Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus
Mor, Sunil K.; Higgins, LeeAnn; Armien, Anibal; Youssef, Mohammed M.; Bruggeman, Peter J.; Goyal, Sagar M.
2018-01-01
Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid. PMID:29566061
Castón, José R.; Martínez-Torrecuadrada, Jorge L.; Maraver, Antonio; Lombardo, Eleuterio; Rodríguez, José F.; Casal, J. Ignacio; Carrascosa, José L.
2001-01-01
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis. PMID:11602723
Smectic viral capsids and the aneurysm instability
NASA Astrophysics Data System (ADS)
Dharmavaram, S.; Rudnick, J.; Lawrence, C. M.; Bruinsma, R. F.
2018-05-01
The capsids of certain Archaea-infecting viruses undergo large shape changes, while maintaining their integrity against rupture by osmotic pressure. We propose that these capsids are in a smectic liquid crystalline state, with the capsid proteins assembling along spirals. We show that smectic capsids are intrinsically stabilized against the formation of localized bulges with non-zero Gauss curvature while still allowing for large-scale cooperative shape transformation that involves global changes in the Gauss curvature.
Callaway, Heather M.; Feng, Kurtis H.; Lee, Donald W.; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan
2016-01-01
ABSTRACT Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity. PMID:27847360
Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R
2017-01-15
Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucks, Michelle A.; O'Regan, Kevin J.; Murphy, Michael A.
2007-05-10
The assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associatedmore » with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid-tegument protein interactions may represent initial events of the tegumentation process.« less
Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Li; Fokine, Andrei; O'Donnell, Erin
2010-07-22
Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a 'glue' between neighboring hexameric capsomers, forming a 'cage' that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 {angstrom} resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc weremore » fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.« less
Viral Capsid DNA Aptamer Conjugates as Multivalent Cell Targeting Vehicles
Tong, Gary J.; Hsiao, Sonny C.; Carrico, Zachary M.; Francis, Matthew B.
2009-01-01
Nucleic acid aptamers offer significant potential as convenient and evolvable targeting groups for drug delivery. To attach them to the surface of a genome-free viral capsid carrier, an efficient oxidative coupling strategy has been developed. The method involves the periodate-mediated reaction of phenylene diamine substituted oligonucleotides with aniline groups installed on the outer surface of the capsid shells. Up to 60 DNA strands can be attached to each viral capsid with no apparent loss of base-pairing capabilities or protein stability. The ability of the capsids to bind specific cellular targets was demonstrated through the attachment of a 41-nucleotide sequence that targets a tyrosine kinase receptor on Jurkat T cells. After the installation of a fluorescent dye on the capsid interior, capsids bearing the cell-targeting sequence showed significant levels of binding to the cells relative to control samples. Colocalization experiments using confocal microscopy indicated that the capsids were endocytosed and trafficked to lysosomes for degradation. These observations suggest that aptamer-labeled capsids could be used for the targeted drug delivery of acid-labile prodrugs that would be preferentially released upon lysosomal acidification. PMID:19603808
Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon
2014-01-01
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856
A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress.
Wilkie, Adrian R; Sharma, Mayuri; Pesola, Jean M; Ericsson, Maria; Fernandez, Rosio; Coen, Donald M
2018-03-15
Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress. IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved. Copyright © 2018 American Society for Microbiology.
Cytomegalovirus Basic Phosphoprotein (pUL32) Binds to Capsids In Vitro through Its Amino One-Third
Baxter, Michael K.; Gibson, Wade
2001-01-01
The cytomegalovirus (CMV) basic phosphoprotein (BPP) is a component of the tegument. It remains with the nucleocapsid fraction under conditions that remove most other tegument proteins from the virion, suggesting a direct and perhaps tight interaction with the capsid. As a step toward localizing this protein within the molecular structure of the virion and understanding its function during infection, we have investigated the BPP-capsid interaction. In this report we present evidence that the BPP interacts selectively, through its amino one-third, with CMV capsids. Radiolabeled simian CMV (SCMV) BPP, synthesized in vitro, bound to SCMV B-capsids, and C-capsids to a lesser extent, following incubation with either isolated capsids or lysates of infected cells. Human CMV (HCMV) BPP (pUL32) also bound to SCMV capsids, and SCMV BPP likewise bound to HCMV capsids, indicating that the sequence(s) involved is conserved between the two proteins. Analysis of SCMV BPP truncation mutants localized the capsid-binding region to the amino one-third of the molecule—the portion of BPP showing the greatest sequence conservation between the SCMV and HCMV homologs. This general approach may have utility in studying the interactions of other proteins with conformation-dependent binding sites. PMID:11435566
Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi
2012-01-01
This report describes a new disintegration tester that can determine not only the disintegration time of orally rapidly disintegrating tablets (ODT), but also the disintegration behavior and mechanism. Using the tester, the disintegration properties of the tablets prepared in a previous study were examined. The purpose of this study is to confirm the utility of the tester as an instrument for evaluating the disintegration properties of ODT and determine relations among time, behavior and mechanism of the disintegration. Results demonstrated that in vitro disintegration time in the tester is similar to that in the commercial disintegration tester for ODT and is highly correlated with oral disintegration time. Observations of disintegration process revealed that a difference in disintegration behavior between tablets compressed at 50-75 MPa and 100 MPa; the disintegration behavior of the tablets were designated immediate disintegrating type and gradual disintegrating type, respectively. The dynamic swelling profile and water absorption profile indicated that the disintegration mechanism of the tablets involved wicking action induced by swelling of the disintegrant; the disintegration time was closely related to the initial rates of swelling and water absorption. Furthermore, the mechanism of water absorption of tablets compressed at 50-75 MPa and 100 MPa shows anomalous diffusion and case-II transport, respectively. The shift in this mechanism is consistent with differences in disintegration time and behavior between the tablets. These findings suggest that information on disintegration properties obtained by our tester is useful for understanding of disintegration phenomena of ODT.
Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.
Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen
2018-01-01
Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty virions may allow us to rationally design effective strategies to prevent elimination of AAV transduced target cells by capsid specific CD8+ T cells.
Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo
Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen
2018-01-01
Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP−/−) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty virions may allow us to rationally design effective strategies to prevent elimination of AAV transduced target cells by capsid specific CD8+ T cells. PMID:29725339
Wang, Yu; Yang, Yin; Wu, Songfang; Pan, Shuang; Zhou, Chaodong; Ma, Yijie; Ru, Yongxin; Dong, Shuxu; He, Bin; Zhang, Cuizhu; Cao, Youjia
2014-01-01
As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles. PMID:25355318
Coarse-grained models of key self-assembly processes in HIV-1
NASA Astrophysics Data System (ADS)
Grime, John
Computational molecular simulations can elucidate microscopic information that is inaccessible to conventional experimental techniques. However, many processes occur over time and length scales that are beyond the current capabilities of atomic-resolution molecular dynamics (MD). One such process is the self-assembly of the HIV-1 viral capsid, a biological structure that is crucial to viral infectivity. The nucleation and growth of capsid structures requires the interaction of large numbers of capsid proteins within a complicated molecular environment. Coarse-grained (CG) models, where degrees of freedom are removed to produce more computationally efficient models, can in principle access large-scale phenomena such as the nucleation and growth of HIV-1 capsid lattice. We report here studies of the self-assembly behaviors of a CG model of HIV-1 capsid protein, including the influence of the local molecular environment on nucleation and growth processes. Our results suggest a multi-stage process, involving several characteristic structures, eventually producing metastable capsid lattice morphologies that are amenable to subsequent capsid dissociation in order to transmit the viral infection.
Dynamic pathways for viral capsid assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, Michael F.; Chandler, David
2006-02-09
We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss themore » relationship between these mechanisms and experimental evaluations of capsid assembly processes.« less
Parra, Gabriel I.; Abente, Eugenio J.; Sandoval-Jaime, Carlos; Sosnovtsev, Stanislav V.; Bok, Karin
2012-01-01
Noroviruses are major etiological agents of acute viral gastroenteritis. In 2002, a GII.4 variant (Farmington Hills cluster) spread so rapidly in the human population that it predominated worldwide and displaced previous GII.4 strains. We developed and characterized a panel of six monoclonal antibodies (MAbs) directed against the capsid protein of a Farmington Hills-like GII.4 norovirus strain that was associated with a large hospital outbreak in Maryland in 2004. The six MAbs reacted with high titers against homologous virus-like particles (VLPs) by enzyme-linked immunoassay but did not react with denatured capsid protein in immunoblots. The expression and self-assembly of newly developed genogroup I/II chimeric VLPs showed that five MAbs bound to the GII.4 protruding (P) domain of the capsid protein, while one recognized the GII.4 shell (S) domain. Cross-competition assays and mutational analyses showed evidence for at least three distinct antigenic sites in the P domain and one in the S domain. MAbs that mapped to the P domain but not the S domain were able to block the interaction of VLPs with ABH histo-blood group antigens (HBGA), suggesting that multiple antigenic sites of the P domain are involved in HBGA blocking. Further analysis showed that two MAbs mapped to regions of the capsid that had been associated with the emergence of new GII.4 variants. Taken together, our data map antibody and HBGA carbohydrate binding to proximal regions of the norovirus capsid, showing that evolutionary pressures on the norovirus capsid protein may affect both antigenic and carbohydrate recognition phenotypes. PMID:22532688
Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr
2015-02-13
Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study thatmore » Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.« less
NASA Astrophysics Data System (ADS)
Cohen, Brian A.
The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin-virus-aptamer constructs selectively target and kill cancer cells versus non-cancer cells. Specifically, the results show that MS2 is a viable candidate as an addressable nanodelivery vessel of photoactive compounds, and the implications are that the nucleotide-driven packaging approach for modifying MS2 can be used to impart new functionalities for a host of diagnostic or therapeutic applications.
el-Arini, Silvia Kocova; Clas, Sophie-Dorothée
2002-01-01
The in vitro disintegration behavior of fast dissolving systems manufactured by the main commercialized technologies was studied using the texture analyzer (TA) instrument. Quantitative parameters were employed to characterize the effect of the major test variables on the disintegration profiles. The average disintegration profiles of the products were compared using the test conditions that minimized these effects and at the same time mimicked the in vivo situation in the patient's mouth. The differences in the disintegration mechanisms of the fast dissolving systems were reflected in the shape of their disintegration profiles and in the parameters derived from the profiles. The differences were explained in relation to the technology and/or formulation characteristics involved in the manufacture of each product. The in vitro disintegration times obtained under the simulated in vivo conditions were correlated with the reported in vivo disintegration times.
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus
Wolfisberg, Raphael; Kempf, Christoph
2016-01-01
ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.
Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos
2016-06-01
Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Porcine circovirus-2 capsid protein induces cell death in PK15 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark
Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathwaysmore » involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.« less
Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J
2018-03-01
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV. Copyright © 2018 Newman et al.
Ryan, Joseph N.; Harvey, Ronald W.; Metge, David W.; Elimelech, Menachem; Navigato, Theresa; Pieper, Ann P.
2002-01-01
Field and laboratory experiments were conducted to investigate inactivation of viruses attached to mineral surfaces. In a natural gradient transport field experiment, bacteriophage PRD1, radiolabeled with 32P, was injected into a ferric oxyhydroxide-coated sand aquifer with bromide and linear alkylbenzene sulfonates. In a zone of the aquifer contaminated by secondary sewage infiltration, small fractions of infective and 32P-labeled PRD1 broke through with the bromide tracer, followed by the slow release of 84% of the 32P activity and only 0.011% of the infective PRD1. In the laboratory experiments, the inactivation of PRD1, labeled with 35S (protein capsid), and MS2, dual radiolabeled with 35S (protein capsid) and 32P (nucleic acid), was monitored in the presence of groundwater and sediment from the contaminated zone of the field site. Release of infective viruses decreased at a much faster rate than release of the radiolabels, indicating that attached viruses were undergoing surface inactivation. Disparities between 32P and35S release suggest that the inactivated viruses were released in a disintegrated state. Comparison of estimated solution and surface inactivation rates indicates solution inactivation is ∼3 times as fast as surface inactivation. The actual rate of surface inactivation may be substantially underestimated owing to slow release of inactivated viruses.
Praditwongwan, Warachai; Chuankhayan, Phimonphan; Saoin, Somphot; Wisitponchai, Tanchanok; Lee, Vannajan Sanghiran; Nangola, Sawitree; Hong, Saw See; Minard, Philippe; Boulanger, Pierre; Chen, Chun-Jung; Tayapiwatana, Chatchai
2014-08-01
Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated Ank(GAG)1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTD(CA)) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the Ank(GAG)1D4-NTD(CA) interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the Ank(GAG)1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTD(CA) alpha-helices H1 and H7 could mediate the formation of the capsid-Ank(GAG)1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the Ank(GAG)1D4-NTD(CA) interaction. This was confirmed by R-to-A mutagenesis of NTD(CA), and by sequence analysis of trimodular ankyrins negative for capsid binding. In Ank(GAG)1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTD(CA) domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.
NASA Astrophysics Data System (ADS)
Praditwongwan, Warachai; Chuankhayan, Phimonphan; Saoin, Somphot; Wisitponchai, Tanchanok; Lee, Vannajan Sanghiran; Nangola, Sawitree; Hong, Saw See; Minard, Philippe; Boulanger, Pierre; Chen, Chun-Jung; Tayapiwatana, Chatchai
2014-08-01
Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated AnkGAG1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTDCA) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the AnkGAG1D4-NTDCA interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the AnkGAG1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTDCA alpha-helices H1 and H7 could mediate the formation of the capsid-AnkGAG1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the AnkGAG1D4-NTDCA interaction. This was confirmed by R-to-A mutagenesis of NTDCA, and by sequence analysis of trimodular ankyrins negative for capsid binding. In AnkGAG1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTDCA domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.
Cryo-EM structure of a herpesvirus capsid at 3.1 Å.
Yuan, Shuai; Wang, Jialing; Zhu, Dongjie; Wang, Nan; Gao, Qiang; Chen, Wenyuan; Tang, Hao; Wang, Junzhi; Zhang, Xinzheng; Liu, Hongrong; Rao, Zihe; Wang, Xiangxi
2018-04-06
Structurally and genetically, human herpesviruses are among the largest and most complex of viruses. Using cryo-electron microscopy (cryo-EM) with an optimized image reconstruction strategy, we report the herpes simplex virus type 2 (HSV-2) capsid structure at 3.1 angstroms, which is built up of about 3000 proteins organized into three types of hexons (central, peripentonal, and edge), pentons, and triplexes. Both hexons and pentons contain the major capsid protein, VP5; hexons also contain a small capsid protein, VP26; and triplexes comprise VP23 and VP19C. Acting as core organizers, VP5 proteins form extensive intermolecular networks, involving multiple disulfide bonds (about 1500 in total) and noncovalent interactions, with VP26 proteins and triplexes that underpin capsid stability and assembly. Conformational adaptations of these proteins induced by their microenvironments lead to 46 different conformers that assemble into a massive quasisymmetric shell, exemplifying the structural and functional complexity of HSV. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
De Colibus, Luigi; Wang, Xiangxi; Tijsma, Aloys; Neyts, Johan; Spyrou, John A B; Ren, Jingshan; Grimes, Jonathan M; Puerstinger, Gerhard; Leyssen, Pieter; Fry, Elizabeth E; Rao, Zihe; Stuart, David I
2015-10-01
The replication of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), which are the major cause of hand, foot and mouth disease (HFMD) in children, can be inhibited by the capsid binder GPP3. Here, we present the crystal structure of CVA16 in complex with GPP3, which clarifies the role of the key residues involved in interactions with the inhibitor. Based on this model, in silico docking was performed to investigate the interactions with the two next-generation capsid binders NLD and ALD, which we show to be potent inhibitors of a panel of enteroviruses with potentially interesting pharmacological properties. A meta-analysis was performed using the available structural information to obtain a deeper insight into those structural features required for capsid binders to interact effectively and also those that confer broad-spectrum anti-enterovirus activity.
Zivanovic, Yvan; Confalonieri, Fabrice; Ponchon, Luc; Lurz, Rudi; Chami, Mohamed; Flayhan, Ali; Renouard, Madalena; Huet, Alexis; Decottignies, Paulette; Davidson, Alan R.; Breyton, Cécile
2014-01-01
Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm. PMID:24198424
Earley, Lauriel F; Powers, John M; Adachi, Kei; Baumgart, Joshua T; Meyer, Nancy L; Xie, Qing; Chapman, Michael S; Nakai, Hiroyuki
2017-02-01
Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly. Assembly-activating protein (AAP) is a recently discovered adeno-associated virus (AAV) protein that promotes capsid assembly and provides new opportunities for research in assembly. Previous studies on AAV serotype 2 (AAV2) showed that assembly takes place in the nucleolus and is dependent on AAP and that capsids colocalize with AAP in the nucleolus during the assembly process. However, through the investigation of 12 different AAV serotypes (AAV1 to -12), we find that AAP is not an essential requirement for capsid assembly of AAV4, -5, and -11, and AAP, assembled capsids, and the nucleolus do not colocalize for all the serotypes. In addition, we find that there are both serotype-restricted and serotype-promiscuous AAPs in their assembly roles. These findings challenge widely held beliefs about the importance of the nucleolus and AAP in AAV assembly and show the heterogeneous nature of the assembly process within the AAV family. Copyright © 2017 American Society for Microbiology.
Martinez, Ruben; Schellenberger, Pascale; Vasishtan, Daven; Aknin, Cindy; Austin, Sisley; Dacheux, Denis; Rayne, Fabienne; Siebert, Alistair; Ruzsics, Zsolt; Gruenewald, Kay
2014-01-01
ABSTRACT Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rupture are major determinants of entry-related sorting of incoming adenovirus virions. Furthermore, by using electron cryomicroscopy, as well as penton- and protein VI-specific antibodies, we show that the amphipathic helix of protein VI contributes to capsid stability by preventing premature disassembly and deployment of pentons and protein VI. Thus, the helix has a dual function in maintaining the metastable state of the capsid by preventing premature disassembly and mediating efficient membrane lysis to evade lysosomal targeting. Based on these findings and structural data from cryo-electron microscopy, we suggest a refined disassembly mechanism upon entry. IMPORTANCE In this study, we show the intricate connection of adenovirus particle stability and the entry-dependent release of the membrane-lytic capsid protein VI required for endosomal escape. We show that the amphipathic helix of the adenovirus internal protein VI is required to stabilize pentons in the particle while coinciding with penton release upon entry and that release of protein VI mediates membrane lysis, thereby preventing lysosomal sorting. We suggest that this dual functionality of protein VI ensures an optimal disassembly process by balancing the metastable state of the mature adenovirus particle. PMID:25473051
Mechanostability of Proteins and Virus Capsids
NASA Astrophysics Data System (ADS)
Cieplak, Marek
2013-03-01
Molecular dynamics of proteins within coarse grained models have become a useful tool in studies of large scale systems. The talk will discuss two applications of such modeling. The first is a theoretical survey of proteins' resistance to constant speed stretching as performed for a set of 17134 simple and 318 multidomain proteins. The survey has uncovered new potent force clamps. They involve formation of cysteine slipknots or dragging of a cystine plug through the cystine ring and lead to characteristic forces that are significantly larger than the common shear-based clamp such as observed in titin. The second application involves studies of nanoindentation processes in virus capsids and elucidates their molecular aspects by showing deviations in behavior compared to the continuum shell model. Across the 35 capsids studied, both the collapse force and the elastic stiffness are observed to vary by a factor of 20. The changes in mechanical properties do not correlate simply with virus size or symmetry. There is a strong connection to the mean coordination number < z > , defined as the mean number of interactions to neighboring amino acids. The Young's modulus for thin shell capsids rises roughly quadratically with < z > - 6, where 6 is the minimum coordination for elastic stability in three dimensions. Supported by European Regional Development Fund, through Innovative Economy grant Nanobiom (POIG.01.01.02-00-008/08)
Functional requirements of the yellow fever virus capsid protein.
Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J
2007-06-01
Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.
Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V
2016-05-14
Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.
Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid.
Zhang, Xinzheng; Xiang, Ye; Dunigan, David D; Klose, Thomas; Chipman, Paul R; Van Etten, James L; Rossmann, Michael G
2011-09-06
A cryoelectron microscopy 8.5 Å resolution map of the 1,900 Å diameter, icosahedral, internally enveloped Paramecium bursaria chlorella virus was used to interpret structures of the virus at initial stages of cell infection. A fivefold averaged map demonstrated that two minor capsid proteins involved in stabilizing the capsid are missing in the vicinity of the unique vertex. Reconstruction of the virus in the presence of host chlorella cell walls established that the spike at the unique vertex initiates binding to the cell wall, which results in the enveloped nucleocapsid moving closer to the cell. This process is concurrent with the release of the internal viral membrane that was linked to the capsid by many copies of a viral membrane protein in the mature infectous virus. Simultaneously, part of the trisymmetrons around the unique vertex disassemble, probably in part because two minor capsid proteins are absent, causing Paramecium bursaria chlorella virus and the cellular contents to merge, possibly as a result of enzyme(s) within the spike assembly. This may be one of only a few recordings of successive stages of a virus while infecting a eukaryotic host in pseudoatomic detail in three dimensions.
Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid
Zhang, Xinzheng; Xiang, Ye; Dunigan, David D.; Klose, Thomas; Chipman, Paul R.; Van Etten, James L.; Rossmann, Michael G.
2011-01-01
A cryoelectron microscopy 8.5 Å resolution map of the 1,900 Å diameter, icosahedral, internally enveloped Paramecium bursaria chlorella virus was used to interpret structures of the virus at initial stages of cell infection. A fivefold averaged map demonstrated that two minor capsid proteins involved in stabilizing the capsid are missing in the vicinity of the unique vertex. Reconstruction of the virus in the presence of host chlorella cell walls established that the spike at the unique vertex initiates binding to the cell wall, which results in the enveloped nucleocapsid moving closer to the cell. This process is concurrent with the release of the internal viral membrane that was linked to the capsid by many copies of a viral membrane protein in the mature infectous virus. Simultaneously, part of the trisymmetrons around the unique vertex disassemble, probably in part because two minor capsid proteins are absent, causing Paramecium bursaria chlorella virus and the cellular contents to merge, possibly as a result of enzyme(s) within the spike assembly. This may be one of only a few recordings of successive stages of a virus while infecting a eukaryotic host in pseudoatomic detail in three dimensions. PMID:21873222
Cobbold, Christian; Brookes, Sharon M.; Wileman, Thomas
2000-01-01
Enwrapment by membrane cisternae has emerged recently as a mechanism of envelopment for large enveloped DNA viruses, such as herpesviruses, poxviruses, and African swine fever (ASF) virus. For both ASF virus and the poxviruses, wrapping is a multistage process initiated by the recruitment of capsid proteins onto membrane cisternae of the endoplasmic reticulum (ER) or associated ER-Golgi intermediate membrane compartments. Capsid assembly induces progressive bending of membrane cisternae into the characteristic shape of viral particles, and envelopment provides virions with two membranes in one step. We have used biochemical assays for ASF virus capsid recruitment, assembly, and envelopment to define the cellular processes important for the enwrapment of viruses by membrane cisternae. Capsid assembly on the ER membrane, and envelopment by ER cisternae, were inhibited when cells were depleted of ATP or depleted of calcium by incubation with A23187 and EDTA or the ER calcium ATPase inhibitor, thapsigargin. Electron microscopy analysis showed that cells depleted of calcium were unable to assemble icosahedral particles. Instead, assembly sites contained crescent-shaped and bulbous structures and, in rare cases, empty closed five-sided particles. Interestingly, recruitment of the capsid protein from the cytosol onto the ER membrane did not require ATP or an intact ER calcium store. The results show that following recruitment of the virus capsid protein onto the ER membrane, subsequent stages of capsid assembly and enwrapment are dependent on ATP and are regulated by the calcium gradients present across the ER membrane cisternae. PMID:10666244
Preparation and Characterization of Monomodal Grapevine Virus A Capsid Protein.
Santana, Vinícius S; Mariutti, Ricardo B; Eberle, Raphael J; Ullah, Anwar; Caruso, Icaro P; Arni, Raghuvir K
2015-01-01
Grapevine virus A (GVA), a flexible filament of approximately 800 nm in length is composed of capsid subunits that spontaneously assembles around a positive sense genomic RNA. In addition to encapsidation, plant viruses capsid proteins (CPs) participate in other processes throughout infection and GVA CP is involved in cell-to-cell translocation of the virus. A protocol was developed to obtain low-molecular weight GVA-CP that is not prone to aggregation and spontaneous assembly and this was characterized by circular dichroism and dynamic light scattering. These results indicate the suitably of GVA-CP for X-ray crystallographic and NMR studies that should lead to the elucidation of the first three-dimensional structure of a flexible filamentous virus from the Betaflexiviridae family.
Accelerated lamellar disintegration in eutectoid steel
NASA Astrophysics Data System (ADS)
Mishra, Shakti; Mishra, Alok; Show, Bijay Kumar; Maity, Joydeep
2017-04-01
The fastest kinetics of lamellar disintegration (predicted duration of 44 min) in AISI 1080 steel is obtained with a novel approach of incomplete austenitisation-based cyclic heat treatment involving forced air cooling with an air flow rate of 8.7 m3 h-1. A physical model for process kinetics is proposed that involves lamellar fragmentation, lamellar thickening, divorced eutectoid growth and generation of new lamellar faults in remaining cementite lamellae in each cycle. Lamellar fragmentation is accentuated with faster rate of cooling through generation of more intense lamellar faults; but divorced eutectoid growth is ceased. Accordingly, as compared to still air cooling, much faster kinetics of lamellar disintegration is obtained by forced air cooling together with the generation of much smaller submicroscopic cementite particles (containing more proportion of plate-shaped non-spheroids) in divorced eutectoid region.
Use of anaerobic hydrolysis pretreatment to enhance ultrasonic disintegration of excess sludge.
Li, Xianjin; Zhu, Tong; Shen, Yang; Chai, Tianyu; Xie, Yuanhua; You, Meiyan; Wang, Youzhao
2016-01-01
To improve the excess sludge disintegration efficiency, reduce the sludge disintegration cost, and increase sludge biodegradability, a combined pretreatment of anaerobic hydrolysis (AH) and ultrasonic treatment (UT) was proposed for excess sludge. Results showed that AH had an advantage in dissolving flocs, modifying sludge characteristics, and reducing the difficulty of sludge disintegration, whereas UT was advantageous in damaging cell walls, releasing intracellular substances, and decomposing macromolecular material. The combined AH-UT process was an efficient method for excess sludge pretreatment. The optimized solution involved AH for 3 days, followed by UT for 10 min. After treatment, chemical oxygen demand, protein, and peptidoglycan concentrations reached 3,949.5 mg O2/L, 752.5 mg/L and 619.1 mg/L, respectively. This work has great significance for further engineering applications, namely, reducing energy consumption, increasing the sludge disintegration rate, and improving the biochemical properties of sludge.
Cortines, Juliana R; Motwani, Tina; Vyas, Aashay A; Teschke, Carolyn M
2014-05-01
Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving correctly shaped and sized procapsids and that the lack of these proper protein-protein interfaces leads to aberrant structures. The present work represents an important contribution supporting the hypothesis that virus capsid assembly is governed by seemingly simple interactions. The highly specific nature of the subunit interfaces suggests that these could be good targets for antivirals.
Caridi, Flavia; Vázquez-Calvo, Angela; Sobrino, Francisco; Martín-Acebes, Miguel A
2015-05-01
The picornavirus foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. The FMDV capsid is highly acid labile, and viral particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid sensitivity is related to the mechanism of viral uncoating and genome penetration from endosomes. In this study, we have analyzed the molecular basis of FMDV acid-induced disassembly by isolating and characterizing a panel of novel FMDV mutants differing in acid sensitivity. Amino acid replacements altering virion stability were preferentially distributed in two different regions of the capsid: the N terminus of VP1 and the pentameric interface. Even more, the acid labile phenotype induced by a mutation located at the pentameric interface in VP3 could be compensated by introduction of an amino acid substitution in the N terminus of VP1. These results indicate that the acid sensitivity of FMDV can be considered a multifactorial trait and that virion stability is the fine-tuned product of the interaction between residues from different capsid proteins, in particular those located within the N terminus of VP1 or close to the pentameric interface. The viral capsid protects the viral genome from environmental factors and contributes to virus dissemination and infection. Thus, understanding of the molecular mechanisms that modulate capsid stability is of interest for the basic knowledge of the biology of viruses and as a tool to improve the stability of conventional vaccines based on inactivated virions or empty capsids. Using foot-and-mouth disease virus (FMDV), which displays a capsid with extreme acid sensitivity, we have performed a genetic study to identify the molecular determinants involved in capsid stability. A panel of FMDV mutants with differential sensitivity to acidic pH was generated and characterized, and the results showed that two different regions of FMDV capsid contribute to modulating viral particle stability. These results provide new insights into the molecular mechanisms of acid-mediated FMDV uncoating. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A Case Study of Childhood Disintegrative Disorder Using Systematic Analysis of Family Home Movies
ERIC Educational Resources Information Center
Palomo, Ruben; Thompson, Meagan; Colombi, Costanza; Cook, Ian; Goldring, Stacy; Young, Gregory S.; Ozonoff, Sally
2008-01-01
Childhood disintegrative disorder (CDD) is a rare pervasive developmental disorder that involves regression after a period of at least 2 years of typical development. This case study presents data from family home movies, coded by reliable raters using an objective coding system, to examine the trajectory of development in one child with a…
Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen
2016-08-01
Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Illuminating the Reaction Pathways of Viromimetic Assembly.
Cingil, Hande E; Boz, Emre B; Biondaro, Giovanni; de Vries, Renko; Cohen Stuart, Martien A; Kraft, Daniela J; van der Schoot, Paul; Sprakel, Joris
2017-04-05
The coassembly of well-defined biological nanostructures relies on a delicate balance between attractive and repulsive interactions between biomolecular building blocks. Viral capsids are a prototypical example, where coat proteins exhibit not only self-interactions but also interact with the cargo they encapsulate. In nature, the balance between antagonistic and synergistic interactions has evolved to avoid kinetic trapping and polymorphism. To date, it has remained a major challenge to experimentally disentangle the complex kinetic reaction pathways that underlie successful coassembly of biomolecular building blocks in a noninvasive approach with high temporal resolution. Here we show how macromolecular force sensors, acting as a genome proxy, allow us to probe the pathways through which a viromimetic protein forms capsids. We uncover the complex multistage process of capsid assembly, which involves recruitment and complexation, followed by allosteric growth of the proteinaceous coat. Under certain conditions, the single-genome particles condense into capsids containing multiple copies of the template. Finally, we derive a theoretical model that quantitatively describes the kinetics of recruitment and growth. These results shed new light on the origins of the pathway complexity in biomolecular coassembly.
Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging.
Logan, Grace; Newman, Joseph; Wright, Caroline F; Lasecka-Dykes, Lidia; Haydon, Daniel T; Cottam, Eleanor M; Tuthill, Tobias J
2017-10-18
Non-enveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals and human. In the picornavirus family of non-enveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses. Importance In order to transmit their genetic material to a new host, non-enveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many non-enveloped RNA viruses the requirements for this critical part of the viral life cycle remain poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple and transferable to the study of packaging signals in other RNA viruses. Improved understanding of RNA packaging may lead to novel vaccine approaches or targets for antiviral drugs with broad spectrum activity. Copyright © 2017 Logan et al.
Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar
2017-01-01
Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer-Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.
Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar
2017-01-01
Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible. PMID:28442890
Structure and Uncoating of Immature Adenovirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Berna, A.J.; Mangel, W.; Marabini, R.
2009-09-18
Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particlesmore » as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.« less
Inhibition of interferon-inducible MxA protein expression by hepatitis B virus capsid protein.
Rosmorduc, O; Sirma, H; Soussan, P; Gordien, E; Lebon, P; Horisberger, M; Bréchot, C; Kremsdorf, D
1999-05-01
Chronic hepatitis B treatment has been significantly improved by interferon (IFN) treatment. However, some studies have suggested that hepatitis B virus (HBV) might have a direct effect on the resistance to IFN. Defective particles, generated by spliced HBV RNA and associated with chronic hepatitis B, have been previously characterized; expression of these particles leads to cytoplasmic accumulation of the capsid protein. The aim of this study was to investigate the role of these defective genomes in IFN resistance. The global antiviral activity of IFN was studied by virus yield reduction assays, the expression of three IFN-induced antiviral proteins was analysed by Western blotting and confocal microscopy, and the regulation of MxA gene expression was studied by Northern blotting and the luciferase assay, in Huh7 cells transfected with a complete or the defective HBV genome. Results showed that the expression of the defective genome reduces the antiviral activity of IFN and that this modulation involves a selective inhibition of MxA protein induction by the HBV capsid protein. Our results also show the trans-suppressive effect of the HBV capsid on the MxA promoter, which might participate in this phenomenon. In conclusion, this study shows a direct interplay between the IFN-sensitive pathway and the capsid protein and might implicate this defective HBV genome in virus persistence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min
2013-01-18
Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less
The Role of Evolutionary Intermediates in the Host Adaptation of Canine Parvovirus
Stucker, Karla M.; Pagan, Israel; Cifuente, Javier O.; Kaelber, Jason T.; Lillie, Tyler D.; Hafenstein, Susan; Holmes, Edward C.
2012-01-01
The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses. PMID:22114336
Identification of structural protein-protein interactions of herpes simplex virus type 1.
Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J
2008-09-01
In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.
Stabilising the Herpes Simplex Virus capsid by DNA packaging
NASA Astrophysics Data System (ADS)
Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter
2009-03-01
Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.
Keller, Paul W; Huang, Rick K; England, Matthew R; Waki, Kayoko; Cheng, Naiqian; Heymann, J Bernard; Craven, Rebecca C; Freed, Eric O; Steven, Alasdair C
2013-12-01
Retrovirus maturation involves sequential cleavages of the Gag polyprotein, initially arrayed in a spherical shell, leading to formation of capsids with polyhedral or conical morphology. Evidence suggests that capsids assemble de novo inside maturing virions from dissociated capsid (CA) protein, but the possibility persists of a displacive pathway in which the CA shell remains assembled but is remodeled. Inhibition of the final cleavage between CA and spacer peptide SP1/SP blocks the production of mature capsids. We investigated whether retention of SP might render CA assembly incompetent by testing the ability of Rous sarcoma virus (RSV) CA-SP to assemble in vitro into icosahedral capsids. Capsids were indeed assembled and were indistinguishable from those formed by CA alone, indicating that SP was disordered. We also used cryo-electron tomography to characterize HIV-1 particles produced in the presence of maturation inhibitor PF-46396 or with the cleavage-blocking CA5 mutation. Inhibitor-treated virions have a shell that resembles the CA layer of the immature Gag shell but is less complete. Some CA protein is generated but usually not enough for a mature core to assemble. We propose that inhibitors like PF-46396 bind to the Gag lattice where they deny the protease access to the CA-SP1 cleavage site and prevent the release of CA. CA5 particles, which exhibit no cleavage at the CA-SP1 site, have spheroidal shells with relatively thin walls. It appears that this lattice progresses displacively toward a mature-like state but produces neither conical cores nor infectious virions. These observations support the disassembly-reassembly pathway for core formation.
Bari, Fufa Dawo; Parida, Satya; Asfor, Amin S.; Haydon, Daniel T.; Reeve, Richard; Paton, David J.
2015-01-01
Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum–virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1–VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa. PMID:25614587
The flavivirus capsid protein: Structure, function and perspectives towards drug design.
Oliveira, Edson R A; Mohana-Borges, Ronaldo; de Alencastro, Ricardo B; Horta, Bruno A C
2017-01-02
Flaviviruses, such as dengue and zika viruses, are etiologic agents transmitted to humans mainly by arthropods and are of great epidemiological interest. The flavivirus capsid protein is a structural element required for the viral nucleocapsid assembly that presents the classical function of sheltering the viral genome. After decades of research, many reports have shown its different functionalities and influence over cell normal functioning. The subcellular distribution of this protein, which involves accumulation around lipid droplets and nuclear localization, also corroborates with its multi-functional characteristic. As flavivirus diseases are still in need of global control and in view of the possible key functionalities that the capsid protein promotes over flavivirus biology, novel considerations arise towards anti-flavivirus drug research. This review covers the main aspects concerning structural and functional features of the flavivirus C protein, ultimately, highlighting prospects in drug discovery based on this viral target. Copyright © 2016 Elsevier B.V. All rights reserved.
Cellular phosphoinositides and the maturation of bluetongue virus, a non-enveloped capsid virus
2013-01-01
Background Bluetongue virus (BTV), a member of Orbivirus genus in the Reoviridae family is a double capsid virus enclosing a genome of 10 double-stranded RNA segments. A non-structural protein of BTV, NS3, which is associated with cellular membranes and interacts with outer capsid proteins, has been shown to be involved in virus morphogenesis in infected cells. In addition, studies have also shown that during the later stages of virus infection NS3 behaves similarly to HIV protein Gag, an enveloped viral protein. Since Gag protein is known to interact with membrane lipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2] and one of the known binding partners of NS3, cellular protein p11 also interacts with annexin a PI(4,5)P2 interacting protein, this study was designed to understand the role of this negatively charged membrane lipid in BTV assembly and maturation. Methods Over expression of cellular enzymes that either depleted cells of PI(4,5)P2 or altered the distribution of PI(4,5)P2, were used to analyze the effect of the lipid on BTV maturation at different times post-infection. The production of mature virus particles was monitored by plaque assay. Microscopic techniques such as confocal microscopy and electron microscopy (EM) were also undertaken to study localization of virus proteins and virus particles in cells, respectively. Results Initially, confocal microscopic analysis demonstrated that PI(4,5)P2 not only co-localized with NS3, but it also co-localized with VP5, one of the outer capsid proteins of BTV. Subsequently, experiments involving depletion of cellular PI(4,5)P2 or its relocation demonstrated an inhibitory effect on normal BTV maturation and it also led to a redistribution of BTV proteins within the cell. The data was supported further by EM visualization showing that modulation of PI(4,5)P2 in cells indeed resulted in less particle production. Conclusion This study to our knowledge, is the first report demonstrating involvement of PI(4,5)P2 in a non-enveloped virus assembly and release. As BTV does not have lipid envelope, this finding is unique for this group of viruses and it suggests that the maturation of capsid and enveloped viruses may be more closely related than previously thought. PMID:23497128
Non-encapsidation Activities of the Capsid Proteins of Positive-strand RNA Viruses
Ni, Peng; Kao, C. Cheng
2013-01-01
Viral capsid proteins (CPs) are characterized by their role in forming protective shells around viral genomes. However, CPs have additional and important roles in the virus infection cycles and in the cellular response to infection. These activities involve CP binding to RNAs in both sequence-specific and nonspecific manners as well as association with other proteins. This review focuses on CPs of both plant and animal-infecting viruses with positive-strand RNA genomes. We summarize the structural features of CPs and describe their modulatory roles in viral translation, RNA-dependent RNA synthesis, and host defense responses. PMID:24074574
States of phage T3/T7 capsids: buoyant density centrifugation and cryo-EM.
Serwer, Philip; Wright, Elena T; Demeler, Borries; Jiang, Wen
2018-04-01
Mature double-stranded DNA bacteriophages have capsids with symmetrical shells that typically resist disruption, as they must to survive in the wild. However, flexibility and associated dynamism assist function. We describe biochemistry-oriented procedures used to find previously obscure flexibility for capsids of the related phages, T3 and T7. The primary procedures are hydration-based buoyant density ultracentrifugation and purified particle-based cryo-electron microscopy (cryo-EM). We review the buoyant density centrifugation in detail. The mature, stable T3/T7 capsid is a shell flexibility-derived conversion product of an initially assembled procapsid (capsid I). During DNA packaging, capsid I expands and loses a scaffolding protein to form capsid II. The following are observations made with capsid II. (1) The in vivo DNA packaging of wild type T3 generates capsid II that has a slight (1.4%), cryo-EM-detected hyper-expansion relative to the mature phage capsid. (2) DNA packaging in some altered conditions generates more extensive hyper-expansion of capsid II, initially detected by hydration-based preparative buoyant density centrifugation in Nycodenz density gradients. (3) Capsid contraction sometimes occurs, e.g., during quantized leakage of DNA from mature T3 capsids without a tail.
Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.
2006-01-01
The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6–1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. PMID:16606825
Role of a reducing environment in disassembly of the herpesvirus tegument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newcomb, William W.; Jones, Lisa M.; Dee, Alexander
2012-09-15
Initiation of infection by herpes family viruses involves a step in which most of the virus tegument becomes detached from the capsid. Detachment takes place in the host cell cytosol near the virus entry site and it is followed by dispersal of tegument proteins and disappearance of the tegument as a distinct entity. Here we describe the results of experiments designed to test the idea that the reducing environment of the cytosol may contribute to tegument detachment and disassembly. Non-ionic detergent was used to remove the membrane of purified herpes simplex virus under control and reducing conditions. The effects onmore » the tegument were then examined by SDS-PAGE and electron microscopy. Protein analysis demonstrated that most major tegument proteins were removed under both oxidizing and reducing conditions except for UL49 which required a reducing environment. It is proposed therefore that the reducing conditions in the cytosol are involved in removal of UL49 protein. Electron microscopic analysis revealed that capsids produced under oxidizing conditions contained a coating of protein that was absent in reduced virions and which correlated uniquely with the presence of UL49. This capsid-associated layer is suggested to be the location of UL49 in the extracted virion.« less
NASA Astrophysics Data System (ADS)
Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.
2006-04-01
The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6-1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. atomic force microscopy | cowpea chlorotic mottle virus | finite element analysis | biomechanics
Palatal Seam Disintegration: To Die or Not to Die? That Is No Longer the Question
Nawshad, Ali
2008-01-01
Formation of the medial epithelial seam (MES) by palatal shelf fusion is a crucial step of palate development. Complete disintegration of the MES is the final essential phase of palatal confluency with surrounding mesenchymal cells. In general, the mechanisms of palatal seam disintegration are not overwhelmingly complex, but given the large number of interacting constituents; their complicated circuitry involving feedforward, feedback, and crosstalk; and the fact that the kinetics of interaction matter, this otherwise simple mechanism can be quite difficult to interpret. As a result of this complexity, apparently simple but highly important questions remain unanswered. One such question pertains to the fate of the palatal seam. Such questions may be answered by detailed and extensive quantitative experimentation of basic biological studies (cellular, structural) and the newest molecular biological determinants (genetic/dye cell lineage, gene activity, kinase/enzyme activity), as well as animal model (knockouts, transgenic) approaches. System biology and cellular kinetics play a crucial role in cellular MES function; omissions of such critical contributors may lead to inaccurate understanding of the fate of MES. Excellent progress has been made relevant to elucidation of the mechanism(s) of palatal seam disintegration. Current understanding of palatal seam disintegration suggests epithelial–mesenchymal transition and/or programmed cell death as two most common mechanisms of MES disintegration. In this review, I discuss those two mechanisms and the differences between them. PMID:18629865
Müller, Oliver; Ivanova, Lyudmila; Bialy, Dagmara; Pohlmann, Anja; Binz, Anne; Hegemann, Maike; Viejo-Borbolla, Abel; Rosenhahn, Bodo; Bauerfeind, Rudolf; Sodeik, Beate
2017-01-01
Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells. PMID:29284065
Elnaggar, Yosra Shaaban R; El-Massik, Magda A; Abdallah, Ossama Y; Ebian, Abd Elazim R
2010-06-01
The recent challenge in orally disintegrating tablets (ODT) manufacturing encompasses the compromise between instantaneous disintegration, sufficient hardness, and standard processing equipment. The current investigation constitutes one attempt to fulfill this challenge. Maltodextrin, in the present work, was utilized as a novel excipient to prepare ODT of meclizine. Tablets were prepared by both direct compression and wet granulation techniques. The effect of maltodextrin concentrations on ODT characteristics--manifested as hardness and disintegration time--was studied. The effect of conditioning (40 degrees C and 75% relative humidity) as a post-compression treatment on ODT characteristics was also assessed. Furthermore, maltodextrin-pronounced hardening effect was investigated using differential scanning calorimetry (DSC) and X-ray analysis. Results revealed that in both techniques, rapid disintegration (30-40 s) would be achieved on the cost of tablet hardness (about 1 kg). Post-compression conditioning of tablets resulted in an increase in hardness (3 kg), while keeping rapid disintegration (30-40 s) according to guidance of the FDA for ODT. However, direct compression-conditioning technique exhibited drawbacks of long conditioning time and appearance of the so-called patch effect. These problems were, yet, absent in wet granulation-conditioning technique. DSC and X-ray analysis suggested involvement of glass-elastic deformation in maltodextrin hardening effect. High-performance liquid chromatography analysis of meclizine ODT suggested no degradation of the drug by the applied conditions of temperature and humidity. Overall results proposed that maltodextrin is a promising saccharide for production of ODT with accepted hardness-disintegration time compromise, utilizing standard processing equipment and phenomena of phase transition.
All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution
NASA Astrophysics Data System (ADS)
Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.
2014-10-01
Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.
Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography.
Peng, Li; Ryazantsev, Sergey; Sun, Ren; Zhou, Z Hong
2010-01-13
Gammaherpesviruses are etiologically associated with human tumors. A three-dimensional (3D) examination of their life cycle in the host is lacking, significantly limiting our understanding of the structural and molecular basis of virus-host interactions. Here, we report the first 3D visualization of key stages of the murine gammaherpesvirus 68 life cycle in NIH 3T3 cells, including viral attachment, entry, assembly, and egress, by dual-axis electron tomography. In particular, we revealed the transient processes of incoming capsids injecting viral DNA through nuclear pore complexes and nascent DNA being packaged into progeny capsids in vivo as a spool coaxial with the putative portal vertex. We discovered that intranuclear invagination of both nuclear membranes is involved in nuclear egress of herpesvirus capsids. Taken together, our results provide the structural basis for a detailed mechanistic description of gammaherpesvirus life cycle and also demonstrate the advantage of electron tomography in dissecting complex cellular processes of viral infection.
Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S
2014-01-01
Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011
Periodic table of virus capsids: implications for natural selection and design.
Mannige, Ranjan V; Brooks, Charles L
2010-03-04
For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest "hexamer complexity", C(h)) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.
Modeling global changes induced by local perturbations to the HIV-1 capsid.
Bergman, Shana; Lezon, Timothy R
2017-01-01
The HIV-1 capsid is a conical protein shell made up of hexamers and pentamers of the capsid protein. The capsid houses the viral genome and replication machinery, and its opening, or uncoating, within the host cell marks a critical step in the HIV-1 lifecycle. Binding of host factors such as TRIM5α and cyclophilin A (CypA) can alter the capsid's stability, accelerating or delaying the onset of uncoating and disrupting infectivity. We employ coarse-grained computational modeling to investigate the effects of point mutations and host factor binding on HIV-1 capsid stability. We find that the largest fluctuations occur in the low-curvature regions of the capsid, and that its structural dynamics are affected by perturbations at the inter-hexamer interfaces and near the CypA binding loop, suggesting roles for these features in capsid stability. Our models show that linking capsid proteins across hexamers attenuates vibration in the low-curvature regions of the capsid, but that linking within hexamers does not. These results indicate a possible mechanism through which CypA binding alters capsid stability and highlight the utility of coarse-grained network modeling for understanding capsid mechanics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Retargeting of Rat Parvovirus H-1PV to Cancer Cells through Genetic Engineering of the Viral Capsid
Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K.; Nettelbeck, Dirk M.; Kleinschmidt, Jürgen; Rommelaere, Jean
2012-01-01
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds αvβ3 and αvβ5 integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing αvβ5 integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy. PMID:22258256
Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.
Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio
2012-04-01
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.
All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andoh, Y.; Yoshii, N.; Yamada, A.
2014-10-28
Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000)more » can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.« less
Rao, Vidhya R; Upadhyay, Arun K; Kompella, Uday B
2013-11-28
Empty adenovirus serotype 5 (Ad5) capsids devoid of viral genome were developed as a novel delivery system for nanoparticles, proteins, and nucleic acids. Ad5 capsids of 110 nm diameter undergo an increase in particle size to 1637 nm in 1mM acetic acid at pH4.0 and then shrink to 60 nm, following pH reversal to 7.4. These pH shifts induced reversible changes in capsid zeta potential and secondary structure and irreversible changes in tertiary structure of capsid proteins. Using pH shift dependent changes in capsid size and structure, 20 nm fluorescent nanoparticles, FITC-BSA, and Alexa Fluor® 488 conjugated siRNA were encapsulated with high efficiency in Ad5 capsids, as confirmed by electron microscopy and/or flow cytometry. HEK cell uptake with capsid delivery system was 7.8-, 7.4-, and 2.9-fold greater for nanoparticles, FITC-BSA, and Alexa-siRNA, respectively, when compared to plain solutes. Physical mixtures of capsids and fluorescent solutes exhibited less capsid associated fluorescence intensity and cell uptake. Further, unlike physical mixture, pH shift assembled Ad5 capsids protected siRNA from RNase degradation. Ad5 capsids before and after pH shift exhibited endolysosomal escape. Thus, empty Ad5 capsids can encapsulate a variety of solutes based on pH shift assembly, resulting in enhanced cellular delivery. © 2013. Published by Elsevier B.V. All rights reserved.
Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K
2017-10-20
Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification.
Sinclair, Robert M; Ravantti, Janne J; Bamford, Dennis H
2017-04-15
Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. Copyright © 2017 Sinclair et al.
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification
Sinclair, Robert M.; Ravantti, Janne J.
2017-01-01
ABSTRACT Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. PMID:28122979
Liew, Kai Bin; Tan, Yvonne Tze Fung; Peh, Kok Khiang
2015-04-01
Manufacturing process and superdisintegrants used in orally disintegrating tablet (ODT) formulation are often time discussed. However, the effect of suitable filler for ODT formulation is not explored thoroughly. The aim of this study was to develop a novel taste masked and affordable donepezil hydrochloride ODT with fast disintegration time and stable to improve medication compliance of Alzheimer's disease patient. The ODT was manufactured using simple wet-granulation method. Crospovidone XL-10 was used as superdisintegrant and optimization was done by comparing the effect of three grades of lactose monohydrate compound as filler: Starlac®, Flowlac® and Tablettose®. Formulations containing higher amount of colloidal silicon dioxide showed increase in hardness, weight, disintegration time and wetting time after stability study. Formulation E which containing 50% of Starlac® was found with shortest in vitro disintegration time (21.7 ± 1.67 s), in vivo disintegration time (24.0 ± 1.05 s) and in vitro disintegration time in artificial salvia (22.5 ± 1.67 s). Physical stability studies at 40 °C/75% RH for 6 months, Fourier transform infrared spectroscopy analysis and X-ray diffraction results showed that the formulation was stable. The drug-released profile showed that 80% of donepezil hydrochloride was released within 1 min. A single-dose, fasting, four-period, seven-treatment, double-blinded study involving 16 healthy human volunteers was performed to evaluate the palatability of ODT. Formulation VII containing 10 mg of ammonium glycyrrhizinate was able to mask the bitter taste of the drug. The product has the potential to be commercialized and it might serve as solution for non-compliance among the Alzheimer's disease patients.
Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel
2015-01-01
ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the molecular details of capsid assembly. Here, we provide evidence supporting one of the two current models for capsid architecture. We also show for the first time the location of the packaging protein L1 52/55k in particles lacking the virus genome and how this location changes during maturation. Our results contribute to clarifying standing questions in adenovirus capsid architecture and provide new details on the role of L1 52/55k protein in assembly. PMID:26178997
Maree, Francois F.; Blignaut, Belinda; de Beer, Tjaart A. P.; Rieder, Elizabeth
2013-01-01
Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387
Forces and Pressures in DNA Packaging and Release from Viral Capsids
Tzlil, Shelly; Kindt, James T.; Gelbart, William M.; Ben-Shaul, Avinoam
2003-01-01
In a previous communication (Kindt et al., 2001) we reported preliminary results of Brownian dynamics simulation and analytical theory which address the packaging and ejection forces involving DNA in bacteriophage capsids. In the present work we provide a systematic formulation of the underlying theory, featuring the energetic and structural aspects of the strongly confined DNA. The free energy of the DNA chain is expressed as a sum of contributions from its encapsidated and released portions, each expressed as a sum of bending and interstrand energies but subjected to different boundary conditions. The equilibrium structure and energy of the capsid-confined and free chain portions are determined, for each ejected length, by variational minimization of the free energy with respect to their shape profiles and interaxial spacings. Numerical results are derived for a model system mimicking the λ-phage. We find that the fully encapsidated genome is highly compressed and strongly bent, forming a spool-like condensate, storing enormous elastic energy. The elastic stress is rapidly released during the first stage of DNA injection, indicating the large force (tens of pico Newtons) needed to complete the (inverse) loading process. The second injection stage sets in when ∼1/3 of the genome has been released, and the interaxial distance has nearly reached its equilibrium value (corresponding to that of a relaxed torus in solution); concomitantly the encapsidated genome begins a gradual morphological transformation from a spool to a torus. We also calculate the loading force, the average pressure on the capsid's walls, and the anisotropic pressure profile within the capsid. The results are interpreted in terms of the (competing) bending and interaction components of the packing energy, and are shown to be in good agreement with available experimental data. PMID:12609865
Cruz, Taís Fukuta; Magro, Angelo José; de Castro, Alessandra M M G; Pedraza-Ordoñez, Francisco J; Tsunemi, Miriam Harumi; Perahia, David; Araujo, João Pessoa
2018-06-02
Porcine circovirus 2 (PCV2) is an icosahedral, non-enveloped, and single-stranded circular DNA virus that belongs to the family Circoviridae, genus Circovirus, and is responsible for a complex of different diseases defined as porcine circovirus diseases (PCVDs). These diseases - including postweaning multisystemic wasting syndrome (PMWS), enteric disease, respiratory disease, porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure - are responsible for large economic losses in the pig industry. After serial passages in swine testicle (ST) cells of a wild-type virus isolated from an animal with PMWS, we identified three PCV2b viruses with capsid protein (known as Cap protein) cumulative mutations, including two novel mutants. The mutant viruses were introduced into new ST cell cultures for reisolation and showed, in comparison to the wild-type PCV2b, remarkable viral replication efficiency (> 10 11 DNA copies/ml) and cell death via necrosis, which were clearly related to the accretion of capsid protein mutations. The analysis of a Cap protein/capsid model showed that the mutated residues were located in solvent-accessible positions on the external PCV2b surface. Additionally, the mutated residues were found in linear epitopes and participated in pockets on the capsid surface, indicating that these residues could also be involved in antibody recognition. Taking into account the likely natural emergence of PCV2b variants, it is possible to consider that the results of this work increase knowledge of Circovirus biology and could help to prevent future serious cases of vaccine failure that could lead to heavy losses to the swine industry. Copyright © 2018 Elsevier B.V. All rights reserved.
Forces and pressures in DNA packaging and release from viral capsids.
Tzlil, Shelly; Kindt, James T; Gelbart, William M; Ben-Shaul, Avinoam
2003-03-01
In a previous communication (Kindt et al., 2001) we reported preliminary results of Brownian dynamics simulation and analytical theory which address the packaging and ejection forces involving DNA in bacteriophage capsids. In the present work we provide a systematic formulation of the underlying theory, featuring the energetic and structural aspects of the strongly confined DNA. The free energy of the DNA chain is expressed as a sum of contributions from its encapsidated and released portions, each expressed as a sum of bending and interstrand energies but subjected to different boundary conditions. The equilibrium structure and energy of the capsid-confined and free chain portions are determined, for each ejected length, by variational minimization of the free energy with respect to their shape profiles and interaxial spacings. Numerical results are derived for a model system mimicking the lambda-phage. We find that the fully encapsidated genome is highly compressed and strongly bent, forming a spool-like condensate, storing enormous elastic energy. The elastic stress is rapidly released during the first stage of DNA injection, indicating the large force (tens of pico Newtons) needed to complete the (inverse) loading process. The second injection stage sets in when approximately 1/3 of the genome has been released, and the interaxial distance has nearly reached its equilibrium value (corresponding to that of a relaxed torus in solution); concomitantly the encapsidated genome begins a gradual morphological transformation from a spool to a torus. We also calculate the loading force, the average pressure on the capsid's walls, and the anisotropic pressure profile within the capsid. The results are interpreted in terms of the (competing) bending and interaction components of the packing energy, and are shown to be in good agreement with available experimental data.
Determination of prestress and elastic properties of virus capsids
NASA Astrophysics Data System (ADS)
Aggarwal, Ankush
2018-03-01
Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.
Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Perilla, Juan R.; Schulten, Klaus
2017-07-01
Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of ~1,300 proteins with altogether 4 million atoms. Although the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical-physical properties of an empty HIV-1 capsid, including its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. The simulations reveal critical details about the capsid with implications to biological function.
Castellanos, Milagros; Pérez, Rebeca; Rodríguez-Huete, Alicia; Grueso, Esther; Almendral, José M; Mateu, Mauricio G
2013-10-01
Viruses constitute paradigms to study conformational dynamics in biomacromolecular assemblies. Infection by the parvovirus MVM (minute virus of mice) requires a conformational rearrangement that involves the intracellular externalization through capsid channels of the 2Nt (N-terminal region of VP2). We have investigated the role in this process of conserved glycine residues in an extended glycine-rich tract located immediately after 2Nt. Based on the virus structure, residues with hydrophobic side chains of increasing volume were substituted for glycine residues 31 or 33. Mutations had no effect on capsid assembly or stability, but inhibited virus infectivity. All mutations, except those to alanine residues which had minor effects, impaired 2Nt externalization in nuclear maturing virions and in purified virions, to an extent that correlated with the side chain size. Different biochemical and biophysical analyses were consistent with this result. Importantly, all of the tested glycine residue replacements impaired the capacity of the virion to initiate infection, at ratios correlating with their restrictive effects on 2Nt externalization. Thus small residues within the evolutionarily conserved glycine-rich tract facilitate 2Nt externalization through the capsid channel, as required by this virus to initiate cell entry. The results demonstrate the exquisite dependence on geometric constraints of a biologically relevant translocation event in a biomolecular complex.
Hine, P M; Wakefield, St J; Mackereth, G; Morrison, R
2016-09-26
The morphogenesis of large icosahedral viruses associated with lymphocystis-like lesions in the skin of parore Girella tricuspidata is described. The electron-lucent perinuclear viromatrix comprised putative DNA with open capsids at the periphery, very large arrays of smooth endoplasmic reticulum (sER), much of it with a reticulated appearance (rsER) or occurring as rows of vesicles. Lysosomes, degenerating mitochondria and virions in various stages of assembly, and paracrystalline arrays were also present. Long electron-dense inclusions (EDIs) with 15 nm repeating units split terminally and curled to form tubular structures internalising the 15 nm repeating structures. These tubular structures appeared to form the virion capsids. Large parallel arrays of sER sometimes alternated with aligned arrays of crinkled cisternae along which passed a uniformly wide (20 nm) thread-like structure. Strings of small vesicles near open capsids may also have been involved in formation of an inner lipid layer. Granules with a fine fibrillar appearance also occurred in the viromatrix, and from the presence of a halo around mature virions it appeared that the fibrils may form a layer around the capsid. The general features of virogenesis of large icosahedral dsDNA viruses, the large amount of ER, particularly rsER and the EDIs, are features of nucleo-cytoplasmic large DNA viruses, rather than features of 1 genus or family.
Osseman, Quentin; Gallucci, Lara; Au, Shelly; Cazenave, Christian; Berdance, Elodie; Blondot, Marie-Lise; Cassany, Aurélia; Bégu, Dominique; Ragues, Jessica; Aknin, Cindy; Sominskaya, Irina; Dishlers, Andris; Rabe, Birgit; Anderson, Fenja; Panté, Nelly; Kann, Michael
2018-03-01
Hepatitis B virus (HBV) has a DNA genome but replicates within the nucleus by reverse transcription of an RNA pregenome, which is converted to DNA in cytoplasmic capsids. Capsids in this compartment are correlated with inflammation and epitopes of the capsid protein core (Cp) are a major target for T cell-mediated immune responses. We investigated the mechanism of cytoplasmic capsid transport, which is important for infection but also for cytosolic capsid removal. We used virion-derived capsids containing mature rcDNA (matC) and empty capsids (empC). RNA-containing capsids (rnaC) were used as a control. The investigations comprised pull-down assays for identification of cellular interaction partners, immune fluorescence microscopy for their colocalization and electron microscopy after microinjection to determine their biological significance. matC and empC underwent active transport through the cytoplasm towards the nucleus, while rnaC was poorly transported. We identified the dynein light chain LL1 as a functional interaction partner linking capsids to the dynein motor complex and showed that there is no compensatory transport pathway. Using capsid and dynein LL1 mutants we characterized the required domains on the capsid and LL1. This is the first investigation on the detailed molecular mechanism of how matC pass the cytoplasm upon infection and how empC can be actively removed from the cytoplasm into the nucleus. Considering that hepatocytes with cytoplasmic capsids are better recognized by the T cells, we hypothesize that targeting capsid DynLL1-interaction will not only block HBV infection but also stimulate elimination of infected cells. In this study, we identified the molecular details of HBV translocation through the cytoplasm. Our evidence offers a new drug target which could not only inhibit infection but also stimulate immune clearance of HBV infected cells. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perilla, Juan R.; Schulten, Klaus
Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of B 1,300 proteins with altogether 4 million atoms. Though the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical–physical properties of an empty HIV-1 capsid, includingmore » its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. Furthermore, the simulations reveal critical details about the capsid with implications to biological function.« less
Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids.
Nguyen, Hung D; Reddy, Vijay S; Brooks, Charles L
2007-02-01
Self-assembly of viral proteins into icosahedral capsids is an interesting yet poorly understood phenomenon of which elucidation may aid the exploration of beneficial applications of capsids in materials science and medicine. Using molecular dynamics simulations of coarse-grained models for capsid proteins, we show that the competition between the formation of full capsids and nonidealized structures is strongly dependent upon the protein concentration and temperature, occurring kinetically as a cascade of elementary reactions in which free monomers are added to the growing oligomers on a downhill free-energy landscape. However, the insertion of the final subunits is the rate-limiting, energetically unfavorable step in viral capsid assembly. A phase diagram has been constructed to show the regions where capsids or nonidealized structures are stable at each concentration and temperature. We anticipate that our findings will provide guidance in identifying suitable conditions required for in vitro viral capsid assembly experiments.
Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations
Perilla, Juan R.; Schulten, Klaus
2017-07-19
Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of B 1,300 proteins with altogether 4 million atoms. Though the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical–physical properties of an empty HIV-1 capsid, includingmore » its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. Furthermore, the simulations reveal critical details about the capsid with implications to biological function.« less
Pharmaceutical and analytical evaluation of triphalaguggulkalpa tablets
Savarikar, Shreeram S.; Barbhind, Maneesha M.; Halde, Umakant K.; Kulkarni, Alpana P.
2011-01-01
Aim of the Study: Development of standardized, synergistic, safe and effective traditional herbal formulations with robust scientific evidence can offer faster and more economical alternatives for the treatment of disease. The main objective was to develop a method of preparation of guggulkalpa tablets so that the tablets meet the criteria of efficacy, stability, and safety. Materials and Methods: Triphalaguggulkalpa tablet, described in sharangdharsanhita and containing guggul and triphala powder, was used as a model drug. Preliminary experiments on marketed triphalaguggulkalpa tablets exhibited delayed in vitro disintegration that indicated probable delayed in vivo disintegration. The study involved preparation of triphalaguggulkalpa tablets by Ayurvedic text methods and by wet granulation, dry granulation, and direct compression method. The tablets were evaluated for loss on drying, volatile oil content, % solubility, and steroidal content. The tablets were evaluated for performance tests like weight variation, disintegration, and hardness. Results: It was observed that triphalaguggulkalpa tablets, prepared by direct compression method, complied with the hardness and disintegration tests, whereas tablets prepared by Ayurvedic text methods failed. Conclusion: Direct compression is the best method of preparing triphalaguggulkalpa tablets. PMID:21731383
Wang, Weifeng; Zhou, Jing; Halambage, Upul D; Jurado, Kellie A; Jamin, Augusta V; Wang, Yujie; Engelman, Alan N; Aiken, Christopher
2017-05-01
The human immunodeficiency virus type 1 (HIV-1) capsid protein is an attractive therapeutic target, owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsids to HIV-1 infectivity. To date, small-molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here, we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, Boehringer-Ingelheim compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant cross-links in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle. IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here, we show that one such compound, compound 1, interferes with assembly of the conical viral capsid during virion maturation and results in perturbations at a specific protein-protein interface in the capsid lattice. We also identify and characterize a mutation in the capsid protein that confers resistance to the inhibitor. This study reveals a novel mechanism by which a capsid-targeting small molecule can inhibit HIV-1 replication. Copyright © 2017 American Society for Microbiology.
Hoshino, Y; Sereno, M M; Midthun, K; Flores, J; Kapikian, A Z; Chanock, R M
1985-01-01
Antiserum prepared against the M37 strain of rotavirus, recovered from an asymptomatic newborn infant in Venezuela, neutralized two prototype human rotaviruses that define two separate serotypes: serotype 1 (Wa) and serotype 4 (ST3). Thus, the M37 strain is a naturally occurring intertypic rotavirus. Analysis of reassortant viruses produced during coinfection in vitro indicated that the observed dual serotype specificity of M37 resulted from sharing a related outer capsid protein, VP3, with the ST3 virus and another related outer capsid protein, VP7, with the Wa virus. Analysis of single (VP3)-gene-substitution reassortants indicated that VP3 was as potent an immunogen as VP7. In addition, direct evidence was obtained that the serotype specificity of neutralizing antibody elicited by VP3 can differ from the serotype specificity of neutralizing antibody elicited by VP7, indicating the need for a dual system of rotavirus classification in which the neutralization specificity of both VP3 and VP7 outer capsid proteins are identified. Images PMID:3001716
Cohen, Sarah; Marr, Alexandra K; Garcin, Pierre; Panté, Nelly
2011-05-01
Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus.
Huffman, Jamie B.; Daniel, Gina R.; Falck-Pedersen, Erik; Huet, Alexis
2017-01-01
ABSTRACT The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus. A key knowledge gap is how the capsid engages the NPC and what triggers release of the viral genome into the nucleus. Here we show that the C-terminal region of the HSV-1 pUL25 protein is required for releasing the viral genome from capsids docked at nuclear pores. The significance of our research is in identifying pUL25 as a key viral factor for genome uncoating. pUL25 is found at each of the capsid vertices as part of the capsid vertex-specific component and implicates the importance of this complex for NPC binding and genome release. PMID:28490590
Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae
2013-12-20
Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.
Ho, Michelle L.; Adler, Benjamin A.; Torre, Michael L.; Silberg, Jonathan J.; Suh, Junghae
2013-01-01
Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications, but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions. PMID:23899192
Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian
2015-01-01
ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures. PMID:25926655
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, L.; Wall, J.; Li, T.-C.
Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsidmore » protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.« less
Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus
NASA Astrophysics Data System (ADS)
Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.
2004-11-01
The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.
All-atom molecular dynamics of virus capsids as drug targets
Perilla, Juan R.; Hadden, Jodi A.; Goh, Boon Chong; ...
2016-04-29
Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways.more » When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Finally, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets.« less
Perilla, Juan R; Schlicksup, Christopher John; Venkatakrishnan, Balasubramanian; Zlotnick, Adam; Schulten, Klaus
2018-01-01
The hepatitis B virus capsid represents a promising therapeutic target. Experiments suggest the capsid must be flexible to function; however, capsid structure and dynamics have not been thoroughly characterized in the absence of icosahedral symmetry constraints. Here, all-atom molecular dynamics simulations are leveraged to investigate the capsid without symmetry bias, enabling study of capsid flexibility and its implications for biological function and cryo-EM resolution limits. Simulation results confirm flexibility and reveal a propensity for asymmetric distortion. The capsid’s influence on ionic species suggests a mechanism for modulating the display of cellular signals and implicates the capsid’s triangular pores as the location of signal exposure. A theoretical image reconstruction performed using simulated conformations indicates how capsid flexibility may limit the resolution of cryo-EM. Overall, the present work provides functional insight beyond what is accessible to experimental methods and raises important considerations regarding asymmetry in structural studies of icosahedral virus capsids. PMID:29708495
All-atom molecular dynamics of virus capsids as drug targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perilla, Juan R.; Hadden, Jodi A.; Goh, Boon Chong
Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways.more » When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Finally, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets.« less
Role of electrostatic interactions in the assembly of empty spherical viral capsids
NASA Astrophysics Data System (ADS)
Šiber, Antonio; Podgornik, Rudolf
2007-12-01
We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electrostatic repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of nonelectrostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive electrostatic and attractive interactions between the protein subunits can result in the formation of spherical viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend on the angle between the neighboring protein subunits (i.e., on the mean curvature of the viral capsid) so that a particular angle(s) is (are) preferred energywise. Our results for the electrostatic contributions to energetics of viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein contacts in the hepatitis B virus [P. Ceres A. Zlotnick, Biochemistry 41, 11525 (2002)].
Rubio, Mari-Paz; López-Bueno, Alberto; Almendral, José M
2005-09-01
The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of low affinity, which favors systemic infection, is a major evolutionary process in the adaptation of parvoviruses to new hosts and in the cause of disease.
Rubio, Mari-Paz; López-Bueno, Alberto; Almendral, José M.
2005-01-01
The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of low affinity, which favors systemic infection, is a major evolutionary process in the adaptation of parvoviruses to new hosts and in the cause of disease. PMID:16103180
Continuum Theory of Retroviral Capsids
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Bruinsma, R. F.; Gelbart, W. M.
2006-02-01
We present a self-assembly phase diagram for the shape of retroviral capsids, based on continuum elasticity theory. The spontaneous curvature of the capsid proteins drives a weakly first-order transition from spherical to spherocylindrical shapes. The conical capsid shape which characterizes the HIV-1 retrovirus is never stable under unconstrained energy minimization. Only under conditions of fixed volume and/or fixed spanning length can the conical shape be a minimum energy structure. Our results indicate that, unlike the capsids of small viruses, retrovirus capsids are not uniquely determined by the molecular structure of the constituent proteins but depend in an essential way on physical constraints present during assembly.
Watanabe, Go; Sato, Shunsuke; Iwadate, Mitsuo; Umeyama, Hideaki; Hayakawa, Michiyo; Murakami, Yoshiki; Yoneda, Shigetaka
2016-01-01
Hepatitis B virus (HBV) chronically infects millions of people worldwide and is a major cause of serious liver diseases, including liver cirrhosis and liver cancer. In our previous study, in silico screening was used to isolate new anti-viral compounds predicted to bind to the HBV capsid. Four of the isolated compounds have been reported to suppress the cellular multiplication of HBV experimentally. In the present study, molecular dynamics simulations of the HBV capsid were performed under rotational symmetry boundary conditions, to clarify how the structure and dynamics of the capsid are affected at the atomic level by the binding of one of the isolated compounds, C13. Two simulations of the free HBV capsid, two further simulations of the capsid-C13 complex, and one simulation of the capsid-AT-130 complex were performed. For statistical confidence, each set of simulations was repeated by five times, changing the simulation conditions. C13 continued to bind at the predicted binding site during the simulations, supporting the hypothesis that C13 is a capsid-binding compound. The structure and dynamics of the HBV capsid were greatly influenced by the binding and release of C13, and these effects were essentially identical to those seen for AT-130, indicating that C13 likely inhibits the function of the HBV capsid.
Molecular Architecture of the Retroviral Capsid.
Perilla, Juan R; Gronenborn, Angela M
2016-05-01
Retroviral capsid cores are proteinaceous containers that self-assemble to encase the viral genome and a handful of proteins that promote infection. Their function is to protect and aid in the delivery of viral genes to the nucleus of the host, and, in many cases, infection pathways are influenced by capsid-cellular interactions. From a mathematical perspective, capsid cores are polyhedral cages and, as such, follow well-defined geometric rules. However, marked morphological differences in shapes exist, depending on virus type. Given the specific roles of capsid in the viral life cycle, the availability of detailed molecular structures, particularly at assembly interfaces, opens novel avenues for targeted drug development against these pathogens. Here, we summarize recent advances in the structure and understanding of retroviral capsid, with particular emphasis on assemblies and the capsid cores. Copyright © 2016 Elsevier Ltd. All rights reserved.
Steven, Alasdair C; Heymann, J Bernard; Cheng, Naiqian; Trus, Benes L; Conway, James F
2005-04-01
For many viruses, the final stage of assembly involves structural transitions that convert an innocuous precursor particle into an infectious agent. This process -- maturation -- is controlled by proteases that trigger large-scale conformational changes. In this context, protease inhibitor antiviral drugs act by blocking maturation. Recent work has succeeded in determining the folds of representative examples of the five major proteins -- major capsid protein, scaffolding protein, portal, protease and accessory protein -- that are typically involved in capsid assembly. These data provide a framework for detailed mechanistic investigations and elucidation of mutations that affect assembly in various ways. The nature of the conformational change has been elucidated: it entails rigid-body rotations and translations of the arrayed subunits that transfer the interactions between them to different molecular surfaces, accompanied by refolding and redeployment of local motifs. Moreover, it has been possible to visualize maturation at the submolecular level in movies based on time-resolved cryo-electron microscopy.
pelo Is Required for High Efficiency Viral Replication
Wu, Xiurong; He, Wan-Ting; Tian, Shuye; Meng, Dan; Li, Yuanyue; Chen, Wanze; Li, Lisheng; Tian, Lili; Zhong, Chuan-Qi; Han, Felicia; Chen, Jianming; Han, Jiahuai
2014-01-01
Viruses hijack host factors for their high speed protein synthesis, but information about these factors is largely unknown. In searching for genes that are involved in viral replication, we carried out a forward genetic screen for Drosophila mutants that are more resistant or sensitive to Drosophila C virus (DCV) infection-caused death, and found a virus-resistant line in which the expression of pelo gene was deficient. Our mechanistic studies excluded the viral resistance of pelo deficient flies resulting from the known Drosophila anti-viral pathways, and revealed that pelo deficiency limits the high level synthesis of the DCV capsid proteins but has no or very little effect on the expression of some other viral proteins, bulk cellular proteins, and transfected exogenous genes. The restriction of replication of other types of viruses in pelo deficient flies was also observed, suggesting pelo is required for high level production of capsids of all kinds of viruses. We show that both pelo deficiency and high level DCV protein synthesis increase aberrant 80S ribosomes, and propose that the preferential requirement of pelo for high level synthesis of viral capsids is at least partly due to the role of pelo in dissociation of stalled 80S ribosomes and clearance of aberrant viral RNA and proteins. Our data demonstrated that pelo is a host factor that is required for high efficiency translation of viral capsids and targeting pelo could be a strategy for general inhibition of viral infection. PMID:24722736
Sandager, Maribeth M.; Nugent, Jaime L.; Schulz, Wade L.; Messner, Ronald P.; Tam, Patricia E.
2008-01-01
Mice infected with coxsackievirus B1 Tucson (CVB1T) develop chronic, post-viral myopathy (PVM) with clinical manifestations of hind limb muscle weakness and myositis. The objective of the current study was to establish the genetic basis of myopathogenicity in CVB1T. Using a reverse genetics approach, full attenuation of PVM could only be achieved by simultaneously mutating four sites located at C706U in the 5′ untranslated region (5′ UTR) and at Y87F, V136A, and T276A in the VP1 capsid. Engineering these four myopathic determinants into an amyopathic CVB1T variant restored the ability to cause PVM. Moreover, these same four determinants controlled PVM expression in a second strain of mice, indicating that the underlying mechanism is operational in mice of different genetic backgrounds. Modeling studies predict that C706U alters both local and long-range pairing in the 5′ UTR, and that VP1 determinants are located on the capsid surface. However, these differences did not affect viral titers, temperature stability, pH stability, or the antibody response to virus. These studies demonstrate that PVM develops from a complex interplay between viral determinants in the 5′ UTR and VP1 capsid and have uncovered intriguing similarities between genetic determinants that cause PVM and those involved in pathogenesis of other enteroviruses. PMID:18029287
The icosahedral RNA virus as a grotto: organizing the genome into stalagmites and stalactites.
Harvey, Stephen C; Zeng, Yingying; Heitsch, Christine E
2013-03-01
There are two important problems in the assembly of small, icosahedral RNA viruses. First, how does the capsid protein select the viral RNA for packaging, when there are so many other candidate RNA molecules available? Second, what is the mechanism of assembly? With regard to the first question, there are a number of cases where a particular RNA sequence or structure--often one or more stem-loops--either promotes assembly or is required for assembly, but there are others where specific packaging signals are apparently not required. With regard to the assembly pathway, in those cases where stem-loops are involved, the first step is generally believed to be binding of the capsid proteins to these "fingers" of the RNA secondary structure. In the mature virus, the core of the RNA would then occupy the center of the viral particle, and the stem-loops would reach outward, towards the capsid, like stalagmites reaching up from the floor of a grotto towards the ceiling. Those viruses whose assembly does not depend on protein binding to stem-loops could have a different structure, with the core of the RNA lying just under the capsid, and the fingers reaching down into the interior of the virus, like stalactites. We review the literature on these alternative structures, focusing on RNA selectivity and the assembly mechanism, and we propose experiments aimed at determining, in a given virus, which of the two structures actually occurs.
Mechanisms of Size Control and Polymorphism in Viral Capsid Assembly
Elrad, Oren M.; Hagan, Michael F.
2009-01-01
We simulate the assembly dynamics of icosahedral capsids from subunits that interconvert between different conformations (or quasi-equivalent states). The simulations identify mechanisms by which subunits form empty capsids with only one morphology, but adaptively assemble into different icosahedral morphologies around nanoparticle cargoes with varying sizes, as seen in recent experiments with brome mosaic virus (BMV) capsid proteins. Adaptive cargo encapsidation requires moderate cargo-subunit interaction strengths; stronger interactions frustrate assembly by stabilizing intermediates with incommensurate curvature. We compare simulation results to experiments with cowpea chlorotic mottle virus empty capsids and BMV capsids assembled on functionalized nanoparticles, and suggest new cargo encapsidation experiments. Finally, we find that both empty and templated capsids maintain the precise spatial ordering of subunit conformations seen in the crystal structure even if interactions that preserve this arrangement are favored by as little as the thermal energy, consistent with experimental observations that different subunit conformations are highly similar. PMID:18950240
NASA Astrophysics Data System (ADS)
Sankey, Otto; Benson, Daryn
2010-10-01
Viruses remain a threat to the health of humans worldwide with 33 million infected with AIDS. Viruses are ubiquitous infecting animals, plants, and bacteria. Each virus infects in its own unique manner making the problem seem intractable. However, some general physical steps apply to many viruses and the application of basic physical modeling can potentially have great impact. The aim of this theoretical study is to investigate the stability of the HIV viral capsid (protein shell). The structural shell can be compromised by physical probes such as pulsed laser light. But what are the weakest regions of the capsid so that we can begin to understand vulnerabilities of these deadly materials? The atomic structure of HIV capsids is not precisely known and we begin by describing our work to model the capsid structure. Next we describe a course grained model to investigate protein interactions within the capsid.
A quasi-atomic model of human adenovirus type 5 capsid
Fabry, Céline M S; Rosa-Calatrava, Manuel; Conway, James F; Zubieta, Chloé; Cusack, Stephen; Ruigrok, Rob W H; Schoehn, Guy
2005-01-01
Adenoviruses infect a wide range of vertebrates including humans. Their icosahedral capsids are composed of three major proteins: the trimeric hexon forms the facets and the penton, a noncovalent complex of the pentameric penton base and trimeric fibre proteins, is located at the 12 capsid vertices. Several proteins (IIIa, VI, VIII and IX) stabilise the capsid. We have obtained a 10 Å resolution map of the human adenovirus 5 by image analysis from cryo-electron micrographs (cryoEMs). This map, in combination with the X-ray structures of the penton base and hexon, was used to build a quasi-atomic model of the arrangement of the two major capsid components and to analyse the hexon–hexon and hexon–penton interactions. The secondary proteins, notably VIII, were located by comparing cryoEM maps of native and pIX deletion mutant virions. Minor proteins IX and IIIa are located on the outside of the capsid, whereas protein VIII is organised with a T=2 lattice on the inner face of the capsid. The capsid organisation is compared with the known X-ray structure of bacteriophage PRD1. PMID:15861131
Encapsidation of Linear Polyelectrolyte in a Viral Nanocontainer
NASA Astrophysics Data System (ADS)
Hu, Yufang
2005-03-01
We present the results from a combined experimental and theoretical study on the self-assembly of a model icosahedral virus, Cowpea Chlorotic Mottle Virus (CCMV). The formation of native CCMV capsids is believed to be driven primarily by the electrostatic interactions between the viral RNA and the positively charged capsid interior, as well as by the hydrophobic interactions between capsid protein subunits. To probe these molecular interactions, in vitro self-assembly reactions are carried out using the CCMV capsid protein and a synthetic linear polyelectrolyte, sodium polystyrene sulfonate (NaPSS), which functions as the analog of viral RNA. Under appropriate solutions conditions, NaPSS is encapsidated by the viral capsid. The molecular weight of NaPSS is systematically varied and the resulting average capsid size, size distribution, and particle morphology are measured by transmission electron microscopy. The correlation between capsid size and packaged cargo size, as well as the upper limit of capsid packaging capacity, are characterized. To elucidate the physical role played by the encapsidated polyelectrolyte in determining the preferred size of spherical viruses, we have used a mean-field approach to calculate the free energy of the virus-like particle as a function of chain length (and of the strength of chain/capsid attractive interaction). We find good agreement with our analytical calculations and experimental results.
NASA Astrophysics Data System (ADS)
Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri
2013-10-01
Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Virus shells can have applications as nanocontainers and delivery vehicles in biotechnology and medicine. Combined AFM experiments and computational modeling on sub-second timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus (CCMV) capsid show that the capsid's physical properties are dynamic and local characteristics of the structure, which depend on the magnitude and geometry of mechanical input. Surprisingly, under large deformations the CCMV capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state dH = 11.5 - 12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending, and the entropy change TdS = 5.1 - 5.8 MJ/mol is mostly due to coherent in-plane rearrangements of protein chains, which result in the capsid stiffening. Dynamic coupling of these modes defines the extent of elasticity and reversibility of capsid mechanical deformation. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses' biological function.
Structural transitions in Cowpea chlorotic mottle virus (CCMV)
NASA Astrophysics Data System (ADS)
Liepold, Lars O.; Revis, Jennifer; Allen, Mark; Oltrogge, Luke; Young, Mark; Douglas, Trevor
2005-12-01
Viral capsids act as molecular containers for the encapsulation of genomic nucleic acid. These protein cages can also be used as constrained reaction vessels for packaging and entrapment of synthetic cargos. The icosahedral Cowpea chlorotic mottle virus (CCMV) is an excellent model for understanding the encapsulation and packaging of both genomic and synthetic materials. High-resolution structural information of the CCMV capsid has been invaluable for evaluating structure-function relationships in the assembled capsid but does not allow insight into the capsid dynamics. The dynamic nature of the CCMV capsid might play an important role in the biological function of the virus. The CCMV capsid undergoes a pH and metal ion dependent reversible structural transition where 60 separate pores in the capsid open or close, exposing the interior of the protein cage to the bulk medium. In addition, the highly basic N-terminal domain of the capsid, which is disordered in the crystal structure, plays a significant role in packaging the viral cargo. Interestingly, in limited proteolysis and mass spectrometry experiments the N-terminal domain is the first part of the subunit to be cleaved, confirming its dynamic nature. Based on our fundamental understanding of the capsid dynamics in CCMV, we have utilized these aspects to direct packaging of a range of synthetic materials including drugs and inorganic nanoparticles.
Setiawan, Laurentia C; van Dort, Karel A; Rits, Maarten A N; Kootstra, Neeltje A
2016-04-01
Mutations in the cyclophilin A (CypA) binding region in the HIV-1 capsid affect their dependency on the known HIV-1 cofactor CypA and allow escape from the HIV-1 restriction factor Trim5α in human and simian cells. Here we study the effect of these mutations in the CypA binding region of capsid on cofactor binding, capsid destabilization, and viral replication in primary cells. We showed that the viral capsid with mutations in the CypA binding region (CypA-BR) interacted efficiently with CypA, but had an increased stability upon infection as compared to the wild-type capsid. Interestingly, the wild-type virus was able to infect monocyte-derived macrophages (MDM) more efficiently as compared to the CypA-BR mutant variant. The lower infectivity of the CypA-BR mutant virus in MDM was associated with lower levels of reverse transcription products. Similar to the wild-type virus, the CypA-BR mutant variant was unable to induce a strong innate response in primary macrophages. These data demonstrate that mutations in the CypA binding site of the capsid resulted in higher capsid stability and hampered infectivity in macrophages.
Visualizing Herpesvirus Procapsids in Living Cells.
Maier, Oana; Sollars, Patricia J; Pickard, Gary E; Smith, Gregory A
2016-11-15
A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Herpesvirus capsid assembly and DNA packaging
Heming, Jason D.; Conway, James F.; Homa, Fred L.
2017-01-01
Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies one of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25 and pUL36 binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell. PMID:28528442
Schipke, Julia; Pohlmann, Anja; Diestel, Randi; Binz, Anne; Rudolph, Kathrin; Nagel, Claus-Henning; Bauerfeind, Rudolf
2012-01-01
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating. PMID:22258258
Wu, Weimin; Newcomb, William W.; Cheng, Naiqian; Aksyuk, Anastasia; Winkler, Dennis C.
2016-01-01
ABSTRACT The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Å in diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids—which develop into infectious virions—are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation damage was used to localize internal proteins of HSV-1, yielding insights into how capsid maturation is regulated. The scaffolding protein, which forms inner shells in the procapsid and B capsid, is exceptionally bubbling-prone. In the mature DNA-filled C capsid, a previously undetected protein was found to underlie the icosahedral vertices: this is tentatively assigned as a storage form of the viral protease. We also observed a capsid species that appears to contain substantial amounts of scaffolding protein as well as DNA, suggesting that DNA packaging and expulsion of the scaffolding protein are coupled processes. PMID:26984725
Ji, Shuang; Na, Lei; Ren, Huiling; Wang, Yujie; Wang, Xiaojun
2018-05-09
Human Myxovirus resistance 2 (huMxB) has been shown to be a determinant type I interferon-induced host factor involved in the inhibition of HIV-1 as well as many other primate lentiviruses. This blocking occurs after the reverse transcription of viral RNA and ahead of the integration into the host DNA, which is closely connected to the ability of the protein to bind the viral capsid. To date, Mx2s derived from non-primate animals have shown no capacity for HIV-1 suppression. In this study, we examined the restrictive effect of equine Mx2 (eqMx2) on both the equine infectious anemia virus (EIAV) and HIV-1 and investigated possible mechanisms for its specific function. We demonstrated that IFNα/β upregulates the expression of eqMx2 in equine monocyte-derived macrophages (eMDMs). Overexpression of eqMx2 significantly suppresses the replication of EIAV, HIV-1, and SIVs, but not that of MLV. Knockdown of eqMx2 transcription weakens the inhibition of EIAV replication by type I interferon. Interestingly, immunofluorescence assays suggest that the subcellular localization of eqMx2 changes following virus infection, from being dispersed in the cytoplasm to being accumulated at the nuclear envelope. Furthermore, eqMx2 blocks the nuclear uptake of the proviral genome by binding to the viral capsid. The N-truncated mutant of eqMx2 lost the ability to bind the viral capsid as well as the restriction effect for lentiviruses. These results improve our understanding of the Mx2 protein in non-primate animals. IMPORTANCE Previous research has shown that the antiviral ability of Mx2s is confined to primates, particularly humans. EIAV has been shown to be insensitive to the restriction by human MxB. Here, we described the function of equine Mx2. This protein plays an important role in the suppression of EIAV, HIV-1, and SIVs. The antiviral activity of eqMx2 depends on its subcellular location as well as its capsid binding capacity. Our results showed that following viral infection, eqMx2 changes its original cytoplasmic location and accumulates at the nuclear envelope where it binds to the viral capsid and blocks the nuclear entry of reverse transcribed proviral DNAs. In contrast, huMxB does not bind to the EIAV capsid and shows no EIAV restriction effect. These studies expand our understanding of the function of the equine Mx2 protein. Copyright © 2018 Ji et al.
Structure, Assembly, and DNA Packaging of the Bacteriophage T4 Head
Black, Lindsay W.; Rao, Venigalla B.
2014-01-01
The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at the highest rate known and can package multiple segments. Förster resonance energy transfer–fluorescence correlation spectroscopy studies indicate that DNA gets compressed in the stalled motor and that the terminase-to-portal distance changes during translocation. Current evidence suggests a linear two-component (large terminase plus portal) translocation motor in which electrostatic forces generated by ATP hydrolysis drive DNA translocation by alternating the motor between tensed and relaxed states. PMID:22420853
Cohen, Sarah; Marr, Alexandra K.; Garcin, Pierre; Panté, Nelly
2011-01-01
Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus. PMID:21367902
H1PVAT is a novel and potent early-stage inhibitor of poliovirus replication that targets VP1.
Tijsma, Aloys; Thibaut, Hendrik Jan; Spieser, Stéphane A H; De Palma, Armando; Koukni, Mohamed; Rhoden, Eric; Oberste, Steve; Pürstinger, Gerhard; Volny-Luraghi, Antonia; Martin, Javier; Marchand, Arnaud; Chaltin, Patrick; Neyts, Johan; Leyssen, Pieter
2014-10-01
A novel small molecule, H1PVAT, was identified as a potent and selective inhibitor of the in vitro replication of all three poliovirus serotypes, whereas no activity was observed against other enteroviruses. Time-of-drug-addition studies revealed that the compound interfered with an early stage of virus replication. Four independently-selected H1PVAT-resistant virus variants uniformly carried the single amino acid substitution I194F in the VP1 capsid protein. Poliovirus type 1 strain Sabin, reverse-engineered to contain this substitution, proved to be completely insensitive to the antiviral effect of H1PVAT and was cross-resistant to the capsid-binding inhibitors V-073 and pirodavir. The VP1 I194F mutant had a smaller plaque phenotype than wild-type virus, and the amino acid substitution rendered the virus more susceptible to heat inactivation. Both for the wild-type and VP1 I194F mutant virus, the presence of H1PVAT increased the temperature at which the virus was inactivated, providing evidence that the compound interacts with the viral capsid, and that capsid stabilization and antiviral activity are not necessarily correlated. Molecular modeling suggested that H1PVAT binds with high affinity in the pocket underneath the floor of the canyon that is involved in receptor binding. Introduction of the I194F substitution in the model of VP1 induced a slight concerted rearrangement of the core β-barrel in this pocket, which disfavors binding of the compound. Taken together, the compound scaffold, to which H1PVAT belongs, may represent another promising class of poliovirus capsid-binding inhibitors next to V-073 and pirodavir. Potent antivirals against poliovirus will be essential in the poliovirus eradication end-game. Copyright © 2014. Published by Elsevier B.V.
Read, G Sullivan; Patterson, Mary
2007-02-01
The virion host shutoff (Vhs) protein (UL41) is a minor component of herpes simplex virus virions which, following penetration, accelerates turnover of host and viral mRNAs. Infected cells contain 58-kDa and 59.5-kDa forms of Vhs, which differ in the extent of phosphorylation, yet only a 58-kDa polypeptide is incorporated into virions. In pulse-chase experiments, the primary Vhs translation product comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the 58-kDa virion polypeptide, and could be chased to 59.5 kDa. While both 59.5-kDa and 58-kDa forms were found in nuclear and cytoplasmic fractions, the 59.5-kDa form was significantly enriched in the nucleus. Both forms were associated with intranuclear B and C capsids, yet only the 58-kDa polypeptide was found in enveloped cytoplasmic virions. A 58-kDa form, but not the 59.5-kDa form, was found in L particles, noninfectious particles that contain an envelope and tegument but no capsid. The data suggest that virions contain two populations of Vhs that are packaged by different pathways. In the first pathway, the primary translation product is processed to 59.5 kDa, is transported to the nucleus, binds intranuclear capsids, and is converted to 58 kDa at some stage prior to final envelopment. The second pathway does not involve the 59.5-kDa form or interactions between Vhs and capsids. Instead, the primary translation product is phosphorylated to the 58-kDa virion form and packaged through interactions with other tegument proteins in the cytoplasm or viral envelope proteins at the site of final envelopment.
Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.
Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T
2016-04-01
The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Schlötzer-Schrehardt, Ursula; Marschall, Manfred
2018-01-01
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction. PMID:29342872
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratka, M.; Lackmann, M.; Ueckermann, C.
1989-09-01
The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg{sup 2+}. In this paper, the effect of Zn{sup 2+} on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg{sup 2+}. In the presence of Zn{sup 2+}, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn{sup 2+}. The ion-dependentmore » behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn{sup 2+}. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.« less
Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals.
Rath, Soumya Lipsa; Liu, Huihui; Okazaki, Susumu; Shinoda, Wataru
2018-02-26
Around 270 million individuals currently live with hepatitis B virus (HBV) infection. Heteroaryldihydropyrimidines (HAPs) are a family of antivirals that target the HBV capsid protein and induce aberrant self-assembly. The capsids formed resemble the native capsid structure but are unable to propagate the virus progeny because of a lack of RNA/DNA. Under normal conditions, self-assembly is initiated by the viral genome. The mode of action of HAPs, however, remains largely unknown. In this work, using molecular dynamics simulations, we attempted to understand the action of HAP by comparing the dynamics of capsid proteins with and without HAPs. We found that the inhibitor is more stable in higher oligomers. It retains its stability in the hexamer throughout 1 μs of simulation. Our results also show that the inhibitor might help in stabilizing the C-terminus, the HBc 149-183 arginine-rich domain of the capsid protein. The C-termini of dimers interact with each other, assisted by the HAP inhibitor. During capsid assembly, the termini are supposed to directly interact with the viral genome, thereby suggesting that the viral genome might work in a similar way to stabilize the capsid protein. Our results may help in understanding the underlying molecular mechanism of HBV capsid self-assembly, which should be crucial for exploring new drug targets and structure-based drug design.
Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred
2018-01-13
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Monte Carlo simulations of polyelectrolytes inside viral capsids.
Angelescu, Daniel George; Bruinsma, Robijn; Linse, Per
2006-04-01
Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.
A critical review on tablet disintegration.
Quodbach, Julian; Kleinebudde, Peter
2016-09-01
Tablet disintegration is an important factor for drug release and can be modified with excipients called tablet disintegrants. Tablet disintegrants act via different mechanisms and the efficacy of these excipients is influenced by various factors. In this review, the existing literature on tablet disintegration is critically reviewed. Potential disintegration mechanisms, as well as impact factors on the disintegration process will be discussed based on experimental evidence. Search terms for Scopus and Web of Science included "tablet disintegration", "mechanism tablet disintegration", "superdisintegrants", "disintegrants", "swelling force", "disintegration force", "disintegration mechanisms", as well as brand names of commonly applied superdisintegrants. References of identified papers were screened as well. Experimental data supports swelling and shape recovery as main mechanisms of action of disintegrants. Other tablet excipients and different manufacturing techniques greatly influence the disintegration process. The use of different excipients, experimental setups and manufacturing techniques, as well as the demand for original research led to a distinct patchwork of knowledge. Broader, more systematic approaches are necessary not only to structure the past but also future findings.
Parvovirus particles and movement in the cellular cytoplasm and effects of the cytoskeleton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyi, Sangbom Michael; Tan, Min Jie Alvin, E-mail: tanmja@gis.a-star.edu.sg; Parrish, Colin R., E-mail: crp3@cornell.edu
2014-05-15
Cell infection by parvoviruses requires that capsids be delivered from outside the cell to the cytoplasm, followed by genome trafficking to the nucleus. Here we microinject capsids into cells that lack receptors and followed their movements within the cell over time. In general the capsids remained close to the positions where they were injected, and most particles did not move to the vicinity of or enter the nucleus. When 70 kDa-dextran was injected along with the capsids that did not enter the nucleus in significant amounts. Capsids conjugated to peptides containing the SV40 large T-antigen nuclear localization signal remained inmore » the cytoplasm, although bovine serum albumen conjugated to the same peptide entered the nucleus rapidly. No effects of disruption of microfilaments, intermediate filaments, or microtubules on the distribution of the capsids were observed. These results suggest that movement of intact capsids within cells is primarily associated with passive processes.« less
Katen, Sarah P; Tan, Zhenning; Chirapu, Srinivas Reddy; Finn, M G; Zlotnick, Adam
2013-08-06
Hepatitis B virus (HBV) is a major cause of liver disease. Assembly of the HBV capsid is a critical step in virus production and an attractive target for new antiviral therapies. We determined the structure of HBV capsid in complex with AT-130, a member of the phenylpropenamide family of assembly effectors. AT-130 causes tertiary and quaternary structural changes but does not disrupt capsid structure. AT-130 binds a hydrophobic pocket that also accommodates the previously characterized heteroaryldihydropyrimidine compounds but favors a unique quasiequivalent location on the capsid surface. Thus, this pocket is a promiscuous drug-binding site and a likely target for different assembly effectors with a broad range of mechanisms of activity. That AT-130 successfully decreases virus production by increasing capsid assembly rate without disrupting capsid structure delineates a paradigm in antiviral design, that disrupting reaction timing is a viable strategy for assembly effectors of HBV and other viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of different fast melting disintegrants by means of a central composite design.
Di Martino, Piera; Martelli, Sante; Wehrlé, Pascal
2005-01-01
Fast-disintegration technologies have encountered increased interest from industries in the past decades. In order to orientate the formulators to the choice of the best disintegrating agent, the most common disintegrants were selected and their ability to quickly disintegrate direct compressed tablets was evaluated. For this study, a central composite design was used. The main factors included were the concentration of disintegrant (X1) and the compression force (X2). These factors were studied for tablets containing either Zeparox or Pearlitol 200 as soluble diluents and six different disintegrants: L-HPC LH11 and LH31, Lycatab PGS, Vivasol, Kollidon CL, and Explotab. Their micromeritics properties were previously determined. The response variables were disintegration time (Y1), tensile strength (Y2), and porosity (Y3). Whatever the diluent, the longest disintegration time is obtained with Vivasol as the disintegrant, while Kollidon CL leads to the shortest disintegration times. Exception for Lycatab PGS and L-HPC LH11, formulations with Pearlitol 200 disintegrate faster. Almost the same results are obtained with porosity: no relevant effect of disintegrant concentration is observed, since porosity is mainly correlated to the compression force. In particular, highest values are obtained with Zeparox as the diluent when compared to Pearlitol 200 and, as the type of disintegrant is concerned, no difference is observed. Tensile strength models have been all statistically validated and are all highly dependent on the compression force. Lycatab PGS concentration does not affect disintegration time, mainly increased by the increase of compression pressure. When Pearlitol 200 is used with Vivasol, disintegration time is more influenced by the disintegrant concentration than by the compression pressure, an increase in concentration leading to a significant and relevant increase of the disintegration time. With Zeparox, the interaction between the two controlled variables is more complex: there is no effect of compression force on the disintegration time for a small amount of disintegrant, but a significant increase for higher concentrations. With Kollidon CL, the main factor influencing the disintegration time is the compression force, rather than the disintegrant concentration. Increasing both the compression force and the disintegrant concentration leads to an increase of the disintegration time. For lower Kollidon CL percentages, the compression pressure increases dramatically the tablet disintegration. With the Explotab, whatever the increase of compression force, the disintegrant concentration leads to an increase of the disintegration time. According to Student's t-test, only the compression force significantly and strongly influences the disintegration time when Pearlitol 200 is used. A slight interaction and some trends nevertheless appear: above 150 MPa, increasing the disintegrant concentration leads to a shortened disintegration time, below this limit the opposite effect is observed.
Synthetic approaches to construct viral capsid-like spherical nanomaterials.
Matsuura, Kazunori
2018-06-06
This feature article describes recent progress in synthetic strategies to construct viral capsid-like spherical nanomaterials using the self-assembly of peptides and/or proteins. By mimicking the self-assembly of spherical viral capsids and clathrin, trigonal peptide conjugates bearing β-sheet-forming peptides, glutathiones, or coiled-coil-forming peptides were developed to construct viral capsid-like particles. β-Annulus peptides from tomato bushy stunt virus self-assembled into viral capsid-like nanocapsules with a size of 30-50 nm, which could encapsulate various guest molecules and be decorated with different molecules on their surface. Rationally designed fusion proteins bearing symmetric assembling units afforded precise viral capsid-like polyhedral assemblies. These synthetic approaches to construct artificial viruses could become useful guidelines to develop novel drug carriers, vaccine platforms, nanotemplates and nanoreactors.
Yoshita, Tomohiro; Uchida, Shinya; Namiki, Noriyuki
2013-01-01
Disintegration time is an important characteristic of orally disintegrating tablets (ODTs), and evaluation of disintegration time is a key step in formulation development, manufacturing, and clinical practice. In this study, we aimed to clarify the clinical disintegration time of ODTs that are currently used clinically, and to evaluate its correlation with the in vitro disintegration time of ODTs which was measured using Tricorptester, a newly developed disintegration testing apparatus. The clinical disintegration time of 17 ODT products was measured in healthy volunteers (n=9-10; age range, 21-28 years). A randomized single-blind trial was performed; each tablet was placed on the tongues of the participants, and it disintegrated in their oral cavities. No significant difference was observed in the clinical disintegration time of each ODT among the 3 groups to which the subjects were randomly assigned. The clinical disintegration time of the 17 ODT products was between 17.6 s and 33.8 s. The in vitro disintegration time of 26 clinically used ODT products measured using Tricorptester ranged between 4.40 s and 30.4 s. A significant positive correlation was observed between in vitro and clinical disintegration times (r=0.79; p<0.001). This study shows that all the tested products, which are clinically available in Japan, showed good disintegration and that the disintegration time varied according to the product. In addition, the in vitro disintegration time of ODTs measured using Tricorptester is a good reflection of the disintegration time in the oral cavity.
Desai, Parind M; Liew, Celine V; Heng, Paul W S
2013-02-14
The aim of this study was to develop a responsive disintegration test apparatus that is particularly suitable for rapidly disintegrating tablets (RDTs). The designed RDT disintegration apparatus consisted of disintegration compartment, stereomicroscope and high speed video camera. Computational fluid dynamics (CFD) was used to simulate 3 different designs of the compartment and to predict velocity and pressure patterns inside the compartment. The CFD preprocessor established the compartment models and the CFD solver determined the numerical solutions of the governing equations that described disintegration medium flow. Simulation was validated by good agreement between CFD and experimental results. Based on the results, the most suitable disintegration compartment was selected. Six types of commercial RDTs were used and disintegration times of these tablets were determined using the designed RDT disintegration apparatus and the USP disintegration apparatus. The results obtained using the designed apparatus correlated well to those obtained by the USP apparatus. Thus, the applied CFD approach had the potential to predict the fluid hydrodynamics for the design of optimal disintegration apparatus. The designed visiometric liquid jet-mediated disintegration apparatus for RDT provided efficient and precise determination of very short disintegration times of rapidly disintegrating dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.
An unexpected twist in viral capsid maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsman, Ilya; Gan, Lu; Guttman, Miklos
2009-04-14
Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsidmore » structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process probably present in many dsDNA bacteriophage and possibly viruses such as herpesvirus, which share the HK97 subunit fold.« less
Assembly of the Herpes Simplex Virus Capsid: Preformed Triplexes Bind to the Nascent Capsid
Spencer, Juliet V.; Newcomb, William W.; Thomsen, Darrell R.; Homa, Fred L.; Brown, Jay C.
1998-01-01
The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP232 heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP232 heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid. PMID:9557680
Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette; Belsham, Graham J
2013-11-01
The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of "self-tagged" empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines.
Lowe, John; Panda, Debasis; Rose, Suzanne; Jensen, Ty; Hughes, Willie A; Tso, For Yue; Angeletti, Peter C
2008-01-01
Background PVs (PV) are small, non-enveloped, double-stranded DNA viruses that have been identified as the primary etiological agent for cervical cancer and their potential for malignant transformation in mucosal tissue has a large impact on public health. The PV family Papillomaviridae is organized into multiple genus based on sequential parsimony, host range, tissue tropism, and histology. We focused this analysis on the late gene products, major (L1) and minor (L2) capsid proteins from the family Papillomaviridae genus Alpha-papillomavirus. Alpha-PVs preferentially infect oral and anogenital mucosa of humans and primates with varied risk of oncogenic transformation. Development of evolutionary associations between PVs will likely provide novel information to assist in clarifying the currently elusive relationship between PV and its microenvironment (i.e., the single infected cell) and macro environment (i.e., the skin tissue). We attempt to identify the regions of the major capsid proteins as well as minor capsid proteins of alpha-papillomavirus that have been evolutionarily conserved, and define regions that are under constant selective pressure with respect to the entire family of viruses. Results This analysis shows the loops of L1 are in fact the most variable regions among the alpha-PVs. We also identify regions of L2, involved in interaction with L1, as evolutionarily conserved among the members of alpha- PVs. Finally, a predicted three-dimensional model was generated to further elucidate probable aspects of the L1 and L2 interaction. PMID:19087355
López-Bueno, Alberto; Segovia, José C; Bueren, Juan A; O'Sullivan, M Gerard; Wang, Feng; Tattersall, Peter; Almendral, José M
2008-02-01
Very little is known about the role that evolutionary dynamics plays in diseases caused by mammalian DNA viruses. To address this issue in a natural host model, we compared the pathogenesis and genetics of the attenuated fibrotropic and the virulent lymphohematotropic strains of the parvovirus minute virus of mice (MVM), and of two invasive fibrotropic MVM (MVMp) variants carrying the I362S or K368R change in the VP2 major capsid protein, in the infection of severe combined immunodeficient (SCID) mice. By 14 to 18 weeks after oronasal inoculation, the I362S and K368R viruses caused lethal leukopenia characterized by tissue damage and inclusion bodies in hemopoietic organs, a pattern of disease found by 7 weeks postinfection with the lymphohematotropic MVM (MVMi) strain. The MVMp populations emerging in leukopenic mice showed consensus sequence changes in the MVMi genotype at residues G321E and A551V of VP2 in the I362S virus infections or A551V and V575A changes in the K368R virus infections, as well as a high level of genetic heterogeneity within a capsid domain at the twofold depression where these residues lay. Amino acids forming this capsid domain are important MVM tropism determinants, as exemplified by the switch in MVMi host range toward mouse fibroblasts conferred by coordinated changes of some of these residues and by the essential character of glutamate at residue 321 for maintaining MVMi tropism toward primary hemopoietic precursors. The few viruses within the spectrum of mutants from mice that maintained the respective parental 321G and 575V residues were infectious in a plaque assay, whereas the viruses with the main consensus sequences exhibited low levels of fitness in culture. Consistent with this finding, a recombinant MVMp virus carrying the consensus sequence mutations arising in the K368R virus background in mice failed to initiate infection in cell lines of different tissue origins, even though it caused rapid-course lethal leukopenia in SCID mice. The parental consensus genotype prevailed during leukopenia development, but plaque-forming viruses with the reversion of the 575A residue to valine emerged in affected organs. The disease caused by the DNA virus in mice, therefore, involves the generation of heterogeneous viral populations that may cooperatively interact for the hemopoietic syndrome. The evolutionary changes delineate a sector of the surface of the capsid that determines tropism and that surrounds the sialic acid receptor binding domain.
Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate
2018-01-01
Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174
Dai, Xinghong; Yu, Xuekui; Gong, Hao; Jiang, Xiaohong; Abenes, Gerrado; Liu, Hongrong; Shivakoti, Sakar; Britt, William J; Zhu, Hua; Liu, Fenyong; Zhou, Z Hong
2013-08-01
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting "SCP-deficient" viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion.
The Role of Capsid Maturation on Adenovirus Priming for Sequential Uncoating*
Pérez-Berná, Ana J.; Ortega-Esteban, Alvaro; Menéndez-Conejero, Rosa; Winkler, Dennis C.; Menéndez, Margarita; Steven, Alasdair C.; Flint, S. Jane; de Pablo, Pedro J.; San Martín, Carmen
2012-01-01
Adenovirus assembly concludes with proteolytic processing of several capsid and core proteins. Immature virions containing precursor proteins lack infectivity because they cannot properly uncoat, becoming trapped in early endosomes. Structural studies have shown that precursors increase the network of interactions maintaining virion integrity. Using different biophysical techniques to analyze capsid disruption in vitro, we show that immature virions are more stable than the mature ones under a variety of stress conditions and that maturation primes adenovirus for highly cooperative DNA release. Cryoelectron tomography reveals that under mildly acidic conditions mimicking the early endosome, mature virions release pentons and peripheral core contents. At higher stress levels, both mature and immature capsids crack open. The virus core is completely released from cracked capsids in mature virions, but it remains connected to shell fragments in the immature particle. The extra stability of immature adenovirus does not equate with greater rigidity, because in nanoindentation assays immature virions exhibit greater elasticity than the mature particles. Our results have implications for the role of proteolytic maturation in adenovirus assembly and uncoating. Precursor proteins favor assembly by establishing stable interactions with the appropriate curvature and preventing premature ejection of contents by tightly sealing the capsid vertices. Upon maturation, core organization is looser, particularly at the periphery, and interactions preserving capsid curvature are weakened. The capsid becomes brittle, and pentons are more easily released. Based on these results, we hypothesize that changes in core compaction during maturation may increase capsid internal pressure to trigger proper uncoating of adenovirus. PMID:22791715
Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc
2014-04-15
The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond tomore » capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.« less
Köppen-Rung, Pánja; Dittmer, Alexandra; Bogner, Elke
2016-07-01
DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and pUL89 and another postulated packaging protein, pUL93, in infected, as well as transfected, cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles.
Du, Junzheng; Bhattacharya, Bishnupriya; Ward, Theresa H; Roy, Polly
2014-11-01
Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a double-capsid insect-borne virus enclosing a genome of 10 double-stranded RNA segments. Like those of other members of the family, BTV virions are nonenveloped particles containing two architecturally complex capsids. The two proteins of the outer capsid, VP2 and VP5, are involved in BTV entry and in the delivery of the transcriptionally active core to the cell cytoplasm. Although the importance of the endocytic pathway in BTV entry has been reported, detailed analyses of entry and the role of each protein in virus trafficking have not been possible due to the lack of availability of a tagged virus. Here, for the first time, we report on the successful manipulation of a segmented genome of a nonenveloped capsid virus by the introduction of tags that were subsequently fluorescently visualized in infected cells. The genetically engineered fluorescent BTV particles were observed to enter live cells immediately after virus adsorption. Further, we showed the separation of VP2 from VP5 during virus entry and confirmed that while VP2 is shed from virions in early endosomes, virus particles still consisting of VP5 were trafficked sequentially from early to late endosomes. Since BTV infects both mammalian and insect cells, the generation of tagged viruses will allow visualization of the trafficking of BTV farther downstream in different host cells. In addition, the tagging technology has potential for transferable application to other nonenveloped complex viruses. Live-virus trafficking in host cells has been highly informative on the interactions between virus and host cells. Although the insertion of fluorescent markers into viral genomes has made it possible to study the trafficking of enveloped viruses, the physical constraints of architecturally complex capsid viruses have imposed practical limitations. In this study, we have successfully genetically engineered the segmented RNA genome of bluetongue virus (BTV), a complex nonenveloped virus belonging to the Reoviridae family. The resulting fluorescent virus particles could be visualized in virus entry studies of both live and fixed cells. This is the first time a structurally complex capsid virus has been successfully genetically manipulated to generate virus particles that could be visualized in infected cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Role of dynamic capsomere supply for viral capsid self-assembly
NASA Astrophysics Data System (ADS)
Boettcher, Marvin A.; Klein, Heinrich C. R.; Schwarz, Ulrich S.
2015-02-01
Many viruses rely on the self-assembly of their capsids to protect and transport their genomic material. For many viral systems, in particular for human viruses like hepatitis B, adeno or human immunodeficiency virus, that lead to persistent infections, capsomeres are continuously produced in the cytoplasm of the host cell while completed capsids exit the cell for a new round of infection. Here we use coarse-grained Brownian dynamics simulations of a generic patchy particle model to elucidate the role of the dynamic supply of capsomeres for the reversible self-assembly of empty T1 icosahedral virus capsids. We find that for high rates of capsomere influx only a narrow range of bond strengths exists for which a steady state of continuous capsid production is possible. For bond strengths smaller and larger than this optimal value, the reaction volume becomes crowded by small and large intermediates, respectively. For lower rates of capsomere influx a broader range of bond strengths exists for which a steady state of continuous capsid production is established, although now the production rate of capsids is smaller. Thus our simulations suggest that the importance of an optimal bond strength for viral capsid assembly typical for in vitro conditions can be reduced by the dynamic influx of capsomeres in a cellular environment.
Bailer, Susanne M.
2017-11-25
Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.
Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate
Serwer, Philip; Wright, Elena T.
2012-01-01
We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979
Review of Disintegrants and the Disintegration Phenomena.
Desai, Parind Mahendrakumar; Liew, Celine Valeria; Heng, Paul Wan Sia
2016-09-01
Disintegrant is one of the most important components in a typical tablet dosage form. It is responsible for ensuring the break-up of the tablet matrix upon ingestion. Disintegrants act by different mechanisms, and a number of factors may affect their performance. It is important for formulators to understand how disintegrants function so as to be able to judiciously use disintegrants to develop optimized formulations. If the formulator is required to implement the quality by design paradigm while developing a tablet formulation, it would be important to determine the impact of component ranges and process variations on tablet performance and of particular importance, tablet disintegration. Thus, a better understanding of the mechanisms of disintegrants and the tablet disintegration processes can be critical to product design success. This review aims to provide an overview of tablet disintegrants and the disintegration processes with particular focus on the factors affecting the functionalities of disintegrants. An updated compendium of different techniques employed to evaluate disintegrant action and measure disintegration time is also provided. The objective of this review is to assemble the knowledge about disintegrants and the measurement of tablet disintegratability so that the information provided could be of help to tablet formulation development. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150
Yu, Xuekui; Jih, Jonathan; Jiang, Jiansen; Zhou, Z. Hong
2017-01-01
Herpesviruses possess a genome-pressurized capsid. The 235-kilobase genome of human cytomegalovirus (HCMV) is by far the largest of any herpesvirus, yet it has been unclear how its capsid, which is similar in size to those of other herpesviruses, is stabilized. Here we report a HCMV atomic structure consisting of the herpesvirus-conserved capsid proteins MCP, Tri1, Tri2, and SCP and the HCMV-specific tegument protein pp150—totaling ~4000 molecules and 62 different conformers. MCPs manifest as a complex of insertions around a bacteriophage HK97 gp5–like domain, which gives rise to three classes of capsid floor–defining interactions; triplexes, composed of two “embracing” Tri2 conformers and a “third-wheeling” Tri1, fasten the capsid floor. HCMV-specific strategies include using hexon channels to accommodate the genome and pp150 helix bundles to secure the capsid via cysteine tetrad–to-SCP interactions. Our structure should inform rational design of countermeasures against HCMV, other herpesviruses, and even HIV/AIDS. PMID:28663444
Maurer, Anna C; Pacouret, Simon; Cepeda Diaz, Ana Karla; Blake, Jessica; Andres-Mateos, Eva; Vandenberghe, Luk H
2018-05-08
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Intrinsically-disordered N-termini in human parechovirus 1 capsid proteins bind encapsidated RNA.
Shakeel, Shabih; Evans, James D; Hazelbaker, Mark; Kao, C Cheng; Vaughan, Robert C; Butcher, Sarah J
2018-04-11
Human parechoviruses (HPeV) are picornaviruses with a highly-ordered RNA genome contained within icosahedrally-symmetric capsids. Ordered RNA structures have recently been shown to interact with capsid proteins VP1 and VP3 and facilitate virus assembly in HPeV1. Using an assay that combines reversible cross-linking, RNA affinity purification and peptide mass fingerprinting (RCAP), we mapped the RNA-interacting regions of the capsid proteins from the whole HPeV1 virion in solution. The intrinsically-disordered N-termini of capsid proteins VP1 and VP3, and unexpectedly, VP0, were identified to interact with RNA. Comparing these results to those obtained using recombinantly-expressed VP0 and VP1 confirmed the virion binding regions, and revealed unique RNA binding regions in the isolated VP0 not previously observed in the crystal structure of HPeV1. We used RNA fluorescence anisotropy to confirm the RNA-binding competency of each of the capsid proteins' N-termini. These findings suggests that dynamic interactions between the viral RNA and the capsid proteins modulate virus assembly, and suggest a novel role for VP0.
Pabari, Rm; Ramtoola, Z
2012-07-01
The aim of this study was to evaluate the influence of disintegration mechanism of various types of disintegrants on the absorption ratio (AR), wetting time (WT), and disintegration time (DT) of orodispersible tablets (ODTs). ODTs were prepared by direct compression using mannitol as filler and disintegrants selected from a range of swellable, osmotic, and porous disintegrants. Tablets formed were characterized for their water AR, WT, and DT. The porosity and mechanical strength of the tablets were also measured. Results show that the DT of formulated ODTs was directly related to the WT and was a function of the disintegration mechanism of the disintegrant used. The lowest WT and DT were observed for tablets formulated using the osmotic disintegrant sodium citrate and these tablets also showed the lowest AR and porosity. The wetting and disintegration of tablets containing the highly swellable disintegrant, sodium starch glycollate, was slowest despite their high water AR and high tablet porosity. Rapid wetting and disintegration of ODTs were therefore not necessarily related to the porosity of the tablets.
Pabari, RM; Ramtoola, Z
2012-01-01
The aim of this study was to evaluate the influence of disintegration mechanism of various types of disintegrants on the absorption ratio (AR), wetting time (WT), and disintegration time (DT) of orodispersible tablets (ODTs). ODTs were prepared by direct compression using mannitol as filler and disintegrants selected from a range of swellable, osmotic, and porous disintegrants. Tablets formed were characterized for their water AR, WT, and DT. The porosity and mechanical strength of the tablets were also measured. Results show that the DT of formulated ODTs was directly related to the WT and was a function of the disintegration mechanism of the disintegrant used. The lowest WT and DT were observed for tablets formulated using the osmotic disintegrant sodium citrate and these tablets also showed the lowest AR and porosity. The wetting and disintegration of tablets containing the highly swellable disintegrant, sodium starch glycollate, was slowest despite their high water AR and high tablet porosity. Rapid wetting and disintegration of ODTs were therefore not necessarily related to the porosity of the tablets. PMID:23112534
Components of Adenovirus Genome Packaging
Ahi, Yadvinder S.; Mittal, Suresh K.
2016-01-01
Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809
The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.
Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise
2016-08-31
Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.
Viell, Jörn; Inouye, Hideyo; Szekely, Noemi K; Frielinghaus, Henrich; Marks, Caroline; Wang, Yumei; Anders, Nico; Spiess, Antje C; Makowski, Lee
2016-01-01
The valorization of biomass for chemicals and fuels requires efficient pretreatment. One effective strategy involves the pretreatment with ionic liquids which enables enzymatic saccharification of wood within a few hours under mild conditions. This pretreatment strategy is, however, limited by water and the ionic liquids are rather expensive. The scarce understanding of the involved effects, however, challenges the design of alternative pretreatment concepts. This work investigates the multi length-scale effects of pretreatment of wood in 1-ethyl-3-methylimidazolium acetate (EMIMAc) in mixtures with water using spectroscopy, X-ray and neutron scattering. The structure of beech wood is disintegrated in EMIMAc/water mixtures with a water content up to 8.6 wt%. Above 10.7 wt%, the pretreated wood is not disintegrated, but still much better digested enzymatically compared to native wood. In both regimes, component analysis of the solid after pretreatment shows an extraction of few percent of lignin and hemicellulose. In concentrated EMIMAc, xylan is extracted more efficiently and lignin is defunctionalized. Corresponding to the disintegration at macroscopic scale, SANS and XRD show isotropy and a loss of crystallinity in the pretreated wood, but without distinct reflections of type II cellulose. Hence, the microfibril assembly is decrystallized into rather amorphous cellulose within the cell wall. The molecular and structural changes elucidate the processes of wood pretreatment in EMIMAc/water mixtures. In the aqueous regime with >10.7 wt% water in EMIMAc, xyloglucan and lignin moieties are extracted, which leads to coalescence of fibrillary cellulose structures. Dilute EMIMAc/water mixtures thus resemble established aqueous pretreatment concepts. In concentrated EMIMAc, the swelling due to decrystallinization of cellulose, dissolution of cross-linking xylan, and defunctionalization of lignin releases the mechanical stress to result in macroscopic disintegration of cells. The remaining cell wall constituents of lignin and hemicellulose, however, limit a recrystallization of the solvated cellulose. These pretreatment mechanisms are beyond common pretreatment concepts and pave the way for a formulation of mechanistic requirements of pretreatment with simpler pretreatment liquors.
Bendas, Ehab Rasmy; Basalious, Emad B
2016-01-01
Our objective was to develop novel vagina retentive cream suppositories (VRCS) of progesterone having rapid disintegration and good vaginal retention. VRCS of progesterone were prepared using oil in water (o/w) emulsion of mineral oil or theobroma oil in hard fat and compared with conventional vaginal suppositories (CVS) prepared by hard fat. VRCS formulations were tested for content uniformity, disintegration, melting range, in vitro release and stability studies. The most stable formulation (VRCS I) was subjected to scaling-up manufacturing and patients' satisfaction test. The rapid disintegration, good retentive properties are applicable through the inclusion of emulsified theobroma oil rather than hydrophilic surfactant into the hard fat bases. The release profile of progesterone from VRCS I showed a biphasic pattern due to the formation of progesterone reservoir in the emulsified theobroma oil. All volunteers involved in patients' satisfaction test showed high satisfactory response to the tested formulation (VRCS). The in vivo pharmacokinetic study suggests that VRCS of progesterone provided higher rate and extent of absorption compared to hard fat based suppositories. Our results proposed that emulsified theobroma oil could be promising to solve the problems of poor patients' satisfaction and variability of drug absorption associated with hard fat suppositories.
The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation
Nap, Rikkert J.; Bozic, Anze Losdorfer; Szleifer, Igal; ...
2014-10-21
Here, we investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely important and substantial, introducing qualitative changes in the charge state of the capsid such as a transition from net-positive to net-negative charge depending on the solution pH. The overall charge of the virus capsid arises as a consequence of a complicated balance with the chemical dissociation equilibrium of the amino acids and the electrostatic interaction between them, and the translational entropy of the mobile solution ions, i.e., counterion release. We show thatmore » to properly describe and predict the charging equilibrium of viral capsids in general, one needs to include molecular details as exemplified by the acid-base equilibrium of the detailed distribution of amino acids in the proteinaceous capsid shell.« less
Structure-based energetics of protein interfaces guide Foot-and-Mouth Disease virus vaccine design
Scott, Katherine; Burman, Alison; Loureiro, Silvia; Ren, Jingshan; Porta, Claudine; Ginn, Helen M.; Jackson, Terry; Perez-Martin, Eva; Siebert, C. Alistair; Paul, Guntram; Huiskonen, Juha T.; Jones, Ian M.; Esnouf, Robert M.; Fry, Elizabeth E.; Maree, Francois F.; Charleston, Bryan; Stuart, David I.
2018-01-01
Summary Virus capsids are primed for disassembly yet capsid integrity is key to generating a protective immune response. Here we devise a computational method to assess relative stability of protein-protein interfaces and use it to design improved candidate vaccines for two of the least stable, but globally important, serotypes of Foot-and-Mouth Disease virus (FMDV), O and SAT2. FMDV capsids comprise identical pentameric protein subunits held together by tenuous non-covalent interactions, and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. We use a novel restrained molecular dynamics strategy, to rank mutations predicted to strengthen the pentamer interfaces to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralising antibody responses to stabilised particles over parental viruses and wild-type capsids. PMID:26389739
Drouin, Lauren M.; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni
2016-01-01
ABSTRACT The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. IMPORTANCE The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production. PMID:27440903
Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk
2017-10-15
The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans -complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production. Copyright © 2017 American Society for Microbiology.
Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard
2017-01-01
ABSTRACT The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production. PMID:28768875
Disintegration of highly soluble immediate release tablets: a surrogate for dissolution.
Gupta, Abhay; Hunt, Robert L; Shah, Rakhi B; Sayeed, Vilayat A; Khan, Mansoor A
2009-01-01
The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria.
Truncated CPSF6 Forms Higher-Order Complexes That Bind and Disrupt HIV-1 Capsid.
Ning, Jiying; Zhong, Zhou; Fischer, Douglas K; Harris, Gemma; Watkins, Simon C; Ambrose, Zandrea; Zhang, Peijun
2018-07-01
Cleavage and polyadenylation specificity factor 6 (CPSF6) is a human protein that binds HIV-1 capsid and mediates nuclear transport and integration targeting of HIV-1 preintegration complexes. Truncation of the protein at its C-terminal nuclear-targeting arginine/serine-rich (RS) domain produces a protein, CPSF6-358, that potently inhibits HIV-1 infection by targeting the capsid and inhibiting nuclear entry. To understand the molecular mechanism behind this restriction, the interaction between CPSF6-358 and HIV-1 capsid was characterized using in vitro and in vivo assays. Purified CPSF6-358 protein formed oligomers and bound in vitro -assembled wild-type (WT) capsid protein (CA) tubes, but not CA tubes containing a mutation in the putative binding site of CPSF6. Intriguingly, binding of CPSF6-358 oligomers to WT CA tubes physically disrupted the tubular assemblies into small fragments. Furthermore, fixed- and live-cell imaging showed that stably expressed CPSF6-358 forms cytoplasmic puncta upon WT HIV-1 infection and leads to capsid permeabilization. These events did not occur when the HIV-1 capsid contained a mutation known to prevent CPSF6 binding, nor did they occur in the presence of a small-molecule inhibitor of capsid binding to CPSF6-358. Together, our in vitro biochemical and transmission electron microscopy data and in vivo intracellular imaging results provide the first direct evidence for an oligomeric nature of CPSF6-358 and suggest a plausible mechanism for restriction of HIV-1 infection by CPSF6-358. IMPORTANCE After entry into cells, the HIV-1 capsid, which contains the viral genome, interacts with numerous host cell factors to facilitate crucial events required for replication, including uncoating. One such host cell factor, called CPSF6, is predominantly located in the cell nucleus and interacts with HIV-1 capsid. The interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Truncation of CPSF6 leads to its localization to the cell cytoplasm and inhibition of HIV-1 infection. Here, we determined that truncated CPSF6 protein forms large higher-order complexes that bind directly to HIV-1 capsid, leading to its disruption. Truncated CPSF6 expression in cells leads to premature capsid uncoating that is detrimental to HIV-1 infection. Our study provides the first direct evidence for an oligomeric nature of truncated CPSF6 and insights into the highly regulated process of HIV-1 capsid uncoating. Copyright © 2018 American Society for Microbiology.
Conformational Changes in the Capsid of a Calicivirus upon Interaction with Its Functional Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ossiboff, Robert J.; Zhou, Yi; Lightfoot, Patrick J.
2010-07-19
Nonenveloped viral capsids are metastable structures that undergo conformational changes during virus entry that lead to interactions of the capsid or capsid fragments with the cell membrane. For members of the Caliciviridae, neither the nature of these structural changes in the capsid nor the factor(s) responsible for inducing these changes is known. Feline functional adhesion molecule A (fJAM-A) mediates the attachment and infectious viral entry of feline calicivirus (FCV). Here, we show that the infectivity of some FCV isolates is neutralized following incubation with the soluble receptor at 37 C. We used this property to select mutants resistant to preincubationmore » with the soluble receptor. We isolated and sequenced 24 soluble receptor-resistant (srr) mutants and characterized the growth properties and receptor-binding activities of eight mutants. The location of the mutations within the capsid structure of FCV was mapped using a new 3.6-{angstrom} structure of native FCV. The srr mutations mapped to the surface of the P2 domain were buried at the protruding domain dimer interface or were present in inaccessible regions of the capsid protein. Coupled with data showing that both the parental FCV and the srr mutants underwent increases in hydrophobicity upon incubation with the soluble receptor at 37 C, these findings indicate that FCV likely undergoes conformational change upon interaction with its receptor. Changes in FCV capsid conformation following its interaction with fJAM-A may be important for subsequent interactions of the capsid with cellular membranes, membrane penetration, and genome delivery.« less
Integrated Nanosystems Templated by Self-assembled Virus Capsids
NASA Astrophysics Data System (ADS)
Stephanopoulos, Nicholas
This dissertation presents the synthesis and modeling of multicomponent nanosystems templated by self-assembled virus capsids. The design principles, synthesis, analysis, and future directions for these capsid-based materials are presented. Chapter 1 gives an overview of the literature on the application of virus capsids in constructing nanomaterials. The uses of capsids in three main areas are considered: (1) as templates for inorganic materials or nanoparticles; (2) as vehicles for biological applications like medical imaging and treatment; and (3) as scaffolds for catalytic materials. In light of this introduction, an overview of the material in this dissertation is described. Chapters 2-4 all describe integrated nanosystems templated by bacteriophage MS2, a spherical icosahedral virus capsid. MS2 possesses an interior and exterior surface that can be modified orthogonally using bioconjugation chemistry to create multivalent, multicomponent constructs with precise localization of components attached to the capsid proteins. Chapter 2 describes the use of MS2 to synthesize a photocatalytic construct by modifying the internal surface with sensitizing chromophores and the external surface with a photocatalytic porphyrin. The chromophores absorbed energy that the porphyrin could not, and transferred it to the porphyrin via FRET through the protein shell. The porphyrin was then able to utilize the energy to carry out photocatalysis at new wavelengths. In Chapter 3, porphyrins were installed on the interior surface of MS2 and DNA aptamers specific for Jurkat leukemia T cells on the exterior surface. The dual-modified capsids were able to bind to Jurkat cells, and upon illumination the porphyrins generated singlet oxygen to kill them selectively over non-targeted cells. Chapter 4 explores integrating MS2 with DNA origami in order to arrange the capsids at larger length scales. Capsids modified with fluorescent dyes inside and single-stranded DNA outside were able to bind to origami tiles bearing complementary DNA probes. The tiles could then be used to arrange the capsids in a one-dimensional array with dimensions far exceeding those of individual MS2 particles. In Chapter 5, the use of a different capsid, that of the tobacco mosaic virus (TMV) is described. The defect tolerance of light harvesting systems built using TMV as a scaffold was investigated using a kinetic Monte Carlo model to simulate the energy transfer processes. The results of the simulation were used to understand and explain experimental results obtained from the system.
Zubrowska-Sudol, Monika; Walczak, Justyna
2014-09-15
The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perlmutter, Jason D.; Hagan, Michael F.
2015-01-01
Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951
Host-regulated Hepatitis B Virus Capsid Assembly in a Mammalian Cell-free System.
Liu, Kuancheng; Hu, Jianming
2018-04-20
The hepatitis B virus (HBV) is an important global human pathogen and represents a major cause of hepatitis, liver cirrhosis and liver cancer. The HBV capsid is composed of multiple copies of a single viral protein, the capsid or core protein (HBc), plays multiple roles in the viral life cycle, and has emerged recently as a major target for developing antiviral therapies against HBV infection. Although several systems have been developed to study HBV capsid assembly, including heterologous overexpression systems like bacteria and insect cells, in vitro assembly using purified protein, and mammalian cell culture systems, the requirement for non-physiological concentrations of HBc and salts and the difficulty in manipulating host regulators of assembly presents major limitations for detailed studies on capsid assembly under physiologically relevant conditions. We have recently developed a mammalian cell-free system based on the rabbit reticulocyte lysate (RRL), in which HBc is expressed at physiological concentrations and assembles into capsids under near-physiological conditions. This system has already revealed HBc assembly requirements that are not anticipated based on previous assembly systems. Furthermore, capsid assembly in this system is regulated by endogenous host factors that can be readily manipulated. Here we present a detailed protocol for this cell-free capsid assembly system, including an illustration on how to manipulate host factors that regulate assembly.
Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.
Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang
2016-02-01
Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Ansardi, D C; Porter, D C; Morrow, C D
1991-04-01
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.
Performance of tablet disintegrants: impact of storage conditions and relative tablet density.
Quodbach, Julian; Kleinebudde, Peter
2015-01-01
Tablet disintegration can be influenced by several parameters, such as storage conditions, type and amount of disintegrant, and relative tablet density. Even though these parameters have been mentioned in the literature, the understanding of the disintegration process is limited. In this study, water uptake and force development of disintegrating tablets are analyzed, as they reveal underlying processes and interactions. Measurements were performed on dibasic calcium phosphate tablets containing seven different disintegrants stored at different relative humidities (5-97%), and on tablets containing disintegrants with different mechanisms of action (swelling and shape recovery), compressed to different relative densities. Disintegration times of tablets containing sodium starch glycolate are affected most by storage conditions, which is displayed in decreased water uptake and force development kinetics. Disintegration times of tablets with a swelling disintegrant are only marginally affected by relative tablet density, whereas the shape recovery disintegrant requires high relative densities for quick disintegration. The influence of relative tablet density on the kinetics of water uptake and force development greatly depends on the mechanism of action. Acquired data allows a detailed analysis of the influence of storage conditions and mechanisms of action on disintegration behavior.
An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yan, E-mail: yzheng15@students.kgi.edu; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu
2015-10-15
Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particlesmore » had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.« less
In vivo encapsulation of nucleic acids using an engineered nonviral protein capsid.
Lilavivat, Seth; Sardar, Debosmita; Jana, Subrata; Thomas, Geoffrey C; Woycechowsky, Kenneth J
2012-08-15
In Nature, protein capsids function as molecular containers for a wide variety of molecular cargoes. Such containers have great potential for applications in nanotechnology, which often require encapsulation of non-native guest molecules. Charge complementarity represents a potentially powerful strategy for engineering novel encapsulation systems. In an effort to explore the generality of this approach, we engineered a nonviral, 60-subunit capsid, lumazine synthase from Aquifex aeolicus (AaLS), to act as a container for nucleic acid. Four mutations were introduced per subunit to increase the positive charge at the inner surface of the capsid. Characterization of the mutant (AaLS-pos) revealed that the positive charges lead to the uptake of cellular RNA during production and assembly of the capsid in vivo. Surprisingly, AaLS-pos capsids were found to be enriched with RNA molecules approximately 200-350 bases in length, suggesting that this simple charge complementarity approach to RNA encapsulation leads to both high affinity and a degree of selectivity. The ability to control loading of RNA by tuning the charge at the inner surface of a protein capsid could illuminate aspects of genome recognition by viruses and pave the way for the development of improved RNA delivery systems.
Family disintegration: one fusarium verticillioides beta-lactamase at a time
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a mycotoxigenic fungus found commonly on maize, where it primarily exhibits asymptomatic endophytic growth. The F. verticillioides genome possesses approximately 30 regions that potentially encode beta-lactamase enzymatic domains. These enzymes are classically involved ...
Desai, Parind Mahendrakumar; Er, Patrick Xuan Hua; Liew, Celine Valeria; Heng, Paul Wan Sia
2014-10-01
Investigation of the effect of disintegrants on the disintegration time and hardness of rapidly disintegrating tablets (RDTs) was carried out using a quality by design (QbD) paradigm. Ascorbic acid, aspirin, and ibuprofen, which have different water solubilities, were chosen as the drug models. Disintegration time and hardness of RDTs were determined and modeled by executing combined optimal design. The generated models were validated and used for further analysis. Sodium starch glycolate, croscarmellose sodium, and crospovidone were found to lengthen disintegration time when utilized at high concentrations. Sodium starch glycolate and crospovidone worked synergistically in aspirin RDTs to decrease disintegration time. Sodium starch glycolate-crospovidone mixtures, as well as croscarmellose sodium-crospovidone mixtures, also decreased disintegration time in ibuprofen RDTs at high compression pressures as compared to the disintegrants used alone. The use of sodium starch glycolate in RDTs with highly water soluble active ingredients like ascorbic acid slowed disintegration, while microcrystalline cellulose and crospovidone drew water into the tablet rapidly and quickened disintegration. Graphical optimization analysis demonstrated that the RDTs with desired disintegration times and hardness can be formulated with a larger area of design space by combining disintegrants at difference compression pressures. QbD was an efficient and effective paradigm in understanding formulation and process parameters and building quality in to RDT formulated systems.
How HIV-1 Gag assembles in cells: putting together pieces of the puzzle
Lingappa, Jaisri R; Reed, Jonathan C; Tanaka, Motoko; Chutiraka, Kasana; Robinson, Bridget A
2014-01-01
During the late stage of the viral life cycle, HIV-1 Gag assembles into a spherical immature capsid, and undergoes budding, release, and maturation. Here we review events involved in immature capsid assembly from the perspective of five different approaches used to study this process: mutational analysis, structural studies, assembly of purified recombinant Gag, assembly of newly-translated Gag in a cell-free system, and studies in cells using biochemical and imaging techniques. We summarize key findings obtained using each approach, point out where there is consensus, and highlight unanswered questions. Particular emphasis is placed on reconciling data suggesting that Gag assembles by two different paths, depending on the assembly environment. Specifically, in assembly systems that lack cellular proteins, high concentrations of Gag can spontaneously assemble using purified nucleic acid as a scaffold. However, in the more complex intracellular environment, barriers that limit self-assembly are present in the form of cellular proteins, organelles, host defenses, and the absence of free nucleic acid. To overcome these barriers and promote efficient immature capsid formation in an unfavorable environment, Gag appears to utilize an energy-dependent, host-catalyzed, pathway of assembly intermediates in cells. Overall, we show how data obtained using a variety of techniques has led to our current understanding of HIV assembly. PMID:25066606
Structure, function and dynamics in adenovirus maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangel, Walter F.; San Martín, Carmen
2014-11-21
Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore » more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.« less
Structures of the Procapsid and Mature Virion of Enterovirus 71 Strain 1095
Cifuente, Javier O.; Lee, Hyunwook; Yoder, Joshua D.; Shingler, Kristin L.; Carnegie, Michael S.; Yoder, Jennifer L.; Ashley, Robert E.; Makhov, Alexander M.; Conway, James F.
2013-01-01
Enterovirus 71 (EV71) is an important emerging human pathogen with a global distribution and presents a disease pattern resembling poliomyelitis with seasonal epidemics that include cases of severe neurological complications, such as acute flaccid paralysis. EV71 is a member of the Picornaviridae family, which consists of icosahedral, nonenveloped, single-stranded RNA viruses. Here we report structures derived from X-ray crystallography and cryoelectron microscopy (cryo-EM) for the 1095 strain of EV71, including a putative precursor in virus assembly, the procapsid, and the mature virus capsid. The cryo-EM map of the procapsid provides new structural information on portions of the capsid proteins VP0 and VP1 that are disordered in the higher-resolution crystal structures. Our structures solved from virus particles in solution are largely in agreement with those from prior X-ray crystallographic studies; however, we observe small but significant structural differences for the 1095 procapsid compared to a structure solved in a previous study (X. Wang, W. Peng, J. Ren, Z. Hu, J. Xu, Z. Lou, X. Li, W. Yin, X. Shen, C. Porta, T. S. Walter, G. Evans, D. Axford, R. Owen, D. J. Rowlands, J. Wang, D. I. Stuart, E. E. Fry, and Z. Rao, Nat. Struct. Mol. Biol. 19:424–429, 2012) for a different strain of EV71. For both EV71 strains, the procapsid is significantly larger in diameter than the mature capsid, unlike in any other picornavirus. Nonetheless, our results demonstrate that picornavirus capsid expansion is possible without RNA encapsidation and that picornavirus assembly may involve an inward radial collapse of the procapsid to yield the native virion. PMID:23637404
Dynamics of bacteriophage genome ejection in vitro and in vivo
NASA Astrophysics Data System (ADS)
Panja, Debabrata; Molineux, Ian J.
2010-12-01
Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ~500 mg ml-1. This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many—though often isolated and/or contradictory—aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.
Wang, Aibing; Zhang, Lijie; Khayat, Reza
2016-01-01
Outbreaks of porcine circovirus (PCV) type 2 (PCV2)-associated diseases have caused substantial economic losses worldwide in the last 20 years. The PCV capsid protein (Cap) is the sole structural protein and main antigenic determinant of this virus. In this study, not only were phylogenetic trees reconstructed, but variations of surface structure of the PCV capsid were analysed in the course of evolution. Unique surface patterns of the icosahedral fivefold axes of the PCV2 capsid were identified and characterized, all of which were absent in PCV type 1 (PCV1). Icosahedral fivefold axes, decorated with Loops BC, HI and DE, were distinctly different between PCV2 and PCV1. Loops BC, determining the outermost surface around the fivefold axes of PCV capsids, had limited homology between Caps of PCV1 and PCV2. A conserved tyrosine phosphorylation motif in Loop HI that might be recognized by non-receptor tyrosine kinase(s) in vivo was present only in PCV2. Particularly, the concurrent presence of 60 pairs of the conserved tyrosine and a canonical PXXP motif on the PCV2 capsid surface could be a mechanism for PXXP motif binding to and activation of an SH3-domain-containing tyrosine kinase in host cells. Additionally, a conserved cysteine in Loop DE of the PCV2 Cap was substituted by an arginine in PCV1, indicating potentially distinct assembly mechanisms of the capsid in vitro between PCV1 and PCV2. Therefore, these unique patterns on the PCV2 capsid surface, absent in PCV1 isolates, might be related to cell entry, virus function and pathogenesis. PMID:27902320
Wang, Naidong; Zhan, Yang; Wang, Aibing; Zhang, Lijie; Khayat, Reza; Yang, Yi
2016-12-01
Outbreaks of porcine circovirus (PCV) type 2 (PCV2)-associated diseases have caused substantial economic losses worldwide in the last 20 years. The PCV capsid protein (Cap) is the sole structural protein and main antigenic determinant of this virus. In this study, not only were phylogenetic trees reconstructed, but variations of surface structure of the PCV capsid were analysed in the course of evolution. Unique surface patterns of the icosahedral fivefold axes of the PCV2 capsid were identified and characterized, all of which were absent in PCV type 1 (PCV1). Icosahedral fivefold axes, decorated with Loops BC, HI and DE, were distinctly different between PCV2 and PCV1. Loops BC, determining the outermost surface around the fivefold axes of PCV capsids, had limited homology between Caps of PCV1 and PCV2. A conserved tyrosine phosphorylation motif in Loop HI that might be recognized by non-receptor tyrosine kinase(s) in vivo was present only in PCV2. Particularly, the concurrent presence of 60 pairs of the conserved tyrosine and a canonical PXXP motif on the PCV2 capsid surface could be a mechanism for PXXP motif binding to and activation of an SH3-domain-containing tyrosine kinase in host cells. Additionally, a conserved cysteine in Loop DE of the PCV2 Cap was substituted by an arginine in PCV1, indicating potentially distinct assembly mechanisms of the capsid in vitro between PCV1 and PCV2. Therefore, these unique patterns on the PCV2 capsid surface, absent in PCV1 isolates, might be related to cell entry, virus function and pathogenesis.
Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.
2003-01-01
Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348
Structural basis of HIV-1 capsid recognition by PF74 and CPSF6
Bhattacharya, Akash; Alam, Steven L.; Fricke, Thomas; ...
2014-12-17
Upon infection of susceptible cells by HIV-1, the conical capsid formed by ~250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. In this study, the capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host–virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD–CTD interface is criticalmore » for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD–CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD–CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus.« less
Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis
2016-10-01
The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Characterising the disintegration properties of tablets in opaque media using texture analysis.
Scheuerle, Rebekah L; Gerrard, Stephen E; Kendall, Richard A; Tuleu, Catherine; Slater, Nigel K H; Mahbubani, Krishnaa T
2015-01-01
Tablet disintegration characterisation is used in pharmaceutical research, development, and quality control. Standard methods used to characterise tablet disintegration are often dependent on visual observation in measurement of disintegration times. This presents a challenge for disintegration studies of tablets in opaque, physiologically relevant media that could be useful for tablet formulation optimisation. This study has explored an application of texture analysis disintegration testing, a non-visual, quantitative means of determining tablet disintegration end point, by analysing the disintegration behaviour of two tablet formulations in opaque media. In this study, the disintegration behaviour of one tablet formulation manufactured in-house, and Sybedia Flashtab placebo tablets in water, bovine, and human milk were characterised. A novel method is presented to characterise the disintegration process and to quantify the disintegration end points of the tablets in various media using load data generated by a texture analyser probe. The disintegration times in the different media were found to be statistically different (P<0.0001) from one another for both tablet formulations using one-way ANOVA. Using the Tukey post-hoc test, the Sybedia Flashtab placebo tablets were found not to have statistically significant disintegration times from each other in human versus bovine milk (adjusted P value 0.1685). Copyright © 2015 Elsevier B.V. All rights reserved.
Chaheen, Mohammad; Soulairol, Ian; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer
2017-07-01
Disintegrants are used as excipients to ensure rapid disintegration of pharmaceutical tablets and further ensure proper dissolution of the active pharmaceutical ingredient. This study investigates disintegration mechanisms of chitin and common disintegrants. Swelling assessment (swelling force and swelling ratio) in different media, and compaction behavior (pure or mixed with other excipients) tabletability, deformation (Heckel modeling), and compact disintegration times were investigated on the tested disintegrants (alginic acid calcium salt, crospovidone, sodium starch glycolate, croscarmellose sodium, and chitin). Results show that the physicochemical properties of the disintegration medium such as pH and ionic strength, as well as other formulation ingredients, affect the disintegrant functionalities. Heckel analysis using the mean yield pressure "Py" shows that alginic acid calcium salt is the most brittle among the studied disintegrants, while crospovidone has the most plastic deformation mechanism, followed by chitin. Chitin showed good tabletability and disintegration properties that were not influenced by the physicochemical formulation environment. Chitin is largely available and easily modifiable and thus a promising material that could be used as a multifunctional excipient in tablet formulation. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Royston, Léna; Essaidi-Laziosi, Manel; Piuz, Isabelle; Geiser, Johan; Huang, Song; Kaiser, Laurent; Garcin, Dominique
2018-01-01
Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world’s most prevalent pathogens and could aid target selection for vaccine or antiviral development. PMID:29630666
Viral genome structures, charge, and sequences are optimal for capsid assembly
NASA Astrophysics Data System (ADS)
Hagan, Michael
2014-03-01
For many viruses, the spontaneous assembly of a capsid shell around the nu-cleic acid (NA) genome is an essential step in the viral life cycle. Capsid formation is a multicomponent, out-of-equilibrium assembly process for which kinetic effects and thermodynamic constraints compete to determine the outcome. Understand-ing how viral components drive highly efficient assembly under these constraints could promote biomedical efforts to block viral propagation, and would elucidate the factors controlling assembly in a wide range of systems containing proteins and polyelectrolytes. This talk will describe coarse-grained models of capsid proteins and NAs with which we investigate the dynamics and thermodynamics of virus assembly. In con-trast to recent theoretical models, we find that capsids spontaneously `overcharge' that is, the NA length which is kinetically and thermodynamically optimal possess-es a negative charge greater than the positive charge of the capsid. When applied to specific virus capsids, the calculated optimal NA lengths closely correspond to the natural viral genome lengths. These results suggest that the features included in this model (i.e. electrostatics, excluded volume, and NA tertiary structure) play key roles in determining assembly thermodynamics and consequently exert selec-tive pressure on viral evolution. I will then discuss mechanisms by which se-quence-specific interactions between NAs and capsid proteins promote selective encapsidation of the viral genome. This work was supported by NIH R01GM108021 and the Brandeis MRSEC NSF-MRSEC-0820492.
[Stability of disintegration in health food].
Ma, Lan; Zhao, Xin; Zhou, Shuang; Yang, Dajin
2012-11-01
To study the change of disintegration of different formulation samples which stored in the artificial climate box or room temperature and provide the technical support for health food monitoring. According to the method of Chinese Pharmacopoeia and British Pharmacopoeia. Appendix XII A. Disintegration 2010. Disintegration of the non-accelerate, accelerated after 1, 2 and 3 months samples were determined by the disintegrator, respectively. Sample properties, the ingredients of the samples, the proportions of the capsule and treatment methods have some effect on the stability of the disintegration. The disintegration time of health food will be changed particularly after they were accelerated under the condition of (38 +/- 1) degrees C/75% RH. Especially the disintegration time of soft capsules were significantly prolonged. The composition and properties of samples were the main factors that affected the disintegration.
McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.
1998-01-01
The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Uchida, Takahiro
2015-01-01
The purpose of this study was to evaluate the palatabilities of the original and nine generic versions of famotidine orally disintegrating tablets (FODTs) by means of disintegration times and bitterness intensities determined using in combination disintegration device and taste sensor comparison of human gustatory sensation tests. The disintegration times were determined using a new disintegration testing equipment for ODTs, the OD-mate and bitterness intensities were determined using the SA501C taste-sensing system. The disintegration time and bitterness of each FODT was evaluated in gustatory sensation tests. There was a good correlation between the disintegration times of 10 FODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of FODTs at 10, 20 and 30 s after starting the disintegration using the OD-mate and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. A combination of the OD-mate and the SA501C was capable of predicting the palatabilities, disintegration properties and bitterness intensity of FODTs.
Jung, Huijeong Ashley; Augsburger, Larry L
2012-07-01
An automatic disintegration tester was developed and used to explore disintegration mechanism and times of rapidly disintegrating tablets. DT50, the time required for a tablet to decrease in its thickness by half, allowed an unbiased determination of disintegration time. Calcium silicate concentration, Explotab® concentration, DiPac®/Xylitab® ratio as fillers, and compression pressure were evaluated using a central composite model design analysis for their DT50, tensile strength, and friability. Tablets that could reasonably be handled (friability <10%) could be produced. The expansion coefficient (n) and the exponential rate constant (k) for disintegrating tablets, originally measured by Caramella et al. using force kinetics, could be determined from axial displacement data measured directly without the need to assume that disintegration force generation was indicative of changes in tablet volume. The n values of tablets containing calcium silicate, Ditab® and/or Xylitab®, magnesium stearate, and Explotab® suggested that the amount of Explotab® was not a significant factor in determining the disintegration mechanism; however, the type of disintegrant used did alter the n value. Primojel® and Explotab®, which are in the same class of disintegrants, exhibited similar DT50, n, and k. Polyplasdone® XL exhibited a much higher n, while yielding faster DT50, suggesting that its performance is more dependent on facilitating the interfacial separation of particles. AcDiSol® showed no apparent moisture sensitivity in regards to disintegration efficiency. The use of the novel apparatus proved to be useful in measuring disintegration efficiency of rapidly disintegrating tablets and in providing valuable information on the disintegration phenomena.
Tomita, Takashi; Kohda, Yukinao; Kudo, Kenzo
2018-01-01
For patients with dysphagia in medical facilities and nursing homes, food thickeners are routinely used to aid the ingestion of medicines such as tablets. However, some types of thickeners affect the disintegration and dissolution of tablets, such as rapidly-disintegrating magnesium oxide tablets and donepezil hydrochloride orally disintegrating tablets. Additionally, delayed disintegration and dissolution of tablets affect a drug's efficacy. As an example, with Voglibose orally disintegrating tablets, marked differences are observed in changes in glucose levels during glucose tolerance testing. When using food thickeners to aid tablet ingestion, it is therefore necessary to select a product that has little effect on drug disintegration, dissolution, and activity.
Shape transformation of viral capsids and HIV
NASA Astrophysics Data System (ADS)
Nguyen, Toan
2005-03-01
We present a continuum description of the shape transformation of viral capsids. The cone-like HIV virus is shown to be an thermodynamic stable shape, intermediate between icosahedral and sphero-cylinder capsid shapes. A generalized Caspar-Klug classification is introduced to describe spherical, conical and cylinderical shapes of virus.
Nuclear import of viral DNA genomes.
Greber, Urs F; Fassati, Ariberto
2003-03-01
The genomes of many viruses traffic into the nucleus, where they are either integrated into host chromosomes or maintained as episomal DNA and then transcriptionally activated or silenced. Here, we discuss the existing evidence on how the lentiviruses, adenoviruses, herpesviruses, hepadnaviruses and autonomous parvoviruses enter the nucleus. Depending on the size of the capsid enclosing the genome, three principles of viral nucleic acids import are discussed. The first principle is that the capsid disassembles in the cytosol or in a docked state at the nuclear pore complex and a subviral genomic complex is trafficked through the pore. Second, the genome is injected from a capsid that is docked to the pore complex, and third, import factors are recruited to cytosolic capsids to increase capsid affinity to the pore complex, mediate translocation and allow disassembly in the nucleoplasm.
High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.
2007-08-29
High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) theremore » is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.« less
Li, Yachao; Lai, Yusi; Xu, Xianghui; Zhang, Xiao; Wu, Yahui; Hu, Cheng; Gu, Zhongwei
2016-02-01
Supramolecular dendritic systems emerge as a promising new-generation bioinspired nanoplatform for nanomedicine. Herein, we report capsid-like mimics self-assembled from peptide dendrimers and functionalized peptides to enhance drug penetration and site-specific delivery for tumor therapy. These drug-loaded supramolecular dendritic systems are endowed with capsid-like component and nanostructure by a facile supramolecular approach. As expected, the drug-loaded capsid-like nanocarriers show some desirable advantages for antitumor drug delivery: a) well-defined nanostructure to improve drug location at tumor site, b) capsid-like architecture to enhance drug penetration, c) high internalization, pH-controlled release and nuclear delivery to jointly achieve site-specific delivery. Based on these merits, the drug-loaded capsid nanocarriers provide efficient tumor suppression to 4T1 tumor bearing BALB/c mice and decrease the DOX-induced toxicity during treatment course. Dendrimers have been tested in many clinical trials as nanocarriers, without great success due to many limitations. Here, the authors attempted to address these issues by developing supramolecular dendritic systems, which mimic capsids in viruses. Both in-vitro and in-vivo studies showed promising results. This work should provide a platform for further development of dendrimer-based nanocarriers for drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.
Hussain, Munir A; Chang, Rong-Kun; Sandefer, Erik; Page, Richard C; Digenis, George A
2003-03-01
[corrected] To evaluate the in vivo disintegration behavior of tablets and capsules of a bile acid sequestrant, DMP 504, in beagle dogs and to assess the significance of the in vitro disintegration of the dosage forms on subsequent in vivo behavior in order to draw possible in vitro-in vivo correlations. Tablet and capsule formulations of a bile acid sequestrant, DMP 504, were formulated with samarium oxide and neutron activated to produce radioactive 53Sm to noninvasively evaluate their in vivo behavior in beagle dogs by gamma-scintigraphy. A four-way crossover design was completed (n = 4) in which (a) tablets from two different batches were administered under the fasted condition and manufactured using different lots of drug substance where one batch exhibited relatively faster in vitro disintegration time (30 min) than the other tablet batch, which resulted in slower disintegration (45 min), (b) a capsule formulation was administered to fasted beagles, and (c) the tablet having slower in vitro disintegration was also administered in the fed state, and its in vivo disintegration was compared to that observed in the fasted state. Tablets manufactured using a lot of DMP 504 having relatively fast in vitro disintegration (approximately 30 min) resulted in relatively rapid in vivo disintegration time (15 min) in the fasted condition. This in vivo disintegration time was comparable to the in vivo disintegration of the capsules (17 min) even though the in vitro capsule disintegration time was considerably faster (2 min). Tablets prepared using a drug substance that provided a longer in vitro disintegration time (approximately 45 min) resulted in a slower in vivo disintegration (63 min). There was no difference observed in the in vivo disintegration behavior in fasted and fed dogs for the tablets that provided slower in vitro disintegration. In vivo disintegration of tablets of the bile acid sequestrant DMP 504 correlated with in vitro disintegration times. Gamma-Scintigraphy continues to be a good tool to use during early stages of product development to investigate in vivo performance of dosage forms. The results of this study provided evidence that the physical chemical specifications of the drug substance may not always be indicative of in vitro or in vivo performance of tablet dosage form, even when formulation and process are not changed.
Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.
Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter
2014-01-01
The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.
Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi
2013-01-01
The purpose of this study was to develop and test a novel and simple method for evaluating the disintegration time of rapidly disintegrating tablets (RDTs) in vitro, since the conventional disintegration test described in the pharmacopoeia produces poor results due to the difference of its environmental conditions from those of an actual oral cavity. Six RDTs prepared in our laboratory and 5 types of commercial RDTs were used as model formulations. Using our original apparatus, a good correlation was observed between in vivo and in vitro disintegration times by adjusting the height from which the solution was dropped to 8 cm and the weight of the load to 10 or 20 g. Properties of RDTs, such as the pattern of their disintegrating process, can be assessed by verifying the load. These findings confirmed that our proposed method for an in vitro disintegration test apparatus is an excellent one for estimating disintegration time and the disintegration profile of RDTs.
Assessment of disintegrant efficacy with fractal dimensions from real-time MRI.
Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter
2014-11-20
An efficient disintegrant is capable of breaking up a tablet in the smallest possible particles in the shortest time. Until now, comparative data on the efficacy of different disintegrants is based on dissolution studies or the disintegration time. Extending these approaches, this study introduces a method, which defines the evolution of fractal dimensions of tablets as surrogate parameter for the available surface area. Fractal dimensions are a measure for the tortuosity of a line, in this case the upper surface of a disintegrating tablet. High-resolution real-time MRI was used to record videos of disintegrating tablets. The acquired video images were processed to depict the upper surface of the tablets and a box-counting algorithm was used to estimate the fractal dimensions. The influence of six different disintegrants, of different relative tablet density, and increasing disintegrant concentration was investigated to evaluate the performance of the novel method. Changing relative densities hardly affect the progression of fractal dimensions, whereas an increase in disintegrant concentration causes increasing fractal dimensions during disintegration, which are also reached quicker. Different disintegrants display only minor differences in the maximal fractal dimension, yet the kinetic in which the maximum is reached allows a differentiation and classification of disintegrants. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of sorbed water on disintegrant performance of four brands of Polacrilin Potassium NF.
Bele, Mrudula H; Derle, Diliprao V
2012-03-01
Polacrilin Potassium NF is a commonly used weak cation exchange resin disintegrant in pharmaceutical tablets. The objective of this research was to evaluate the effects of sorbed moisture on physical characteristics and disintegrant performance of four brands of Polacrilin Potassium NF. The disintegrants were stored in five different relative humidity chambers and their dynamic vapor adsorption-desorption analysis, effect of moisture on their compressibility, compactability, particle size, morphology, water uptake rate, and disintegration ability were studied. Moisture seemed to plasticize the disintegrants, reducing their yield pressures. However, certain optimum amount of moisture was found to be useful in increasing the compactablity of the tablets containing disintegrants. The tablets, however, lost their tensile strengths beyond this optimum moisture content. Moisture caused two brands of the disintegrants to swell; however, two other brands aggregated upon exposure to moisture. Swelling without aggregation increased the water uptake, and in turn the disintegrant performance. However, aggregation probably reduced the porosities of the disintegrants, reducing their water uptake rate and disintegrant performance. Different brands of Polacrilin Potassium NF differed in the abilities to withstand the effects of moisture on their functionality. Effect of moisture on disintegrant performance of Polacrilin Potassium NF needs to be considered before its use in tablets made by wet granulation.
Akseli, Ilgaz; Xie, Jingjin; Schultz, Leon; Ladyzhynsky, Nadia; Bramante, Tommasina; He, Xiaorong; Deanne, Rich; Horspool, Keith R; Schwabe, Robert
2017-01-01
Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Rojas, John; Guisao, Santiago; Ruge, Vanesa
2012-12-01
Spironolactone is a drug derived from sterols that exhibits an incomplete oral absorption due to its low water solubility and slow dissolution rate. In this study, formulations of spironolactone with four disintegrants named as croscarmellose sodium, crospovidone, sodium starch glycolate and microcrystalline cellulose II (MCCII) were conducted. The effect of those disintegrants on the tensile strength, disintegration time and dissolution rate of spironolactone-based compacts was evaluated using a factorial design with three categorical factors (filler, lubricant, and disintegrant). The swelling values, water uptake and water sorption studies of these disintegrants all suggested that MCCII compacts disintegrate by a wicking mechanism similar to that of crospovidone, whereas a swelling mechanism was dominant for sodium starch glycolate and croscarmellose sodium. The disintegration time of MCCII and sodium starch glycolate remained unchanged with magnesium stearate. However, this lubricant delayed the disintegration time of crospovidone and croscarmellose sodium. MCCII presented the fastest disintegration time independent of the medium and lubricant employed. The water sorption ratio and swelling values determined sodium starch glycolate followed by croscarmellose sodium as the largest swelling materials, whereas crospovidone and MCCII where the least swelling disintegrants. The swelling property of sodium starch glycolate and croscarmellose sodium was strongly affected by the medium pH. The disintegration time of spironolactone compacts was faster when starch was used as a filler due to the formation of soft compacts. In this case, the type of filler employed rather than the disintegrant had a major effect on the disintegration and dissolution times of spironolactone.
Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra
2014-01-01
ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698
Structural insights into the multifunctional protein VP3 of birnaviruses.
Casañas, Arnau; Navarro, Aitor; Ferrer-Orta, Cristina; González, Dolores; Rodríguez, José F; Verdaguer, Núria
2008-01-01
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most harmful poultry diseases. The IBDV genome encodes five mature proteins; of these, the multifunctional protein VP3 plays an essential role in virus morphogenesis. This protein, which interacts with the structural protein VP2, with the double-stranded RNA genome, and with the virus-encoded, RNA-dependent RNA polymerase, VP1, is involved not only in the formation of the viral capsid, but also in the recruitment of VP1 into the capsid and in the encapsidation of the viral genome. Here, we report the X-ray structure of the central region of VP3, residues 92-220, consisting of two alpha-helical domains connected by a long and flexible hinge that are organized as a dimer. Unexpectedly, the overall fold of the second VP3 domain shows significant structural similarities with different transcription regulation factors.
Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao
2018-03-15
Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Dissecting the herpesvirus architecture by targeted proteolysis.
Daniel, Gina R; Pegg, Caitlin E; Smith, Gregory A
2018-06-13
Herpesvirus particles have a complex architecture consisting of an icosahedral capsid that is surrounded by a lipid envelope. Connecting these two components is a layer of tegument that consists of varying amounts of twenty or more proteins. The arrangement of proteins within the tegument cannot easily be assessed and instead is inferred from tegument interactions identified in reductionist models. To better understand the tegument architecture, we have developed an approach to probe capsid-tegument interactions of extracellular viral particles by encoding tobacco etch virus (TEV) protease sites in viral structural proteins, along with distinct fluorescent tags in capsid and tegument components. In this study, TEV sites were engineered within the pUL36 large tegument protein: a critical structural element that is anchored directly on the capsid surface. Purified pseudorabies virus extracellular particles were permeabilized and TEV protease was added to selectively cleave the exposed pUL36 backbone. Interactions with the capsid were assessed in situ by monitoring the fate of the fluorescent signals following cleavage. Although several regions of pUL36 are proposed to bind capsids, pUL36 was found stably anchored to the capsid exclusively at its carboxyl terminus. Two additional tegument proteins, pUL37 and pUS3, were tethered to the capsid via pUL36 whereas the pUL16, pUL47, pUL48, and pUL49 tegument proteins were not stably bound to the capsid. IMPORTANCE: Neuroinvasive alphaherpesviruses produce diseases of clinical and economic significance in humans and veterinary animals, but are predominantly associated with less serious recurrent disease. Like all viruses, herpesviruses assemble a metastable particle that selectively dismantles during initial infection. This process is made more complex by the presence of a tegument layer that resides between the capsid surface and envelope. Components of the tegument are essential for particle assembly and also serve as critical effectors that promote infection upon entry into cells. How this dynamic network of protein interactions is arranged within virions is largely unknown. We present a molecular approach to dissect the tegument and with it, begin to tease apart the protein interactions that underlie this complex layer of the virion architecture. Copyright © 2018 American Society for Microbiology.
Morita, Yutaka; Tsushima, Yuki; Yasui, Masanobu; Termoz, Ryoji; Ajioka, Junko; Takayama, Kozo
2002-09-01
Many kinds of rapidly disintegrating or oral disintegrating tablets (RDT) have been developed to improve the ease of tablet administration, especially for elderly and pediatric patients. In these cases, knowledge regarding disintegration behavior appears important with respect to the development of such a novel tablet. Ordinary disintegration testing, such as the Japanese Pharmacopoeia (JP) method, faces limitations with respect to the evaluation of rapid disintegration due to strong agitation. Therefore, we have developed a novel apparatus and method to determine the dissolution of the RDT. The novel device consists of a disintegrating bath and CCD camera interfaced with a personal computer equipped with motion capture and image analysis software. A newly developed RDT containing various types of binder was evaluated with this protocol. In this method, disintegration occurs in a mildly agitated medium, which allows differentiation of minor distinctions among RDTs of different formulations. Simultaneously, we were also able to detect qualitative information, i.e., morphological changes in the tablet during disintegration. This method is useful for the evaluation of the disintegration of RDT during pharmaceutical development, and also for quality control during production.
Evaluation of synthesized cross linked polyvinyl alcohol as potential disintegrant.
Patel, Ashok R; Vavia, Pradeep R
2010-01-01
The present study deals with evaluation of crosslinked poly vinyl alcohol (PVA) as a potential disintegrant. Crosslinking of PVA was carried out using glutaraldehyde as a crosslinker, in presence of acidic conditions. The crosslinking reaction was optimized for a) polymer: crosslinker ratio; b) temperature requirement and c) reaction duration. Certain physical parameters of the disintegrant (including sedimentation volume, hydration capacity, specific surface area and bulk and tap density) were determined and compared to the known disintegrants. Characterization was carried out using FT-IR, DSC, XRD, SEM and Photo microscopy studies. The developed excipient was also studied for acute toxicity in rats and found to be safe for oral use. Disintegration property of formed product was compared to known disintegrant (Ac-Di-Sol) and it was found to give better results. The disintegration mechanism of developed disintegrant was postulated based on results obtained from various physical evaluations including: Study of effect of disintegrant concentration, fillers, and hardness, mode of incorporation and method of granulation on disintegration activity. By changing the condition parameters of well known crosslinking reaction of PVA, we obtained a crosslinked product which had excellent disintegration activity, good flow and optimal tableting properties.
Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G
2016-11-30
Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.
Visualization of the herpes simplex virus portal in situ by cryo-electron tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardone, Giovanni; Winkler, Dennis C.; Trus, Benes L.
2007-05-10
Herpes simplex virus type 1 (HSV-1), the prototypical herpesvirus, has an icosahedral nucleocapsid surrounded by a proteinaceous tegument and a lipoprotein envelope. As in tailed bacteriophages, the icosahedral symmetry of the capsid is broken at one of the 12 vertices, which is occupied by a dodecameric ring of portal protein, UL6, instead of a pentamer of the capsid protein, UL19. The portal ring serves as a conduit for DNA entering and exiting the capsid. From a cryo-EM reconstruction of capsids immuno-gold-labeled with anti-UL6 antibodies, we confirmed that UL6 resides at a vertex. To visualize the portal in the context ofmore » the assembled capsid, we used cryo-electron tomography to determine the three-dimensional structures of individual A-capsids (empty, mature capsids). The similarity in size and overall shape of the portal and a UL19 pentamer - both are cylinders of {approx} 800 kDa - combined with residual noise in the tomograms, prevented us from identifying the portal vertices directly; however, this was accomplished by a computational classification procedure. Averaging the portal-containing subtomograms produced a structure that tallies with the isolated portal, as previously reconstructed by cryo-EM. The portal is mounted on the outer surface of the capsid floor layer, with its narrow end pointing outwards. This disposition differs from that of known phage portals in that the bulk of its mass lies outside, not inside, the floor. This distinction may be indicative of divergence at the level of portal-related functions other than its role as a DNA channel.« less
Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids
Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert
2013-01-01
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783
Wang, Xurong; Zhang, Fuxian; Su, Rui; Li, Xiaowu; Chen, Wenyuan; Chen, Qingxiu; Yang, Tao; Wang, Jiawei; Liu, Hongrong; Fang, Qin; Cheng, Lingpeng
2018-06-25
Most double-stranded RNA (dsRNA) viruses transcribe RNA plus strands within a common innermost capsid shell. This process requires coordinated efforts by RNA-dependent RNA polymerase (RdRp) together with other capsid proteins and genomic RNA. Here we report the near-atomic resolution structure of the RdRp protein VP2 in complex with its cofactor protein VP4 and genomic RNA within an aquareovirus capsid using 200-kV cryoelectron microscopy and symmetry-mismatch reconstruction. The structure of these capsid proteins enabled us to observe the elaborate nonicosahedral structure within the double-layered icosahedral capsid. Our structure shows that the RdRp complex is anchored at the inner surface of the capsid shell and interacts with genomic dsRNA and four of the five asymmetrically arranged N termini of the capsid shell proteins under the fivefold axis, implying roles for these N termini in virus assembly. The binding site of the RNA end at VP2 is different from the RNA cap binding site identified in the crystal structure of orthoreovirus RdRp λ3, although the structures of VP2 and λ3 are almost identical. A loop, which was thought to separate the RNA template and transcript, interacts with an apical domain of the capsid shell protein, suggesting a mechanism for regulating RdRp replication and transcription. A conserved nucleoside triphosphate binding site was localized in our RdRp cofactor protein VP4 structure, and interactions between the VP4 and the genomic RNA were identified.
Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokine, Andrei; Bowman, Valorie D.; Battisti, Anthony J.
2007-10-25
The bacteriophage T4 capsid contains two accessory surface proteins, the small outer capsid protein (Soc, 870 copies) and the highly antigenic outer capsid protein (Hoc, 155 copies). As these are dispensable for capsid formation, they can be used for displaying proteins and macromolecular complexes on the T4 capsid surface. Anthrax toxin components were attached to the T4 capsid as a fusion protein of the N-terminal domain of the anthrax lethal factor (LFn) with Soc. The LFn-Soc fusion protein was complexed in vitro with Hoc{sup -}Soc{sup -}T4 phage. Subsequently, cleaved anthrax protective antigen heptamers (PA63){sub 7} were attached to the exposedmore » LFn domains. A cryo-electron microscopy study of the decorated T4 particles shows the complex of PA63 heptamers with LFn-Soc on the phage surface. Although the cryo-electron microscopy reconstruction is unable to differentiate on its own between different proposed models of the anthrax toxin, the density is consistent with a model that had predicted the orientation and position of three LFn molecules bound to one PA63 heptamer.« less
Effect of capsid confinement on the chromatin organization of the SV40 minichromosome
Saper, Gadiel; Kler, Stanislav; Asor, Roi; Oppenheim, Ariella; Raviv, Uri; Harries, Daniel
2013-01-01
Using small-angle X-ray scattering, we determined the three-dimensional packing architecture of the minichromosome confined within the SV40 virus. In solution, the minichromosome, composed of closed circular dsDNA complexed in nucleosomes, was shown to be structurally similar to cellular chromatin. In contrast, we find a unique organization of the nanometrically encapsidated chromatin, whereby minichromosomal density is somewhat higher at the center of the capsid and decreases towards the walls. This organization is in excellent agreement with a coarse-grained computer model, accounting for tethered nucleosomal interactions under viral capsid confinement. With analogy to confined liquid crystals, but contrary to the solenoid structure of cellular chromatin, our simulations indicate that the nucleosomes within the capsid lack orientational order. Nucleosomes in the layer adjacent to the capsid wall, however, align with the boundary, thereby inducing a ‘molten droplet’ state of the chromatin. These findings indicate that nucleosomal interactions suffice to predict the genome organization in polyomavirus capsids and underscore the adaptable nature of the eukaryotic chromatin architecture to nanoscale confinement. PMID:23258701
Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site
NASA Astrophysics Data System (ADS)
Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun
2016-03-01
The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.
The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.
2008-07-05
The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 formore » capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.« less
Membrane-mediated interaction between retroviral capsids
NASA Astrophysics Data System (ADS)
Zhang, Rui; Nguyen, Toan
2012-02-01
A retrovirus is an RNA virus that is replicated through a unique strategy of reverse transcription. Unlike regular enveloped viruses which are assembled inside the host cells, the assembly of retroviral capsids happens right on the cell membrane. During the assembly process, the partially formed capsids deform the membrane, giving rise to an elastic energy. When two such partial capsids approach each other, this elastic energy changes. Or in other words, the two partial capsids interact with each other via the membrane. This membrane mediated interaction between partial capsids plays an important role in the kinetics of the assembly process. In this work, this membrane mediated interaction is calculated both analytically and numerically. It is worth noting that the diferential equation determining the membrane shape in general nonlinear and cannot be solved analytically,except in the linear region of small deformations. And it is exactly the nonlinear regime that is important for the assembly kinetics of retroviruses as it provides a large energy barrier. The theory developed here is applicable to more generic cases of membrane mediated interactions between two membrane-embedded proteins.
Effect of capsid confinement on the chromatin organization of the SV40 minichromosome.
Saper, Gadiel; Kler, Stanislav; Asor, Roi; Oppenheim, Ariella; Raviv, Uri; Harries, Daniel
2013-02-01
Using small-angle X-ray scattering, we determined the three-dimensional packing architecture of the minichromosome confined within the SV40 virus. In solution, the minichromosome, composed of closed circular dsDNA complexed in nucleosomes, was shown to be structurally similar to cellular chromatin. In contrast, we find a unique organization of the nanometrically encapsidated chromatin, whereby minichromosomal density is somewhat higher at the center of the capsid and decreases towards the walls. This organization is in excellent agreement with a coarse-grained computer model, accounting for tethered nucleosomal interactions under viral capsid confinement. With analogy to confined liquid crystals, but contrary to the solenoid structure of cellular chromatin, our simulations indicate that the nucleosomes within the capsid lack orientational order. Nucleosomes in the layer adjacent to the capsid wall, however, align with the boundary, thereby inducing a 'molten droplet' state of the chromatin. These findings indicate that nucleosomal interactions suffice to predict the genome organization in polyomavirus capsids and underscore the adaptable nature of the eukaryotic chromatin architecture to nanoscale confinement.
X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability
Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...
2015-06-04
The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less
Iwao, Yasunori; Tanaka, Shoko; Uchimoto, Takeaki; Noguchi, Shuji; Itai, Shigeru
2013-05-01
With the aim of directly predicting the functionality and mechanism of disintegrants during the disintegration and dissolution of tablets, we investigated an analysis method based on available surface area, which is the surface area of a drug in a formulation in direct contact with the external solvent during dissolution. We evaluated the following disintegrants in this study: sodium starch glycolate (Glycolys), crospovidone (Kollidon CL), carboxymethylcellulose calcium (CMC-Ca), low-substituted hydroxypropylcellulose (L-HPC), and croscarmellose sodium (Ac-Di-Sol). When disintegrant was added to a 50% ethenzamide tablet formulation, an increase in the dissolution rate dependent on disintegrant concentration was observed, according to the type of disintegrant. In addition, the available surface area also differed between disintegrants. For Glycolys, CMC-Ca, and Ac-Di-Sol, a rapid increase in available surface area and a large increase in maximum available surface area (Smax) were observed due to high swellability and wicking, even when the disintegrant concentration was only 1.0%. In contrast, for Kollidon CL and LH-21, a gradual increase in available surface area was observed, depending on the disintegrant concentration. To evaluate the disintegrant ability, Δtmax and ΔSmax were calculated by subtracting peak time (tmax) at 5.0% from that at 1.0% and subtracting Smax at 1.0% from that at 5.0%, respectively, and it was found that the water absorption ratio had strong negative correlations with Δtmax and ΔSmax. Therefore, this study demonstrates that analysis of only available surface area and parameters thereby obtained can directly provide useful information, especially about the disintegration ability of disintegrants. Copyright © 2013 Elsevier B.V. All rights reserved.
Lu, Wuxun; Salzwedel, Karl; Wang, Dan; Chakravarty, Suvobrata; Freed, Eric O; Wild, Carl T; Li, Feng
2011-07-01
3-O-(3',3'-Dimethylsuccinyl) betulinic acid (DSB), also known as PA-457, bevirimat (BVM), or MPC-4326, is a novel HIV-1 maturation inhibitor. Unlike protease inhibitors, BVM blocks the cleavage of the Gag capsid precursor (CA-SP1) to mature capsid (CA) protein, resulting in the release of immature, noninfectious viral particles. Despite the novel mechanism of action and initial progress made in small-scale clinical trials, further development of bevirimat has encountered unexpected challenges, because patients whose viruses contain genetic polymorphisms in the Gag SP1 (positions 6 to 8) protein do not generally respond well to BVM treatment. To better define the role of amino acid residues in the HIV-1 Gag SP1 protein that are involved in natural polymorphisms to confer resistance to the HIV-1 maturation inhibitor BVM, a series of Gag SP1 chimeras involving BVM-sensitive (subtype B) and BVM-resistant (subtype C) viruses was generated and characterized for sensitivity to BVM. We show that SP1 residue 7 of the Gag protein is a primary determinant of SP1 polymorphism-associated drug resistance to BVM.
Persistent poliovirus infection of human fetal brain cells.
Pavio, N; Buc-Caron, M H; Colbère-Garapin, F
1996-09-01
It has been suggested that poliovirus (PV), the causative agent of poliomyelitis, could persist in surviving patients. We have previously shown that PV can persistently infect some human cell lines in vitro, particularly neuroblastoma cell lines. We report here an ex vivo model in which PV can persistently infect primary cultures of human fetal brain cells. Two mutations involving capsid residues 142 of VP2 and 95 of VP1 were repeatedly selected during the persistent infections. These residues are located in capsid regions known to be involved in interactions between PV and its receptor. During the first week after infection, viral antigens were found in cells of both the neuronal and glial lineages. In contrast, 2 weeks after infection, viral antigens were detected almost exclusively in cells of the neuronal lineage. They were detected predominantly in cells expressing a marker of early commitment to the neuronal lineage, MAP-5, particularly in neuroblasts. Viral antigens were also found in immature progenitors expressing a neuroepithelium marker, nestin, and in cells expressing a marker of postmitotic neurons, MAP-2. The presence of viral antigens in postmitotic neurons suggests that PV can persist in neurons of patients who have survived poliomyelitis.
Dansereau, Richard J; Crail, Debbie J; Perkins, Alan C
2009-02-01
Bisphosphonates as a class have the potential to cause upper gastrointestinal irritation. Although the generic alendronate sodium tablets are bioequivalent to the branded product, a potential concern is that the pharmaceutical attributes of the various generic formulations my affect the potential for local irritation and tolerability. The in vitro disintegration times were determined using the method described in the US Pharmacopeia 30 (USP 30). The disintegration of three generic alendronate sodium tablets 70 mg available in the United States was compared to that of the branded product. The mean disintegration times of the generic alendronate sodium tablets ranged from 9 to 10 s for the Barr lots to 108 s for the Watson lot. The disintegration time of the branded product (Fosamax) was 53 s. The three Barr lots and one Teva lot had rapid disintegration times which were similar to the disintegration standards (< 30 s) for orally disintegrating tablets. Since there is no established disintegration time for alendronate sodium tablets there can be no assurance that the generic tablets are equivalent to the branded product in terms of esophageal exposure. However, the in vitro disintegration times have not been correlated with in vivo disintegration performance. Copies of generic alendronate sodium tablets are approved based on the results of single-dose bioavailability studies in healthy subjects and this is not considered adequate to establish similar disintegration characteristics.
The influence of granulation on super disintegrant performance.
Zhao, Na; Augsburger, Larry L
2006-02-01
The purpose of this study is to identify the causes of efficiency loss of super disintegrants following granulation or reworking. Two processes, precompression and prewetting, were proposed to simulate the processes during dry and wet granulation, respectively. The disintegration efficiency of the resulting disintegrant granules was tested in model formulations composed of dicalcium phosphate and lactose with the unprocessed disintegrants as controls. No significant difference was shown in the intrinsic swelling and the water uptake abilities of all super disintegrants following dry granulation. However, a significant decrease was observed for both Primojel and Polyplasdone XL10 in the rate of water being absorbed into the tablet matrix following wet granulation, but not for Ac-Di-Sol. United States Pharmacopeia (USP) disintegration testing without disc revealed a significant increase in disintegration time for tablets formulated with dry granulated Primojel and Polyplasdone XL10 and all wet granulated disintegrants. The increase in particle size following granulation appears to be the cause of the loss in disintegration efficiency. In conclusion, Ac-Di-Sol is less affected by both precompression and prewetting. The efficiency of Primojel and Polyplasdone XL10 is highly dependent on their particle size. Descreasing the particle size tends to increase their efficiency. Due to the size increase following granulation, a higher addition level of super disintegrant is required to ensure fast and uniform disintegration of tablets prepared by granulation.
Kuznetsov, Yuri G; Klose, Thomas; Rossmann, Michael; McPherson, Alexander
2013-10-01
Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side.
Kuznetsov, Yuri G.; Klose, Thomas; Rossmann, Michael
2013-01-01
Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side. PMID:23926353
2017-01-01
Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to function as novel therapeutic agents against human noroviruses. PMID:29095961
Chen, Yiyang; Liu, Baoyuan; Sun, Yani; Li, Huixia; Du, Taofeng; Nan, Yuchen; Hiscox, Julian A; Zhou, En-Min; Zhao, Qin
2018-07-01
Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625 DFCP 628 , 458 PSRPF 462 , and 407 EPTV 410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design. IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts. Copyright © 2018 American Society for Microbiology.
Robinson, Bridget A.; Reed, Jonathan C.; Geary, Clair D.; Swain, J. Victor
2014-01-01
ABSTRACT During HIV-1 assembly, Gag polypeptides target to the plasma membrane, where they multimerize to form immature capsids that undergo budding and maturation. Previous mutational analyses identified residues within the Gag matrix (MA) and capsid (CA) domains that are required for immature capsid assembly, and structural studies showed that these residues are clustered on four exposed surfaces in Gag. Exactly when and where the three critical surfaces in CA function during assembly are not known. Here, we analyzed how mutations in these four critical surfaces affect the formation and stability of assembly intermediates in cells expressing the HIV-1 provirus. The resulting temporospatial map reveals that critical MA residues act during membrane targeting, residues in the C-terminal CA subdomain (CA-CTD) dimer interface are needed for the stability of the first membrane-bound assembly intermediate, CA-CTD base residues are necessary for progression past the first membrane-bound intermediate, and residues in the N-terminal CA subdomain (CA-NTD) stabilize the last membrane-bound intermediate. Importantly, we found that all four critical surfaces act while Gag is associated with the cellular facilitators of assembly ABCE1 and DDX6. When correlated with existing structural data, our findings suggest the following model: Gag dimerizes via the CA-CTD dimer interface just before or during membrane targeting, individual CA-CTD hexamers form soon after membrane targeting, and the CA-NTD hexameric lattice forms just prior to capsid release. This model adds an important new dimension to current structural models by proposing the potential order in which key contacts within the immature capsid lattice are made during assembly in cells. IMPORTANCE While much is known about the structure of the completed HIV-1 immature capsid and domains of its component Gag proteins, less is known about the sequence of events leading to formation of the HIV-1 immature capsid. Here we used biochemical and ultrastructural analyses to generate a temporospatial map showing the precise order in which four critical surfaces in Gag act during immature capsid formation in provirus-expressing cells. Because three of these surfaces make important contacts in the hexameric lattices that are found in the completed immature capsid, these data allow us to propose a model for the sequence of events leading to formation of the hexameric lattices. By providing a dynamic view of when and where critical Gag-Gag contacts form during the assembly process and how those contacts function in the nascent capsid, our study provides novel insights into how an immature capsid is built in infected cells. PMID:24623418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivachandra, Sathish B.; Rao, Mangala; Janosi, Laszlo
2006-02-05
An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc {sup -} phage particles. Binding was specific, stable, and of high affinity. Thismore » defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.« less
Ahuja, Munish; Kumar, Ashok; Yadav, Parvinder; Singh, Kuldeep
2013-06-01
In the present study Mimosa pudica seed mucilage was isolated, characterized and evaluated as tablet binder and disintegrant. Several properties of mucilage like high swelling index and gelling nature prompted us to explore its applications as disintegrating and binding agent. Disintegrant properties were evaluated by formulating directly compressed hydrochlorothiazide tablets containing 1%-10% (w/w) of seed mucilage as disintegrant and compared with the standard disintegrants. The disintegration time of mucilage containing tablets was found to be in the order of 3%>1%>5%>7.5%>10%. On comparative evaluation with standard disintegrants, it was observed that the order of disintegration of tablets was Ac-Di-Sol
Xu, Xiaoming; Gupta, Abhay; Sayeed, Vilayat A; Khan, Mansoor A
2013-05-01
Various adverse events including esophagus irritations have been reported with the use of alendronate tablets, likely attributed to the rapid tablet disintegration in the mouth or esophagus. Accordingly, the disintegration of six alendronate tablet drug products was studied using a newly developed testing device equipped with in-line sensors, in addition to the official compendial procedure for measuring the disintegration time. The in-line sensors were used to monitor the particle count and solution pH change to assess the onset and duration of disintegration. A relatively large variation was observed in the disintegration time of the tested drug products using the compendial method. The data collected using the in-line sensors suggested that all tested drug products exhibited almost instantaneous onset of disintegration, under 2 s, and a sharp drop in solution pH. The drop in pH was slower for tablets with slower disintegration. The in-house prepared alendronate test tablets also showed similar trends suggesting rapid solubilization of the drug contributed to the fast tablet disintegration. This research highlights the usefulness of the newly developed in-line analytical method in combination with the compendial method in providing a better understanding of the disintegration and the accompanying drug solubilization processes for fast disintegrating tablet drug products. Copyright © 2013 Wiley Periodicals, Inc.
Modes of Disintegration of Solid Foods in Simulated Gastric Environment
Kong, Fanbin
2009-01-01
A model stomach system was used to investigate disintegration of various foods in simulated gastric environment. Food disintegration modes and typical disintegration profiles are summarized in this paper. Mechanisms contributing to the disintegration kinetics of different foods were investigated as related to acidity, temperature, and enzymatic effect on the texture and changes in microstructure. Food disintegration was dominated by either fragmentation or erosion, depending on the physical forces acting on food and the cohesive force within the food matrix. The internal cohesive forces changed during digestion as a result of water penetration and acidic and enzymatic hydrolysis. When erosion was dominant, the disintegration data (weight retention vs. disintegration time) may be expressed with exponential, sigmoidal, and delayed-sigmoidal profiles. The different profiles are the result of competition among the rates of water absorption, texture softening, and erosion. A linear-exponential equation was used to describe the different disintegration curves with good fit. Acidity and temperature of gastric juice showed a synergistic effect on carrot softening, while pepsin was the key factor in disintegrating high-protein foods. A study of the change of carrot microstructure during digestion indicated that degradation of the pectin and cell wall was responsible for texture softening that contributed to the sigmoidal profile of carrot disintegration. PMID:20401314
Disintegration of Nannochloropsis sp. cells in an improved turbine bead mill.
Pan, Zhidong; Huang, Ying; Wang, Yanmin; Wu, Zhiwei
2017-12-01
The Nannochloropsis sp. cells in aqueous solution were disintegrated in an improved bead mill with turbine agitator. The disintegration rates of cell samples disrupted under various operating parameters (i.e., circumferential speed, bead size, disintegration time, and cell concentration) were analyzed. An experimental strategy to optimize the parameters affecting the cell disintegration process was proposed. The results show that Nannochloropsis sp. cells can be effectively disintegrated in the turbine stirred bead mill under the optimum condition (i.e., circumferential speed of 2.3m/s, concentration of 15vol.%, disintegration time of 40min and bead size of 0.3-0.4mm). The disintegration mechanism was discussed via the selection and breakage functions from population balance modelling. It is revealed that the impact and compression effects of stirring beads are more effective for the disruption of coarser fraction of cells, and the shear effect dominates the production of finer fractions of disintegrated cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert
2012-09-17
The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pHmore » 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.« less
Valaviciute, Monika; Norkiene, Milda; Goda, Karolis; Slibinskas, Rimantas; Gedvilaite, Alma
2016-07-01
A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis.
Bubeck, Doryen; Filman, David J.; Cheng, Naiqian; Steven, Alasdair C.; Hogle, James M.; Belnap, David M.
2005-01-01
Poliovirus provides a well-characterized system for understanding how nonenveloped viruses enter and infect cells. Upon binding its receptor, poliovirus undergoes an irreversible conformational change to the 135S cell entry intermediate. This transition involves shifts of the capsid protein β barrels, accompanied by the externalization of VP4 and the N terminus of VP1. Both polypeptides associate with membranes and are postulated to facilitate entry by forming a translocation pore for the viral RNA. We have calculated cryo-electron microscopic reconstructions of 135S particles that permit accurate placement of the β barrels, loops, and terminal extensions of the capsid proteins. The reconstructions and resulting models indicate that each N terminus of VP1 exits the capsid though an opening in the interface between VP1 and VP3 at the base of the canyon that surrounds the fivefold axis. Comparison with reconstructions of 135S particles in which the first 31 residues of VP1 were proteolytically removed revealed that the externalized N terminus is located near the tips of propeller-like features surrounding the threefold axes rather than at the fivefold axes, as had been proposed in previous models. These observations have forced a reexamination of current models for the role of the 135S particle in transmembrane pore formation and suggest testable alternatives. PMID:15919927
Marr, Matthew; D’Abramo, Anthony; Agbandje-McKenna, Mavis; Cotmore, Susan; Tattersall, Peter
2018-01-01
Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1) showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized. PMID:29385689
Soldatova, Irina; Prilepskaja, Terezie; Abrahamyan, Levon; Forstová, Jitka; Huérfano, Sandra
2018-03-31
The mechanism used by mouse polyomavirus (MPyV) overcomes the crowded cytosol to reach the nucleus has not been fully elucidated. Here, we investigated the involvement of importin α/β1 mediated transport in the delivery of MPyV genomes into the nucleus. Interactions of the virus with importin β1 were studied by co-immunoprecipitation and proximity ligation assay. For infectivity and nucleus delivery assays, the virus and its capsid proteins mutated in the nuclear localization signals (NLSs) were prepared and produced. We found that at early times post infection, virions bound importin β1 in a time dependent manner with a peak of interactions at 6 h post infection. Mutation analysis revealed that only when the NLSs of both VP1 and VP2/3 were disrupted, virus did not bind efficiently to importin β1 and its infectivity remarkably decreased (by 80%). Nuclear targeting of capsid proteins was improved when VP1 and VP2 were co-expressed. VP1 and VP2 were effectively delivered into the nucleus, even when one of the NLS, either VP1 or VP2, was disrupted. Altogether, our results showed that MPyV virions can use VP1 and/or VP2/VP3 NLSs in concert or individually to bind importins to deliver their genomes into the cell nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesada, Odayme; Gurda, Brittney; Govindasamy, Lakshmanan
2007-12-01
Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids have been produced which diffract X-rays to ∼3.0 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids diffract X-rays to ∼3.0 Å resolution. The crystals belong to the rhombohedral space group R3, with unit-cell parameters a = 252.4, c = 591.2 Å in the hexagonal setting. The diffraction data were processed and reduced to an overall completeness of 79.0% and an R{sub merge} of 12.0%. There are three viral capsids in the unit cell. The icosahedral threefold axis is coincident with the crystallographic threefold axis, resulting in one third of amore » capsid (20 monomers) per crystallographic asymmetric unit. The orientation of the viral capsid has been determined by rotation-function searches and is positioned at (0, 0, 0) by packing considerations.« less
Investigating the thermal dissociation of viral capsid by lattice model
NASA Astrophysics Data System (ADS)
Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume
2017-11-01
The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.
Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface
NASA Astrophysics Data System (ADS)
Abramov, Gili; Morag, Omry; Goldbourt, Amir
2015-04-01
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.
A Novel Disintegration Tester for Solid Dosage Forms Enabling Adjustable Hydrodynamics.
Kindgen, Sarah; Rach, Regine; Nawroth, Thomas; Abrahamsson, Bertil; Langguth, Peter
2016-08-01
A modified in vitro disintegration test device was designed that enables the investigation of the influence of hydrodynamic conditions on disintegration of solid oral dosage forms. The device represents an improved derivative of the compendial PhEur/USP disintegration test device. By the application of a computerized numerical control, a variety of physiologically relevant moving velocities and profiles can be applied. With the help of computational fluid dynamics, the hydrodynamic and mechanical forces present in the probe chamber were characterized for a variety of device moving speeds. Furthermore, a proof of concept study aimed at the investigation of the influence of hydrodynamic conditions on disintegration times of immediate release tablets. The experiments demonstrated the relevance of hydrodynamics for tablet disintegration, especially in media simulating the fasted state. Disintegration times increased with decreasing moving velocity. A correlation between experimentally determined disintegration times and computational fluid dynamics predicted shear stress on tablet surface was established. In conclusion, the modified disintegration test device is a valuable tool for biorelevant in vitro disintegration testing of solid oral dosage forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Markl, Daniel; Sauerwein, Johanna; Goodwin, Daniel J; van den Ban, Sander; Zeitler, J Axel
2017-05-01
The aim of this study was to establish the suitability of terahertz (THz) transmission measurements to accurately measure and predict the critical quality attributes of disintegration time and the amount of active pharmaceutical ingredient (API) dissolved after 15, 20 and 25 min for commercial tablets processed at production scale. Samples of 18 batches of biconvex tablets from a production-scale design of experiments study into exploring the design space of a commercial tablet manufacturing process were used. The tablet production involved the process steps of high-shear wet granulation, fluid-bed drying and subsequent compaction. The 18 batches were produced using a 4 factor split plot design to study the effects of process changes on the disintegration time. Non-destructive and contactless terahertz transmission measurements of the whole tablets without prior sample preparation were performed to measure the effective refractive index and absorption coefficient of 6 tablets per batch. The disintegration time (R 2 = 0.86) and API dissolved after 15 min (R 2 = 0.96) linearly correlates with the effective refractive index, n eff , measured at terahertz frequencies. In contrast, no such correlation could be established from conventional hardness measurements. The magnitude of n eff represents the optical density of the sample and thus it reflects both changes in tablet porosity as well as granule density. For the absorption coefficient, α eff , we observed a better correlation with dissolution after 20 min (R 2 = 0.96) and a weaker correlation with disintegration (R 2 = 0.83) compared to n eff . The measurements of n eff and α eff provide promising predictors for the disintegration and dissolution time of tablets. The high penetration power of terahertz radiation makes it possible to sample a significant volume proportion of a tablet without any prior sample preparation. Together with the short measurement time (seconds), the potential to measure content uniformity and the fact that the method requires no chemometric models this technology shows clear promise to be established as a process analyser to non-destructively predict critical quality attributes of tablets.
ERIC Educational Resources Information Center
Beduna, Kerry; Perrone-McGovern, Kristin M.
2016-01-01
This study focuses on intellectual and emotional overexcitabilities and their relationship to emotional intelligence and subjective well-being. Dabrowski's (1964) theory of positive disintegration (TPD), which proposes that optimum personality development involves the breaking down of current psychological structures, in which individuals…
Antimicrobial peptide capsids of de novo design.
De Santis, Emiliana; Alkassem, Hasan; Lamarre, Baptiste; Faruqui, Nilofar; Bella, Angelo; Noble, James E; Micale, Nicola; Ray, Santanu; Burns, Jonathan R; Yon, Alexander R; Hoogenboom, Bart W; Ryadnov, Maxim G
2017-12-22
The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.
Competing Hydrophobic and Screened-Coulomb Interactions in Hepatitis B Virus Capsid Assembly
Kegel, Willem K.; Schoot, Paul van der
2004-01-01
Recent experiments show that, in the range from ∼15 to 45°C, an increase in the temperature promotes the spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid. PMID:15189887
Swelling and Softening of the Cowpea Chlorotic Mottle Virus in Response to pH Shifts
Wilts, Bodo D.; Schaap, Iwan A.T.; Schmidt, Christoph F.
2015-01-01
Cowpea chlorotic mottle virus (CCMV) forms highly elastic icosahedral protein capsids that undergo a characteristic swelling transition when the pH is raised from 5 to 7. Here, we performed nano-indentation experiments using an atomic force microscope to track capsid swelling and measure the shells’ Young’s modulus at the same time. When we chelated Ca2+ ions and raised the pH, we observed a gradual swelling of the RNA-filled capsids accompanied by a softening of the shell. Control experiments with empty wild-type virus and a salt-stable mutant revealed that the softening was not strictly coupled to the swelling of the protein shells. Our data suggest that a pH increase and Ca2+ chelation lead primarily to a loosening of contacts within the protein shell, resulting in a softening of the capsid. This appears to render the shell metastable and make swelling possible when repulsive forces among the capsid proteins become large enough, which is known to be followed by capsid disassembly at even higher pH. Thus, softening and swelling are likely to play a role during inoculation. PMID:25992732
Computational mechanics of viral capsids.
Gibbons, Melissa M; Perotti, Luigi E; Klug, William S
2015-01-01
Viral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent years, a broader approach to study the mechanics of viral capsids has leveraged the theoretical tools proper of continuum mechanics. Even though the theory of continuum elasticity is most commonly used to study deformable bodies at larger macroscopic length scales, it has been shown that this very rich theoretical field can still offer useful insights into the mechanics of viral structures at the nanometer scale. Here we show the construction of viral capsid continuum mechanics models starting from different forms of experimental data. We will discuss the kinematics assumptions, the issue of the reference configuration, the material constitutive laws, and the numerical discretization necessary to construct a complete Finite Element capsid mechanical model. Some examples in the second part of the chapter will show the predictive capabilities of the constructed models and underline useful practical aspects related to efficiency and accuracy. We conclude each example by collecting several key findings discovered by simulating AFM indentation experiments using the constructed numerical models.
A Novel System for Visualizing Alphavirus Assembly
Steel, J. Jordan; Geiss, Brian J.
2015-01-01
Alphaviruses are small, enveloped RNA viruses that form infectious particles by budding through the cellular plasma membrane. To help visualize and understand the intracellular assembly of alphavirus virions we have developed a bimolecular fluorescence complementation-based system (BiFC) that allows visualization of capsid and E2 subcellular localization and association in live cells. In this system, N- or C-terminal Venus fluorescent protein fragments (VN- and VC-) are fused to the N-terminus of the capsid protein on the Sindbis virus structural polyprotein, which results in the formation of fluorescent capsid-like structures in the absence of viral genomes that associate with the plasma membrane of cells. Mutation of the capsid autoprotease active site blocks structural polyprotein processing and alters the subcellular distribution of capsid fluorescence. Incorporating mCherry into the extracellular domain of the E2 glycoprotein allows the visualization of E2 glycoprotein localization and showed a close association of the E2 and capsid proteins at the plasma membrane as expected. These results suggest that this system is a useful new tool to study alphavirus assembly in live cells and may be useful in identifying molecules that inhibit alphavirus virion formation. PMID:26122073
A molecular thermodynamic model for the stability of hepatitis B capsids
NASA Astrophysics Data System (ADS)
Kim, Jehoon; Wu, Jianzhong
2014-06-01
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.
Dansereau, Richard J; Crail, Debbie J; Perkins, Alan C
2008-04-01
The aim of this study was to evaluate the in vitro disintegration and dissolution of 26 alendronic acid tablets (70 mg) on the market in Canada, Germany, the Netherlands, and the United Kingdom compared to the branded product (Fosamax). The disintegration and dissolution times were determined using the methods described in the United States Pharmacopeia 30 (USP 30). The disintegration of four orally disintegrating tablets (non-bisphosphonates) and branded film-coated risedronate sodium tablets were included for comparison. The mean disintegration times of the alendronic acid tablets ranged from 14 s for Pharmachemie (Netherlands) to 342 s (5.7 min) for Betapharm (Germany). The mean disintegration time of the branded product tablets ranged from 43 to 78 s. Six of the 26 companies market alendronic acid tablets with very rapid disintegration times which are similar to those of orally disintegrating tablets (non-bisphosphonates). The alendronic acid tablets with very rapid mean disintegration times are as follows: Pharmachemie (Netherlands), 14 s; Novopharm (Canada), 13-24 s; GRY-Pharma (Germany), 21 s; Juta Pharma (Germany), 30 s; APS/Teva (United Kingdom), 26 and 37 s; and Teva (UK), 14-29 s. Since there is no established disintegration time for alendronic acid tablets there can be no assurance that the copy tablets are equivalent to the branded product in terms of esophageal drug exposure. However, the in vitro disintegration times have not been correlated with in vivo disintegration and performance. The dissolution of all the bisphosphonate tablets was rapid with greater than 80% dissolved in 15 min and all products conformed to the USP 30 specification. The dissolution of all alendronic acid tablets was rapid and complete and conformed to the established USP 30 specifications which should ensure adequate drug absorption from the copy products. However, copies of alendronic acid tablets are approved based on the results of single-dose bioavailability studies in healthy subjects and this is not adequate to establish similar disintegration characteristics.
Walker, A D; Adachi, J D
2011-09-01
The aim of this study was to evaluate the in vitro disintegration of the five newly available Canadian generic risedronate 35 mg tablets compared to the innovator (branded) product, ACTONEL * *ACTONEL is a registered trade name of Warner Chilcott Company, LLC. (risedronate sodium) 35 mg. Tablets were inspected for colour and appearance. Disintegration times were determined using United States Pharmacopeia 33 (USP33-NF 28) methods. Disintegration onset time was also evaluated. The mean disintegration onset time values for the generic risedronate 35 mg tablets ranged from 2 to 29 seconds, and the mean disintegration completion times ranged from 81 to 260 seconds. The mean disintegration onset and completion time values for the ACTONEL 35 mg tablets were 23 and 43 seconds respectively. Four out of the five generic tablets tested had shorter disintegration onset times than the branded product; two of the generic tablet products had very fast disintegration onset times i.e. 2-3 seconds. Disintegration completion time for all five generic products tested was longer than that observed for the branded product; two generic products had disintegration completion time values five to six times longer than the branded product. Differences in the in vitro disintegration times were observed between the generic risedronate 35 mg tablets commercially available in Canada and the branded product, ACTONEL. The rapid disintegration onset times of two generic products may be important as this could increase the possibility of drug exposure in both the mouth and the esophagus during swallowing, resulting in unwanted localized irritation. However, it should be noted that an in vitro/in vivo correlation has not been established. Until such studies are completed it may be important to be aware of such in vitro disintegration differences when evaluating patients with newly presenting upper gastrointestinal complaints upon being switched from the branded product to generic formulations.
Theory of positive disintegration as a model of adolescent development.
Laycraft, Krystyna
2011-01-01
This article introduces a conceptual model of the adolescent development based on the theory of positive disintegration combined with theory of self-organization. Dabrowski's theory of positive disintegration, which was created almost a half century ago, still attracts psychologists' and educators' attention, and is extensively applied into studies of gifted and talented people. The positive disintegration is the mental development described by the process of transition from lower to higher levels of mental life and stimulated by tension, inner conflict, and anxiety. This process can be modeled by a sequence of patterns of organization (attractors) as a developmental potential (a control parameter) changes. Three levels of disintegration (unilevel disintegration, spontaneous multilevel disintegration, and organized multilevel disintegration) are analyzed in detail and it is proposed that they represent behaviour of early, middle and late periods of adolescence. In the discussion, recent research on the adolescent brain development is included.
Lundberg, Lindsay; Pinkham, Chelsea; de la Fuente, Cynthia; Brahms, Ashwini; Shafagati, Nazly; Wagstaff, Kylie M; Jans, David A; Tamir, Sharon; Kehn-Hall, Kylene
2016-11-01
The capsid structural protein of the New World alphavirus, Venezuelan equine encephalitis virus (VEEV), interacts with the host nuclear transport proteins importin α/β1 and CRM1. Novel selective inhibitor of nuclear export (SINE) compounds, KPT-185, KPT-335 (verdinexor), and KPT-350, target the host's primary nuclear export protein, CRM1, in a manner similar to the archetypical inhibitor Leptomycin B. One major limitation of Leptomycin B is its irreversible binding to CRM1; which SINE compounds alleviate because they are slowly reversible. Chemically inhibiting CRM1 with these compounds enhanced capsid localization to the nucleus compared to the inactive compound KPT-301, as indicated by immunofluorescent confocal microscopy. Differences in extracellular versus intracellular viral RNA, as well as decreased capsid in cell free supernatants, indicated the inhibitors affected viral assembly, which led to a decrease in viral titers. The decrease in viral replication was confirmed using a luciferase-tagged virus and through plaque assays. SINE compounds had no effect on VEEV TC83_Cm, which encodes a mutated form of capsid that is unable to enter the nucleus. Serially passaging VEEV in the presence of KPT-185 resulted in mutations within the nuclear localization and nuclear export signals of capsid. Finally, SINE compound treatment also reduced the viral titers of the related eastern and western equine encephalitis viruses, suggesting that CRM1 maintains a common interaction with capsid proteins across the New World alphavirus genus.
Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression
Liu, Jinny L.; Dixit, Aparna Banerjee; Robertson, Kelly L.; Qiao, Eric; Black, Lindsay W.
2014-01-01
Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids. The capsid-targeting sequence (CTS) directs virtually any protein into the procapsid. Procapsids are assembled with specific CTS-directed exogenous proteins that are encapsidated before the DNA. The capsid also can display on its surface high-affinity eukaryotic cell-binding peptides or proteins that are in fusion with small outer capsid and head outer capsid surface-decoration proteins that can be added in vivo or in vitro. In this study, we demonstrate that the site-specific recombinase cyclic recombination (Cre) targeted into the procapsid is enzymatically active within the procapsid and recircularizes linear plasmid DNA containing two terminal loxP recognition sites when packaged in vitro. mCherry expression driven by a cytomegalovirus promoter in the capsid containing Cre-circularized DNA is enhanced over linear DNA, as shown in recipient eukaryotic cells. The efficient and specific packaging into capsids and the unpackaging of both DNA and protein with release of the enzymatically altered protein–DNA complexes from the nanoparticles into cells have potential in numerous downstream drug and gene therapeutic applications. PMID:25161284
Zhang, Da-wei; Zhao, Ming-ming; He, Hong-qiu; Guo, Shun-xing
2013-09-15
HIV-1 integrase, an essential enzyme for retroviral replication, is a validated target for anti-HIV therapy development. The catalytic core domain of integrase (IN-CCD) is capable of catalyzing disintegration reaction. In this work, a hairpin-shaped disintegration substrate was designed and validated by enzyme-linked immunosorbent assay; a molecular beacon-based assay was developed for disintegration reaction of IN-CCD. Results showed that the disintegration substrate could be recognized and catalyzed by IN-CCD, and the disintegration reaction can be monitored according to the increase of fluorescent signal. The assay can be applied to real-time detection of disintegration with advantages of simplicity, high sensitivity, and excellent specificity. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield.
Shehu, Muhammad Sani; Abdul Manan, Zainuddin; Alwi, Sharifah Rafidah Wan
2012-06-01
Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield was carried out using response surface methodology (RSM) and Box-Behnken design of experiment. The individual linear and quadratic effects as well as the interactive effects of temperature, NaOH concentration and time on the degree of disintegration were investigated. The optimum degree of disintegration achieved was 61.45% at 88.50 °C, 2.29 M NaOH (24.23%w/w total solids) and 21 min retention time. Linear and quadratic effects of temperature are most significant in affecting the degree of disintegration. The coefficient of determination (R(2)) of 99.5% confirms that the model used in predicting the degree of disintegration process has a very good fitness with the experimental variables. The disintegrated sludge increased the biogas yield by 36%v/v compared to non-disintegrated sludge. The RSM with Box-Behnken design is an effective tool in predicting the optimum degree of disintegration of sewage sludge for increased biogas yield. Copyright © 2012 Elsevier Ltd. All rights reserved.
Berardi, Alberto; Bisharat, Lorina; Blaibleh, Anaheed; Pavoni, Lucia; Cespi, Marco
2018-06-20
Tablets disintegration is often the result of a size expansion of the tablets. In this study, we quantified the extent and direction of size expansion of tablets during disintegration, using readily available techniques, i.e. a digital camera and a public domain image analysis software. After validating the method, the influence of disintegrants concentration and diluents type on kinetics and mechanisms of disintegration were studied. Tablets containing diluent, disintegrant (sodium starch glycolate-SSG, crospovidone-PVPP or croscarmellose sodium-CCS) and lubricant were prepared by direct compression. Projected area and aspect ratio of the tablets were monitored using image analysis techniques. The developed method could describe the kinetics and mechanisms of disintegration qualitatively and quantitatively. SSG and PVPP acted purely by swelling and shape recovery mechanisms. Instead, CCS worked by a combination of both mechanisms, the extent of which changed depending on its concentration and the diluent type. We anticipate that the method described here could provide a framework for the routine screening of tablets disintegration using readily available equipment. Copyright © 2018. Published by Elsevier Inc.
The effect of glicerol and sorbitol plasticizers toward disintegration time of phyto-capsules
NASA Astrophysics Data System (ADS)
Pudjiastuti, Pratiwi; Hendradi, Esti; Wafiroh, Siti; Harsini, Muji; Darmokoesoemo, Handoko
2016-03-01
The aim of research is determining the effect of glycerol and sorbitol toward the disintegration time of phyto-capsules, originated capsules from plant polysaccharides. Phyto-capsules were made from polysaccharides and 0.5% (v/v) of glycerol and sorbitol of each. The seven capsules of each were determined the disintegration time using Erweka disintegrator. The mean of disintegration time of phyto-capsules without plasticizers, with glycerol and sorbitol were 25'30"; 45'15" and 35'30" respectively. The color and colorless gelatin capsules showed the mean of disintegration time 7'30" and 2'35" respectively.
A New Test Unit for Disintegration End-Point Determination of Orodispersible Films.
Low, Ariana; Kok, Si Ling; Khong, Yuet Mei; Chan, Sui Yung; Gokhale, Rajeev
2015-11-01
No standard time or pharmacopoeia disintegration test method for orodispersible films (ODFs) exists. The USP disintegration test for tablets and capsules poses significant challenges for end-point determination when used for ODFs. We tested a newly developed disintegration test unit (DTU) against the USP disintegration test. The DTU is an accessory to the USP disintegration apparatus. It holds the ODF in a horizontal position, allowing top-view of the ODF during testing. A Gauge R&R study was conducted to assign relative contributions of the total variability from the operator, sample or the experimental set-up. Precision was compared using commercial ODF products in different media. Agreement between the two measurement methods was analysed. The DTU showed improved repeatability and reproducibility compared to the USP disintegration system with tighter standard deviations regardless of operator or medium. There is good agreement between the two methods, with the USP disintegration test giving generally longer disintegration times possibly due to difficulty in end-point determination. The DTU provided clear end-point determination and is suitable for quality control of ODFs during product developmental stage or manufacturing. This may facilitate the development of a standardized methodology for disintegration time determination of ODFs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Brniak, Witold; Jachowicz, Renata; Krupa, Anna; Skorka, Tomasz; Niwinski, Krzysztof
2013-01-01
The compendial method of evaluation of orodispersible tablets (ODT) is the same disintegration test as for conventional tablets. Since it does not reflect the disintegration process in the oral cavity, alternative methods are proposed that are more related to in vivo conditions, e.g. modified dissolution paddle apparatus, texture analyzer, rotating shaft apparatus, CCD camera application, or wetting time and water absorption ratio measurement. In this study, three different co-processed excipients for direct compression of orally disintegrating tablets were compared (Ludiflash, Pharmaburst, F-Melt). The properties of the prepared tablets such as tensile strength, friability, wetting time and water absorption ratio were evaluated. Disintegration time was measured using the pharmacopoeial method and the novel apparatus constructed by the authors. The apparatus was based on the idea of Narazaki et al., however it has been modified. Magnetic resonance imaging (MRI) was applied for the analysis of the disintegration mechanism of prepared tablets. The research has shown the significant effect of excipients, compression force, temperature, volume and kind of medium on the disintegration process. The novel apparatus features better correlation of disintegration time with in vivo results (R(2) = 0.9999) than the compendial method (R(2) = 0.5788), and presents additional information on the disintegration process, e.g. swelling properties.
Mittapalli, R K; Qhattal, H S Sha; Lockman, P R; Yamsani, M R
2010-11-01
The main objective of the present study was to develop an orally disintegrating tablet formulation of domperidone and to study the functionality differences of superdisintegrants each obtained from two different sources on the tablet properties. Domperidone tablets were formulated with different superdisintegrants by direct compression. The effect of the type of superdisintegrant, its concentration and source was studied by measuring the in-vitro disintegration time, wetting time, water absorption ratios, drug release by dissolution and in-vivo oral disintegration time. Tablets prepared with crospovidone had lower disintegration times than tablets prepared from sodium starchglycolate and croscarmellose sodium. Formulations prepared with Polyplasdone XL, Ac-Di-Sol, and Explotab (D series) were better than formulations prepared with superdisintegrants obtained from other sources (DL series) which had longer disintegration times and lower water uptake ratios. The in-vivo disintegration time of formulation D-106 containing polyplasdone XL was significantly lower than that of the marketed formulation Domel-MT. The results from this study suggest that disintegration of orally disintegrating tablets is dependent on the nature of superdisintegrant, concentration in the formulation and its source. Even though a superdisintegrant meets USP standards there can be a variance among manufacturers in terms of performance. This is not only limited to in-vitro studies but carries over to disintegration times in the human population.
Yang, Qin; Maluf, Nasib Karl; Catalano, Carlos Enrique
2008-11-28
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. "Decoration" proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to approximately 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage lambda as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage lambda capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to "idle" at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-gammaS only partially stabilizes the nucleocapsid, and a DNA is released in "quantized" steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.
Assembly/disassembly of a complex icosahedral virus to incorporate heterologous nucleic acids
NASA Astrophysics Data System (ADS)
Pascual, Elena; Mata, Carlos P.; Carrascosa, José L.; Castón, José R.
2017-12-01
Hollow protein containers are widespread in nature, and include virus capsids as well as eukaryotic and bacterial complexes. Protein cages are studied extensively for applications in nanotechnology, nanomedicine and materials science. Their inner and outer surfaces can be modified chemically or genetically, and the internal cavity can be used to template, store and/or arrange molecular cargos. Virus capsids and virus-like particles (VLP, noninfectious particles) provide versatile platforms for nanoscale bioengineering. Study of capsid protein self-assembly into monodispersed particles, and of VLP structure and biophysics is necessary not only to understand natural processes, but also to infer how these platforms can be redesigned to furnish novel functional VLP. Here we address the assembly dynamics of infectious bursal disease virus (IBDV), a complex icosahedral virus. IBDV has a ~70 nm-diameter T = 13 capsid with VP2 trimers as the only structural subunits. During capsid assembly, VP2 is synthesized as a precursor (pVP2) whose C terminus is cleaved. The pVP2 C terminus has an amphipathic helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, necessary for control of assembly, 466/456-residue pVP2 intermediates bearing this helix assemble into VLP only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for genetic insertion of proteins (cargo space ~78 000 nm3). We established an in vitro assembly/disassembly system of HT-VP2-466-based VLP for heterologous nucleic acid packaging and/or encapsulation of drugs and other molecules. HT-VP2-466 (empty) capsids were disassembled and reassembled by dialysis against low-salt/basic pH and high-salt/acid pH buffers, respectively, thus illustrating the reversibility in vitro of IBDV capsid assembly. HT-VP2-466 VLP also packed heterologous DNA by non-specific confinement during assembly. These and previous results establish the bases for biotechnological applications based on the IBDV capsid and its ability to incorporate exogenous proteins and nucleic acids.
The Role of Social Work in the Context of Social Disintegration and Violence
ERIC Educational Resources Information Center
Moller, Kurt
2008-01-01
Violence and the violence discourse are very similar from country to country: focus on youth, preponderance of males among perpetrators and victims, disproportionate involvement of migrants and indigenous people, greater prevalence with socioeconomic disadvantage and low education, and the impact of underlying factors such as political…
Curriculum Integration = Course Disintegration: What Does This Mean for Anatomy?
ERIC Educational Resources Information Center
Bolender, David L.; Ettarh, Rajunor; Jerrett, David P.; Laherty, Richard F.
2013-01-01
Many basic scientists including anatomists are currently involved in decisions related to revisions of the undergraduate medical curriculum. Integration is a common theme in many of these decisions. As described by Harden, integration can occur along a multistep continuum from independent, discipline-based courses to a completely interdisciplinary…
Teaching Photography: An Interdisciplinary Theme for Science, Technology, and Art.
ERIC Educational Resources Information Center
Stamovlasis, Dimitrios
This paper addresses contemporary concerns with the disintegration of meaning and fragmentation of knowledge. It appeals to interdisciplinary curricula, where an effort is made to reveal the interactive relationships among different fields of knowledge. The paper proposes Photography as an interdisciplinary theme, which involves Chemistry,…
Zaheer, Kamran; Langguth, Peter
2018-03-01
Food induced viscosity can delay disintegration and subsequent release of API from solid dosage form which may lead to severe reduction in the bioavailability of BCS type III compounds. Formulations of such tablets need to be optimized in view of this postprandial viscosity factor. In this study, three super disintegrants, croscarmellose sodium (CCS), cross-linked polyvinylpolypyrrolidone (CPD), and sodium starch glycolate (SSG) were assessed for their efficiency under simulated fed state. Tablets containing these disintegrants were compressed at 10 and 30 KN, while taking lactose as a soluble filler. In addition to other compendial tests, disintegration force of these formulations was measured by texture analysis. Comparison of parameters derived from force - time curves revealed a direct relation of maximum disintegration force (F max ) and disintegration force development rate (DFDR) with compressional force in fasted state, whereas an inverse relationship of F max and DFDR with compressional force was observed in fed state. The gelling tendency of disintegrants influenced the rate of release of API in simulated fed and fasted states when compressional force was changed. These observations recommend the evaluation of formulations in simulated fed state, in the development stage, with an objective of minimizing the negative impact of food induced viscosity on disintegration. Use of disintegrants that act without gelling or can counteract the effect of gelling is recommended for tablet formulations with reduced disintegration time (DT) and mean dissolution time (MDT) in fed state, respectively.
A Simple Model for Immature Retrovirus Capsid Assembly
NASA Astrophysics Data System (ADS)
Paquay, Stefan; van der Schoot, Paul; Dragnea, Bogdan
In this talk I will present simulations of a simple model for capsomeres in immature virus capsids, consisting of only point particles with a tunable range of attraction constrained to a spherical surface. We find that, at sufficiently low density, a short interaction range is sufficient for the suppression of five-fold defects in the packing and causes instead larger tears and scars in the capsid. These findings agree both qualitatively and quantitatively with experiments on immature retrovirus capsids, implying that the structure of the retroviral protein lattice can, for a large part, be explained simply by the effective interaction between the capsomeres. We thank the HFSP for funding under Grant RGP0017/2012.
Human Foamy Virus Capsid Formation Requires an Interaction Domain in the N Terminus of Gag
Tobaly-Tapiero, Joelle; Bittoun, Patricia; Giron, Marie-Lou; Neves, Manuel; Koken, Marcel; Saïb, Ali; de Thé, Hugues
2001-01-01
Retroviral Gag expression is sufficient for capsid assembly, which occurs through interaction between distinct Gag domains. Human foamy virus (HFV) capsids assemble within the cytoplasm, although their budding, which mainly occurs in the endoplasmic reticulum, requires the presence of homologous Env. Yet little is known about the molecular basis of HFV Gag precursor assembly. Using fusions between HFV Gag and a nuclear reporter protein, we have identified a strong interaction domain in the N terminus of HFV Gag which is predicted to contain a conserved coiled-coil motif. Deletion within this region in an HFV provirus abolishes viral production through inhibition of capsid assembly. PMID:11287585
Bönsch, Claudia; Zuercher, Christoph; Lieby, Patricia; Kempf, Christoph; Ros, Carlos
2010-01-01
Globoside (Gb4Cer), Ku80 autoantigen, and α5β1 integrin have been identified as cell receptors/coreceptors for human parvovirus B19 (B19V), but their role and mechanism of interaction with the virus are largely unknown. In UT7/Epo cells, expression of Gb4Cer and CD49e (integrin alpha-5) was high, but expression of Ku80 was insignificant. B19V colocalized with Gb4Cer and, to a lesser extent, with CD49e. However, only anti-Gb4Cer antibodies could disturb virus attachment. Only a small proportion of cell-bound viruses were internalized, while the majority became detached from the receptor. When added to uninfected cells, the receptor-detached virus showed superior cell binding capacity and infectivity. Attachment of B19V to cells triggered conformational changes in the capsid leading to the accessibility of the N terminus of VP1 (VP1u) to antibodies, which was maintained in the receptor-detached virus. VP1u became similarly accessible to antibodies following incubation of B19V particles with increasing concentrations of purified Gb4Cer. The receptor-mediated exposure of VP1u is critical for virus internalization, since capsids lacking VP1 could bind to cells but were not internalized. Moreover, an antibody against the N terminus of VP1u disturbed virus internalization, but only when present during and not after virus attachment, indicating the involvement of this region in binding events required for internalization. These results suggest that Gb4Cer is not only the primary receptor for B19V attachment but also the mediator of capsid rearrangements required for subsequent interactions leading to virus internalization. The capacity of the virus to detach and reattach again would enhance the probability of productive infections. PMID:20826697
del Alamo, Marta; Mateu, Mauricio G
2005-01-28
In previous studies, thermodynamic dissection of the dimerization interface in CA-C, the C-terminal domain of the capsid protein of human immunodeficiency virus type 1, revealed that individual mutation to alanine of Ser178, Glu180, Glu187 or Gln192 led to significant increases in dimerization affinity. Four related aspects derived from this observation have been now addressed, and the results can be summarized as follows: (i) thermodynamic analyses indicate the presence of an intersubunit electrostatic repulsion between both Glu180 residues. (ii) The mutation Glu180 to Ala was detected in nearly all type 2 human immunodeficiency virus variants, and in several simian immunodeficiency viruses analyzed. However, this mutation was strictly co-variant with mutations Ser178Asp in a neighboring residue, and Glu187Gln. Thermodynamic analysis of multiple mutants showed that Ser178Asp compensated, alone or together with Glu187Gln, the increase in affinity caused by the mutation Glu180Ala, and restored a lower dimerization affinity. (iii) The increase in the affinity constant caused by the multiple mutation to Ala of Ser178, Glu180, Glu187 and Gln192 was more than one order of magnitude lower than predicted if additivity were present, despite the fact that the 178/180 pair and the two other residues were located more than 10A apart. (iv) Mutations in CA-C that caused non-additive increases in dimerization affinity also caused a non-additive increase in the capacity of the isolated CA-C domain to inhibit the assembly of capsid-like HIV-1 particles in kinetic assays. In summary, the study of a protein-protein interface involved in the building of a viral capsid has revealed unusual features, including intersubunit electrostatic repulsions, co-variant, compensatory mutations that may evolutionarily preserve a low association constant, and long-range, large magnitude non-additive effects on association.
Martin, Annette; Bénichou, Danièle; Chao, Shih-Fong; Cohen, Lisette M.; Lemon, Stanley M.
1999-01-01
Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase. PMID:10400711
Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site
Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.
2016-01-01
ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003
Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.
Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M
2016-01-13
Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus
Wang, Liping; Tan, Huang; Wu, Mengshi; Jimenez-Gongora, Tamara; Tan, Li; Lozano-Duran, Rosa
2017-01-01
Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host. PMID:29312406
Advances in Exoplanet Observing by Amateur Astronomers (Abstract)
NASA Astrophysics Data System (ADS)
Conti, D. M.
2017-06-01
(Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.
Abramov, Gili; Morag, Omry; Goldbourt, Amir
2015-04-01
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses. Copyright © 2015 Elsevier Inc. All rights reserved.
DNA packaging in viral capsids with peptide arms.
Cao, Qianqian; Bachmann, Michael
2017-01-18
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids.
Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael; Zlotnick, Adam
2018-01-29
Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (<4 Å), we introduced a disulfide crosslink that rescued particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. © 2017, Schlicksup et al.
Kumar, A S Manoj; Reddy, G E C Vidyadhar; Rajmane, Yogesh; Nair, Soumya; Pai Kamath, Sangita; Sreejesh, Greeshma; Basha, Khalander; Chile, Shailaja; Ray, Kriti; Nelly, Vivant; Khadpe, Nilesh; Kasturi, Ravishankar; Ramana, Venkata
2015-01-10
siRNA delivery potential of the Dengue virus capsid protein in cultured cells was recently reported, but target knockdown potential in the context of specific diseases has not been explored. In this study we have evaluated the utility of the protein as an siRNA carrier for anti Dengue viral and anti cancer applications using cell culture systems. We show that target specific siRNAs delivered using the capsid protein inhibit infection by the four serotypes of Dengue virus and proliferation of two cancer cell lines. Our data confirm the potential of the capsid for anti Dengue viral and anti cancer RNAi applications. In addition, we have optimized a fermentation strategy to improve the yield of Escherichia coli expressed D2C protein since the reported yields of E. coli expressed flaviviral capsid proteins are low. Copyright © 2014 Elsevier B.V. All rights reserved.
Rissanen, Ilona; Grimes, Jonathan M.; Pawlowski, Alice; Mäntynen, Sari; Harlos, Karl; Bamford, Jaana K.H.; Stuart, David I.
2013-01-01
Summary It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor. PMID:23623731
Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids
Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael
2018-01-01
Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (<4 Å), we introduced a disulfide crosslink that rescued particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. PMID:29377794
Zhang, Peijun; Meng, Xin; Zhao, Gongpu
2013-01-01
Helical structures are important in many different life forms and are well-suited for structural studies by cryo-EM. A unique feature of helical objects is that a single projection image contains all the views needed to perform a three-dimensional (3D) crystallographic reconstruction. Here, we use HIV-1 capsid assemblies to illustrate the detailed approaches to obtain 3D density maps from helical objects. Mature HIV-1 particles contain a conical- or tubular-shaped capsid that encloses the viral RNA genome and performs essential functions in the virus life cycle. The capsid is composed of capsid protein (CA) oligomers which are helically arranged on the surface. The N-terminal domain (NTD) of CA is connected to its C-terminal domain (CTD) through a flexible hinge. Structural analysis of two- and three-dimensional crystals provided molecular models of the capsid protein (CA) and its oligomer forms. We determined the 3D density map of helically assembled HIV-1 CA hexamers at 16 Å resolution using an iterative helical real-space reconstruction method. Docking of atomic models of CA-NTD and CA-CTD dimer into the electron density map indicated that the CTD dimer interface is retained in the assembled CA. Furthermore, molecular docking revealed an additional, novel CTD trimer interface. PMID:23132072
Norovirus-like VP1 particles exhibit isolate dependent stability profiles
NASA Astrophysics Data System (ADS)
Pogan, Ronja; Schneider, Carola; Reimer, Rudolph; Hansman, Grant; Uetrecht, Charlotte
2018-02-01
Noroviruses are the main cause of viral gastroenteritis with new variants emerging frequently. There are three norovirus genogroups infecting humans. These genogroups are divided based on the sequence of their major capsid protein, which is able to form virus-like particles (VLPs) when expressed recombinantly. VLPs of the prototypical GI.1 Norwalk virus are known to disassemble into specific capsid protein oligomers upon alkaline treatment. Here, native mass spectrometry and electron microscopy on variants of GI.1 and of GII.17 were performed, revealing differences in terms of stability between these groups. Beyond that, these experiments indicate differences even between variants within a genotype. The capsid stability was monitored in different ammonium acetate solutions varying both in ionic strength and pH. The investigated GI.1 West Chester isolate showed comparable disassembly profiles to the previously studied GI.1 Norwalk virus isolate. However, differences were observed with the West Chester being more sensitive to alkaline pH. In stark contrast to that, capsids of the variant belonging to the currently prevalent genogroup GII were stable in all tested conditions. Both variants formed smaller capsid particles already at neutral pH. Certain amino acid substitutions in the S domain of West Chester relative to the Norwalk virus potentially result in the formation of these T = 1 capsids.
Adeno-associated virus capsid antigen presentation is dependent on endosomal escape
Li, Chengwen; He, Yi; Nicolson, Sarah; Hirsch, Matt; Weinberg, Marc S.; Zhang, Ping; Kafri, Tal; Samulski, R. Jude
2013-01-01
Adeno-associated virus (AAV) vectors are attractive for gene delivery-based therapeutics, but data from recent clinical trials have indicated that AAV capsids induce a cytotoxic T lymphocyte (CTL) response that eliminates transduced cells. In this study, we used traditional pharmacological agents and AAV mutants to elucidate the pathway of capsid cross-presentation in AAV-permissive cells. Endosomal acidification inhibitors blocked AAV2 antigen presentation by over 90%, while proteasome inhibitors completely abrogated antigen presentation. Using mutant viruses that are defective for nuclear entry, we observed a 90% decrease in capsid antigen presentation. Different antigen presentation efficiencies were achieved by selectively mutating virion nuclear localization signals. Low antigen presentation was demonstrated with basic region 1 (BR1) mutants, despite relatively high transduction efficiency, whereas there was no difference in antigen presentation between BR2 and BR3 mutants defective for transduction, as compared with wild-type AAV2. These results suggest that effective AAV2 capsid antigen presentation is dependent on AAV virion escape from the endosome/lysosome for antigen degradation by proteasomes, but is independent of nuclear uncoating. These results should facilitate the design of effective strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in future clinical trials. PMID:23454772
Eren, Beytullah; Karadagli, Fatih
2012-03-06
Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.
Otsuka, Makoto; Yamanaka, Azusa; Uchino, Tomohiro; Otsuka, Kuniko; Sadamoto, Kiyomi; Ohshima, Hiroyuki
2012-01-01
To measure the rapid disintegration of Oral Disintegrating Tablets (ODT), a new test (XCT) was developed using X-ray computing tomography (X-ray CT). Placebo ODT, rapid disintegration candy (RDC) and Gaster®-D-Tablets (GAS) were used as model samples. All these ODTs were used to measure oral disintegration time (DT) in distilled water at 37±2°C by XCT. DTs were affected by the width of mesh screens, and degree to which the tablet holder vibrated from air bubbles. An in-vivo tablet disintegration test was performed for RDC using 11 volunteers. DT by the in-vivo method was significantly longer than that using the conventional tester. The experimental conditions for XCT such as the width of the mesh screen and degree of vibration were adjusted to be consistent with human DT values. Since DTs by the XCT method were almost the same as the human data, this method was able to quantitatively evaluate the rapid disintegration of ODT under the same conditions as inside the oral cavity. The DTs of four commercially available ODTs were comparatively evaluated by the XCT method, conventional tablet disintegration test and in-vivo method.
Packaging of Polyelectrolytes in Viral Capsids: The Interplay Between Polymer Length and Capsid Size
NASA Astrophysics Data System (ADS)
Knobler, Charles
2008-03-01
Each particle of the Cowpea Chlorotic Mottle Virus (CCMV) has a very small ``parts list,'' consisting of two components: a molecule of single-stranded RNA and a 190-residue protein that makes up the 28-nm diameter icosahedral capsid. When purified viral RNA and capsid protein are mixed in solution at an appropriate pH and ionic strength, infectious wild-type viruses form spontaneously. Virus-like particles (VLPs) are formed when the protein self assembles around other anionic polymers such as poly(styrene sulfonate) (PSS). Under different pH and ionic strength conditions the capsid protein can assemble by itself into empty capsids, multishell structures, tubes and sheets. To explore the effect on virion size of the competition between the preferred curvature of the protein and the size of the packaged cargo we have examined the formation of VLPs around PSS polymers with molecular weights ranging from 400 kDa to 3.4 MDa. Two distinct sizes are observed -- 22 nm for the lower molecular weights, jumping to 27 nm at 2 MDa. While under given conditions the size of PSS in solution is directly determined by its molecular weight, the self-complementarity of RNA makes its solution structure dependent on the nucleotide sequence as well. We have therefore employed Small-Angle X-ray Scattering and Fluorescence Correlation Spectroscopy to examine the sizes of viral and non-viral RNAs of identical lengths. A model for the assembly that includes both the self-interactions of the polyelectrolyte and the capsid proteins and the interactions between them provides insight into the experimental results.
Basavappa, R.; Syed, R.; Flore, O.; Icenogle, J. P.; Filman, D. J.; Hogle, J. M.
1994-01-01
The crystal structure of the P1/Mahoney poliovirus empty capsid has been determined at 2.9 A resolution. The empty capsids differ from mature virions in that they lack the viral RNA and have yet to undergo a stabilizing maturation cleavage of VP0 to yield the mature capsid proteins VP4 and VP2. The outer surface and the bulk of the protein shell are very similar to those of the mature virion. The major differences between the 2 structures are focused in a network formed by the N-terminal extensions of the capsid proteins on the inner surface of the shell. In the empty capsids, the entire N-terminal extension of VP1, as well as portions corresponding to VP4 and the N-terminal extension of VP2, are disordered, and many stabilizing interactions that are present in the mature virion are missing. In the empty capsid, the VP0 scissile bond is located some 20 A away from the positions in the mature virion of the termini generated by VP0 cleavage. The scissile bond is located on the rim of a trefoil-shaped depression in the inner surface of the shell that is highly reminiscent of an RNA binding site in bean pod mottle virus. The structure suggests plausible (and ultimately testable) models for the initiation of encapsidation, for the RNA-dependent autocatalytic cleavage of VP0, and for the role of the cleavage in establishing the ordered N-terminal network and in generating stable virions. PMID:7849583
Low, Ariana; Kok, Si Ling; Khong, Yuetmei; Chan, Sui Yung; Gokhale, Rajeev
2015-11-01
No standard time or pharmacopoeia disintegration test method for orodispersible films (ODFs) exists. The USP disintegration test for tablets and capsules poses significant challenges for end-point determination when used for ODFs. We tested a newly developed disintegration test unit (DTU) against the USP disintegration test. The DTU is an accessory to the USP disintegration apparatus. It holds the ODF in a horizontal position, allowing top-view of the ODF during testing. A Gauge R&R study was conducted to assign relative contributions of the total variability from the operator, sample or the experimental set-up. Precision was compared using commercial ODF products in different media. Agreement between the two measurement methods was analysed. The DTU showed improved repeatability and reproducibility compared to the USP disintegration system with tighter standard deviations regardless of operator or medium. There is good agreement between the two methods, with the USP disintegration test giving generally longer disintegration times possibly due to difficulty in end-point determination. The DTU provided clear end-point determination and is suitable for quality control of ODFs during product developmental stage or manufacturing. This may facilitate the development of a standardized methodology for disintegration time determination of ODFs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3893-3903, 2015. Copyright © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Howard, Paul W.; Howard, Tiffani L.
2013-01-01
Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE−, gI−, or US9− mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE−/US9− double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons. PMID:23077321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.
ABSTRACT Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bindmore » to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease. IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.« less
Kharkwal, Himanshu; Smith, Caitlin G.
2014-01-01
ABSTRACT Herpes simplex virus (HSV) and, as reported here, pseudorabies virus (PRV) utilize the ESCRT apparatus to drive cytoplasmic envelopment of their capsids. Here, we demonstrate that blocking ESCRT-mediated envelopment using the dominant-negative inhibitor Vps4A-EQ (Vps4A in which glutamate [E] at position 228 in the ATPase active site is replaced by a glutamine [Q]) reduced the ability of HSV and PRV particles to subsequently traffic along microtubules in vitro. HSV and PRV capsid-associated particles with bound green fluorescent protein (GFP)-labeled Vps4A-EQ were readily detected by fluorescence microscopy in cytoplasmic extracts of infected cells. These Vps4A-EQ-associated capsid-containing particles bound to microtubules in vitro but were unable to traffic along them. Using a PRV strain expressing a fluorescent capsid and a fluorescently tagged form of the envelope protein gD, we found that similar numbers of gD-positive and gD-negative capsid-associated particles accumulated in cytoplasmic extracts under our conditions. Both classes of PRV particle bound to microtubules in vitro with comparable efficiency, and similar results were obtained for HSV using anti-gD immunostaining. The gD-positive and gD-negative PRV capsids were both capable of trafficking along microtubules in vitro; however, motile gD-positive particles were less numerous and their trafficking was more sensitive to the inhibitory effects of Vps4A-EQ. We discuss our data in the context of microtubule-mediated trafficking of naked and enveloped alphaherpesvirus capsids. IMPORTANCE The alphaherpesviruses include several important human pathogens. These viruses utilize microtubule-mediated transport to travel through the cell cytoplasm; however, the molecular mechanisms of trafficking are not well understood. In this study, we have used a cell-free system to examine the requirements for microtubule trafficking and have attempted to distinguish between the movement of so-called “naked” and membrane-associated cytoplasmic alphaherpesvirus capsids. PMID:25297998
Oral Solid Dosage Form Disintegration Testing - The Forgotten Test.
Al-Gousous, Jozef; Langguth, Peter
2015-09-01
Since its inception in the 1930s, disintegration testing has become an important quality control (QC) test in pharmaceutical industry, and disintegration test procedures for various dosage forms have been described by the different pharmacopoeias, with harmonization among them still not quite complete. However, because of the fact that complete disintegration does not necessarily imply complete dissolution, much more research has been focused on dissolution rather than on disintegration testing. Nevertheless, owing to its simplicity, disintegration testing seems to be an attractive replacement to dissolution testing as recognized by the International Conference on Harmonization guidelines, in some cases. Therefore, with proper research being carried out to overcome the associated challenges, the full potential of disintegration testing could be tapped saving considerable efforts allocated to QC testing and quality assurance. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Investigation of the performance of the disintegration test for dietary supplements.
Almukainzi, May; Salehi, Mahnor; Araci Bou-Chacra, Nadia; Löbenberg, Raimar
2010-12-01
The aim of this study was to investigate how beaker size, basket assembly, use of disk, and immersion medium impact the disintegration time of dietary supplements. The disintegration times were determined for five tablet and two capsule products. A two-station disintegration tester was used with Apparatus A or Apparatus B as described in the United States Pharmacopeia (USP) chapters, <701> and <2040>. Two beakers complying with the harmonized specifications were used, one with a volume of 1,000 mL and one with a 1,500-mL volume. The disintegration data were analyzed using ANOVA for the following factors: beaker size, equipment (App A and B) and condition (with/without disk). Two tablet products were not sensitive to any changes in the test conditions or equipment configurations. One product was only partially sensitive to the test conditions. The other products showed impact on the disintegration time for all test conditions. The results revealed that these tablet products might pass or fail current USP disintegration requirements depending on the equipment configuration. Similar results were obtained for the two investigated capsule formulations. One product might fail current USP disintegration requirements if the large beaker was used, but might pass the disintegration requirements when the small beaker was used. Hydroxy propyl methyl cellulose capsules were mostly influenced if sodium instead of a potassium buffer was used as the immersion medium. The results demonstrate that the current harmonized ICH specifications for the disintegration test are insufficient to make the disintegration test into reliable test for dietary supplements.
Hobbs, David; Karagianis, Jamie; Treuer, Tamas; Raskin, Joel
2013-12-01
Orodispersible tablets (ODTs) are tablet or wafer forms of medication that disintegrate in the mouth, aided only by saliva. ODTs rely on different fast dissolve/disintegration manufacturing technologies. Disintegration time differences for several olanzapine ODT forms were investigated. Risperdal M-Tab(®) was included as a non-olanzapine ODT comparator. Eleven olanzapine ODT examples and orodispersible risperidone strengths were evaluated in vitro for formulation composition, manufacturing method, disintegration and dissolution characteristics, and formulation differences in comparison with freeze dried Zydis(®) ODT. Automated dissolution test equipment captured ODT dissolution rates by measuring real-time release of active ingredient. A high-speed video camera was used to capture tablet disintegration times in warm simulated saliva. The main outcome measure was the disintegration and dissolution characteristics of the ODT formulations. The ODT manufacturing method was associated with time to disintegrate; the fastest were freeze dried tablets, followed by soft compressed tablets and then hard/dense tablets. Olanzapine Zydis(®) was the only ODT that completely disintegrated in less than 4 s for all strengths (5, 10, 15, and 20 mg), followed by 5-mg Prolanz FAST(®) (12 s) and then risperidone ODT 4 mg (40 s). Reasons for slow dissolution of the olanzapine generics may include low product potency, excipient binding, excipient solubility, active ingredient particle size and incomplete disintegration. Differences in the formulation and manufacturing process of olanzapine ODTs appear to have a strong influence on the disintegration time of the active compound; differences that may potentially impact their use in clinical practice.
Crystal Structure of the Human Astrovirus Capsid Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.
Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominantmore » protein species with molecular masses of ~34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP90 71–415(amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP90 71–415encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP90 71–415is comprised of two domains: an S domain, which adopts the typical jelly-roll β-barrel fold, and a P1 domain, which forms a squashed β-barrel consisting of six antiparallel β-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP90 71–415structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCEHuman astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus, HAstV exhibits an intriguing feature in that its maturation requires extensive proteolytic processing of the astrovirus capsid protein (CP) both inside and outside the host cell. Mature HAstV contains three predominant protein species, but the mechanism for acquired infectivity upon maturation is unclear. We have solved the crystal structure of VP90 71–415of human astrovirus serotype 8. VP90 71–415encompasses the conserved N-terminal domain of the viral CP. Fitting of the VP90 71–415structure into the cryo-EM maps of HAstV produced an atomic model for the T=3 icosahedral capsid. Our model of the HAstV capsid provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation. Such information has potential applications in the development of a VLP vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation.« less
The interplay between mechanics and stability of viral cages
NASA Astrophysics Data System (ADS)
Hernando-Pérez, Mercedes; Pascual, Elena; Aznar, María; Ionel, Alina; Castón, José R.; Luque, Antoni; Carrascosa, José L.; Reguera, David; de Pablo, Pedro J.
2014-02-01
The stability and strength of viral nanoparticles are crucial to fulfill the functions required through the viral cycle as well as using capsids for biomedical and nanotechnological applications. The mechanical properties of viral shells obtained through Atomic Force Microscopy (AFM) and continuum elasticity theory, such as stiffness or Young's modulus, have been interpreted very often in terms of stability. However, viruses are normally subjected to chemical rather than to mechanical aggression. Thus, a correct interpretation of mechanics in terms of stability requires an adequate linkage between the ability of viral cages to support chemical and mechanical stresses. Here we study the mechanical fragility and chemical stability of bacteriophage T7 in two different maturation states: the early proheads and the final mature capsids. Using chemical stress experiments we show that proheads are less stable than final mature capsids. Still, both particles present similar anisotropic stiffness, indicating that a continuum elasticity description in terms of Young's modulus is not an adequate measure of viral stability. In combination with a computational coarse-grained model we demonstrate that mechanical anisotropy of T7 emerges out of the discrete nature of the proheads and empty capsids. Even though they present the same stiffness, proheads break earlier and have fractures ten times larger than mature capsids, in agreement with chemical stability, thus demonstrating that fragility rather than stiffness is a better indicator of viral cages' stability.The stability and strength of viral nanoparticles are crucial to fulfill the functions required through the viral cycle as well as using capsids for biomedical and nanotechnological applications. The mechanical properties of viral shells obtained through Atomic Force Microscopy (AFM) and continuum elasticity theory, such as stiffness or Young's modulus, have been interpreted very often in terms of stability. However, viruses are normally subjected to chemical rather than to mechanical aggression. Thus, a correct interpretation of mechanics in terms of stability requires an adequate linkage between the ability of viral cages to support chemical and mechanical stresses. Here we study the mechanical fragility and chemical stability of bacteriophage T7 in two different maturation states: the early proheads and the final mature capsids. Using chemical stress experiments we show that proheads are less stable than final mature capsids. Still, both particles present similar anisotropic stiffness, indicating that a continuum elasticity description in terms of Young's modulus is not an adequate measure of viral stability. In combination with a computational coarse-grained model we demonstrate that mechanical anisotropy of T7 emerges out of the discrete nature of the proheads and empty capsids. Even though they present the same stiffness, proheads break earlier and have fractures ten times larger than mature capsids, in agreement with chemical stability, thus demonstrating that fragility rather than stiffness is a better indicator of viral cages' stability. Electronic supplementary information (ESI) available: Purification of T7 proheads and capsids, coarse-grained simulations of the indentation of T7 empty capsids, Finite Element (FE) simulations, and justification of the anisotropic stiffness based on structural information. See DOI: 10.1039/c3nr05763a
Viperin targets flavivirus virulence by inducing assembly of non-infectious capsid particles.
Vonderstein, Kirstin; Nilsson, Emma; Hubel, Philipp; Nygård Skalman, Lars; Upadhyay, Arunkumar; Pasto, Jenny; Pichlmair, Andreas; Lundmark, Richard; Överby, Anna K
2017-10-18
Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad spectrum antiviral interferon stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1), as the cellular protein targeted by viperin. Viperin-induced antiviral activity as well as C-particle release was stimulated by GBF1 inhibition and knock down, and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive non-infectious virus particles, by a GBF1-dependent mechanism. This yet undescribed antiviral mechanism allows potential therapeutic intervention. Importance The interferon response can target viral infection on almost every level, however, very little is known about interference of flavivirus assembly. Here we show that interferon, through the action of viperin, can disturb assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appear to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study we show that viperin induce capsid particle release by interacting and inhibiting the function of the cellular protein Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target. Copyright © 2017 Vonderstein et al.
Influence of high-energy impact on the physical and technical characteristics of coal fuels
NASA Astrophysics Data System (ADS)
Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.
2017-08-01
Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.
Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus
G. Sánchez, Elena; Pérez-Núñez, Daniel; Revilla, Yolanda
2017-01-01
African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol. PMID:29117102
Rapid Chemoselective Bioconjugation Through the Oxidative Coupling of Anilines and Aminophenols
Behrens, Christopher R.; Hooker, Jacob M.; Obermeyer, Allie C.; Romanini, Dante W.; Katz, Elan M.; Francis, Matthew B.
2012-01-01
A highly efficient protein bioconjugation method is described involving the addition of anilines to o-aminophenols in the presence of sodium periodate. The reaction takes place in aqueous buffer at pH 6.5 and can reach high levels of completion in 2–5 min. The product of the reaction has been characterized using X-ray crystallography, which revealed that an unprecedented oxidative ring contraction occurs after the coupling step. The compatibility of the reaction with protein substrates has been demonstrated through the attachment of small molecules, polymer chains, and peptides to p-aminophenylalanine residues introduced into viral capsids through amber stop codon suppression. The coupling of anilines to o-aminophenol groups derived from tyrosine residues is also described. The compatibility of this method with thiol modification chemistry is shown through the attachment of a near-IR fluorescent chromophore to cysteine residues inside the viral capsid shells, followed by the attachment of integrin-targeting RGD peptides to anilines on the exterior surface. PMID:21919497
Role of Multiple Hosts in the Cross-Species Transmission and Emergence of a Pandemic Parvovirus
Allison, Andrew B.; Harbison, Carole E.; Pagan, Israel; Stucker, Karla M.; Kaelber, Jason T.; Brown, Justin D.; Ruder, Mark G.; Keel, M. Kevin; Dubovi, Edward J.; Holmes, Edward C.
2012-01-01
Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence. PMID:22072763
Woodruff, R.A.; Bonde, R.K.; Bonilla, J.A.; Romero, C.H.
2005-01-01
Cutaneous papillomatous lesions were biopsied from three captive Florida manatees (Trichechus manatus latirostris) at Homosassa Springs State Wildlife Park (HSSWP), Homosassa, Florida, USA, and from six free-ranging Florida manatees from Crystal and Homosassa rivers, Florida. Total DNA extracted from these lesions was assayed for the presence of papilloma virus genomes using the polymerase chain reaction (PCR) with primers that target the L1 capsid protein gene. The amplification generated DNA fragments 458 base pairs in length that encompassed a highly conserved domain within the L1 capsid protein and translated into identical polypeptides of 152 amino acids, suggesting the involvement of a single papilloma virus genotype. Multiple amino acid sequence and phylogenetic analyses of the L1 fragment indicated that the Florida manatee papilloma virus is a unique and quite distinct papillomavirus from other known papilloma viruses. The emergence of this new pathogen raises concerns about its potential impact on the already endangered Florida manatee.
Role of multiple hosts in the cross-species transmission and emergence of a pandemic parvovirus.
Allison, Andrew B; Harbison, Carole E; Pagan, Israel; Stucker, Karla M; Kaelber, Jason T; Brown, Justin D; Ruder, Mark G; Keel, M Kevin; Dubovi, Edward J; Holmes, Edward C; Parrish, Colin R
2012-01-01
Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.
Structure of deformed wing virus, a major honey bee pathogen.
Škubník, Karel; Nováček, Jiří; Füzik, Tibor; Přidal, Antonín; Paxton, Robert J; Plevka, Pavel
2017-03-21
The worldwide population of western honey bees ( Apis mellifera ) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae , together with its vector, the mite Varroa destructor , is likely the major threat to the world's honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments.
Feagins, Alicia R; Córdoba, Laura; Sanford, Brent J; Dryman, Barbara A; Huang, Yao-Wei; LeRoith, Tanya; Emerson, Suzanne U; Meng, Xiang-Jin
2011-03-01
Genotypes 1 and 2 hepatitis E virus (HEV) infect only humans whereas genotypes 3 and 4 HEV infect both humans and pigs. To evaluate the mechanism of cross-species HEV infection between humans and swine, in this study we constructed five intergenotypic chimeric viruses and tested for their infectivity in vitro and in pigs. We demonstrated that chimeric viruses containing the ORF2 capsid gene either alone or in combination with its adjacent 5' junction region (JR) and 3' noncoding region (NCR) from a genotype 4 human HEV in the backbone of a genotype 3 swine HEV are replication-competent in Huh7 cells and infectious in HepG2/C3A cells and in pigs, and thus supporting the hypothesis that genotypes 3 and 4 human HEV are of swine origin. However, chimeric viruses containing the JR+ORF2+3' NCR of genotypes 3 or 4 HEV in the backbone of genotype 1 human HEV failed to infect pigs, suggesting that other genomic regions such as 5' NCR and ORF1 may also be involved in HEV cross-species infection. The results from this study provide the first experimental evidence of the exchangeability of the capsid gene between genotype 3 swine HEV and genotype 4 human HEV, and have important implications for understanding the mechanism of HEV cross-species infection. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jian; Bywaters, Stephanie M.; Brendle, Sarah A.
2015-09-15
Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope.more » Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays. - Highlights: • We present HPV16-Fab complexes from neutralizing mAbs: H16.1A, H16.14J, and H263.A2. • The structure-function analysis revealed predominantly monovalent binding of each mAb. • Capsid–Fab interactions involved multiple loops from symmetry related L1 proteins. • Besides the known FG and HI loops, epitope mapping also identified DE, EF, and BC loops. • Neutralizing assays complement the structures to show multiple neutralization mechanisms.« less
Mild disintegration of the green microalgae Chlorella vulgaris using bead milling.
Postma, P R; Miron, T L; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M
2015-05-01
In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25-145 gDW kg(-1)) over a range of agitator speeds (6-12 m s(-1)). In all cases over 97% of cell disintegration was achieved resulting in a release of water soluble proteins. A clear optimum rate of disintegration and protein release was observed at an agitator speed of 9-10 m s(-1) regardless of the biomass concentration. Selective extraction of water soluble proteins was observed as proteins released sooner than cell disintegration took place. Proteins could be released at 85% lower energy input than for cell disintegration resulting in specific energy consumptions well below 2.5 kWh kgDW(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of turbulence on the disintegration rate of flushable consumer products.
Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E
2012-05-01
A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.
Zielewicz, Ewa; Tytła, Malwina
2015-01-01
The ultrasonic disintegration of excess sludge is placed after the mechanical thickening but before the digestion tanks in order to intensify the process of sludge stabilization. The effects obtained directly after ultrasonic disintegration depend on many factors and can be grouped in two main categories: factors affecting the quality of sludge and those associated with the construction of disintegrators and its parameters. The ultrasonic disintegration research was carried out using three types of structural solutions of disintegrators. Two of them, that is, WK-2000 ultrasonic generator (P = 400 W) working with a thin sonotrode and WK-2010 ultrasonic generator (P = 100-1000 W) working with a new type construction emitter lens sonotrode, were compared with the influence of a washer with a flat emitter. The investigations have shown that in the same sludge, using the same value of volumetric energy, the resulting effect depends on the construction of the ultrasonic disintegrator, that is, design of the head and the ratio between the field of the emitter and the field of the chamber in sonicated medium.
Enhancement of ultrasonic disintegration of sewage sludge by aeration.
Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong
2016-04-01
Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.
Disintegration performance of renal multivitamin supplements.
Stamatakis, M K; Meyer-Stout, P J
1999-04-01
Vitamins have traditionally been regulated as dietary supplements and have not been required to meet the same rigorous product quality performance standards as drug products. Impaired product performance, such as failure to disintegrate and/or dissolve in the gastrointestinal tract, could limit the absorption of vitamins. Furthermore, patients with renal disease have been reported to experience a wide range in gastrointestinal pH, which could influence a product's performance. The purpose of this study was to determine the effect of pH on the in vitro disintegration of renal multivitamin supplements. Products were studied using the United States Pharmacopeial Convention standard disintegration apparatus. Products were tested in simulated gastric fluid, neutral fluid, and intestinal fluid. Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within compendial limits. Of 11 products tested, 4 products failed the disintegration study test in all pH conditions. Sixty-four percent of the products showed statistically significant differences in disintegration time (DT) based on pH. As pH increased, time to disintegration increased. The DT of commercially available renal multivitamin supplements was highly variable. Poorest product performance was shown in simulated intestinal fluid. The pH significantly affected in vitro disintegration in greater than half the products tested. How this affects dissolution and in vivo performance has yet to be studied.
Szakonyi, G; Zelkó, R
2013-05-20
One of the promising approaches to predict in vivo disintegration time of orally disintegrating tablets (ODT) is the use of texture analyzer instrument. Once the method is able to provide good in vitro in vivo correlation (IVIVC) in the case of different tablets, it might be able to predict the oral disintegration time of similar products. However, there are many tablet parameters that influence the in vivo and the in vitro disintegration time of ODT products. Therefore, the measured in vitro and in vivo disintegration times can occasionally differ, even if they coincide in most cases of the investigated products and the in vivo disintegration times may also change if the aimed patient group is suffering from a special illness. If the method is no longer able to provide good IVIVC, then the modification of a single instrumental parameter may not be successful and the in vitro method must be re-set in a complex manner in order to provide satisfactory results. In the present experiment, an optimization process was developed based on texture analysis measurements using five different tablets in order to predict their in vivo disintegration times, and the optimized texture analysis method was evaluated using independent tablets. Copyright © 2013 Elsevier B.V. All rights reserved.
The Struggle between Conflicting Beliefs: On the Promise of Education
ERIC Educational Resources Information Center
Boman, Ylva
2006-01-01
Education is thought to provide a certain outcome--a "promise". I argue that a promise that education will counteract cultural and social disintegration involves a risk of engendering narrow social and cultural incorporation. On what reasonable basis could education contribute to civic life, when contemporary Western society is represented by a…
UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.
ERIC Educational Resources Information Center
Dhabanandana, Salag
This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…
Parent Involvement Model for Our Changing Society.
ERIC Educational Resources Information Center
Wagonseller, Bill R.
Child rearing is a difficult task in the 1990s. Among U.S. youth today there exists an alarmingly high prevalence of learning, emotional/behavioral, or developmental problems, most of which can be directly traced to the disintegration of family stability. Yet, despite the difficulties of parenting, few people have actually been trained to be…
Consumer vinegar test for determining calcium disintegration.
Mason, N A; Patel, J D; Dressman, J B; Shimp, L A
1992-09-01
A consumer test and standardized methods were compared for measuring the disintegration of calcium tablets, and the disintegration results were compared with results of dissolution testing to determine the ability of the consumer test of disintegration to predict bioavailability of calcium. Disintegration of 17 calcium supplement products, in tablet form, was studied in Simulated Gastric Fluid Test Solution, USP, without pepsin (GF), in distilled water, and in white distilled vinegar. For disintegration testing with GF and with distilled water, six tablets of each product were placed in an apparatus and immersed in the solution at 37 degrees C for 60 minutes. Six tablets of each product were tested in 200 mL of vinegar at room temperature for 30 minutes. Disintegration was determined by visual observation. Seven products were tested for dissolution in GF or water. Three samples of each product were tested at intervals over 120 minutes for calcium content. Results of testing with an ion-selective electrode were converted to milligrams and compared with the calcium content of the tablets (as claimed on the package label). The mean disintegration times of various calcium products in vinegar ranged from 1.8 to greater than 30 minutes. The mean time in distilled water and GF ranged from 1.6 to greater than 60 minutes and from 1.0 to greater than 60 minutes, respectively. Results were in agreement in 87% to 93% of cases between the consumer vinegar test and the standardized disintegration test methods, a significant correlation. No correlation was found between disintegration time and the extent of dissolution. The disintegration and dissolution of commercially available calcium tablets was highly variable.(ABSTRACT TRUNCATED AT 250 WORDS)
Yoon, Seong-Hoon; Lee, Sangho
2005-09-01
Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.
General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins.
Wagner, Jonathan M; Christensen, Devin E; Bhattacharya, Akash; Dawidziak, Daria M; Roganowicz, Marcin D; Wan, Yueping; Pumroy, Ruth A; Demeler, Borries; Ivanov, Dmitri N; Ganser-Pornillos, Barbie K; Sundquist, Wesley I; Pornillos, Owen
2018-02-15
Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( K D of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( K D of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction. Copyright © 2018 American Society for Microbiology.
Hepatitis B Virus Core Gene Mutations Which Block Nucleocapsid Envelopment
Koschel, Matthias; Oed, Daniela; Gerelsaikhan, Tudevdagwa; Thomssen, Reiner; Bruss, Volker
2000-01-01
Recently we generated a panel of hepatitis B virus core gene mutants carrying single insertions or deletions which allowed efficient expression of the core protein in bacteria and self-assembly of capsids. Eleven of these mutations were introduced into a eukaryotic core gene expression vector and characterized by trans complementation of a core-negative HBV genome in cotransfected human hepatoma HuH7 cells. Surprisingly, four mutants (two insertions [EFGA downstream of A11 and LDTASALYR downstream of R39] and two deletions [Y38-R39-E40 and L42]) produced no detectable capsids. The other seven mutants supported capsid formation and pregenome packaging/viral minus- and plus-strand-DNA synthesis but to different levels. Four of these seven mutants (two insertions [GA downstream of A11 and EHCSP downstream of P50] and two deletions [S44 and A80]) allowed virion morphogenesis and secretion. The mutant carrying a deletion of A80 at the tip of the spike protruding from the capsid was hepatitis B virus core antigen negative but wild type with respect to virion formation, indicating that this site might not be crucial for capsid-surface protein interactions during morphogenesis. The other three nucleocapsid-forming mutants (one insertion [LS downstream of S141] and two deletions [T12 and P134]) were strongly blocked in virion formation. The corresponding sites are located in the part of the protein forming the body of the capsid and not in the spike. These mutations may alter sites on the particle which contact surface proteins during envelopment, or they may block the appearance of a signal for the transport or the maturation of the capsid which is linked to viral DNA synthesis and required for envelopment. PMID:10590084
Dynamics and asymmetry in the dimer of the norovirus major capsid protein.
Tubiana, Thibault; Boulard, Yves; Bressanelli, Stéphane
2017-01-01
Noroviruses are the major cause of non-bacterial acute gastroenteritis in humans and livestock worldwide, despite being physically among the simplest animal viruses. The icosahedral capsid encasing the norovirus RNA genome is made of 90 dimers of a single ca 60-kDa polypeptide chain, VP1, arranged with T = 3 icosahedral symmetry. Here we study the conformational dynamics of this main building block of the norovirus capsid. We use molecular modeling and all-atom molecular dynamics simulations of the VP1 dimer for two genogroups with 50% sequence identity. We focus on the two points of flexibility in VP1 known from the crystal structure of the genogroup I (GI, human) capsid and from subsequent cryo-electron microscopy work on the GII capsid (also human). First, with a homology model of the GIII (bovine) VP1 dimer subjected to simulated annealing then classical molecular dynamics simulations, we show that the N-terminal arm conformation seen in the GI crystal structure is also favored in GIII VP1 but depends on the protonation state of critical residues. Second, simulations of the GI dimer show that the VP1 spike domain will not keep the position found in the GII electron microscopy work. Our main finding is a consistent propensity of the VP1 dimer to assume prominently asymmetric conformations. In order to probe this result, we obtain new SAXS data on GI VP1 dimers. These data are not interpretable as a population of symmetric dimers, but readily modeled by a highly asymmetric dimer. We go on to discuss possible implications of spontaneously asymmetric conformations in the successive steps of norovirus capsid assembly. Our work brings new lights on the surprising conformational range encoded in the norovirus major capsid protein.
Modelling rock fragmentation of Extremely Energetic Rockfalls
NASA Astrophysics Data System (ADS)
De Blasio, Fabio; Dattola, Giuseppe; Battista Crosta, Giovanni
2017-04-01
Extremely energetic rockfalls (EER) are phenomena for which the combination of a large volume (at least some thousands of m ) and a free fall height of hundreds of metres, results in a large released energy. We fix a threshold value of around 1/50 of kilotons to define such a type of events. Documented examples include several events with dif-ferent size in the Alps (Dru, 2005, 2011, 265,000, 59,200 m3; val Fiscalina - Cima Una, 2007, 40,000 m3; Thurwieser 2004, ca 2 Mm3; Cengalo, 2011, 1.5*105 m3 in 2016, in Switzerland; Civetta, 2013, ca 50,000 m3;), in the Apennines (Gran Sasso, 2006, 30,000 m3), Rocky Mountains (Yosemite, Happy Isles, 38,000 m3), and Himalaya. EERs may become more frequent on steep and sharp mountain peaks as a consequence of permafrost thawing at higher altitudes. In contrast to low energy rockfalls where block disintegration is limited, in EERs the impact after free fall causes an immediate and efficient release of energy much like an explosion. The severe disintegration of the rock and the corresponding air blast are capable of snapping trees many hundreds of metres ahead of the fall area. Pulverized rock at high speed can abrade tree logs, and the resulting suspension flow may travel much further the impact zone, blanketing vast surrounding areas. Using both published accounts of some of these events and collecting direct data for some of them, we present some basic models to describe the involved processes based on analogies with explosions and explosive fragmentation. Of the initial energy, one part is used up in the rock disintegration, and the rest is shared between the shock wave and air blast. The fragmentation energy is calculated based on the fitting of the dust size spectrum by using different proba-bilistic distribution laws and the definition of a surface energy and by considering the involved strain rate. We find the fragmentation is around one third of the initial boulder energy. Finally, we evaluate the velocity of the corresponding cloud generated by the powder suspension and compare with the information available in literature. keywords: EER, Rockfalls, Disintegration number, Omographic distribution
Synthesis and assembly of retrovirus Gag precursors into immature capsids in vitro.
Sakalian, M; Parker, S D; Weldon, R A; Hunter, E
1996-01-01
The assembly of retroviral particles is mediated by the product of the gag gene; no other retroviral gene products are necessary for this process. While most retroviruses assemble their capsids at the plasma membrane, viruses of the type D class preassemble immature capsids within the cytoplasm of infected cells. This has allowed us to determine whether immature capsids of the prototypical type D retrovirus, Mason-Pfizer monkey virus (M-PMV), can assemble in a cell-free protein synthesis system. We report here that assembly of M-PMV Gag precursor proteins can occur in this in vitro system. Synthesized particles sediment in isopycnic gradients to the appropriate density and in thin-section electron micrographs have a size and appearance consistent with those of immature retrovirus capsids. The in vitro system described in this report appears to faithfully mimic the process of assembly which occurs in the host cell cytoplasm, since M-PMV gag mutants defective in in vivo assembly also fail to assemble in vitro. Likewise, the Gag precursor proteins of retroviruses that undergo type C morphogenesis, Rous sarcoma virus and human immunodeficiency virus, which do not preassemble capsids in vivo, fail to assemble particles in this system. Additionally, we demonstrate, with the use of anti-Gag antibodies, that this cell-free system can be utilized for analysis in vitro of potential inhibitors of retrovirus assembly. PMID:8648705
Villinger, Clarissa; Neusser, Gregor; Kranz, Christine; Walther, Paul; Mertens, Thomas
2015-01-01
We show that focused ion beam/scanning electron microscopy (FIB/SEM) tomography is an excellent method to analyze the three-dimensional structure of a fibroblast nucleus infected with human cytomegalovirus (HCMV). We found that the previously described infoldings of the inner nuclear membrane, which are unique among its kind, form an extremely complex network of membrane structures not predictable by previous two-dimensional studies. In all cases they contained further invaginations (2nd and 3rd order infoldings). Quantification revealed 5498 HCMV capsids within two nuclear segments, allowing an estimate of 15,000 to 30,000 capsids in the entire nucleus five days post infection. Only 0.8% proved to be enveloped capsids which were exclusively detected in 1st order infoldings (perinuclear space). Distribution of the capsids between 1st, 2nd and 3rd order infoldings is in complete agreement with the envelopment/de-envelopment model for egress of HCMV capsids from the nucleus and we confirm that capsid budding does occur at the large infoldings. Based on our results we propose the pushing membrane model: HCMV infection induces local disruption of the nuclear lamina and synthesis of new membrane material which is pushed into the nucleoplasm, forming complex membrane infoldings in a highly abundant manner, which then may be also used by nucleocapsids for budding. PMID:26556360
[Preparation and quality control of pyridostigmine bromide orally disintegrating tablet].
Zhang, Li; Tan, Qun-you; Cheng, Xun-guan; Wang, Hong; Hu, Ni-ni; Zhang, Jing-qing
2012-05-01
To prepare orally disintegrating tablets containing pyridostigmine bromide and optimize formulations. Solid dispersion was prepared using solvent evaporation-deposition method. The formulation was optimized by central composite design-response surface methodology (RSM plus CCD) with disintegration time as a reference parameter. The orally disintegrating tablets showed integrity and were smooth with desirable taste and feel in mouth. The disintegration time was less than 30 s. The cumulative drug dissolution was around 8.5% (around 2.5 mg which was less than bitterness threshold of pyridostigmine bromide of 3 mg) within 5 min in water while the cumulative drug dissolution was higher than 95% within 2 min in 0.1 N HCl. The orally disintegrating tablets are reasonable in formulation, feasible in technology and patient-friendly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiMattia, Michael; Govindasamy, Lakshmanan; Levy, Hazel C.
2005-10-01
The production, purification, crystallization and preliminary crystallographic analysis of empty adeno-associated virus serotype 5 capsids are reported. Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Å resolution using synchrotron radiation and belong to the orthorhombicmore » space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Å. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.« less
Nonlinear finite-element analysis of nanoindentation of viral capsids
NASA Astrophysics Data System (ADS)
Gibbons, Melissa M.; Klug, William S.
2007-03-01
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage ϕ29 . As analyzed by the finite-element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details. Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and result in estimates of Young’s moduli of ≈280-360MPa for CCMV and ≈4.5GPa for ϕ29 .
Zhou, Z Hong; Hui, Wong Hoi; Shah, Sanket; Jih, Jonathan; O'Connor, Christine M; Sherman, Michael B; Kedes, Dean H; Schein, Stan
2014-10-07
Like many double-stranded DNA viruses, tumor gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus withstand high internal pressure. Bacteriophage HK97 uses covalent chainmail for this purpose, but how this is achieved noncovalently in the much larger gammaherpesvirus capsid is unknown. Our cryoelectron microscopy structure of a gammaherpesvirus capsid reveals a hierarchy of four levels of organization: (1) Within a hexon capsomer, each monomer of the major capsid protein (MCP), 1,378 amino acids and six domains, interacts with its neighboring MCPs at four sites. (2) Neighboring capsomers are linked in pairs by MCP dimerization domains and in groups of three by heterotrimeric triplex proteins. (3) Small (∼280 amino acids) HK97-like domains in MCP monomers alternate with triplex heterotrimers to form a belt that encircles each capsomer. (4) One hundred sixty-two belts concatenate to form noncovalent chainmail. The triplex heterotrimer orchestrates all four levels and likely drives maturation to an angular capsid that can withstand pressurization. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kui; Wills, Elizabeth G.; Baines, Joel D., E-mail: jdb11@cornell.edu
2012-07-20
We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold proteinmore » pU{sub L}26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU{sub L}26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU{sub L}26 is required for this conformational change.« less
Structure of Adeno-Associated Virus Type 4
Padron, Eric; Bowman, Valorie; Kaludov, Nikola; Govindasamy, Lakshmanan; Levy, Hazel; Nick, Phillip; McKenna, Robert; Muzyczka, Nicholas; Chiorini, John A.; Baker, Timothy S.; Agbandje-McKenna, Mavis
2005-01-01
Adeno-associated virus (AAV) is a member of the Parvoviridae, belonging to the Dependovirus genus. Currently, several distinct isolates of AAV are in development for use in human gene therapy applications due to their ability to transduce different target cells. The need to manipulate AAV capsids for specific tissue delivery has generated interest in understanding their capsid structures. The structure of AAV type 4 (AAV4), one of the most antigenically distinct serotypes, was determined to 13-Å resolution by cryo-electron microscopy and image reconstruction. A pseudoatomic model was built for the AAV4 capsid by use of a structure-based sequence alignment of its major capsid protein, VP3, with that of AAV2, to which AAV4 is 58% identical and constrained by its reconstructed density envelope. The model showed variations in the surface loops that may account for the differences in receptor binding and antigenicity between AAV2 and AAV4. The AAV4 capsid surface topology also shows an unpredicted structural similarity to that of Aleutian mink disease virus and human parvovirus B19, autonomous members of the genus, despite limited sequence homology. PMID:15795290
El Omari, Kamel; Sutton, Geoff; Ravantti, Janne J; Zhang, Hanwen; Walter, Thomas S; Grimes, Jonathan M; Bamford, Dennis H; Stuart, David I; Mancini, Erika J
2013-08-06
The hallmark of a virus is its capsid, which harbors the viral genome and is formed from protein subunits, which assemble following precise geometric rules. dsRNA viruses use an unusual protein multiplicity (120 copies) to form their closed capsids. We have determined the atomic structure of the capsid protein (P1) from the dsRNA cystovirus Φ8. In the crystal P1 forms pentamers, very similar in shape to facets of empty procapsids, suggesting an unexpected assembly pathway that proceeds via a pentameric intermediate. Unlike the elongated proteins used by dsRNA mammalian reoviruses, P1 has a compact trapezoid-like shape and a distinct arrangement in the shell, with two near-identical conformers in nonequivalent structural environments. Nevertheless, structural similarity with the analogous protein from the mammalian viruses suggests a common ancestor. The unusual shape of the molecule may facilitate dramatic capsid expansion during phage maturation, allowing P1 to switch interaction interfaces to provide capsid plasticity. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Martín-González, Natalia; Guérin Darvas, Sofía M.; Durana, Aritz; Marti, Gerardo A.; Guérin, Diego M. A.; de Pablo, Pedro J.
2018-03-01
Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.
NASA Astrophysics Data System (ADS)
Roos, Wouter; Gibbons, Melissa; Klug, William; Wuite, Gijs
2009-03-01
We report nanoindentation experiments by atomic force microscopy on capsids of the Hepatitis B Virus (HBV). HBV is investigated because its capsids can form in either a smaller T=3 or a bigger T=4 configuration, making it an ideal system to test the predictive power of continuum elastic theory to describe nanometre-sized objects. It is shown that for small, consecutive indentations the particles behave reversibly linear and no material fatigue occurs. For larger indentations the particles start to deform non-linearly. The experimental force response fits very well with finite element simulations on coarse grained models of HBV capsids. Furthermore, this also fits with thin shell simulations guided by the F"oppl- von K'arm'an (FvK) number (the dimensionless ratio of stretching and bending stiffness of a thin shell). Both the T=3 and T=4 morphology are very well described by the simulations and the capsid material turns out to have the same Young's modulus, as expected. The presented results demonstrate the surprising strength of continuum elastic theory to describe indentation of viral capsids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Nam, H; Carter, A
2009-01-01
Adeno-associated virus (AAV) serotype 9, which is under development for gene-delivery applications, shows significantly enhanced capsid-associated transduction efficiency in muscle compared with other AAV serotypes. With the aim of characterizing the structural determinants of this property, the purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported. The crystals diffracted X-rays to 2.8 A resolution using synchrotron radiation and belonged to the trigonal space group P32, with unit-cell parameters a = b = 251.0, c = 640.0 A. There are three complete viral capsids in the crystal unit cell. The orientation and position of the asymmetricmore » unit capsid have been determined by molecular-replacement methods and structure determination is in progress.« less
Unlocking Internal Prestress from Protein Nanoshells
NASA Astrophysics Data System (ADS)
Klug, W. S.; Roos, W. H.; Wuite, G. J. L.
2012-10-01
The capsids of icosahedral viruses are closed shells assembled from a hexagonal lattice of proteins with fivefold angular defects located at the icosahedral vertices. Elasticity theory predicts that these disclinations are subject to an internal compressive prestress, which provides an explanation for the link between size and shape of capsids. Using a combination of experiment and elasticity theory we investigate the question of whether macromolecular assemblies are subject to residual prestress, due to basic geometric incompatibility of the subunits. Here we report the first direct experimental test of the theory: by controlled removal of protein pentamers from the icosahedral vertices, we measure the mechanical response of so-called “whiffle ball” capsids of herpes simplex virus, and demonstrate the signature of internal prestress locked into wild-type capsids during assembly.
Structural studies of the Sputnik virophage.
Sun, Siyang; La Scola, Bernard; Bowman, Valorie D; Ryan, Christopher M; Whitelegge, Julian P; Raoult, Didier; Rossmann, Michael G
2010-01-01
The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 A in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus.
Structural Studies of the Sputnik Virophage▿
Sun, Siyang; La Scola, Bernard; Bowman, Valorie D.; Ryan, Christopher M.; Whitelegge, Julian P.; Raoult, Didier; Rossmann, Michael G.
2010-01-01
The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 Å in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus. PMID:19889775
Hess, Gaelen T; Guimaraes, Carla P; Spooner, Eric; Ploegh, Hidde L; Belcher, Angela M
2013-09-20
M13 bacteriophage has been used as a scaffold to organize materials for various applications. Building more complex multiphage devices requires precise control of interactions between the M13 capsid proteins. Toward this end, we engineered a loop structure onto the pIII capsid protein of M13 bacteriophage to enable sortase-mediated labeling reactions for C-terminal display. Combining this with N-terminal sortase-mediated labeling, we thus created a phage scaffold that can be labeled orthogonally on three capsid proteins: the body and both ends. We show that covalent attachment of different DNA oligonucleotides at the ends of the new phage structure enables formation of multiphage particles oriented in a specific order. These have potential as nanoscale scaffolds for multi-material devices.
NASA Technical Reports Server (NTRS)
Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1994-01-01
A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.
Simulations of curved assemblies in soft matter and biological systems
NASA Astrophysics Data System (ADS)
Qiao, Cong
Viruses are small infectious agents that replicate only inside living cells of other organisms. In the viral life cycle, the self-assembly of the outer protein shell (capsid) is an essential step. We study this process in the hope of shedding light on development of antiviral drugs, gene therapy and other virus-related technologies that can benefit the humankind. More fundamentally, learning about the process of viral capsid assembly can elucidate the assembly mechanisms of a wide range of complex structures. In this work, we use molecular dynamics simulations and coarse-grained computational models to study viral capsid assembly in several situations where geometric constraints play a role in dictating assembly outcomes. We first focus on icosahedral viruses with single-stranded RNA genomes, in which case the capsid usually assembles around the genomic RNA. It is consistently observed in experiments that such viral particles are ''overcharged'', meaning the net negative charge on the viral genome is greater than the net positive charge on the viral capsid. We computationally investigate the mechanisms that lead to ``overcharging'', and more broadly, how the encapsidated genome length is influenced by the capsid. We perform both dynamical simulations of the assembly process and equilibrium calculations to determine the optimal genome length (meaning that which maximizes the assembly yield and/or minimizes the free energy of the assembled virus). We find that the optimal genome length is determined by the interplay between capsid size, net capsid charge, distribution of capsid charge and nucleic acid structures. Our simulations demonstrate that overcharging results from a combination of electrostatic screening and the geometric constraints associated with encapsulating a nucleic acid inside of a spherical virus. We then study the assembly of the immature HIV. In contrast to icosahedral viruses, the immature HIV forms an asymmetric particle, consisting of continuous regularly packed regions with local hexagonal order and vacancies. A similar lattice structure has been observed in experiments in which mutually attractive colloidal particles pack on the surface of a spherical droplet (G. Meng, J. Paulose, D. R. Nelson, and V. N. Manoharan, ''Elastic instability of a crystal growing on a curved surface'', Science 343, 634-637 (2014).), suggesting that the two systems experience a similar form of geometric frustration. We therefore study the adsorption and packing of spherical particles on a spherical template, as a function of the strength and range of interparticle attractions, as well as the radius of the spherical template. We observe that the adsorbed particles form two different classes of packing arrangements, one with icosahedrally ordered topological defects, and the other with highly disordered defects and vacancies. The latter regime is consistent with experiments on colloidal packing on spherical droplets and the immature HIV lattice. Our results suggest that the transition between these regimes is controlled by the range of the interparticle attractions. In the last chapter, we study a model for the assembly and budding of a capsid on a membrane, such as occurs during the exit of the immature HIV virus from a cell. We use a coarse-grained subunit model to represent the capsid proteins, and a fluid membrane model to represent the cell membrane. We find that the size and structure of the assembled capsid depends sensitively on the timescale of budding.
Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi
2017-01-01
Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci . Nevertheless, some features are shared in Hox gene components and gene arrangement on the chromosomes, suggesting that Hox gene cluster disintegration in ascidians involved early events common to tunicates as well as later ascidian lineage-specific events.
Ivanova, Lyudmila; Buch, Anna; Döhner, Katinka; Pohlmann, Anja; Binz, Anne; Prank, Ute; Sandbaumhüter, Malte
2016-01-01
ABSTRACT Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neurons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs 1766WD1767 and 1862WE1863 are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The infectivity of the mutants HSV-1(17+)Lox-pUL36-WD/AA-WE/AA and HSV-1(17+)Lox-CheVP26-pUL36-WD/AA-WE/AA, in which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron microscopy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective parental strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and, to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the membranes of secondary capsid envelopment and for efficient virion assembly. IMPORTANCE Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins that are essential for several stages of the herpesvirus life cycle. Here we characterized two conserved tryptophan-acidic motifs in the central region of the large tegument protein pUL36 of herpes simplex virus. When we mutated these motifs, secondary envelopment of cytosolic capsids and the production of infectious particles were severely impaired. Our data suggest that pUL36 and its homologs in other herpesviruses, and in particular such tryptophan-acidic motifs, could provide attractive targets for the development of novel drugs to prevent herpesvirus assembly and spread. PMID:27009950
Design, Formulation, and Physicochemical Evaluation of Montelukast Orally Disintegrating Tablet
Aslani, Abolfazl; Beigi, Maryam
2016-01-01
Background: Orally disintegrating tablets (ODTs) are a modern form of tablets that when placed in the oral cavity, disperses rapidly. These tablets have advantages, particularly good applications for children and old patients who have a complication in chewing or swallowing solid dosage forms. The aim of this study was to design, formulate, and evaluate the physicochemical properties of 5 mg montelukast ODTs for the prevention of asthma and seasonal allergies. Methods: Formulations were prepared with different amounts of super disintegrating agents and effervescent bases as disintegrant agents. Flowability and compressibility of mixed powders were evaluated. The prepared formulations were tested for hardness, thickness, friability, weight variation, drug content, wetting time, disintegration time, dissolution study, and moisture uptake studies. Results: The compressibility index and angle of repose were in the range of 15.87%–23.43% and 32.93–34.65, respectively. Hardness, thickness, friability, wetting time, and content uniformity of formulations were in the range of 33.7–37.1 N, 3.00–3.81 mm, 0.27%–0.43%, 31–50 s and 96.28%–99.90%, respectively. Disintegration time of the tablets prepared with super disintegrating agents, effervescent bases, and combination of two were in the range of 30–50, more than 60 and 20–36 s, respectively. Conclusions: Mixture of powders and tablets passed all the specified tests. The results showed formulations prepared by super disintegrating agents and super disintegrating agents with effervescent bases had shorter disintegration time compared to formulations with effervescent bases alone. PMID:27857833
Siden, Rivka; Wolf, Matthew
2013-06-01
The administration of oral chemotherapeutic drugs can be problematic in patients with swallowing difficulties. Inability to swallow solid dosage forms can compromise compliance and may lead to poor clinical outcome. The current technique of tablet crushing to aid in administration is considered an unsafe practice. By developing a technique to disintegrate tablets in an oral syringe, the risk associated with tablet crushing can be avoided. The purpose of this study was to determine the feasibility of using disintegration in an oral syringe for the administration of oral chemotherapeutic tablets. Eight commonly used oral chemotherapeutic drugs were tested. Tablets were placed in an oral syringe and allowed to disintegrate in tap water. Various volumes and temperatures were tested to identify which combination allows for complete disintegration of the tablet in the shortest amount of time. The oral syringe disintegration method was considered feasible if disintegration occurred in ≤15 min and in ≤20 mL of water and the dispersion passed through an oral syringe tip. The following tablets were shown to disintegrate within 15 min and in <20 mL of water: busulfan, cyclophosphamide 50 mg, dasatinib, imatinib, methotrexate, and thioguanine. For these drugs, drug-specific information pamphlets can be prepared for patient or caregiver use. Mercaptopurine, cyclophosphamide 25 mg, and mitotane tablets did not pass the disintegration test. Disintegrating oral chemotherapeutic tablets in a syringe provides a closed system to administer hazardous drugs and allows for the safe administration of oral chemotherapeutic drugs in a tablet form to patients with swallowing difficulties.
Kumari, Parveen; Rathi, Pooja; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-07-01
This study was oriented toward the disintegration profiling of the diclofenac sodium (DS) immediate-release (IR) tablets and development of its relationship with medium permeability k perm based on Kozeny-Carman equation. Batches (L1-L9) of DS IR tablets with different porosities and specific surface area were prepared at different compression forces and evaluated for porosity, in vitro dissolution and particle-size analysis of the disintegrated mass. The k perm was calculated from porosities and specific surface area, and disintegration profiles were predicted from the dissolution profiles of IR tablets by stripping/residual method. The disintegration profiles were subjected to exponential regression to find out the respective disintegration equations and rate constants k d . Batches L1 and L2 showed the fastest disintegration rates as evident from their bi-exponential equations while the rest of the batches L3-L9 exhibited the first order or mono-exponential disintegration kinetics. The 95% confidence interval (CI 95% ) revealed significant differences between k d values of different batches except L4 and L6. Similar results were also spotted for dissolution profiles of IR tablets by similarity (f 2 ) test. The final relationship between k d and k perm was found to be hyperbolic, signifying the initial effect of k perm on the disintegration rate. The results showed that disintegration profiling is possible because a relationship exists between k d and k perm . The later being relatable with porosity and specific surface area can be determined by nondestructive tests.
Uchida, Takahiro; Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Furuno, Hiroyuki; Teraoka, Makoto; Ikezaki, Hidekazu
2013-09-01
The purpose of this study was to evaluate and compare the palatability of 10 formulations (the original manufacturer's formulation and nine generics) of amlodipine orally disintegrating tablets (ODTs) by means of human gustatory sensation testing, disintegration/dissolution testing and the evaluation of bitterness intensity using a taste sensor. Initially, the palatability, dissolution and bitterness intensity of the ODTs were evaluated in gustatory sensation tests. Second, the disintegration times of the ODTs were measured using the OD-mate, a newly developed apparatus for measuring the disintegration of ODTs, and lastly, the bitterness intensities were evaluated using an artificial taste sensor. Using factor analysis, the factors most affecting the palatability of amlodipine ODTs were found to be disintegration and taste. There was high correlation between the disintegration times of the 10 amlodipine ODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of amlodipine ODTs 10, 20 and 30 s after starting the conventional brief dissolution test and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. The OD-mate and the taste sensor may be useful for predicting the disintegration and bitterness intensity of amlodipine ODTs in the mouth. © 2013 Royal Pharmaceutical Society.
Orally disintegrating films: A modern expansion in drug delivery system.
Irfan, Muhammad; Rabel, Sumeira; Bukhtar, Quratulain; Qadir, Muhammad Imran; Jabeen, Farhat; Khan, Ahmed
2016-09-01
Over the past few decades, tendency toward innovative drug delivery systems has majorly increased attempts to ensure efficacy, safety and patient acceptability. As discovery and development of new chemical agents is a complex, expensive and time consuming process, so recent trends are shifting toward designing and developing innovative drug delivery systems for existing drugs. Out of those, drug delivery system being very eminent among pediatrics and geriatrics is orally disintegrating films (ODFs). These fast disintegrating films have superiority over fast disintegrating tablets as the latter are associated with the risks of choking and friability. This drug delivery system has numerous advantages over conventional fast disintegrating tablets as they can be used for dysphasic and schizophrenic patients and are taken without water due to their ability to disintegrate within a few seconds releasing medication in mouth. Various approaches are employed for formulating ODFs and among which solvent casting and spraying methods are frequently used. Generally, hydrophilic polymers along with other excipients are used for preparing ODFs which allow films to disintegrate quickly releasing incorporated active pharmaceutical ingredient (API) within seconds. Orally disintegrating films have potential for business and market exploitation because of their myriad of benefits over orally disintegrating tablets. This present review attempts to focus on benefits, composition, approaches for formulation and evaluation of ODFs. Additionally, the market prospect of this innovative dosage form is also targeted.
Childhood Disintegrative Disorder as a Complication of Chicken Pox.
Verma, Jitendra Kumar; Mohapatra, Satyakam
2016-01-01
Childhood disintegrative disorder (CDD) is characterized by late onset (>3 years of age) of developmental delays in language, social function and motor skills. Commonly there is no antecedent physical disorder leading to childhood disintegrative disorder. The present case report describes a child who developed childhood disintegrative disorder at the age of 6 years after an episode of chicken pox.
Dissolution testing of orally disintegrating tablets.
Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif
2012-07-01
For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Applicability of two automated disintegration apparatuses for rapidly disintegrating (mini)tablets.
Sieber, Daniel; Lazzari, Alessia; Quodbach, Julian; Pein, Miriam
2017-03-01
Orally disintegrating (mini)tablets (OD(M)Ts) are of interest in the field of pharmaceutics. Their orodispersible character is defined by the disintegration time, which is measured with a basket apparatus according to the European Pharmacopoeia. This method, however, lacks applicability for ODTs and especially ODMTs. New disintegration apparatuses have been described in literature, but a qualification to assess the applicability has not been described. A qualification procedure for two automated disintegration apparatuses, OD-mate and Hermes apparatus, is introduced. Aspects of the operational qualification as well as precision and accuracy regarding a performance qualification were evaluated for both apparatuses analog to the ICH guideline Q2. While the OQ study is performed separately for each apparatus, accuracy and precision were performed following the same protocol for both testers. Small RSDs (16.9% OD-mate; 15.2% Hermes compared to 32.3% for the pharmacopeial method) were found despite very fast disintegration times (1.5 s for both apparatuses). By comparing these RSDs to practical examples, the authors propose threshold values for repeatability depending on the mean disintegration time. Obtained results from the qualification were used to assess the applicability of both apparatuses.
Comparative study on novel test systems to determine disintegration time of orodispersible films.
Preis, Maren; Gronkowsky, Dorothee; Grytzan, Dominik; Breitkreutz, Jörg
2014-08-01
Orodispersible films (ODFs) are a promising innovative dosage form enabling drug administration without the need for water and minimizing danger of aspiration due to their fast disintegration in small amounts of liquid. This study focuses on the development of a disintegration test system for ODFs. Two systems were developed and investigated: one provides an electronic end-point, and the other shows a transferable setup of the existing disintegration tester for orodispersible tablets. Different ODF preparations were investigated to determine the suitability of the disintegration test systems. The use of different test media and the impact of different storage conditions of ODFs on their disintegration time were additionally investigated. The experiments showed acceptable reproducibility (low deviations within sample replicates due to a clear determination of the measurement end-point). High temperatures and high humidity affected some of the investigated ODFs, resulting in higher disintegration time or even no disintegration within the tested time period. The methods provided clear end-point detection and were applicable for different types of ODFs. By the modification of a conventional test system to enable application for films, a standard method could be presented to ensure uniformity in current quality control settings. © 2014 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka
2017-11-01
The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.
Campos, Samuel K; Barry, Michael A
2004-11-01
There are extensive efforts to develop cell-targeting adenoviral vectors for gene therapy wherein endogenous cell-binding ligands are ablated and exogenous ligands are introduced by genetic means. Although current approaches can genetically manipulate the capsid genes of adenoviral vectors, these approaches can be time-consuming and require multiple steps to produce a modified viral genome. We present here the use of the bacteriophage lambda Red recombination system as a valuable tool for the easy and rapid construction of capsid-modified adenoviral genomes.
Kavitha, S; Yukesh Kannah, R; Rajesh Banu, J; Kaliappan, S; Johnson, M
2017-11-01
The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.
Wang, Fen; Wang, Yong; Ji, Min
2005-08-31
Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.
Mullapudi, Edukondalu; Füzik, Tibor; Přidal, Antonín; Plevka, Pavel
2017-02-15
Viruses of the family Dicistroviridae can cause substantial economic damage by infecting agriculturally important insects. Israeli acute bee paralysis virus (IAPV) causes honeybee colony collapse disorder in the United States. High-resolution molecular details of the genome delivery mechanism of dicistroviruses are unknown. Here we present a cryo-electron microscopy analysis of IAPV virions induced to release their genomes in vitro We determined structures of full IAPV virions primed to release their genomes to a resolution of 3.3 Å and of empty capsids to a resolution of 3.9 Å. We show that IAPV does not form expanded A particles before genome release as in the case of related enteroviruses of the family Picornaviridae The structural changes observed in the empty IAPV particles include detachment of the VP4 minor capsid proteins from the inner face of the capsid and partial loss of the structure of the N-terminal arms of the VP2 capsid proteins. Unlike the case for many picornaviruses, the empty particles of IAPV are not expanded relative to the native virions and do not contain pores in their capsids that might serve as channels for genome release. Therefore, rearrangement of a unique region of the capsid is probably required for IAPV genome release. Honeybee populations in Europe and North America are declining due to pressure from pathogens, including viruses. Israeli acute bee paralysis virus (IAPV), a member of the family Dicistroviridae, causes honeybee colony collapse disorder in the United States. The delivery of virus genomes into host cells is necessary for the initiation of infection. Here we present a structural cryo-electron microscopy analysis of IAPV particles induced to release their genomes. We show that genome release is not preceded by an expansion of IAPV virions as in the case of related picornaviruses that infect vertebrates. Furthermore, minor capsid proteins detach from the capsid upon genome release. The genome leaves behind empty particles that have compact protein shells. Copyright © 2017 Mullapudi et al.
Rajkumar, Arthi D; Reynolds, Gavin K; Wilson, David; Wren, Stephen; Hounslow, Michael J; Salman, Agba D
2016-09-01
Tablet disintegration is a fundamental parameter that is tested in vitro before a product is released to the market, to give confidence that the tablet will break up in vivo and that active drug will be available for absorption. Variations in tablet properties cause variation in disintegration behaviour. While the standardised pharmacopeial disintegration test can show differences in the speed of disintegration of different tablets, it does not give any mechanistic information about the underlying cause of the difference. With quantifiable disintegration data, and consequently an improved understanding into tablet disintegration, a more knowledge-based approach could be applied to the research and development of future tablet formulations. The aim of the present research was to introduce an alternative method which will enable a better understanding of tablet disintegration using a particle imaging approach. A purpose-built flow cell was employed capable of online observation of tablet disintegration, which can provide information about the changing tablet dimensions and the particles released with time. This additional information can improve the understanding of how different materials and process parameters affect tablet disintegration. Standard USP analysis was also carried out to evaluate and determine whether the flow cell method can suitably differentiate the disintegration behaviour of tablets produced using different processing parameters. Placebo tablets were produced with varying ratios of insoluble and soluble filler (mannitol and MCC, respectively) so that the effect of variation in the formulation can be investigated. To determine the effect of the stress applied during granulation and tableting on tablet disintegration behaviour, analysis was carried out on tablets produced using granular material compressed at 20 or 50bar, where a tableting load of either 15 or 25kN was used. By doing this the tablet disintegration was examined in terms of the tablet porosity by monitoring the tablet area and particle release. It was found that when 20 and 50bar roller compaction pressure was used the USP analysis showed almost identical disintegration times for the consequent tablets. With the flow cell method a greater tablet swelling was observed for the lower pressure followed by steady tablet erosion. Additionally, more particles were released during disintegration due to the smaller granule size distribution within the tablet. When a higher tableting pressure was applied the tablet exhibited a delay in the time taken to reach the maximum swelling area, and slower tablet erosion and particle release were also observed, largely due to the tablet being much denser causing slower water uptake. This was in agreement with the USP analysis data. Overall it was confirmed by using both the standard USP analysis and flow cell method that the tablet porosity affects the tablet disintegration, whereby a more porous tablet disintegrates more slowly. But a more in-depth understanding was obtained using the flow cell method as it was determined that tablets will swell to varying degrees and release particles at different rates depending on the roller compaction and tableting pressure used. Copyright © 2016 Elsevier B.V. All rights reserved.
Correlation of dissolution and disintegration results for an immediate-release tablet.
Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming
2018-02-20
The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.
Kubiszewski, V; Fontaine, R; Huré, K; Rusch, E
2013-04-01
The aim of this study was to determine the prevalence of adolescents engaged in cyber-bullying and then to identify whether students involved in cyber- and school bullying present the same characteristics of internalizing problems (insomnia, perceived social disintegration, psychological distress) and externalizing problems (general aggressiveness, antisocial behavior). Semi-structured interviews were conducted with 738 adolescents from a high-school and a middle-school (mean age=14.8 ± 2.7). The Electronic Bullying Questionnaire and the Olweus Bully/Victim Questionnaire were used to identify profiles of cyber-bullying (cyber-victim, cyber-bully, cyber-bully/victim and cyber-neutral) and school bullying (victim, bully, bully/victim and neutral). Internalizing problems were investigated using the Athens Insomnia Scale, a Perceived Social Disintegration Scale and a Psychological Distress Scale. Externalizing problems were assessed using a General Aggressiveness Scale and an Antisocial Behavior Scale. Almost one student in four was involved in cyber-bullying (16.4% as cyber-victim, 4.9% as cyber-bully and 5.6% as cyber-bully/victim); 14% of our sample was engaged in school bullying as a victim, 7.2% as a bully and 2.8% as a bully/victim. The majority of adolescents involved in cyber-bullying were not involved in school bullying. With regard to the problems associated with school bullying, internalizing problems were more prevalent in victims and bully/victims, whereas externalizing problems were more common in bullies and bully/victims. A similar pattern was found in cyber-bullying where internalizing problems were characteristic of cyber-victims and cyber-bully/victims. Insomnia was elevated in the cyber-bully group which is specific to cyberbullying. General aggressiveness and antisocial behavior were more prevalent in cyber-bullies and cyber-bully/victims. Looking at the differences between types of bullying, victims of "school only" and "school and cyber" bullying had higher scores for insomnia and perceived social disintegration than victims of "cyber only" bullying or students "non-involved". Higher general aggressiveness scores were observed for "school only" bullies and "school and cyber" bullies than for bullies in "cyber only" bullying or students "non-involved". Regarding antisocial behavior, "school only" bullies, "cyber only" bullies, "school and cyber" bullies had higher scores than students "non-involved". This study highlights the importance of investigating both school and cyber-bullying as many psychosocial problems are linked to these two specific and highly prevalent forms of bullying. Copyright © 2012 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
2006-01-29
solitons. In essence , these intersections behave as DS switching junctions. Figure 1(a) depicts a nonlinear array network involving consecutive bends...junction, the signal DS would have totally disintegrated into transmitted and reflected waves. Thus in essence , the junction operates as an AND...2000-2001) Reinhard Neumeier (undergraduate student, visiting from Technical Un. of Munich, CREOL, 2003) Jasmine Milner (undergraduate student
Bradford, B.W.; Skinner, W.J.
1959-03-24
Molded sealing elements suitable for use under conditions involving exposure to uranium hexafluoride vapor are described. Such sealing elements are made by subjecting graphitic carbons to a preliminary treatment with uranium hexafluoride vapor, and then incorporating polytetrafluorethylene in them. The resulting composition has good wear resistant and frictional properties and is resistant to disintegration by uranium hexafluoride over long periods of exposure.
Rekindling the Spirit: A Vision for the New Millennial Movement To Leave No Child behind.
ERIC Educational Resources Information Center
Children's Defense Fund, Washington, DC.
This booklet includes presentations, discussions, and photographs of a meeting in December 1997 of the Children's Defense Fund (CDF) and the Black Community Crusade for Children (BCCC) at the former Alex Haley farm. The meeting involved intergenerational conversations about the effects of race, poverty, and family and community disintegration on…
Plasma discharge self-cleaning filtration system
Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong
2014-07-22
The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.
Effects of ultrasonic disintegration of excess sewage sludge.
Zielewicz, Ewa
2016-10-01
Breaking down sludge floc (sonodyspergation effect) and destruction of the cell membranes of microorganisms forming floc is a direct effect of ultrasonic disintegration of sludge excess. This results in release of organic material by liquid sludge (the sonolysis effect). Desired technological effects of the disintegration are: to shorten the hydrolytic phase of fermentation, to increase the production of biogas (source of renewable energy) and an increased mineralization (stability) of fermented sludge. The presented study demonstrates research covering thickened excess sludge of various physicochemical properties, collected from nine municipal sewage treatment plants. The sludge was subjected to ultrasonic disintegration using three differently constructed disintegrators and different proportions of sonification area. Direct effects of disintegration were monitored and recorded using selected indicators describing changes in the properties of sludge and increase of substance dispersed and dissolved in the supernatant liquid to be filtered. Studies have demonstrated that those (direct) effects of ultrasonic disintegration depend on the physicochemical properties of the sludge (foremost the concentration of dry solids) that determine their variable susceptibility to the disintegration methods. The direct effects also depend on optimal process conditions (which consist of the construction of the ultrasonic disintegrator), the geometric proportions of the sonication area and the operating parameters of disintegration (which could be appropriately matched to the characteristics of sludge). The most preferable results were obtained for ultrasonic disintegration of sludge with a dry matter concentration C 0 < 4.2 %. The highest effect of sonolysis-an almost 30-fold increase in the COD dissolved in the supernatant-was obtained for the sludge of lowest dry matter (C 0 = 2.0 %), which was sonicated in a reactor with a short transducer of the largest radiating surface area, as well as the lowest ratio between this area and area of reactor. The best effects of disagglomeration of flocks have corresponded with the high value of power density U UD = 880-900 WL(-1).
Cytoplasmic bacteriophage display system
Studier, F.W.; Rosenberg, A.H.
1998-06-16
Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.
Cytoplasmic bacteriophage display system
Studier, F. William; Rosenberg, Alan H.
1998-06-16
Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.
NASA Technical Reports Server (NTRS)
Chang, D.; Haynes, J. I. Jr; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1993-01-01
The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.
Spontaneous curvature as a regulator of the size of virus capsids
NASA Astrophysics Data System (ADS)
Šiber, Antonio; Majdandžić, Antonio
2009-08-01
We investigate the physical reasons underlying the high monodispersity of empty virus capsids assembled in thermodynamical equilibrium in conditions of favorable pH and ionic strength. We propose that the high fidelity of the assembly results from the effective spontaneous curvature of the viral protein assemblies and the corresponding bending rigidity that penalizes curvatures which are larger and smaller from the spontaneous one. On the example of hepatitis B virus, which has been thoroughly studied experimentally in the context of interest to us, we estimate the magnitude of bending rigidity that is needed to suppress the appearance of aberrant capsid structures (˜60kBT) . Our approach also demonstrates that the aberrant capsids that can be classified within the Caspar-Klug framework are in most circumstances likely to be smaller from the regular ones, in agreement with the experimental findings.
The allosteric switching mechanism in bacteriophage MS2
NASA Astrophysics Data System (ADS)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.
2016-07-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Li; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL; Genetics Institute, University of Florida College of Medicine, Gainesville, FL
2008-11-25
We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, theirmore » transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.« less
The allosteric switching mechanism in bacteriophage MS2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu
2016-07-21
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we usemore » all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.« less
Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J
2010-10-01
Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.
Naumer, Matthias; Ying, Ying; Michelfelder, Stefan; Reuter, Antje; Trepel, Martin; Müller, Oliver J; Kleinschmidt, Jürgen A
2012-05-01
Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.
MS2 bacteriophage as a delivery vessel of porphyrins for photodynamic therapy
NASA Astrophysics Data System (ADS)
Cohen, Brian A.; Kaloyeros, Alain E.; Bergkvist, Magnus
2011-02-01
Challenges associated with photodynamic therapy (PDT) include the packaging and site-specific delivery of therapeutic agents to the tissue of interest. Nanoscale encapsulation of PDT agents inside targeted virus capsids is a novel concept for packaging and site-specific targeting. The icosahedral MS2 bacteriophage is one potential candidate for such a packaging-system. MS2 has a porous capsid with an exterior diameter of ~28 nm where the pores allow small molecules access to the capsid interior. Furthermore, MS2 presents suitable residues on the exterior capsid for conjugation of targeting ligands. Initial work by the present investigators has successfully demonstrated RNA-based self-packaging of a heterocyclic PDT agent (meso-tetrakis(para-N-trimethylanilinium)porphine, TMAP) into the MS2 capsid. Packaging photoactive compounds in confined spaces could result in energy transfer between the molecules upon photoactivation, which could in turn reduce the production of radical oxygen species (ROS). ROS are key components in photodynamic therapy, and a reduced production could negatively impact the efficacy of PDT treatment. Here, findings are presented from an investigation of ROS generation of TMAP encapsulated within the MS2 capsid compared to free TMAP in solution. Monitoring of ROS production upon photoactivation via a specific singlet oxygen assay revealed the impact on ROS generation between packaged porphyrins as compared to free porphyrin in an aqueous solution. Follow on work will study the ability of MS2-packaged porphyrins to generate ROS in vitro and subsequent cytotoxic effects on cells in culture.
The allosteric switching mechanism in bacteriophage MS2
Perkett, Matthew R.; Mirijanian, Dina T.
2016-01-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates. PMID:27448905
Influence of pH on in vitro disintegration of phosphate binders.
Stamatakis, M K; Alderman, J M; Meyer-Stout, P J
1998-11-01
Hyperphosphatemia, a common complication in patients with end-stage renal disease, is treated with oral phosphate-binding medications that restrict phosphorus absorption from the gastrointestinal (GI) tract. Impaired product performance, such as failure to disintegrate and/or dissolve in the GI tract, could limit the efficacy of the phosphate binder. Disintegration may be as important as dissolution for predicting in vitro product performance for medications that act locally on the GI tract, such as phosphate binders. Furthermore, patients with end-stage renal disease have a wide range in GI pH, and pH can influence a product's performance. The purpose of this study was to determine the effect of pH on in vitro disintegration of phosphate binders. Fifteen different commercially available phosphate binders (seven calcium carbonate tablet formulations, two calcium acetate tablet formulations, three aluminum hydroxide capsule formulations, and three aluminum hydroxide tablet formulations) were studied using the United States Pharmacopeia (USP) standard disintegration apparatus. Phosphate binders were tested in simulated gastric fluid (pH 1.5), distilled water (pH 5.1), and simulated intestinal fluid (pH 7.5). Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within 30 minutes. Results indicate that 9 of the 15 phosphate binders tested showed statistically significant differences in disintegration time (DT) based on pH. The percentage of binders that passed the disintegration study test in distilled water, gastric fluid, and intestinal fluid were 80%, 80%, and 73%, respectively. The findings of this study show that the disintegration of commercially available phosphate binders is highly variable. The pH significantly affected in vitro disintegration in the majority of phosphate binders tested; how significantly this affects in vivo performance has yet to be studied.
Strauss, Mike; Filman, David J; Belnap, David M; Cheng, Naiqian; Noel, Roane T; Hogle, James M
2015-04-01
Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called "pocket factor"), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are reminiscent of the nectin family, by involving the burying of otherwise-exposed hydrophobic groups. Importantly, poliovirus expansion is regulated by the binding of a lipid molecule within the viral capsid. We show that receptor binding either causes this molecule to be expelled or requires it, but that its loss is not sufficient to trigger irreversible expansion. Based on our model, we propose testable hypotheses to explain how the viral shell becomes destabilized, leading to RNA uncoating. These findings give us a better understanding of how poliovirus has evolved to exploit a natural process of its host to penetrate the membrane barrier. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Strauss, Mike; Filman, David J.; Belnap, David M.; Cheng, Naiqian; Noel, Roane T.
2015-01-01
ABSTRACT Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called “pocket factor”), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. IMPORTANCE The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are reminiscent of the nectin family, by involving the burying of otherwise-exposed hydrophobic groups. Importantly, poliovirus expansion is regulated by the binding of a lipid molecule within the viral capsid. We show that receptor binding either causes this molecule to be expelled or requires it, but that its loss is not sufficient to trigger irreversible expansion. Based on our model, we propose testable hypotheses to explain how the viral shell becomes destabilized, leading to RNA uncoating. These findings give us a better understanding of how poliovirus has evolved to exploit a natural process of its host to penetrate the membrane barrier. PMID:25631086
Disintegration of Sensorimotor Brain Networks in Schizophrenia.
Kaufmann, Tobias; Skåtun, Kristina C; Alnæs, Dag; Doan, Nhat Trung; Duff, Eugene P; Tønnesen, Siren; Roussos, Evangelos; Ueland, Torill; Aminoff, Sofie R; Lagerberg, Trine V; Agartz, Ingrid; Melle, Ingrid S; Smith, Stephen M; Andreassen, Ole A; Westlye, Lars T
2015-11-01
Schizophrenia is a severe mental disorder associated with derogated function across various domains, including perception, language, motor, emotional, and social behavior. Due to its complex symptomatology, schizophrenia is often regarded a disorder of cognitive processes. Yet due to the frequent involvement of sensory and perceptual symptoms, it has been hypothesized that functional disintegration between sensory and cognitive processes mediates the heterogeneous and comprehensive schizophrenia symptomatology. Here, using resting-state functional magnetic resonance imaging in 71 patients and 196 healthy controls, we characterized the standard deviation in BOLD (blood-oxygen-level-dependent) signal amplitude and the functional connectivity across a range of functional brain networks. We investigated connectivity on the edge and node level using network modeling based on independent component analysis and utilized the brain network features in cross-validated classification procedures. Both amplitude and connectivity were significantly altered in patients, largely involving sensory networks. Reduced standard deviation in amplitude was observed in a range of visual, sensorimotor, and auditory nodes in patients. The strongest differences in connectivity implicated within-sensorimotor and sensorimotor-thalamic connections. Furthermore, sensory nodes displayed widespread alterations in the connectivity with higher-order nodes. We demonstrated robustness of effects across subjects by significantly classifying diagnostic group on the individual level based on cross-validated multivariate connectivity features. Taken together, the findings support the hypothesis of disintegrated sensory and cognitive processes in schizophrenia, and the foci of effects emphasize that targeting the sensory and perceptual domains may be key to enhance our understanding of schizophrenia pathophysiology. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Disintegration of excess activated sludge--evaluation and experience of full-scale applications.
Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J
2006-01-01
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.
Radwan, Asma; Wagner, Manfred; Amidon, Gordon L; Langguth, Peter
2014-06-16
Food intake may delay tablet disintegration. Current in vitro methods have little predictive potential to account for such effects. The effect of a variety of factors on the disintegration of immediate release tablets in the gastrointestinal tract has been identified. They include viscosity of the media, precipitation of food constituents on the surface of the tablet and reduction of water diffusivity in the media as well as changes in the hydrodynamics in the surrounding media of the solid dosage form. In order to improve the predictability of food affecting the disintegration of a dosage form, tablet disintegration in various types of a liquefied meal has been studied under static vs. dynamic (agitative) conditions. Viscosity, water diffusivity, osmolality and Reynolds numbers for the different media were characterized. A quantitative model is introduced which predicts the influence of the Reynolds number in the tablet disintegration apparatus on the disintegration time. Viscosity, water diffusivity and media flow velocity are shown to be important factors affecting dosage form disintegration. The results suggest the necessity of considering these parameters when designing a predictive model for simulating the in vivo conditions. Based on these experiments and knowledge on in vivo hydrodynamics in the GI tract, it is concluded that the disintegration tester under current pharmacopoeial conditions is operated in an unphysiological mode and no bioprediction may be derived. Recommendations regarding alternative mode of operation are made. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Yali; Li, Peng; Qian, Rong; Sun, Tianyu; Fang, Fangzhi; Wang, Zonghua; Ke, Xue; Xu, Bohui
2018-08-01
The primary objective of this study was to mask bitter taste and decrease the disintegration time of carbinoxamine maleate (CAM) orally disintegrating tablets (ODTs). In order to screen the prescription of ODTs, a novel modified in vitro disintegration method (MIVDM) was developed to measure the in vitro disintegration time. In this method, different concentrations of ethanol served as disintegration medium in order to delay the in vitro water absorption and disintegration process of tablets. The MIVDM demonstrated good in vitro and in vivo correlation and proved more precise and discriminative than other reported methods. In this research, ion exchange resins (IERs) were used to mask bitter taste for improving mouthfeel. The drug-resin ratio and reaction temperature were investigated to obtain the optimum carbinoxamine resin complexes (CRCs). The characterization of CRCs revealed an amorphous state. ODTs were prepared by direct compression. Superdisintegrants and diluents of ODTs were screened first. Further optimization was carried out by using Box-Behnken design. The effect of (X 1 ) mannitol/microcrystalline cellulose ratio, (X 2 ) the amount of low-substituted hydroxypropylcellulose and (X 3 ) the hardness was investigated for achieving the lowest (Y) in vitro disintegration time. Technological characterization, wetting time, water absorption ratio, and roughness degree were evaluated. The CRCs and ODTs proved successful taste-masking efficiency. The end product improved patients' compliance. The developed MIVDM was practical for commercial use.
Nelson, Christian D. S.; Ströh, Luisa J.; Gee, Gretchen V.; O'Hara, Bethany A.; Stehle, Thilo
2015-01-01
ABSTRACT JC polyomavirus (JCPyV) infection of immunocompromised individuals results in the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). The viral capsid of JCPyV is composed primarily of the major capsid protein virus protein 1 (VP1), and pentameric arrangement of VP1 monomers results in the formation of a pore at the 5-fold axis of symmetry. While the presence of this pore is conserved among polyomaviruses, its functional role in infection or assembly is unknown. Here, we investigate the role of the 5-fold pore in assembly and infection of JCPyV by generating a panel of mutant viruses containing amino acid substitutions of the residues lining this pore. Multicycle growth assays demonstrated that the fitness of all mutants was reduced compared to that of the wild-type virus. Bacterial expression of VP1 pentamers containing substitutions to residues lining the 5-fold pore did not affect pentamer assembly or prevent association with the VP2 minor capsid protein. The X-ray crystal structures of selected pore mutants contained subtle changes to the 5-fold pore, and no other changes to VP1 were observed. Pore mutant pseudoviruses were not deficient in assembly, packaging of the minor capsid proteins, or binding to cells or in transport to the host cell endoplasmic reticulum. Instead, these mutant viruses were unable to expose VP2 upon arrival to the endoplasmic reticulum, a step that is critical for infection. This study demonstrated that the 5-fold pore is an important structural feature of JCPyV and that minor modifications to this structure have significant impacts on infectious entry. IMPORTANCE JCPyV is an important human pathogen that causes a severe neurological disease in immunocompromised individuals. While the high-resolution X-ray structure of the major capsid protein of JCPyV has been solved, the importance of a major structural feature of the capsid, the 5-fold pore, remains poorly understood. This pore is conserved across polyomaviruses and suggests either that these viruses have limited structural plasticity in this region or that this pore is important in infection or assembly. Using a structure-guided mutational approach, we showed that modulation of this pore severely inhibits JCPyV infection. These mutants do not appear deficient in assembly or early steps in infectious entry and are instead reduced in their ability to expose a minor capsid protein in the host cell endoplasmic reticulum. Our work demonstrates that the 5-fold pore is an important structural feature for JCPyV. PMID:25609820
Luci, Monica
2017-04-01
This paper presents a tentative understanding of the characteristics of the extreme traumas, elsewhere called 'complex PTSD', that some refugees and asylum-seekers bring into therapy. It suggests that these kinds of traumas suffered during adulthood may involve a disintegration of the self and a loss of 'psychic skin'. This conceptualization is derived from the treatment of a refugee who survived multiple extreme traumas and with whom efforts were made in therapy to identify a complex methodology making use of supplementary therapeutic tools in addition to individual psychotherapy. The case demonstrates how the disintegration of self implies not only a deep somato-psychic dissociation, but also a loss of intrapsychic and interpersonal space. In the treatment this was worked through via repetition of the victim-aggressor dynamics at multiple levels. In the end, the therapeutic context was structured like a set of concentric layers, creating a 'bandage' over the patient's wounds whilst his 'psychic skin' was able to regenerate. The conditions triggered by extreme traumas in refugees challenge some of the cornerstones of individual psychoanalytic technique, as well as the idea that individual therapy may be thought of as existing in an environmental vacuum. © 2017, The Society of Analytical Psychology.
Hooper, Patrick; Lasher, Jason; Alexander, Kenneth S; Baki, Gabriella
2016-02-20
Industrial manufacturing of solid oral dosage forms require quality tests, such as friability, hardness, and disintegration. The United States Pharmacopeia (USP) disintegration test uses 900mL of water. However, recent studies of orally disintegrating tablets (ODTs) have shown that this volume does not accurately portray the oral environment. In our study, various tests were conducted with a more moderate amount of water that accurately resembles the oral environment. A simulated wetting test was performed to calculate the water absorption ratio. Results showed that wetting was comparable to disintegration. Although the wetting test worked for most types of ODTs, it had limitations that produced inaccurate results. This led to the use of a modified shaking water bath test. This test was found to work for all types of ODT products and was not subject to the limitations of the wetting test. The shake test could provide disintegration times rather than water permeation times; however, it could not be used to calculate the water absorption ratio. A strong correlation was observed between the standardized shake test and the USP disintegration times for the tablets. This shake test could be used during the development stages and quality tests for ODTs with relative ease. Copyright © 2015 Elsevier B.V. All rights reserved.
Adjei, Frank Kumah; Osei, Yaa Asantewaa; Kuntworbe, Noble
2017-01-01
The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz.) varieties developed by the Crops Research Institute of Ghana (CRIG) was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9), with satisfactory moisture content (≤15%), swelling capacity (≥20%), ash values (<1%), flow properties, and negligible toxic metal ion content, and compatible with the drug. The tensile strength (Ts), crushing strength (Cs), and friability (Ft) of tablets containing 5–10% w/w of the cassava starches were similar (p > 0.05) to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min) and exhibited faster disintegration times (p > 0.05) than those containing maize starch BP. The disintegration efficiency ratio (DER) and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min) with dissolution rates similar to those containing maize starch BP. PMID:28781909
Quodbach, Julian; Kleinebudde, Peter
2014-11-01
The aim of this study is the introduction of a novel apparatus that is capable of continuously measuring the particle size reduction of disintegrating tablets and analysis of the obtained results. The apparatus is constructed such that no particles pass directly through the pumping system. Thereby, the overall energy input into the particle suspension is reduced, and continuous measurement is possible without rapid destruction of the generated particles. The detected particle sizes at the beginning and at the end of the measurement differ greatly, depending on the applied disintegrant. The median particle sizes at the end of the measurement vary between 621.5 and 178.0 μm for different disintegrants. It is demonstrated that the particle size reduction follows an exponential function and that the fit parameters can be used to describe the disintegration behavior. A strong correlation between the median particle size of crospovidone disintegrants and generated particle size of the tablets is observed. This could be due to a more homogeneous distribution of the disintegrant particles in the tablets. Similar trends are observed for sodium starch glycolate and croscarmellose sodium. The new apparatus provides an innovative method to describe disintegrant effectiveness and efficiency. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Soh, Josephine Lay Peng; Grachet, Maud; Whitlock, Mark; Lukas, Timothy
2013-02-01
This is a study to fully assess a commercially available co-processed mannitol for its usefulness as an off-the-shelf excipient for developing orally disintegrating tablets (ODTs) by direct compression on a pilot scale (up to 4 kg). This work encompassed material characterization, formulation optimisation and process robustness. Overall, this co-processed mannitol possessed favourable physical attributes including low hygroscopicity and compactibility. Two design-of-experiments (DoEs) were used to screen and optimise the placebo formulation. Xylitol and crospovidone concentrations were found to have the most significant impact on disintegration time (p < 0.05). Higher xylitol concentrations retarded disintegration. Avicel PH102 promoted faster disintegration than PH101, at higher levels of xylitol. Without xylitol, higher crospovidone concentrations yielded faster disintegration and reduced tablet friability. Lubrication sensitivity studies were later conducted at two fill loads, three levels for lubricant concentration and number of blend rotations. Even at 75% fill load, the design space plot showed that 1.5% lubricant and 300 blend revolutions were sufficient to manufacture ODTs with ≤ 0.1% friability and disintegrated within 15 s. This study also describes results using a modified disintegration method based on the texture analyzer as an alternative to the USP method.
Insights into Head-Tailed Viruses Infecting Extremely Halophilic Archaea
Pietilä, Maija K.; Laurinmäki, Pasi; Russell, Daniel A.; Ko, Ching-Chung; Jacobs-Sera, Deborah; Butcher, Sarah J.
2013-01-01
Extremophilic archaea, both hyperthermophiles and halophiles, dominate in habitats where rather harsh conditions are encountered. Like all other organisms, archaeal cells are susceptible to viral infections, and to date, about 100 archaeal viruses have been described. Among them, there are extraordinary virion morphologies as well as the common head-tailed viruses. Although approximately half of the isolated archaeal viruses belong to the latter group, no three-dimensional virion structures of these head-tailed viruses are available. Thus, rigorous comparisons with bacteriophages are not yet warranted. In the present study, we determined the genome sequences of two of such viruses of halophiles and solved their capsid structures by cryo-electron microscopy and three-dimensional image reconstruction. We show that these viruses are inactivated, yet remain intact, at low salinity and that their infectivity is regained when high salinity is restored. This enabled us to determine their three-dimensional capsid structures at low salinity to a ∼10-Å resolution. The genetic and structural data showed that both viruses belong to the same T-number class, but one of them has enlarged its capsid to accommodate a larger genome than typically associated with a T=7 capsid by inserting an additional protein into the capsid lattice. PMID:23283946
Production of foot-and-mouth disease virus capsid proteins by the TEV protease.
Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max
2018-06-10
Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.
Wiens, Mayim E.
2017-01-01
ABSTRACT α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5) blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV) infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses. PMID:28119475
RECOVIR Software for Identifying Viruses
NASA Technical Reports Server (NTRS)
Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui
2013-01-01
Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energiesmore » of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.« less
Molecular Basis of the Behavior of Hepatitis A Virus Exposed to High Hydrostatic Pressure
D'Andrea, Lucía; Pérez-Rodríguez, Francisco J.; Costafreda, M. Isabel; Beguiristain, Nerea; Fuentes, Cristina; Aymerich, Teresa; Guix, Susana; Bosch, Albert
2014-01-01
Food-borne hepatitis A outbreaks may be prevented by subjecting foods at risk of virus contamination to moderate treatments of high hydrostatic pressure (HHP). A pretreatment promoting hepatitis A virus (HAV) capsid-folding changes enhances the virucidal effect of HHP, indicating that its efficacy depends on capsid conformation. HAV populations enriched in immature capsids (125S provirions) are more resistant to HHP, suggesting that mature capsids (150S virions) are more susceptible to this treatment. In addition, the monoclonal antibody (MAb) K24F2 epitope contained in the immunodominant site is a key factor for the resistance to HHP. Changes in capsid folding inducing a loss of recognition by MAb K24F2 render more susceptible conformations independently of the origin of such changes. Accordingly, codon usage-associated folding changes and changes stimulated by pH-dependent breathings, provided they confer a loss of recognition by MAb K24F2, induce a higher susceptibility to HHP. In conclusion, the resistance of HAV to HHP treatments may be explained by a low proportion of 150S particles combined with a good accessibility of the epitope contained in the immunodominant site close to the 5-fold axis. PMID:25107980
De Castro, Cristina; Molinaro, Antonio; Piacente, Francesco; Gurnon, James R.; Sturiale, Luisa; Palmigiano, Angelo; Lanzetta, Rosa; Parrilli, Michelangelo; Garozzo, Domenico; Tonetti, Michela G.; Van Etten, James L.
2013-01-01
The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms. PMID:23918378
Mattioli, S; Imberti, L; Stellini, R; Primi, D
1995-09-01
Hepatitis A virus (HAV) is a positive-strand RNA virus with a genome length of approximately 7,480 nucleotides. Although HAV morphogenesis is thought to be similar to that of poliovirus, the prototype picornavirus, the complete characterization of the antigenic structure of this virus remains elusive. All the available evidences, however, support the existence, on HAV virions and empty capsids, of an immunodominant neutralization antigenic site which is conformation dependent and whose structure involves residues of both VP1 and VP3 capsid proteins. This particular feature and the difficulty of obtaining high virus yield in tissue cultures make HAV an ideal target for developing synthetic peptides that simulate the structure of its main antigenic determinant. To this end we utilized, in the present work, the divide-couple-recombine approach to generate a random library composed of millions of different hexapeptides. This vast library was screened with a well-characterized anti-HAV monoclonal antibody. By this strategy we identified a peptide that reacted specifically with monoclonal and polyclonal anti-HAV antibodies and, in mice, induced a specific anti-virus immune response. Furthermore, the peptide could also be used in an enzyme-linked immunosorbent assay for revealing a primary immunoglobulin M immune response in sera of acutely infected human patients. Interestingly, no sequence homology was found between the identified peptide and the HAV capsid proteins VP1 and VP3. Collectively, these data represent an additional important paradigm of a mimotope capable of mimicking an antigenic determinant with unknown tertiary structure.
Hernáez, Bruno; Guerra, Milagros; Salas, María L.
2016-01-01
African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717
Stewart, Barry J; Wardle, Simon J; Haniford, David B
2002-08-15
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes.
Stewart, Barry J.; Wardle, Simon J.; Haniford, David B.
2002-01-01
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes. PMID:12169640
Differences in In Vitro Disintegration Time among Canadian Brand and Generic Bisphosphonates
Olszynski, Wojciech P.; Adachi, Jonathan D.; Davison, K. Shawn
2014-01-01
The objective of this study was to compare the disintegration times among Canadian-marketed brand (alendronate 70 mg, alendronate 70 mg plus vitamin D 5600 IU, and risedronate 35 mg) and generic (Novo-alendronate 70 mg and Apo-alendronate 70 mg) once-weekly dosed bisphosphonates. All disintegration tests were performed with a Vanderkamp Disintegration Tester. Disintegration was deemed to have occurred when no residue of the tablet, except fragments of insoluble coating or capsule shell, was visible. Eighteen to 20 samples were tested for each bisphosphonate group. The mean (±standard deviation) disintegration times were significantly (P < 0.05) faster for Apo-alendronate (26 ± 5.6 seconds) and Novo-alendronate (13 ± 1.1 seconds) as compared to brand alendronate (147 ± 50.5 seconds), brand alendronate plus vitamin D (378 ± 60.5 seconds), or brand risedronate (101 ± 20.6 seconds). The significantly faster disintegration of the generic tablets as compared to the brand bisphosphonates may have concerning safety and effectiveness implications for patients administering these therapies. PMID:25349772
Differences in In Vitro Disintegration Time among Canadian Brand and Generic Bisphosphonates.
Olszynski, Wojciech P; Adachi, Jonathan D; Davison, K Shawn
2014-01-01
The objective of this study was to compare the disintegration times among Canadian-marketed brand (alendronate 70 mg, alendronate 70 mg plus vitamin D 5600 IU, and risedronate 35 mg) and generic (Novo-alendronate 70 mg and Apo-alendronate 70 mg) once-weekly dosed bisphosphonates. All disintegration tests were performed with a Vanderkamp Disintegration Tester. Disintegration was deemed to have occurred when no residue of the tablet, except fragments of insoluble coating or capsule shell, was visible. Eighteen to 20 samples were tested for each bisphosphonate group. The mean (±standard deviation) disintegration times were significantly (P < 0.05) faster for Apo-alendronate (26 ± 5.6 seconds) and Novo-alendronate (13 ± 1.1 seconds) as compared to brand alendronate (147 ± 50.5 seconds), brand alendronate plus vitamin D (378 ± 60.5 seconds), or brand risedronate (101 ± 20.6 seconds). The significantly faster disintegration of the generic tablets as compared to the brand bisphosphonates may have concerning safety and effectiveness implications for patients administering these therapies.
Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.
Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin
2012-01-01
High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.
Fast normal mode computations of capsid dynamics inspired by resonance
NASA Astrophysics Data System (ADS)
Na, Hyuntae; Song, Guang
2018-07-01
Increasingly more and larger structural complexes are being determined experimentally. The sizes of these systems pose a formidable computational challenge to the study of their vibrational dynamics by normal mode analysis. To overcome this challenge, this work presents a novel resonance-inspired approach. Tests on large shell structures of protein capsids demonstrate that there is a strong resonance between the vibrations of a whole capsid and those of individual capsomeres. We then show how this resonance can be taken advantage of to significantly speed up normal mode computations.
Vandyck, Koen; Rombouts, Geert; Stoops, Bart; Tahri, Abdellah; Vos, Ann; Verschueren, Wim; Wu, Yiming; Yang, Jingmei; Hou, Fuliang; Huang, Bing; Vergauwen, Karen; Dehertogh, Pascale; Berke, Jan-Martin; Raboisson, Pierre Jean Marie Bernard
2018-06-15
Small molecule induced Hepatitis B virus (HBV) capsid assembly modulation is considered an attractive approach for new antiviral therapies against HBV. Here we describe efforts towards the discovery of a HBV capsid assembly modulator in a hit-to-lead optimization, resulting in JNJ-632, a tool compound used to further profile the mode of action. Administration of JNJ-632 (54) in HBV genotype D infected chimeric mice, resulted in a 2.77 log reduction of the HBV DNA viral load.
Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert
2016-01-01
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282
Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling
NASA Astrophysics Data System (ADS)
Krishnamani, V.; Globisch, C.; Peter, C.; Deserno, M.
2016-10-01
We use coarse-grained (CG) simulations to study the deformation of empty Cowpea Chlorotic Mottle Virus (CCMV) capsids under uniaxial compression, from the initial elastic response up to capsid breakage. Our CG model is based on the MARTINI force field and has been amended by a stabilizing elastic network, acting only within individual proteins, that was tuned to capture the fluctuation spectrum of capsid protein dimers, obtained from all atom simulations. We have previously shown that this model predicts force-compression curves that match AFM indentation experiments on empty CCMV capsids. Here we investigate details of the actual breaking events when the CCMV capsid finally fails. We present a symmetry classification of all relevant protein contacts and show that they differ significantly in terms of stability. Specifically, we show that interfaces which break readily are precisely those which are believed to form last during assembly, even though some of them might share the same contacts as other non-breaking interfaces. In particular, the interfaces that form pentamers of dimers never break, while the virtually identical interfaces within hexamers of dimers readily do. Since these units differ in the large-scale geometry and, most noticeably, the cone-angle at the center of the 5- or 6-fold vertex, we propose that the hexameric unit fails because it is pre-stressed. This not only suggests that hexamers of dimers form less frequently during the early stages of assembly; it also offers a natural explanation for the well-known β-barrel motif at the hexameric center as a post-aggregation stabilization mechanism. Finally, we identify those amino acid contacts within all key protein interfaces that are most persistent during compressive deformation of the capsid, thereby providing potential targets for mutation studies aiming to elucidate the key contacts upon which overall stability rests.
In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus.
Dai, Xinghong; Li, Zhihai; Lai, Mason; Shu, Sara; Du, Yushen; Zhou, Z Hong; Sun, Ren
2017-01-05
Packaging of the genome into a protein capsid and its subsequent delivery into a host cell are two fundamental processes in the life cycle of a virus. Unlike double-stranded DNA viruses, which pump their genome into a preformed capsid, single-stranded RNA (ssRNA) viruses, such as bacteriophage MS2, co-assemble their capsid with the genome; however, the structural basis of this co-assembly is poorly understood. MS2 infects Escherichia coli via the host 'sex pilus' (F-pilus); it was the first fully sequenced organism and is a model system for studies of translational gene regulation, RNA-protein interactions, and RNA virus assembly. Its positive-sense ssRNA genome of 3,569 bases is enclosed in a capsid with one maturation protein monomer and 89 coat protein dimers arranged in a T = 3 icosahedral lattice. The maturation protein is responsible for attaching the virus to an F-pilus and delivering the viral genome into the host during infection, but how the genome is organized and delivered is not known. Here we describe the MS2 structure at 3.6 Å resolution, determined by electron-counting cryo-electron microscopy (cryoEM) and asymmetric reconstruction. We traced approximately 80% of the backbone of the viral genome, built atomic models for 16 RNA stem-loops, and identified three conserved motifs of RNA-coat protein interactions among 15 of these stem-loops with diverse sequences. The stem-loop at the 3' end of the genome interacts extensively with the maturation protein, which, with just a six-helix bundle and a six-stranded β-sheet, forms a genome-delivery apparatus and joins 89 coat protein dimers to form a capsid. This atomic description of genome-capsid interactions in a spherical ssRNA virus provides insight into genome delivery via the host sex pilus and mechanisms underlying ssRNA-capsid co-assembly, and inspires speculation about the links between nucleoprotein complexes and the origins of viruses.
The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly
Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.
2015-01-01
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. PMID:26067441
Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M; Asokan, Aravind
2018-04-25
Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis followed by deletion and substitutional mutagenesis of specific domains, namely, the hydrophobic N-terminal domain (HR), conserved core (CC), proline-rich region (PRR), threonine/serine rich region (T/S) and basic region (BR). First, we establish that the centrally located PRR and T/S regions are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display varying ability to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N-terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful towards understanding and controlling AAV capsid assembly. Importance: Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a distinct role and can be engineered for carrying out new functions. Copyright © 2018 American Society for Microbiology.
In Silico Studies of Medicinal Compounds Against Hepatitis C Capsid Protein from North India
Mathew, Shilu; Faheem, Muhammad; Archunan, Govindaraju; Ilyas, Muhammad; Begum, Nargis; Jahangir, Syed; Qadri, Ishtiaq; Qahtani, Mohammad Al; Mathew, Shiny
2014-01-01
Hepatitis viral infection is a leading cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Over one million people are estimated to be persistently infected with hepatitis C virus (HCV) worldwide. As capsid core protein is the key element in spreading HCV; hence, it is considered to be the superlative target of antiviral compounds. Novel drug inhibitors of HCV are in need to complement or replace the current treatments such as pegylated interferon’s and ribavirin as they are partially booming and beset with various side effects. Our study was conducted to predict 3D structure of capsid core protein of HCV from northern part of India. Core, the capsid protein of HCV, handles the assembly and packaging of HCV RNA genome and is the least variable of all the ten HCV proteins among the six HCV genotypes. Therefore, we screened four phytochemicals inhibitors that are known to disrupt the interactions of core and other HCV proteins such as (a) epigallocatechin gallate (EGCG), (b) ladanein, (c) naringenin, and (d) silybin extracted from medicinal plants; targeted against active site of residues of HCV-genotype 3 (G3) (Q68867) and its subtypes 3b (Q68861) and 3g (Q68865) from north India. To study the inhibitory activity of the recruited flavonoids, we conducted a quantitative structure–activity relationship (QSAR). Furthermore, docking interaction suggests that EGCG showed a maximum number of hydrogen bond (H-bond) interactions with all the three modeled capsid proteins with high interaction energy followed by naringenin and silybin. Thus, our results strongly correlate the inhibitory activity of the selected bioflavonoid. Finally, the dynamic predicted capsid protein molecule of HCV virion provides a general avenue to target structure-based antiviral compounds that support the hypothesis that the screened inhibitors for viral capsid might constitute new class of potent agents but further confirmation is necessary using in vitro and in vivo studies. PMID:25002815
Larsson, Daniel S D; van der Spoel, David
2012-07-10
The complete structure of the genomic material inside a virus capsid remains elusive, although a limited amount of symmetric nucleic acid can be resolved in the crystal structure of 17 icosahedral viruses. The negatively charged sugar-phosphate backbone of RNA and DNA as well as the large positive charge of the interior surface of the virus capsids suggest that electrostatic complementarity is an important factor in the packaging of the genomes in these viruses. To test how much packing information is encoded by the electrostatic and steric envelope of the capsid interior, we performed extensive all-atom molecular dynamics (MD) simulations of virus capsids with explicit water molecules and solvent ions. The model systems were two small plant viruses in which significant amounts of RNA has been observed by X-ray crystallography: satellite tobacco mosaic virus (STMV, 62% RNA visible) and satellite tobacco necrosis virus (STNV, 34% RNA visible). Simulations of half-capsids of these viruses with no RNA present revealed that the binding sites of RNA correlated well with regions populated by chloride ions, suggesting that it is possible to screen for the binding sites of nucleic acids by determining the equilibrium distribution of negative ions. By including the crystallographically resolved RNA in addition to ions, we predicted the localization of the unresolved RNA in the viruses. Both viruses showed a hot-spot for RNA binding at the 5-fold symmetry axis. The MD simulations were compared to predictions of the chloride density based on nonlinear Poisson-Boltzmann equation (PBE) calculations with mobile ions. Although the predictions are superficially similar, the PBE calculations overestimate the ion concentration close to the capsid surface and underestimate it far away, mainly because protein dynamics is not taken into account. Density maps from chloride screening can be used to aid in building atomic models of packaged virus genomes. Knowledge of the principles of genome packaging might be exploited for both antiviral therapy and technological applications.
Childhood disintegrative disorder: distinction from autistic disorder and predictors of outcome.
Rosman, N Paul; Bergia, Berta M
2013-12-01
Childhood disintegrative disorder, a rare, relentlessly progressive neurologic disorder, first described by Heller in 1908, remains a condition of great interest. It has long been debated whether it is a discrete disorder or simply a late-onset variant of childhood autism. We have studied 6 cases of childhood disintegrative disorder, collected over 8 years, and followed for 2.5 to 22 years (mean 8.6 years). Childhood disintegrative disorder begins later in life than autism, and following a period of entirely normal development; the regression is more global and more severe than in autism; seizures are more frequent than in autism, yet demonstrable organicity in childhood disintegrative disorder is decidedly rare. Lastly, the prognosis is usually much worse than in autism, but in those cases with neither seizures nor epileptiform activity on electroencephalography (EEG), the outcome may be more favorable. Childhood disintegrative disorder should be viewed as a condition distinct from childhood autism.
Silvestri, Daniele; Wacławek, Stanisław; Gončuková, Zuzanna; Padil, Vinod V T; Grübel, Klaudiusz; Černík, Miroslav
2018-05-24
A novel method for assessing the disintegration degree (DD) of waste activated sludge (WAS) with the use of differential centrifugal sedimentation method (DCS) was shown herein. The method was validated for a WAS sample at four levels of disintegration in the range of 14.4-82.6% corresponding to the median particle size range of 8.5-1.6 µm. From the several sludge disintegration methods used (i.e. microwave, alkalization, ultrasounds and peroxydisulfate activated by ultrasounds), the activated peroxydisulfate disintegration resulted in the greatest DD 83% and the smallest median particle size of WAS. Particle size distribution of pretreated sludge, measured by DCS, was in a negative correlation with the DD, determined from soluble chemical oxygen demand (SCOD; determination coefficient of 0.995). Based on the obtained results, it may be concluded that the DCS analysis can approximate the WAS disintegration degree.
A Review of Disintegration Mechanisms and Measurement Techniques.
Markl, Daniel; Zeitler, J Axel
2017-05-01
Pharmaceutical solid dosage forms (tablets or capsules) are the predominant form to administer active pharmaceutical ingredients (APIs) to the patient. Tablets are typically powder compacts consisting of several different excipients in addition to the API. Excipients are added to a formulation in order to achieve the desired fill weight of a dosage form, to improve the processability or to affect the drug release behaviour in the body. These complex porous systems undergo different mechanisms when they come in contact with physiological fluids. The performance of a drug is primarily influenced by the disintegration and dissolution behaviour of the powder compact. The disintegration process is specifically critical for immediate-release dosage forms. Its mechanisms and the factors impacting disintegration are discussed and methods used to study the disintegration in-situ are presented. This review further summarises mathematical models used to simulate disintegration phenomena and to predict drug release kinetics.
Fluctuation Pressure Assisted Ejection of DNA From Bacteriophage
NASA Astrophysics Data System (ADS)
Harrison, Michael J.
2011-03-01
The role of thermal pressure fluctuations excited within tightly packaged DNA while it is ejected from protein capsid shells is discussed in a model calculation. At equilibrium before ejection we assume the DNA is folded many times into a bundle of parallel segments that forms an equilibrium conformation at minimum free energy, which presses tightly against capsid walls. Using a canonical ensemble at temperature T we calculate internal pressure fluctuations against a slowly moving or static capsid mantle for an elastic continuum model of the folded DNA bundle. It is found that fluctuating pressures on the capsid from thermal excitation of longitudinal acoustic vibrations in the bundle whose wavelengths are exceeded by the bend persistence length may have root-mean-square values that are several tens of atmospheres for typically small phage dimensions. Comparisons are given with measured data on three mutants of lambda phage with different base pair lengths and total genome ejection pressures.
Paglino, Justin; Tattersall, Peter
2011-01-01
Members of the rodent subgroup of the genus Parvovirus exhibit lytic replication and spread in many human tumor cells and are therefore attractive candidates for oncolytic virotherapy. However, the significant variation in tumor tropism observed for these viruses remains largely unexplained. We report here that LuIII kills BJ-ELR ‘stepwise-transformed’ human fibroblasts efficiently, while MVM does not. Using viral chimeras, we mapped this property to the LuIII capsid gene, VP2, which is necessary and sufficient to confer the killer phenotype on MVM. LuIII VP2 facilitates a post-entry, pre-DNA-amplification step early in the life cycle, suggesting the existence of an intracellular moiety whose efficient interaction with the incoming capsid shell is critical to infection. Thus targeting of human cancers of different tissue-type origins will require use of parvoviruses with capsids that effectively make this critical interaction. PMID:21600623
Chromatin organization regulates viral egress dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Vesa; Myllys, Markko; Ruokolainen, Visa
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less
Overcoming preexisting humoral immunity to AAV using capsid decoys.
Mingozzi, Federico; Anguela, Xavier M; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J; Hui, Daniel J; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser; High, Katherine A
2013-07-17
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.
Water dynamics during the association of hiv capsid proteins studied by all-atom simulations
NASA Astrophysics Data System (ADS)
Yu, Naiyin; Hagan, Michael
2012-02-01
The C-terminal domain of the HIV-1 capsid protein (CA-C) plays an important role in the assembly of the mature capsid. We have used molecular dynamics simulations combined with enhanced sampling methods to study the association of two CA-C proteins in atomistic detail. In this talk we will discuss the dynamics of water during the association process. In particular, we will show that that water in the interfacial region does not undergo a liquid-vapor transition (de-wetting) during association of wild type CA-C. However, mutation of some hydrophilic residues does lead to a dewetting transition. We discuss the relationship between the arrangement of hydrophilic and hydrophobic residues and dewetting during protein association. For the HIV capsid protein, the arrangement of hydrophilic residues contributes to maintaining weak interactions, which are crucial for successful assembly.
Capstan Friction Model for DNA Ejection from Bacteriophages
NASA Astrophysics Data System (ADS)
Ghosal, Sandip
2012-12-01
Bacteriophages infect cells by attaching to the outer membrane and injecting their DNA into the cell. The phage DNA is then transcribed by the cell’s transcription machinery. A number of physical mechanisms by which DNA can be translocated from the phage capsid into the cell have been identified. A fast ejection driven by the elastic and electrostatic potential energy of the compacted DNA within the viral capsid appears to be used by most phages, at least to initiate infection. In recent in vitro experiments, the speed of DNA translocation from a λ phage capsid has been measured as a function of ejected length over the entire duration of the event. Here, a mechanical model is proposed that is able to explain the observed dependence of exit velocity on ejected length, and that is also consistent with the accepted picture of the geometric arrangement of DNA within the viral capsid.
Protoparvovirus Knocking at the Nuclear Door.
Mäntylä, Elina; Kann, Michael; Vihinen-Ranta, Maija
2017-10-02
Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.
Chromatin organization regulates viral egress dynamics
Aho, Vesa; Myllys, Markko; Ruokolainen, Visa; ...
2017-06-16
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less
Polymorphism of DNA conformation inside the bacteriophage capsid.
Leforestier, Amélie
2013-03-01
Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.
Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys
Anguela, Xavier M.; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J.; Hui, Daniel J.; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J.; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M.; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser
2014-01-01
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery. PMID:23863832
A new formulation for orally disintegrating tablets using a suspension spray-coating method.
Okuda, Y; Irisawa, Y; Okimoto, K; Osawa, T; Yamashita, S
2009-12-01
The aim of this study was to design a new orally disintegrating tablet (ODT) that has high tablet hardness and a fast oral disintegration rate using a new preparation method. To obtain rapid disintegration granules (RDGs), a saccharide, such as trehalose, mannitol, or lactose, was spray-coated with a suspension of corn starch using a fluidized-bed granulator (suspension method). As an additional disintegrant, crospovidone, light anhydrous silicic acid, or hydroxypropyl starch was also included in the suspension. The RDGs obtained possessed extremely large surface areas, narrow particle size distribution, and numerous micro-pores. When tabletting these RDGs, it was found that the RDGs increased tablet hardness by decreasing plastic deformation and increasing the contact frequency between granules. In all tablets, a linear relationship was observed between tablet hardness and oral disintegration time. From each linear correlation line, a slope (D/H value) and an intercept (D/H(0) value) were calculated. Tablets with small D/H and D/H(0) values could disintegrate immediately in the oral cavity regardless of the tablet hardness and were considered to be appropriate for ODTs. Therefore, these values were used as key parameters to select better ODTs. Of all the RDGs prepared in this study, mannitol spray-coated with a suspension of corn starch and crospovidone (2.5:1 w/w ratio) showed most appropriate properties for ODTs; fast in vivo oral disintegration time, and high tablet hardness. In conclusion, this simple method to prepare superior formulations for new ODTs was established by spray-coating mannitol with a suspension of appropriate disintegrants.
Antiviral agents: structural basis of action and rational design.
Menéndez-Arias, Luis; Gago, Federico
2013-01-01
During the last 30 years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs inhibiting hepatitis C virus replication. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by using a computer-based approach. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g. oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e. the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs in preclinical development acting against picornaviruses, hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy.
Francis, Ashwanth C; Melikyan, Gregory B
2018-04-11
The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration. Copyright © 2018 Elsevier Inc. All rights reserved.
Castón, José R.; Trus, Benes L.; Booy, Frank P.; Wickner, Reed B.; Wall, Joseph S.; Steven, Alasdair C.
1997-01-01
The genomes of double-stranded (ds)RNA viruses are never exposed to the cytoplasm but are confined to and replicated from a specialized protein-bound compartment—the viral capsid. We have used cryoelectron microscopy and three-dimensional image reconstruction to study this compartment in the case of L-A, a yeast virus whose capsid consists of 60 asymmetric dimers of Gag protein (76 kD). At 16-Å resolution, we distinguish multiple domains in the elongated Gag subunits, whose nonequivalent packing is reflected in subtly different morphologies of the two protomers. Small holes, 10–15 Å across, perforate the capsid wall, which functions as a molecular sieve, allowing the exit of transcripts and the influx of metabolites, while retaining dsRNA and excluding degradative enzymes. Scanning transmission electron microscope measurements of mass-per-unit length suggest that L-A RNA is an A-form duplex, and that RNA filaments emanating from disrupted virions often consist of two or more closely associated duplexes. Nuclease protection experiments confirm that the genome is entirely sequestered inside full capsids, but it is packed relatively loosely; in L-A, the center-to-center spacing between duplexes is 40–45 Å, compared with 25–30 Å in other double-stranded viruses. The looser packing of L-A RNA allows for maneuverability in the crowded capsid interior, in which the genome (in both replication and transcription) must be translocated sequentially past the polymerase immobilized on the inner capsid wall. PMID:9281577
Capsid functions of inactivated human picornaviruses and feline calicivirus.
Nuanualsuwan, Suphachai; Cliver, Dean O
2003-01-01
The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72 degrees C), and physiological temperature (37 degrees C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37 degrees C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72 degrees C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37 degrees C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72 degrees C inactivation is the capsid and that the target of thermal inactivation (37 degrees C versus 72 degrees C) is temperature dependent.
Changes in the stability and biomechanics of P22 bacteriophage capsid during maturation.
Kant, Ravi; Llauró, Aida; Rayaprolu, Vamseedhar; Qazi, Shefah; de Pablo, Pedro J; Douglas, Trevor; Bothner, Brian
2018-03-15
The capsid of P22 bacteriophage undergoes a series of structural transitions during maturation that guide it from spherical to icosahedral morphology. The transitions include the release of scaffold proteins and capsid expansion. Although P22 maturation has been investigated for decades, a unified model that incorporates thermodynamic and biophysical analyses is not available. A general and specific model of icosahedral capsid maturation is of significant interest to theoreticians searching for fundamental principles as well as virologists and material scientists seeking to alter maturation to their advantage. To address this challenge, we have combined the results from orthogonal biophysical techniques including differential scanning fluorimetry, atomic force microscopy, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. By integrating these results from single particle and population measurements, an energy landscape of P22 maturation from procapsid through expanded shell to wiffle ball emerged, highlighting the role of metastable structures and the thermodynamics guiding maturation. The propagation of weak quaternary interactions across symmetric elements of the capsid is a key component for stability in P22. A surprising finding is that the progression to wiffle ball, which lacks pentamers, shows that chemical and thermal stability can be uncoupled from mechanical rigidity, elegantly demonstrating the complexity inherent in capsid protein interactions and the emergent properties that can arise from icosahedral symmetry. On a broader scale, this work demonstrates the power of applying orthogonal biophysical techniques to elucidate assembly mechanisms for supramolecular complexes and provides a framework within which other viral systems can be compared. Copyright © 2018 Elsevier B.V. All rights reserved.
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements
Dolja, Valerian V.
2014-01-01
SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023
ElSawy, Karim M
2017-02-01
A large number of single-stranded RNA viruses assemble their capsid and their genomic material simultaneously. The RNA viral genome plays multiple roles in this process that are currently only partly understood. In this work, we investigated the thermodynamic basis of the role of viral RNA on the assembly of capsid proteins. The viral capsid of bacteriophage MS2 was considered as a case study. The MS2 virus capsid is composed of 60 AB and 30 CC protein dimers. We investigated the effect of RNA stem loop (the translational repressor TR) binding to the capsid dimers on the dimer-dimer relative association free energies. We found that TR binding results in destabilization of AB self-association compared with AB and CC association. This indicates that the association of the AB and CC dimers is the most likely assembly pathway for the MS2 virus, which explains the experimental observation of alternating patterns of AB and CC dimers in dominant assembly intermediates of the MS2 virus. The presence of viral RNA, therefore, dramatically channels virus assembly to a limited number of pathways, thereby enhancing the efficiency of virus self-assembly process. Interestingly, Thr59Ser and Thr45Ala mutations of the dimers, in the absence of RNA stem loops, lead to stabilization of AB self-association compared with the AB and CC associations, thereby channelling virus assembly towards a fivefold (AB) 5 pentamer intermediate, providing a testable hypothesis of our thermodynamic arguments.
Ilkow, Carolina S; Goping, Ing Swie; Hobman, Tom C
2011-02-01
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.
Kotecha, Abhay; Zhang, Fuquan; Juleff, Nicholas; Jackson, Terry; Perez, Eva; Stuart, Dave; Fry, Elizabeth; Charleston, Bryan; Seago, Julian
2016-07-01
Foot-and-mouth disease (FMD) has a major economic impact throughout the world and is a considerable threat to food security. Current FMD virus (FMDV) vaccines are made from chemically inactivated virus and need to contain intact viral capsids to maximize efficacy. FMDV exists as seven serotypes, each made up by a number of constantly evolving subtypes. A lack of immunological cross-reactivity between serotypes and between some strains within a serotype greatly complicates efforts to control FMD by vaccination. Thus, vaccines for one serotype do not afford protection against the others, and multiple-serotype-specific vaccines are required for effective control. The FMDV serotypes exhibit variation in their thermostability, and the capsids of inactivated preparations of the O, C and SAT serotypes are particularly susceptible to dissociation at elevated temperature. Methods to quantify capsid stability are currently limited, lack sensitivity and cannot accurately reflect differences in thermostability. Thus, new, more sensitive approaches to quantify capsid stability would be of great value for the production of more stable vaccines and to assess the effect of production conditions on vaccine preparations. Here we have investigated the application of a novel methodology (termed PaSTRy) that utilizes an RNA-binding fluorescent dye and a quantitative (q)PCR machine to monitor viral genome release and hence dissociation of the FMDV capsid during a slow incremental increase in temperature. PaSTRy was used to characterize capsid stability of all FMDV serotypes. Furthermore, we have used this approach to identify stabilizing factors for the most labile FMDV serotypes.
Kotecha, Abhay; Zhang, Fuquan; Juleff, Nicholas; Jackson, Terry; Perez, Eva; Stuart, Dave; Fry, Elizabeth; Charleston, Bryan
2016-01-01
Foot-and-mouth disease (FMD) has a major economic impact throughout the world and is a considerable threat to food security. Current FMD virus (FMDV) vaccines are made from chemically inactivated virus and need to contain intact viral capsids to maximize efficacy. FMDV exists as seven serotypes, each made up by a number of constantly evolving subtypes. A lack of immunological cross-reactivity between serotypes and between some strains within a serotype greatly complicates efforts to control FMD by vaccination. Thus, vaccines for one serotype do not afford protection against the others, and multiple-serotype-specific vaccines are required for effective control. The FMDV serotypes exhibit variation in their thermostability, and the capsids of inactivated preparations of the O, C and SAT serotypes are particularly susceptible to dissociation at elevated temperature. Methods to quantify capsid stability are currently limited, lack sensitivity and cannot accurately reflect differences in thermostability. Thus, new, more sensitive approaches to quantify capsid stability would be of great value for the production of more stable vaccines and to assess the effect of production conditions on vaccine preparations. Here we have investigated the application of a novel methodology (termed PaSTRy) that utilizes an RNA-binding fluorescent dye and a quantitative (q)PCR machine to monitor viral genome release and hence dissociation of the FMDV capsid during a slow incremental increase in temperature. PaSTRy was used to characterize capsid stability of all FMDV serotypes. Furthermore, we have used this approach to identify stabilizing factors for the most labile FMDV serotypes. PMID:27002540
Atomic force microscopy investigation of the giant mimivirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang
2010-08-15
Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. Themore » virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.« less
Galahad Redux: An Assessment of the Disintegration of Merrill’s Marauders
1975-06-06
Disintegration of Merrill’s Marauders 00 »m^ John B. Gaither, MAJ, USA » >«^ U.S. Army Command and General Staff College fQ Fort lieavenworth... Disintegration of Merrill’s Marauders 5 TYPE OF REPORT » PERIOD COVERED Final report 6 Jun 75 6 PERFORMING ORG. REPORT NUMBER 7. AUTHORC...analyze the disintegration of Merrill’s Marauders, by emphasizing the intangible, subjective factors present in the leadership environment. The
Abraham, Anuji; Olusanmi, Dolapo; Ilott, Andrew J; Good, David; Murphy, Denette; Mcnamara, Daniel; Jerschow, Alexej; Mantri, Rao V
2016-06-01
Understanding the behavior of tablet disintegrants is valuable in the development of pharmaceutical solid dosage formulations. In this study, high-resolution magnetic resonance imaging has been used to understand the hydration behavior of a series of commercial sodium starch glycolate (SSG) samples, providing robust estimates of tablet disintegration rate that could be correlated with physicochemical properties of the SSGs, such as the extent of phosphorus (P) cross-linking as obtained from infra-red spectroscopy. Furthermore, elemental analysis together with powder X-ray diffraction has been used to quantify the presence of carboxymethyl groups and salt impurities, which also contribute to the disintegration behavior. The utility of Fast Low Angle SHot magnetic resonance imaging has been demonstrated as an approach to rapidly acquire approximations of the volume of a disintegrating tablet and, together with a robust voxel analysis routine, extract tablet disintegration rates. In this manner, a complete characterization of a series of SSG grades from different sources has been performed, showing the variability in their physicochemical properties and demonstrating a correlation between their disintegration rates and intrinsic characteristics. The insights obtained will be a valuable aid in the choice of disintegrant source as well as in managing SSG variability to ensure robustness of drug products containing SSG. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Tytła, Malwina; Zielewicz, Ewa
2017-09-13
This paper aimed to indicate the characteristics of excess sludge, which have the greatest impact on the effects obtained during its ultrasonic disintegration (UD). The direct and technological effects observed after sludge disintegration and anaerobic digestion (AD) depend on the factors affecting the quality of its matrix and simply on the parameters of a disintegrator. Sludge samples originate from a Central Waste Water Treatment Plant in Gliwice, and were collected after mechanical thickening by a monthly period. This approach allowed to observe the temporal changes of sludge characteristics, in a continuous manner. To evaluate the achieved disintegration effects, the following indicators were used: degree of disintegration (DD COD ) and the author's indicators describing the direct and technological effects of UD (ID i , IT i , IT d ), based on the changes in the sludge characteristics. Disintegration was carried out by means of an ultrasonic device equipped with a thin sonotrode. AD was conducted under mesophilic conditions for 20 days. Statistical analysis confirmed that the most important parameters of sludge, which determine obtained effects, were total and volatile solids, capillary suction time, concentration of chemical oxygen demand and pH value. The investigations have also showed that the increase in sludge temperature during its disintegration has a significant impact on the magnitude of other effects obtained in the process.
Fast disintegrating tablets: Opportunity in drug delivery system
Parkash, Ved; Maan, Saurabh; Deepika; Yadav, Shiv Kumar; Hemlata; Jogpal, Vikas
2011-01-01
Fast disintegrating tablets (FDTs) have received ever-increasing demand during the last decade, and the field has become a rapidly growing area in the pharmaceutical industry. Oral drug delivery remains the preferred route for administration of various drugs. Recent developments in the technology have prompted scientists to develop FDTs with improved patient compliance and convenience. Upon introduction into the mouth, these tablets dissolve or disintegrate in the mouth in the absence of additional water for easy administration of active pharmaceutical ingredients. The popularity and usefulness of the formulation resulted in development of several FDT technologies. FDTs are solid unit dosage forms, which disintegrate or dissolve rapidly in the mouth without chewing and water. FDTs or orally disintegrating tablets provide an advantage particularly for pediatric and geriatric populations who have difficulty in swallowing conventional tablets and capsules. This review describes various formulations and technologies developed to achieve fast dissolution/dispersion of tablets in the oral cavity. In particular, this review describes in detail FDT technologies based on lyophilization, molding, sublimation, and compaction, as well as approaches to enhancing the FDT properties, such as spray drying and use of disintegrants. In addition, taste-masking technologies, experimental measurements of disintegration times, and dissolution are also discussed. PMID:22247889
Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae
2007-06-01
A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.
Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.
Brniak, Witold; Jachowicz, Renata; Pelka, Przemyslaw
2015-09-01
Even that orodispersible tablets (ODTs) have been successfully used in therapy for more than 20 years, there is still no compendial method of their disintegration time evaluation other than the pharmacopoeial disintegration test conducted in 800-900 mL of distilled water. Therefore, several alternative tests more relevant to in vivo conditions were described by different researchers. The aim of this study was to compare these methods and correlate them with in vivo results. Six series of ODTs were prepared by direct compression. Their mechanical properties and disintegration times were measured with pharmacopoeial and alternative methods and compared with the in vivo results. The highest correlation with oral disintegration time was found in the case of own-construction apparatus with additional weight and the employment of the method proposed by Narazaki et al. The correlation coefficients were 0.9994 (p < 0.001), and 0.9907 (p < 0.001) respectively. The pharmacopoeial method correlated with the in vivo data much worse (r = 0.8925, p < 0.05). These results have shown that development of novel biorelevant methods of ODT's disintegration time determination is eligible and scientifically justified.
Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683
Mechanisms of palatal epithelial seam disintegration by Transforming Growth Factor (TGF)-β3
Ahmed, Shaheen; Liu, Chang-Chih; Nawshad, Ali
2007-01-01
TGFβ3 signaling initiates and completes sequential phases of cellular differentiation that is required for complete disintegration of the palatal medial edge seam, that progresses between 14 to 17 embryonic days in the murine system, which is necessary in establishing confluence of the palatal stroma. Understanding the cellular mechanism of palatal MES disintegration in response to TGFβ3 signaling will result in new approaches to defining the causes of cleft palate and other facial clefts that may result from failure of seam disintegration. We have isolated MES primary cells to study the details of MES disintegration mechanism by TGFβ3 during palate development using several biochemical and genetic approaches. Our results demonstrate a novel mechanism of MES disintegration where MES, independently yet sequentially, undergoes cell cycle arrest, cell migration and apoptosis to generate immaculate palatal confluency during palatogenesis in response to robust TGFβ3 signaling. The results contribute to a missing fundamental element to our base knowledge of the diverse roles of TGFβ3 in functional and morphological changes that MES undergo during palatal seam disintegration. We believe that our findings will lead to more effective treatment of facial clefting. PMID:17698055
Efficient in vitro encapsulation of protein cargo by an engineered protein container.
Wörsdörfer, Bigna; Pianowski, Zbigniew; Hilvert, Donald
2012-01-18
An engineered variant of lumazine synthase, a nonviral capsid protein with a negatively charged luminal surface, is shown to encapsulate up to 100 positively supercharged green fluorescent protein (GFP) molecules in vitro. Packaging can be achieved starting either from intact, empty capsids or from capsid fragments by incubation with cargo in aqueous buffer. The yield of encapsulated GFP correlates directly with the host/guest mixing ratio, providing excellent control over packing density. Facile in vitro loading highlights the unusual structural dynamics of this novel nanocontainer and should facilitate diverse biotechnological and materials science applications. © 2011 American Chemical Society
Elastic properties and mechanical stability of chiral and filled viral capsids
NASA Astrophysics Data System (ADS)
Buenemann, Mathias; Lenz, Peter
2008-11-01
The elasticity and mechanical stability of empty and filled viral capsids under external force loading are studied in a combined analytical and numerical approach. We analyze the influence of capsid structure and chirality on the mechanical properties. We find that generally skew shells have lower stretching energy. For large Föppl-von Kármán numbers γ (γ≈105) , skew structures are stiffer in their elastic response than nonchiral ones. The discrete structure of the capsules not only leads to buckling for large γ but also influences the breakage behavior of capsules below the buckling threshold: the rupture force shows a γ1/4 scaling rather than a γ1/2 scaling as expected from our analytical results for continuous shells. Filled viral capsids are exposed to internal anisotropic pressure distributions arising from regularly packaged DNA coils. We analyze their influence on the elastic properties and rupture behavior and we discuss possible experimental consequences. Finally, we numerically investigate specific sets of parameters corresponding to specific phages such as ϕ29 and cowpea chlorotic mottle virus (CCMV). From the experimentally measured spring constants we make predictions about specific material parameters (such as bending rigidity and Young’s modulus) for both empty and filled capsids.
Viral assembly of oriented quantum dot nanowires
NASA Astrophysics Data System (ADS)
Mao, Chuanbin; Flynn, Christine E.; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M.
2003-06-01
The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.
Viral assembly of oriented quantum dot nanowires.
Mao, Chuanbin; Flynn, Christine E; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M
2003-06-10
The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.
Parzych, Elizabeth M; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M; High, Katherine A; Levine, Matthew H; Ertl, Hildegund C J
2013-04-01
In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4⁺ T cells, whereas numbers of circulating CD8⁺ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.
Effects of Immunosuppression on Circulating Adeno-Associated Virus Capsid-Specific T cells in Humans
Parzych, Elizabeth M.; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M.; High, Katherine A.; Levine, Matthew H.
2013-01-01
Abstract In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4+ T cells, whereas numbers of circulating CD8+ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients. PMID:23461589
Human Retroviruses: Methods and Protocols
Zhao, Gongpu; Zhang, Peijun
2015-01-01
Summary After virus fusion with a target cell, the viral core is released into the host cell cytoplasm and undergoes a controlled disassembly process, termed uncoating, before or as reverse transcription takes place. The cellular protein TRIM5α is a host cell restriction factor that blocks HIV-1 infection in rhesus macaque cells by targeting the viral capsid and inducing premature uncoating. The molecular mechanism of the interaction between capsid and TRIM5α remains unclear. Here, we describe an approach that utilizes cryo-electron microscopy (cryoEM) to examine the structural changes exerted on HIV-1 capsid (CA) assembly by TRIM5α binding. The TRIM5α interaction sites on CA assembly were further dissected by combining cryoEM with pair-wise cysteine mutations that crosslink CA either within a CA hexamer or between CA hexamers. Based on the structural information from cryoEM and crosslinking results from in vitro CA assemblies and purified intact HIV-1 cores, we demonstrate that direct binding of TRIM5α CC-SPRY domains to the viral capsid results in disruption and fragmentation of the surface lattice of HIV-1 capsid, specifically at inter-hexamer interfaces. The method described here can be easily adopted to study other important interactions in multi-protein complexes. PMID:24158810
Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L
2016-01-01
Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. Copyright © 2015. Published by Elsevier Inc.
Schwarz, Betje; Specht, Timo; Bethge, Matthias
2017-12-01
Purpose To explore the patient's perspective on the involvement of employers into rehabilitation. Methods 8 participants of a work-related medical rehabilitation were interviewed by telephone 4 weeks after discharge. Qualitative content analysis was used to analyze generated data. Results Beside a poor employer-involvement, the interviews revealed that the process of returning to work was characterized and hampered by unused measures of supporting vocational reintegration during rehabilitation, intersection problems in the health care and social security system, and a strategy of waiting by all involved actors. Conclusion Beside an improved employer-involvement, systematic intersection management and full usage of existing measures are demanded to support vocational reintegration. © Georg Thieme Verlag KG Stuttgart · New York.
Khan, Shagufta; Kataria, Prashant; Nakhat, Premchand; Yeole, Pramod
2007-06-22
The purpose of this research was to mask the intensely bitter taste of ondansetron HCl and to formulate a rapid-disintegrating tablet (RDT) of the taste-masked drug. Taste masking was done by complexing ondansetron HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratios by the precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.2, and molecular property. Complex that did not release drug in SSF was considered taste-masked and selected for formulation RDTs. The complex with drug-polymer ratio of 8:2 did not show drug release in SSF; therefore, it was selected. The properties of tablets such as tensile strength, wetting time, water absorption ratio, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing spray-dried mannitol and microcrystalline cellulose in the ratio 1:1 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12.5 seconds, than the marketed tablet (112 seconds). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Taste evaluation of RDT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) ultimately reaching to 0 within 15 minutes, whereas ondansetron HCl was rated intensely bitter with a score of 3 for 10 minutes. Tablets of batch F4 also revealed rapid drug release (t(90), 60 seconds) in SGF compared with marketed formulation (t(90), 240 seconds; P < .01). Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity.
Adenoviral Gene Therapy Vectors Targeted to Prostate Cancer
2004-06-01
results from pre- clinical models into clinical trials . This problem has also been highlighted in Ad5 capsid mutation studies. Mutation of CAR and integrin...infectious eye disease in hospitals and eye 21. Harnett, G. B., and W. A. Newnham. 1981. Isolation of adenovirus type 19 clinics , from the male and female...promi- units or of large cDNAs such as the 7.1-kb ABCR gene nent in iris and ciliary body, with scattered positive cells involved in Stargardt disease
Yamaguchi, T; Yao, Y; Kihara, Y
2006-01-01
A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.
Disintegration of a Liquid Jet
NASA Technical Reports Server (NTRS)
Haenlein, A
1932-01-01
This report presents an experimental determination of the process of disintegration and atomization in its simplest form, and the influence of the physical properties of the liquid to be atomized on the disintegration of the jet. Particular attention was paid to the investigation of the process of atomization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that amount of radioactive material which disintegrates at the rate of 37 billion atoms per second... material which disintegrates at the rate of 37 thousand atoms per second; Millicurie means that amount of radioactive material which disintegrates at the rate of 37 million atoms per second; Particle accelerator...
Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J
2015-09-01
In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bragg, Rebecca R; Freeman, Lisa M; Fascetti, Andrea J; Yu, Zengshou
2009-01-15
To test the quality, disintegration properties, and compliance with labeling regulations for representative commercially available taurine and carnitine dietary products. Evaluation study. 11 commercially available taurine and 10 commercially available carnitine products. For each product, the amount of taurine or carnitine was determined and compared with the label claim. All products were evaluated for concentrations of mercury, arsenic, and selenium. Disintegration properties of 5 taurine and 8 carnitine products were determined in vitro. Labels were evaluated for compliance with FDA guidelines. 10 of 11 taurine and 10 of 10 carnitine products were within 10% of the stated label claim. Three of 11 taurine and 6 of 10 carnitine products were within 5% of the stated label claim. The median percentage difference between laboratory analysis and label claim was -5.7% (range, -26.3% to 2.5%) for taurine and 3.6% (range, -2.6% to 8.8%) for carnitine. No substantial amount of contamination with mercury, arsenic, or selenium was found in any of the products. During disintegration testing, 1 of 5 taurine products and 5 of 8 carnitine products did not disintegrate within 45 minutes during at least 1 test. Disintegration time for those that did disintegrate ranged from 1.7 to 37.0 minutes. All product labels conformed with FDA regulations. Taurine and carnitine products evaluated in this study closely adhered to manufacturer claims and labeling guidelines. However, disintegration testing suggested high variability in some products, possibly limiting uptake and use by animals that receive them.
[Disintegration of visible light-cured composite resins caused by long-term water immersion].
Hino, T; Arai, K
1989-05-01
The purpose of this study is to clarify a cause of disintegration of composite resins by long-term immersion in distilled water. Three kinds of visible light-cured composite resins (Heliosit, Plurafil Super and Visio Dispers) and one conventional composite resin (Clearfil F II) were prepared as the specimens with a 20 mm diameter and 1 mm thickness. These specimens were immersed in distilled water at 37 +/- 1 degree C for 3 years. These specimens were analysed and observed by a comprehensive multi analyzer and scanning electron microscope. The other hand residues in distilled water were analysed by infrared (IR) and nuclear magnetic resonance (NMR) spectrometers. The surface layer of all four composite resins showed signs of disintegration. The composite resins with abundant dissolved substances had disintegrated markedly, and such disintegration occurred deep inside the specimens. In IR and 1H-NMR spectra of dissolved substances, two visible light-cured composite resins (Heliosit and Plurafil Super) could be detected unreacted monomers, but one visible light-cured composite resin (Visio Dispers) and one conventional composite resin (Clearfil F II) could not be detected them. In 1H-NMR spectra of dissolved substances of all four composite resins, new signals not composed originally were observed. The progress of disintegration were demonstrated clearly. The dissolved substances were shown as the disintegrated substance between resin matrixs and silane coupling agents. It is suggested that the disintegration of composite resins by long-term water immersion is derived from hydrolysis.
Jonsson, C B; Roth, M J
1993-01-01
Retroviral integrases mediate site-specific endonuclease and transesterification reactions in the absence of exogenous energy. The basis for the sequence specificity in these integrase-viral DNA recognition processes is unknown. Structural analogs of the disintegration substrate were made to analyze the disintegration reaction mechanism for the Moloney murine leukemia virus (M-MuLV) integrase (IN). Modifications in the target DNA portion of the disintegration substrate decreased enzymatic activity, while substitution of the highly conserved CA in the viral long terminal repeat portion had no effect on activity. The role of the His-Cys finger region in catalysis was addressed by N-ethylmaleimide (NEM) modification of the cysteine residues of M-MuLV IN as well as by mutations. Both integration activities, 3' processing, and strand transfer, were completely inhibited by NEM modification of M-MuLV IN, while disintegration activity was only partially sensitive. However, structural analogs of the disintegration substrates that were modified in the target DNA and had the conserved CA removed were not active with NEM-treated M-MuLV IN. In addition, mutants made in the His-Cys region of M-MuLV IN were examined and found to also be completely blocked in integration but not disintegration activity. These data suggest that the domains of M-MuLV IN that are required for the forward integration reaction substrate differ from those required for the reverse disintegration reaction substrate. Images PMID:8350412
Bacteriophage T4 capsid packaging and unpackaging of DNA and proteins.
Mullaney, Julienne M; Black, Lindsay W
2014-01-01
Bacteriophage T4 has proven itself readily amenable to phage-based DNA and protein packaging, expression, and display systems due to its physical resiliency and genomic flexibility. As a large dsDNA phage with dispensable internal proteins and dispensable outer capsid proteins it can be adapted to package both DNA and proteins of interest within the capsid and to display peptides and proteins externally on the capsid. A single 170 kb linear DNA, or single or multiple copies of shorter linear DNAs, of any sequence can be packaged by the large terminase subunit in vitro into protein-containing proheads and give full or partially full capsids. The prohead receptacles for DNA packaging can also display peptides or full-length proteins from capsid display proteins HOC and SOC. Our laboratory has also developed a protein expression, packaging, and processing (PEPP) system which we have found to have advantages over mammalian and bacterial cell systems, including high yield, increased stability, and simplified downstream processing. Proteins that we have produced by the phage PEPP platform include human HIV-1 protease, micrococcal endonuclease from Staphylococcus aureus, restriction endonuclease EcoRI, luciferase, human granulocyte colony stimulating factor (GCSF), green fluorescent protein (GFP), and the 99 amino acid C-terminus of amyloid precursor protein (APP). Difficult to produce proteins that are toxic in mammalian protein expression systems are easily produced, packaged, and processed with the PEPP platform. APP is one example of such a highly refractory protein that has been produced successfully. The methods below describe the procedures for in vitro packaging of proheads with DNA and for producing recombinant T4 phage that carry a gene of interest in the phage genome and produce and internally package the corresponding protein of interest.
Virus world as an evolutionary network of viruses and capsidless selfish elements.
Koonin, Eugene V; Dolja, Valerian V
2014-06-01
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Pandurangan, Arun Prasad; Shakeel, Shabih; Butcher, Sarah Jane; Topf, Maya
2014-01-01
Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to understand the structure and function of macromolecular machines. Many fitting methods have been developed, but a standard protocol for successful fitting and assessment of fitted models has yet to be agreed upon among the experts in the field. Here, we created and tested a protocol that highlights important issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit) and demonstrate how combining the analysis of multiple fits and model assessment could result in an improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2 and 6.1 Å resolution. As a result, and due to the improved homology models (derived from recently solved crystal structures of a close homolog – EV71 capsid – in mature and empty forms), the final models present an improvement over previously published models. In close agreement with the capsid expansion observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by ∼5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein VP1. The protocol could be applied not only to viral capsids but also to many other complexes characterised by a combination of atomic structure modelling and cryoEM density fitting. PMID:24333899
Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.
Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L
2017-08-04
Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bozek, Katarzyna; Nakayama, Emi E; Kono, Ken; Shioda, Tatsuo
2012-01-01
Human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus isolated from a macaque monkey (SIVmac) are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm). Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh) monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239) is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5). As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.
Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses.
Ekström, Jens-Ola; Habayeb, Mazen S; Srivastava, Vaibhav; Kieselbach, Thomas; Wingsle, Gunnar; Hultmark, Dan
2011-09-01
The recently discovered Nora virus from Drosophila melanogaster is a single-stranded RNA virus. Its published genomic sequence encodes a typical picorna-like cassette of replicative enzymes, but no capsid proteins similar to those in other picorna-like viruses. We have now done additional sequencing at the termini of the viral genome, extending it by 455 nucleotides at the 5' end, but no more coding sequence was found. The completeness of the final 12,333-nucleotide sequence was verified by the production of infectious virus from the cloned genome. To identify the capsid proteins, we purified Nora virus particles and analyzed their proteins by mass spectrometry. Our results show that the capsid is built from three major proteins, VP4A, B and C, encoded in the fourth open reading frame of the viral genome. The viral particles also contain traces of a protein from the third open reading frame, VP3. VP4A and B are not closely related to other picorna-like virus capsid proteins in sequence, but may form similar jelly roll folds. VP4C differs from the others and is predicted to have an essentially α-helical conformation. In a related virus, identified from EST database sequences from Nasonia parasitoid wasps, VP4C is encoded in a separate open reading frame, separated from VP4A and B by a frame-shift. This opens a possibility that VP4C is produced in non-equimolar quantities. Altogether, our results suggest that the Nora virus capsid has a different protein organization compared to the order Picornavirales. Copyright © 2011 Elsevier B.V. All rights reserved.
Rotavirus architecture at subnanometer resolution.
Li, Zongli; Baker, Matthew L; Jiang, Wen; Estes, Mary K; Prasad, B V Venkataram
2009-02-01
Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly.
Childhood Disintegrative Disorder: Issues for DSM-IV.
ERIC Educational Resources Information Center
Volkmar, Fred R.
1992-01-01
This paper presents evidence regarding the validity of the diagnostic concept of "autistic-like" childhood disintegrative disorder, also known as Heller syndrome or as disintegrative psychosis. Its inclusion in the DSM-IV (Diagnostic and Statistical Manual) is supported, and proposed criteria and narrative description are provided.…
Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge.
Esposito, G; Frunzo, L; Panico, A; d'Antonio, G
2008-01-01
This paper presents a mathematical model able to simulate under dynamic conditions the physical, chemical and biological processes prevailing in a OFMSW and sewage sludge anaerobic digestion system. The model proposed is based on differential mass balance equations for substrates, products and bacterial groups involved in the co-digestion process and includes the biochemical reactions of the substrate conversion and the kinetics of microbial growth and decay. The main peculiarity of the model is the surface based kinetic description of the OFMSW disintegration process, whereas the pH determination is based on a nine-order polynomial equation derived by acid-base equilibria. The model can be applied to simulate the co-digestion process for several purposes, such as the evaluation of the optimal process conditions in terms of OFMSW/sewage sludge ratio, temperature, OFMSW particle size, solid mixture retention time, reactor stirring rate, etc. Biogas production and composition can also be evaluated to estimate the potential energy production under different process conditions. In particular, model simulations reported in this paper show the model capability to predict the OFMSW amount which can be treated in the digester of an existing MWWTP and to assess the OFMSW particle size diminution pre-treatment required to increase the rate of the disintegration process, which otherwise can highly limit the co-digestion system. Copyright IWA Publishing 2008.
[Psychosocial disintegration].
Köhler, S
1994-08-01
Among the patients referred for rehabilitation in the latter half of their working life, many are notable due to considerable discrepancies between their objectively ascertainable performance and its subjectively perceived decline. In these cases, the "substantial threat to earning capacity" cannot be explained by measurable organ deficiencies. Similarly, treatment efforts focussed solely at improved somatic functioning remain inefficient in terms of stabilization of earning capacity, because they do not bring about changes in the cause of subjective performance deterioration. The author in these circumstances assumes the presence of an independent syndrome, called "psychosocial disintegration". He describes the full picture of this disease entity, and suggests causal mechanisms as well as potential for remedial intervention. On account of the considerable social dimension of the disorder outlined, early identification of these gradually developing changes as well as qualified care of the insurants are indispensable. All those involved in treatment and care of the patients or working in some branch of the social security system should be familiar with this psychosocial disintegration syndrome in order to avoid the guidance and counselling mistakes that are frequently the case. As rehabilitation is impossible in case of inhibiting personal attitudes of an insurant, it is advisable to verify the individual's readiness for rehabilitation and/or to strengthen it by appropriate measures before engaging in costly in-patient service provision. If the needed motivation is to be achieved during participation in a rehabilitation measure, extended service provision will invariably be required.
Marsic, Damien; Govindasamy, Lakshmanan; Currlin, Seth; Markusic, David M; Tseng, Yu-Shan; Herzog, Roland W; Agbandje-McKenna, Mavis; Zolotukhin, Sergei
2014-01-01
Methodologies to improve existing adeno-associated virus (AAV) vectors for gene therapy include either rational approaches or directed evolution to derive capsid variants characterized by superior transduction efficiencies in targeted tissues. Here, we integrated both approaches in one unified design strategy of “virtual family shuffling” to derive a combinatorial capsid library whereby only variable regions on the surface of the capsid are modified. Individual sublibraries were first assembled in order to preselect compatible amino acid residues within restricted surface-exposed regions to minimize the generation of dead-end variants. Subsequently, the successful families were interbred to derive a combined library of ~8 × 105 complexity. Next-generation sequencing of the packaged viral DNA revealed capsid surface areas susceptible to directed evolution, thus providing guidance for future designs. We demonstrated the utility of the library by deriving an AAV2-based vector characterized by a 20-fold higher transduction efficiency in murine liver, now equivalent to that of AAV8. PMID:25048217
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiMattia,M.; Govindasamy, L.; Levy, H.
2005-01-01
Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Angstroms resolution using synchrotron radiation and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c =more » 629.7 Angstroms. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.« less
DNA bending-induced phase transition of encapsidated genome in phage λ
Lander, Gabriel C.; Johnson, John E.; Rau, Donald C.; Potter, Clinton S.; Carragher, Bridget; Evilevitch, Alex
2013-01-01
The DNA structure in phage capsids is determined by DNA–DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging. PMID:23449219
Cleavage sites within the poliovirus capsid protein precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, G.R.; Anderson, C.W.; Dorner, A.J.
1982-01-01
Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occurmore » between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein.« less
Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines.
Martinez-Torrecuadrada, Jorge L; Saubi, Narciís; Pagès-Manté, Albert; Castón, José R; Espuña, Enric; Casal, J Ignacio
2003-07-04
The immunogenicity and protective capability of several baculovirus-expressed infectious bursal disease virus (IBDV)-derived assemblies as VP2 capsids, VPX tubules and polyprotein (PP)-derived mixed structures, were tested. Four-week-old chickens were immunised subcutaneously with one dose of each particulate antigen. VP2 icosahedral capsids induced the highest neutralising response, followed by PP-derived structures and then VPX tubules. All vaccinated animals were protected when challenged with a very virulent IBDV (vvIBDV) isolate, however the degree of protection is directly correlated with the levels of neutralising antibodies. VP2 capsids elicited stronger protective immunity than tubular structures and 3 micrograms of them were sufficient to confer a total protection comparable to that induced by an inactivated vaccine. Therefore, VP2 capsids represent a suitable candidate recombinant vaccine instead of virus-like particles (VLPs) for IBDV infections. Our results also provide clear evidence that the recombinant IBDV-derived antigens are structure-dependent in order to be efficient as vaccine components.
Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines.
Martinez-Torrecuadrada, Jorge L; Saubi, Narcis; Pagès-Manté, Albert; Castón, José R; Espuña, Enric; Casal, J Ignacio
2003-05-16
The immunogenicity and protective capability of several baculovirus-expressed infectious bursal disease virus (IBDV)-derived assemblies as VP2 capsids, VPX tubules and polyprotein (PP)-derived mixed structures, were tested. Four-week-old chickens were immunised subcutaneously with one dose of each particulate antigen. VP2 icosahedral capsids induced the highest neutralising response, followed by PP-derived structures and then VPX tubules. All vaccinated animals were protected when challenged with a very virulent IBDV (vvIBDV) isolate, however the degree of protection is directly correlated with the levels of neutralising antibodies. VP2 capsids elicited stronger protective immunity than tubular structures and 3& mgr;g of them were sufficient to confer a total protection comparable to that induced by an inactivated vaccine. Therefore, VP2 capsids represent a suitable candidate recombinant vaccine instead of virus-like particles (VLPs) for IBDV infections. Our results also provide clear evidence that the recombinant IBDV-derived antigens are structure-dependent in order to be efficient as vaccine components.
Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing
2014-10-01
DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations inmore » the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.« less