe, Akira; Kandori, Hideki; Wei, Zhengrong; Takeuchi, Satoshi; Tahara, Tahei; Mizutani, Yasuhisa

    2013-06-01

    Anabaena sensory rhodopsin (ASR) is a microbial rhodopsin found in eubacteria and functions as a photosensor. The photoreaction of ASR is photochromic between all-trans, 15-anti (ASRAT), and 13-cis, 15-syn (ASR13C) isomers. To understand primary protein dynamics in the photoreaction starting in ASRAT and ASR13C, picosecond time-resolved ultraviolet resonance Raman spectra were obtained. In the intermediate state appearing in the picosecond temporal region, spectral changes of Trp bands were observed. For both ASRAT and ASR13C, the intensities of the Trp bands were bleached within the instrumental response time and recovered with a time constant of 30 ps. This suggests that the rates of structural changes in the Trp residue in the vicinity of the chromophore do not depend on the direction of the isomerization of retinal. A comparison between spectra of the wild-type and Trp mutants indicates that the structures of Trp76 and Trp46 change upon the primary photoreaction of retinal.

  14. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization.

    PubMed

    Zhuang, Zhi-Ye; Xu, Haoxing; Clapham, David E; Ji, Ru-Rong

    2004-09-22

    Although the PI3K (phosphatidylinositol 3-kinase) pathway typically regulates cell growth and survival, increasing evidence indicates the involvement of this pathway in neural plasticity. It is unknown whether the PI3K pathway can mediate pain hypersensitivity. Intradermal injection of capsaicin and NGF produce heat hyperalgesia by activating their respective TRPV1 (transient receptor potential vanilloid receptor-1) and TrkA receptors on nociceptor sensory nerve terminals. We examined the activation of PI3K in primary sensory DRG neurons by these inflammatory agents and the contribution of PI3K activation to inflammatory pain. We further investigated the correlation between the PI3K and the ERK (extracellular signal-regulated protein kinase) pathway. Capsaicin and NGF induce phosphorylation of the PI3K downstream target AKT (protein kinase B), which is blocked by the PI3K inhibitors LY294002 and wortmannin, indicative of the activation of PI3K by both agents. ERK activation by capsaicin and NGF was also blocked by PI3K inhibitors. Similarly, intradermal capsaicin in rats activated PI3K and ERK in C-fiber DRG neurons and epidermal nerve fibers. Injection of PI3K or MEK (ERK kinase) inhibitors into the hindpaw attenuated capsaicin- and NGF-evoked heat hyperalgesia but did not change basal heat sensitivity. Furthermore, PI3K, but not ERK, inhibition blocked early induction of hyperalgesia. In acutely dissociated DRG neurons, the capsaicin-induced TRPV1 current was strikingly potentiated by NGF, and this potentiation was completely blocked by PI3K inhibitors and primarily suppressed by MEK inhibitors. Therefore, PI3K induces heat hyperalgesia, possibly by regulating TRPV1 activity, in an ERK-dependent manner. The PI3K pathway also appears to play a role that is distinct from ERK by regulating the early onset of inflammatory pain.

  15. Trinitrobenzenesulfonic Acid Colitis Induces Changes in the Contractile Response of Circular Smooth Muscle in the Distal Colon

    DTIC Science & Technology

    1996-03-27

    capsaicin -sensitive afferent C fibers [29]. Capsaicin , the pungent ingredient of red pepper, acts on unmyelinated C fibers. It has been used as a tool to...evaluate the contribution of primary afferent neurons. Capsaicin acts at a "vanil1oid" receptor which is expressed by a subset of afferent neurons...designated " capsaicin sensitive primary afferents". Acute administration of capsaicin selectively activates sensory afferents to release primarily SP, VIP

  16. Distribution of binding sites for the plant lectin Ulex europaeus agglutinin I on primary sensory neurones in seven different mammalian species.

    PubMed

    Gerke, Michelle B; Plenderleith, Mark B

    2002-01-01

    There is an increasing body of evidence to suggest that different functional classes of neurones express characteristic cell-surface carbohydrates. Previous studies have shown that the plant lectin Ulex europaeus agglutinin-I (UEA) binds to a population of small to medium diameter primary sensory neurones in rabbits and humans. This suggests that a fucose-containing glycoconjugate may be expressed by nociceptive primary sensory neurones. In order to determine the extent to which this glycoconjugate is expressed by other species, in the current study, we have examined the distribution of UEA-binding sites on primary sensory neurones in seven different mammals. Binding sites for UEA were associated with the plasma membrane and cytoplasmic granules of small to medium dorsal root ganglion cells and their axon terminals in laminae I-III of the grey matter of the spinal cord, in the rabbit, cat and marmoset monkey. However, no binding was observed in either the dorsal root ganglia or spinal cord in the mouse, rat, guinea pig or flying fox. These results indicate an inter-species variation in the expression of cell-surface glycoconjugates on mammalian primary sensory neurones.

  17. Lesions to Primary Sensory and Posterior Parietal Cortices Impair Recovery from Hand Paresis after Stroke

    PubMed Central

    Abela, Eugenio; Missimer, John; Wiest, Roland; Federspiel, Andrea; Hess, Christian; Sturzenegger, Matthias; Weder, Bruno

    2012-01-01

    Background Neuroanatomical determinants of motor skill recovery after stroke are still poorly understood. Although lesion load onto the corticospinal tract is known to affect recovery, less is known about the effect of lesions to cortical sensorimotor areas. Here, we test the hypothesis that lesions of somatosensory cortices interfere with the capacity to recover motor skills after stroke. Methods Standardized tests of motor skill and somatosensory functions were acquired longitudinally over nine months in 29 patients with stroke to the pre- and postcentral gyrus, including adjacent areas of the frontal, parietal and insular cortices. We derived the recovery trajectories of each patient for five motor subtest using least-squares curve fitting and objective model selection procedures for linear and exponential models. Patients were classified into subgroups based on their motor recovery models. Lesions were mapped onto diffusion weighted imaging scans and normalized into stereotaxic space using cost-function masking. To identify critical neuranatomical regions, voxel-wise subtractions were calculated between subgroup lesion maps. A probabilistic cytoarchitectonic atlas was used to quantify of lesion extent and location. Results Twenty-three patients with moderate to severe initial deficits showed exponential recovery trajectories for motor subtests that relied on precise distal movements. Those that retained a chronic motor deficit had lesions that extended to the center of the somatosensory cortex (area 2) and the intraparietal sulcus (areas hIP1, hIP2). Impaired recovery outcome correlated with lesion extent on this areas and somatosensory performance. The rate of recovery, however, depended on the lesion load onto the primary motor cortex (areas 4a, 4p). Conclusions Our findings support a critical role of uni-and multimodal somatosensory cortices in motor skill recovery. Whereas lesions to these areas influence recovery outcome, lesions to the primary motor

  18. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons

    PubMed Central

    Corey, Joseph M.; Gertz, Caitlyn C.; Wang, Bor-Shuen; Birrell, Lisa K.; Johnson, Sara L.; Martin, David C.; Feldman, Eva L.

    2010-01-01

    Aligned electrospun nanofibers direct neurite growth and may prove effective for repair throughout the nervous system. Applying nanofiber scaffolds to different nervous system regions will require prior in vitro testing of scaffold designs with specific neuronal and glial cell types. This would be best accomplished using primary neurons in serum-free media; however, such growth on nanofiber substrates has not yet been achieved. Here we report the development of poly(L-lactic acid) (PLLA) nanofiber substrates that support serum-free growth of primary motor and sensory neurons at low plating densities. In our study, we first compared materials used to anchor fibers to glass to keep cells submerged and maintain fiber alignment. We found that poly(lactic-co-glycolic acid) (PLGA) anchors fibers to glass and is less toxic to primary neurons than bandage and glue used in other studies. We then designed a substrate produced by electrospinning PLLA nanofibers directly on cover slips pre-coated with PLGA. This substrate retains fiber alignment even when the fiber bundle detaches from the cover slip and keeps cells in the same focal plane. To see if increasing wettability improves motor neuron survival, some fibers were plasma etched before cell plating. Survival on etched fibers was reduced at the lower plating density. Finally, the alignment of neurons grown on this substrate was equal to nanofiber alignment and surpassed the alignment of neurites from explants tested in a previous study. This substrate should facilitate investigating the behavior of many neuronal types on electrospun fibers in serum-free conditions. PMID:18396117

  19. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons.

    PubMed

    Corey, Joseph M; Gertz, Caitlyn C; Wang, Bor-Shuen; Birrell, Lisa K; Johnson, Sara L; Martin, David C; Feldman, Eva L

    2008-07-01

    Aligned electrospun nanofibers direct neurite growth and may prove effective for repair throughout the nervous system. Applying nanofiber scaffolds to different nervous system regions will require prior in vitro testing of scaffold designs with specific neuronal and glial cell types. This would be best accomplished using primary neurons in serum-free media; however, such growth on nanofiber substrates has not yet been achieved. Here we report the development of poly(L-lactic acid) (PLLA) nanofiber substrates that support serum-free growth of primary motor and sensory neurons at low plating densities. In our study, we first compared materials used to anchor fibers to glass to keep cells submerged and maintain fiber alignment. We found that poly(lactic-co-glycolic acid) (PLGA) anchors fibers to glass and is less toxic to primary neurons than bandage and glue used in other studies. We then designed a substrate produced by electrospinning PLLA nanofibers directly on cover slips pre-coated with PLGA. This substrate retains fiber alignment even when the fiber bundle detaches from the cover slip and keeps cells in the same focal plane. To see if increasing wettability improves motor neuron survival, some fibers were plasma etched before cell plating. Survival on etched fibers was reduced at the lower plating density. Finally, the alignment of neurons grown on this substrate was equal to nanofiber alignment and surpassed the alignment of neurites from explants tested in a previous study. This substrate should facilitate investigating the behavior of many neuronal types on electrospun fibers in serum-free conditions.

  20. Quantitative sensory test for primary restless legs syndrome/Willis-Ekbom disease using the current perception threshold test.

    PubMed

    Cho, Yong Won; Kang, Min-Sung; Kim, Keun Tae; Do, So Young; Lim, Jung-Geun; Lee, So Young; Motamedi, Gholam K

    2017-02-01

    Restless legs syndrome/Willis-Ekbom disease (RLS/WED) is a sensorimotor neurological disorder, and it is especially aggravated at night. The purpose of this study was to investigate the diurnal sensory dysfunction in primary RLS/WED using the current perception threshold (CPT) test, compared to healthy controls. Thirty primary RLS/WED subjects and 30 healthy controls were enrolled. The severity of RLS/WED and sleep problems were evaluated in all subjects. Peripheral polyneuropathy was excluded through neurological examination and nerve conduction study. We used the Neurometer(®) system for the CPT test and applied three different parameters (2000 Hz, 250 Hz, and 5 Hz), to stimulate both big toes. The CPT test was performed twice, once during the asymptomatic daytime period and again in the evening, when the patients were symptomatic. The mean ages of the RLS/WED group and controls were 50.5 ± 11.7 (22; 73.3% female), and 46.3 ± 11.4 (24; 80.0% female), respectively. The mean international RLS/WED study group severity scale score was 28.6 ± 4.25. There was no significant difference in the current perception thresholds between the RLS/WED patients and controls in daytime. However, the RLS/WED patients had lower mean CPT measurements for all three stimulation protocols in the evening (2000 Hz: 393.2 ± 93.7 vs 430.8 ± 79.6, 250 Hz: 172.0 ± 48.4 vs 198.5 ± 38.2, and 5 Hz: 98.0 ± 34.1 vs 124.6 ± 31.3), while the healthy controls showed no difference. RLS patients showed a lower CPT in the evening. The diurnal variation of hyperalgesia in RLS/WED patients indicates a central (circadian) sensory processing disturbance rather than a peripheral disturbance. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. An unavoidable modulation? Sensory attention and human primary motor cortex excitability.

    PubMed

    Ruge, Diane; Muggleton, Neil; Hoad, Damon; Caronni, Antonio; Rothwell, John C

    2014-09-01

    The link between basic physiology and its modulation by cognitive states, such as attention, is poorly understood. A significant association becomes apparent when patients with movement disorders describe experiences with changing their attention focus and the fundamental effect that this has on their motor symptoms. Moreover, frequently used mental strategies for treating such patients, e.g. with task-specific dystonia, widely lack laboratory-based knowledge about physiological mechanisms. In this largely unexplored field, we looked at how the locus of attention, when it changed between internal (locus hand) and external (visual target), influenced excitability in the primary motor cortex (M1) in healthy humans. Intriguingly, both internal and external attention had the capacity to change M1 excitability. Both led to a reduced stimulation-induced GABA-related inhibition and a change in motor evoked potential size, i.e. an overall increased M1 excitability. These previously unreported findings indicated: (i) that cognitive state differentially interacted with M1 physiology, (ii) that our view of distraction (attention locus shifted towards external or distant location), which is used as a prevention or management strategy for use-dependent motor disorders, is too simple and currently unsupported for clinical application, and (iii) the physiological state reached through attention modulation represents an alternative explanation for frequently reported electrophysiology findings in neuropsychiatric disorders, such as an aberrant inhibition.

  2. Gestational Valproate Alters BOLD Activation in Response to Complex Social and Primary Sensory Stimuli

    PubMed Central

    Felix-Ortiz, Ada C.; Febo, Marcelo

    2012-01-01

    Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V1a antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V1a receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V1a antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V1a neurotransmission. PMID:22615973

  3. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    PubMed

    Greenlee, Jeremy D W; Behroozmand, Roozbeh; Larson, Charles R; Jackson, Adam W; Chen, Fangxiang; Hansen, Daniel R; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  4. Sensory-Motor Interactions for Vocal Pitch Monitoring in Non-Primary Human Auditory Cortex

    PubMed Central

    Larson, Charles R.; Jackson, Adam W.; Chen, Fangxiang; Hansen, Daniel R.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control. PMID:23577157

  5. Sensory stimulation for lowering intraocular pressure, improving blood flow to the optic nerve and neuroprotection in primary open-angle glaucoma.

    PubMed

    Rom, Edith

    2013-12-01

    Primary open-angle glaucoma is a group of optic neuropathies that can lead to irreversible blindness. Sensory stimulation in the form of acupuncture or ear acupressure may contribute to protecting patients from blindness when used as a complementary method to orthodox treatment in the form of drops, laser or surgery. The objective of this article is to provide a narrative overview of the available literature up to July 2012. It summarises reported evidence on the potential beneficial effects of sensory stimulation for glaucoma. Sensory stimulation appears to significantly enhance the pressure-lowering effect of orthodox treatments. Studies suggest that it may also improve blood flow to the eye and optic nerve head. Furthermore, it may play a role in neuroprotection through regulating nerve growth factor and brain-derived neurotrophic factor and their receptors, thereby encouraging the survival pathway in contrast to the pathway to apoptosis. Blood flow and neuroprotection are areas that are not directly influenced by orthodox treatment modalities. Numerous different treatment protocols were used to investigate the effect of sensory stimulation on intraocular pressure, blood flow or neuroprotection of the retina and optic nerve in the animal model and human pilot studies. Objective outcomes were reported to have been evaluated with Goldmann tonometry, Doppler ultrasound techniques and electrophysiology (pattern electroretinography, visually evoked potentials), and supported with histological studies in the animal model. Taken together, reported evidence from these studies strongly suggests that sensory stimulation is worthy of further research.

  6. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons.

    PubMed

    Ren, Cuixia; Gan, Xiong; Wu, Jing; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-03-01

    Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5'-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration-response curve for proton upwards, with a 56.6 ± 6.4% increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5'-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.

  7. Efficacy and Prognostic Value of Partial Sensory Rhizotomy and Microvascular Decompression for Primary Trigeminal Neuralgia: A Comparative Study

    PubMed Central

    Gao, Jian; Fu, Yao; Guo, Shi-Kun; Li, Bing; Xu, Zhong-Xin

    2017-01-01

    Background This study aimed to compare the efficacy and prognostic value of partial sensory rhizotomy (PSR) and microvascular decompression (MVD) for primary trigeminal neuralgia (PTN). Material/Methods From June 2010 to June 2012, 117 patients with PTN were recruited for the study, of which 52 cases were treated with MVD (the MVD group) and 65 cases were treated with PSR (the PSR group). Visual Analog Scoring (VAS) was performed at 1 and 2 weeks, and at 1, 3, and 6 month after surgery. The overall response rate (ORR) was determined 1 month after surgery. Barrow Neurological Institute score was adopted to value the reoccurrence at 6, 12, 24, and 36 months after surgery. A 3-year follow-up was conducted and the complications were recorded. Results The ORR 2 weeks after surgery in the MVD and PSR groups was 98.08% and 84.62%, respectively. One and 2 weeks after surgery, the VAS was lower in the MVD group than in the PSR group, but there was no significant difference in VAS between the 2 groups at 1, 3, and 6 months after surgery. Three years after surgery, the recurrence rate was significantly lower in the MVD group than in the PSR group. The recurrence-free survival time was longer in the MVD group than in the PSR group. The occurrence rates of herpes and total postoperative complications were significantly higher in the PSR group than in the MVD group. Conclusions Compared with PSR, MVD is more suitable for PTN treatment, with less disturbance, lower recurrence rate, and better efficacy. PMID:28502974

  8. G9a inhibits CREB-triggered expression of mu opioid receptor in primary sensory neurons following peripheral nerve injury

    PubMed Central

    Liang, Lingli; Zhao, Jian-Yuan; Gu, Xiyao; Wu, Shaogen; Mo, Kai; Xiong, Ming; Marie Lutz, Brianna; Bekker, Alex

    2016-01-01

    Neuropathic pain, a distressing and debilitating disorder, is still poorly managed in clinic. Opioids, like morphine, remain the mainstay of prescribed medications in the treatment of this disorder, but their analgesic effects are highly unsatisfactory in part due to nerve injury-induced reduction of opioid receptors in the first-order sensory neurons of dorsal root ganglia. G9a is a repressor of gene expression. We found that nerve injury-induced increases in G9a and its catalyzed repressive marker H3K9m2 are responsible for epigenetic silencing of Oprm1, Oprk1, and Oprd1 genes in the injured dorsal root ganglia. Blocking these increases rescued dorsal root ganglia Oprm1, Oprk1, and Oprd1 gene expression and morphine or loperamide analgesia and prevented the development of morphine or loperamide-induced analgesic tolerance under neuropathic pain conditions. Conversely, mimicking these increases reduced the expression of three opioid receptors and promoted the mu opioid receptor-gated release of primary afferent neurotransmitters. Mechanistically, nerve injury-induced increases in the binding activity of G9a and H3K9me2 to the Oprm1 gene were associated with the reduced binding of cyclic AMP response element binding protein to the Oprm1 gene. These findings suggest that G9a participates in the nerve injury-induced reduction of the Oprm1 gene likely through G9a-triggered blockage in the access of cyclic AMP response element binding protein to this gene. PMID:27927796

  9. Thiamine, pyridoxine, cyanocobalamin and their combination inhibit thermal, but not mechanical hyperalgesia in rats with primary sensory neuron injury.

    PubMed

    Wang, Zheng-Bei; Gan, Qiang; Rupert, Ronald L; Zeng, Yin-Ming; Song, Xue-Jun

    2005-03-01

    Neuropathic pain after nerve injury is severe and intractable, and current drugs and nondrug therapies offer substantial pain relief to no more than half of affected patients. The present study investigated the analgesic roles of the B vitamins thiamine (B1), pyridoxine (B6) and cyanocobalamin (B12) in rats with neuropathic pain caused by spinal ganglia compression (CCD) or loose ligation of the sciatic nerve (CCI). Thermal hyperalgesia was determined by a significantly shortened latency of foot withdrawal to radiant heat, and mechanical hyperalgesia was determined by a significantly decreased threshold of foot withdrawal to von Frey filaments stimulation of the plantar surface of hindpaw. Results showed that (1) intraperitoneal injection of B1 (5, 10, 33 and 100 mg/kg), B6 (33 and 100 mg/kg) or B12 (0.5 and 2 mg/kg) significantly reduced thermal hyperalgesia; (2) the combination of B1, B6 and B12 synergistically inhibited thermal hyperalgesia; (3) repetitive administration of vitamin B complex (containing B1/B6/B12 33/33/0.5 mg/kg, for 1 and 2 wk) produced long-term inhibition of thermal hyperalgesia; and (4) B vitamins did not affect mechanical hyperalgesia or normal pain sensation, and exhibited similar effects on CCD and CCI induced-hyperalgesia. The present studies demonstrate effects of B vitamins on pain and hyperalgesia following primary sensory neurons injury, and suggest the possible clinical utility of B vitamins in the treatment of neuropathic painful conditions following injury, inflammation, degeneration or other disorders in the nervous systems in human beings.

  10. Facilitation of tactile working memory by top-down suppression from prefrontal to primary somatosensory cortex during sensory interference.

    PubMed

    Savolainen, Petri; Carlson, Synnöve; Boldt, Robert; Neuvonen, Tuomas; Hannula, Henri; Hiltunen, Jaana; Salonen, Oili; Ma, Yuan-Ye; Pertovaara, Antti

    2011-06-01

    Tactile working memory (WM) is improved by increasing top-down suppression of interfering sensory processing in S1 via a link from the middle frontal gyrus (MFG) to S1. Here we studied in healthy subjects whether the efficacy of top-down suppression varies with submodality of sensory interference. Navigated stimulation of the MFG-S1 link significantly improved tactile WM performance when accompanied by tactile but not visual interference of memory maintenance.

  11. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.

    PubMed

    Theunissen, F; Roddey, J C; Stufflebeam, S; Clague, H; Miller, J P

    1996-04-01

    1. The stimulus/response properties of four identified primary sensory interneurons in the cricket cercal sensory system were studied using electrophysiological techniques. These four cells are thought to represent a functionally discrete subunit of the cercal system: they are the only cells that encode information about stimulus direction to higher centers for low intensity stimuli. Previous studies characterized the quantity of information encoded by these cells about the direction of air currents in the horizontal plane. In the experiments reported here, we characterized the quantity and quality of information encoded in the cells' elicited responses about the dynamics of air current waveforms presented at their optimal stimulus directions. The total sample set included 22 cells. 2. This characterization was achieved by determining the cells' frequency sensitivities and encoding accuracy using the methods of stochastic systems analysis and information theory. The specific approach used for the analysis was the "stimulus reconstruction" technique in which a functional expansion was derived to transform the observed spike train responses into the optimal estimate (i.e., "reconstruction") of the actual stimulus. A novel derivation of the crucial equations is presented. The reverse approach is compared with the more traditional forward analysis, in which an expansion is derived that transforms the stimulus to a prediction of the spike train response. Important aspects of the application of these analytical approaches are considered. 3. All four interneurons were found to have identical frequency tuning, as assessed by the accuracy with which different frequency components of stimulus waveforms could be reconstructed with a linear expansion. The interneurons encoded significant information about stimulus frequencies between 5 and 80 Hz, which peak sensitivities at approximately 15 Hz. 4. All four interneurons were found to have identical stimulus/response latencies

  12. Vanilloid receptor type 1-immunoreactive nerves in the rat urinary bladder and primary afferent neurones: The effects of age.

    PubMed

    Saleh, H A M

    2006-08-01

    The vanilloid receptor (VR1) is a molecular integrator of various painful stimuli, including capsaicin, acid and high temperature. VR1 protein functions both as a receptor for capsaicin and a transducer of noxious thermal stimuli. In addition, VR1 is well characterised at the terminals of sensory nerves involved in the pain pathway. VR1 is also expressed in a capsaicin-sensitive and peptide-containing sub-population of primary sensory nerves. Indirect immunohistochemistry was used to examine the distribution of nerves immunoreactive (ir) for VR1 in the base of the urinary bladder and in the neurones of the lumbosacral dorsal root ganglia (L1-L2 and L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were assessed and quantitative studies were also used to examine the effects of age on the percentage of VR1-ir dorsal root ganglion neurones. The bladder base in young adults showed dense VR1-ir fibres within the urothelium and in the subepithelium and fibres ranging from sparse to moderate in number in the muscle coat. In comparison to the young animals, the aged rats showed sparse to moderate densities of VR1-ir nerves in the subepithelium and sparse fibres in the muscle layers. In the lumbosacral dorsal root ganglia the percentage of VR1-ir neuronal profiles showed a significant reduction from (mean +/- SEM) 17.8 +/- 2% in the young adult to 12 +/- 1.6 in the aged rats. The present findings suggest that the effects of VR1 on bladder function (nociception and reflex micturition) are influenced by age and the reduction with age of VR1-ir neurones in the dorsal root ganglia could also have important implications for the micturition reflex.

  13. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation

    PubMed Central

    Liu, Xing-Jun; Liu, Tong; Chen, Gang; Wang, Bing; Yu, Xiao-Lu; Yin, Cui; Ji, Ru-Rong

    2016-01-01

    Increasing evidence suggests that neuro-immune and neuro-glial interactions are critically involved in chronic pain sensitization. It is well studied how immune/glial mediators sensitize pain, but how sensory neurons control neuroinflammation remains unclear. We employed Myd88 conditional knockout (CKO) mice, in which Myd88 was deleted in sodium channel subunit Nav1.8-expressing primary sensory neurons, to examine the unique role of neuronal MyD88 in regulating acute and chronic pain, and possible underlying mechanisms. We found that baseline pain and the formalin induced acute inflammatory pain were intact in CKO mice. However, the late phase inflammatory pain following complete Freund’s adjuvant injection and the late phase neuropathic pain following chronic constriction injury (CCI), were reduced in CKO mice. CCI induced up-regulation of MyD88 and chemokine C-C motif ligand 2 expression in DRG neurons and macrophage infiltration into DRGs, and microglia activation in spinal dorsal horns in wild-type mice, but all these changes were compromised in CKO mice. Finally, the pain hypersensitivity induced by intraplantar IL-1β was reduced in CKO mice. Our findings suggest that MyD88 in primary sensory neurons plays an active role in regulating IL-1β signaling and neuroinflammation in the peripheral and the central nervous systems, and contributes to the maintenance of persistent pain. PMID:27312666

  14. Primary sensory neuron-specific interference of TRPV1 signaling by adeno-associated virus-encoded TRPV1 peptide aptamer attenuates neuropathic pain

    PubMed Central

    Xiang, Hongfei; Liu, Zhen; Wang, Fei; Xu, Hao; Roberts, Christopher; Fischer, Gregory; Stucky, Cheryl L; Dean, Caron; Pan, Bin

    2017-01-01

    Background TRPV1 (transient receptor potential vanilloid subfamily member 1) is a pain signaling channel highly expressed in primary sensory neurons. Attempts for analgesia by systemic TRPV1 blockade produce undesirable side effects, such as hyperthermia and impaired heat pain sensation. One approach for TRPV1 analgesia is to target TRPV1 along the peripheral sensory pathway. Results For functional blockade of TRPV1 signaling, we constructed an adeno-associated virus (AAV) vector expressing a recombinant TRPV1 interfering peptide aptamer, derived from a 38mer tetrameric assembly domain (TAD), encompassing residues 735 to 772 of rat TRPV1, fused to the C-terminus of enhanced green fluorescent protein (EGFP). AAV-targeted sensory neurons expressing EGFP-TAD after vector injection into the dorsal root ganglia (DRG) revealed decreased inward calcium current and diminished intracellular calcium accumulation in response to capsaicin, compared to neurons of naïve or expressing EGFP alone. To examine the potential for treating neuropathic pain, AAV-EGFP-TAD was injected into fourth and fifth lumbar (L) DRGs of rats subjected to neuropathic pain by tibial nerve injury (TNI). Results showed that AAV-directed selective expression of EGFP-TAD in L4/L5 DRG neuron somata, and their peripheral and central axonal projections can limit TNI-induced neuropathic pain behavior, including hypersensitivity to heat and, to a less extent, mechanical stimulation. Conclusion Selective inhibition of TRPV1 activity in primary sensory neurons by DRG delivery of AAV-encoded analgesic interfering peptide aptamers is efficacious in attenuation of neuropathic pain. With further improvements of vector constructs and in vivo application, this approach might have the potential to develop as an alternative gene therapy strategy to treat chronic pain, especially heat hypersensitivity, without complications due to systemic TRPV1 blockade. PMID:28604222

  15. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    PubMed

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  16. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  17. [The role of sensory nerves in the development of inflammation of oral tissues].

    PubMed

    Olgart, L

    1998-01-01

    Experimental stimulation and clinical procedures applied on the tooth crown cause vascular reactions in the dental pulp of cats and rats. These reactions depend on the activation of trigeminal afferent nerves and release of neuropeptides. A brief stimulation causes vasodilation, which is mainly mediated by calcitonin gene-related peptide (CGRP). A longer stimulation results in plasma extravasation which is mediated mainly by substance P (SP) and prostaglandins in the pulp. In adjacent oral tissues the mechanisms following stimulation or local irritation are more complex and other mediators are also involved. Nitric oxide (NO) which is instantly produced in the tissues is such a novel mediator. The chemosensitive nature of the nerves involved (capsaicin sensitive) may lead to their activation also by inflammatory mediators released in the tissues. Thus, sensory nerves may modulate the progress of inflammation. Since sensory nerves in oral tissues are often the first structures to be activated during clinical procedures, tissue reactions that occur can be assumed to be initiated and perpetuated by the sensory neuropeptides. Much work is now made to modulate the sensory nerveinduced cascade of events in oral tissues to find new treatment strategies.

  18. Activation of sensory nerves in guinea-pig isolated basilar artery by nicotine: evidence for inhibition of trigeminal sensory neurotransmission by sumatriptan.

    PubMed

    O'Shaughnessy, C T; Connor, H E

    1994-06-23

    Nicotine (100 microM), but not electrical field stimulation or potassium chloride (0.1-3 microM), caused capsaicin (1 microM)- and tetrodotoxin (1 microM)-sensitive relaxations of guinea-pig isolated basilar artery precontracted with prostaglandin F2 alpha. Nicotine-induced responses were blocked by the neurokinin NK1 receptor antagonist, GR82334 (10 microM), but were unaffected by the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP-(8-37) (1 microM). This suggests that nicotine activates capsaicin-sensitive sensory nerves in guinea-pig basilar artery to cause relaxation predominantly via substance P release. The vascular 5-HT1 receptor agonist, sumatriptan (0.3 and 3 microM), inhibited nicotine-induced relaxation (by 50 and 80% respectively); the inhibitory effect of sumatriptan (0.3 microM) was attenuated in the presence of the non-selective 5-HT1 receptor antagonist, methiothepin (0.1 microM). These data suggest that sumatriptan can inhibit sensory neurotransmission in guinea-pig basilar artery via activation of inhibitory prejunctional 5-HT1 receptors on sensory nerve terminals.

  19. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior following spinal cord injury

    PubMed Central

    Bedi, Supinder S.; Yang, Qing; Crook, Robyn J.; Du, Junhui; Wu, Zizhen; Fishman, Harvey M.; Grill, Raymond J.; Carlton, Susan M.; Walters, Edgar T.

    2010-01-01

    Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d – 8 mo earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared to untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 mo. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C and Aδ fibers revealed SCI-induced SA generated in or near the neurons’ somata in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain. PMID:21048146

  20. A5-Positive Primary Sensory Neurons Are Nonpermissive for Productive Infection with Herpes Simplex Virus 1 In Vitro▿

    PubMed Central

    Bertke, Andrea S.; Swanson, Sophia M.; Chen, Jenny; Imai, Yumi; Kinchington, Paul R.; Margolis, Todd P.

    2011-01-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5+ neurons and most HSV-2 LAT expression in KH10+ neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5+ and KH10+ neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5+ neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5+ neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes. PMID:21507969

  1. Expression of Semaphorins, Neuropilins, VEGF, and Tenascins in Rat and Human Primary Sensory Neurons after a Dorsal Root Injury

    PubMed Central

    Lindholm, Tomas; Risling, Mårten; Carlstedt, Thomas; Hammarberg, Henrik; Wallquist, Wilhelm; Cullheim, Staffan; Sköld, Mattias K.

    2017-01-01

    Dorsal root injury is a situation not expected to be followed by a strong regenerative growth, or growth of the injured axon into the central nervous system of the spinal cord, if the central axon of the dorsal root is injured but of strong regeneration if subjected to injury to the peripherally projecting axons. The clinical consequence of axonal injury is loss of sensation and may also lead to neuropathic pain. In this study, we have used in situ hybridization to examine the distribution of mRNAs for the neural guidance molecules semaphorin 3A (SEMA3A), semaphorin 3F (SEMA3F), and semaphorin 4F (SEMA4F), their receptors neuropilin 1 (NP1) and neuropilin 2 (NP2) but also for the neuropilin ligand vascular endothelial growth factor (VEGF) and Tenascin J1, an extracellular matrix molecule involved in axonal guidance, in rat dorsal root ganglia (DRG) after a unilateral dorsal rhizotomy (DRT) or sciatic nerve transcetion (SNT). The studied survival times were 1–365 days. The different forms of mRNAs were unevenly distributed between the different size classes of sensory nerve cells. The results show that mRNA for SEMA3A was diminished after trauma to the sensory nerve roots in rats. The SEMA3A receptor NP1, and SEMA3F receptor NP2, was significantly upregulated in the DRG neurons after DRT and SNT. SEMA4F was upregulated after a SNT. The expression of mRNA for VEGF in DRG neurons after DRT showed a significant upregulation that was high even a year after the injuries. These data suggest a role for the semaphorins, neuropilins, VEGF, and J1 in the reactions after dorsal root lesions. PMID:28270793

  2. A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro.

    PubMed

    Bertke, Andrea S; Swanson, Sophia M; Chen, Jenny; Imai, Yumi; Kinchington, Paul R; Margolis, Todd P

    2011-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5(+) neurons and most HSV-2 LAT expression in KH10(+) neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5(+) and KH10(+) neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5(+) neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5(+) neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes.

  3. Sensory Neuronopathies.

    PubMed

    Crowell, Allison; Gwathmey, Kelly G

    2017-08-23

    The sensory neuronopathies are sensory-predominant polyneuropathies that result from damage to the dorsal root and trigeminal sensory ganglia. This review explores the various causes of acquired sensory neuronopathies, the approach to diagnosis, and treatment. Diagnostic criteria have recently been published and validated to allow differentiation of sensory neuronopathies from other polyneuropathies. On the basis of serial electrodiagnostic studies, the treatment window for the acquired sensory neuronopathies has been identified as approximately 8 months. If treatment is initiated within 2 months of symptom onset, there is a better opportunity for improvement of the patient's condition. Even though sensory neuronopathies are rare, significant progress has been made regarding characterization of their clinical, electrophysiologic, and imaging features. This does not hold true, however, for treatment. There have been no randomized controlled clinical trials to guide management of these diseases, and a standard treatment approach remains undetermined.

  4. Induction of monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy

    PubMed Central

    Zhang, Haijun; Boyette-Davis, Jessica A.; Kosturakis, Alyssa K.; Li, Yan; Yoon, Seo-Yeon; Walters, Edgar T.; Dougherty, Patrick M.

    2013-01-01

    The use of paclitaxel (Taxol®), a microtubule stabilizer, for cancer treatment is often limited by its associated peripheral neuropathy (chemotherapy-induced peripheral neuropathy, CIPN) which predominantly results in sensory dysfunction including chronic pain. Here we show that paclitaxel CIPN was associated with an induction of chemokine monocyte chemoattractant protein-1 (MCP-1) and its cognate receptor CCR2 in primary sensory neurons of dorsal root ganglia (DRG). Immunostaining revealed that MCP-1 was mainly expressed in small nociceptive neurons while CCR2 was expressed in large and medium-sized myelinated neurons. Direct application of MCP-1 consistently induced intracellular calcium increases in DRG large and medium-sized but not small neurons mainly dissociated from paclitaxel- but not vehicle-treated animals. Paclitaxel also induced increased expression of MCP-1 in spinal astrocytes but no CCR2 signal was detected in spinal cord. Local blockade of MCP-1/CCR2 signaling by anti-MCP-1 antibody or CCR2 antisense oligodeoxynucleotides significantly attenuated paclitaxel CIPN phenotypes including mechanical hypersensitivity and loss of intraepidermal nerve fibers (IENFs) in hindpaw glabrous skin. These results suggest that activation of paracrine MCP-1/CCR2 signaling between DRG neurons plays a critical role in the development of paclitaxel CIPN and targeting MCP-1/CCR2 signaling could be a novel therapeutic approach. PMID:23726937

  5. Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calcium-sensitive N-arachydonoylethanolamine-synthesizing enzyme and related molecules in rat primary sensory neurons.

    PubMed

    Sousa-Valente, João; Varga, Angelika; Torres-Perez, Jose Vicente; Jenes, Agnes; Wahba, John; Mackie, Ken; Cravatt, Benjamin; Ueda, Natsuo; Tsuboi, Kazuhito; Santha, Peter; Jancso, Gabor; Tailor, Hiren; Avelino, António; Nagy, Istvan

    2017-06-01

    Elevation of intracellular Ca(2+) concentration induces the synthesis of N-arachydonoylethanolamine (anandamide) in a subpopulation of primary sensory neurons. N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is the only known enzyme that synthesizes anandamide in a Ca(2+) -dependent manner. NAPE-PLD mRNA as well as anandamide's main targets, the excitatory transient receptor potential vanilloid type 1 ion channel (TRPV1), the inhibitory cannabinoid type 1 (CB1) receptor, and the main anandamide-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), are all expressed by subpopulations of nociceptive primary sensory neurons. Thus, NAPE-PLD, TRPV1, the CB1 receptor, and FAAH could form an autocrine signaling system that could shape the activity of a major subpopulation of nociceptive primary sensory neurons, contributing to the development of pain. Although the expression patterns of TRPV1, the CB1 receptor, and FAAH have been comprehensively elucidated, little is known about NAPE-PLD expression in primary sensory neurons under physiological and pathological conditions. This study shows that NAPE-PLD is expressed by about one-third of primary sensory neurons, the overwhelming majority of which also express nociceptive markers as well as the CB1 receptor, TRPV1, and FAAH. Inflammation of peripheral tissues and injury to peripheral nerves induce differing but concerted changes in the expression pattern of NAPE-PLD, the CB1 receptor, TRPV1, and FAAH. Together these data indicate the existence of the anatomical basis for an autocrine signaling system in a major proportion of nociceptive primary sensory neurons and that alterations in that autocrine signaling by peripheral pathologies could contribute to the development of both inflammatory and neuropathic pain.

  6. TRPV1, but not TRPA1, in primary sensory neurons contributes to cutaneous incision-mediated hypersensitivity.

    PubMed

    Barabas, Marie E; Stucky, Cheryl L

    2013-03-04

    Mechanisms underlying postoperative pain remain poorly understood. In rodents, skin-only incisions induce mechanical and heat hypersensitivity similar to levels observed with skin plus deep incisions. Therefore, cutaneous injury might drive the majority of postoperative pain. TRPA1 and TRPV1 channels are known to mediate inflammatory and nerve injury pain, making them key targets for pain therapeutics. These channels are also expressed extensively in cutaneous nerve fibers. Therefore, we investigated whether TRPA1 and TRPV1 contribute to mechanical and heat hypersensitivity following skin-only surgical incision. Behavioral responses to mechanical and heat stimulation were compared between skin-incised and uninjured, sham control groups. Elevated mechanical responsiveness occurred 1 day post skin-incision regardless of genetic ablation or pharmacological inhibition of TRPA1. To determine whether functional changes in TRPA1 occur at the level of sensory neuron somata, we evaluated cytoplasmic calcium changes in sensory neurons isolated from ipsilateral lumbar 3-5 DRGs of skin-only incised and sham wild type (WT) mice during stimulation with the TRPA1 agonist cinnamaldehyde. There were no changes in the percentage of neurons responding to cinnamaldehyde or in their response amplitudes. Likewise, the subpopulation of DRG somata retrogradely labeled specifically from the incised region of the plantar hind paw showed no functional up-regulation of TRPA1 after skin-only incision. Next, we conducted behavior tests for heat sensitivity and found that heat hypersensitivity peaked at day 1 post skin-only incision. Skin incision-induced heat hypersensitivity was significantly decreased in TRPV1-deficient mice. In addition, we conducted calcium imaging with the TRPV1 agonist capsaicin. DRG neurons from WT mice exhibited sensitization to TRPV1 activation, as more neurons (66%) from skin-incised mice responded to capsaicin compared to controls (46%), and the sensitization

  7. TRPV1, but not TRPA1, in primary sensory neurons contributes to cutaneous incision-mediated hypersensitivity

    PubMed Central

    2013-01-01

    Background Mechanisms underlying postoperative pain remain poorly understood. In rodents, skin-only incisions induce mechanical and heat hypersensitivity similar to levels observed with skin plus deep incisions. Therefore, cutaneous injury might drive the majority of postoperative pain. TRPA1 and TRPV1 channels are known to mediate inflammatory and nerve injury pain, making them key targets for pain therapeutics. These channels are also expressed extensively in cutaneous nerve fibers. Therefore, we investigated whether TRPA1 and TRPV1 contribute to mechanical and heat hypersensitivity following skin-only surgical incision. Results Behavioral responses to mechanical and heat stimulation were compared between skin-incised and uninjured, sham control groups. Elevated mechanical responsiveness occurred 1 day post skin-incision regardless of genetic ablation or pharmacological inhibition of TRPA1. To determine whether functional changes in TRPA1 occur at the level of sensory neuron somata, we evaluated cytoplasmic calcium changes in sensory neurons isolated from ipsilateral lumbar 3–5 DRGs of skin-only incised and sham wild type (WT) mice during stimulation with the TRPA1 agonist cinnamaldehyde. There were no changes in the percentage of neurons responding to cinnamaldehyde or in their response amplitudes. Likewise, the subpopulation of DRG somata retrogradely labeled specifically from the incised region of the plantar hind paw showed no functional up-regulation of TRPA1 after skin-only incision. Next, we conducted behavior tests for heat sensitivity and found that heat hypersensitivity peaked at day 1 post skin-only incision. Skin incision-induced heat hypersensitivity was significantly decreased in TRPV1-deficient mice. In addition, we conducted calcium imaging with the TRPV1 agonist capsaicin. DRG neurons from WT mice exhibited sensitization to TRPV1 activation, as more neurons (66%) from skin-incised mice responded to capsaicin compared to controls (46%), and the

  8. The Left Superior Longitudinal Fasciculus within the Primary Sensory Area of Inferior Parietal Lobe Plays a Role in Dysgraphia of Kana Omission within Sentences

    PubMed Central

    Shinoura, Nobusada; Midorikawa, Akira; Onodera, Toshiyuki; Yamada, Ryozi; Tabei, Yusuke; Onda, Yasumitsu; Itoi, Chihiro; Saito, Seiko; Yagi, Kazuo

    2012-01-01

    Functional neurological changes after surgery combined with diffusion tensor imaging (DTI) tractography can directly provide evidence of anatomical localization of brain function. Using these techniques, a patient with dysgraphia before surgery was analyzed at our hospital in 2011. The patient showed omission of kana within sentences before surgery, which improved after surgery. The brain tumor was relatively small and was located within the primary sensory area (S1) of the inferior parietal lobe (IPL). DTI tractography before surgery revealed compression of the branch of the superior longitudinal fasciculus (SLF) by the brain tumor. These results suggest that the left SLF within the S1 of IPL plays a role in the development of dysgraphia of kana omission within sentences. PMID:22713399

  9. Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation.

    PubMed

    Waterhouse, B D; Moises, H C; Woodward, D J

    1998-04-20

    In the present study we examined the effects of phasic activation of the nucleus locus coeruleus (LC) on transmission of somatosensory information to the rat cerebral cortex. The rationale for this investigation was based on earlier findings that local microiontophoretic application of the putative LC transmitter, norepinephrine (NE), had facilitating actions on cortical neuronal responses to excitatory and inhibitory synaptic stimuli and more recent microdialysis experiments that have demonstrated increases in cortical levels of NE following phasic or tonic activation of LC. Glass micropipets were used to record the extracellular activity of single neurons in the somatosensory cortex of halothane-anesthetized rats. Somatosensory afferent pathways were activated by threshold level mechanical stimulation of the glabrous skin on the contralateral forepaw. Poststimulus time histograms were used to quantitate cortical neuronal responses before and at various time intervals after preconditioning burst activation of the ipsilateral LC. Excitatory and postexcitatory inhibitory responses to forepaw stimulation were enhanced when preceded by phasic activation of LC at conditioning intervals of 200-500 ms. These effects were anatomically specific in that they were only observed upon stimulation of brainstem sites close to (>150 micron) or within LC and were pharmacologically specific in that they were not consistently observed in animals where the LC-NE system had been disrupted by 6-OHDA pretreatment. Overall, these data suggest that following phasic activation of the LC efferent system, the efficacy of signal transmission through sensory networks in mammalian brain is enhanced.

  10. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.

    PubMed

    Zhang, W; Brooun, A; Mueller, M M; Alam, M

    1996-08-06

    Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in

  11. Capsaicin and sensory neurones: a historical perspective.

    PubMed

    Szolcsányi, János

    2014-01-01

    Capsaicin, the pungent ingredient of red pepper has become not only a "hot" topic in neuroscience but its new target-related unique actions have opened the door for the drug industry to introduce a new chapter of analgesics. After several lines of translational efforts with over 1,000 patents and clinical trials, the 8% capsaicin dermal patch reached the market and its long-lasting local analgesic effect in some severe neuropathic pain states is now well established. This introductory chapter outlines on one hand the historical background based on the author's 50 years of experience in this field and on the other hand emphasizes new scopes, fascinating perspectives in pharmaco-physiology, and molecular pharmacology of nociceptive sensory neurons. Evidence for the effect of capsaicin on C-polymodal nociceptors (CMH), C-mechanoinsensitive (CHMi), and silent C-nociceptors are listed and the features of the capsaicin-induced blocking effects of nociceptors are demonstrated. Common and different characteristics of nociceptor-blocking actions after systemic, perineural, local, intrathecal, and in vitro treatments are summarized. Evidence for the misleading conclusions drawn from neonatal capsaicin pretreatment is presented. Perspectives opened from cloning the capsaicin receptor "Transient Receptor Potential Vanilloid 1" (TRPV1) are outlined and potential molecular mechanisms behind the long-lasting functional, ultrastructural, and nerve terminal-damaging effects of capsaicin and other TRPV1 agonists are summarized. Neurogenic inflammation and the long-list of "capsaicin-sensitive" tissue responses are mediated by an unorthodox dual sensory-efferent function of peptidergic TRPV1-expressing nerve terminals which differ from the classical efferent and sensory nerve endings that have a unidirectional role in neuroregulation. Thermoregulatory effects of capsaicin are discussed in detail. It is suggested that since hyperthermia and burn risk due to enhanced noxious heat

  12. TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1.

    PubMed

    Salas, Margaux M; Hargreaves, Kenneth M; Akopian, Armen N

    2009-04-01

    The transient receptor potential (TRP)A1 channel is involved in the transduction of inflammation-induced noxious stimuli from the periphery. Previous studies have characterized the properties of TRPA1 in heterologous expression systems. However, there is little information on the properties of TRPA1-mediated currents in sensory neurons. A capsaicin-sensitive subset of rat and mouse trigeminal ganglion sensory neurons was activated with TRPA1-specific agonists, mustard oil and the cannabinoid WIN55,212. Mustard oil- and WIN55,212-gated currents exhibited marked variability in their kinetics of activation and acute desensitization. TRPA1-mediated responses in neurons also possess a characteristic voltage dependency with profound outward rectification that is influenced by extracellular Ca(2+) and the type and concentration of TRPA1-specific agonists. Examination of TRPA1-mediated responses in TRPA1-containing cells indicated that the features of neuronal TRPA1 are not duplicated in cells expressing only TRPA1 and, instead, can be restored only when TRPA1 and TRPV1 channels are coexpressed. In summary, our results suggest that TRPA1-mediated responses in sensory neurons have distinct characteristics that can be accounted for by the coexpression of the TRPV1 and TRPA1 channels.

  13. Control of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons.

    PubMed

    Mo, Gary; Peleshok, Jennifer C; Cao, Chang-Qing; Ribeiro-da-Silva, Alfredo; Séguéla, Philippe

    2013-03-01

    Purinergic signaling contributes significantly to pain mechanisms, and the nociceptor-specific P2X3 ATP receptor channel is considered a target in pain therapeutics. Recent findings suggesting the coexpression of metabotropic P2Y receptors with P2X3 implies that ATP release triggers the activation of both ionotropic and metabotropic purinoceptors, with strong potential for functional interaction. Modulation of native P2X3 function by P2Y receptor activation was investigated in rat dorsal root ganglia (DRG) neurons using whole cell patch-clamp recordings. Application of the selective P2Y receptor agonist UTP decreased peak amplitudes of α,β-meATP-evoked homomeric P2X3-mediated currents, but had no effect on heteromeric P2X2/3-mediated currents. Treatment with phospholipase C inhibitor U73122 significantly reversed P2X3 current inhibition induced by UTP-sensitive P2Y receptor activation. We previously reported the modulation of P2X receptors by phospholipids in DRG neurons and injection of exogenous phosphatidylinositol-4,5-bisphosphate (PIP(2)) fully reverses UTP-mediated regulation of P2X3 channel activity. Pharmacological as well as functional screening of P2Y receptor subtypes indicates the predominant involvement of P2Y2 receptor in P2X3 inhibition, and immunolocalization confirms a significant cellular coexpression of P2X3 and P2Y2 in rat DRG neurons. In summary, the function of P2X3 ATP receptor can be inhibited by P2Y2-mediated depletion of PIP(2). We propose that expression of P2Y2 purinoceptor in nociceptive sensory neurons provides an homeostatic mechanism to prevent excessive ATP signaling through P2X3 receptor channels.

  14. THE THIRD STIMULUS TEMPORAL DISCRIMINATION THRESHOLD: FOCUSING ON THE TEMPORAL PROCESSING OF SENSORY INPUT WITHIN PRIMARY SOMATOSENSORY CORTEX.

    PubMed

    Leodori, Giorgio; Formica, Alessandra; Zhu, Xiaoying; Conte, Antonella; Belvisi, Daniele; Cruccu, Giorgio; Hallett, Mark; Berardelli, Alfredo

    2017-07-26

    The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information but little is known about the physiological correlates of somatosensory temporal discrimination. To investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the Third Stimulus Temporal Discrimination Threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus after a pair of stimuli delivered at the STDT. the STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1-continuous theta burst stimulation (cTBS) on the STDT and ThirdDT. ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, though the latter was affected to a greater extent and for a longer period of time. The interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1 probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. Copyright © 2016, Journal of Neurophysiology.

  15. Sensory development.

    PubMed

    Clark-Gambelunghe, Melinda B; Clark, David A

    2015-04-01

    Sensory development is complex, with both morphologic and neural components. Development of the senses begins in early fetal life, initially with structures and then in-utero stimulation initiates perception. After birth, environmental stimulants accelerate each sensory organ to nearly complete maturity several months after birth. Vision and hearing are the best studied senses and the most crucial for learning. This article focuses on the cranial senses of vision, hearing, smell, and taste. Sensory function, embryogenesis, external and genetic effects, and common malformations that may affect development are discussed, and the corresponding sensory organs are examined and evaluated.

  16. The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice.

    PubMed

    Leffler, A; Mönter, B; Koltzenburg, M

    2006-05-12

    A local elevation of H+-ion concentrations often occurs in inflammation and usually evokes pain by excitation of primary nociceptive neurons. Expression patterns and functional properties of the capsaicin receptor and acid-sensing ion channels suggest that they may be the main molecular substrates underlying this proton sensitivity. Here, we asked how the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) contribute to the proton response in subpopulations of nociceptive neurons from adult rats and mice (wildtype C57/Bl6, Balb/C and TRPV1-null). In cultured dorsal root ganglion neurons, whole cell patch clamp recordings showed that the majority of capsaicin-sensitive rat dorsal root ganglion neurons displayed large proton-evoked inward currents with transient ASIC-like properties. In contrast, the prevalence of ASIC-like currents was smaller in both mouse wildtype strains and more frequent in capsaicin-insensitive neurons. Transient ASIC-like currents were more frequent in both species among isolectin B4-negative neurons. A significantly reduced proton response was observed for dissociated dorsal root ganglion neurons in TRPV1 deficient mice. Unmyelinated, but not thin myelinated nociceptors recorded extracellularly from TRPV1-null mutants showed a profound reduction of proton sensitivity. Together these findings indicate that there are significant differences between rat and mouse in the contribution of TRPV1 and ASIC subunits to proton sensitivity of sensory neurons. In both species ASIC subunits are more prevalent in the isolectin B4-negative neurons, some of which may represent thin myelinated nociceptors. However, the main acid-sensor in isolectin B4-positive and isolectin B4-negative unmyelinated nociceptors in mice is TRPV1.

  17. Sensory mononeuropathies.

    PubMed

    Massey, E W

    1998-01-01

    The clinical neurologist frequently encounters patients with a variety of focal sensory symptoms and signs. This article reviews the clinical features, etiologies, laboratory findings, and management of the common sensory mononeuropathies including meralgia paresthetica, cheiralgia paresthetica, notalgia paresthetica, gonyalgia paresthetica, digitalgia paresthetica, intercostal neuropathy, and mental neuropathy.

  18. Thermal stimulation of primary sensory neurons in the rat hind paw: effect of morphine on ERK1/2 phosphorylation, TRPV1 and TRPA1 channel expression.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid

    2012-01-01

    Temperature-sensitive transient receptor potential (TRP) channels or 'thermo-TRP' were stimulated on rat sensory afferents, and the effects on the phosphorylation of ERK1/2, on the regulation of TRPV1 and TRPA1, as well as the pharmacological modulation by the opioid analgesic morphine were investigated. The thermal stimuli were applied to the rat hind paw by immersion into either hot or cold water. Phospho-ERK1/2 (p-ERK1/2) was measured by fluorescence-immunohistochemistry in the lumbar dorsal root ganglion (DRG) neurons. TRP channel mRNA expression was measured by RT-PCR in the innervating DRGs, and the protein content of TRPV1 and TRPA1 was determined by Western blot in the DRGs and in the sciatic nerve. The thermal stimuli led to a time-dependent increase in the number of DRG cells displaying cytoplasmic and nuclear staining for p-ERK1/2. Morphine partly prevented this increase in ERK1/2 phosphorylation, exerting its effect mainly on the nuclear staining. The mRNA expression for TRPV1 and TRPA1 in the DRG did not change within 24 h following the thermal stimuli. However, the protein content of both TRPV1 and TRPA1 was regulated by the thermal stimulation and by morphine. In the DRGs and in the sciatic nerve, heat or cold stimuli per se tended to decrease TRP protein levels, whereas with morphine pretreatment protein levels were raised. The present findings shed new light on the time-dependent reactions of primary sensory neurons towards irritant thermal stimuli to the skin and on their opioid modulation.

  19. The effect of task-relevance on primary somatosensory cortex during continuous sensory-guided movement in the presence of bimodal competition.

    PubMed

    Meehan, Sean K; Staines, W Richard

    2007-03-23

    Recent perceptual neuroimaging studies have shown that intermodal selective attention extracts relevant information from one modality at the expense of another at the level of unimodal sensory cortex. The present paper sought 1) to determine the effects of intermodal selective attention on primary somatosensory cortex (S1) during continuous sensorimotor transformations, 2) to investigate the interactions of spatial relationship between the target and distracter modalities on S1 and 3) to identify any potential modulators during continuous sensorimotor transformations. Functional MRI was acquired while participants (n=10) received simultaneous vibrotactile and visuospatial stimulation. In each condition, participants tracked either vibrotactile stimulation (25 Hz), applied to the right index finger with variable intensity, or a visuospatial stimulus, a centrally presented dial where the spatial position of a needle randomly moved, by applying graded force to a force sensing resistor. The distracter modality either originated from a location that was spatially related or distinct to the target that guided movement. Vibrotactile tracking resulted in decreased S1 activation relative to when it was task-irrelevant. Neither S1 activity nor tracking performance was influenced by spatial relationship. In addition the superior parietal lobe/precuneus (BA 7), inferior parietal lobe (BA 40), precentral gyrus (BA 6) and secondary visual areas (BA 18 and 19) may modulate the extraction of task-relevant information while the insula (BA 13) may do so during cases of spatial conflict. We conclude that modulation of S1 is important to the proper execution of sensory-guided movements and that sensorimotor requirements determine the mechanisms of intermodal selective attention.

  20. Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs.

    PubMed

    Di Cristo, Graziella; Wu, Caizhi; Chattopadhyaya, Bidisha; Ango, Fabrice; Knott, Graham; Welker, Egbert; Svoboda, Karel; Huang, Z Josh

    2004-11-01

    Distinct classes of GABAergic synapses target restricted subcellular domains, thereby differentially regulating the input, integration and output of principal neurons, but the underlying mechanism for such synapse segregation is unclear. Here we show that the distributions of two major classes of GABAergic synapses along the perisomatic and dendritic domains of pyramidal neurons were indistinguishable between primary visual cortex in vivo and cortical organotypic cultures. Therefore, subcellular synapse targeting is independent of thalamic input and probably involves molecular labels and experience-independent forms of activity.

  1. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  2. Relationships among Sensory Responsiveness, Anxiety, and Ritual Behaviors in Children with and without Atypical Sensory Responsiveness.

    PubMed

    Bart, Orit; Bar-Shalita, Tami; Mansour, Hanin; Dar, Reuven

    2017-08-01

    To explore relationships between sensory responsiveness, anxiety, and ritual behaviors in boys with typical and atypical sensory responsiveness. Forty-eight boys, ages 5-9 participated in the study (28 boys with atypical sensory responsiveness and 20 controls). Atypical sensory responsiveness was defined as a score of ≤154 on the Short Sensory Profile. Parents completed the Sensory Profile, the Screen for Child Anxiety Related Emotional Disorders, and the Childhood Routines Inventory. Children with atypical sensory responsiveness had significantly higher levels of anxiety and a higher frequency of ritual behaviors than controls. Atypical sensory responsiveness was significantly related to both anxiety and ritual behaviors, with anxiety mediating the relationship between sensory modulation and ritual behaviors. The findings elucidate the potential consequences of atypical sensory responsiveness and could support the notion that ritual behaviors develop as a coping mechanism in response to anxiety stemming from primary difficulty in modulating sensory input.

  3. Miniature EPSPs and sensory encoding in the primary afferents of the vestibular lagena of the toadfish, Opsanus tau

    NASA Technical Reports Server (NTRS)

    Locke, R.; Vautrin, J.; Highstein, S.

    1999-01-01

    The synaptic activity transmitted from vestibular hair cells of the lagena to primary afferent neurons was recorded in vitro using sharp, intracellular microelectrodes. At rest, the activity was composed of miniature excitatory postsynaptic potentials (mEPSPs) at frequencies from 5 to 20/s and action potentials (APs) at frequencies betwen 0 and 10/s. mEPSPs recorded from a single fiber displayed a large variability. For mEPSPs not triggering APs, amplitudes exhibited an average coefficient of variance (CV) of 0.323 and rise times an average CV of 0.516. APs were only triggered by mEPSPs with larger amplitudes (estimated 4-6 mV) and/or steeper maximum rate of rise (10.9 mV/ms, +/- 3.7 SD, n=4 experiments) compared to (3.50 mV/ms, +/-0.07 SD, n=6 experiments) for nontriggering mEPSPs. The smallest mEPSPs showed a fast rise time (0.99 ms between 10% and 90% of peak amplitude) and limited variability across fibers (CV:0.18) confirming that they were not attenuated signals, but rather represented single-transmitter discharges (TDs). The mEPSP amplitude and rise-time relationship suggests that many mEPSPs represented several, rather than a single pulse of secretion of TDs. According to the estimated overall TD frequency, the coincidence of TDs contributing to the same mEPSP were not statistically independent, indicating a positive interaction between TDs that is reminiscent of the way subminiature signals group to form miniature signals at the neuromuscular junction. Depending on the duration and intensity of efferent stimulation, a complete block of AP initiation occurred either immediately or after a delay of a few seconds. Efferent stimulation did not significantly change AP threshold level, but abruptly decreased mEPSP frequency to a near-complete block that followed the block of APs. Maximum mEPSP rate of rise decreased during, and recovered progressively after, efferent stimulation. After termination of efferent stimulation, mEPSP amplitude did not recover

  4. Miniature EPSPs and sensory encoding in the primary afferents of the vestibular lagena of the toadfish, Opsanus tau

    NASA Technical Reports Server (NTRS)

    Locke, R.; Vautrin, J.; Highstein, S.

    1999-01-01

    The synaptic activity transmitted from vestibular hair cells of the lagena to primary afferent neurons was recorded in vitro using sharp, intracellular microelectrodes. At rest, the activity was composed of miniature excitatory postsynaptic potentials (mEPSPs) at frequencies from 5 to 20/s and action potentials (APs) at frequencies betwen 0 and 10/s. mEPSPs recorded from a single fiber displayed a large variability. For mEPSPs not triggering APs, amplitudes exhibited an average coefficient of variance (CV) of 0.323 and rise times an average CV of 0.516. APs were only triggered by mEPSPs with larger amplitudes (estimated 4-6 mV) and/or steeper maximum rate of rise (10.9 mV/ms, +/- 3.7 SD, n=4 experiments) compared to (3.50 mV/ms, +/-0.07 SD, n=6 experiments) for nontriggering mEPSPs. The smallest mEPSPs showed a fast rise time (0.99 ms between 10% and 90% of peak amplitude) and limited variability across fibers (CV:0.18) confirming that they were not attenuated signals, but rather represented single-transmitter discharges (TDs). The mEPSP amplitude and rise-time relationship suggests that many mEPSPs represented several, rather than a single pulse of secretion of TDs. According to the estimated overall TD frequency, the coincidence of TDs contributing to the same mEPSP were not statistically independent, indicating a positive interaction between TDs that is reminiscent of the way subminiature signals group to form miniature signals at the neuromuscular junction. Depending on the duration and intensity of efferent stimulation, a complete block of AP initiation occurred either immediately or after a delay of a few seconds. Efferent stimulation did not significantly change AP threshold level, but abruptly decreased mEPSP frequency to a near-complete block that followed the block of APs. Maximum mEPSP rate of rise decreased during, and recovered progressively after, efferent stimulation. After termination of efferent stimulation, mEPSP amplitude did not recover

  5. Somatotopic direct projections from orofacial areas of primary somatosensory cortex to pons and medulla, especially to trigeminal sensory nuclear complex, in rats.

    PubMed

    Tomita, A; Kato, T; Sato, F; Haque, T; Oka, A; Yamamoto, M; Ono, T; Bae, Y-C; Maeda, Y; Sessle, B J; Yoshida, A

    2012-01-03

    The primary somatosensory cortex (S1) projects to the thalamus and brainstem somatosensory nuclei and modulates somatosensory information ascending to the S1 itself. However, the projections from the S1 to the brainstem second-order somatosensory neuron pools have not been fully studied. To address this in rats, we first revealed the somatotopic representation of orofacial areas in the S1 by recording cortical surface potentials evoked by stimulation of the lingual, mental, infraorbital, and frontal nerves. We then examined the morphology of descending projections from the electrophysiologically defined orofacial S1 areas to the pons and medulla after injections of an anterograde tracer, biotinylated dextranamine (BDA), into the orofacial S1 areas. BDA-labeled axon terminals were seen mostly in the trigeminal sensory nuclear complex (TSNC) and had a strong contralateral predominance. They also showed a somatotopic arrangement in dorsoventral and superficial-deep directions within almost all rostrocaudal TSNC levels, and in a rostrocaudal direction within the trigeminal caudal subnucleus. In the principal nucleus (Vp) or oral subnucleus (Vo) of TSNC, the BDA-labeled axon terminals showed a somatotopic arrangement closely matched to that of the electrophysiologically defined projection sites of orofacial primary afferents; these projection sites were marked by injections of a retrograde tracer, Fluorogold (FG), into the Vp or Vo. The FG injections labeled a large number of S1 neurons, with a strong contralateral predominance, in a somatotopic manner, which corresponded to that presented in the electrophysiologically defined orofacial S1 areas. The present results suggest that the orofacial S1 projections to somatotopically matched regions of trigeminal second-order somatosensory neuron pools may allow the orofacial S1 to accurately modulate orofacial somatosensory transmission to higher brain centers including the orofacial S1 itself. Copyright © 2011 IBRO

  6. Reduction in Voltage-Gated K+ Channel Activity in Primary Sensory Neurons in Painful Diabetic Neuropathy: Role of Brain-Derived Neurotrophic Factor

    PubMed Central

    Cao, Xue-Hong; Byun, Hee-Sun; Chen, Shao-Rui; Cai, You-Qing; Pan, Hui-Lin

    2010-01-01

    Abnormal hyperexcitability of primary sensory neurons plays an important role in neuropathic pain. Voltage-gated potassium (Kv) channels regulate neuronal excitability by affecting the resting membrane potential and influencing the repolarization and frequency of the action potential. Here we determined changes in Kv channels in dorsal root ganglion (DRG) neurons in a rat model of diabetic neuropathic pain. The densities of total Kv, A-type (IA), and sustained delayed (IK) currents were markedly reduced in medium- and large-, but not in small-, diameter DRG neurons in diabetic rats. Quantitative RT-PCR analysis revealed that the mRNA levels of IA subunits, including Kv1.4, Kv3.4, Kv4.2, and Kv4.3, in the DRG were reduced ~50% in diabetic rats compared with those in control rats. However, there were no significant differences in the mRNA levels of IK subunits (Kv1.1, Kv1.2, Kv2.1, and Kv2.2) in the DRG between the two groups. Incubation with brain-derived neurotrophic factor (BDNF) caused a large reduction in Kv currents, especially IA currents, in medium and large DRG neurons from control rats. Furthermore, the reductions in Kv currents and mRNA levels of IA subunits in diabetic rats were normalized by pretreatment with anti-BDNF antibody or K252a, a TrkB tyrosine kinase inhibitor. In addition, the number of medium and large DRG neurons with BDNF immunoreactivity was greater in diabetic than control rats. Collectively, our findings suggest that diabetes primarily reduces Kv channel activity in medium and large DRG neurons. Increased BDNF activity in these neurons likely contributes to the reduction in Kv channel function through TrkB receptor stimulation in painful diabetic neuropathy. PMID:20557422

  7. Sensory perineuritis.

    PubMed Central

    Matthews, W B; Squier, M V

    1988-01-01

    A case of sensory perineuritis is described, affecting individual cutaneous nerves in the extremities and with a chronic inflammatory exudate confined to the perineurium in a sural nerve biopsy. No cause was found. The condition slowly resolved on steroid treatment. Images PMID:3379419

  8. Gray matter volumes of early sensory regions are associated with individual differences in sensory processing.

    PubMed

    Yoshimura, Sayaka; Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Sawada, Reiko; Kubota, Yasutaka; Toichi, Motomi

    2017-09-20

    Sensory processing (i.e., the manner in which the nervous system receives, modulates, integrates, and organizes sensory stimuli) is critical when humans are deciding how to react to environmental demands. Although behavioral studies have shown that there are stable individual differences in sensory processing, the neural substrates that implement such differences remain unknown. To investigate this issue, structural magnetic resonance imaging scans were acquired from 51 healthy adults and individual differences in sensory processing were assessed using the Sensory Profile questionnaire (Brown et al.: Am J Occup Ther 55 (2001) 75-82). There were positive relationships between the Sensory Profile modality-specific subscales and gray matter volumes in the primary or secondary sensory areas for the visual, auditory, touch, and taste/smell modalities. Thus, the present results suggest that individual differences in sensory processing are implemented by the early sensory regions. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Sensory neurons signal for an increase in rat gastric mucosal blood flow in the face of pending acid injury.

    PubMed

    Holzer, P; Livingston, E H; Guth, P H

    1991-08-01

    Disruption of the gastric mucosal barrier is quickly followed by an increase in gastric mucosal blood flow, which is thought to be a defensive reaction to prevent further injury. This study examined how this increase in blood flow is brought about. When the stomach of urethane-anesthetized rats was perfused with 0.15N HCl, disruption of the gastric mucosal barrier with 15% ethanol increased the disappearance of acid from the gastric lumen and enhanced gastric mucosal blood flow. This increase in blood flow was blocked by local arterial infusion of tetrodotoxin (60 ng/min) to the stomach and by chemical ablation of capsaicin-sensitive sensory neurons. Inhibition of the blood flow increase was associated with exaggeration of gross and histological injury to the mucosa. IV injection of atropine (0.2 mg/kg) or pyrilamine (2 mg/kg) did not affect blood flow increase in response to barrier disruption, whereas morphine injection (2 mg/kg) inhibited it. The current findings show that the increase in gastric mucosal blood flow that follows disruption of the gastric mucosal barrier in the presence of acid is mediated by sensory neurons that seem to monitor acid back-diffusion and in turn signal for a protective increase in blood flow.

  10. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers.

    PubMed

    Yang, Chao-Yang; Wu, Cheng-Tse

    2017-03-01

    This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nerve growth factor treatment of sensory neuron primary cultures causes elevated levels of the mRNA encoding the ATP synthase beta-subunit as detected by a novel PCR-based differential cloning method.

    PubMed

    Kendall, G; Ensor, E; Crankson, H D; Latchman, D S

    1996-03-01

    The mRNA encoding the rat ATP synthase beta-subunit was rapidly induced by nerve growth factor, within 60 min, in cultured adult rat dorsal root ganglion neurons. ATP synthase beta-subunit cDNA clones were isolated from a lambda library. The library was constructed using rat dorsal root ganglion mRNA that was differentially screened with cDNA-derived probes from untreated and nerve-growth-factor-treated primary cultures of adult rat dorsal root ganglion sensory neurons. Radiolabelled probes were made from submicrogram quantities of RNA, by a novel PCR-based technique, which allows small amounts of primary tissue to be used for library screening. The use of this technique in isolating novel differentially expressed mRNAs is discussed.

  12. Alteration of cholinergic, purinergic and sensory neurotransmission in the mouse colon of food allergy model.

    PubMed

    Leng, Yuxin; Yamamoto, Takeshi; Kadowaki, Makoto

    2008-11-21

    It is well known that intestinal anaphylaxis results in a disturbed intestinal motility. It is hypothesized that the chronic intestinal anaphylaxis-induced changes in the enteric neuronal circuitry cause intestinal motor malfunctions. However, detailed mechanisms largely remain unclear. The aim of this study was to investigate the pathophysiological role of ATP, which acts as a non-cholinergic neurotransmitter and a neuroimmune modulator, in a disturbed intestinal motility of food allergy (FA). The FA mice developed allergic diarrhea accompanied with chronic inflammation and mast cell hyperplasia in the colon. The excised proximal colons (PCs) were suspended in the longitudinal direction in organ baths. In the PCs precontracted by KCl (50 mM), contractile responses to exogenous ATP (1 mM) were significantly (P < 0.01) higher in FA mice (34.2% of KCl-induced precontractions) as compared to control mice (17.2%). Pretreatment with P2 purinoceptor antagonists [suramin and PPADs] significantly (P < 0.01) reduced the ATP-evoked contractions to 7.7% and 1.5% in FA and control PCs, respectively. Furthermore, in the presence of inhibitors of cholinergic nerves and capsaicin-sensitive sensory nerves the electrical field stimulation (EFS; 10Hz)-evoked contractions were significantly (P < 0.05) higher in FA mice (65.8% of EFS-evoked maximum contractions, n = 6) than those in control mice (47.9%, n = 6). In addition, cumulative application of suramin and PPADs further inhibited EFS-induced contractions by 21.7% in FA mice (n = 6, P < 0.01) and 8.7% in control mice (n = 6, P < 0.05). Thus, the present study suggests that the sustained alteration in cholinergic, purinergic and sensory neurotransmission contribute to the disturbed motility during the chronic intestinal anaphylaxis.

  13. Low-voltage-activated Ca2+ currents are generated by members of the CavT subunit family (alpha1G/H) in rat primary sensory neurons.

    PubMed

    Lambert, R C; McKenna, F; Maulet, Y; Talley, E M; Bayliss, D A; Cribbs, L L; Lee, J H; Perez-Reyes, E; Feltz, A

    1998-11-01

    Recently, two members of a new family of Ca2+ channel alpha1 subunits, alpha1G (or CavT.1) and alpha1H (or CavT.2), have been cloned and expressed. These alpha1 subunits generate Ba2+ currents similar to the T-type Ca2+ currents present in sensory neurons. Here, we use three methods to investigate whether the T currents of nodosus ganglion neurons are encoded by members of the CavT family. PCR detected the presence of mRNA encoding both alpha1G and alpha1H, as well as a third highly related sequence, alpha1I. In situ hybridizations performed on nodosus ganglia demonstrate a high expression of alpha1H subunit RNAs. Transfection of nodosus ganglion neurons with a generic antisense oligonucleotide against this new alpha1 subunit family selectively suppresses the low-voltage-activated Ca2+ current. The antisense oligonucleotide effect increased with time after transfection and reached a maximum 3 d after treatment, indicating a 2-3 d turnover for the alpha1 proteins. Taken together, these results suggest that the T-type current present in the sensory neurons is mainly attributable to alpha1H channels. In addition, taking advantage of the high specificity of the antisense ON to the cloned channels, we showed that T-type currents greatly slowed the repolarization occurring during an action potential and were responsible for up to 51% of the Ca2+ entry during spikes. Therefore, the antisense strategy clearly demonstrates the role of low-voltage-activated Ca2+ current in affecting the afterpotential properties and influencing the cell excitability. Such tools should be beneficial to further studies investigating physiological roles of T-type Ca2+ currents.

  14. Transient Receptor Potential Ankyrin 1 Mediates Toluene Diisocyanate–Evoked Respiratory Irritation

    PubMed Central

    Taylor-Clark, Thomas E.; Kiros, Filmawit; Carr, Michael J.; McAlexander, M. Allen

    2009-01-01

    Toluene diisocyanate (TDI), a reactive, hazardous irritant, causes respiratory symptoms such as cough, rhinitis, dyspnea, and chest tightness in exposed workers. Although previous animal studies have shown that TDI causes respiratory reflexes that are abolished by desensitization of capsaicin-sensitive sensory nerves, the specific molecular identity of the transducer(s) responsible for sensing this noxious stimulus has, to date, remained elusive. Recent studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1), an ion channel largely restricted to a subset of capsaicin-sensitive sensory nerves, functions as a transducer capable of initiating reflex responses to many reactive chemical stimuli. We therefore hypothesized that TRPA1 is the primary molecular transducer through which TDI causes sensory nerve activation and respiratory reflexes. Consistent with this hypothesis, TDI activated TRPA1, but not the capsaicin-sensitive transient receptor potential vanilloid 1 channel, in heterologous expression systems. TDI also activated a subset of dissociated trigeminal sensory neurons from wild-type but not TRPA1-deficient mice. In vivo, TDI mimicked known TRPA1 agonists by causing a pronounced decrease in breathing rate, indicative of respiratory sensory irritation, and this reflex was abolished in TRPA1-deficient mice. Together, our data suggest that TDI causes sensory nerve activation and airway sensory irritation via the activation of the ion channel, TRPA1. PMID:19059884

  15. Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents

    PubMed Central

    Zanor, Maria Inés; Rambla, José-Luis; Chaïb, Jamila; Steppa, Agnes; Medina, Aurora; Granell, Antonio; Fernie, Alisdair R.; Causse, Mathilde

    2009-01-01

    Numerous studies have revealed the extent of genetic and phenotypic variation between both species and cultivars of tomato. Using a series of tomato lines resulting from crosses between a cherry tomato and three independent large fruit cultivar (Levovil, VilB, and VilD), extensive profiling of both central primary metabolism and volatile organic components of the fruit was performed. In this study, it was possible to define a number of quantitative trait loci (QTLs) which determined the levels of primary metabolites and/or volatile organic components and to evaluate their co-location with previously defined organoleptic QTLs. Correlation analyses between either the primary metabolites or the volatile organic compounds and organoleptic properties revealed a number of interesting associations, including pharmaceutical aroma–guaiacol and sourness–alanine, across the data set. Considerable correlation within the levels of primary metabolites or volatile organic compounds, respectively, were also observed. However, there was relatively little association between the levels of primary metabolites and volatile organic compounds, implying that they are not tightly linked to one another. A notable exception to this was the strong association between the levels of sucrose and those of a number of volatile organic compounds. The combined data presented here are thus discussed both with respect to those obtained recently from wide interspecific crosses of tomato and within the framework of current understanding of the chemical basis of fruit taste. PMID:19346240

  16. Steric Constraint in the Primary Photoproduct of Sensory Rhodopsin II Is a Prerequisite for Light-Signal Transfer to HtrII†

    PubMed Central

    Ito, Motohiro; Sudo, Yuki; Furutani, Yuji; Okitsu, Takashi; Wada, Akimori; Homma, Michio; Spudich, John L.; Kandori, Hideki

    2013-01-01

    Sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin, ppR) is responsible for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all-trans to 13-cis initiates conformational changes in the protein, leading to activation of the cognate transducer protein (HtrII). We previously observed enhancement of the C14–D stretching vibration of the retinal chromophore at 2244 cm−1 upon formation of the K state and interpreted that a steric constraint occurs at the C14D group in SRIIK. Here, we identify the counterpart of the C14D group as Thr204, because the C14–D stretching signal disappeared in T204A, T204S, and T204C mutants as well as a C14–HOOP (hydrogen out-of-plane) vibration at 864 cm−1. Although the K state of the wild-type bacteriorhodopsin (BR), a light-driven proton pump, possesses neither 2244 nor 864 cm−1 bands, both signals appeared for the K state of a triple mutant of BR that functions as a light sensor (P200T/V210Y/A215T). We found a positive correlation between these vibrational amplitudes of the C14 atom at 77 K and the physiological phototaxis response. These observations strongly suggest that the steric constraint between the C14 group of retinal and Thr204 of the protein is a prerequisite for light-signal transduction by SRII. PMID:18479149

  17. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II.

    PubMed

    Seidel, R; Scharf, B; Gautel, M; Kleine, K; Oesterhelt, D; Engelhard, M

    1995-03-28

    The blue-light receptor genes (sopII) of sensory rhodopsin (SR) II were cloned from two species, the halophilic bacteria Haloarcula vallismortis (vSR-II) and Natronobacterium pharaonis (pSR-II). Upstream of both sopII gene loci, sequences corresponding to the halobacterial transducer of rhodopsin (Htr) II were recognized. In N. pharaonis, psopII and phtrII are transcribed as a single transcript. Comparison of the amino acid sequences of vHtr-II and pHtr-II with Htr-I and the chemotactic methyl-accepting proteins from Escherichia coli revealed considerable identities in the signal domain and methyl-accepting sites. Similarities with Htr-I in Halobacterium salinarium suggest a common principle in the phototaxis of extreme halophiles. Alignment of all known retinal protein sequences from Archaea identifies both SR-IIs as an additional subgroup of the family. Positions defining the retinal binding site are usually identical with the exception of Met-118 (numbering is according to the bacteriorhodopsin sequence), which might explain the typical blue color shift of SR-II to approximately 490 nm. In archaeal retinal proteins, the function can be deduced from amino acids in positions 85 and 96. Proton pumps are characterized by Asp-85 and Asp-96; chloride pumps by Thr-85 and Ala-96; and sensors by Asp-85 and Tyr-96 or Phe-96.

  18. Impact of 5-Hz rTMS over the primary sensory cortex is related to white matter volume in individuals with chronic stroke.

    PubMed

    Brodie, Sonia M; Borich, Michael R; Boyd, Lara A

    2014-11-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that may facilitate mechanisms of motor learning. In a recent single-blind, pseudo-randomized study, we showed that 5-Hz rTMS over ipsilesional primary somatosensory cortex followed by practice of a skilled motor task enhanced motor learning compared with sham rTMS + practice in individuals with chronic stroke. However, the beneficial effect of stimulation was inconsistent. The current study examined how differences in sensorimotor cortex morphology might predict rTMS-related improvements in motor learning in these individuals. High-resolution T1-weighted magnetic resonance images were acquired and processed in FreeSurfer using a newly developed automated, whole brain parcellation technique. Gray matter and white matter volumes of the ipsilesional primary somatosensory and motor cortices were extracted. A significant positive association was observed between the volume of white matter in the primary somatosensory cortex and motor learning-related change, exclusively in the group that received active 5-Hz rTMS. A regression model with age, gray matter and white matter volumes as predictors was significant for predicting motor learning-related change in individuals who received active TMS. White matter volume predicted the greatest amount of variance (47.6%). The same model was non-significant when volumes of the primary motor cortex were considered. We conclude that white matter volume in the cortex underlying the TMS coil may be a novel predictor for behavioral response to 5-Hz rTMS over the ipsilesional primary somatosensory followed by motor practice.

  19. Excitability parameters and sensitivity to anemone toxin ATX-II in rat small diameter primary sensory neurones discriminated by Griffonia simplicifolia isolectin IB4.

    PubMed

    Snape, Alistair; Pittaway, James F; Baker, Mark D

    2010-01-01

    Sensory neurone subtypes (< or = 25 microm apparent diameter) express a variety of Na(+) channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 microm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na(V)1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na(+) channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and ve neurones. IB4 +ve neurones became more excitable with depolarization over the range 100 to 20 mV, but IB4 ve neurones exhibited peak excitability near 55 mV, and were inexcitable at 20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na(V)1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 ve neurones may express Na(V)1.1 or Na(V)1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na(V)1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na(+) channel inactivation.

  20. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord.

    PubMed

    Inácio, Ana R; Nasretdinov, Azat; Lebedeva, Julia; Khazipov, Roustem

    2016-10-07

    Early stages of sensorimotor system development in mammals are characterized by the occurrence of spontaneous movements. Whether and how these movements support correlated activity in developing sensorimotor spinal cord circuits remains unknown. Here we show highly correlated activity in sensory and motor zones in the spinal cord of neonatal rats in vivo. Both during twitches and complex movements, movement-generating bursts in motor zones are followed by bursts in sensory zones. Deafferentation does not affect activity in motor zones and movements, but profoundly suppresses activity bursts in sensory laminae and results in sensorimotor uncoupling, implying a primary role of sensory feedback in sensorimotor synchronization. This is further supported by largely dissociated activity in sensory and motor zones observed in the isolated spinal cord in vitro. Thus, sensory feedback resulting from spontaneous movements is instrumental for coordination of activity in developing sensorimotor spinal cord circuits.

  1. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord

    PubMed Central

    Inácio, Ana R.; Nasretdinov, Azat; Lebedeva, Julia; Khazipov, Roustem

    2016-01-01

    Early stages of sensorimotor system development in mammals are characterized by the occurrence of spontaneous movements. Whether and how these movements support correlated activity in developing sensorimotor spinal cord circuits remains unknown. Here we show highly correlated activity in sensory and motor zones in the spinal cord of neonatal rats in vivo. Both during twitches and complex movements, movement-generating bursts in motor zones are followed by bursts in sensory zones. Deafferentation does not affect activity in motor zones and movements, but profoundly suppresses activity bursts in sensory laminae and results in sensorimotor uncoupling, implying a primary role of sensory feedback in sensorimotor synchronization. This is further supported by largely dissociated activity in sensory and motor zones observed in the isolated spinal cord in vitro. Thus, sensory feedback resulting from spontaneous movements is instrumental for coordination of activity in developing sensorimotor spinal cord circuits. PMID:27713428

  2. Sensory Assessment Manual.

    ERIC Educational Resources Information Center

    Cress, Pamela J.

    This manual is intended to provide information leading to reliable assessment of vision and hearing capabilities of children considered to have dual sensory impairments. Ongoing sensory assessment is necessary to determine the extent of residual sensory abilities that should be considered in educational programming decisions and to determine any…

  3. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1.

    PubMed

    Taylor-Clark, Thomas E; Ghatta, Srinivas; Bettner, Weston; Undem, Bradley J

    2009-04-01

    Transient Receptor Potential A1 (TRPA1) is a nonselective cation channel, preferentially expressed on a subset of nociceptive sensory neurons, that is activated by a variety of reactive irritants via the covalent modification of cysteine residues. Excessive nitric oxide during inflammation (nitrative stress), leads to the nitration of phospholipids, resulting in the formation of highly reactive cysteine modifying agents, such as nitrooleic acid (9-OA-NO(2)). Using calcium imaging and electrophysiology, we have shown that 9-OA-NO(2) activates human TRPA1 channels (EC(50), 1 microM), whereas oleic acid had no effect on TRPA1. 9-OA-NO(2) failed to activate TRPA1 in which the cysteines at positions 619, 639, and 663 and the lysine at 708 had been mutated. TRPA1 activation by 9-OA-NO(2) was not inhibited by the NO scavenger carboxy-PTIO. 9-OA-NO(2) had no effect on another nociceptive-specific ion channel, TRPV1. 9-OA-NO(2) activated a subset of mouse vagal and trigeminal sensory neurons, which also responded to the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. 9-OA-NO(2) failed to activate neurons derived from TRPA1(-/-) mice. The action of 9-OA-NO(2) at nociceptive nerve terminals was investigated using an ex vivo extracellular recording preparation of individual bronchopulmonary C fibers in the mouse. 9-OA-NO(2) evoked robust action potential discharge from capsaicin-sensitive fibers with slow conduction velocities (0.4-0.7 m/s), which was inhibited by the TRPA1 antagonist AP-18. These data demonstrate that nitrooleic acid, a product of nitrative stress, can induce substantial nociceptive nerve activation through the selective and direct activation of TRPA1 channels.

  4. Epilepsy and the Sensory Systems

    PubMed Central

    2016-01-01

    The relations of epilepsy and the sensory systems are bidirectional. Epilepsy may act on sensory systems by producing sensory seizure symptoms, by altering sensory performance, and by epilepsy treatment causing sensory side effects. Sensory system activity may have an important role in both generation and inhibition of seizures. PMID:27857611

  5. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1.

    PubMed

    Wang, Xiangbin; Miyares, Rosa Linda; Ahern, Gerard P

    2005-04-15

    Oleoylethanolamide (OEA) is an endogenous lipid that regulates feeding and body weight. Although the effects of OEA are believed to depend on activation of vagal sensory afferent neurones, the mechanisms involved in exciting these neurones are unclear. Here we show that OEA directly excited nodose ganglion neurones, the cell bodies of vagal afferents. OEA depolarized these neurones and evoked inward currents that were restricted to capsaicin-sensitive cells. These currents were fully blocked by the TRPV1 inhibitor, capsazepine, and no responses to OEA were observed in neurones cultured from TRPV1-null mice. Similarly, OEA induced a rise in Ca(+) concentration in wild-type but not TRPV1-deficient neurones, and responses to OEA were greater at 37 degrees C compared to room temperature. Significantly, OEA administration in mice induced visceral pain-related behaviours that were inhibited by capsazepine and absent in TRPV1-null animals. Further, OEA reduced 30-min food intake in wild-type but not in TRPV1-null mice. Thus, the acute behavioural effects of OEA may result from visceral malaise via the activation of TRPV1.

  6. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1

    PubMed Central

    Wang, Xiangbin; Miyares, Rosa Linda; Ahern, Gerard P

    2005-01-01

    Oleoylethanolamide (OEA) is an endogenous lipid that regulates feeding and body weight. Although the effects of OEA are believed to depend on activation of vagal sensory afferent neurones, the mechanisms involved in exciting these neurones are unclear. Here we show that OEA directly excited nodose ganglion neurones, the cell bodies of vagal afferents. OEA depolarized these neurones and evoked inward currents that were restricted to capsaicin-sensitive cells. These currents were fully blocked by the TRPV1 inhibitor, capsazepine, and no responses to OEA were observed in neurones cultured from TRPV1-null mice. Similarly, OEA induced a rise in Ca+ concentration in wild-type but not TRPV1-deficient neurones, and responses to OEA were greater at 37°C compared to room temperature. Significantly, OEA administration in mice induced visceral pain-related behaviours that were inhibited by capsazepine and absent in TRPV1-null animals. Further, OEA reduced 30-min food intake in wild-type but not in TRPV1-null mice. Thus, the acute behavioural effects of OEA may result from visceral malaise via the activation of TRPV1. PMID:15695242

  7. Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems.

    PubMed

    Guadaño-Ferraz, A; Escámez, M J; Rausell, E; Bernal, J

    1999-05-01

    Thyroid hormone is an important epigenetic factor in brain development, acting by modulating rates of gene expression. The active form of thyroid hormone, 3,5,3'-triiodothyronine (T3) is produced in part by the thyroid gland but also after 5'-deiodination of thyroxine (T4) in target tissues. In brain, approximately 80% of T3 is formed locally from T4 through the activity of the 5'-deiodinase type 2 (D2), an enzyme that is expressed mostly by glial cells, tanycytes in the third ventricle, and astrocytes throughout the brain. D2 activity is an important point of control of thyroid hormone action because it increases in situations of low T4, thus preserving brain T3 concentrations. In this work, we have studied the expression of D2 by quantitative in situ hybridization in hypothyroid animals during postnatal development. Our hypothesis was that those regions that are most dependent on thyroid hormone should present selective increases of D2 as a protection against hypothyroidism. D2 mRNA concentration was increased severalfold over normal levels in relay nuclei and cortical targets of the primary somatosensory and auditory pathways. The results suggest that these pathways are specifically protected against thyroid failure and that T3 has a role in the development of these structures. At the cellular level, expression was observed mainly in glial cells, although some interneurons of the cerebral cortex were also labeled. Therefore, the T3 target cells, mostly neurons, are dependent on local astrocytes for T3 supply.

  8. Emergent Spatial Patterns of Excitatory and Inhibitory Synaptic Strengths Drive Somatotopic Representational Discontinuities and their Plasticity in a Computational Model of Primary Sensory Cortical Area 3b

    PubMed Central

    Grajski, Kamil A.

    2016-01-01

    Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers), boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties. PMID:27504086

  9. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S

    2016-01-01

    Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.

  10. Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons

    PubMed Central

    Chaban, Victor V; Cho, Taehoon; Reid, Christopher B; Norris, Keith C

    2013-01-01

    Background: Cell-cell communication occurs via a variety of mechanisms, including long distances (hormonal), short distances (paracrine and synaptic) or direct coupling via gap junctions, antigen presentation, or ligand-receptor interactions. We evaluated the possibility of neuro-hormonal independent, non-diffusible, physically disconnected pathways for cell-cell communication using dorsal root ganglion (DRG) neurons. Methods: We assessed intracellular calcium ([Ca2+]) in primary culture DRG neurons that express ATP-sensitive P2X3, capsaicinsensitive TRPV1 receptors modulated by estradiol. Physically disconnected (dish-in-dish system; inner chamber enclosed) mouse DRG were cultured for 12 hours near: a) media alone (control 1), b) mouse DRG (control 2), c) human neuroblastoma SHSY-5Y cells (cancer intervention), or d) mouse DRG treated with KCl (apoptosis intervention). Results: Chemosensitive receptors [Ca2+]i signaling did not differ between control 1 and 2. ATP (10 μM) and capsaicin (100nM) increased [Ca2+]i transients to 425.86 + 49.5 nM, and 399.21 ± 44.5 nM, respectively. 17β-estradiol (100 nM) exposure reduced ATP (171.17 ± 48.9 nM) and capsaicin (175.01±34.8 nM) [Ca2+]i transients. The presence of cancer cells reduced ATP- and capsaicin-induced [Ca2+]i by >50% (p<0.05) and abolished the 17β-estradiol effect. By contrast, apoptotic DRG cells increased initial ATP-induced [Ca2+]i, flux four fold and abolished subsequent [Ca2+]i, responses to ATP stimulation (p<0.001). Capsaicin (100nM) induced [Ca2+]i responses were totally abolished. Conclusion: The local presence of apoptotic DRG or human neuroblastoma cells induced differing abnormal ATP and capsaicin-mediated [Ca2+]i fluxes in normal DRG. These findings support physically disconnected, non-diffusible cell-to-cell signaling. Further studies are needed to delineate the mechanism(s) of and model(s) of communication. PMID:23390567

  11. Sensory perception in overdenture patients.

    PubMed

    Kay, W D; Abes, M S

    1976-06-01

    The discussion of overdentures has been confined to their capacity to use abutment teeth to improve neuromuscular control of mandibular movement. Use of overdentures has been favored often because of their mechanical advantages, but seldom because of the sensory role of the retained abutment teeth. Even though the retained teeth may be periodontally diseased, they still may provide sufficient support for the transmission of masticatory pressures and sufficient periodontal ligament receptors to initiate a jaw opening reflex. Whereas conflicting evidence shows that the periodontal nerve receptors play a role in mandibular positional sensibility (proprioception), pressure perception by the periodontal ligament remains a primary stimulus for the jaw opening reflex. Additional investigations will be essential to a complete understanding of the role of the periodontal ligament receptors. However, recognition of the importance of the periodontal ligament receptors to the overdenture patient as a source of sensory input is vital.

  12. GluN2B NMDA receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after seven days of morphine administration in rats: implication for opiate-induced hyperalgesia

    PubMed Central

    Gong, Kerui; Bhargava, Aditi; Jasmin, Luc

    2016-01-01

    The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. Here, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions (DRGs). Patch clamp recordings from intact DRGs (ex-vivo preparation) of morphine-treated rats showed increased excitability of small diameter (≤ 30 μm) neurons with respect to rheobase and membrane threshold, whereas the excitability of large diameter (> 30 μm) neurons remained unchanged. Small diameter neurons also displayed increased responses to glutamate, which were mediated mainly by GluN2B containing NMDA receptors (NMDARs), and to a lesser degree by the neuronal excitatory amino acid transporter 3 /excitatory amino acid carrier 1 (EAAT3/EAAC1). Co-administration in vivo of the GluN2B selective antagonist Ro 25-6981 with morphine for 7 days prevented the appearance of OIH and increased morphine-induced analgesia. Administration of morphine for 7 days led to an increased expression of GluN2B and EAAT3/EAAC1, but not of the AMPA, kainate or Group I metabotropic glutamate receptors, or of the vesicular glutamate transporter 2 (VGLUT2). These results suggest that peripheral glutamatergic neurotransmission contributes to OIH and that GluN2B subunit of NMDARs in the periphery may be a target for therapy. PMID:26335908

  13. Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells of mice in response to acute but not latent herpes simplex virus infection in vivo

    PubMed Central

    1994-01-01

    Major histocompatibility complex (MHC) deficiency is typical of almost all resident cells in normal neural tissue. However, CD8+ T cells, which recognize antigenic peptides in the context of class I MHC molecules, are known to mediate clearance of herpes simplex virus (HSV) from spinal ganglia of experimentally infected mice, leading to the hypothesis that class I expression in the peripheral nervous system must be upregulated in response to HSV infection. In addressing this hypothesis it is shown, in BALB/c (H-2d) mice, that normally deficient class I transcripts transiently accumulate in peripheral nerve Schwann cells, ganglionic satellite cells, and primary sensory neurons, indicating that in each of these cell types class I expression is regulated at the transcriptional level in vivo. Furthermore, for 3-4 wk after infection, H-2Kd/Dd antigens are expressed by satellite and Schwann cells but not neurons, suggesting additional posttranscriptional regulation of class I synthesis in neurons. Alternatively, the class I RNAs induced in neurons may not be derived from classical class I genes. Factors regulating H-2 class I expression emanate from within infected ganglia, probably from infected neurons themselves. However, induction of class I molecules was not maintained during latency, when viral gene expression in neurons is restricted to a single region within the virus repeats. These data have implications for the long-term survival of cells in HSV-infected neural tissue. PMID:8064236

  14. Sensory Conversion Devices

    NASA Astrophysics Data System (ADS)

    Medelius, Pedro

    The human body has five basic sensory functions: touch, vision, hearing, taste, and smell. The effectiveness of one or more of these human sensory functions can be impaired as a result of trauma, congenital defects, or the normal ageing process. Converting one type of function into another, or translating a function to a different part of the body, could result in a better quality of life for a person with diminished sensorial capabilities.

  15. Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices.

    PubMed

    Raij, Tommi; Ahveninen, Jyrki; Lin, Fa-Hsuan; Witzel, Thomas; Jääskeläinen, Iiro P; Letham, Benjamin; Israeli, Emily; Sahyoun, Cherif; Vasios, Christos; Stufflebeam, Steven; Hämäläinen, Matti; Belliveau, John W

    2010-05-01

    Here we report early cross-sensory activations and audiovisual interactions at the visual and auditory cortices using magnetoencephalography (MEG) to obtain accurate timing information. Data from an identical fMRI experiment were employed to support MEG source localization results. Simple auditory and visual stimuli (300-ms noise bursts and checkerboards) were presented to seven healthy humans. MEG source analysis suggested generators in the auditory and visual sensory cortices for both within-modality and cross-sensory activations. fMRI cross-sensory activations were strong in the visual but almost absent in the auditory cortex; this discrepancy with MEG possibly reflects the influence of acoustical scanner noise in fMRI. In the primary auditory cortices (Heschl's gyrus) the onset of activity to auditory stimuli was observed at 23 ms in both hemispheres, and to visual stimuli at 82 ms in the left and at 75 ms in the right hemisphere. In the primary visual cortex (Calcarine fissure) the activations to visual stimuli started at 43 ms and to auditory stimuli at 53 ms. Cross-sensory activations thus started later than sensory-specific activations, by 55 ms in the auditory cortex and by 10 ms in the visual cortex, suggesting that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 30-35 ms. Audiovisual interactions started at 85 ms in the left auditory, 80 ms in the right auditory and 74 ms in the visual cortex, i.e., 3-21 ms after inputs from the two modalities converged.

  16. Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices

    PubMed Central

    Raij, Tommi; Ahveninen, Jyrki; Lin, Fa-Hsuan; Witzel, Thomas; Jääskeläinen, Iiro P.; Letham, Benjamin; Israeli, Emily; Sahyoun, Cherif; Vasios, Christos; Stufflebeam, Steven; Hämäläinen, Matti; Belliveau, John W.

    2010-01-01

    Here we report early cross-sensory activations and audiovisual interactions at the visual and auditory cortices using magnetoencephalography (MEG) to obtain accurate timing information. Data from an identical fMRI experiment were employed to support MEG source localization results. Simple auditory and visual stimuli (300-ms noise bursts and checkerboards) were presented to seven healthy humans. MEG source analysis suggested generators in the auditory and visual sensory cortices for both within-modality and cross-sensory activations. fMRI cross-sensory activations were strong in the visual but almost absent in the auditory cortex; this discrepancy with MEG possibly reflects influence of acoustical scanner noise in fMRI. In the primary auditory cortices (Heschl’s gyrus) onset of activity to auditory stimuli was observed at 23 ms in both hemispheres, and to visual stimuli at 82 ms in the left and at 75 ms in the right hemisphere. In the primary visual cortex (Calcarine fissure) the activations to visual stimuli started at 43 ms and to auditory stimuli at 53 ms. Cross-sensory activations thus started later than sensory-specific activations, by 55 ms in the auditory cortex and by 10 ms in the visual cortex, suggesting that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 30–35 ms. Audiovisual interactions started at 85 ms in the left auditory, 80 ms in the right auditory, and 74 ms in the visual cortex, i.e., 3–21 ms after inputs from both modalities converged. PMID:20584181

  17. Sensory responses in the medial prefrontal cortex of anesthetized rats. Implications for sensory processing.

    PubMed

    Martin-Cortecero, Jesus; Nuñez, Angel

    2016-12-17

    The medial prefrontal cortex (mPFC) plays a key role in higher functions such as memory and attention. In order to demonstrate sensory responses in the mPFC, we used electrophysiological recordings of urethane-anesthetized rats to record somatosensory-evoked potentials (SEPs) or auditory-evoked potentials (AEPs) elicited by whisker deflections and click stimulation, respectively. Contralateral whisker stimulation or auditory stimuli were also applied to study sensory interference in the mPFC. Interference with other sensory stimuli or recent stimulation history reduced whisker responses in the infralimbic and prelimbic cortices of the ventral mPFC. This effect could be mediated by activation of parvalbumin (PV) interneurons since the effect was blocked by the P/Q calcium channel antagonist ω-agatoxin. In contrast, sensory interference or the recent stimulation history was not detected by the dorsal mPFC or the primary somatosensory cortex. Results obtained from retrograde tracer injections in the dorsal and ventral regions of the mPFC indicated that somatosensory and auditory sensory inputs may arrive at the dorsal mPFC through secondary sensory cortical areas, and through the insular and temporal cortical areas. The ventral mPFC may receive sensory information through the strong anatomical connections between the dorsal and ventral mPFC areas. In conclusion, results suggest mPFC plays an important role in sensory processing, which may have important implications in attentional and memory processes.

  18. Sensory nerves and pancreatitis.

    PubMed

    Li, Qingfu; Peng, Jie

    2014-11-01

    Sensory nerves are a kind of nerve that conduct afferent impulses from the periphery receptors to the central nervous system (CNS) and are able to release neuromediators from the activated peripheral endings. Sensory nerves are particularly important for microcirculatory response, and stimulation of pancreatic sensory nerves releases a variety of neuropeptides such as substance P (SP), calcitonin gene-related peptide (CGRP), etc., leading to neurogenic inflammation characterized as the local vasodilatation and plasma extravasation. Deactivation of sensory nerves often leads to the disturbances of pancreatic microcirculation. Pancreatitis is a common digestive disease that can lead to severe complications and even death if it goes untreated. Experimental studies in animals and tissue analysis in patients with pancreatitis have shown significant changes in sensory nerves supplying the pancreatic gland. Thus making clear the whole mechanism of pancreatitis is essential to treat and cure it. Sensory nerves may have a close correlation with the development of pancreatitis, and knowing more about the role of sensory nerve in pancreatitis is important for the treatment for pancreatitis. This review is aimed to summarize the relationship between sensory nerves and pancreatitis.

  19. Sensory Correlations in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Trivedi, Madhukar H.; Grannemann, Bruce D.; Garver, Carolyn R.; Johnson, Danny G.; Andrews, Alonzo A.; Savla, Jayshree S.; Mehta, Jyutika A.; Schroeder, Jennifer L.

    2007-01-01

    This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different…

  20. HealthSense: how changes in sensory physiology, sensory psychology and sociocognitive factors influence food choice.

    PubMed

    Morrissey, P; Delahunty, C; Martin, C A

    2001-08-01

    HealthSense is a multi-centre shared cost research project in sensory and consumer sciences. This project was initiated in response to changing population demographics, which predict a significant increase in the older age group. The primary objective of HealthSense is to determine accurately the effects of ageing on the perceptual abilities of the sensory systems, and ultimately how age-related change determines sensory preferences and food choice. The project is carried out by 24 participating institutes located in 10 different European countries. The project is funded by the European Commission Quality of Life Fifth Framework Programme (QLKI-CT-1999-00010).

  1. Stomatin and sensory neuron mechanotransduction.

    PubMed

    Martinez-Salgado, Carlos; Benckendorff, Anne G; Chiang, Li-Yang; Wang, Rui; Milenkovic, Nevena; Wetzel, Christiane; Hu, Jing; Stucky, Cheryl L; Parra, Marilyn G; Mohandas, Narla; Lewin, Gary R

    2007-12-01

    Somatic sensory neurons of the dorsal root ganglia are necessary for a large part of our mechanosensory experience. However, we only have a good knowledge of the molecules required for mechanotransduction in simple invertebrates such as the nematode Caenorhabiditis elegans. In C. elegans, a number of so-called mec genes have been isolated that are required for the transduction of body touch. One such gene, mec-2 codes for an integral membrane protein of the stomatin family, a large group of genes with a stomatin homology domain. Using stomatin null mutant mice, we have tested the hypothesis that the founding member of this family, stomatin might play a role in the transduction of mechanical stimuli by primary sensory neurons. We used the in vitro mouse skin nerve preparation to record from a large population of low- and high-threshold mechanoreceptors with myelinated A-fiber (n = 553) and unmyelinated C-fiber (n = 157) axons. One subtype of mechanoreceptor, the d-hair receptor, which is a rapidly adapting mechanoreceptor, had reduced sensitivity to mechanical stimulation in the absence of stomatin. Other cutaneous mechanoreceptors, including nociceptive C-fibers were not affected by the absence of a functional stomatin protein. Patch-clamp analysis of presumptive D-hair receptor mechanoreceptive neurons, which were identified by a characteristic rosette morphology in culture, showed no change in membrane excitability in the absence of the stomatin protein. We conclude that stomatin is required for normal mechanotransduction in a subpopulation of vertebrate sensory neurons.

  2. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  3. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  4. Early compensatory sensory re-education.

    PubMed

    Daniele, Hugo R; Aguado, Leda

    2003-02-01

    After a neurorrhaphy, there will be a distal disconnection between the cortex and skin receptors, along with interruption of sensibility information. This report demonstrates the efficacy of a new sensory re-education program for achieving optimal sensation in a relatively short time. Between 1999 and 2001, in the authors' Hand Rehabilitation Department, 11 patients with previous neurorrhaphy were subjected to a program of early "compensatory sensory re-education." Lesions were caused by clean cut. There were 13 primary digital nerve procedures, 12 at the distal palmar MP level, and one at the radial dorsal branch of the index (just after emerging from the common digital nerve). The technique of compensatory sensory re-education was based on a previous, but modified, sensory re-education method. In order to evaluate the results in the compensatory sensory re-education series described, additional tests for evaluation of achieved functional sensibility were used. The authors' best results were achieved in a maximum of 8 weeks (4-8 weeks), much less time than with the original method (1-2 years). Using the British classification, it was possible to compare the achieved levels of sensibility and the time required for optimal results. The different methods of sensibility re-education may be similar, but with the authors' compensatory sensory re-education method, substantial time is saved.

  5. GABAergic synapses: their plasticity and role in sensory cortex

    PubMed Central

    Griffen, Trevor C.; Maffei, Arianna

    2014-01-01

    The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function. PMID:24723851

  6. N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice.

    PubMed

    Duan, J-H; Hodgdon, K E; Hingtgen, C M; Nicol, G D

    2014-06-13

    Major aspects of neuronal function are regulated by Ca(2+) including neurotransmitter release, excitability, developmental plasticity, and gene expression. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited both greater excitability and evoked release of neuropeptides compared to wildtype mice. Furthermore, augmented voltage-dependent sodium currents but not potassium currents contribute to the enhanced excitability. To determine the mechanisms giving rise to the enhanced release of substance P and calcitonin gene-related peptide in the Nf1+/- sensory neurons, the potential differences in the total voltage-dependent calcium current (ICa) as well as the contributions of individual Ca(2+) channel subtypes were assessed. Whole-cell patch-clamp recordings from small-diameter capsaicin-sensitive sensory neurons demonstrated that the average peak ICa densities were not different between the two genotypes. However, by using selective blockers of channel subtypes, the current density of N-type (Cav2.2) ICa was significantly larger in Nf1+/- neurons compared to wildtype neurons. In contrast, there were no significant differences in L-, P/Q- and R-type currents between the two genotypes. Quantitative real-time polymerase chain reaction measurements made from the isolated but intact dorsal root ganglia indicated that N-type (Cav2.2) and P/Q-type (Cav2.1) Ca(2+) channels exhibited the highest mRNA expression levels although there were no significant differences in the levels of mRNA expression between the genotypes. These results suggest that the augmented N-type (Cav2.2) ICa observed in the Nf1+/- sensory neurons does not result from genomic differences but may reflect post-translational or some other non-genomic modifications. Thus, our results demonstrate that sensory neurons from Nf1+/- mice, exhibit increased N-type ICa and likely account for the increased release of substance P and

  7. Plasma somatostatin-like immunoreactivity increases in the plasma of septic patients and rats with systemic inflammatory reaction: experimental evidence for its sensory origin and protective role.

    PubMed

    Suto, Balazs; Szitter, Istvan; Bagoly, Terez; Pinter, Erika; Szolcsányi, Janos; Loibl, Csaba; Nemeth, Timea; Tanczos, Krisztian; Molnar, Tihamer; Leiner, Tamas; Varnai, Bianka; Bardonicsek, Zsofia; Helyes, Zsuzsanna

    2014-04-01

    Alterations of somatostatin-like immunoreactivity (SST-LI) in the plasma of 11 systemic inflammatory response syndrome (SIRS) patients were investigated in correlation with cytokines, adhesion molecules and coagulation markers repeatedly during 4 days. The origin and role of SST were studied in the cecum ligation and puncture (CLP) rat SIRS model. Capsaicin-sensitive peptidergic sensory nerves were defunctionalized by resiniferatoxin (RTX) pretreatment 2 weeks earlier, in a separate group animals were treated with the somatostatin receptor antagonist cyclo-somatostatin (C-SOM). Plasma SST-LI significantly elevated in septic patients compared to healthy volunteers during the whole 4-day period. Significantly decreased Horowitz score showed severe lung injury, increased plasma C-reactive protein and procalcitonin confirmed SIRS. Soluble P-selectin, tissue plasminogen activator and the interleukin 8 and monocyte chemotactic protein-1 significantly increased, interleukin 6 and soluble CD40 ligand did not change, and soluble Vascular Adhesion Molecule-1 decreased. SST-LI significantly increased in rats both in the plasma and the lung 6h after CLP compared to sham-operation. After RTX pretreatment SST-LI was not altered in intact animals, but the SIRS-induced elevation was absent. Lung MPO activity significantly increased 6h following CLP compared to sham operation, which was significantly higher both after RTX-desensitization and C-SOM-treatment. Most non-pretreated operated rats survived the 6h, but 60% of the RTX-pretreated ones died showing a significantly worse survival. This is the first comprehensive study in humans and animal experiments providing evidence that SST is released from the activated peptidergic sensory nerves. It gets into the bloodstream and mediates a potent endogenous protective mechanism.

  8. Mapping sensory circuits by anterograde trans-synaptic transfer of recombinant rabies virus

    PubMed Central

    Zampieri, Niccolò; Jessell, Thomas M.; Murray, Andrew J.

    2014-01-01

    Summary Primary sensory neurons convey information from the external world to relay circuits within the central nervous system (CNS), but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS viral tracing techniques that rely on retrograde trans-synaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde trans-synaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde trans-synaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS. PMID:24486087

  9. Membrane potential correlates of sensory perception in mouse barrel cortex.

    PubMed

    Sachidhanandam, Shankar; Sreenivasan, Varun; Kyriakatos, Alexandros; Kremer, Yves; Petersen, Carl C H

    2013-11-01

    Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (<50 ms) reliable sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.

  10. Sensory nerve action potentials and sensory perception in women with arthritis of the hand

    PubMed Central

    2012-01-01

    Background Arthritis of the hand can limit a person’s ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Methods Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. Results All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. Discussion We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception. PMID:22575001

  11. Sensory nerve action potentials and sensory perception in women with arthritis of the hand.

    PubMed

    Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J

    2012-05-10

    Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.

  12. Sensory Substitution for Wounded Servicemembers

    DTIC Science & Technology

    2009-10-28

    traumatic brain injury (TBI) and two civilians, all with partial visual impairment , evaluated the vision sensory substitution systems. The servicemember...Mobility Augmentation; Wounded Service Members; Human-Centered Computing; Vision Augmentation, Vision , Balance and Hearing; Sensory Substitution-enabled...mitigation of vision sensory and mobility losses. 2) Improved the usefulness of available sensory substitution technologies for injured military

  13. Examining Sensory Quadrants in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…

  14. The Expanded Sensory-Perceptual Examination as a Diagnostic Screening Instrument for Organic Brain Damage.

    ERIC Educational Resources Information Center

    Grundvig, John L.

    The primary objectives of this research program were the development of a battery of tests to investigate the effects of brain impairment on sensory and perceptual functioning. The Sensory-Perceptual Exam (SPE) contains measures intended to evaluate both relatively "pure" sensory functions, as well as those which involve more integrated…

  15. Language-Universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese

    ERIC Educational Resources Information Center

    Goswami, Usha; Wang, H.-L. Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-01-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of "phonological processing", the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific…

  16. Language-Universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese

    ERIC Educational Resources Information Center

    Goswami, Usha; Wang, H.-L. Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-01-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of "phonological processing", the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific…

  17. Sensory stimulation activates both motor and sensory components of the swallowing system

    PubMed Central

    Lowell, Soren Y.; Poletto, Christopher J.; Knorr-Chung, Bethany R.; Reynolds, Richard C.; Simonyan, Kristina; Ludlow, Christy L.

    2008-01-01

    Volitional swallowing in humans involves the coordination of both brainstem and cerebral swallowing control regions. Peripheral sensory inputs are necessary for safe and efficient swallowing, and their importance to the patterned components of swallowing has been demonstrated. However, the role of sensory inputs to the cerebral system during volitional swallowing is less clear. We used four conditions applied during functional magnetic resonance imaging to differentiate between sensory, motor planning, and motor execution components for cerebral control of swallowing. Oral air pulse stimulation was used to examine the effect of sensory input, covert swallowing was used to engage motor planning for swallowing, and overt swallowing was used to activate the volitional swallowing system. Breath-holding was also included to determine whether its effects could account for the activation seen during overt swallowing. Oral air pulse stimulation, covert swallowing and overt swallowing all produced activation in the primary motor cortex, cingulate cortex, putamen and insula. Additional regions of the swallowing cerebral system that were activated by the oral air pulse stimulation condition included the primary and secondary somatosensory cortex and thalamus. Although air pulse stimulation was on the right side only, bilateral cerebral activation occurred. On the other hand, covert swallowing minimally activated sensory regions, but did activate the supplementary motor area and other motor regions. Breath-holding did not account for the activation during overt swallowing. The effectiveness of oral-sensory stimulation for engaging both sensory and motor components of the cerebral swallowing system demonstrates the importance of sensory input in cerebral swallowing control. PMID:18515150

  18. Sensory Coding in Oscillatory Peripheral Receptors

    NASA Astrophysics Data System (ADS)

    Neiman, Alexander

    2014-03-01

    Rhythmical activity have been observed in several types of peripheral sensory receptors, e.g. in senses of hearing, balance and electroreception. We use two examples of spontaneously oscillating peripheral sensory receptors: bullfrog saccular hair cells and electroreceptors of paddlefish, to discuss how oscillations emerge, how these sensors may utilize oscillations to optimize their sensitivity and information processing. In the hair cell system oscillations occur on two very different levels: first, the mechano-sensory hair bundle itself can undergo spontaneous mechanical oscillations and second, self-sustained voltage oscillations across the membrane of the hair cell have been documented. Modelling show that interaction of these two compartment results in enhanced sensitivity to periodic mechanical stimuli. The second example, a single peripheral electroreceptor, is a complex system comprised of several thousands of sensory epithelial cells innervated by a few primary sensory neurons. It embeds two distinct oscillators: one residing in a population of epithelial cells, synaptically coupled to another oscillator residing in a branched myelinated afferent axon. We show how neuronal oscillations emerge in a complex network of excitable nodes. We further demonstrate that epithelial oscillations results in extended serial correlations of neruonal discharges enhancing coding of external stimuli.

  19. [Pathophysiology of sensory ataxic neuropathy].

    PubMed

    Sobue, G

    1996-12-01

    The main lesions of sensory ataxic neuropathy such as chronic idiopathic sensory ataxic neuropathy, (ISAN), carcinomatous neuropathy, Sjögren syndrome-associated neuropathy and acute autonomic and sensory neuropathy (AASN) are the large-diameter sensory neurons and dosal column of the spinal cord and the large myelinated fibers in the peripheral nerve trunks. In addition, afferent fibers to the Clarke's nuclei are also severely involved, suggesting Ia fibers being involved in these neuropathies. In NT-3 knockout mouse, an animal model of sensory ataxia, large-sized la neurons as well as muscle spindle and Golgi tendon organs are depleted, and are causative for sensory ataxia. Thus, the proprioceptive Ia neurons would play a role in pathogenesis of sensory ataxia in human sensory ataxic neuropathies, but the significance of dorsal column involvement in human sensory ataxia is still needed to evaluate.

  20. Sensory symptoms in restless legs syndrome: the enigma of pain.

    PubMed

    Winkelman, John W; Gagnon, Alison; Clair, Andrew G

    2013-10-01

    Restless legs syndrome (RLS) is a common sensorimotor condition characterized by an urge to move the legs, worsening of symptoms at rest and during the evening/night, and improvement of symptoms with movement. Our review explores the role and impact of sensory symptoms in RLS. The phenomenology of RLS is discussed, highlighting the difficulty patients have in describing their sensations and in differentiating between sensory and motor symptoms. Sensory symptoms have a significant impact on quality of life but remain much less well understood than motor symptoms and sleep disturbances in RLS. Although RLS symptoms usually are not described as painful, sensory manifestations in RLS do share some similarities with chronic pain sensations, and RLS frequently occurs in chronic pain and neuropathic conditions. Peripheral neuropathies may account for some of the sensory disturbances in secondary RLS, while alterations in central somatosensory processing may be a more viable explanation for the sensory disturbances in primary RLS. The effectiveness of analgesics in treating RLS supports the concept of abnormal sensory modulation in RLS and suggests an overlap between pain modulatory pathways and sensory disturbances. Future studies are needed to better understand the experiential and biologic aspects of altered sensory experiences in RLS. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Patch-clamping Drosophila sensory neurons.

    PubMed

    Kucher, Volodymyr; Eaton, Benjamin A; Stockand, James D; Boiko, Nina

    2013-01-01

    Electrophysiological studies provide essential clues about the regulation and physiological function of ion channel proteins. Probing ion channel activity in vivo, though, often is challenging. This can limit the usefulness of such model organisms as Drosophila for electrophysiological studies. This is unfortunate because these genetically tractable organisms represent powerful research tools that facilitate elaboration of complex questions of physiology. Here, we describe a recently developed method for recording ion channel activity in Drosophila sensory neurons. This approach is based on patch-clamping primary neuron cultures from Drosophila embryos. Such cultures allow the study of ion channels in different genetic backgrounds. In addition to describing how to prepare a primary neuronal cell culture from Drosophila embryos, we discuss, as an example of utility, analysis of Na(+) currents in cultured class IV multidendritic (md) sensory neurons with the patch clamp technique. Excitability of md sensory neurons, manifested as action potential firing, is revealed with whole-cell current-clamping. Voltage-clamping class IV md neurons revealed the activity of the voltage-gated Na(+) channel, paralytic. Moreover, challenging class IV md neurons with acidic pH activates acid-sensing inward Na(+) currents. Genetic manipulation of Drosophila combined with this electrophysiological readout of activity identifies pickpocket1 (Ppk1), a member of the Deg/ENaC channel family, as responsible for conducting an acid-sensing Na(+) current in class IV md sensory neurons.

  2. Neural correlates supporting sensory discrimination after left hemisphere stroke

    PubMed Central

    Borstad, Alexandra; Schmalbrock, Petra; Choi, Seongjin; Nichols-Larsen, Deborah S.

    2012-01-01

    Background Nearly half of stroke patients have impaired sensory discrimination, however, the neural structures that support post-stroke sensory function have not been described. Objectives 1) To evaluate the role of the primary somatosensory (S1) cortex in post-stroke sensory discrimination and 2) To determine the relationship between post-stroke sensory discrimination and structural integrity of the sensory component of the superior thalamic radiation (sSTR). Methods 10 healthy adults and 10 individuals with left hemisphere stroke participated. Stroke participants completed sensory discrimination testing. An fMRI was conducted during right, impaired hand sensory discrimination. Fractional anisotropy and volume of the sSTR were quantified using diffusion tensor tractography. Results Sensory discrimination was impaired in 60% of participants with left stroke. Peak activation in the left (S1) did not correlate with sensory discrimination ability, rather a more distributed pattern of activation was evident in post-stroke subjects with a positive correlation between peak activation in the parietal cortex and discrimination ability (r=.70, p=.023). The only brain region in which stroke participants had significantly different cortical activation than control participants was the precuneus. Region of interest analysis of the precuneus across stroke participants revealed a positive correlation between peak activation and sensory discrimination ability (r=.77, p=.008). The L/R ratio of sSTR fractional anisotropy also correlated with right hand sensory discrimination (r=.69, p=.027). Conclusions Precuneus cortex, distributed parietal lobe activity, and microstructure of the sSTR support sensory discrimination after left hemisphere stroke. PMID:22592076

  3. Sensory Neuron-Specific Deletion of TRPA1 Results in Mechanical Cutaneous Sensory Deficits.

    PubMed

    Zappia, Katherine J; O'Hara, Crystal L; Moehring, Francie; Kwan, Kelvin Y; Stucky, Cheryl L

    2017-01-01

    The nonselective cation channel transient receptor potential ankyrin 1 (TRPA1) is known to be a key contributor to both somatosensation and pain. Recent studies have implicated TRPA1 in additional physiologic functions and have also suggested that TRPA1 is expressed in nonneuronal tissues. Thus, it has become necessary to resolve the importance of TRPA1 expressed in primary sensory neurons, particularly since previous research has largely used global knock-out animals and chemical TRPA1 antagonists. We therefore sought to isolate the physiological relevance of TRPA1 specifically within sensory neurons. To accomplish this, we used Advillin-Cre mice, in which the promoter for Advillin is used to drive expression of Cre recombinase specifically within sensory neurons. These Advillin-Cre mice were crossed with Trpa1(fl/fl) mice to generate sensory neuron-specific Trpa1 knock-out mice. Here, we show that tissue-specific deletion of TRPA1 from sensory neurons produced strong deficits in behavioral sensitivity to mechanical stimulation, while sensitivity to cold and heat stimuli remained intact. The mechanical sensory deficit was incomplete compared to the mechanosensory impairment of TRPA1 global knock-out mice, in line with the incomplete (∼80%) elimination of TRPA1 from sensory neurons in the tissue-specific Advillin-Cre knock-out mice. Equivalent findings were observed in tissue-specific knock-out animals originating from two independently-generated Advillin-Cre lines. As such, our results show that sensory neuron TRPA1 is required for mechanical, but not cold, responsiveness in noninjured skin.

  4. Sensory Neuron-Specific Deletion of TRPA1 Results in Mechanical Cutaneous Sensory Deficits

    PubMed Central

    2017-01-01

    Abstract The nonselective cation channel transient receptor potential ankyrin 1 (TRPA1) is known to be a key contributor to both somatosensation and pain. Recent studies have implicated TRPA1 in additional physiologic functions and have also suggested that TRPA1 is expressed in nonneuronal tissues. Thus, it has become necessary to resolve the importance of TRPA1 expressed in primary sensory neurons, particularly since previous research has largely used global knock-out animals and chemical TRPA1 antagonists. We therefore sought to isolate the physiological relevance of TRPA1 specifically within sensory neurons. To accomplish this, we used Advillin-Cre mice, in which the promoter for Advillin is used to drive expression of Cre recombinase specifically within sensory neurons. These Advillin-Cre mice were crossed with Trpa1fl/fl mice to generate sensory neuron-specific Trpa1 knock-out mice. Here, we show that tissue-specific deletion of TRPA1 from sensory neurons produced strong deficits in behavioral sensitivity to mechanical stimulation, while sensitivity to cold and heat stimuli remained intact. The mechanical sensory deficit was incomplete compared to the mechanosensory impairment of TRPA1 global knock-out mice, in line with the incomplete (∼80%) elimination of TRPA1 from sensory neurons in the tissue-specific Advillin-Cre knock-out mice. Equivalent findings were observed in tissue-specific knock-out animals originating from two independently-generated Advillin-Cre lines. As such, our results show that sensory neuron TRPA1 is required for mechanical, but not cold, responsiveness in noninjured skin. PMID:28303259

  5. Recording Sensory Words

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2007-01-01

    From children's viewpoints, what they experience in the world is what the world is like--for everyone. "What do others experience with their senses when they are in the same situation?" is a question that young children can explore by collecting data as they use a "feely box," or take a "sensory walk." There are many ways to focus the children's…

  6. Structured Sensory Trauma Interventions

    ERIC Educational Resources Information Center

    Steele, William; Kuban, Caelan

    2010-01-01

    This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…

  7. Studying Sensory Perception.

    ERIC Educational Resources Information Center

    Ackerly, Spafford C.

    2001-01-01

    Explains the vestibular organ's role in balancing the body and stabilizing the visual world using the example of a hunter. Describes the relationship between sensory perception and learning. Recommends using optical illusions to illustrate the distinctions between external realities and internal perceptions. (Contains 13 references.) (YDS)

  8. Studying Sensory Perception.

    ERIC Educational Resources Information Center

    Ackerly, Spafford C.

    2001-01-01

    Explains the vestibular organ's role in balancing the body and stabilizing the visual world using the example of a hunter. Describes the relationship between sensory perception and learning. Recommends using optical illusions to illustrate the distinctions between external realities and internal perceptions. (Contains 13 references.) (YDS)

  9. Sensory matched filters.

    PubMed

    Warrant, Eric J

    2016-10-24

    As animals move through their environments they are subjected to an endless barrage of sensory signals. Of these, some will be of utmost importance, such as the tell-tale aroma of a potential mate, the distinctive appearance of a vital food source or the unmistakable sound of an approaching predator. Others will be less important. Indeed some will not be important at all. There are, for instance, wide realms of the sensory world that remain entirely undetected, simply because an animal lacks the physiological capacity to detect and analyse the signals that characterise this realm. Take ourselves for example: we are completely insensitive to the Earth's magnetic field, a sensory cue of vital importance as a compass for steering the long distance migration of animals as varied as birds, lobsters and sea turtles. We are also totally oblivious to the rich palette of ultraviolet colours that exist all around us, colours seen by insects, crustaceans, birds, fish and lizards (in fact perhaps by most animals). Nor can we hear the ultrasonic sonar pulses emitted by bats in hot pursuit of flying insect prey. The simple reason for these apparent deficiencies is that we either lack the sensory capacity entirely (as in the case of magnetoreception) or that our existing senses are incapable of detecting specific ranges of the stimulus (such as the ultraviolet wavelength range of light).

  10. Recording Sensory Words

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2007-01-01

    From children's viewpoints, what they experience in the world is what the world is like--for everyone. "What do others experience with their senses when they are in the same situation?" is a question that young children can explore by collecting data as they use a "feely box," or take a "sensory walk." There are many ways to focus the children's…

  11. [Sensory Systems of Infants.

    ERIC Educational Resources Information Center

    Zero To Three, 1993

    1993-01-01

    This newsletter contains six articles: (1) "Early Flavor Experiences: When Do They Start?" Julie A. Mennella and Gary K. Beauchamp); (2) "Infant Massage" (Tiffany Field); (3) "The Infant's Sixth Sense: Awareness and Regulation of Bodily Processes" (Stephen W. Porges); (4) "Sensory Contributions to Action: A…

  12. Environmental Awareness (Sensory Awareness).

    ERIC Educational Resources Information Center

    Carpenter, Marian

    Capitalizing on the resources available within a city block, this resource guide for the emotionally handicapped (K-6) describes methods and procedures for developing sensory awareness in the urban out-of-doors. Conceptual focus is on interdependency ("living things are interdependent"). Involvement in the environment (observing, thinking, doing)…

  13. Our Sensory World.

    ERIC Educational Resources Information Center

    Liesman, C.; Barringer, M. D.

    The booklet explores the role of sensory experiences in the severely developmentally disabled child. Developmental theory is addressed, followed by specific activity suggestions (broken down into developmental levels) for developing tactile sense, auditory sense, gustatory (taste) sense, olfactory sense, visual sense, and kinesthetic sense.…

  14. Environmental Awareness (Sensory Awareness).

    ERIC Educational Resources Information Center

    Carpenter, Marian

    Capitalizing on the resources available within a city block, this resource guide for the emotionally handicapped (K-6) describes methods and procedures for developing sensory awareness in the urban out-of-doors. Conceptual focus is on interdependency ("living things are interdependent"). Involvement in the environment (observing, thinking, doing)…

  15. Structured Sensory Trauma Interventions

    ERIC Educational Resources Information Center

    Steele, William; Kuban, Caelan

    2010-01-01

    This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…

  16. Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control

    PubMed Central

    Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.

    2013-01-01

    The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656

  17. Relationship between play and sensory processing: a systematic review.

    PubMed

    Watts, Tara; Stagnitti, Karen; Brown, Ted

    2014-01-01

    OBJECTIVE. We examined the empirical evidence to answer the research question, What is the relationship between play and sensory processing in children ages 3-12 yr? METHOD. The PRISMA guidelines were followed to complete a systematic review. Academic databases were searched using play, leisure, sensory processing, and sensory integration as primary search terms. Of 6,230 articles initially identified, 35 full-text articles were screened for eligibility. Of these, 8 met the inclusion criteria. RESULTS. All 8 studies were conducted within the United States. The evidence of the relationship between play and sensory processing fell mainly into the low levels of evidence: case studies and cohort studies. CONCLUSION. This review provides occupational therapists with an emerging understanding of the relationship between play and sensory processing based on current evidence and its importance in the occupational development of children. Rigorous research is needed in the area.

  18. Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster

    PubMed Central

    Yagi, Ryosuke; Mabuchi, Yuta; Mizunami, Makoto; Tanaka, Nobuaki K.

    2016-01-01

    Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. This finding provides a novel focus of research by Drosophila genetics for perception of the external world by integrating multisensory signals. PMID:27404960

  19. Understanding Sensory Integration. ERIC Digest.

    ERIC Educational Resources Information Center

    DiMatties, Marie E.; Sammons, Jennifer H.

    This brief paper summarizes what is known about sensory integration and sensory integration dysfunction (DSI). It outlines evaluation of DSI, treatment approaches, and implications for parents and teachers, including compensatory strategies for minimizing the impact of DSI on a child's life. Review of origins of sensory integration theory in the…

  20. Absence of rapid sensory adaptation in neocortex during information processing states.

    PubMed

    Castro-Alamancos, Manuel A

    2004-02-05

    One prominent feature of sensory responses in neocortex is that they rapidly adapt to increases in frequency, a process called "sensory adaptation." Here we show that sensory adaptation mainly occurs during quiescent states such as anesthesia, slow-wave sleep, and awake immobility. In contrast, during behavior-ally activated states, sensory responses are already adapted. For instance, during learning of a behavioral task, when an animal is very alert and expectant, sensory adaptation is mostly absent. After learning occurs, and the task becomes routine, the level of alertness lessens and sensory adaptation becomes robust. The primary sensory thalamocortical pathway of alert and expectant animals is in the adapted state, which may be required for adequate sensory information processing.

  1. Set and setting: how behavioral state regulates sensory function and plasticity

    PubMed Central

    Aton, Sara J.

    2013-01-01

    Recently developed neuroimaging and electrophysiological techniques are allowing us to answer fundamental questions about how behavioral states regulate our perception of the external environment. Studies using these techniques have yielded surprising insights into how sensory processing is affected at the earliest stages by attention and motivation, and how new sensory information received during wakefulness (e.g., during learning) continues to affect sensory brain circuits (leading to plastic changes) during subsequent sleep. This review aims to describe how brain states affect sensory response properties among neurons in primary and secondary sensory cortices, and how this relates to psychophysical detection thresholds and performance on sensory discrimination tasks. This is not intended to serve as a comprehensive overview of all brain states, or all sensory systems, but instead as an illustrative description of how three specific state variables (attention, motivation, and vigilance [i.e., sleep vs. wakefulness]) affect sensory systems in which they have been best studied. PMID:23792020

  2. Local neurogenic regulation of rat hindlimb circulation: CO2-induced release of calcitonin gene-related peptide from sensory nerves

    PubMed Central

    Yamada, Masami; Ishikawa, Tomohisa; Yamanaka, Akihiro; Fujimori, Akira; Goto, Katsutoshi

    1997-01-01

    The mechanism of release of calcitonin gene-related peptide (CGRP) from sensory nerves in response to skeletal muscle contraction was investigated in the rat hindlimb in vivo and in vitro. In the anaesthetized rat, sciatic nerve stimulation at 10 Hz for 1 min caused a hyperaemic response in the hindlimb. During the response, partial pressure of CO2 in the venous blood effluent from the hindlimb significantly increased from 43±3 to 73±8 mmHg, whereas a small decrease in pH and no appreciable change in partial pressure of O2 were observed. An intra-arterial bolus injection of NaHCO3 (titrated to pH 7.2 with HCl), which elevated PCO2 of the venous blood, caused a sustained increase in regional blood flow of the iliac artery. Capsaicin (0.33 μmol kg−1, i.a.) and a specific calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8–37), (100 nmol kg−1 min−1, i.v.) significantly suppressed the hyperaemic response to NaHCO3. Neither NDΩ-nitro-L-arginine methyl ester (1 μmol kg−1 min−1, i.v.) nor indomethacin (5 mg kg−1, i.v.) affected the response. The serum level of CGRP-like immunoreactivity in the venous blood was significantly increased by a bolus injection of NaHCO3 (pH=7.2) from 50±4 to 196±16 fmol ml−1. In the isolated hindlimb perfused with Krebs-Ringer solution, a bolus injection of NaHCO3 (pH=7.2) caused a decrease in perfusion pressure which was composed of two responses, i.e., an initial transient response and a slowly-developing long-lasting one. CGRP(8–37) significantly inhibited the latter response by 73%. These results suggest that CO2 liberated from exercising skeletal muscle activates capsaicin-sensitive perivascular sensory nerves locally, which results in the release of CGRP from their peripheral endings, and then the released peptide causes local vasodilatation. PMID:9375968

  3. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence.

    PubMed

    Lai, N Y; Mills, K; Chiu, I M

    2017-07-01

    Sensory neurons in the gastrointestinal tract have multifaceted roles in maintaining homeostasis, detecting danger and initiating protective responses. The gastrointestinal tract is innervated by three types of sensory neurons: dorsal root ganglia, nodose/jugular ganglia and intrinsic primary afferent neurons. Here, we examine how these distinct sensory neurons and their signal transducers participate in regulating gastrointestinal inflammation and host defence. Sensory neurons are equipped with molecular sensors that enable neuronal detection of diverse environmental signals including thermal and mechanical stimuli, inflammatory mediators and tissue damage. Emerging evidence shows that sensory neurons participate in host-microbe interactions. Sensory neurons are able to detect pathogenic and commensal bacteria through specific metabolites, cell-wall components, and toxins. Here, we review recent work on the mechanisms of bacterial detection by distinct subtypes of gut-innervating sensory neurons. Upon activation, sensory neurons communicate to the immune system to modulate tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this neuro-immune regulation is orchestrated through transient receptor potential ion channels and sensory neuropeptides including substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Recent studies also highlight a role for sensory neurons in regulating host defence against enteric bacterial pathogens including Salmonella typhimurium, Citrobacter rodentium and enterotoxigenic Escherichia coli. Understanding how sensory neurons respond to gastrointestinal flora and communicate with immune cells to regulate host defence enhances our knowledge of host physiology and may form the basis for new approaches to treat gastrointestinal diseases. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  4. Auditory sensory gating deficit and cortical thickness in schizophrenia.

    PubMed

    Thoma, R J; Hanlon, F M; Sanchez, N; Weisend, M P; Huang, M; Jones, A; Miller, G A; Canive, J M

    2004-11-30

    Both an EEG P50 sensory gating deficit and abnormalities of the temporal lobe structure are considered characteristic of schizophrenia. The standard P50 sensory gating measure does not foster differential assessment of left- and right-hemisphere contributions, but its analogous MEG M50 component may be used to measure gating of distinct auditory source dipoles localizing to left- and right-hemisphere primary auditory cortex. The present study sought to determine how sensory gating ratio may relate to cortical thickness at the site of the auditory dipole localization. A standard auditory paired-click paradigm was used during MEG for patients (n=22) and normal controls (n=11). Sensory gating ratios were determined by measuring the strength of the 50 ms response to the second click divided by that of the first click (S2/S1). Cortical thickness was assessed by two reliable raters using 3D sMRI. Results showed that: (1) patients had a P50 and left M50 sensory gating deficit relative to controls; (2) cortex in both hemispheres was thicker in the control group; (3) in schizophrenia, poorer left-hemisphere M50 sensory gating correlated with thinner left-hemisphere auditory cortical thickness; and (4) poorer right-hemisphere M50 auditory sensory gating ratio correlated with thinner right-hemisphere auditory cortical thickness in patients. The MEG-assessed hemisphere-specific auditory sensory gating ratio may be driven by this structural abnormality in auditory cortex.

  5. Instabilities in sensory processes

    NASA Astrophysics Data System (ADS)

    Balakrishnan, J.

    2014-07-01

    In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.

  6. Sensory and Perceptual Deprivation

    DTIC Science & Technology

    1964-04-22

    stimulation even in inane forms, and -- were more effectively persuaded by lectures advocating the existence of ghosts, poltergeists and extrasensory ... perception pbenomena. These provocative experiments at McGill were completed just about 10 years ago. What has happened in the decade since? Research...shown a greater change among isolated Ss in interest and belief in extra sensory perception topics (29, 56). Recent experiments have tended to confirm

  7. A physical basis for sensory perception

    NASA Astrophysics Data System (ADS)

    Norwich, Kenneth H.

    2014-11-01

    It is argued that the process of perception takes origin within physics itself. A simple, physical model of a biological sensory receptor unit, a unit which mediates perception at its most elemental level, is developed. This model will be not just a detector of sensory signals (like a light meter or sound level meter), but will transduce these signals to the level of consciousness. The properties of this physical model of the sensory receptor unit are drawn from classical physics. Because of its simplicity, the receptor model allows for perception of only discrete quantities of incident signal energy. My primary goal in presenting this reduced model of perception is to teach concepts without the need for detailed anatomy or physiology. Using the simple mathematical properties of the receptor model, we are able to derive a number of the empirical equations of sensory science. Since the idea has been advanced that the process of perception, at a fundamental level, belongs to physics whose validity is universal, it is suggested that the “laws” of perception of the world manifested by organisms anywhere within the universe will be similar to the laws we observe here on earth.

  8. Sensory Perception: Lessons from Synesthesia

    PubMed Central

    Harvey, Joshua Paul

    2013-01-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition’s existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of “normal” sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion ― the binding problem ― as well as how sensory perception develops. PMID:23766741

  9. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons

    PubMed Central

    Peters, James H.; McDougall, Stuart J.; Fawley, Jessica A.; Smith, Stephen M.; Andresen, Michael C.

    2010-01-01

    SUMMARY TRPV1 receptors feature prominently in nociception of spinal primary afferents but are also expressed in unmyelinated cranial visceral primary afferents linked to homeostatic regulation. Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS) to control the heart, lungs and other vital organs. Here we identify a novel role for central TRPV1 in the activity-dependent facilitation of glutamatergic transmission from solitary tract (ST) afferents. Fast, synchronous ST-NTS transmission from capsaicin sensitive (TRPV1+) and insensitive (TRPV1−) afferents was similar. However, afferent activation triggered long lasting asynchronous glutamate release only from TRPV1+ synapses. Asynchronous release was proportional to synchronous EPSC amplitude, activity, and calcium entry. TRPV1 antagonists and low temperature blocked asynchronous release but not evoked EPSCs. At physiological afferent frequencies, asynchronous release strongly potentiated the duration of postsynaptic spiking. This activity dependent TPRV1-mediated facilitation is a novel form of synaptic plasticity that brings a unique central integrative feature to the CNS and autonomic regulation. PMID:20223201

  10. Measurement in Sensory Modulation: The Sensory Processing Scale Assessment

    PubMed Central

    Miller, Lucy J.; Sullivan, Jillian C.

    2014-01-01

    OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464

  11. Hereditary sensory radicular neuropathy: defective neurogenic inflammation.

    PubMed

    Westerman, R A; Block, A; Nunn, A; Delaney, C A; Hahn, A; Dennett, X; Carr, R W

    1992-01-01

    Hereditary sensory radicular neuropathy exhibits autosomal dominant inheritance with complete penetrance in males and incomplete penetrance in females. Newer tests of small sensory nerve function were used in screening 8 family members aged between 14 and 66 years. All exhibited some frequent features of the disorder with an onset in the 2nd or 3rd decade, foot ulceration, foot callus, loss of pin prick, thermal and light touch sensation, and some reduction in vibration acuity and proprioception in the lower limbs. The hands were involved in 3 of 8, muscle involvement was present in 5 of 8, but deafness was not detected by audiometry. Nerve conduction velocity, sensory action potentials, latency and amplitude, thermal acuity, vibration acuity and axon reflex flares were measured in all patients. One sural nerve biopsy confirmed the presence of peripheral fibre loss in this predominantly sensory neuropathy. Chemically evoked axon reflex tests were used to evaluate the extent of primary sensory nerve fibre involvement. All patients were tested using a Moor MBF 3-D dual channel laser Doppler velocimeter. Acetylcholine or phenylephrine iontophoretically applied as 16 mC doses evoked absent or tiny axon reflexes in areas of impaired pin prick sensation. By contrast, direct microvascular dilator responses to nitroprusside (smooth muscle dependent) and acetylcholine (endothelium-dependent) were present but somewhat reduced in areas with defective neurogenic inflammation. These results differ significantly from the responses obtained in age-matched healthy controls (P < 0.05). Foot pressure analysis was performed for orthoses in 2 affected members with foot ulceration using the Musgrave Footprint system.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Sensory integration in Finland.

    PubMed

    Slavik, B A

    1992-01-01

    This article describes the development and organization of a sensory integration training course given in Finland. Facts that impact on the success of international health education are discussed in relation to thc model used for this course. In addition, cultural differences (e.g, language, customs, health care, and education systems) are discussed as they relate to this teaching experlence and to occupational therapy practice in Finland. The summary highlights examples of how teaching and/or working in another culture can impact on professional development.

  13. Size structures sensory hierarchy in ocean life.

    PubMed

    Martens, Erik A; Wadhwa, Navish; Jacobsen, Nis S; Lindemann, Christian; Andersen, Ken H; Visser, André

    2015-09-22

    Survival in aquatic environments requires organisms to have effective means of collecting information from their surroundings through various sensing strategies. In this study, we explore how sensing mode and range depend on body size. We find a hierarchy of sensing modes determined by body size. With increasing body size, a larger battery of modes becomes available (chemosensing, mechanosensing, vision, hearing and echolocation, in that order) while the sensing range also increases. This size-dependent hierarchy and the transitions between primary sensory modes are explained on the grounds of limiting factors set by physiology and the physical laws governing signal generation, transmission and reception. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in literature. The treatise of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. © 2015 The Author(s).

  14. Size structures sensory hierarchy in ocean life

    PubMed Central

    Martens, Erik A.; Wadhwa, Navish; Jacobsen, Nis S.; Lindemann, Christian; Andersen, Ken H.; Visser, André

    2015-01-01

    Survival in aquatic environments requires organisms to have effective means of collecting information from their surroundings through various sensing strategies. In this study, we explore how sensing mode and range depend on body size. We find a hierarchy of sensing modes determined by body size. With increasing body size, a larger battery of modes becomes available (chemosensing, mechanosensing, vision, hearing and echolocation, in that order) while the sensing range also increases. This size-dependent hierarchy and the transitions between primary sensory modes are explained on the grounds of limiting factors set by physiology and the physical laws governing signal generation, transmission and reception. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in literature. The treatise of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. PMID:26378212

  15. Approximate Sensory Data Collection: A Survey.

    PubMed

    Cheng, Siyao; Cai, Zhipeng; Li, Jianzhong

    2017-03-10

    With the rapid development of the Internet of Things (IoTs), wireless sensor networks (WSNs) and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  16. Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates.

    PubMed

    Palmer, Clare E; Davare, Marco; Kilner, James M

    2016-10-19

    Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of a persons' inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimulation to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological disorders in which one form of sensory attenuation but not the other is impaired. Time-frequency analyses revealed a negative correlation over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory attenuation.

  17. Cortical network reorganization guided by sensory input features.

    PubMed

    Kilgard, Michael P; Pandya, Pritesh K; Engineer, Navzer D; Moucha, Raluca

    2002-12-01

    Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment.

  18. The cutaneous sensory system.

    PubMed

    McGlone, Francis; Reilly, David

    2010-02-01

    The cutaneous senses are traditionally thought to comprise four recognized submodalities that relay tactile, thermal, painful and pruritic (itch) information to the central nervous system, but there is growing evidence for the presence of a fifth modality that conveys positive affective (pleasant) properties of touch. Cutaneous sensory channels can be further classified as serving predominantly either discriminative or affective functions. The former provides information about the spatial and temporal localisation of events on the body surface, e.g., the presence of an insect or the temperature of a cold wind; and the latter, although widely recognised as providing the afferent neural input driving the negative emotional experience of pain, is here posited to provide the afferent neural input driving the positive emotional experience of affiliative touch as well. A distinction is made between the properties of fast conducting myelinated afferents and those of slowly conducting unmyelinated afferents, with the former subserving a sensory-discriminative role, and the latter an affective-motivational one. Here we review the basic elements of the somatosensory system and outline evidence for the inclusion of the 'fifth' sub-modality, conveyed by low-threshold C-fiber mechanoreceptors as the counterpart of high-threshold C-fiber nociceptors with both C-fiber systems serving opposing aspects of affective touch, yet underpining a common mechanism for the preservation of self and species.

  19. [Possible Signs of Sensory Overload].

    PubMed

    Scheydt, Stefan; Needham, Ian

    2017-04-01

    Objective To identify, synthesize and structure the defining characteristics of overstimulation. Methods The literature search was conducted in relevant international databases (Pubmed, Medline, CINAHL, Psyndex, PsycArticles, PsychINFO). The literature analysis was conducted according to Mayring's method of qualitative content analysis. Results Despite the scanty data available on symptoms or effects of sensory overload, twelve literature-sources were identified, describing signs and symptoms of sensory overload. A cluster of psychopathological and behavioral characteristics of sensory overload was developed. Conclusions Further research is needed to obtain an evidence-based description of the defining characteristics of sensory overload. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Variable sensory perception in autism.

    PubMed

    Haigh, Sarah M

    2017-05-05

    Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Cortical oscillations and sensory predictions.

    PubMed

    Arnal, Luc H; Giraud, Anne-Lise

    2012-07-01

    Many theories of perception are anchored in the central notion that the brain continuously updates an internal model of the world to infer the probable causes of sensory events. In this framework, the brain needs not only to predict the causes of sensory input, but also when they are most likely to happen. In this article, we review the neurophysiological bases of sensory predictions of "what' (predictive coding) and 'when' (predictive timing), with an emphasis on low-level oscillatory mechanisms. We argue that neural rhythms offer distinct and adapted computational solutions to predicting 'what' is going to happen in the sensory environment and 'when'.

  2. Spectral mixing of rhythmic neuronal signals in sensory cortex

    PubMed Central

    Ahrens, Kurt F.; Levine, Herbert; Suhl, Harry; Kleinfeld, David

    2002-01-01

    The ability to compute the difference between two frequencies depends on a nonlinear operation that mixes two periodic signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the mammalian nervous system as a means to compare two rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. However, a neurological substrate for mixing has not been identified. Here we address the issue of nonlinear mixing of neuronal activity in the vibrissa primary sensory cortex of rat, a region that receives intrinsic as well as sensory-driven rhythmic input during natural whisking. In our preparation, the intrinsic signal originates from cortical oscillations that were induced by anesthetics, and the extrinsic input is introduced by periodic stimulation of vibrissae. We observed that the local extracellular current in vibrissa primary sensory cortex contained oscillatory components at the sum and difference of the intrinsic and extrinsic frequencies. In complementary experiments, we observed that the simultaneous stimulation of contralateral and ipsilateral vibrissae at different frequencies also led to current flow at the sum and difference frequencies. We show theoretically that the relative amplitudes of the observed mixture terms can be accounted for by a threshold nonlinearity in the input–output relation of the underlying neurons. In general, our results provide a neurological substrate for the modulation and demodulation of rhythmic neuronal signals for sensory coding and feedback stabilization of motor output. PMID:12403828

  3. The impact of atypical sensory processing on social impairments in autism spectrum disorder.

    PubMed

    Thye, Melissa D; Bednarz, Haley M; Herringshaw, Abbey J; Sartin, Emma B; Kana, Rajesh K

    2017-05-17

    Altered sensory processing has been an important feature of the clinical descriptions of autism spectrum disorder (ASD). There is evidence that sensory dysregulation arises early in the progression of ASD and impacts social functioning. This paper reviews behavioral and neurobiological evidence that describes how sensory deficits across multiple modalities (vision, hearing, touch, olfaction, gustation, and multisensory integration) could impact social functions in ASD. Theoretical models of ASD and their implications for the relationship between sensory and social functioning are discussed. Furthermore, neural differences in anatomy, function, and connectivity of different regions underlying sensory and social processing are also discussed. We conclude that there are multiple mechanisms through which early sensory dysregulation in ASD could cascade into social deficits across development. Future research is needed to clarify these mechanisms, and specific focus should be given to distinguish between deficits in primary sensory processing and altered top-down attentional and cognitive processes. Published by Elsevier Ltd.

  4. Sensory receptors in monotremes.

    PubMed Central

    Proske, U; Gregory, J E; Iggo, A

    1998-01-01

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence

  5. Sensory receptors in monotremes.

    PubMed

    Proske, U; Gregory, J E; Iggo, A

    1998-07-29

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence

  6. Evidence for Glutamate as a Neuroglial Transmitter within Sensory Ganglia

    PubMed Central

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T.; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. PMID:23844184

  7. Evidence for glutamate as a neuroglial transmitter within sensory ganglia.

    PubMed

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.

  8. Sensory adaptation for timing perception.

    PubMed

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-04-22

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception.

  9. Sensory adaptation for timing perception

    PubMed Central

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-01-01

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception. PMID:25788590

  10. Sensory aspects of movement disorders

    PubMed Central

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  11. Sensory analysis of pet foods.

    PubMed

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities.

  12. Sensory aspects of movement disorders.

    PubMed

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2014-01-01

    Movement disorders, which include disorders such as Parkinson's disease, dystonia, Tourette's syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed.

  13. Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates

    PubMed Central

    Davare, Marco; Kilner, James M.

    2016-01-01

    Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of a persons' inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimulation to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological disorders in which one form of sensory attenuation but not the other is impaired. Time–frequency analyses revealed a negative correlation over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory attenuation. SIGNIFICANCE STATEMENT We demonstrate that there are two functionally and mechanistically distinct forms of sensory gating. The literature regarding somatosensory evoked potential (SEP) gating is commonly cited as a potential mechanism underlying perceptual sensory attenuation; however, the formal relationship between physiological and perceptual sensory

  14. Improving Academic Scores Through Sensory Integration

    ERIC Educational Resources Information Center

    Ayres, A. Jean

    1972-01-01

    Investigated were the effects of a remedial program stressing sensory integration on the academic performance of learning disabled children with certain identifiable types of sensory integrative dysfunction. (KW)

  15. Improving Academic Scores Through Sensory Integration

    ERIC Educational Resources Information Center

    Ayres, A. Jean

    1972-01-01

    Investigated were the effects of a remedial program stressing sensory integration on the academic performance of learning disabled children with certain identifiable types of sensory integrative dysfunction. (KW)

  16. Task-specific transfer of perceptual learning across sensory modalities.

    PubMed

    McGovern, David P; Astle, Andrew T; Clavin, Sarah L; Newell, Fiona N

    2016-01-11

    It is now widely accepted that primary cortical areas of the brain that were once thought to be sensory-specific undergo significant functional reorganisation following sensory deprivation. For instance, loss of vision or audition leads to the brain areas normally associated with these senses being recruited by the remaining sensory modalities [1]. Despite this, little is known about the rules governing crossmodal plasticity in people who experience typical sensory development, or the potential behavioural consequences. Here, we used a novel perceptual learning paradigm to assess whether the benefits associated with training on a task in one sense transfer to another sense. Participants were randomly assigned to a spatial or temporal task that could be performed visually or aurally, which they practiced for five days; before and after training, we measured discrimination thresholds on all four conditions and calculated the extent of transfer between them. Our results show a clear transfer of learning between sensory modalities; however, generalisation was limited to particular conditions. Specifically, learned improvements on the spatial task transferred from the visual domain to the auditory domain, but not vice versa. Conversely, benefits derived from training on the temporal task transferred from the auditory domain to visual domain, but not vice versa. These results suggest a unidirectional transfer of perceptual learning from dominant to non-dominant sensory modalities and place important constraints on models of multisensory processing and plasticity.

  17. Sensory Neuropathy Due to Loss of Bcl-w

    PubMed Central

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  18. Effect of noise correlations on information transmission in sensory receptors

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai; Neiman, Alexander

    2012-02-01

    Peripheral receptors in many sensory systems are organized in a limited scale feed-forward networks passing information thru a series of network layers, then ultimately to the CNS. Often peripheral receptors are characterized by spontaneous noisy oscillatory activity which may introduce temporal and spatial correlations in neuronal spike trains. Examples include spontaneous stochastic oscillations in hair cells and primary sensory afferents in auditory, vestibular and electro sensory receptors. We study the influence of this correlated noise on spontaneous activity and information transmission in a model of limited-scale networks of electroreceptors. In this model a few (2 - 5) sensory neurons innervate several (10 - 30) clusters of epithelial receptor cells producing stochastic oscillations. We show how noise correlations are transferred by small networks of sensory neurons and how these correlations affect information transmission. While coherent epithelial oscillations may enhance information transmission for a single sensory neuron, the presence of spatially correlated noise introduces redundancy reducing stimulus coding efficiency and information rate on the network level.

  19. Sensory neuropathy attributable to loss of Bcl-w.

    PubMed

    Courchesne, Stephanie L; Karch, Christoph; Pazyra-Murphy, Maria F; Segal, Rosalind A

    2011-02-02

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small-diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w(-/-) mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w(-/-) sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w(-/-) mice as an animal model of small fiber sensory neuropathy and provide new insight regarding the role of Bcl-w and of mitochondria in preventing axonal degeneration.

  20. Piezo2 Expression in Mechanosensitive Dental Primary Afferent Neurons.

    PubMed

    Won, J; Vang, H; Lee, P R; Kim, Y H; Kim, H W; Kang, Y; Oh, S B

    2017-07-01

    Mechanosensitive ion channels have been suggested to be expressed in dental primary afferent (DPA) neurons to transduce the movement of dentinal fluid since the proposal of hydrodynamic theory. Piezo2, a mechanosensitive, rapidly inactivating (RI) ion channel, has been recently identified in dorsal root ganglion (DRG) neurons to mediate tactile transduction. Here, we examined the expression of Piezo2 in DPA neurons by in situ hybridization, single-cell reverse transcriptase polymerase chain reaction, and whole-cell patch-clamp recordings. DPA neurons with Piezo2 messenger RNA (mRNA) or Piezo2-like currents were further characterized based on their neurochemical and electrophysiological properties. Piezo2 mRNA was found mostly in medium- to large-sized DPA neurons, with the majority of these neurons also positive for Nav1.8, CGRP, and NF200, whereas only a minor population was positive for IB4 and peripherin. Whole-cell patch-clamp recordings revealed Piezo2-like, RI currents evoked by mechanical stimulation in a subpopulation of DPA neurons. RI currents were pharmacologically blocked by ruthenium red, a compound known to block Piezo2, and were also reduced by small interfering RNA-mediated Piezo2 knockdown. Piezo2-like currents were observed almost exclusively in IB4-negative DPA neurons, with the current amplitude larger in capsaicin-insensitive DPA neurons than the capsaicin-sensitive population. Our findings show that subpopulation of DPA neurons is indeed mechanically sensitive. Within this subpopulation of mechanosensitive DPA neurons, we have identified the Piezo2 ion channel as a potential transducer for mechanical stimuli, contributing to RI inward currents. Piezo2-positive DPA neurons were characterized as medium- to large-sized neurons with myelinated A-fibers, containing nociceptive peptidergic neurotransmitters.

  1. Sensory suppression during feeding

    PubMed Central

    Foo, H.; Mason, Peggy

    2005-01-01

    Feeding is essential for survival, whereas withdrawal and escape reactions are fundamentally protective. These critical behaviors can compete for an animal's resources when an acutely painful stimulus affects the animal during feeding. One solution to the feeding-withdrawal conflict is to optimize feeding by suppressing pain. We examined whether rats continue to feed when challenged with a painful stimulus. During feeding, motor withdrawal responses to noxious paw heat either did not occur or were greatly delayed. To investigate the neural basis of sensory suppression accompanying feeding, we recorded from brainstem pain-modulatory neurons involved in the descending control of pain transmission. During feeding, pain-facilitatory ON cells were inhibited and pain-inhibitory OFF cells were excited. When a nonpainful somatosensory stimulus preactivated ON cells and preinhibited OFF cells, rats interrupted eating to react to painful stimuli. Inactivation of the brainstem region containing ON and OFF cells also blocked pain suppression during eating, demonstrating that brainstem pain-modulatory neurons suppress motor reactions to external stimulation during homeostatic behaviors. PMID:16275919

  2. Amygdalar Gating of Early Sensory Processing through Interactions with Locus Coeruleus.

    PubMed

    Fast, Cynthia D; McGann, John P

    2017-03-15

    Fear- and stress-induced activity in the amygdala has been hypothesized to influence sensory brain regions through the influence of the amygdala on neuromodulatory centers. To directly examine this relationship, we used optical imaging to observe odor-evoked activity in populations of olfactory bulb inhibitory interneurons and of synaptic terminals of olfactory sensory neurons (the primary sensory neurons of the olfactory system, which provide the initial olfactory input to the brain) during pharmacological inactivation of amygdala and locus coeruleus (LC) in mice. Although the amygdala does not directly project to the olfactory bulb, joint pharmacological inactivation of the central, basolateral, and lateral nuclei of the amygdala nonetheless strongly suppressed odor-evoked activity in GABAergic inhibitory interneuron populations in the OB. This suppression was prevented by inactivation of LC or pretreatment of the olfactory bulb with a broad-spectrum noradrenergic receptor antagonist. Visualization of synaptic output from olfactory sensory neuron terminals into the olfactory bulb of the brain revealed that amygdalar inactivation preferentially strengthened the odor-evoked synaptic output of weakly activated populations of sensory afferents from the nose, thus demonstrating a change in sensory gating potentially mediated by local inhibition of olfactory sensory neuron terminals. We conclude that amygdalar activity influences olfactory processing as early as the primary sensory input to the brain by modulating norepinephrine release from the locus coeruleus into the olfactory bulb. These findings show that the amygdala and LC state actively determines which sensory signals are selected for processing in sensory brain regions. Similar local circuitry operates in the olfactory, visual, and auditory systems, suggesting a potentially shared mechanism across modalities.SIGNIFICANCE STATEMENT The affective state is increasingly understood to influence early neural

  3. Sensory Phenomena in Tourette Syndrome: Their Role in Symptom Formation and Treatment

    PubMed Central

    Houghton, David C.; Capriotti, Matthew R.; Conelea, Christine A.; Woods, Douglas W.

    2015-01-01

    The primary symptoms of Tourette Syndrome (TS) are motor and vocal tics, but increasingly, researchers have examined the role of sensory phenomena in biobehavioral models of the disorder. These sensory phenomena involve tic-related premonitory urge sensations as well as potential abnormalities in the perceptual and behavioral experiences associated with external sensory input. As such, dysfunctional sensorimotor integration might represent a key facet of TS pathology. The current paper reviews the literature on sensory phenomena in tic disorders and highlights possible connections to TS symptoms and directions for future research. PMID:25844305

  4. NADPH-diaphorase histochemistry selectively stains peripheral and central sensory structures of lumbricid earhworms.

    PubMed

    Solt, Zsuzsanna; Zsombok, Andrea; Pollák, Edit; Molnár, László

    2016-12-01

    By means of whole mount NADPH-diaphorase histochemistry the distribution pattern of primary sensory cells (PSC) and the pathway of their central processes in the ventral nerve cord (VNC) ganglia were investigated in the lumbricid earthworms, Eisenia fetida and Lumbricus terrestris. The distribution pattern of the stained structures seemed to be the same in both species investigated. Strong labelling occurred in sensory fibre branches of segmental nerves and in each of the sensory longitudinal axon bundles of VNC ganglia. Based on their anatomical location some NADPH-d positive central sensory cells were identified from among which the putative tactile receptors were characterized by constant, strong staining.

  5. Expressing fear enhances sensory acquisition.

    PubMed

    Susskind, Joshua M; Lee, Daniel H; Cusi, Andrée; Feiman, Roman; Grabski, Wojtek; Anderson, Adam K

    2008-07-01

    It has been proposed that facial expression production originates in sensory regulation. Here we demonstrate that facial expressions of fear are configured to enhance sensory acquisition. A statistical model of expression appearance revealed that fear and disgust expressions have opposite shape and surface reflectance features. We hypothesized that this reflects a fundamental antagonism serving to augment versus diminish sensory exposure. In keeping with this hypothesis, when subjects posed expressions of fear, they had a subjectively larger visual field, faster eye movements during target localization and an increase in nasal volume and air velocity during inspiration. The opposite pattern was found for disgust. Fear may therefore work to enhance perception, whereas disgust dampens it. These convergent results provide support for the Darwinian hypothesis that facial expressions are not arbitrary configurations for social communication, but rather, expressions may have originated in altering the sensory interface with the physical world.

  6. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber).

    PubMed

    Park, Thomas J; Lu, Ying; Jüttner, René; Smith, Ewan St J; Hu, Jing; Brand, Antje; Wetzel, Christiane; Milenkovic, Nevena; Erdmann, Bettina; Heppenstall, Paul A; Laurito, Charles E; Wilson, Steven P; Lewin, Gary R

    2008-01-01

    In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes "normal" mammalian nociception.

  7. Selective Inflammatory Pain Insensitivity in the African Naked Mole-Rat (Heterocephalus glaber)

    PubMed Central

    Park, Thomas J; Hu, Jing; Brand, Antje; Wetzel, Christiane; Milenkovic, Nevena; Erdmann, Bettina; Heppenstall, Paul A; Laurito, Charles E; Wilson, Steven P; Lewin, Gary R

    2008-01-01

    In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception. PMID:18232734

  8. Associative learning and sensory neuroplasticity: how does it happen and what is it good for?

    PubMed Central

    2015-01-01

    Historically, the body's sensory systems have been presumed to provide the brain with raw information about the external environment, which the brain must interpret to select a behavioral response. Consequently, studies of the neurobiology of learning and memory have focused on circuitry that interfaces between sensory inputs and behavioral outputs, such as the amygdala and cerebellum. However, evidence is accumulating that some forms of learning can in fact drive stimulus-specific changes very early in sensory systems, including not only primary sensory cortices but also precortical structures and even the peripheral sensory organs themselves. This review synthesizes evidence across sensory modalities to report emerging themes, including the systems’ flexibility to emphasize different aspects of a sensory stimulus depending on its predictive features and ability of different forms of learning to produce similar plasticity in sensory structures. Potential functions of this learning-induced neuroplasticity are discussed in relation to the challenges faced by sensory systems in changing environments, and evidence for absolute changes in sensory ability is considered. We also emphasize that this plasticity may serve important nonsensory functions, including balancing metabolic load, regulating attentional focus, and facilitating downstream neuroplasticity. PMID:26472647

  9. Substantial role of locus coeruleus-noradrenergic activation and capsaicin-insensitive primary afferent fibers in bee venom's anti-inflammatory effect.

    PubMed

    Kwon, Young Bae; Yoon, Seo Yeon; Kim, Hyun Woo; Roh, Dae Hyun; Kang, Seuk Yun; Ryu, Yeon Hee; Choi, Sun Mi; Han, Ho Jae; Lee, Hye Jung; Kim, Kee Won; Beitz, Alvin J; Lee, Jang Hern

    2006-06-01

    Several lines of evidence indicate significant interactions between the immune and nervous systems. Our recent study reveals that 'bee venom (BV) induced anti-inflammatory effect' (BVAI) was produced by sympathetic preganglionic neuronal activation and subsequent adrenomedullary catecholamine release in a zymosan-induced inflammation model. However, the specific peripheral input and the supraspinal neuronal systems that are involved in this BVAI remain to be defined. Here we show that subcutaneous BV injection into left hind limb significantly reduces zymosan-induced leukocyte migration and that this effect is completely inhibited by denervation of the left sciatic nerve. This BVAI was not affected by the destruction of capsaicin-sensitive primary afferent fibers using either neonatal capsaicin or resiniferatoxin (RTX) pretreatment. BV injection into the left hind limb significantly increased Fos expression in the contralateral locus coeruleus (LC) in non-inflamed mice. In zymosan-inflamed mice, BV injection produced a further increase in LC Fos expression as compared with non-inflamed mice. This BV-induced Fos increase in the LC was not affected by RTX pretreatment. Pharmacological blockage of central noradrenergic activity by either central chemical sympathectomy (i.c.v. 6-hydroxydopamine) or alpha2 adrenoceptor antagonism (i.c.v. idazoxan) completely blocked BVAI. Taken together, these results suggest that BVAI is mediated by peripheral activation of capsaicin-insensitive primary afferent fibers and subsequent central noradrenergic activation including the LC.

  10. Leptin-sensitive sensory nerves innervate white fat

    PubMed Central

    Murphy, Keegan T.; Schwartz, Gary J.; Nguyen, Ngoc Ly T.; Mendez, Jennifer M.; Ryu, Vitaly

    2013-01-01

    Leptin, the primary white adipose tissue (WAT) adipokine, is thought to convey lipid reserve information to the brain via the circulation. Because WAT responds to environmental/internal signals in a fat pad-specific (FPS) manner, systemic signals such as leptin would fail to communicate such distinctive information. Saturation of brain leptin transport systems also would fail to convey increased lipid levels beyond that point. WAT possesses sensory innervation exemplified by proven sensory-associated peptides in nerves within the tissue and by viral sensory nerve-specific transneuronal tract tracer, H129 strain of herpes simplex virus 1 labeling of dorsal root ganglia (DRG) pseudounipolar neurons, spinal cord and central sensory circuits. Leptin as a paracrine factor activating WAT sensory innervation could supply the brain with FPS information. Therefore, we tested for and found the presence of the long form of the leptin receptor (Ob-Rb) on DRG pseudounipolar neurons immunohistochemically labeled after injections of Fluorogold, a retrograde tract tracer, into inguinal WAT (IWAT). Intra-IWAT leptin injections (300 ng) significantly elevated IWAT nerve spike rate within 5 min and persisted for at least 30 min. Intra-IWAT leptin injections also induced significant c-Fos immunoreactivity (ir), indicating neural activation across DRG pseudounipolar sensory neurons labeled with Fluorogold IWAT injections. Intraperitoneal leptin injection did not increase c-Fos-ir in DRG or the arcuate nucleus, nor did it increase arcuate signal transducer and activator of transcription 3 phosphorylation-ir. Collectively, these results strongly suggest that endogenous leptin secreted from white adipocytes functions as a paracrine factor to activate spinal sensory nerves innervating the tissue. PMID:23612999

  11. M50 sensory gating predicts negative symptoms in schizophrenia.

    PubMed

    Thoma, Robert J; Hanlon, Faith M; Moses, Sandra N; Ricker, Daniel; Huang, Mingxiong; Edgar, Christopher; Irwin, Jessica; Torres, Fernando; Weisend, Michael P; Adler, Lawrence E; Miller, Gregory A; Canive, Jose M

    2005-03-01

    Impaired auditory sensory gating is considered characteristic of schizophrenia and a marker of the information processing deficit inherent to that disorder. Predominance of negative symptoms also reflects the degree of deficit in schizophrenia and is associated with poorer pre-morbid functioning, lower IQ, and poorer outcomes. However, a consistent relationship between auditory sensory gating and negative symptoms in schizophrenia has yet to be demonstrated. The absence of such a finding is surprising, since both impaired auditory gating and negative symptoms have been linked with impaired fronto-temporal cortical function. The present study measured auditory gating using the P50 event related potential (ERP) in a paired-click paradigm and capitalized on the relative localization advantage of magnetoencephalography (MEG) to assess auditory sensory gating in terms of the event related field (ERF) M50 source dipoles on bilateral superior temporal gyrus (STG). The primary hypothesis was that there would be a positive correlation between lateralized M50 auditory sensory gating measures and negative symptoms in patients with schizophrenia. A standard paired-click paradigm was used during simultaneous EEG and MEG data collection to determine S2/S1 sensory gating ratios in a group of 20 patients for both neuroimaging techniques. Participants were administered the Schedule for the Assessment of Negative Symptoms (SANS), the Positive and Negative Symptom Scale (PANSS), and the Calgary Depression Scale for Schizophrenia. Consistent with previous reports, there was no relationship between ERP P50 sensory gating and negative symptoms. However, right (not left) hemisphere ERF M50 sensory gating ratio was significantly and positively correlated with negative symptoms. This finding is compatible with information processing theories of negative symptoms and with more recent findings of fronto-temporal abnormality in patients with predominantly negative symptoms.

  12. Sensory overload: A concept analysis.

    PubMed

    Scheydt, Stefan; Müller Staub, Maria; Frauenfelder, Fritz; Nielsen, Gunnar H; Behrens, Johann; Needham, Ian

    2017-04-01

    In the context of mental disorders sensory overload is a widely described phenomenon used in conjunction with psychiatric interventions such as removal from stimuli. However, the theoretical foundation of sensory overload as addressed in the literature can be described as insufficient and fragmentary. To date, the concept of sensory overload has not yet been sufficiently specified or analyzed. The aim of the study was to analyze the concept of sensory overload in mental health care. A literature search was undertaken using specific electronic databases, specific journals and websites, hand searches, specific library catalogues, and electronic publishing databases. Walker and Avant's method of concept analysis was used to analyze the sources included in the analysis. All aspects of the method of Walker and Avant were covered in this concept analysis. The conceptual understanding has become more focused, the defining attributes, influencing factors and consequences are described and empirical referents identified. The concept analysis is a first step in the development of a middle-range descriptive theory of sensory overload based on social scientific and stress-theoretical approaches. This specification may serve as a fundament for further research, for the development of a nursing diagnosis or for guidelines. © 2017 Australian College of Mental Health Nurses Inc.

  13. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  14. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  15. Tickling expectations: neural processing in anticipation of a sensory stimulus.

    PubMed

    Carlsson, K; Petrovic, P; Skare, S; Petersson, K M; Ingvar, M

    2000-07-01

    Predictions of the near future can optimize the accuracy and speed of sensory processing as well as of behavioral responses. Previous experience and contextual cues are essential elements in the generation of a subjective prediction. Using a blocked fMRI paradigm, we investigated the pattern of neural activation in anticipation of a sensory stimulus and during the processing of the somatosensory stimulus itself. Tickling was chosen as the somatosensory stimulus rather than simple touch in order to increase the probability to get a high degree of anticipation. The location and nature of the stimulus were well defined to the subject. The state of anticipation was initiated by attributing an uncertainty regarding the time of stimulus onset. The network of activation and deactivation during anticipation of the expected stimulus was similar to that engaged during the actual sensory stimulation. The areas that were activated during both states included the contralateral primary sensory cortex, bilateral areas in the inferior parietal lobules, the putative area SII, the right anterior cingulate cortex and areas in the right prefrontal cortex. Similarly, common decreases were observed in areas of sensorimotor cortex located outside the area representing the target of stimulus, i.e., areas that process information which is irrelevant to the attended process. The overlapping pattern of change, during the somatosensory stimulation and the anticipation, furthers the idea that predictions are subserved by a neuronal network similar to that which subserves the processing of actual sensory input. Moreover, this study indicates that activation of primary somatosensory cortex can be obtained without intra-modal sensory input. These findings suggest that anticipation may invoke a tonic top-down regulation of neural activity.

  16. Sensory control of dauer larva formation in Caenorhabditis elegans.

    PubMed

    Albert, P S; Brown, S J; Riddle, D L

    1981-05-20

    As a sensory response to starvation or overcrowding, Caenorhabditis elegans second-stage larvae may molt into a developmentally arrested state called the dauer larva. When environmental conditions become favorable for growth, dauer larvae mold and resume development. Some mutants unable to form dauer larvae are simultaneously affected in a number of sensory functions, including chemotaxis and mating. The behavior and sensory neuroanatomy of three such mutants, representing three distinct genetic loci, have been determined and compared with wild-type strain. Morphological abnormalities in afferent nerve endings were detected in each mutant. Both amphid and outer labial sensilla are affected in the mutant CB1377 (daf-6)X, while another mutant, CB1387 (daf-10)IV, is abnormal in amphidial cells and in the tips of the cephalic neurons. The most pleitropic mutant, CB1379 (che-3)I, exhibits gross abnormalities in the tips of virtually all anterior and posterior sensory neurons. The primary structural defect in CB1377 appears to be in the nonneuronal amphidial sheath cells. The disruption of neural organization in CB1377 is much greater in the adult than in the L2 stage. Of all the anterior sense organs examined, only the amphids are morphologically affected in all three mutants. Thus, one or more of the amphidial neurons may mediate the sensory signals for entry into the dauer larva stage in normal animals. Using temperature-sensitive mutants we determined that the same defects which block entry into the dauer stage also prevent recovery of dauer larvae.

  17. Sensory evaluation of a novel vegetable in school age children.

    PubMed

    Coulthard, Helen; Palfreyman, Zoe; Morizet, David

    2016-05-01

    A behavioural sensory task was undertaken to further understanding into whether children's sensory evaluation of a new vegetable is associated with tasting and food neophobia scores. A sample of ninety-five children, aged 7-11 years, was recruited from a primary school in inner city Birmingham, UK. They were asked to rate the sight, smell and feel of a familiar vegetable (carrot) and an unfamiliar vegetable (celeriac) in a randomised order to control for order effects. They were then asked to try the each vegetable, and rate its taste. It was found that children rated the sensory characteristics of the familiar vegetable more positively than the novel vegetable across all sensory domains (p < 0.05). Refusing to try the novel vegetable was associated with food neophobia scores and olfactory ratings. The ratings of the taste of the novel vegetable were associated with olfactory and tactile ratings. In addition there was a clear developmental shift in the sample with younger children being more likely to rate the novel vegetable as 'looking strange' and older children rating the novel vegetable as 'smelling strange'. This research strengthens the idea that sensory information is important in children deciding to try, and their hedonic evaluation of the taste of a new vegetable.

  18. Hereditary sensory and autonomic neuropathies.

    PubMed

    Auer-Grumbach, Michaela

    2013-01-01

    Hereditary sensory and autonomic neuropathies (HSN/HSAN) are clinically and genetically heterogeneous disorders of the peripheral nervous system that predominantly affect the sensory and autonomic neurons. Hallmark features comprise not only prominent sensory signs and symptoms and ulcerative mutilations but also variable autonomic and motor disturbances. Autosomal dominant and autosomal recessive inheritance has been reported. Molecular genetics studies have identified disease-causing mutations in 11 genes. Some of the affected proteins have nerve-specific roles but underlying mechanisms have also been shown to involve sphingolipid metabolism, vesicular transport, structural integrity, and transcription regulation. Genetic and functional studies have substantially improved the understanding of the pathogenesis of the HSN/HSAN and will help to find preventive and causative therapies in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Approximate Sensory Data Collection: A Survey

    PubMed Central

    Cheng, Siyao; Cai, Zhipeng; Li, Jianzhong

    2017-01-01

    With the rapid development of the Internet of Things (IoTs), wireless sensor networks (WSNs) and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximate data collection algorithms. We classify them into three categories: the model-based ones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted. PMID:28287440

  20. Sensory distribution indicates severity of median nerve damage in carpal tunnel syndrome.

    PubMed

    Wilder-Smith, E P; Ng, E S; Chan, Y H; Therimadasamy, A K

    2008-07-01

    Sensory symptoms within the median nerve distribution are a primary clinical diagnostic criterion for the diagnosis of carpal tunnel syndrome (CTS). However, the distribution of the sensory symptoms in CTS varies from patient to patient. This study identifies the clinical and electrophysiological findings that correlate with the distribution of sensory symptoms in an Asian population with CTS. In a prospective study of 105 patients with electrophysiologically confirmed CTS, clinical and educational data were correlated with sensory symptom distribution. Median nerve distribution was strongly associated with more severe nerve conduction abnormality, male gender, and relief by movement. Patients with a complete median sensory distribution had more electrophysiological abnormality than those with an incomplete median distribution. Extra-median distribution was associated with the least nerve conduction abnormality. Educational qualification, age, symptom duration and body mass index were not associated with the pattern of sensory symptoms. In carpal tunnel syndrome, sensory symptom distribution is strongly dependant on the degree of electrophysiological median nerve damage. Median nerve sensory distribution is associated with severe nerve damage. This study provides clinicians with a simple clinical rule for assigning the degree of median nerve damage in patients with CTS based on sensory distribution patterns.

  1. The sensory somatotopic map of the human hand demonstrated at 4 Tesla.

    PubMed

    Maldjian, J A; Gottschalk, A; Patel, R S; Detre, J A; Alsop, D C

    1999-07-01

    Recent attempts at high-resolution sensory-stimulated fMRI performed at 1.5 T have had very limited success at demonstrating a somatotopic organization for individual digits. Our purpose was to determine if functional MRI at 4 T can demonstrate the sensory somatotopic map of the human hand. Sensory functional MRI was performed at 4 T in five normal volunteers using a low-frequency vibratory stimulus on the pad of each finger of the left hand. A simple motor control task was also performed. The data were normalized to a standard atlas, and individual and group statistical parametric maps (SPMs) were computed for each task. Volume of activation and distribution of cluster maxima were compared for each task. For three of the subjects, the SPMs demonstrated a somatotopic organization of the sensory cortex. The group SPMs demonstrated a clear somatotopic organization of the sensory cortex. The thumb to fifth finger were organized, in general, with a lateral to medial, inferior to superior, and anterior to posterior relationship. There was overlap in the individual SPMs between fingers. The sensory activation spanned a space of 12-18 mm (thumb to fifth finger) on the primary sensory cortex. The motor activation occurred consistently at the superior-most extent of the sensory activation within and across subjects. The sensory somatotopic map of the human hand can be identified at 4 T. High-resolution imaging at 4 T can be useful for detailed functional imaging studies. Copyright 1999 Academic Press.

  2. Weak universality in sensory tradeoffs

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah; DeDeo, Simon

    2016-12-01

    For many organisms, the number of sensory neurons is largely determined during development, before strong environmental cues are present. This is despite the fact that environments can fluctuate drastically both from generation to generation and within an organism's lifetime. How can organisms get by by hard coding the number of sensory neurons? We approach this question using rate-distortion theory. A combination of simulation and theory suggests that when environments are large, the rate-distortion function—a proxy for material costs, timing delays, and energy requirements—depends only on coarse-grained environmental statistics that are expected to change on evolutionary, rather than ontogenetic, time scales.

  3. Sensory Topography of Oral Structures.

    PubMed

    Bearelly, Shethal; Cheung, Steven W

    2017-01-01

    Sensory function in the oral cavity and oropharynx is integral to effective deglutition and speech production. The main hurdle to evaluation of tactile consequences of upper aerodigestive tract diseases and treatments is access to a reliable clinical tool. We propose a rapid and reliable procedure to determine tactile thresholds using buckling monofilaments to advance care. To develop novel sensory testing monofilaments and map tactile thresholds of oral cavity and oropharyngeal structures. A prospective cross-sectional study of 37 healthy adults (12 men, 25 women), specifically without a medical history of head and neck surgery, radiation, or chemotherapy, was carried out in an academic tertiary medical center to capture normative data on tactile sensory function in oral structures. Cheung-Bearelly monofilaments were constructed by securing nylon monofilament sutures (2-0 through 9-0) in the lumen of 5-French ureteral catheters, exposing 20 mm for tapping action. Buckling force consistency was evaluated for 3 lots of each suture size. Sensory thresholds of 4 oral cavity and 2 oropharyngeal subsites in healthy participants (n = 37) were determined by classical signal detection methodology (d-prime ≥1). In 21 participants, test-retest reliability of sensory thresholds was evaluated. Separately in 16 participants, sensory thresholds determined by a modified staircase method were cross-validated with those obtained by classical signal detection. Buckling forces of successive suture sizes were distinct (P < .001), consistent (Cronbach α, 0.99), and logarithmically related (r = 0.99, P < .001). Test-retest reliability of sensory threshold determination was high (Cronbach α, >0.7). The lower lip, anterior tongue, and buccal mucosa were more sensitive than the soft palate, posterior tongue, and posterior pharyngeal wall (P < .001). Threshold determination by classical signal detection and modified staircase methods were highly correlated (r = 0

  4. Influence of sensory neuropeptides on human cutaneous wound healing process.

    PubMed

    Chéret, J; Lebonvallet, N; Buhé, V; Carre, J L; Misery, L; Le Gall-Ianotto, C

    2014-06-01

    Close interactions exist between primary sensory neurons of the peripheral nervous system (PNS) and skin cells. The PNS may be implicated in the modulation of different skin functions as wound healing. Study the influence of sensory neurons in human cutaneous wound healing. We incubated injured human skin explants either with rat primary sensory neurons from dorsal root ganglia (DRG) or different neuropeptides (vasoactive intestinal peptide or VIP, calcitonin gene-related peptide or CGRP, substance P or SP) at various concentrations. Then we evaluated their effects on the proliferative and extracellular matrix (ECM) remodeling phases, dermal fibroblasts adhesion and differentiation into myofibroblasts. Thus, DRG and all studied neuromediators increased fibroblasts and keratinocytes proliferation and act on the expression ratio between collagen type I and type III in favor of collagen I, particularly between the 3rd and 7th day of culture. Furthermore, the enzymatic activities of matrix metalloprotesases (MMP-2 and MMP-9) were increased in the first days of wound healing process. Finally, the adhesion of human dermal fibroblasts and their differentiation into myofibroblasts were promoted after incubation with neuromediators. Interestingly, the most potent concentrations for each tested molecules, were the lowest concentrations, corresponding to physiological concentrations. Sensory neurons and their derived-neuropeptides are able to promote skin wound healing. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity

    PubMed Central

    Velayudhan, B.; Hubsch, C.; Pradeep, S.; Roze, E.; Vidailhet, M.; Meunier, S.; Kishore, A.

    2013-01-01

    Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations. PMID:22351647

  6. Pitch discrimination in cerebellar patients: evidence for a sensory deficit.

    PubMed

    Parsons, Lawrence M; Petacchi, Augusto; Schmahmann, Jeremy D; Bower, James M

    2009-12-15

    In the last two decades, a growing body of research showing cerebellar involvement in an increasing number of nonmotor tasks and systems has prompted an expansion of speculations concerning the function of the cerebellum. Here, we tested the predictions of a hypothesis positing cerebellar involvement in sensory data acquisition. Specifically, we examined the effect of global cerebellar degeneration on primary auditory sensory function by means of a pitch discrimination task. The just noticeable difference in pitch between two tones was measured in 15 healthy controls and in 15 high functioning patients afflicted with varying degrees of global cerebellar degeneration caused by hereditary, idiopathic, paraneoplastic, or postinfectious pancerebellitis. Participants also performed an auditory detection task assessing sustained attention, a test of verbal auditory working memory, and an audiometric test. Patient pitch discrimination thresholds were on average five and a half times those of controls and were proportional to the degree of cerebellar ataxia assessed independently. Patients and controls showed normal hearing thresholds and similar performance in control tasks in sustained attention and verbal auditory working memory. These results suggest there is an effect of cerebellar degeneration on primary auditory function. The findings are consistent with other recent demonstrations of cerebellar-related sensory impairments, and with robust cerebellar auditorily evoked activity, confirmed by quantitative meta-analysis, across a range of functional neuroimaging studies dissociated from attention, motor, affective, and cognitive variables. The data are interpreted in the context of a sensory hypothesis of cerebellar function.

  7. A re-evaluation of 9-HODE activity at TRPV1 channels in comparison with anandamide: enantioselectivity and effects at other TRP channels and in sensory neurons

    PubMed Central

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Imperatore, Roberta; Cristino, Luigia; Starowicz, Katarzyna; Di Marzo, Vincenzo

    2012-01-01

    Background and Purpose Two oxidation products of linoleic acid, 9- and 13-hydroxy-octadecadienoic acids (HODEs), have recently been suggested to act as endovanilloids, that is, endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) channels, thereby contributing to inflammatory hyperalgesia in rats. However, HODE activity at rat TRPV1 in comparison with the best established endovanilloid, anandamide, and its enantioselectivity and selectivity towards other TRP channels that are also abundant in sensory neurons have never been investigated. Experimental Approach We studied the effect of 9(R)-HODE, 9(S)-HODE, (+/–)13-HODE, 15(S)-hydroxyanandamide and anandamide on [Ca2+]i in HEK-293 cells stably expressing the rat or human recombinant TRPV1, or rat recombinant TRPV2, TRPA1 or TRPM8, and also the effect of 9(S)-HODE in rat dorsal root ganglion (DRG) neurons by calcium imaging. Key Results Anandamide and 15(S)-hydroxyanandamide were the most potent endovanilloids at human TRPV1, whereas 9(S)-HODE was approximately threefold less efficacious and 75- and 3-fold less potent, respectively, and did not perform much better at rat TRPV1. The 9(R)-HODE and (+/–)13-HODE were almost inactive at TRPV1. Unlike anandamide and 15(S)-hydroxyanandamide, all HODEs were very weak at desensitizing TRPV1 to the action of capsaicin, but activated rat TRPV2 [only (+/–)13-HODE] and rat TRPA1, and antagonized rat TRPM8, at concentrations higher than those required to activate TRPV1. Finally, 9(S)-HODE elevated [Ca2+]i in DRG neurons almost exclusively in capsaicin-sensitive cells but only at concentrations between 25 and 100 μM. Conclusions and Implications The present data suggest that HODEs are less important endovanilloids than anandamide. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22861649

  8. [Sensory Awareness through Outdoor Education].

    ERIC Educational Resources Information Center

    Farquhar, Carin; And Others

    Designed for instruction of emotionally handicapped children and youth, these seven articles present concepts and activities relative to sensory awareness and outdoor education. The first article presents definitions, concepts, detailed methodology, and over 50 activities designed to create awareness of man's five senses. Utilizing the art of…

  9. Sensory Aids for the Blind.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Prosthetics Research and Development.

    The problems of providing sensory aids for the blind are presented and a report on the present status of aids discusses direct translation and recognition reading machines as well as mobility aids. Aspects of required research considered are the following: assessment of needs; vision, audition, taction, and multimodal communication; reading aids,…

  10. Sensory Hierarchical Organization and Reading.

    ERIC Educational Resources Information Center

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  11. [Sensory Awareness through Outdoor Education].

    ERIC Educational Resources Information Center

    Farquhar, Carin; And Others

    Designed for instruction of emotionally handicapped children and youth, these seven articles present concepts and activities relative to sensory awareness and outdoor education. The first article presents definitions, concepts, detailed methodology, and over 50 activities designed to create awareness of man's five senses. Utilizing the art of…

  12. Sensory Hierarchical Organization and Reading.

    ERIC Educational Resources Information Center

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  13. Making Sense of Sensory Systems

    ERIC Educational Resources Information Center

    Hendrix, Marie

    2010-01-01

    The role of caregivers requires that they continuously assess the needs and performance of children and provide the support necessary for them to achieve their potential. A thorough understanding of child development, including the role and impact of sensory development, is critical for caregivers to properly evaluate and assist these children.…

  14. Making Sense of Sensory Systems

    ERIC Educational Resources Information Center

    Hendrix, Marie

    2010-01-01

    The role of caregivers requires that they continuously assess the needs and performance of children and provide the support necessary for them to achieve their potential. A thorough understanding of child development, including the role and impact of sensory development, is critical for caregivers to properly evaluate and assist these children.…

  15. Parasympathetic Functions in Children with Sensory Processing Disorder

    PubMed Central

    Schaaf, Roseann C.; Benevides, Teal; Blanche, Erna Imperatore; Brett-Green, Barbara A.; Burke, Janice P.; Cohn, Ellen S.; Koomar, Jane; Lane, Shelly J.; Miller, Lucy Jane; May-Benson, Teresa A.; Parham, Diane; Reynolds, Stacey; Schoen, Sarah A.

    2009-01-01

    The overall goal of this study was to determine if parasympathetic nervous system (PsNS) activity is a significant biomarker of sensory processing difficulties in children. Several studies have demonstrated that PsNS activity is an important regulator of reactivity in children, and thus, it is of interest to study whether PsNS activity is related to sensory reactivity in children who have a type of condition associated with sensory processing disorders termed sensory modulation dysfunction (SMD). If so, this will have important implications for understanding the mechanisms underlying sensory processing problems of children and for developing intervention strategies to address them. The primary aims of this project were: (1) to evaluate PsNS activity in children with SMD compared to typically developing (TYP) children, and (2) to determine if PsNS activity is a significant predictor of sensory behaviors and adaptive functions among children with SMD. We examine PsNS activity during the Sensory Challenge Protocol; which includes baseline, the administration of eight sequential stimuli in five sensory domains, recovery, and also evaluate response to a prolonged auditory stimulus. As a secondary aim we examined whether subgroups of children with specific physiological and behavioral sensory reactivity profiles can be identified. Results indicate that as a total group the children with severe SMD demonstrated a trend for low baseline PsNS activity, compared to TYP children, suggesting this may be a biomarker for SMD. In addition, children with SMD as a total group demonstrated significantly poorer adaptive behavior in the communication and daily living subdomains and in the overall Adaptive Behavior Composite of the Vineland than TYP children. Using latent class analysis, the subjects were grouped by severity and the severe SMD group had significantly lower PsNS activity at baseline, tones and prolonged auditory. These results provide preliminary evidence that children

  16. Sensory exploitation and sexual conflict

    PubMed Central

    Arnqvist, Göran

    2006-01-01

    Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism. PMID:16612895

  17. Family-Centered Management of Sensory Challenges of Children With Autism: Single-Case Experimental Design.

    PubMed

    Bulkeley, Kim; Bundy, Anita; Roberts, Jacqueline; Einfeld, Stewart

    2016-01-01

    We explored the effectiveness of a sensory-based, family-centered coaching approach to changing problematic routines for young children with autism. Three mothers of young children with autism, atypical sensory processing, and global developmental delay each participated in a single-case experimental ABA design study. Mothers selected a problematic daily routine linked to sensory challenges as the focus of four intervention sessions provided in the home. Changes in mothers' perceptions of the children's behavior were the primary outcome, measured daily on a visual analog scale. Visual and descriptive analyses were undertaken. The sensory-based, family-centered coaching approach showed promise for changing sensory-related problem behaviors of young children with autism, but the degree and maintenance of the intervention effect varied among participants. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  18. A review on intelligent sensory modelling

    NASA Astrophysics Data System (ADS)

    Tham, H. J.; Tang, S. Y.; Teo, K. T. K.; Loh, S. P.

    2016-06-01

    Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. Classically, factorial multivariate methods such as Principle Component Analysis (PCA), Partial Least Square (PLS) method, Multiple Regression (MLR) method and Response Surface Method (RSM) are the common tools used to analyse sensory data. These methods can model some of the sensory data but may not be robust enough to analyse nonlinear data. In these situations, intelligent modelling techniques such as Fuzzy Logic and Artificial neural network (ANNs) emerged to solve the vagueness and uncertainty of sensory data. This paper outlines literature of intelligent sensory modelling on sensory data analysis.

  19. Subclinical sensory involvement in monomelic amyotrophy.

    PubMed

    Liao, Jenny P; Waclawik, Andrew J; Lotz, Barend P

    2005-12-01

    An 18-year-old woman presented with weakness and atrophy in her hand without associated sensory symptoms, preceding events, or structural abnormalities on neuroimaging. No sensory deficits were detected on neurologic examination. Electrophysiological studies showed not only the expected motor findings for monomelic amyotrophy (MA) in the affected limb, but also markedly reduced sensory nerve action potentials when compared with the unaffected side. These findings suggest that subclinical sensory involvement can exist in patients with otherwise classic presentations of MA.

  20. The Everyday Routines of Families of Children with Autism: Examining the Impact of Sensory Processing Difficulties on the Family

    ERIC Educational Resources Information Center

    Schaaf, Roseann C.; Toth-Cohen, Susan; Johnson, Stephanie L.; Outten, Gina; Benevides, Teal W.

    2011-01-01

    The purpose of this qualitative study was to explore the lived experience of how sensory-related behaviors of children with autism affected family routines. In-depth semi-structured interviews were conducted with four primary caregivers regarding the meaning and impact of their child's sensory-related behaviors on family routines that occurred…

  1. Sensory Cortex Underpinnings of Traumatic Brain Injury Deficits

    PubMed Central

    Alwis, Dasuni S.; Yan, Edwin B.; Morganti-Kossmann, Maria-Cristina; Rajan, Ramesh

    2012-01-01

    Traumatic brain injury (TBI) can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex. Brain injury (n = 19) was induced using an impact acceleration method and sham controls received surgery only (n = 15). Animals were tested in a range of sensorimotor behaviour tasks prior to and up to 6 weeks post-injury when there were still significant sensorimotor behaviour deficits. At 8–10 weeks post-trauma, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including motion that mimicked whisker motion observed in awake animals undertaking different tasks. In cortex, there were lamina-specific neuronal response alterations that appeared to reflect local circuit changes. Hyper-excitation was found only in supragranular layers involved in intra-areal processing and long-range integration, and only for stimulation with complex, naturalistic whisker motion patterns and not for stimulation with simple trapezoidal whisker motion. Thus TBI induces long-term directional changes in integrative sensory cortical layers that depend on the complexity of the incoming sensory information. The nature of these changes allow predictions as to what types of sensory processes may be affected in TBI and contribute to post-trauma sensorimotor deficits. PMID:23284921

  2. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  3. Multi-Sensory Intervention Observational Research

    ERIC Educational Resources Information Center

    Thompson, Carla J.

    2011-01-01

    An observational research study based on sensory integration theory was conducted to examine the observed impact of student selected multi-sensory experiences within a multi-sensory intervention center relative to the sustained focus levels of students with special needs. A stratified random sample of 50 students with severe developmental…

  4. Response to Vestibular Sensory Events in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Grannemann, Bruce D.; Trivedi, Madhukar H.; Carmody, Thomas; Andrews, Alonzo A.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine the response to vestibular sensory events in persons with autism. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to age- and gender-matched community controls. The…

  5. Specific α- and β-Tubulin Isotypes Optimize the Functions of Sensory Cilia in Caenorhabditis elegans

    PubMed Central

    Hurd, Daryl D.; Miller, Renee M.; Núñez, Lizbeth; Portman, Douglas S.

    2010-01-01

    Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for the transduction of particular stimuli. Here, we find that three tubulin isotypes—the α-tubulins TBA-6 and TBA-9 and the β-tubulin TBB-4—are specifically expressed in overlapping sets of C. elegans sensory neurons and localize to the sensory cilia of these cells. Although cilia still form in mutants lacking tba-6, tba-9, and tbb-4, ciliary function is often compromised: these mutants exhibit a variety of sensory deficits as well as the mislocalization of signaling components. In at least one case, that of the CEM cephalic sensory neurons, cilium architecture is disrupted in mutants lacking specific ciliary tubulins. While there is likely to be some functional redundancy among C. elegans tubulin genes, our results indicate that specific tubulins optimize the functional properties of C. elegans sensory cilia. PMID:20421600

  6. Sensory modulation disorders in childhood epilepsy.

    PubMed

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), conditions in which altered behavioral responses to sensory stimuli have been firmly established. A continuum of sensory processing defects due to imbalanced neuronal inhibition and excitation across these disorders has been hypothesizedthat may lead to common symptoms of inadequate modulation of behavioral responses to sensory stimuli. Here, we investigated the prevalence of sensory modulation disorders among children with epilepsy and their relation with symptomatology of neurodevelopmental disorders. We used the Sensory Profile questionnaire to assess behavioral responses to sensory stimuli and categorize sensory modulation disorders in children with active epilepsy (aged 4-17 years). We related these outcomes to epilepsy characteristics and tested their association with comorbid symptoms of ASD (Social Responsiveness Scale) and ADHD (Strengths and Difficulties Questionnaire). Sensory modulation disorders were reported in 49 % of the 158 children. Children with epilepsy reported increased behavioral responses associated with sensory "sensitivity," "sensory avoidance," and "poor registration" but not "sensory seeking." Comorbidity of ASD and ADHD was associated with more severe sensory modulation problems, although 27 % of typically developing children with epilepsy also reported a sensory modulation disorder. Sensory modulation disorders are an under-recognized problem in children with epilepsy. The extent of the modulation difficulties indicates a substantial burden on daily functioning and may explain an important part of the behavioral distress associated with childhood epilepsy.

  7. A quantitative sensory analysis of peripheral neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy.

    PubMed

    de Carvalho Barbosa, Mariana; Kosturakis, Alyssa K; Eng, Cathy; Wendelschafer-Crabb, Gwen; Kennedy, William R; Simone, Donald A; Wang, Xin S; Cleeland, Charles S; Dougherty, Patrick M

    2014-11-01

    Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aβ myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy.

  8. Sensory Substitution and Multimodal Mental Imagery.

    PubMed

    Nanay, Bence

    2017-09-01

    Many philosophers use findings about sensory substitution devices in the grand debate about how we should individuate the senses. The big question is this: Is "vision" assisted by (tactile) sensory substitution really vision? Or is it tactile perception? Or some sui generis novel form of perception? My claim is that sensory substitution assisted "vision" is neither vision nor tactile perception, because it is not perception at all. It is mental imagery: visual mental imagery triggered by tactile sensory stimulation. But it is a special form of mental imagery that is triggered by corresponding sensory stimulation in a different sense modality, which I call "multimodal mental imagery."

  9. Sensory Augmentation for the Blind

    PubMed Central

    Kärcher, Silke M.; Fenzlaff, Sandra; Hartmann, Daniela; Nagel, Saskia K.; König, Peter

    2012-01-01

    Common navigational aids used by blind travelers during large-scale navigation divert attention away from important cues of the immediate environment (i.e., approaching vehicles). Sensory augmentation devices, relying on principles similar to those at work in sensory substitution, can potentially bypass the bottleneck of attention through sub-cognitive implementation of a set of rules coupling motor actions with sensory stimulation. We provide a late blind subject with a vibrotactile belt that continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. The present experimental approach demonstrates the positive potential of sensory augmentation devices for the help of handicapped people. PMID:22403535

  10. Sensory Coordination of Insect Flight

    DTIC Science & Technology

    2010-10-22

    migratory flight in the neotropical moth Urania fulgens. Biology Letters, 6, 406–409. Sane S.P.* and McHenry M.J. (2009) The biomechanics of sensory...organs. Integrative and Comparative Biology , 49(6):i8-i23. Zhao, L., Huang, Q., Deng, X. and Sane, S.P. (2010). Aerodynamic effects of flexibility...and behavioral insights into insect flight Invited Speaker, International Workshop on Nocturnal Pollination , March 24-27, 2009 Indian Institute of

  11. Oral sensory dysfunction following radiotherapy.

    PubMed

    Bearelly, Shethal; Wang, Steven J; Cheung, Steven W

    2017-10-01

    To assess differences in oral tactile sensation between subjects who have undergone radiation therapy (XRT) compared to healthy controls. Cross-sectional cohort comparison. Thirty-four subjects with a history of XRT were compared with 23 healthy controls. There was no difference in age (P = .23), but there were slightly more males in the XRT cohort (P = .03). The mean (standard deviation) time after XRT completion was 3.84 (4.84) years. Fifty-six percent of the XRT cohort received chemotherapy. Using our previously validated methodology to measure oral tactile sensory threshold quantitatively with Cheung-Bearelly monofilaments, sensory thresholds of four subsites (anterior tongue, buccal mucosa, posterior tongue, soft palate) were compared for the two cohorts. Site-by-site comparisons showed higher forces were required for stimulus detection at all four subsites among subjects in the XRT cohort compared to healthy controls. Mean force in grams for XRT versus control cohorts were: anterior tongue, 0.39 (1.0) versus 0.02 (0.01); buccal mucosa, 0.42 (0.95) versus 0.06 (0.05); posterior tongue, 0.76 (1.46) versus 0.10 (0.07); and soft palate, 0.86 (1.47) versus 0.08 (0.05) (P < .001 for all comparisons). Combining all four subsites into a single metric to assess an overall level of oral tactile dysfunction, the XRT cohort had reduced sensation by 18.7 dB (P < .001). After radiation therapy, the oral cavity and oropharynx exhibit global tactile sensory dysfunction, manifested by increased tactile forces required for stimulus detection. The magnitude of sensory impairment is 18.7 dB. 3b. Laryngoscope, 127:2282-2286, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Methodology of oral sensory tests.

    PubMed

    Jacobs, R; Wu, C-H; Van Loven, K; Desnyder, M; Kolenaar, B; Van Steenberghed, D

    2002-08-01

    Different methods of oral sensory tests including light touch sensation, two-point discrimination, vibrotactile function and thermal sensation were compared. Healthy subjects were tested to assess the results obtained from two psychophysical approaches, namely the staircase and the ascending & descending method of limits for light touch sensation and two-point discrimination. Both methods appeared to be reliable for examining oral sensory function. The effect of topical anaesthesia was also evaluated but no conclusion could be drawn as too few subjects were involved. Newly developed simple testing tools for two-point discrimination and thermal sensation in a clinical situation were developed prior to this study and tested for their reproducibility. Thermal sensation could be reliably detected in repeated trials. Although the hand-held instruments have some drawbacks, the outcome of these instruments in a clinical environment is suitable for assessing oral sensory function. Three different frequencies (32, 128 and 256 Hz) were used to estimate the vibrotactile function. Different threshold levels were found at different frequencies.

  13. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  14. Omnidirectional sensory and motor volumes in electric fish.

    PubMed

    Snyder, James B; Nelson, Mark E; Burdick, Joel W; Maciver, Malcolm A

    2007-11-01

    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume--the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals.

  15. Antidromic modulation of a proprioceptor sensory discharge in crayfish.

    PubMed

    Bévengut, M; Clarac, F; Cattaert, D

    1997-08-01

    In the proprioceptive neurons of the coxo-basal chortotonal organ, orthodromic spikes convey the sensory information from the cell somata (located peripherally) to the central output terminals. During fictive locomotion, presynaptic depolarizations of these central terminals elicit bursts of antidromic spikes that travel back to the periphery. To determine whether the antidromic spikes modified the orthodromic activity of the sensory neurons, single identified primary afferents of the proprioceptor were recorded intracellularly and stimulated in in vitro preparations of crayfish nervous system. Depolarizing current pulses were delivered in trains whose frequency and duration were controlled to reproduce bursts of antidromic spikes similar to those elicited during fictive locomotion. According to their frequencies, these antidromic bursts reduce or suppress the orthodromic discharges in both position- and movement-sensitive neurons. They induce both a long-lasting silence and a gradual recovery after their occurrences. Neither the collision between the afferent and the efferent messages nor the release of serotonin by the sensory neurons can explain these results. We therefore conclude that antidromic bursts produce a peripheral modulation of the orthodromic activity of the sensory neurons, modifying their sensitivity by mechanisms yet unknown.

  16. Hyperactivation balances sensory processing deficits during mood induction in schizophrenia.

    PubMed

    Dyck, Miriam; Loughead, James; Gur, Ruben C; Schneider, Frank; Mathiak, Klaus

    2014-02-01

    While impairments in emotion recognition are consistently reported in schizophrenia, there is some debate on the experience of emotion. Only few studies investigated neural correlates of emotional experience in schizophrenia. The present functional magnetic resonance imaging study compared a standard visual mood induction paradigm with an audiovisual method aimed at eliciting emotions more automatically. To investigate the interplay of sensory, cognitive and emotional mechanisms during emotion experience, we examined connectivity patterns between brain areas. Sixteen schizophrenia patients and sixteen healthy subjects participated in two different mood inductions (visual and audiovisual) that were administered for different emotions (happiness, sadness and neutral). Confirming the dissociation of behavioral and neural correlates of emotion experience, patients rated their mood similarly to healthy subjects but showed differences in neural activations. Sensory brain areas were activated less, increased activity emerged in higher cortical areas, particularly during audiovisual stimulation. Connectivity was increased between primary and secondary sensory processing areas in schizophrenia. These findings support the hypothesis of a deficit in filtering and processing sensory information alongside increased higher-order cognitive effort compensating for perception deficits in the affective domain. This may suffice to recover emotion experience in ratings of clinically stable patients but may fail during acute psychosis.

  17. Hyperactivation balances sensory processing deficits during mood induction in schizophrenia

    PubMed Central

    Loughead, James; Gur, Ruben C.; Schneider, Frank; Mathiak, Klaus

    2014-01-01

    While impairments in emotion recognition are consistently reported in schizophrenia, there is some debate on the experience of emotion. Only few studies investigated neural correlates of emotional experience in schizophrenia. The present functional magnetic resonance imaging study compared a standard visual mood induction paradigm with an audiovisual method aimed at eliciting emotions more automatically. To investigate the interplay of sensory, cognitive and emotional mechanisms during emotion experience, we examined connectivity patterns between brain areas. Sixteen schizophrenia patients and sixteen healthy subjects participated in two different mood inductions (visual and audiovisual) that were administered for different emotions (happiness, sadness and neutral). Confirming the dissociation of behavioral and neural correlates of emotion experience, patients rated their mood similarly to healthy subjects but showed differences in neural activations. Sensory brain areas were activated less, increased activity emerged in higher cortical areas, particularly during audiovisual stimulation. Connectivity was increased between primary and secondary sensory processing areas in schizophrenia. These findings support the hypothesis of a deficit in filtering and processing sensory information alongside increased higher-order cognitive effort compensating for perception deficits in the affective domain. This may suffice to recover emotion experience in ratings of clinically stable patients but may fail during acute psychosis. PMID:23051903

  18. Tactile sensory system: encoding from the periphery to the cortex.

    PubMed

    Jones, Lynette A; Smith, Allan M

    2014-01-01

    Specialized mechanoreceptors in the skin respond to mechanical deformation and provide the primary input to the tactile sensory system. Although the morphology of these receptors has been documented, there is still considerable uncertainty as to the relation between cutaneous receptor morphology and the associated physiological responses to stimulation. Labelled-line models of somatosensory processes in which specific mechanoreceptors are associated with particular sensory qualities fail to account for the evidence showing that all types of tactile afferent units respond to a varying extent to most types of natural stimuli. Neurophysiological and psychophysical experiments have provided the framework for determining the relation between peripheral afferent or cortical activity and tactile perception. Neural codes derived from these afferent signals are evaluated in terms of their capacity to predict human perceptual performance. One particular challenge in developing models of the tactile sensory system is the dual use of sensory signals from the skin. In addition to their perceptual function they serve as inputs to the sensorimotor control system involved in manipulation. Perceptions generated through active touch differ from those resulting from passive stimulation of the skin because they are the product of self-generated exploratory processes. Recent research in this area has highlighted the importance of shear forces in these exploratory movements and has shown that fingertip skin is particularly sensitive to shear generated during both object manipulation and tactile exploration. © 2014 Wiley Periodicals, Inc.

  19. Omnidirectional Sensory and Motor Volumes in Electric Fish

    PubMed Central

    Snyder, James B; Nelson, Mark E; Burdick, Joel W; MacIver, Malcolm A

    2007-01-01

    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals. PMID:18001151

  20. Validity of Sensory Systems as Distinct Constructs

    PubMed Central

    Su, Chia-Ting

    2014-01-01

    This study investigated the validity of sensory systems as distinct measurable constructs as part of a larger project examining Ayres’s theory of sensory integration. Confirmatory factor analysis (CFA) was conducted to test whether sensory questionnaire items represent distinct sensory system constructs. Data were obtained from clinical records of two age groups, 2- to 5-yr-olds (n = 231) and 6- to 10-yr-olds (n = 223). With each group, we tested several CFA models for goodness of fit with the data. The accepted model was identical for each group and indicated that tactile, vestibular–proprioceptive, visual, and auditory systems form distinct, valid factors that are not age dependent. In contrast, alternative models that grouped items according to sensory processing problems (e.g., over- or underresponsiveness within or across sensory systems) did not yield valid factors. Results indicate that distinct sensory system constructs can be measured validly using questionnaire data. PMID:25184467

  1. Bioinspired Sensory Systems for Shear Flow Detection

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin K.; Kanso, Eva

    2017-03-01

    Aquatic organisms such as copepods exhibit remarkable responses to changes in ambient flows, especially shear gradients, when foraging, mating and escaping. To accomplish these tasks, the sensory system of the organism must decode the local sensory measurements to detect the flow properties. Evidence suggests that organisms sense differences in the hydrodynamic signal rather than absolute values of the ambient flow. In this paper, we develop a mathematical framework for shear flow detection using a bioinspired sensory system that measures only differences in velocity. We show that the sensory system is capable of reconstructing the properties of the ambient shear flow under certain conditions on the flow sensors. We discuss these conditions and provide explicit expressions for processing the sensory measurements and extracting the flow properties. These findings suggest that by combining suitable velocity sensors and physics-based methods for decoding sensory measurements, we obtain a powerful approach for understanding and developing underwater sensory systems.

  2. Bioinspired Sensory Systems for Shear Flow Detection

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin K.; Kanso, Eva

    2017-08-01

    Aquatic organisms such as copepods exhibit remarkable responses to changes in ambient flows, especially shear gradients, when foraging, mating and escaping. To accomplish these tasks, the sensory system of the organism must decode the local sensory measurements to detect the flow properties. Evidence suggests that organisms sense differences in the hydrodynamic signal rather than absolute values of the ambient flow. In this paper, we develop a mathematical framework for shear flow detection using a bioinspired sensory system that measures only differences in velocity. We show that the sensory system is capable of reconstructing the properties of the ambient shear flow under certain conditions on the flow sensors. We discuss these conditions and provide explicit expressions for processing the sensory measurements and extracting the flow properties. These findings suggest that by combining suitable velocity sensors and physics-based methods for decoding sensory measurements, we obtain a powerful approach for understanding and developing underwater sensory systems.

  3. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  4. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    PubMed

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.

  5. Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings.

    PubMed

    Koziol, Leonard F; Budding, Deborah Ely; Chidekel, Dana

    2011-12-01

    This paper examines conditions that have variously been called sensory integration disorder, sensory processing disorder, and sensory modulation disorder (SID/SPD/SMD). As these conditions lack readily and consistently agreed-upon operational definitions, there has been confusion as to how these disorders are conceptualized. Rather than addressing various diagnostic controversies, we will instead focus upon explaining the symptoms that are believed to characterize these disorders. First, to clarify the overall context within which to view symptoms, we summarize a paradigm of adaptation characterized by continuous sensorimotor interaction with the environment. Next, we review a dual-tiered, integrated model of brain function in order to establish neuroanatomic underpinnings with which to conceptualize the symptom presentations. Generally accepted functions of the neocortex, basal ganglia, and cerebellum are described to illustrate how interactions between these brain regions generate both adaptive and pathological symptoms and behaviors. We then examine the symptoms of SID/SPD/SMD within this interactive model and in relation to their impact upon the development of inhibitory control, working memory, academic skill development, and behavioral automation. We present likely etiologies for these symptoms, not only as they drive neurodevelopmental pathologies but also as they can be understood as variations in the development of neural networks.

  6. Sensory Intolerance: Latent Structure and Psychopathologic Correlates

    PubMed Central

    Taylor, Steven; Conelea, Christine A.; McKay, Dean; Crowe, Katherine B.; Abramowitz, Jonathan S.

    2014-01-01

    Background Sensory intolerance refers to high levels of distress evoked by everyday sounds (e.g., sounds of people chewing) or commonplace tactile sensations (e.g., sticky or greasy substances). Sensory intolerance may be associated with obsessive-compulsive (OC) symptoms, OC-related phenomena, and other forms of psychopathology. Sensory intolerance is not included as a syndrome in current diagnostic systems, although preliminary research suggests that it might be a distinct syndrome. Objectives First, to investigate the latent structure of sensory intolerance in adults; that is, to investigate whether it is syndrome-like in nature, in which auditory and tactile sensory intolerance co-occur and are associated with impaired functioning. Second, to investigate the psychopathologic correlates of sensory intolerance. In particular, to investigate whether sensory intolerance is associated with OC-related phenomena, as suggested by previous research. Method A sample of 534 community-based participants were recruited via Amazon.com’s Mechanical Turk program. Participants completed measures of sensory intolerance, OC-related phenomena, and general psychopathology. Results Latent class analysis revealed two classes of individuals: Those who were intolerant of both auditory and tactile stimuli (n = 150), and those who were relatively undisturbed by auditory or tactile stimuli (n = 384). Sensory intolerant individuals, compared to those who were comparatively sensory tolerant, had greater scores on indices of general psychopathology, more severe OC symptoms, a higher likelihood of meeting caseness criteria for OC disorder, elevated scores on measures of OC-related dysfunctional beliefs, a greater tendency to report OC-related phenomena (e.g., a greater frequency of tics), and more impairment on indices of social and occupational functioning. Sensory intolerant individuals had significantly higher scores on OC symptoms even after controlling for general psychopathology

  7. Effect of Facial Sensory Re-training on Sensory Thresholds

    PubMed Central

    Essick, G.K.; Phillips, C.; Zuniga, J.

    2010-01-01

    Nearly 100% of patients experience trauma to the trigeminal nerve during orthognathic surgery, impairing sensation and sensory function on the face. In a recent randomized clinical trial, people who performed sensory re-training exercises reported less difficulty related to residual numbness and decreased lip sensitivity than those who performed standard opening exercises only. We hypothesized that re-training reduces the impaired performance on neurosensory tests of tactile function that is commonly observed post-surgically. We analyzed thresholds for contact detection, two-point discrimination, and two-point perception, obtained during the clinical trial before and at 1, 3, and 6 months after surgery, to assess tactile detection and discriminative sensitivities, and subjective interpretation of tactile stimulation, respectively. Post-surgery, the retrained persons exhibited less impairment, on average, than non-retrained persons only in two-point perception (P < 0.025), suggesting that retrained persons experienced or interpreted the tactile stimuli differently than did non-retrained persons. PMID:17525360

  8. Hereditary sensory neuropathy type I.

    PubMed

    Auer-Grumbach, Michaela

    2008-03-18

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  9. Sensory Motor Coordination in Robonaut

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II

    2003-01-01

    As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now driven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, interact with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to astronauts. Our underlying hypothesis is that a robot can develop intelligence if it learns a set of basic behaviors (i.e., reflexes - actions tightly coupled to sensing) and through experience learns how to sequence these to solve problems or to accomplish higher-level tasks. We describe our approach to the automatic acquisition of basic behaviors as learning sensory-motor coordination (SMC). Although research in the ontogenesis of animals development from the time of conception) supports the approach of learning SMC as the foundation for intelligent, autonomous behavior, we do not know whether it will prove viable for the development of autonomy in robots. The first step in testing the hypothesis is to determine if SMC can be learned by the robot. To do this, we have taken advantage of Robonaut's teleoperated control system. When a person teleoperates Robonaut, the person's own SMC causes the robot to act purposefully. If the sensory signals that the robot detects during teleoperation are recorded over several repetitions of the same task, it should be possible through signal analysis to identify the sensory-motor couplings that accompany purposeful motion. In this report, reasons for suspecting SMC as the basis for

  10. Sensory experience modifies feature map relationships in visual cortex

    PubMed Central

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  11. Sensory and motor secondary symptoms as indicators of brain vulnerability

    PubMed Central

    2013-01-01

    In addition to the primary symptoms that distinguish one disorder from the next, clinicians have identified, yet largely overlooked, another set of symptoms that appear across many disorders, termed secondary symptoms. In the emerging era of systems neuroscience, which highlights that many disorders share common deficits in global network features, the nonspecific nature of secondary symptoms should attract attention. Herein we provide a scholarly review of the literature on a subset of secondary symptoms––sensory and motor. We demonstrate that their pattern of appearance––across a wide range of psychopathologies, much before the full-blown disorder appears, and in healthy individuals who display a variety of negative symptoms––resembles the pattern of appearance of network abnormalities. We propose that sensory and motor secondary symptoms can be important indicators of underlying network aberrations and thus of vulnerable brain states putting individuals at risk for psychopathology following extreme circumstances. PMID:24063566

  12. Sensory and circuit mechanisms mediating lower urinary tract reflexes.

    PubMed

    Danziger, Zachary C; Grill, Warren M

    2016-10-01

    Neural control of continence and micturition is distributed over a network of interconnected reflexes. These reflexes integrate sensory information from the bladder and urethra and are modulated by descending influences to produce different physiological outcomes based on the information arriving from peripheral afferents. Therefore, the mode of activation of primary afferents is essential in understanding the action of spinal reflex pathways in the lower urinary tract. We present an overview of sensory mechanisms in the bladder and urethra focusing on their spinal integration, identify the cardinal spinal reflexes responsible for continence and micturition, and describe how their functional role is controlled via peripheral afferent activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cognitive mechanisms associated with auditory sensory gating.

    PubMed

    Jones, L A; Hills, P J; Dick, K M; Jones, S P; Bright, P

    2016-02-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification.

  14. Cognitive mechanisms associated with auditory sensory gating

    PubMed Central

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  15. Developmental broadening of inhibitory sensory maps.

    PubMed

    Quast, Kathleen B; Ung, Kevin; Froudarakis, Emmanouil; Huang, Longwen; Herman, Isabella; Addison, Angela P; Ortiz-Guzman, Joshua; Cordiner, Keith; Saggau, Peter; Tolias, Andreas S; Arenkiel, Benjamin R

    2017-02-01

    Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.

  16. The relationship between sensory latency and amplitude.

    PubMed

    Bodofsky, Elliot B; Cohen, Stephen J; Kumar, Rohini J; Schindelheim, Adam; Gaughan, John

    2016-12-01

    To prove that the relationship between sensory latencies and amplitudes is useful in determining the severity of neuropathies. This is achieved by deriving a mathematical relationship between sensory distal latency and amplitude. Determine whether sensory amplitudes below predicted correlate with a worse pathology. Patients seen for Nerve Conduction Studies by the Department of Physical Medicine and Rehabilitation at Cooper University Hospital between 12/1/12 and 12/31/14 were invited to participate in a prospective database. The median, ulnar and sural sensory latencies and amplitudes were analyzed with both linear and power regression. Patients with amplitudes above and below the regression curve were compared for latency, amplitude and velocity of other nerves. Carpal Tunnel Patients were analyzed to determine whether Median sensory amplitude below predicted correlated with more severe disease. For the Median nerve, Power Regression Analysis showed a stronger correlation (R(2)=0.54) than linear regression (R(2)=0.34). Patients with Median sensory amplitude below the power correlation curve showed significantly longer ulnar sensory latency, and lower sensory amplitude than those above. Carpal Tunnel Syndrome patients with Median sensory amplitude well below predicted by the power relationship showed more advanced disease. For the ulnar and sural sensory nerve, the difference between power and linear regression was not significant. A power regression curve correlates sensory latency and amplitude better than linear regression. The latency amplitude relationship correlates with other parameters of nerve function and severity of Carpal Tunnel Syndrome. This implies that below predicted sensory amplitude may indicate worse disease, and could be a useful diagnostic tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dendritic Spikes in Sensory Perception.

    PubMed

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception.

  18. Sensory processing in Huntington's disease.

    PubMed

    Mirallave, Ana; Morales, Merche; Cabib, Christopher; Muñoz, Esteban J; Santacruz, Pilar; Gasull, Xavier; Valls-Sole, Josep

    2017-05-01

    An intriguing electrophysiological feature of patients with Huntington's disease (HD) is the delayed latency and decreased amplitude of somatosensory long-latency evoked potentials (LLeps). We investigated whether such dysfunction was associated with delayed conscious perception of the sensory stimulus. Sixteen HD patients and 16 control subjects faced a computer screen showing the Libet's clock (Libet et al., 1983). In Rest trials, subjects had to memorize the position of the clock handle at perception of either electrical or thermal stimuli (AW). In React, additionally, they were asked to make a fist with their right hand, in a simple reaction time task (SRT). LLseps were recorded from Cz in both conditions. LLeps negative peak latency (N2) and SRT were abnormally delayed in patients in all conditions. AW was only abnormally prolonged in the React condition but the time difference between AW and the negative peak of the LLeps was not different in the two groups. There was a significant negative correlation between SRT and AW or LLeps amplitude in patients but not in healthy subjects. Our HD patients did not show abnormalities in conscious perception of sensory stimuli but their LLeps abnormalities were more marked when they had to react. This is compatible with failure to detect stimulus salience rather than with a cognitive defect. HD patients at early stages of the disease have preserved subjective perception of sensation but faulty sensorimotor integration. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Dendritic Spikes in Sensory Perception

    PubMed Central

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception. PMID:28261060

  20. Sensory change following motor learning.

    PubMed

    Mattar, Andrew A G; Nasir, Sazzad M; Darainy, Mohammad; Ostry, David J

    2011-01-01

    Here we describe two studies linking perceptual change with motor learning. In the first, we document persistent changes in somatosensory perception that occur following force field learning. Subjects learned to control a robotic device that applied forces to the hand during arm movements. This led to a change in the sensed position of the limb that lasted at least 24 h. Control experiments revealed that the sensory change depended on motor learning. In the second study, we describe changes in the perception of speech sounds that occur following speech motor learning. Subjects adapted control of speech movements to compensate for loads applied to the jaw by a robot. Perception of speech sounds was measured before and after motor learning. Adapted subjects showed a consistent shift in perception. In contrast, no consistent shift was seen in control subjects and subjects that did not adapt to the load. These studies suggest that motor learning changes both sensory and motor function. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Sighting versus sensory ocular dominance

    PubMed Central

    Pointer, Jonathan S.

    2012-01-01

    Purpose An indication of the laterality of ocular dominance (OD) informs the clinical decision making process when considering certain ophthalmic refractive and surgical interventions. Can predictive reliance be assured regardless of OD technique or is the indication of a dominant eye method-dependent? Methods Two alternative OD test formats were administered to a group of 72 emmetropic healthy young adult subjects: the ‘hole-in-card’ test for sighting dominance and the ‘+1.50D blur’ test for sensory dominance. Both techniques were chosen as being likely familiar to the majority of ophthalmic clinicians; to promote and expedite application during the examination routine neither test required specialist training nor equipment. Results Right eye dominance was indicated in 71% of cases by the sighting test but in only 54% of subjects using the sensory test. The laterality of OD indicated for the individual subject by each technique was in agreement on only 50% of occasions. Conclusions Reasons are considered for the poor intra-individual agreement between OD tests, along with an item of procedural advice for the clinician.

  2. The effects of a sensory motor activities protocol based on the theory of sensory integration on children diagnosed with preprimary impairments.

    PubMed

    Paul, Stanley; Sinen, Patricia; Johnson, Joy; Latshaw, Christina; Newton, Jami; Nelson, April; Powers, Robert

    2003-01-01

    According to the theory of sensory integration (SI), when an infant successfully meets the challenges of his/her environment, the brain learns to organize the sensation for production of adaptive responses. Research studies have shown mixed results about the effects of the SI therapy and most studies have used single system designs. The objective of this study was to evaluate the effectiveness of the Sensory Integrative Treatment Protocol (SITP) in treating children with preprimary impairments. Two intact classrooms were used as experimental and control groups. The experimental group consisted of 15 children and the control group consisted of 16 children diagnosed with preprimary impairments. Descriptive statistics and a 2 (group) × 2 (time) repeated measures ANOVA were employed in data analyses. DeGangi-Berk Test of Sensory Integration (TSI) and the Miller Assessment for Preschoolers (MAP) were used as the instruments to measure change within and between the two groups before and after the intervention. TSI and MAP scores went up considerably for the children in the experimental group following the intervention. Based on the results, the researchers suggest that "Sensory Integration Treatment Protocol" based on the theory of sensory integration was effective in reducing sensory integration dysfunction and improving preschool performance in children diagnosed with pre-primary impairments.

  3. Sensory Impairment Among Older US Workers

    PubMed Central

    Davila, Evelyn P.; Caban-Martinez, Alberto J.; Muennig, Peter; Fleming, Lora E.; Ferraro, Kenneth F.; LeBlanc, William G.; Lam, Byron L.; Arheart, Kristopher L.; McCollister, Kathryn E.; Zheng, Diane; Christ, Sharon L.

    2009-01-01

    We used 1997–2004 National Health Interview Survey data to evaluate the prevalence of sensory impairment among US workers 65 years and older. Hearing impairment prevalence was 3 times that of visual impairment (33.4% vs 10.2%), and 38% of older workers reported experiencing either impairment. Farm operators, mechanics, and motor vehicle operators had the highest prevalence of sensory impairment. Workplace screening and accommodations, including sensory protection devices for older workers, are warranted given the greater risk for injuries among the sensory impaired. PMID:19542042

  4. [Acute Sensory Neuropathies and Acute Autonomic Neuropathies].

    PubMed

    Koike, Haruki

    2015-11-01

    From the perspective of neuropathies with an acute onset mimicking that of Guillain-Barré syndrome (GBS), cases with profound sensory and/or autonomic impairment without any significant weakness have been reported. Although the possibility of infectious or toxic etiologies should be carefully excluded, immune mechanisms similar to those in GBS are suggested to be involved in these so-called acute sensory neuropathies and acute autonomic neuropathies. The types of neuropathy include those with predominant sensory manifestations, predominant autonomic manifestations such as autoimmune autonomic ganglionopathy, and both sensory and autonomic manifestations such as acute autonomic and sensory neuropathy. Neuronopathy in the sensory and/or autonomic ganglia (i.e., ganglionopathy) has been commonly suggested in patients with these types of neuropathies. The presence of Anti-GD1b antibodies has been reported in some of the patients with acute sensory neuropathy with deep sensory impairment, whereas anti-ganglionic acetylcholine receptor antibodies are reported to be present in half of the patients with autoimmune autonomic ganglionopathy. The discovery of anti-ganglionic acetylcholine receptor antibodies significantly expanded the spectrum of autoimmune autonomic ganglionopathy. This is because some of the patients with chronic progression mimicking neurodegenerative diseases such as pure autonomic failure were positive for these antibodies. In contrast, pathologically significant autoantibodies have not been identified in acute autonomic and sensory neuropathy. Further studies are needed to clarify the pathogenesis and the spectrum of these types of neuropathies.

  5. Sensory neuropathies, from symptoms to treatment.

    PubMed

    Botez, Stephan A; Herrmann, David N

    2010-10-01

    The present review focuses on recent developments in diagnosis and treatment of sensory neuropathies. It does not seek to establish a comprehensive classification of sensory neuropathies, nor treatment guidelines per se. Diagnostic criteria and guidelines have been developed for distal symmetric polyneuropathies, small fiber sensory neuropathies and sensory neuronopathies. Novel diagnostic tools such as skin biopsies now allow diagnosis of small fiber sensory neuropathies. Genetic testing has defined new subtypes of mitochondrial neuropathies and inherited neuropathies with sensory involvement. Intravenous immunoglobulin and tumor necrosis factor-alpha inhibitors show promise for some dysimmune sensory neuropathies or neuronopathies. Additional options for management of neuropathic pain are emerging. Diagnostic methods for both acquired and hereditary sensory neuropathies have progressed in recent years, leading to earlier and more specific diagnoses and a better understanding of disease mechanisms. Much progress remains to be made regarding symptomatic and disease-modifying therapy for a range of sensory neuropathies, including those due to diabetes, HIV infection and from dysimmune or hereditary causes.

  6. Some Rat Sensory Neurons in Culture Express Characteristics of Differentiated Pain Sensory Cells

    NASA Astrophysics Data System (ADS)

    Baccaglini, Paola I.; Hogan, Patrick G.

    1983-01-01

    Sensory neurons were dissociated from trigeminal ganglia or from dorsal root ganglia of rats, grown in culture, and examined for expression of properties of pain sensory cells. Many sensory neurons in culture are excited by low concentrations of capsaicin, reportedly a selective stimulus for pain sensory neurons. Many are excited by bradykinin, sensitized by prostaglandin E2, or specifically stained by an antiserum against substance P. These experiments provide a basis for the study of pain mechanisms in cell culture.

  7. Acquired auditory-visual synesthesia: A window to early cross-modal sensory interactions

    PubMed Central

    Afra, Pegah; Funke, Michael; Matsuo, Fumisuke

    2009-01-01

    Synesthesia is experienced when sensory stimulation of one sensory modality elicits an involuntary sensation in another sensory modality. Auditory-visual synesthesia occurs when auditory stimuli elicit visual sensations. It has developmental, induced and acquired varieties. The acquired variety has been reported in association with deafferentation of the visual system as well as temporal lobe pathology with intact visual pathways. The induced variety has been reported in experimental and post-surgical blindfolding, as well as intake of hallucinogenic or psychedelics. Although in humans there is no known anatomical pathway connecting auditory areas to primary and/or early visual association areas, there is imaging and neurophysiologic evidence to the presence of early cross modal interactions between the auditory and visual sensory pathways. Synesthesia may be a window of opportunity to study these cross modal interactions. Here we review the existing literature in the acquired and induced auditory-visual synesthesias and discuss the possible neural mechanisms. PMID:22110319

  8. Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans.

    PubMed

    Mukhopadhyay, Saikat; Lu, Yun; Shaham, Shai; Sengupta, Piali

    2008-05-01

    Nonmotile primary cilia are sensory organelles composed of a microtubular axoneme and a surrounding membrane sheath that houses signaling molecules. Optimal cellular function requires the precise regulation of axoneme assembly, membrane biogenesis, and signaling protein targeting and localization via as yet poorly understood mechanisms. Here, we show that sensory signaling is required to maintain the architecture of the specialized AWB olfactory neuron cilia in C. elegans. Decreased sensory signaling results in alteration of axoneme length and expansion of a membraneous structure, thereby altering the topological distribution of a subset of ciliary transmembrane signaling molecules. Signaling-regulated alteration of ciliary structures can be bypassed by modulation of intracellular cGMP or calcium levels and requires kinesin-II-driven intraflagellar transport (IFT), as well as BBS- and RAB8-related proteins. Our results suggest that compensatory mechanisms in response to altered levels of sensory activity modulate AWB cilia architecture, revealing remarkable plasticity in the regulation of cilia structure.

  9. Kv7.2 regulates the function of peripheral sensory neurons

    PubMed Central

    King, Chih H.; Lancaster, Eric; Salomon, Daniela; Peles, Elior; Scherer, Steven S.

    2014-01-01

    The Kv7 (KCNQ) family of voltage-gated K+ channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance, but have increased thermal hyperalgesia and mechanical allodynia. Whole cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. PMID:24687876

  10. Involvement of Sensory Regions in Affective Experience: A Meta-Analysis

    PubMed Central

    Satpute, Ajay B.; Kang, Jian; Bickart, Kevin C.; Yardley, Helena; Wager, Tor D.; Barrett, Lisa F.

    2015-01-01

    A growing body of work suggests that sensory processes may also contribute to affective experience. In this study, we performed a meta-analysis of affective experiences driven through visual, auditory, olfactory, gustatory, and somatosensory stimulus modalities including study contrasts that compared affective stimuli to matched neutral control stimuli. We found, first, that limbic and paralimbic regions, including the amygdala, anterior insula, pre-supplementary motor area, and portions of orbitofrontal cortex were consistently engaged across two or more modalities. Second, early sensory input regions in occipital, temporal, piriform, mid-insular, and primary sensory cortex were frequently engaged during affective experiences driven by visual, auditory, olfactory, gustatory, and somatosensory inputs. A classification analysis demonstrated that the pattern of neural activity across a contrast map diagnosed the stimulus modality driving the affective experience. These findings suggest that affective experiences are constructed from activity that is distributed across limbic and paralimbic brain regions and also activity in sensory cortical regions. PMID:26696928

  11. The Order and Place of Neuronal Differentiation Establish the Topography of Sensory Projections and the Entry Points within the Hindbrain.

    PubMed

    Zecca, Andrea; Dyballa, Sylvia; Voltes, Adria; Bradley, Roger; Pujades, Cristina

    2015-05-13

    Establishing topographical maps of the external world is an important but still poorly understood feature of the vertebrate sensory system. To study the selective innervation of hindbrain regions by sensory afferents in the zebrafish embryo, we mapped the fine-grained topographical representation of sensory projections at the central level by specific photoconversion of sensory neurons. Sensory ganglia located anteriorly project more medially than do ganglia located posteriorly, and this relates to the order of sensory ganglion differentiation. By single-plane illumination microscopy (SPIM) in vivo imaging, we show that (1) the sequence of arrival of cranial ganglion inputs predicts the topography of central projections, and (2) delaminated neuroblasts differentiate in close contact with the neural tube, and they never loose contact with the neural ectoderm. Afferent entrance points are established by plasma membrane interactions between primary differentiated peripheral sensory neurons and neural tube border cells with the cooperation of neural crest cells. These first contacts remain during ensuing morphological growth to establish pioneer axons. Neural crest cells and repulsive slit1/robo2 signals then guide axons from later-differentiating neurons toward the neural tube. Thus, this study proposes a new model by which the topographical representation of cranial sensory ganglia is established by entrance order, with the entry points determined by cell contact between the sensory ganglion cell bodies and the hindbrain.

  12. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans.

    PubMed

    Henrich, Florian; Magerl, Walter; Klein, Thomas; Greffrath, Wolfgang; Treede, Rolf-Detlef

    2015-09-01

    Long-term potentiation in the spinal dorsal horn requires peptidergic C-fibre activation in animals. Perceptual correlates of long-term potentiation following high-frequency electrical stimulation in humans include increased sensitivity to electrical stimuli at the high frequency stimulation site (homotopic pain-long-term potentiation) and increased sensitivity to pinprick surrounding the high frequency stimulation site (heterotopic pain-long-term potentiation, equivalent to secondary hyperalgaesia). To characterize the peripheral fibre populations involved in induction of pain-long-term potentiation, we performed two selective nerve block experiments in 30 healthy male volunteers. Functional blockade of TRPV1-positive nociceptors by high-concentration capsaicin (verified by loss of heat pain) significantly reduced pain ratings to high frequency stimulation by 47% (P < 0.001), homotopic pain-long-term potentiation by 71% (P < 0.01), heterotopic pain-long-term potentiation by 92% (P < 0.001) and the area of secondary hyperalgesia by 76% (P < 0.001). The selective blockade of A-fibre conduction by nerve compression (verified by loss of first pain to pinprick) significantly reduced pain ratings to high frequency stimulation by 37% (P < 0.01), but not homotopic pain-long-term potentiation (-5%). It had a marginal effect on heterotopic pain-long-term potentiation (-35%, P = 0.059), while the area of secondary hyperalgesia remained unchanged (-2%, P = 0.88). In conclusion, all nociceptor subclasses contribute to high frequency stimulation-induced pain (with a relative contribution of C > Aδ fibres, and an equal contribution of TRPV1-positive and TRPV1-negative fibres). TRPV1-positive C-fibres are the main inducers of both homotopic and heterotopic pain-long-term potentiation. TRPV1-positive A-fibres contribute substantially to the induction of heterotopic pain-long-term potentiation. TRPV1-negative C-fibres induce a component of homotopic self-facilitation but not heterotopic pain-long-term potentiation. TRPV1-negative A-fibres are the main afferents mediating pinprick pain and hyperalgesia, however, they do not appear to contribute to the induction of pain-long-term potentiation. These findings show that distinct peripheral fibre classes mediate induction of long-term potentiation-like pain amplification, its spatial spread to adjacent skin (i.e. secondary hyperalgesia), and the resulting enhanced sensitivity to pinprick in humans. Nociceptive afferents that induce pain amplification can be readily dissociated from those mediating pain. These findings add substantially to our understanding of the mechanisms of pain amplification, that form the basis for understanding the mechanisms of hyperalgesia encountered in patients.See Sandkühler (doi:10.1093/brain/awv193) for a scientific commentary on this article.

  13. Sensory Sensitivities and Performance on Sensory Perceptual Tasks in High-Functioning Individuals with Autism

    ERIC Educational Resources Information Center

    Minshew, Nancy J.; Hobson, Jessica A.

    2008-01-01

    Most reports of sensory symptoms in autism are second hand or observational, and there is little evidence of a neurological basis. Sixty individuals with high-functioning autism and 61 matched typical participants were administered a sensory questionnaire and neuropsychological tests of elementary and higher cortical sensory perception. Thirty-two…

  14. Sensory Sensitivities and Performance on Sensory Perceptual Tasks in High-Functioning Individuals with Autism

    ERIC Educational Resources Information Center

    Minshew, Nancy J.; Hobson, Jessica A.

    2008-01-01

    Most reports of sensory symptoms in autism are second hand or observational, and there is little evidence of a neurological basis. Sixty individuals with high-functioning autism and 61 matched typical participants were administered a sensory questionnaire and neuropsychological tests of elementary and higher cortical sensory perception. Thirty-two…

  15. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  16. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  17. Cross-modal plasticity in sensory deprived animal models: From the thalamocortical development point of view.

    PubMed

    Mezzera, Cecilia; López-Bendito, Guillermina

    2016-09-01

    Over recent decades, our understanding of the plasticity of the central nervous system has expanded enormously. Accordingly, it is now widely accepted that the brain can adapt to changes by reorganizing its circuitry, both in response to external stimuli and experience, as well as through intrinsic mechanisms. A clear example of this is the activation of a deprived sensory area and the expansion of spared sensory cortical regions in individuals who suffered peripheral sensory loss. Despite the efforts to understand these neuroplastic changes, the mechanisms underlying such adaptive remodeling remains poorly understood. Progress in understanding these events may be hindered by the highly varied data obtained from the distinct experimental paradigms analyzed, which include different animal models and neuronal systems, as well as studies into the onset of sensory loss. Here, we will establish the current state-of-the-art describing the principal observations made according to the time of sensory deprivation with respect to the development of the thalamocortical connectivity. We will review the experimental data obtained from animal models where sensory deprivation has been induced either before or after thalamocortical axons reach and invade their target cortical areas. The anatomical and functional effects of sensory loss on the primary sensory areas of the cortex will be presented. Indeed, we consider that the comparative approach of this review is a necessary step in order to help deciphering the processes that underlie sensory neuroplasticity, for which studies in animal models have been indispensable. Understanding these mechanisms will then help to develop restorative strategies and prostheses that will overcome the functional loss.

  18. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels.

    PubMed

    Meyers, Jason R; MacDonald, Richard B; Duggan, Anne; Lenzi, David; Standaert, David G; Corwin, Jeffrey T; Corey, David P

    2003-05-15

    We describe a novel mechanism for vital fluorescent dye entry into sensory cells and neurons: permeation through ion channels. In addition to the slow conventional uptake of styryl dyes by endocytosis, small styryl dyes such as FM1-43 rapidly and specifically label hair cells in the inner ear by entering through open mechanotransduction channels. This labeling can be blocked by pharmacological or mechanical closing of the channels. This phenomenon is not limited to hair cell transduction channels, because human embryonic kidney 293T cells expressing the vanilloid receptor (TRPV1) or a purinergic receptor (P2X2) rapidly take up FM1-43 when those receptor channels are opened and not when they are pharmacologically blocked. This channel permeation mechanism can also be used to label many sensory cell types in vivo. A single subcutaneous injection of FM1-43 (3 mg/kg body weight) in mice brightly labels hair cells, Merkel cells, muscle spindles, taste buds, enteric neurons, and primary sensory neurons within the cranial and dorsal root ganglia, persisting for several weeks. The pattern of labeling is specific; nonsensory cells and neurons remain unlabeled. The labeling of the sensory neurons requires dye entry through the sensory terminal, consistent with permeation through the sensory channels. This suggests that organic cationic dyes are able to pass through a number of different sensory channels. The bright and specific labeling with styryl dyes provides a novel way to study sensory cells and neurons in vivo and in vitro, and it offers new opportunities for visually assaying sensory channel function.

  19. The basal ganglia select the expected sensory input used for predictive coding.

    PubMed

    Colder, Brian

    2015-01-01

    While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

  20. Integration of Multidisciplinary Sensory Data:

    PubMed Central

    Miller, Perry L.; Nadkarni, Prakash; Singer, Michael; Marenco, Luis; Hines, Michael; Shepherd, Gordon

    2001-01-01

    The paper provides an overview of neuroinformatics research at Yale University being performed as part of the national Human Brain Project. This research is exploring the integration of multidisciplinary sensory data, using the olfactory system as a model domain. The neuroinformatics activities fall into three main areas: 1) building databases and related tools that support experimental olfactory research at Yale and can also serve as resources for the field as a whole, 2) using computer models (molecular models and neuronal models) to help understand data being collected experimentally and to help guide further laboratory experiments, 3) performing basic neuroinformatics research to develop new informatics technologies, including a flexible data model (EAV/CR, entity-attribute-value with classes and relationships) designed to facilitate the integration of diverse heterogeneous data within a single unifying framework. PMID:11141511

  1. Artificial sensory organs: latest progress.

    PubMed

    Nakamura, Tatsuo; Inada, Yuji; Shigeno, Keiji

    2017-09-21

    This study introduces the latest progress on the study of artificial sensory organs, with a special emphasis on the clinical results of artificial nerves and the concept of in situ tissue engineering. Peripheral nerves have a strong potential for regeneration. An artificial nerve uses this potential to recover a damaged peripheral nerve. The polyglycolic acid collagen tube (PGA-C tube) is a bio-absorbable tube stuffed with collagen of multi-chamber structure that consists of thin collagen films. The clinical application of the PGA-C tube began in 2002 in Japan. The number of PGA-C tubes used is now beyond 300, and satisfactory results have been reported on peripheral nerve repairs. This PGA-C tube is also effective for patients suffering from neuropathic pain.

  2. Sensory drive in cichlid speciation.

    PubMed

    Maan, Martine E; Hofker, Kees D; van Alphen, Jacques J M; Seehausen, Ole

    2006-06-01

    The role of selection in speciation is a central yet poorly understood problem in evolutionary biology. The rapid radiations of extremely colorful cichlid fish in African lakes have fueled the hypothesis that sexual selection can drive species divergence without geographical isolation. Here we present experimental evidence for a mechanism by which sexual selection becomes divergent: in two sibling species from Lake Victoria, female mating preferences for red and blue male nuptial coloration coincide with their context-independent sensitivities to red and blue light, which in turn correspond to a difference in ambient light in the natural habitat of the species. These results suggest that natural selection on visual performance, favoring different visual properties in different spectral environments, may lead to divergent sexual selection on male nuptial coloration. This interplay of ecological and sexual selection along a light gradient may provide a mechanism of rapid speciation through divergent sensory drive.

  3. Synthetic synaesthesia and sensory substitution.

    PubMed

    Proulx, Michael J

    2010-03-01

    Visual information can be provided to blind users through sensory substitution devices that convert images into sound. Through extensive use to develop expertise, some blind users have reported visual experiences when using such a device. These blind expert users have also reported visual phenomenology to other sounds even when not using the device. The blind users acquired synthetic synaesthesia, with visual experience evoked by sounds only after gaining such expertise. Sensorimotor learning may facilitate and perhaps even be required to develop expertise in the use of multimodal information. Furthermore, other areas where expertise is acquired in dividing attention amongst cross-modal information or integrating such information might also give rise to synthetic synaesthesia.

  4. Sensory Metrics of Neuromechanical Trust.

    PubMed

    Softky, William; Benford, Criscillia

    2017-09-01

    that individuals can improve sensory and sociosensory resolution through deliberate sensory reintegration practices. We conclude that we humans are the victims of our own success, our hands so skilled they fill the world with captivating things, our eyes so innocent they follow eagerly.

  5. WHAT IS LACKING, STATEMENT ON SENSORY DEPRIVATION.

    ERIC Educational Resources Information Center

    REGAN, J.

    THIS PAPER, WHICH ANNOUNCES THE THEME OF A SEMINAR ON THEORIES OF LANGUAGE AND LEARNING, QUESTIONS THE VIEW THAT A CHILD'S POOR SCHOOL PERFORMANCE DERIVES FROM AN IMPOVERISHED SENSORY EXPERIENCE. A DEPRIVED TROPICAL ENVIRONMENT IS DEPICTED TO CAST DOUBTS ON THIS THEORY. A BIBLIOGRAPHY OF THE EFFECTS OF SENSORY DEPRIVATION IS INCLUDED. THIS…

  6. ASIC3 channels in multimodal sensory perception.

    PubMed

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  7. Hereditary deafness and sensory radicular neuropathy.

    PubMed

    Fitzpatrick, D B; Hooper, R E; Seife, B

    1976-09-01

    We report a case of radicular sensory neuropathy and deafness. The patients appears to be one of a family in whom several members were similarly afflicted. Thus, this case fits the pattern of hereditary deafness and sensory radicular neuropathy, originally described by Hicks in 1922.

  8. Sensory Discrimination as Related to General Intelligence.

    ERIC Educational Resources Information Center

    Acton, G. Scott; Schroeder, David H.

    2001-01-01

    Attempted to replicate the pitch discrimination findings of previous research and expand them to the modality of color discrimination in a sample of 899 teenagers and adults by correlating 2 sensory discrimination measures with the general factor from a battery of 13 cognitive ability tests. Results suggest that sensory discrimination is…

  9. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  10. Examination Accommodations for Students with Sensory Defensiveness

    ERIC Educational Resources Information Center

    Lewis, Kieran; Nolan, Clodagh

    2013-01-01

    Traditional examination accommodations include extra time, scribes, and/or separate venues for students with disabilities, which have been proven to be successful for the majority of students. For students with non-apparent disabilities such as sensory defensiveness, where sensitivity to a range of sensory information from the environment can…

  11. Multisensory integration, sensory substitution and visual rehabilitation.

    PubMed

    Proulx, Michael J; Ptito, Maurice; Amedi, Amir

    2014-04-01

    Sensory substitution has advanced remarkably over the past 35 years since first introduced to the scientific literature by Paul Bach-y-Rita. In this issue dedicated to his memory, we describe a collection of reviews that assess the current state of neuroscience research on sensory substitution, visual rehabilitation, and multisensory processes.

  12. Sensory symptoms in autism spectrum disorders.

    PubMed

    Hazen, Eric P; Stornelli, Jennifer L; O'Rourke, Julia A; Koesterer, Karmen; McDougle, Christopher J

    2014-01-01

    The aim of this review is to summarize the recent literature regarding abnormalities in sensory functioning in individuals with autism spectrum disorder (ASD), including evidence regarding the neurobiological basis of these symptoms, their clinical correlates, and their treatment. Abnormalities in responses to sensory stimuli are highly prevalent in individuals with ASD. The underlying neurobiology of these symptoms is unclear, but several theories have been proposed linking possible etiologies of sensory dysfunction with known abnormalities in brain structure and function that are associated with ASD. In addition to the distress that sensory symptoms can cause patients and caregivers, these phenomena have been correlated with several other problematic symptoms and behaviors associated with ASD, including restrictive and repetitive behavior, self-injurious behavior, anxiety, inattention, and gastrointestinal complaints. It is unclear whether these correlations are causative in nature or whether they are due to shared underlying pathophysiology. The best-known treatments for sensory symptoms in ASD involve a program of occupational therapy that is specifically tailored to the needs of the individual and that may include sensory integration therapy, a sensory diet, and environmental modifications. While some empirical evidence supports these treatments, more research is needed to evaluate their efficacy, and other means of alleviating these symptoms, including possible psychopharmacological interventions, need to be explored. Additional research into the sensory symptoms associated with ASD has the potential to shed more light on the nature and pathophysiology of these disorders and to open new avenues of effective treatments.

  13. Mechano- and Chemo-Sensory Polycystins

    NASA Astrophysics Data System (ADS)

    Patel, Amanda; Delmas, Patrick; Honoré, Eric

    Polycystins belong to the superfamily of transient receptor potential (TRP) channels and comprise five PKD1-like and three PKD2-like (TRPP) subunits. In this chapter, we review the general properties of polycystins and discuss their specific role in both mechanotransduction and chemoreception. The heteromer PKD1/PKD2 expressed at the membrane of the primary cilium of kidney epithelial cells is proposed to form a mechano-sensitive calcium channel that is opened by physiological fluid flow. Dysfunction or loss of PKD1 or PKD2 polycystin genes may be responsible for the inability of epithelial cells to sense mechanical cues, thus provoking autosomal dominant polycystic kidney disease (ADPKD), one of the most prevalent genetic kidney disorders. pkd1 and pkd2 knock-out mice recapitulate the human disease. Similarly, PKD2 may function as a mechanosensory calcium channel in the immotile monocilia of the developing node transducing leftward flow into an increase in calcium and specifying the left-right axis. pkd2, unlike pkd1 knock-out embryos are characterized by right lung isomerism (situs inversus). Mechanical stimuli also induce cleavage and nuclear translocation of the PKD1 C-terminal tail, which enters the nucleus and initiates signaling processes involving the AP-1, STAT6 and P100 pathways. This intraproteolytic mechanism is implicated in the transduction of a change in renal fluid flow to a transcriptional long-term response. The heteromer PKD1L3/PKD2L1 is the basis for acid sensing in specialised sensory cells including the taste bud cells responsible for sour taste. Moreover, PKD1L3/PKD2L1 may be implicated in the chemosensitivity of neurons surrounding the spinal cord canal, sensing protons in the cerebrospinal fluid. These recent results demonstrate that polycystins fulfill a major sensory role in a variety of cells including kidney epithelial cells, taste buds cells and spinal cord neurons. Such mechanisms are involved in short- and long-term physiological

  14. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    ERIC Educational Resources Information Center

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  15. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    ERIC Educational Resources Information Center

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  16. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    NASA Astrophysics Data System (ADS)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  17. Impact of the Sensory Neurons on Melanoma Growth In Vivo

    PubMed Central

    Tapias, Victor; Watkins, Simon C.; Ma, Yang; Shurin, Michael R.; Shurin, Galina V.

    2016-01-01

    Nerve endings are often identified within solid tumors, but their impact on the tumor growth and progression remains poorly understood. Emerging data suggests that the central nervous system may affect cancer development and spreading via the hypothalamic-pituitary-adrenal axis and autonomous nervous system. However, the role of the afferent sensory neurons in tumor growth is unclear, except some reports on perineural invasion in prostate and pancreatic cancer and cancer-related pain syndrome. Here, we provide the results of primary testing of the concept that the interaction between melanoma cells and sensory neurons may induce the formation of tumor-supporting microenvironment via attraction of immune regulatory cells by the tumor-activated dorsal root ganglion (DRG) neurons. We report that despite DRG cells not directly up-regulating proliferation of melanoma cells in vitro, presence of DRG neurons allows tumors to grow significantly faster in vivo. This effect has been associated with increased production of chemokines by tumor-activated DRG neurons and attraction of myeloid-derived suppressor cells both in vitro and in vivo. These initial proof-of-concept results justify further investigations of the sensory (afferent) nervous system in the context of tumorigenesis and the local protumorigenic immunoenvironment. PMID:27227315

  18. REMODELING SENSORY CORTICAL MAPS IMPLANTS SPECIFIC BEHAVIORAL MEMORY

    PubMed Central

    Bieszczad, Kasia M.; Miasnikov, Alexandre A.; Weinberger, Norman M.

    2013-01-01

    Neural mechanisms underlying the capacity of memory to be rich with sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66 kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity were consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects’ area of expansion and the tone that was strongest in each animal’s memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation. PMID:23639876

  19. Sensory extinction and sensory reinforcement principles for programming multiple adaptive behavior change.

    PubMed

    Rincover, A; Cook, R; Peoples, A; Packard, D

    1979-01-01

    The role of sensory reinforcement was examined in programming multiple treatment gains in self-stimulation and spontaneous play for developmentally disabled children. Two phases were planned. First, we attempted to identify reinforcers maintaining self-stimulation. Sensory Extinction procedures were implemented in which auditory, proprioceptive, or visual sensory consequences of self-stimulatory behavior were systematically removed and reintroduced in a reversal design. When self-stimulation was decreased or eliminated as a result of removing one of these sensory consequences, the functional sensory consequence was designated as a child's preferred sensory reinforcer. In Phase 2, we assessed whether children would play selectively with toys producing the preferred kind of sensory stimulation. The results showed the following. (1) Self-stimulatory behavior was found to be maintained by sensory reinforcement. When the sensory reinforcer was removed, self-stimulation extinguished. (2) The sensory reinforcers identified for self-stimulatory behavior also served as reinforcers for new, appropriate toy play. (3) The multiple treatment gains observed appeared to be relatively durable in the absence of external reinforcers for play or restraints on self-stimulation. These results illustrate one instance in which multiple behavior change may be programmed in a predictable, lawful fashion by using "natural communities of sensory reinforcement."

  20. Sensory perception: lessons from synesthesia: using synesthesia to inform the understanding of sensory perception.

    PubMed

    Harvey, Joshua Paul

    2013-06-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition's existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of "normal" sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion - the binding problem - as well as how sensory perception develops.

  1. Information theoretic analysis of dynamical encoding in the cricket cercal sensory system.

    NASA Astrophysics Data System (ADS)

    Miller, John

    1996-03-01

    The stimulus/response properties of mechanosensory receptor neurons and primary sensory interneurons in the cricket cercal system were studied using electrophysiological techniques. We characterized the quantity and quality of information encoded in the cells elicited responses about the dynamics of stimulus waveforms. This characterization was achieved through the application of stochastic systems analysis and information theory. The information transfer rates ranged from about 100 to 250 bits per second for the sensory receptors and between 10 to 60 bits per second for the primary sensory interneurons. Scaled to the mean spike rates of the cells, these rates correspond to between 1 and 3 bits per spike for both the receptors and the interneurons. These results will be discussed within the general context of the neural encoding problem.

  2. Visualizing renal primary cilia.

    PubMed

    Deane, James A; Verghese, Elizabeth; Martelotto, Luciano G; Cain, Jason E; Galtseva, Alya; Rosenblum, Norman D; Watkins, D Neil; Ricardo, Sharon D

    2013-03-01

    Renal primary cilia are microscopic sensory organelles found on the apical surface of epithelial cells of the nephron and collecting duct. They are based upon a microtubular cytoskeleton, bounded by a specialized membrane, and contain an array of proteins that facilitate their assembly, maintenance and function. Cilium-based signalling is important for the control of epithelial differentiation and has been implicated in the pathogenesis of various cystic kidney diseases and in renal repair. As such, visualizing renal primary cilia and understanding their composition has become an essential component of many studies of inherited kidney disease and mechanisms of epithelial regeneration. Primary cilia were initially identified in the kidney using electron microscopy and this remains a useful technique for the high resolution examination of these organelles. New reagents and techniques now also allow the structure and composition of primary cilia to be analysed in detail using fluorescence microscopy. Primary cilia can be imaged in situ in sections of kidney, and many renal-derived cell lines produce primary cilia in culture providing a simplified and accessible system in which to investigate these organelles. Here we outline microscopy-based techniques commonly used for studying renal primary cilia.

  3. Early oral sensory experiences and feeding development in children with CHARGE syndrome: a report of five cases.

    PubMed

    Dobbelsteyn, Cindy; Marche, Darlene M; Blake, Kim; Rashid, Mohsin

    2005-01-01

    Children with CHARGE syndrome commonly experience feeding and swallowing problems. Difficulties may be associated with congenital structural anomalies, motor impairment, and/or oral sensory impairment. For many children with CHARGE syndrome, the introduction of functional oral feeding is delayed and there are often long-term feeding complications. Oral aversion or defensiveness is a frequent serious issue; however, it is uncertain whether this is a primary sensory disorder or secondary to delayed and/or negative oral sensory and feeding experiences. This article examines in detail the early oral sensory and feeding experiences of five children with CHARGE syndrome, through a review of medical records and caregiver questionnaires. Findings indicate variable early oral sensory experiences in this group of children, with all of the children having some difficulty or delay in the development of oral feeding and swallowing. The nature of these difficulties and the potential contributory factors are discussed.

  4. Genetics Home Reference: hereditary sensory neuropathy type IA

    MedlinePlus

    ... Home Health Conditions hereditary sensory neuropathy type IA hereditary sensory neuropathy type IA Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Hereditary sensory neuropathy type IA is a condition characterized ...

  5. Abnormal white matter microstructure in children with sensory processing disorders☆

    PubMed Central

    Owen, Julia P.; Marco, Elysa J.; Desai, Shivani; Fourie, Emily; Harris, Julia; Hill, Susanna S.; Arnett, Anne B.; Mukherjee, Pratik

    2013-01-01

    Sensory processing disorders (SPD) affect 5–16% of school-aged children and can cause long-term deficits in intellectual and social development. Current theories of SPD implicate primary sensory cortical areas and higher-order multisensory integration (MSI) cortical regions. We investigate the role of white matter microstructural abnormalities in SPD using diffusion tensor imaging (DTI). DTI was acquired in 16 boys, 8–11 years old, with SPD and 24 age-, gender-, handedness- and IQ-matched neurotypical controls. Behavior was characterized using a parent report sensory behavior measure, the Sensory Profile. Fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) were calculated. Tract-based spatial statistics were used to detect significant group differences in white matter integrity and to determine if microstructural parameters were significantly correlated with behavioral measures. Significant decreases in FA and increases in MD and RD were found in the SPD cohort compared to controls, primarily involving posterior white matter including the posterior corpus callosum, posterior corona radiata and posterior thalamic radiations. Strong positive correlations were observed between FA of these posterior tracts and auditory, multisensory, and inattention scores (r = 0.51–0.78; p < 0.001) with strong negative correlations between RD and multisensory and inattention scores (r = − 0.61–0.71; p < 0.001). To our knowledge, this is the first study to demonstrate reduced white matter microstructural integrity in children with SPD. We find that the disrupted white matter microstructure predominantly involves posterior cerebral tracts and correlates strongly with atypical unimodal and multisensory integration behavior. These findings suggest abnormal white matter as a biological basis for SPD and may also distinguish SPD from overlapping clinical conditions such as autism and attention deficit hyperactivity disorder. PMID:24179836

  6. Hyperalgesia and functional sensory loss in restless legs syndrome.

    PubMed

    Stiasny-Kolster, Karin; Pfau, Doreen B; Oertel, Wolfgang H; Treede, Rolf-Detlef; Magerl, Walter

    2013-08-01

    Pain and other sensory signs in patients with restless legs syndrome (RLS) are still poorly understood, as most investigations focus on motor system dysfunctions. This study aimed to investigate somatosensory changes in patients with primary RLS and the restoration of somatosensory function by guideline-based treatment. Forty previously untreated RLS patients were investigated unilaterally over hand and foot using quantitative sensory testing (QST) and were compared with 40 age- and gender-matched healthy subjects. The predominant finding in RLS patients was 3- to 4-fold increase of sensitivity to pinprick stimuli in both extremities (hand: P<.05; foot: P<.001), a sensory pathway involved in withdrawal reflexes. Pinprick hyperalgesia was not paralleled by dynamic mechanical allodynia. Additional significant sensory changes were tactile hypoesthesia in both extremities (hand: P<.05; foot P<.01) and dysesthesia to non-noxious cold stimuli (paradoxical heat sensation), which was present in the foot in an unusually high proportion (14 of 40 patients; P<.01). In 8 patients, follow-up QST 2 to 20 months after treatment with l-DOPA (L-3,4-dihydroxyphenylalanine) revealed a significant reduction of pinprick hyperalgesia (-60%, P<.001), improved tactile detection (+50%, P<.05), and disappearance of paradoxical heat sensation in half of the patients. QST suggested a type of spinal or supraspinal central sensitization differing from neuropathic pain or human experimental models of central sensitization by the absence of dynamic mechanical allodynia. Reversal of pinprick hyperalgesia by l-DOPA may be explained by impaired descending inhibitory dopaminergic control on spinal nociceptive neurons. Restoration of tactile sensitivity and paradoxical heat sensations suggest that they were functional disturbances resulting from central disinhibition.

  7. The assessment of sensory detection thresholds on the perineum and breast compared with control body sites.

    PubMed

    Cordeau, Dany; Bélanger, Marc; Beaulieu-Prévost, Dominic; Courtois, Frédérique

    2014-07-01

    Few studies explored multiple sensory detection thresholds on the perineum and breast, but these normative data may provide standards for clinical conditions such as aging, genital and breast surgeries, pathological conditions affecting the genitals, and sexual function. The aim of this study was to provide normative data on sensory detection thresholds of three sensory modalities on the perineum and breast. Thirty healthy women aged between 18 and 35 years were assessed on the perineum (clitoris, labia minora, vaginal, and anal margin), breast (lateral, areola, nipple), and control body locations (neck, forearm, abdomen) for three sensory modalities (light touch, pressure, vibration). Average detection thresholds for each body location and sensory modality and statistical comparisons between the primary genital, secondary sexual, and neutral zones were the main outcome measures. Average detection thresholds for light touch suggest that the neck, forearm, and vaginal margin are most sensitive, and areola least sensitive. No statistical difference is found between the primary and secondary sexual zones, but the secondary sexual zone is significantly more sensitive than the neutral zone. Average detection thresholds for pressure suggest that the clitoris and nipple are most sensitive, and the lateral breast and abdomen least sensitive. No statistical difference is found between the primary and secondary sexual zone, but they are both significantly more sensitive than the neutral zone. Average detection thresholds for vibration suggest that the clitoris and nipple are most sensitive. The secondary sexual zone is significantly more sensitive than the primary and neutral zone, but the latter two show no difference. The current normative data from sensory detection threshold are discussed in terms of providing standard values for research and clinical conditions. Additional analysis from breast volume, body mass index, hormonal contraception, menstrual cycle, and sexual

  8. Some Motivational Properties of Sensory Stimulation in Psychotic Children

    ERIC Educational Resources Information Center

    Rincover, Arnold; And Others

    1977-01-01

    This experiment assessed the reinforcing properties of sensory stimulation for autistic children using three different types of sensory stimulation: music, visual flickering, and visual movement. (SB)

  9. Multisensory perceptual learning and sensory substitution.

    PubMed

    Proulx, Michael J; Brown, David J; Pasqualotto, Achille; Meijer, Peter

    2014-04-01

    One of the most exciting recent findings in neuroscience has been the capacity for neural plasticity in adult humans and animals. Studies of perceptual learning have provided key insights into the mechanisms of neural plasticity and the changes in functional neuroanatomy that it affords. Key questions in this field of research concern how practice of a task leads to specific or general improvement. Although much of this work has been carried out with a focus on a single sensory modality, primarily visual, there is increasing interest in multisensory perceptual learning. Here we will examine how advances in perceptual learning research both inform and can be informed by the development and advancement of sensory substitution devices for blind persons. To allow 'sight' to occur in the absence of visual input through the eyes, visual information can be transformed by a sensory substitution device into a representation that can be processed as sound or touch, and thus give one the potential to 'see' through the ears or tongue. Investigations of auditory, visual and multisensory perceptual learning can have key benefits for the advancement of sensory substitution, and the study of sensory deprivation and sensory substitution likewise will further the understanding of perceptual learning in general and the reverse hierarchy theory in particular. It also has significant importance for the developing understanding of the brain in metamodal terms, where functional brain areas might be best defined by the computations they carry out rather than by their sensory-specific processing role. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Beyond words: Sensory properties of depressive thoughts

    PubMed Central

    Hörmann, Claudia Cecile; Schröder, Johanna; Berger, Thomas; Jacob, Gitta A.; Meyer, Björn; Holmes, Emily A.; Späth, Christina; Hautzinger, Martin; Lutz, Wolfgang; Rose, Matthias; Klein, Jan Philipp

    2013-01-01

    Verbal thoughts (such as negative cognitions) and sensory phenomena (such as visual mental imagery) are usually conceptualised as distinct mental experiences. The present study examined to what extent depressive thoughts are accompanied by sensory experiences and how this is associated with symptom severity, insight of illness and quality of life. A large sample of mildly to moderately depressed patients (N = 356) was recruited from multiple sources and asked about sensory properties of their depressive thoughts in an online study. Diagnostic status and symptom severity were established over a telephone interview with trained raters. Sensory properties of negative thoughts were reported by 56.5% of the sample (i.e., sensation in at least one sensory modality). The highest prevalence was seen for bodily (39.6%) followed by auditory (30.6%) and visual (27.2%) sensations. Patients reporting sensory properties of thoughts showed more severe psychopathological symptoms than those who did not. The degree of perceptuality was marginally associated with quality of life. The findings support the notion that depressive thoughts are not only verbal but commonly accompanied by sensory experiences. The perceptuality of depressive thoughts and the resulting sense of authenticity may contribute to the emotional impact and pervasiveness of such thoughts, making them difficult to dismiss for their holder. PMID:24359124

  11. Improving Developmentally Appropriate Practices in the Kindergarten Program by Introducing Therapeutic Sensory Motor and Play Activities.

    ERIC Educational Resources Information Center

    Blakes-Greenway, Doris

    This practicum was designed to increase teacher knowledge base in developmentally appropriate practices and increase understanding of the need for play and sensory motor activities in the kindergarten program. The primary goal was that the kindergarten teachers would use more developmentally appropriate practices in achieving curriculum…

  12. Health Promotion for People with Physical, Cognitive, and Sensory Disabilities: An Emerging National Priority.

    ERIC Educational Resources Information Center

    Rimmer, James H.; Braddock, David

    2002-01-01

    Very little effort has been devoted to developing health promotion programs for people with physical, cognitive, and sensory disabilities. Such programs must be developed with full recognition of limitations caused by both the primary and secondary disabilities. The paper describes three major areas of health promotion and their relationship to…

  13. Making Decisions with Unknown Sensory Reliability

    PubMed Central

    Deneve, Sophie

    2012-01-01

    To make fast and accurate behavioral choices, we need to integrate noisy sensory input, take prior knowledge into account, and adjust our decision criteria. It was shown previously that in two-alternative-forced-choice tasks, optimal decision making can be formalized in the framework of a sequential probability ratio test and is then equivalent to a diffusion model. However, this analogy hides a “chicken and egg” problem: to know how quickly we should integrate the sensory input and set the optimal decision threshold, the reliability of the sensory observations must be known in advance. Most of the time, we cannot know this reliability without first observing the decision outcome. We consider here a Bayesian decision model that simultaneously infers the probability of two different choices and at the same time estimates the reliability of the sensory information on which this choice is based. We show that this can be achieved within a single trial, based on the noisy responses of sensory spiking neurons. The resulting model is a non-linear diffusion to bound where the weight of the sensory inputs and the decision threshold are both dynamically changing over time. In difficult decision trials, early sensory inputs have a stronger impact on the decision, and the threshold collapses such that choices are made faster but with low accuracy. The reverse is true in easy trials: the sensory weight and the threshold increase over time, leading to slower decisions but at much higher accuracy. In contrast to standard diffusion models, adaptive sensory weights construct an accurate representation for the probability of each choice. This information can then be combined appropriately with other unreliable cues, such as priors. We show that this model can account for recent findings in a motion discrimination task, and can be implemented in a neural architecture using fast Hebbian learning. PMID:22679418

  14. Making decisions with unknown sensory reliability.

    PubMed

    Deneve, Sophie

    2012-01-01

    To make fast and accurate behavioral choices, we need to integrate noisy sensory input, take prior knowledge into account, and adjust our decision criteria. It was shown previously that in two-alternative-forced-choice tasks, optimal decision making can be formalized in the framework of a sequential probability ratio test and is then equivalent to a diffusion model. However, this analogy hides a "chicken and egg" problem: to know how quickly we should integrate the sensory input and set the optimal decision threshold, the reliability of the sensory observations must be known in advance. Most of the time, we cannot know this reliability without first observing the decision outcome. We consider here a Bayesian decision model that simultaneously infers the probability of two different choices and at the same time estimates the reliability of the sensory information on which this choice is based. We show that this can be achieved within a single trial, based on the noisy responses of sensory spiking neurons. The resulting model is a non-linear diffusion to bound where the weight of the sensory inputs and the decision threshold are both dynamically changing over time. In difficult decision trials, early sensory inputs have a stronger impact on the decision, and the threshold collapses such that choices are made faster but with low accuracy. The reverse is true in easy trials: the sensory weight and the threshold increase over time, leading to slower decisions but at much higher accuracy. In contrast to standard diffusion models, adaptive sensory weights construct an accurate representation for the probability of each choice. This information can then be combined appropriately with other unreliable cues, such as priors. We show that this model can account for recent findings in a motion discrimination task, and can be implemented in a neural architecture using fast Hebbian learning.

  15. Sensory cortex limits cortical maps and drives top-down plasticity in thalamocortical circuits

    PubMed Central

    Zembrzycki, Andreas; Chou, Shen-Ju; Ashery-Padan, Ruth; Stoykova, Anastassia; O’Leary, Dennis D.M.

    2013-01-01

    Summary Primary somatosensory cortex (S1) contains a complete body map that mirrors subcortical maps developed by peripheral sensory input projecting to sensory hindbrain, thalamus, then S1. Peripheral changes during development alter these maps through ‘bottom-up’ plasticity. Unknown is how S1 size influences map organization and if an altered S1 map feedbacks to affect subcortical maps. We show in mice that S1 is significantly reduced by cortex-specific deletion of Pax6, resulting in a reduced body map and loss of body representations by exclusion of later-differentiating sensory thalamocortical input. An initially normal sensory thalamus was re-patterned to match the aberrant S1 map by apoptotic deletion of thalamic neurons representing body parts with axons excluded from S1. Deleted representations were rescued by altering competition between thalamocortical axons by sensory deprivation or increasing S1. Thus, S1 size determined resolution and completeness of body maps and engaged ‘top-down’ plasticity that re-patterned sensory thalamus to match S1. PMID:23831966

  16. An Evaluation of the Role of Sensory Drive in the Evolution of Lake Malawi Cichlid Fishes

    PubMed Central

    Smith, Adam R.; van Staaden, Moira J.; Carleton, Karen L.

    2012-01-01

    Although the cichlids of Lake Malawi are an important model system for the study of sensory evolution and sexual selection, the evolutionary processes linking these two phenomena remain unclear. Prior works have proposed that evolutionary divergence is driven by sensory drive, particularly as it applies to the visual system. While evidence suggests that sensory drive has played a role in the speciation of Lake Victoria cichlids, the findings from several lines of research on cichlids of Lake Malawi are not consistent with the primary tenets of this hypothesis. More specifically, three observations make the sensory drive model implausible in Malawi: (i) a lack of environmental constraint due to a broad and intense ambient light spectrum in species rich littoral habitats, (ii) pronounced variation in receiver sensory characteristics, and (iii) pronounced variability in male courtship signal characteristics. In the following work, we synthesize the results from recent studies to draw attention to the importance of sensory variation in cichlid evolution and speciation, and we suggest possible avenues of future research. PMID:22779029

  17. Abnormal cortical sensory activation in dystonia: an fMRI study.

    PubMed

    Butterworth, Stephen; Francis, Sue; Kelly, Edward; McGlone, Francis; Bowtell, Richard; Sawle, Guy V

    2003-06-01

    Despite the obvious motor manifestations of focal dystonia, it is recognised that the sensory system plays an important role in this condition. This functional magnetic resonance imaging study examines the sensory representations of individual digits both within the subregions of the primary sensory cortex (SI) and in other nonprimary sensory areas. Patients with focal dystonia and controls were scanned during vibrotactile stimulation of both the index (digit 2) and little (digit 5) fingers of their dominant hand (which was the affected hand in all the dystonic subjects). The activation maps obtained were analysed for location, size, and magnitude of activation and three-dimensional (3-D) orientation of digit representations. Data from both groups were compared. There were significant differences in the average 3-D separation between the two digit representations in area 1 of SI between subject groups (9.6 +/- 1.2 mm for controls and 4.1 +/- 0.2 mm for dystonic subjects). There were also strong trends for reversed ordering of the representation of the two digits in both the secondary sensory cortex and posterior parietal area between the two groups. In addition, in dystonic subjects, there was significant under activation in the secondary somatosensory cortex (SII/area 40) for both digits and in the posterior parietal area for digit 5. These results indicate the presence of widespread activation abnormalities in the cortical sensory system in dystonia.

  18. Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese.

    PubMed

    Goswami, Usha; Wang, H-L Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-02-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development.

  19. Sensory-motor integration during speech production localizes to both left and right plana temporale.

    PubMed

    Simmonds, Anna J; Leech, Robert; Collins, Catherine; Redjep, Ozlem; Wise, Richard J S

    2014-09-24

    Speech production relies on fine voluntary motor control of respiration, phonation, and articulation. The cortical initiation of complex sequences of coordinated movements is thought to result in parallel outputs, one directed toward motor neurons while the "efference copy" projects to auditory and somatosensory fields. It is proposed that the latter encodes the expected sensory consequences of speech and compares expected with actual postarticulatory sensory feedback. Previous functional neuroimaging evidence has indicated that the cortical target for the merging of feedforward motor and feedback sensory signals is left-lateralized and lies at the junction of the supratemporal plane with the parietal operculum, located mainly in the posterior half of the planum temporale (PT). The design of these studies required participants to imagine speaking or generating nonverbal vocalizations in response to external stimuli. The resulting assumption is that verbal and nonverbal vocal motor imagery activates neural systems that integrate the sensory-motor consequences of speech, even in the absence of primary motor cortical activity or sensory feedback. The present human functional magnetic resonance imaging study used univariate and multivariate analyses to investigate both overt and covert (internally generated) propositional and nonpropositional speech (noun definition and counting, respectively). Activity in response to overt, but not covert, speech was present in bilateral anterior PT, with no increased activity observed in posterior PT or parietal opercula for either speech type. On this evidence, the response of the left and right anterior PTs better fulfills the criteria for sensory target and state maps during overt speech production.

  20. Does hippotherapy effect use of sensory information for balance in people with multiple sclerosis?

    PubMed

    Lindroth, Jodi L; Sullivan, Jessica L; Silkwood-Sherer, Debbie

    2015-01-01

    This case-series study aimed to determine if there were observable changes in sensory processing for postural control in individuals with multiple sclerosis (MS) following physical therapy using hippotherapy (HPOT), or changes in balance and functional gait. This pre-test non-randomized design study, with follow-up assessment at 6 weeks, included two females and one male (age range 37-60 years) with diagnoses of relapse-remitting or progressive MS. The intervention consisted of twelve 40-min physical therapy sessions which included HPOT twice a week for 6 weeks. Sensory organization and balance were assessed by the Sensory Organization Test (SOT) and Berg Balance Scale (BBS). Gait was assessed using the Functional Gait Assessment (FGA). Following the intervention period, all three participants showed improvements in SOT (range 1-8 points), BBS (range 2-6 points), and FGA (average 4 points) scores. These improvements were maintained or continued to improve at follow-up assessment. Two of the three participants no longer over-relied on vision and/or somatosensory information as the primary sensory input for postural control, suggesting improved use of sensory information for balance. The results indicate that HPOT may be a beneficial physical therapy treatment strategy to improve balance, functional gait, and enhance how some individuals with MS process sensory cues for postural control. Randomized clinical trials will be necessary to validate results of this study.

  1. An evaluation of the role of sensory drive in the evolution of lake Malawi cichlid fishes.

    PubMed

    Smith, Adam R; van Staaden, Moira J; Carleton, Karen L

    2012-01-01

    Although the cichlids of Lake Malawi are an important model system for the study of sensory evolution and sexual selection, the evolutionary processes linking these two phenomena remain unclear. Prior works have proposed that evolutionary divergence is driven by sensory drive, particularly as it applies to the visual system. While evidence suggests that sensory drive has played a role in the speciation of Lake Victoria cichlids, the findings from several lines of research on cichlids of Lake Malawi are not consistent with the primary tenets of this hypothesis. More specifically, three observations make the sensory drive model implausible in Malawi: (i) a lack of environmental constraint due to a broad and intense ambient light spectrum in species rich littoral habitats, (ii) pronounced variation in receiver sensory characteristics, and (iii) pronounced variability in male courtship signal characteristics. In the following work, we synthesize the results from recent studies to draw attention to the importance of sensory variation in cichlid evolution and speciation, and we suggest possible avenues of future research.

  2. The cortical and sub-cortical network of sensory evoked response in healthy subjects.

    PubMed

    Muthuraman, M; Hellriegel, H; Groppa, S; Deuschl, G; Raethjen, J

    2013-01-01

    The aim of this study was to find the cortical and sub-cortical network responsible for the sensory evoked coherence in healthy subjects during electrical stimulation of right median nerve at wrist. The multitaper method was used to estimate the power and coherence spectrum followed by the source analysis method dynamic imaging of coherent sources (DICS) to find the highest coherent source for the basic frequency 3 Hz and the complete cortical and sub-cortical network responsible for the sensory evoked coherence in healthy subjects. The highest coherent source for the basic frequency was in the posterior parietal cortex for all the subjects. The cortical and sub-cortical network comprised of the primary sensory motor cortex (SI), secondary sensory motor cortex (SII), frontal cortex and medial pulvinar nucleus in the thalamus. The cortical and sub-cortical network responsible for the sensory evoked coherence was found successfully with a 64-channel EEG system. The sensory evoked coherence is involved with a thalamo-cortical network in healthy subjects.

  3. Sensory reactivity, empathizing and systemizing in autism spectrum conditions and sensory processing disorder.

    PubMed

    Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon

    2017-05-18

    Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017. Published by Elsevier Ltd.

  4. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  5. Sensory Plasticity in Human Motor Learning.

    PubMed

    Ostry, David J; Gribble, Paul L

    2016-02-01

    There is accumulating evidence from behavioral, neurophysiological, and neuroimaging studies that the acquisition of motor skills involves both perceptual and motor learning. Perceptual learning alters movements, motor learning, and motor networks of the brain. Motor learning changes perceptual function and the sensory circuits of the brain. Here, we review studies of both human limb movement and speech that indicate that plasticity in sensory and motor systems is reciprocally linked. Taken together, this points to an approach to motor learning in which perceptual learning and sensory plasticity have a fundamental role.

  6. Sensory plasticity in human motor learning

    PubMed Central

    Ostry, David J; Gribble, Paul L

    2015-01-01

    Summary There is accumulating evidence from behavioural, neurophysiological and neuroimaging studies that the acquisition of motor skills involves both perceptual and motor learning. Perceptual learning alters movements, motor learning and motor networks of the brain. Motor learning changes perceptual function and the brain’s sensory circuits. Here we review studies of both human limb movement and speech which indicate that plasticity in sensory and motor systems is reciprocally linked. Taken together, this points to an approach to motor learning in which perceptual learning and sensory plasticity play a fundamental role. PMID:26774345

  7. Electromagnetic Characterization Of Metallic Sensory Alloy

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  8. Functional properties of synaptic transmission in primary sense organs.

    PubMed

    Singer, Joshua H; Glowatzki, Elisabeth; Moser, Tobias; Strowbridge, Ben W; Bhandawat, Vikas; Sampath, Alapakkam P

    2009-10-14

    Sensory receptors transduce physical stimuli in the environment into neural signals that are interpreted by the brain. Although considerable attention has been given to how the sensitivity and dynamic range of sensory receptors is established, peripheral synaptic interactions improve the fidelity with which receptor output is transferred to the brain. For instance, synapses in the retina, cochlea, and primary olfactory system use mechanisms that fine-tune the responsiveness of postsynaptic neurons and the dynamics of exocytosis; these permit microcircuit interactions to encode efficiently the output of sensory receptors with the fidelity and dynamic range necessary to extract the salient features of the physical stimuli. The continuous matching of presynaptic and postsynaptic responsiveness highlight how the primary sensory organs have been optimized and can be modulated to resolve sparse sensory signals and to encode the entire range of receptor output.

  9. Effects of sensory denervation by neonatal capsaicin administration on experimental pancreatitis induced by dibutyltin dichloride.

    PubMed

    Ikeura, Tsukasa; Kataoka, Yosky; Wakabayashi, Taketoshi; Mori, Tetsuji; Takamori, Yasuharu; Takamido, Shoichiroh; Okazaki, Kazuichi; Yamada, Hisao

    2007-09-01

    Increase in the number of intrapancreatic sensory nerve fibers has been implicated in the generation of pain in chronic pancreatitis. Because some sensory neurotransmitters (e.g., substance P) are known to have proinflammatory effects, we hypothesized that denervation of intrapancreatic nerves might influence not only pain generation but also inflammation. Neonatal Lewis rats were injected with capsaicin (50 mg/kg or 0 mg/kg), a neurotoxin, to induce denervation of primary sensory neurons. When rats reached 170-190 g body weight, experimental pancreatitis was induced by a single administration of dibutyltin dichloride (7 mg/mg). The severity of pancreatitis was evaluated in both groups in the acute phase (at 3 and 7 days) and chronic phase (at 28 days). At day 7, the sensory denervation induced by neonatal capsaicin administration inhibited pancreatic inflammation on both histological (determination of interstitial edema, expansion of interlobular septa and intercellular spaces, and inflammatory cell infiltration) and biochemical (intrapancreatic myeloperoxidase activity) evaluation. Furthermore, at day 28, glandular atrophy, pseudotubular complexes, and rate of fibrosis were each significantly lower in the capsaicin-pretreated group than in the vehicle-pretreated group. Our findings provide in vivo evidence that primary sensory neurons play important roles in both acute pancreatitis and chronic pancreatic inflammation with fibrosis.

  10. Cortical plasticity as a mechanism for storing Bayesian priors in sensory perception.

    PubMed

    Köver, Hania; Bao, Shaowen

    2010-05-05

    Human perception of ambiguous sensory signals is biased by prior experiences. It is not known how such prior information is encoded, retrieved and combined with sensory information by neurons. Previous authors have suggested dynamic encoding mechanisms for prior information, whereby top-down modulation of firing patterns on a trial-by-trial basis creates short-term representations of priors. Although such a mechanism may well account for perceptual bias arising in the short-term, it does not account for the often irreversible and robust changes in perception that result from long-term, developmental experience. Based on the finding that more frequently experienced stimuli gain greater representations in sensory cortices during development, we reasoned that prior information could be stored in the size of cortical sensory representations. For the case of auditory perception, we use a computational model to show that prior information about sound frequency distributions may be stored in the size of primary auditory cortex frequency representations, read-out by elevated baseline activity in all neurons and combined with sensory-evoked activity to generate a perception that conforms to Bayesian integration theory. Our results suggest an alternative neural mechanism for experience-induced long-term perceptual bias in the context of auditory perception. They make the testable prediction that the extent of such perceptual prior bias is modulated by both the degree of cortical reorganization and the magnitude of spontaneous activity in primary auditory cortex. Given that cortical over-representation of frequently experienced stimuli, as well as perceptual bias towards such stimuli is a common phenomenon across sensory modalities, our model may generalize to sensory perception, rather than being specific to auditory perception.

  11. Sensory processing disorders in children with cerebral palsy.

    PubMed

    Pavão, Sílvia Leticia; Rocha, Nelci Adriana Cicuto Ferreira

    2017-02-01

    To evaluate sensory processing in children with CP using the Sensory Profile questionnaire and to compare results with the ones of children with typical development (TD). We assessed sensory processing of 59 TD children and 43 CP children using the Sensory Profile, a standardized parent reporting measure that records children's responses to sensory events in daily life. Mann-Whitney test was used to compare the results of sensory processing evaluation among the groups. Bonferroni correction was applied. We found differences in sensory processing between groups in 16 out of the 23 categories evaluated in the Sensory Profile. Our results pointed out to the existence of disturbances in the processing of sensory information in CP. Based on the importance of the sensory integration process for motor function, the presence of such important disturbances draw the attention to the implementation of sensory therapies which improve function in these children. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Gravitational sensory transduction chain in flagellates

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Richter, P.; Ntefidou, M.; Lebert, M.

    Earlier hypotheses have assumed that gravitactic orientation in flagellates, such as the photosynthetic unicell Euglena gracilis, is brought about by passive alignment of the cells in the water column by being tail heavy. A recent experiment on a sounding rocket (TEXUS 40) comparing immobilized cells with mobile cells demonstrated that the passive buoy effect can account for approximately 20% of the orientation of the cells in a gravity field. The cells show either positive or negative gravitaxis depending on other external or internal factors. Shortly after inoculation, the tendency of young cells to swim downward in the water column can be readily reverted by adding micromolar concentrations of some heavy metal ions including copper, cadmium or lead. The negative gravitaxis of older cells is converted into a positive one by stress factors such as increasing salinity or exposure to excessive visible or UV radiation. The mechanism for this switch seems to involve reactive oxygen species since the gravitactic sign change was suppressed when oxygen was removed by flushing the cell suspension with nitrogen. Also, the addition of radical scavengers (Trolox, ascorbic acid or potassium cyanide) abolished or reduced the gravitactic sign change. Addition of hydrogen peroxide induced a gravitactic sign change in the absence of external stress factors. The primary reception for the gravity vector seems to involve mechanosensitive ion channels which specifically gate calcium ions inward. We have identified several gene sequences for putative mechanosensory channels in Euglena and have applied RNAi to identify which of these channels are involved in graviperception. The influx of Ca 2+ activates calmodulin (CaM) which has been shown to be involved in the sensory transduction chain of graviorientation. It is known that an adenylyl cyclase is bound to the flagellar membrane in Euglena which is activated by CaM. This enzyme produces cAMP which has also been shown to be the key

  13. Continuous functions for the analysis of sensory transduction.

    PubMed

    Awiszus, F

    1989-01-01

    Sensory transduction at a primary receptor neuron yields a current that drives the generation of action potentials. Due to the inaccessibility of that current for direct measurements the analysis of sensory transduction requires the use of neuronal output functions that give an indirect measure for the "input" current, i.e. the current at the impulse initiating site. Three continuous neuronal output functions are investigated with respect to their ability to reconstruct the input current (i) the membrane potential recorded under sodium channel block referred to as "receptor potential", (ii) the interspike-interval function (Awiszus 1988a) and (iii) the phase lag function which is introduced in this paper. The behaviour of these three functions for constant and dynamically varying input is studied at the Hodgkin-Huxley model (Hodgkin and Huxley 1952) because for this model neuron it is possible to compare the input current estimates obtained from the output functions with the true input current. It was found that for constant and for sufficiently slow varying input all three functions allow a valid reconstruction of the input current time course. On the other hand, if the input current changes rapidly all three estimated input current time courses show considerable deviations from the true time course. The largest maximal deviation is shown by the current estimate obtained from the receptor potential whereas the phase lag function yields the smallest input current misjudgement. An experimental example to illustrate the procedure to obtain the phase lag function for a muscle spindle primary afferent is given.

  14. Sensory cortical processing and the biological basis of personality.

    PubMed

    Hegerl, U; Gallinat, J; Mrowinski, D

    1995-04-01

    Action-oriented personality traits such as sensation seeking, extraversion, and impulsivity have been related to a pronounced amplitude increase of auditory evoked scalp potentials with increasing stimulus intensity. Dipole source analysis represents a crucial methodological progress in this context, because overlapping subcomponents of the scalp potentials can be separated and can be related to their generating cortical structures. In a study on 40 healthy subjects, it was found that sensation seeking is clearly related to the auditory evoked response pattern (N1/P2-component, stimulus intensities: 60, 70, 80, 90, 100 dB SPL) of the superior temporal plane including primary auditory cortex, but not to that of secondary auditory areas in the lateral temporal cortex. These results support the concept that the serotonergic brain system, which is supposed to modulate sensory processing in primary auditory cortices, is an important factor underlying individual differences in sensation seeking.

  15. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  16. [Sensory illusions in hang-gliding].

    PubMed

    Bousquet, F; Bizeau, A; Resche-Rigon, P; Taillemite, J P; De Rotalier

    1997-01-01

    Sensory illusions in hang-gliding and para-gliding. Hang-gliding and para-gliding are at the moment booming sports. Sensory illusions are physiological phenomena sharing the wrong perception of the pilote's real position in space. These phenomena are very familiar to aeroplane pilotes, they can also be noticed on certain conditions with hang-gliding pilotes. There are many and various sensory illusions, but only illusions of vestibular origin will be dealt with in this article. Vestibular physiology is reminded with the working principle of a semicircular canal. Physiology and laws of physics explain several sensory illusions, especially when the pilote loses his visual landmarks: flying through a cloud, coriolis effect. Also some specific stages of hang-gliding foster those phenomena: spiraling downwards, self-rotation, following an asymetric closing of the parachute, spin on oneself. Therefore a previous briefing for the pilotes seems necessary.

  17. Sensory systems in the control of movement.

    PubMed

    Prochazka, Arthur; Ellaway, Peter

    2012-10-01

    Animal movement is immensely varied, from the simplest reflexive responses to the most complex, dexterous voluntary tasks. Here, we focus on the control of movement in mammals, including humans. First, the sensory inputs most closely implicated in controlling movement are reviewed, with a focus on somatosensory receptors. The response properties of the large muscle receptors are examined in detail. The role of sensory input in the control of movement is then discussed, with an emphasis on the control of locomotion. The interaction between central pattern generators and sensory input, in particular in relation to stretch reflexes, timing, and pattern forming neuronal networks is examined. It is proposed that neural signals related to bodily velocity form the basic descending command that controls locomotion through specific and well-characterized relationships between muscle activation, step cycle phase durations, and biomechanical outcomes. Sensory input is crucial in modulating both the timing and pattern forming parts of this mechanism.

  18. Bioinspired sensory systems for local flow characterization

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  19. Behavioural consequences of sensory plasticity in guppies

    PubMed Central

    Chapman, Ben B.; Morrell, Lesley J.; Tosh, Colin R.; Krause, Jens

    2010-01-01

    Sensory plasticity, whereby individuals compensate for sensory deprivation in one sense by an improvement in the performance of an alternative sense, is a well-documented phenomenon in nature. Despite this, the behavioural and ecological consequences of sensory plasticity have not been addressed. Here we show experimentally that some components (vision and chemoreception) of the sensory system of guppies are developmentally plastic, and that this plasticity has important consequences for foraging behaviour. Guppies reared under low light conditions had a significantly stronger response to chemical food cues encountered in isolation than fish reared at higher light levels. Conversely, they exhibited a weaker response to visual-only cues. When visual and olfactory/gustatory cues were presented together, no difference between the strength of response for fish reared at different light intensities was evident. Our data suggest that guppies can compensate for experience of a visually poor, low light environment via a sensory switch from vision to olfaction/gustation. This switch from sight to chemoreception may allow individuals to carry out the foraging behaviour that is essential to their survival in a visually poor environment. These considerations are especially important given the increasing frequency of anthropogenic changes to ecosystems. Compensatory phenotypic plasticity as demonstrated by our study may provide a hitherto unconsidered buffer that could allow animals to perform fundamental behaviours in the face of considerable change to the sensory environment. PMID:20053643

  20. Amino acid odorants stimulate microvillar sensory neurons.

    PubMed

    Lipschitz, David L; Michel, William C

    2002-03-01

    The olfactory epithelium (OE) of zebrafish is populated with ciliated and microvillar olfactory sensory neurons (OSNs). Whether distinct classes of odorants specifically activate either of these unique populations of OSNs is unknown. Previously we demonstrated that zebrafish OSNs could be labeled in an activity-dependent fashion by amino acid but not bile acid odorants. To determine which sensory neuron type was stimulated by amino acid odorants, we labeled OSNs using the ion channel permeant probe agmatine (AGB) and analyzed its distribution with conventional light- and electron-microscope immunocytochemical techniques. Approximately 7% of the sensory epithelium was labeled by AGB exposure alone. Following stimulation with one of the eight amino acids tested, the proportion of labeled epithelium increased from 9% for histidine to 19% for alanine; amino acid stimulated increases in labeling of 2-12% over control labeling. Only histidine failed to stimulate a significant increase in the proportion of labeled OSNs compared to control preparations. Most amino acid sensitive OSNs were located superficially in the epithelium and immuno-electron microscopy demonstrated that the labeled OSNs were predominantly microvillar. Large numbers of nanogold particles (20-60 per 1.5 microm(2)) were associated with microvillar olfactory sensory neurons (MSNs), while few such particles (<15 per 1.5 microm(2)) were observed over ciliated olfactory sensory neurons (CSNs), supporting cells (SCs) and areas without tissue, such as the lumen above the OE. Collectively, these findings indicate that microvillar sensory neurons are capable of detecting amino acid odorants.

  1. Sensory correlates of pain in peripheral neuropathies.

    PubMed

    Ng Wing Tin, Sophie; Ciampi de Andrade, Daniel; Goujon, Colette; Planté-Bordeneuve, Violaine; Créange, Alain; Lefaucheur, Jean-Pascal

    2014-05-01

    To characterize sensory threshold alterations in peripheral neuropathies and the relationship between these alterations and the presence of pain. Seventy-four patients with length-dependent sensory axonal neuropathy were enrolled, including 38 patients with painful neuropathy (complaining of chronic, spontaneous neuropathic pain in the feet) and 36 patients with painless neuropathy. They were compared to 28 age-matched normal controls. A standardized quantitative sensory testing protocol was performed in all individuals to assess large and small fiber function at the foot. Large fibers were assessed by measuring mechanical (pressure and vibration) detection thresholds and small fibers by measuring pain and thermal detection thresholds. Between patients with neuropathy and controls, significant differences were found for mechanical and thermal detection thresholds but not for pain thresholds. Patients with painful neuropathy and those with painless neuropathy did not differ regarding mechanical or thermal thresholds, but only by a higher incidence of thermal or dynamic mechanical allodynia in case of painful neuropathy. Pain intensity correlated with the alteration of thermal detection and mechanical pain thresholds. Quantitative sensory testing can support the diagnosis of sensory neuropathy when considering detection threshold measurement. Thermal threshold deterioration was not associated with the occurrence of pain but with its intensity. There is a complex relationship between the loss or functional deficit of large and especially small sensory nerve fibers and the development of pain in peripheral neuropathy. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Anthropogenic noise affects behavior across sensory modalities.

    PubMed

    Kunc, Hansjoerg P; Lyons, Gillian N; Sigwart, Julia D; McLaughlin, Kirsty E; Houghton, Jonathan D R

    2014-10-01

    Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species using acoustic signals (i.e., species relying on signals that use the same sensory modality as anthropogenic noise). Yet many species use other sensory modalities, such as visual and olfactory signals, to communicate. However, we have only little understanding of whether changes in the acoustic environment affect species that use sensory modalities other than acoustic signals. We studied the impact of anthropogenic noise on the common cuttlefish Sepia officinalis, which uses highly complex visual signals. We showed that cuttlefish adjusted their visual displays by changing their color more frequently during a playback of anthropogenic noise, compared with before and after the playback. Our results provide experimental evidence that anthropogenic noise has a marked effect on the behavior of species that are not reliant on acoustic communication. Thus, interference in one sensory channel, in this case the acoustic one, affects signaling in other sensory channels. By considering sensory channels in isolation, we risk overlooking the broader implications of environmental changes for the behavior of animals.

  3. Collective behaviour in vertebrates: a sensory perspective

    PubMed Central

    Collignon, Bertrand; Fernández-Juricic, Esteban

    2016-01-01

    Collective behaviour models can predict behaviours of schools, flocks, and herds. However, in many cases, these models make biologically unrealistic assumptions in terms of the sensory capabilities of the organism, which are applied across different species. We explored how sensitive collective behaviour models are to these sensory assumptions. Specifically, we used parameters reflecting the visual coverage and visual acuity that determine the spatial range over which an individual can detect and interact with conspecifics. Using metric and topological collective behaviour models, we compared the classic sensory parameters, typically used to model birds and fish, with a set of realistic sensory parameters obtained through physiological measurements. Compared with the classic sensory assumptions, the realistic assumptions increased perceptual ranges, which led to fewer groups and larger group sizes in all species, and higher polarity values and slightly shorter neighbour distances in the fish species. Overall, classic visual sensory assumptions are not representative of many species showing collective behaviour and constrain unrealistically their perceptual ranges. More importantly, caution must be exercised when empirically testing the predictions of these models in terms of choosing the model species, making realistic predictions, and interpreting the results. PMID:28018616

  4. Integration of sensory quanta in cuneate nucleus neurons in vivo.

    PubMed

    Bengtsson, Fredrik; Brasselet, Romain; Johansson, Roland S; Arleo, Angelo; Jörntell, Henrik

    2013-01-01

    Discriminative touch relies on afferent information carried to the central nervous system by action potentials (spikes) in ensembles of primary afferents bundled in peripheral nerves. These sensory quanta are first processed by the cuneate nucleus before the afferent information is transmitted to brain networks serving specific perceptual and sensorimotor functions. Here we report data on the integration of primary afferent synaptic inputs obtained with in vivo whole cell patch clamp recordings from the neurons of this nucleus. We find that the synaptic integration in individual cuneate neurons is dominated by 4-8 primary afferent inputs with large synaptic weights. In a simulation we show that the arrangement with a low number of primary afferent inputs can maximize transfer over the cuneate nucleus of information encoded in the spatiotemporal patterns of spikes generated when a human fingertip contact objects. Hence, the observed distributions of synaptic weights support high fidelity transfer of signals from ensembles of tactile afferents. Various anatomical estimates suggest that a cuneate neuron may receive hundreds of primary afferents rather than 4-8. Therefore, we discuss the possibility that adaptation of synaptic weight distribution, possibly involving silent synapses, may function to maximize information transfer in somatosensory pathways.

  5. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  6. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  7. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact...

  8. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact...

  9. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact...

  10. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact...

  11. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact...

  12. The Efficiency of Sensory Integration Interventions in Preterm Infants.