Sample records for capture enzyme linked

  1. ANALYSIS OF SOIL AND DUST SAMPLES FOR POLYCHLORINATED BIPHENYLS BY ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

    EPA Science Inventory

    An inhibition enzyme-linked immunosorbent assay (ELISA) was used to determine polychlorinated biphenyls (PCBs) in house dust and soil. Soil and house dust samples were analyzed for PCB by both gas chromatography/electron capture detection (GC/ECD) and ELISA methods. A correlati...

  2. Development of an Antigen Capture Enzyme-Linked Immunosorbent Assay for Virus Detection Based on Porcine Epidemic Diarrhea Virus Monoclonal Antibodies

    PubMed Central

    Wang, Zanyu; Jiyuan, Yin; Su, Chen; Xinyuan, Qiao

    2015-01-01

    Abstract Porcine epidemic diarrhea virus (PEDV), a coronavirus, can cause acute diarrhea and dehydration in pigs. In the current study, two positive monoclonal cell lines (5D7 and 3H4) specific for PEDV were established, and the immunoreactivity of the monoclonal antibodies was confirmed by immunofluorescence and dot-immunobinding assays. A method, termed antigen capture enzyme-linked immunosorbent assay (AC-ELISA), which used the monoclonal antibody 5D7 as the detecting antibody and rabbit antiserum of PEDV protein S as the capture antibody, was developed. Compared with the reverse transcription polymerase chain reaction method of detecting PEDV in fecal samples, AC-ELISA showed similar sensitivity and specificity. These results suggested that AC-ELISA would be useful for the diagnosis and epidemiological studies of PEDV. PMID:25658793

  3. Enzyme-linked immunosorbent assay using a recombinant baculovirus-expressed Bacillus anthracis protective antigen (PA): measurement of human anti-PA antibodies.

    PubMed Central

    Iacono-Connors, L C; Novak, J; Rossi, C; Mangiafico, J; Ksiazek, T

    1994-01-01

    We developed an antigen capture enzyme-linked immunosorbent assay (ELISA) which does not require purified protective antigen (PA) for detection of human antibodies to Bacillus anthracis PA. Lysates of Spodoptera frugiperda (Sf-9) cells infected with recombinant baculovirus containing the PA gene were used as the source of PA to develop the ELISA. Recombinant PA from crude Sf-9 cell lysates or PA purified from B. anthracis Sterne strain was captured by an anti-PA monoclonal antibody coated onto microtiter plates. We demonstrated that human serum antibody titers to PA were identical in the ELISA whether we used crude Sf-9 cell lysates containing recombinant baculovirus-expressed PA or purified Sterne PA. Finally, false-positive results observed in a direct ELISA were eliminated with this antigen capture ELISA. Thus, the antigen capture ELISA with crude preparations of baculovirus-expressed PA is reliable, safe, and inexpensive for determining anti-PA antibody levels in human sera. PMID:7496927

  4. Data Capture and Analysis Using the BBC Microcomputer--an Interfacing Project Applied to Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Jones, Lawrence; Graham, Ian

    1986-01-01

    Reviews the main principles of interfacing and discusses the software developed to perform kinetic data capture and analysis with a BBC microcomputer linked to a recording spectrophotometer. Focuses on the steps in software development. Includes results of a lactate dehydrogenase assay. (ML)

  5. Synthetic, switchable enzymes

    PubMed Central

    Norris, Vic; Krylov, Sergey N.; Agarwal, Pratul K.; White, Glenn J.

    2017-01-01

    The construction of switchable, radiation-controlled, aptameric enzymes alias swenzymes is, in principle, feasible. We propose a strategy to make such catalysts from two (or more) aptamers each selected to bind specifically to one of the substrates in, for example, a two-substrate reaction. Construction of a combinatorial library of candidate swenzymes entails selecting a set of a million aptamers that bind one substrate and a second set of a million aptamers that bind the second substrate; the aptamers in these sets are then linked pairwise by a linker so bringing together the substrates. In the presence of the substrates, some linked aptamer pairs catalyze the reaction when exposed to external energy in the form of a specific frequency of low intensity, non-ionizing electromagnetic or acoustic radiation. Such swenzymes are detected via a separate, product-capturing, aptamer that changes conformation on capturing the product; this altered conformation allows it (1) to bind to every potential swenzyme in its vicinity (thereby giving a higher probability of capture to the swenzymes that generate the product) and (2) to bind to a sequence on a magnetic bead (thereby permitting purification of the swenzyme plus product-capturing aptamer by precipitation). Attempts to implement the swenzyme strategy may help elucidate fundamental problems in enzyme catalysis. PMID:28448969

  6. Synthetic, Switchable Enzymes.

    PubMed

    Norris, Vic; Krylov, Sergey N; Agarwal, Pratul K; White, Glenn J

    2017-01-01

    The construction of switchable, radiation-controlled, aptameric enzymes - "swenzymes" - is, in principle, feasible. We propose a strategy to make such catalysts from 2 (or more) aptamers each selected to bind specifically to one of the substrates in, for example, a 2-substrate reaction. Construction of a combinatorial library of candidate swenzymes entails selecting a set of a million aptamers that bind one substrate and a second set of a million aptamers that bind the second substrate; the aptamers in these sets are then linked pairwise by a linker, thus bringing together the substrates. In the presence of the substrates, some linked aptamer pairs catalyze the reaction when exposed to external energy in the form of a specific frequency of low-intensity, nonionizing electromagnetic or acoustic radiation. Such swenzymes are detected via a separate product-capturing aptamer that changes conformation on capturing the product; this altered conformation allows it (1) to bind to every potential swenzyme in its vicinity (thereby giving a higher probability of capture to the swenzymes that generate the product) and (2) to bind to a sequence on a magnetic bead (thereby permitting purification of the swenzyme plus product-capturing aptamer by precipitation). Attempts to implement the swenzyme strategy may help elucidate fundamental problems in enzyme catalysis. © 2017 S. Karger AG, Basel.

  7. Monoclonal antibody passive hemagglutination and capture enzyme-linked immunosorbent assays for direct detection and quantitation of F41 and K99 fimbrial antigens in enterotoxigenic Escherichia coli.

    PubMed Central

    Raybould, T J; Crouch, C F; Acres, S D

    1987-01-01

    Production of diarrhea in neonatal calves by enterotoxigenic Escherichia coli depends on its ability to attach to the epithelial cells of the intestine via surface adhesins called pili or fimbriae and to secrete enterotoxins. The most important of these fimbriae are designated K99 and F41. We produced and characterized a murine monoclonal antibody specific to F41. This monoclonal antibody and a K99-specific monoclonal antibody were used to develop sensitive and specific passive hemagglutination and capture enzyme-linked immunosorbent assays (ELISAs) for detection and quantitation of F41 and K99 antigens in E. coli cultures and culture supernatants. The capture ELISA systems exhibited excellent sensitivity and specificity, whereas the passive hemagglutination systems appeared to be oversensitive. The ability of the capture ELISAs to detect K99 and F41 fimbrial antigens in fecal specimens from calves was evaluated. Fimbrial antigens were detected in six of six specimens from scouring calves but not in four of four specimens from nonscouring calves. PMID:2880866

  8. Validation of an enzyme-linked immunosorbent assay that detects Histoplasma capsulatum antigenuria in Colombian patients with AIDS for diagnosis and follow-up during therapy.

    PubMed

    Caceres, Diego H; Scheel, Christina M; Tobón, Angela M; Ahlquist Cleveland, Angela; Restrepo, Angela; Brandt, Mary E; Chiller, Tom; Gómez, Beatriz L

    2014-09-01

    We validated an antigen capture enzyme-linked immunosorbent assay (ELISA) in Colombian persons with AIDS and proven histoplasmosis and evaluated the correlation between antigenuria and clinical improvement during follow-up. The sensitivity of the Histoplasma capsulatum ELISA was 86%, and the overall specificity was 94%. The antigen test successfully monitored the response to therapy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Direct Competitive Enzyme-Linked Immunosorbent Assay (ELISA).

    PubMed

    Kohl, Thomas O; Ascoli, Carl A

    2017-07-05

    The competitive enzyme-linked immunosorbent assay (ELISA) (cELISA; also called an inhibition ELISA) is designed so that purified antigen competes with antigen in the test sample for binding to an antibody that has been immobilized in microtiter plate wells. The same concept works if the immobilized molecule is antigen and the competing molecules are purified labeled antibody versus antibody in a test sample. Direct cELISAs incorporate labeled antigen or antibody, whereas indirect assay configurations use reporter-labeled secondary antibodies. The cELISA is very useful for determining the concentration of small-molecule antigens in complex sample mixtures. In the direct cELISA, antigen-specific capture antibody is adsorbed onto the microtiter plate before incubation with either known standards or unknown test samples. Enzyme-linked antigen (i.e., labeled antigen) is also added, which can bind to the capture antibody only when the antibody's binding site is not occupied by either the antigen standard or antigen in the test samples. Unbound labeled and unlabeled antigens are washed away and substrate is added. The amount of antigen in the standard or the test sample determines the amount of reporter-labeled antigen bound to antibody, yielding a signal that is inversely proportional to antigen concentration within the sample. Thus, the higher the antigen concentration in the test sample, the less labeled antigen is bound to the capture antibody, and hence the weaker is the resultant signal. © 2017 Cold Spring Harbor Laboratory Press.

  10. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.

    PubMed

    Wei, Tianxiang; Du, Dan; Zhu, Mei-Jun; Lin, Yuehe; Dai, Zhihui

    2016-03-01

    Protein-inorganic nanoflowers, composed of protein and copper(II) phosphate (Cu3(PO4)2), have recently grabbed people's attention. Because the synthetic method requires no organic solvent and because of the distinct hierarchical nanostructure, protein-inorganic nanoflowers display enhanced catalytic activity and stability and would be a promising tool in biocatalytical processes and biological and biomedical fields. In this work, we first coimmobilized the enzyme, antibody, and Cu3(PO4)2 into a three-in-one hybrid protein-inorganic nanoflower to enable it to possess dual functions: (1) the antibody portion retains the ability to specifically capture the corresponding antigen; (2) the nanoflower has enhanced enzymatic activity and stability to produce an amplified signal. The prepared antibody-enzyme-inorganic nanoflower was first applied in an enzyme-linked immunosorbent assay to serve as a novel enzyme-labeled antibody for Escherichia coli O157:H7 (E. coli O157:H7) determination. The detection limit is 60 CFU L(-1), which is far superior to commercial ELISA systems. The three-in-one antibody (anti-E. coli O157:H7 antibody)-enzyme (horseradish peroxidase)-inorganic (Cu3(PO4)2) nanoflower has some advantages over commercial enzyme-antibody conjugates. First, it is much easier to prepare and does not need any complex covalent modification. Second, it has fairly high capture capability and catalytic activity because it is presented as aggregates of abundant antibodies and enzymes. Third, it has enhanced enzymatic stability compared to the free form of enzyme due to the unique hierarchical nanostructure.

  11. Immunoglobulin M (IgM)-Glycoinositolphospholipid Enzyme-Linked Immunosorbent Assay: an Immunoenzymatic Assay for Discrimination between Patients with Acute Toxoplasmosis and Those with Persistent Parasite-Specific IgM Antibodies

    PubMed Central

    Giraldo, Mónica; Portela, Ricardo W. D.; Snege, Mirian; Leser, Paulo G.; Camargo, Mário E.; Mineo, José Roberto; Gazzinelli, Ricardo T.

    2002-01-01

    In the present study we developed an enzyme-linked immunosorbent assay (ELISA) to measure immunoglobulin M (IgM) specific for glycoinositolphospholipids (GIPL) derived from tachyzoite membrane (IgM-GIPL ELISA). The sensitivity and specificity of the assay were compared with those of commercially available Toxoplasma-specific IgM serological tests, namely, immunofluorescence assay (IFA) with fixed tachyzoites and capture ELISA employing tachyzoite extracts. Our results show that all patients with acute toxoplasmosis, as determined by clinical data and conventional serological tests, were also positive by the IgM-GIPL ELISA. Interestingly, many patients that were classified as indeterminate, who had IgG with high avidity but positive results in the IgM-specific IFA and capture ELISA, were negative by the IgM-GIPL ELISA. Finally, we tested the sera from patients with rheumatoid arthritis and various parasitic infections and found no evidence of false positives in the IgM-GIPL ELISA. PMID:11923364

  12. Determination of PCBs in fish using enzyme-linked immunosorbent assay (ELISA)

    USGS Publications Warehouse

    Lasrado, J.A.; Santerre, C.R.; Zajicek, J.L.; Stahl, J.R.; Tillitt, D.E.; Deardorff, D.

    2003-01-01

    Polychlorinated biphenyls (PCBs) were determined in fish tissue using an enzyme-linked immunosorbent assay (ELISA). Standard curves for Aroclor 1248, 1254, and 1260 in catfish tissue were developed with ranges from 0.05 to 0.5 ppm and 0.5 to 5.0 ppm. Wild fish were initially analyzed using gas chromatography/electron-capture detection (GC/ECD) and those having residues within the standard curve ranges were analyzed with ELISA. Results obtained using ELISA and GC/ECD were not significantly different (p < 0.05) from 0.05 to 0.5 ppm. From 0.5 to 5.0 ppm, the standard curve for Aroclor 1254 was the best predictor of total PCB in wild fish samples.

  13. Immunosorbent analysis of ricin contamination in milk using colorimetric, chemiluminescence, and electrochemiluminescence detection

    USDA-ARS?s Scientific Manuscript database

    Analytical methodology to detect ricin in food matrices is important because of the potential use of foodborne ricin as a terrorist weapon. Monoclonal antibodies (mAbs) that bind ricin were used for both capture and detection in sandwich enzyme-linked immunosorbent assay (ELISA) and electrochemilumi...

  14. 42 CFR 71.53 - Requirements for importers of nonhuman primates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Trade in Endangered Species. ELISA means enzyme-linked immunosorbent assay, a type of laboratory test... serum for immunoglobulin G (IgG) antibodies to filovirus by using an ELISA methodology, or other method... for filovirus antigen by using the antigen-capture ELISA method must be submitted to a qualified...

  15. 42 CFR 71.53 - Requirements for importers of nonhuman primates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Trade in Endangered Species. ELISA means enzyme-linked immunosorbent assay, a type of laboratory test... serum for immunoglobulin G (IgG) antibodies to filovirus by using an ELISA methodology, or other method... for filovirus antigen by using the antigen-capture ELISA method must be submitted to a qualified...

  16. Antibody-capture enzyme-linked immunosorbent assays that use enzyme-labelled antigen for detection of virus-specific immunoglobulin M, A and G in patients with varicella or herpes zoster.

    PubMed Central

    van Loon, A. M.; van der Logt, J. T.; Heessen, F. W.; Heeren, M. C.; Zoll, J.

    1992-01-01

    Antibody-capture enzyme-linked immunosorbent assays (AC-ELISA) which use enzyme-labelled antigen were developed for detection of varicella-zoster virus-(VZV) specific IgM, IgA and IgG antibody in patients with varicella or herpes zoster and in sera from healthy individuals. All 18 patients with varicella developed a VZV-IgM and a VZV-IgG response, 17 also a VZV-IgA response. In contrast, all 19 patients with herpes zoster were shown to be positive for VZV-IgA whereas only 13 of these reacted positively for VZV-IgM. A VZV-IgM response was detected in only two sera from 100 healthy individuals and an IgA response in only one. The presence of virus-specific IgA and IgG in the cerebrospinal fluid as determined by AC-ELISA was a useful indicator of VZV infection of the central nervous system. By AC-ELISA, VZV-IgG was detected predominantly in sera from patients with acute or recent VZV infection. Only 14 sera from 100 healthy individuals were positive for VZV-IgG by AC-ELISA, whereas all were positive by an indirect ELISA. These results indicate that AC-ELISA's may be useful assays for determination for acute or recurrent VZV infection, but are not suitable for determination of past infection with this virus. PMID:1312479

  17. Enhancement in the sensitivity of microfluidic enzyme-linked immunosorbent assays through analyte preconcentration.

    PubMed

    Yanagisawa, Naoki; Dutta, Debashis

    2012-08-21

    In this Article, we describe a microfluidic enzyme-linked immunosorbent assay (ELISA) method whose sensitivity can be substantially enhanced through preconcentration of the target analyte around a semipermeable membrane. The reported preconcentration has been accomplished in our current work via electrokinetic means allowing a significant increase in the amount of captured analyte relative to nonspecific binding in the trapping/detection zone. Upon introduction of an enzyme substrate into this region, the rate of generation of the ELISA reaction product (resorufin) was observed to increase by over a factor of 200 for the sample and 2 for the corresponding blank compared to similar assays without analyte trapping. Interestingly, in spite of nonuniformities in the amount of captured analyte along the surface of our analysis channel, the measured fluorescence signal in the preconcentration zone increased linearly with time over an enzyme reaction period of 30 min and at a rate that was proportional to the analyte concentration in the bulk sample. In our current study, the reported technique has been shown to reduce the smallest detectable concentration of the tumor marker CA 19-9 and Blue Tongue Viral antibody by over 2 orders of magnitude compared to immunoassays without analyte preconcentration. When compared to microwell based ELISAs, the reported microfluidic approach not only yielded a similar improvement in the smallest detectable analyte concentration but also reduced the sample consumption in the assay by a factor of 20 (5 μL versus 100 μL).

  18. A murine monoclonal antibody based enzyme-linked immunosorbent assay for almond (Prunus dulcis L.) detection.

    PubMed

    Su, Mengna; Venkatachalam, Mahesh; Liu, Changqi; Zhang, Ying; Roux, Kenneth H; Sathe, Shridhar K

    2013-11-13

    A sandwich enzyme-linked immunosorbent assay (ELISA) using anti-almond soluble protein rabbit polyclonal antibodies as capture antibodies and murine monoclonal antibody 4C10 as the detection antibodies was developed. The assay is specific and sensitive (3-200 ng almond protein/mL) for almond detection. The standardized assay is accurate (<15% CV) and reproducible (intra- and inter assay variability <15% CV). The assay did not register any cross-reactivity with the tested food matrices, suggesting the assay to be almond amandin specific. The assay could detect the presence of declared almond in the tested matched commercial samples. Further, the assay reliably detected the presence of almonds in the laboratory prepared food samples spiked with almond flour.

  19. Antigen-capture blocking enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen to differentiate Transmissible gastroenteritis virus from Porcine respiratory coronavirus antibodies.

    PubMed

    López, Lissett; Venteo, Angel; García, Marga; Camuñas, Ana; Ranz, Ana; García, Julia; Sarraseca, Javier; Anaya, Carmen; Rueda, Paloma

    2009-09-01

    A new commercially available antigen-capture, blocking enzyme-linked immunosorbent assay (antigen-capture b-ELISA), based on baculovirus truncated-S recombinant protein of Transmissible gastroenteritis virus (TGEV) and 3 specific monoclonal antibodies, was developed and evaluated by examining a panel of 453 positive Porcine respiratory coronavirus (PRCoV), 31 positive TGEV, and 126 negative field sera by using another commercially available differential coronavirus b-ELISA as the reference technique to differentiate TGEV- from PRCoV-induced antibodies. The recombinant S protein-based ELISA appeared to be 100% sensitive for TGEV and PRCoV detection and highly specific for TGEV and PRCoV detection (100% and 92.06%, respectively), when qualitative results (positive or negative) were compared with those of the reference technique. In variability experiments, the ELISA gave consistent results when the same serum was evaluated on different wells and different plates. These results indicated that truncated recombinant S protein is a suitable alternative to the complete virus as antigen in ELISA assays. The use of recombinant S protein as antigen offers great advantages because it is an easy-to-produce, easy-to-standardize, noninfectious antigen that does not require further purification or concentration. Those advantages represent an important improvement for antigen preparation, in comparison with other assays in which an inactivated virus from mammalian cell cultures is used.

  20. Comparison of PanBio Dengue Duo Enzyme-Linked Immunosorbent Assay (ELISA) and MRL Dengue Fever Virus Immunoglobulin M Capture ELISA for Diagnosis of Dengue Virus Infections in Southeast Asia

    PubMed Central

    Cuzzubbo, Andrea J.; Vaughn, David W.; Nisalak, Ananda; Solomon, Tom; Kalayanarooj, Siripen; Aaskov, John; Dung, Nguyen Minh; Devine, Peter L.

    1999-01-01

    The performances of the MRL dengue fever virus immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) and the PanBio Dengue Duo IgM capture and IgG capture ELISA were compared. Eighty sera from patients with dengue virus infections, 24 sera from patients with Japanese encephalitis (JE), and 78 sera from patients with nonflavivirus infections, such as malaria, typhoid, leptospirosis, and scrub typhus, were used. The MRL test showed superior sensitivity for dengue virus infections (94 versus 89%), while the PanBio test showed superior specificity for JE (79 versus 25%) and other infections (100 versus 91%). The PanBio ELISA showed better overall performance, as assessed by the sum of sensitivity and specificity (F value). When dengue virus and nonflavivirus infections were compared, F values of 189 and 185 were obtained for the PanBio and MRL tests, respectively, while when dengue virus infections and JE were compared, F values of 168 and 119 were obtained. The results obtained with individual sera in the PanBio and MRL IgM ELISAs showed good correlation, but this analysis revealed that the cutoff value of the MRL test was set well below that of the PanBio test. Comparing the sensitivity and specificity of the tests at different cutoff values (receiver-operator analysis) revealed that the MRL and PanBio IgM ELISAs performed similarly in distinguishing dengue virus from nonflavivirus infections, although the PanBio IgM ELISA showed significantly better distinction between dengue virus infections and JE. The implications of these findings for the laboratory diagnosis of dengue are discussed. PMID:10473522

  1. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium.

    PubMed

    Wu, Wenhe; Li, Jun; Pan, Dun; Li, Jiang; Song, Shiping; Rong, Mingge; Li, Zixi; Gao, Jimin; Lu, Jianxin

    2014-10-08

    Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody-antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 10(3) to 1 × 10(8) CFU mL(-1), a limit of detection of 1 × 10(3) CFU mL(-1), and a selectivity of >10-fold for STM in samples containing other bacteria at higher concentration with an assay time less than 3 h. In addition, the developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters. Finally, the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.

  2. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  3. PCR-enzyme-linked immunosorbent assay and partial rRNA gene sequencing: a rational approach to identifying mycobacteria.

    PubMed Central

    Patel, S; Yates, M; Saunders, N A

    1997-01-01

    A PCR-enzyme-linked immunosorbent assay (ELISA) for amplification and rapid identification of mycobacterial DNA coding for 16S rRNA was developed. The PCR selectively targeted and amplified part of the 16S rRNA gene from all mycobacteria while simultaneously labelling one strand of the amplified product with a 5' fluorescein-labelled primer. The identity of the labelled strand was subsequently determined by hybridization to a panel of mycobacterial species-specific capture probes, which were immobilized via their 5' biotin ends to a streptavidin-coated microtiter plate. Specific hybridization of a 5' fluorescein-labelled strand to a species probe was detected colorimetrically with an anti-fluorescein enzyme conjugate. The assay was able to identify 10 Mycobacterium spp. A probe able to hybridize to all Mycobacterium species (All1) was also included. By a heminested PCR, the assay was sensitive enough to detect as little as 10 fg of DNA, which is equivalent to approximately three bacilli. The assay was able to detect and identify mycobacteria directly from sputa. The specificities of the capture probes were assessed by analysis of 60 mycobacterial strains corresponding to 18 species. Probes Avi1, Int1, Kan1, Xen1, Che1, For1, Mal1, Ter1, and Gor1 were specific. The probe Tbc1 cross-hybridized with the Mycobacterium terrae amplicon. Analysis of 35 strains tested blind resulted in 34 strains being correctly identified. This method could be used for rapid identification of early cultures and may be suitable for the detection and concurrent identification of mycobacteria within clinical specimens. PMID:9276419

  4. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique and adenylating enzymes together using a combination of active site-directed probes for the A domains in NRPSs should accelerate both the functional characterization and manipulation of the A domains in NRPSs.

  5. Development and Evaluation of an Enzyme-Linked Immunosorbent Assay To Detect Histoplasma capsulatum Antigenuria in Immunocompromised Patients▿

    PubMed Central

    Scheel, Christina M.; Samayoa, Blanca; Herrera, Alejandro; Lindsley, Mark D.; Benjamin, Lynette; Reed, Yvonne; Hart, John; Lima, Sandra; Rivera, Blanca E.; Raxcaco, Gabriella; Chiller, Tom; Arathoon, Eduardo; Gómez, Beatriz L.

    2009-01-01

    Histoplasma capsulatum infection causes significant morbidity and mortality in human immunodeficiency virus-infected individuals, particularly those in countries with limited access to rapid diagnostics or antiretroviral therapies. The fungus easily disseminates in persons with AIDS, resulting in progressive disseminated histoplasmosis (PDH), which can progress rapidly to death if undiagnosed. The availability of a simple, rapid method to detect H. capsulatum infection in less developed countries where the infection is endemic would dramatically decrease the time to diagnosis and treatment of PDH. We have developed an antigen-capture enzyme-linked immunosorbent assay (ELISA) to detect PDH antigenuria in infected patients. The assay uses polyclonal antibodies against H. capsulatum as both capture and detection reagents, and a standard reference curve is included to quantify antigenuria and ensure reproducibility. We evaluated this assay using specimens collected from patients with AIDS and culture-proven histoplasmosis in a Guatemalan clinic (n = 48), from healthy persons (n = 83), and from patients with other, nonhistoplasmosis diseases (n = 114). The ELISA demonstrated a sensitivity of 81% and a specificity of 95% in detecting H. capsulatum antigen in urine. This assay relies on simple technology that can be performed in institutions with limited resources. Use of this test will facilitate rapid diagnosis of PDH in countries where mortality is high, expediting treatment and likely reducing PDH-related mortality. PMID:19357311

  6. Multicountry Prospective Clinical Evaluation of Two Enzyme-Linked Immunosorbent Assays and Two Rapid Diagnostic Tests for Diagnosing Dengue Fever

    PubMed Central

    Dauner, Allison L.; Valks, Andrea; Forshey, Brett M.; Long, Kanya C.; Thaisomboonsuk, Butsaya; Sierra, Gloria; Picos, Victor; Talmage, Sara; Morrison, Amy C.; Halsey, Eric S.; Comach, Guillermo; Yasuda, Chadwick; Loeffelholz, Michael; Jarman, Richard G.; Fernandez, Stefan; An, Ung Sam; Kochel, Tadeusz J.; Jasper, Louis E.; Wu, Shuenn-Jue L.

    2015-01-01

    We evaluated four dengue diagnostic devices from Alere, including the SD Bioline Dengue Duo (nonstructural [NS] 1 Ag and IgG/IgM), the Panbio Dengue Duo Cassette (IgM/IgG) rapid diagnostic tests (RDTs), and the Panbio dengue IgM and IgG capture enzyme-linked immunosorbent assays (ELISAs) in a prospective, controlled, multicenter study in Peru, Venezuela, Cambodia, and the United States, using samples from 1,021 febrile individuals. Archived, well-characterized samples from an additional 135 febrile individuals from Thailand were also used. Reference testing was performed on all samples using an algorithm involving virus isolation, in-house IgM and IgG capture ELISAs, and plaque reduction neutralization tests (PRNT) to determine the infection status of the individual. The primary endpoints were the clinical sensitivities and specificities of these devices. The SD Bioline Dengue Duo had an overall sensitivity of 87.3% (95% confidence interval [CI], 84.1 to 90.2%) and specificity of 86.8% (95% CI, 83.9 to 89.3%) during the first 14 days post-symptom onset (p.s.o.). The Panbio Dengue Duo Cassette demonstrated a sensitivity of 92.1% (87.8 to 95.2%) and specificity of 62.2% (54.5 to 69.5%) during days 4 to 14 p.s.o. The Panbio IgM capture ELISA had a sensitivity of 87.6% (82.7 to 91.4%) and specificity of 88.1% (82.2 to 92.6%) during days 4 to 14 p.s.o. Finally, the Panbio IgG capture ELISA had a sensitivity of 69.6% (62.1 to 76.4%) and a specificity of 88.4% (82.6 to 92.8%) during days 4 to 14 p.s.o. for identification of secondary dengue infections. This multicountry prospective study resulted in reliable real-world performance data that will facilitate data-driven laboratory test choices for managing patient care during dengue outbreaks. PMID:25588659

  7. Covalent Binding of Antibodies to Cellulose Paper Discs and Their Applications in Naked-eye Colorimetric Immunoassays.

    PubMed

    Peng, Yanfen; Gelder, Victor Van; Amaladoss, Anburaj; Patel, Kadamb Haribhai

    2016-10-21

    This report presents two methods for the covalent immobilization of capture antibodies on cellulose filter paper grade No. 1 (medium-flow filter paper) discs and grade No. 113 (fast-flow filter paper) discs. These cellulose paper discs were grafted with amine functional groups through a silane coupling technique before the antibodies were immobilized on them. Periodate oxidation and glutaraldehyde cross-linking methods were used to graft capture antibodies on the cellulose paper discs. In order to ensure the maximum binding capacity of the capture antibodies to their targets after immobilization, the effects of various concentrations of sodium periodate, glutaraldehyde, and capture antibodies on the surface of the paper discs were investigated. The antibodies that were coated on the amine-functionalized cellulose paper discs through a glutaraldehyde cross-linking agent showed enhanced binding activity to the target when compared to the periodate oxidation method. IgG (in mouse reference serum) was used as a reference target in this study to test the application of covalently immobilized antibodies through glutaraldehyde. A new paper-based, enzyme-linked immunosorbent assay (ELISA) was successfully developed and validated for the detection of IgG. This method does not require equipment, and it can detect 100 ng/ml of IgG. The fast-flow filter paper was more sensitive than the medium-flow filter paper. The incubation period of this assay was short and required small sample volumes. This naked-eye, colorimetric immunoassay can be extended to detect other targets that are identified with conventional ELISA.

  8. Development and Characterization of Monoclonal Antibodies to Yellow Fever Virus and Application in Antigen Detection and IgM Capture Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Adungo, Ferdinard; Kamau, David; Inoue, Shingo; Hayasaka, Daisuke; Posadas-Herrera, Guillermo; Sang, Rosemary; Mwau, Matilu

    2016-01-01

    Yellow fever (YF) is an acute hemorrhagic viral infection transmitted by mosquitoes in Africa and South America. The major challenge in YF disease detection and confirmation of outbreaks in Africa is the limited availability of reference laboratories and the persistent lack of access to diagnostic tests. We used wild-type YF virus sequences to generate recombinant envelope protein in an Escherichia coli expression system. Both the recombinant protein and sucrose gradient-purified YF vaccine virus 17D (YF-17D) were used to immunize BALB/c mice to generate monoclonal antibodies (MAbs). Eight MAbs were established and systematically characterized by indirect enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence assay (IFA). The established MAbs showed strong reactivity with wild-type YF virus and recombinant protein with no detectable cross-reactivity to dengue virus or Japanese encephalitis virus. Epitope mapping showed strong binding of three MAbs to amino acid positions 1 to 51, while two MAbs mapped to amino acid positions 52 to 135 of the envelope protein. The remaining three MAbs did not show reactivity to envelope fragments. The established MAbs exert no neutralization against wild-type YF and 17D viruses (titer of <10 for both strains). The applicability of MAbs 8H3 and 3F4 was further evaluated using IgM capture ELISA. A total of 49 serum samples were analyzed, among which 12 positive patient and vaccinee samples were correctly identified. Using serum samples that were 2-fold serially diluted, the IgM capture ELISA was able to detect all YF-positive samples. Furthermore, MAb-based antigen detection ELISA enabled the detection of virus in culture supernatants containing titers of about 1,000 focus-forming units. PMID:27307452

  9. A New Enzyme-linked Sorbent Assay (ELSA) to Quantify Syncytiotrophoblast Extracellular Vesicles in Biological Fluids.

    PubMed

    Göhner, Claudia; Weber, Maja; Tannetta, Dionne S; Groten, Tanja; Plösch, Torsten; Faas, Marijke M; Scherjon, Sicco A; Schleußner, Ekkehard; Markert, Udo R; Fitzgerald, Justine S

    2015-06-01

    The pregnancy-associated disease preeclampsia is related to the release of syncytiotrophoblast extracellular vesicles (STBEV) by the placenta. To improve functional research on STBEV, reliable and specific methods are needed to quantify them. However, only a few quantification methods are available and accepted, though imperfect. For this purpose, we aimed to provide an enzyme-linked sorbent assay (ELSA) to quantify STBEV in fluid samples based on their microvesicle characteristics and placental origin. Ex vivo placenta perfusion provided standards and samples for the STBEV quantification. STBEV were captured by binding of extracellular phosphatidylserine to immobilized annexin V. The membranous human placental alkaline phosphatase on the STBEV surface catalyzed a colorimetric detection reaction. The described ELSA is a rapid and simple method to quantify STBEV in diverse liquid samples, such as blood or perfusion suspension. The reliability of the ELSA was proven by comparison with nanoparticle tracking analysis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Development of an indirect enzyme linked immunoassay for abscisic acid. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, G.S.; Elder, P.A.; McWha, J.A.

    1987-09-01

    AN INDIRECT METHOD OF ENZYME-LINKED-IMMUNOSORBENT-ASSAY (ELISA) IS REPORTED FOR ABSCISIC ACID (ABA), UTILIZING A THYROGLOBULIN-ABA CONJUGATE FOR COATING WELLS. THE ASSAY CAN USE COMMERCIALLY AVAILABLE MONOCLONAL ANTIBODIES, IS SENSITIVE TO AS LITTLE AS 20 PICOGRAMS ABA PER WELL, AND IS MUCH MORE CONSERVATIVE OF ANTIBODY THAN DIRECT METHODS. THE MOST DILUTE ABA STANDARDS DID NOT RETAIN THEIR ANTIGENICITY DURING STORAGE, SO ABA STANDARD SETS WERE DILUTED IMMEDIATELY PRIOR TO USE. THE INDIRECT ELISA WAS USED SUCCESSFULLY TO ESTIMATE ABA CONCENTRATIONS IN DEVELOPING COTYLEDONS OF PISUM SATIVUM L., AFTER ONLY LITTLE PRELIMINARY PURIFICATION. IT WAS VALIDATED FOR THIS TISSUE THROUGH THEmore » USE OF GAS CHROMATOGRAPHY-ELECTRON CAPTURE DETECTION (GC-EC), AND CAPILLARY GC-SELECTED ION MONITORING (GC-MS-SIM) USING LABELLED ABA AS AN INTERNAL STANDARD. FULL SPECTRUM GC-MASS SPECTROMETRY WAS ALSO USED TO VERIFY THAT ABA WAS PRESENT IN A SAMPLE ASSAYED QUANTITATIVELY BY BOTH ELISA AND GC-MS-SIM.« less

  11. Rubella Surveillance and Diagnostic Testing among a Low-Prevalence Population, New York City, 2012–2013

    PubMed Central

    Zucker, Jane R.; Giancotti, Francesca R.; Abernathy, Emily; Icenogle, Joseph; Rakeman, Jennifer L.; Rosen, Jennifer B.

    2017-01-01

    ABSTRACT The New York City Department of Health and Mental Hygiene (DOHMH) receives clinical and laboratory reports for rubella. Because rubella immunoglobulin M (IgM) assays may produce false-positive results and rubella infections may be asymptomatic, interpretation of positive IgM results can be challenging. Rubella reports received by DOHMH in 2012 to 2013 were reviewed. The rubella IgM testing purpose was determined through case investigation. Results of IgM testing by indirect enzyme-linked immunosorbent assay (ELISA) and capture enzyme immunoassay (EIA) were compared to determine positive predictive value (PPV) and specificity. DOHMH received 199 rubella reports; 2 were true cases. Of all reports, 77.9% were tested for rubella IgM erroneously, 19.6% were tested for diagnostic purposes, 2.0% had unknown test purpose, and 0.5% were not tested. PPV of indirect ELISA was 6% overall, 14% for diagnostic tests, and 0% for tests ordered erroneously. PPV of capture EIA was 29% overall, 50% for diagnostic tests, and 0% for tests ordered erroneously. Overall, specificity was 52% for indirect ELISA and 85% for capture EIA. Limiting rubella IgM testing to patients for whom rubella diagnosis is suspected and using a more specific IgM assay have the potential to reduce false-positive rubella IgM results. PMID:28701468

  12. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  13. Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments.

    PubMed

    Patel, Drashti; Gismondi, Renee; Alsaffar, Ali; Tiquia-Arashiro, Sonia M

    2018-05-02

    Waters draining into a lake carry with them much of the suspended sediment that is transported by rivers and streams from the local drainage basin. The organic matter processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and evaluate some of these variabilities in the sediments, we sampled six sites: three from the St. Clair River and three from Lake St. Clair in spring, summer, fall, and winter of 2016. At all sites and dates, we investigated the spatial and temporal variations in 19 extracellular enzyme activities using API ZYM. Our results indicated that a broad range of enzymes were found to be active in the sediments. Phosphatases, lipases, and esterases were synthesized most intensively by the sediment microbial communities. No consistent difference was found between the lake and sediment samples. Differences were more obvious between sites and seasons. Sites with the highest metabolic (enzyme) diversity reflected the capacity of the sediment microbial communities to breakdown a broader range of substrates and may be linked to differences in river and lake water quality. The seasonal variability of the enzymes activities was governed by the variations of environmental factors caused by anthropogenic and terrestrial inputs, and provides information for a better understanding of the dynamics of sediment organic matter of the river and lake ecosystems. The experimental results suggest that API ZYM is a simple and rapid enzyme assay procedure to evaluate natural processes in ecosystems and their changes.

  14. Serosurvey for West Nile virus antibodies in Steller's Jays (Cyanocitta stelleri) captured in coastal California

    USGS Publications Warehouse

    West, Elena; Hofmeister, Erik K.; Peery, M. Zach

    2017-01-01

    West Nile virus (WNV) was first detected in New York in 1999 and, during its expansion across the continental US, southern Canada, and Mexico, members of the Corvidae (ravens, crows, magpies, and jays) were frequently infected and highly susceptible to the virus. As part of a behavioral study of Steller's Jays (Cyanocitta stelleri) conducted from 2011–2014 in the coastal California counties of San Mateo and Santa Cruz, 380 Steller's Jays were captured and tested for antibodies to WNV. Using the wild bird IgG enzyme linked immunoassay, we failed to detect antibodies to WNV, indicating either that there was no previous exposure to the virus or that exposed birds had died.

  15. Serosurvey for West Nile Virus Antibodies in Steller's Jays ( Cyanocitta stelleri ) Captured in Coastal California, USA.

    PubMed

    West, Elena; Hofmeister, Erik; Peery, M Zach

    2017-07-01

    West Nile virus (WNV) was first detected in New York in 1999 and, during its expansion across the continental US, southern Canada, and Mexico, members of the Corvidae (ravens, crows, magpies, and jays) were frequently infected and highly susceptible to the virus. As part of a behavioral study of Steller's Jays ( Cyanocitta stelleri ) conducted from 2011-14 in the coastal California counties of San Mateo and Santa Cruz, 380 Steller's Jays were captured and tested for antibodies to WNV. Using the wild bird immunoglobulin G enzyme linked immunoassay, we failed to detect antibodies to WNV, indicating either that there was no previous exposure to the virus or that exposed birds had died.

  16. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.

    PubMed

    Ouedraogo, Daniel; Ball, Jacob; Iyer, Archana; Reis, Renata A G; Vodovoz, Maria; Gadda, Giovanni

    2017-10-15

    d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is a flavin-dependent oxidoreductase, which is part of a novel two-enzyme racemization system that functions to convert d-arginine to l-arginine. PaDADH contains a noncovalently linked FAD that shows the highest activity with d-arginine. The enzyme exhibits broad substrate specificity towards d-amino acids, particularly with cationic and hydrophobic d-amino acids. Biochemical studies have established the structure and the mechanistic properties of the enzyme. The enzyme is a true dehydrogenase because it displays no reactivity towards molecular oxygen. As established through solvent and multiple kinetic isotope studies, PaDADH catalyzes an asynchronous CH and NH bond cleavage via a hydride transfer mechanism. Steady-state kinetic studies with d-arginine and d-histidine are consistent with the enzyme following a ping-pong bi-bi mechanism. As shown by a combination of crystallography, kinetic and computational data, the shape and flexibility of loop L1 in the active site of PaDADH are important for substrate capture and broad substrate specificity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of capture stress on plasma enzyme activities in rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Bouck, G.R.; Cairns, M. A.; Christian, A. R.

    1978-01-01

    Four capture methods were used to collect domesticated rainbow trout (Salmo gairdneri): angling, electroshocking, seining, and direct netting (control). Blood was sampled rapidly upon capture, usually within 2 min. No significant differences were noted within the time frame of the experiment between the four capture groups for plasma protein concentration, lactate dehydrogenase activity, or leucine aminonaphthylamidase activity. Creatine phosphokinase activity was elevated among electroshocked fish. Acid phosphatase activity was too low for accurate measurement. Hematocrits were significantly elevated by capture struggles. These results indicate that these capture methods do not preclude the use of plasma enzyme levels for investigating the health of wild fish. Key words: plasma enzyme, capture stress, physiology, plasma protein, rainbow trout, lactate dehydrogenase, leucine aminonaphthylamidase, creatine phosphokinase

  18. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis.

    PubMed

    Jones, Hannah B L; Wells, Stephen A; Prentice, Erica J; Kwok, Anthony; Liang, Liyin L; Arcus, Vickery L; Pudney, Christopher R

    2017-09-01

    Our understanding of how enzymes work is coloured by static structure depictions where the enzyme scaffold is presented as either immobile, or in equilibrium between well-defined static conformations. Proteins, however, exhibit a large degree of motion over a broad range of timescales and magnitudes and this is defined thermodynamically by the enzyme free energy landscape (FEL). The role and importance of enzyme motion is extremely contentious. Much of the challenge is in the experimental detection of so called 'conformational sampling' involved in enzyme turnover. Herein we apply combined pressure and temperature kinetics studies to elucidate the full suite of thermodynamic parameters defining an enzyme FEL as it relates to enzyme turnover. We find that the key thermodynamic parameters governing vibrational modes related to enzyme turnover are the isobaric expansivity term and the change in heat capacity for enzyme catalysis. Variation in the enzyme FEL affects these terms. Our analysis is supported by a range of biophysical and computational approaches that specifically capture information on protein vibrational modes and the FEL (all atom flexibility calculations, red edge excitation shift spectroscopy and viscosity studies) that provide independent evidence for our findings. Our data suggest that restricting the enzyme FEL may be a powerful strategy when attempting to rationally engineer enzymes, particularly to alter thermal activity. Moreover, we demonstrate how rational predictions can be made with a rapid computational approach. © 2017 Federation of European Biochemical Societies.

  19. Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin.

    PubMed

    Kowalczyk, Joanna E; Lubbers, Ronnie J M; Peng, Mao; Battaglia, Evy; Visser, Jaap; de Vries, Ronald P

    2017-09-27

    Aspergillus niger produces an arsenal of extracellular enzymes that allow synergistic degradation of plant biomass found in its environment. Pectin is a heteropolymer abundantly present in the primary cell wall of plants. The complex structure of pectin requires multiple enzymes to act together. Production of pectinolytic enzymes in A. niger is highly regulated, which allows flexible and efficient capture of nutrients. So far, three transcriptional activators have been linked to regulation of pectin degradation in A. niger. The L-rhamnose-responsive regulator RhaR controls the production of enzymes that degrade rhamnogalacturonan-I. The L-arabinose-responsive regulator AraR controls the production of enzymes that decompose the arabinan and arabinogalactan side chains of rhamnogalacturonan-II. The D-galacturonic acid-responsive regulator GaaR controls the production of enzymes that act on the polygalacturonic acid backbone of pectin. This project aims to better understand how RhaR, AraR and GaaR co-regulate pectin degradation. For that reason, we constructed single, double and triple disruptant strains of these regulators and analyzed their growth phenotype and pectinolytic gene expression in A. niger grown on sugar beet pectin.

  20. Deamidation and transamidation of substance P by tissue transglutaminase revealed by electron-capture dissociation fourier transform mass spectrometry.

    PubMed

    Fornelli, Luca; Schmid, Adrien W; Grasso, Luigino; Vogel, Horst; Tsybin, Yury O

    2011-01-10

    Tissue transglutaminase (tTGase) catalyzes both deamidation and transamidation of peptides and proteins by using a peptidyl glutamine as primary substrate. A precise consensus sequence for the enzyme is unknown and the ratio between deamidated and transamidated (or cross-linked) reaction products is highly substrate-dependent. Due to its overlapping body distribution with tTGase and ease of manipulation with tandem mass spectrometry, we used the neuropeptide substance P as a model to investigate the associated enzymatic kinetics and reaction products. Online liquid-chromatography Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) combined with electron-capture dissociation (ECD) was employed to study the tTGase-induced modifications of substance P. A particular strength of ECD for peptide-enzyme reaction product monitoring is its ability to distinguish isomeric amino acids, for example, Glu and iso-Glu, by signature product ions. Our studies show that the primary reaction observed is deamidation, with the two consecutive glutamine residues converted sequentially into glutamate: first Gln(5) , and subsequently Gln(6) . We then applied ECD FT-ICR MS to identify the transamidation site on an enzymatically cross-linked peptide, which turned out to correspond to Gln(5) . Three populations of substance-P dimers were detected that differed by the number of deamidated Gln residues. The higher reactivity of Gln(5) over Gln(6) was further confirmed by cross-linking SP with monodansylcadaverine (MDC). Overall, our approach described herein is of a general importance for mapping both enzymatically induced post-translational protein modifications and cross-linking. Finally, in vitro Ca-signaling assays revealed that the main tTGase reaction product, the singly deamidated SP (RPKPEQFFGLM-NH(2) ), has increased agonist potency towards its natural receptor, thus confirming the biologically relevant role of deamidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recombinant truncated nucleocapsid protein as antigen in a novel immunoglobulin M capture enzyme-linked immunosorbent assay for diagnosis of severe acute respiratory syndrome coronavirus infection.

    PubMed

    Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Hasebe, Futoshi; Parquet, Maria del Carmen; Morikawa, Shigeru; Morita, Kouichi

    2007-02-01

    We report the development of an immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for severe acute respiratory syndrome coronavirus (SARS-CoV) by using recombinant truncated SARS-CoV nucleocapsid protein as the antigen. The newly developed MAC-ELISA had a specificity and sensitivity of 100% as evaluated by using sera from healthy volunteers and patients with laboratory-confirmed SARS. Using serial serum samples collected from SARS patients, the times to seroconversion were determined by IgM antibody detection after SARS-CoV infection. The median time to seroconversion detection was 8 days (range, 5 to 17 days) after disease onset, and the seroconversion rates after the onset of illness were 33% by the first week, 97% by the second week, and 100% by the third week. Compared with the results of our previous report on the detection of IgG, the median seroconversion time by IgM detection was 3 days earlier and the seroconversion rate by the second week after the illness for IgM was significantly higher than by IgG assay. Our results indicating that the IgM response appears earlier than IgG after SARS-CoV infection in consistent with those for other pathogens. Our newly developed MAC-ELISA system offers a new alternative for the confirmation of SARS-CoV infection.

  2. Recombinant Truncated Nucleocapsid Protein as Antigen in a Novel Immunoglobulin M Capture Enzyme-Linked Immunosorbent Assay for Diagnosis of Severe Acute Respiratory Syndrome Coronavirus Infection▿

    PubMed Central

    Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Hasebe, Futoshi; Parquet, Maria del Carmen; Morikawa, Shigeru; Morita, Kouichi

    2007-01-01

    We report the development of an immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for severe acute respiratory syndrome coronavirus (SARS-CoV) by using recombinant truncated SARS-CoV nucleocapsid protein as the antigen. The newly developed MAC-ELISA had a specificity and sensitivity of 100% as evaluated by using sera from healthy volunteers and patients with laboratory-confirmed SARS. Using serial serum samples collected from SARS patients, the times to seroconversion were determined by IgM antibody detection after SARS-CoV infection. The median time to seroconversion detection was 8 days (range, 5 to 17 days) after disease onset, and the seroconversion rates after the onset of illness were 33% by the first week, 97% by the second week, and 100% by the third week. Compared with the results of our previous report on the detection of IgG, the median seroconversion time by IgM detection was 3 days earlier and the seroconversion rate by the second week after the illness for IgM was significantly higher than by IgG assay. Our results indicating that the IgM response appears earlier than IgG after SARS-CoV infection in consistent with those for other pathogens. Our newly developed MAC-ELISA system offers a new alternative for the confirmation of SARS-CoV infection. PMID:17202310

  3. Serologic evidence of West Nile Virus infection in birds, Tamaulipas State, México.

    PubMed

    Fernández-Salas, Ildefonso; Contreras-Cordero, Juan F; Blitvich, Bradley J; González-Rojas, José I; Cavazos-Alvarez, Amanda; Marlenee, Nicole L; Elizondo-Quiroga, Armando; Loroño-Pino, María A; Gubler, Duane J; Cropp, Bruce C; Calisher, Charles H; Beaty, Barry J

    2003-01-01

    Following the introduction of West Nile virus (WNV) into North America in 1999, surveillance for WNV in migratory and resident birds was established in Tamaulipas State, northern México in December 2001. Overall, 796 birds representing 70 species and 10 orders were captured and assayed for antibodies to WNV. Nine birds had flavivirus-specific antibodies by epitope-blocking enzyme-linked immunosorbent assay; four were confirmed to have antibody to WNV by plaque reduction neutralization test. The WNV-infected birds were a house wren, mourning dove, verdin and Bewick's wren. The house wren is a migratory species; the other WNV-infected birds are presumably residents. The WNV-infected birds were all captured in March 2003. These data provide the first indirect evidence of WNV transmission among birds in northern México.

  4. Rubella Surveillance and Diagnostic Testing among a Low-Prevalence Population, New York City, 2012-2013.

    PubMed

    Isaac, Beth M; Zucker, Jane R; Giancotti, Francesca R; Abernathy, Emily; Icenogle, Joseph; Rakeman, Jennifer L; Rosen, Jennifer B

    2017-09-01

    The New York City Department of Health and Mental Hygiene (DOHMH) receives clinical and laboratory reports for rubella. Because rubella immunoglobulin M (IgM) assays may produce false-positive results and rubella infections may be asymptomatic, interpretation of positive IgM results can be challenging. Rubella reports received by DOHMH in 2012 to 2013 were reviewed. The rubella IgM testing purpose was determined through case investigation. Results of IgM testing by indirect enzyme-linked immunosorbent assay (ELISA) and capture enzyme immunoassay (EIA) were compared to determine positive predictive value (PPV) and specificity. DOHMH received 199 rubella reports; 2 were true cases. Of all reports, 77.9% were tested for rubella IgM erroneously, 19.6% were tested for diagnostic purposes, 2.0% had unknown test purpose, and 0.5% were not tested. PPV of indirect ELISA was 6% overall, 14% for diagnostic tests, and 0% for tests ordered erroneously. PPV of capture EIA was 29% overall, 50% for diagnostic tests, and 0% for tests ordered erroneously. Overall, specificity was 52% for indirect ELISA and 85% for capture EIA. Limiting rubella IgM testing to patients for whom rubella diagnosis is suspected and using a more specific IgM assay have the potential to reduce false-positive rubella IgM results. Copyright © 2017 American Society for Microbiology.

  5. ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.

    ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.

  6. Development of immunoglobulin class-specific enzyme-linked immunosorbent assays for measuring antibodies against avian rotavirus.

    PubMed

    Myers, T J; Schat, K A; Mockett, A P

    1989-01-01

    Immunoglobulin class-specific enzyme-linked immunosorbent assays were developed for detecting antibodies against avian rotavirus in serum, intestinal contents, and bile from experimentally infected specific-pathogen-free (SPF) chickens. Both indirect and antibody-capture (AbC) assays were developed based on monoclonal antibodies specific for chicken IgG, IgM, and IgA. Treatment of purified rotavirus with sodium thiocyanate before coating the plate improved the rotavirus-specific reading in the indirect assay. Use of Immunolon 2 plates facilitated attachment of monoclonal antibodies to the plate in the AbC assay. Addition of 5% powdered skim milk to the diluent buffer reduced nonspecific background readings. The indirect assay was superior for detecting rotavirus-specific IgG, whereas the AbC assay was better for detecting rotavirus-specific IgM and IgA. The presence of intestinal contents in the assay wells did not reduce the measurable titers of IgG, IgM, or IgA. These assays showed that SPF chickens produced systemic and mucosal antibodies against avian rotavirus.

  7. A highly sensitive and selective diagnostic assay based on virus nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Jin-Seung; Cho, Moon Kyu; Lee, Eun Jung; Ahn, Keum-Young; Lee, Kyung Eun; Jung, Jae Hun; Cho, Yunjung; Han, Sung-Sik; Kim, Young Keun; Lee, Jeewon

    2009-04-01

    Early detection of the protein marker troponin I in patients with a higher risk of acute myocardial infarction can reduce the risk of death from heart attacks. Most troponin assays are currently based on the conventional enzyme linked immunosorbent assay and have detection limits in the nano- and picomolar range. Here, we show that by combining viral nanoparticles, which are engineered to have dual affinity for troponin antibodies and nickel, with three-dimensional nanostructures including nickel nanohairs, we can detect troponin levels in human serum samples that are six to seven orders of magnitude lower than those detectable using conventional enzyme linked immunosorbent assays. The viral nanoparticle helps to orient the antibodies for maximum capture of the troponin markers. High densities of antibodies on the surfaces of the nanoparticles and nanohairs lead to greater binding of the troponin markers, which significantly enhances detection sensitivities. The nickel nanohairs are re-useable and can reproducibly differentiate healthy serum from unhealthy ones. We expect other viral nanoparticles to form similar highly sensitive diagnostic assays for a variety of other protein markers.

  8. Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples.

    PubMed

    Zhou, Yu; Tian, Xiang-Li; Li, Yan-Song; Pan, Feng-Guang; Zhang, Yuan-Yuan; Zhang, Jun-Hui; Wang, Xin-Rui; Ren, Hong-Lin; Lu, Shi-Ying; Li, Zhao-Hui; Liu, Zeng-Shan; Chen, Qi-Jun; Liu, Jing-Qiu

    2012-12-15

    Abrin is a plant toxin, which can be easily isolated from the seeds of Abrus precatorius. It may be used as a biological warfare agent. In order to detect abrin in food samples, a two-layer sandwich format enzyme-linked immunosorbent assay based on the monoclonal antibody (mAb) (as capture antibody) and rabbit polyclonal serum (as detecting antibody) was developed and applied for the determination of abrin in some food matrices. The linear range of the mAb was 1-100 μg L(-1) with a detection limit of 0.5 μg L(-1) for abrin in phosphate buffered saline (PBS). The recoveries of abrin from sausage, beer and milk samples ranged 97.5-98.6%, 95.8-98.4% and 94.8-9.6%, respectively, with a coefficient of variation (CV) of 3.7% or less. The newly developed sandwich ELISA using the mAb appears to be a reliable and useful method for detection of abrin in sausage, beer and milk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Indirect immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays (ELISAs) and IgM capture ELISA for detection of antibodies to lipopolysaccharide in adult typhoid fever patients in Pakistan.

    PubMed

    Sippel, J; Bukhtiari, N; Awan, M B; Krieg, R; Duncan, J F; Karamat, K A; Malik, I A; Igbal, L M; Legters, L

    1989-06-01

    Sera from 339 adult febrile patients in Pakistan were tested for antibodies to Salmonella typhi lipopolysaccharide by indirect immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assay (ELISA) and IgM capture ELISA. A total of 55 patients had S. typhi cultured from their blood, 20 had S. typhi cultured from their stool, 24 were blood or stool culture positive for S. paratyphi A, 41 were culture negative but clinically diagnosed as having enteric fever, 41 had gastrointestinal or urinary tract infections, 41 were clinically diagnosed as having malaria, 20 were smear-positive patients with malaria, 58 had respiratory infections, and the remaining 39 individuals were placed in a miscellaneous group who did not have Salmonella infection. The sensitivities of the indirect IgG ELISA, indirect IgM ELISA, and IgM capture ELISA determined with specimens obtained from the blood culture-positive patients with typhoid fever (positive controls) were 80, 64, and 62%, respectively. The specificities of the assays determined with sera from the patients with respiratory infections (negative controls) were 95, 95, and 97%, respectively. The percentage of smear-positive patients with malaria who were positive by these assays was lower than that in the negative control group. The percentages of individuals in the other patient categories who were positive by these tests were between those obtained with the positive and negative controls. Of the positive controls, 26 were positive by both IgM assays, 9 were IgM positive only by indirect ELISA, and 8 were IgM positive only by IgM capture ELISA. A total of 70% of the positive control patients who were tested for O agglutinins by the Widal tube agglutination assay were positive; however, 29% of the negative control patients were also positive. The indirect IgG ELISA was the single most effective test for the serodiagnosis of typhoid fever in this population.

  10. Indirect immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays (ELISAs) and IgM capture ELISA for detection of antibodies to lipopolysaccharide in adult typhoid fever patients in Pakistan.

    PubMed Central

    Sippel, J; Bukhtiari, N; Awan, M B; Krieg, R; Duncan, J F; Karamat, K A; Malik, I A; Igbal, L M; Legters, L

    1989-01-01

    Sera from 339 adult febrile patients in Pakistan were tested for antibodies to Salmonella typhi lipopolysaccharide by indirect immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assay (ELISA) and IgM capture ELISA. A total of 55 patients had S. typhi cultured from their blood, 20 had S. typhi cultured from their stool, 24 were blood or stool culture positive for S. paratyphi A, 41 were culture negative but clinically diagnosed as having enteric fever, 41 had gastrointestinal or urinary tract infections, 41 were clinically diagnosed as having malaria, 20 were smear-positive patients with malaria, 58 had respiratory infections, and the remaining 39 individuals were placed in a miscellaneous group who did not have Salmonella infection. The sensitivities of the indirect IgG ELISA, indirect IgM ELISA, and IgM capture ELISA determined with specimens obtained from the blood culture-positive patients with typhoid fever (positive controls) were 80, 64, and 62%, respectively. The specificities of the assays determined with sera from the patients with respiratory infections (negative controls) were 95, 95, and 97%, respectively. The percentage of smear-positive patients with malaria who were positive by these assays was lower than that in the negative control group. The percentages of individuals in the other patient categories who were positive by these tests were between those obtained with the positive and negative controls. Of the positive controls, 26 were positive by both IgM assays, 9 were IgM positive only by indirect ELISA, and 8 were IgM positive only by IgM capture ELISA. A total of 70% of the positive control patients who were tested for O agglutinins by the Widal tube agglutination assay were positive; however, 29% of the negative control patients were also positive. The indirect IgG ELISA was the single most effective test for the serodiagnosis of typhoid fever in this population. PMID:2754002

  11. Antibody-based enzyme-linked lectin assay (ABELLA) for the sialylated recombinant human erythropoietin present in culture supernatant.

    PubMed

    Kim, Hyoung Jin; Lee, Seung Jae; Kim, Hong-Jin

    2008-11-04

    The terminal sialic acid of human erythropoietin (hEPO) is essential for in vivo activity. The current resorcinol and HPLC methods for analyzing alpha2,3-linked sialic acid require more than a microgram of purified rhEPO, and purification takes a great deal of time and labor. In this study, we assessed the use of an antibody-based enzyme-linked lectin assay (ABELLA) for analyzing non-purified recombinant hEPO (rhEPO). The major problem of this method was the high background due to terminal sialylation of components of the assay (antibody and bovine serum albumin) other than rhEPO. To solve this problem, we used a monoclonal antibody (Mab 287) to capture the rhEPO, and oxidized the bovine serum albumin used for blocking with meta-periodate. The sialic acid content of non-purified rhEPO measured by ABELLA was similar to that obtained by the resorcinol method on purified rhEPO. ABELLA has advantages such as adaptability and need for minimal amounts of rhEPO (40 ng/ml). Our observations suggest that ABELLA should reduce the time and labor needed to improve culture conditions so as to increase protein sialylation, and also facilitate the study of sialylation mechanisms.

  12. APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria.

    PubMed

    Dirkzwager, Roderick M; Kinghorn, Andrew B; Richards, Jack S; Tanner, Julian A

    2015-03-18

    We report the rapid diagnosis of malaria by aptamer-tethered enzyme capture (APTEC) whereby an aptamer captures biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) then activity is measured colorimetrically. The robust test was sensitive (limit of detection = 4.9 ng mL(-1)) and could reliably diagnose malaria in clinical blood samples.

  13. New AdoMet Analogues as Tools for Enzymatic Transfer of Photo-Cross-Linkers and Capturing RNA-Protein Interactions.

    PubMed

    Muttach, Fabian; Mäsing, Florian; Studer, Armido; Rentmeister, Andrea

    2017-05-02

    Elucidation of biomolecular interactions is of utmost importance in biochemistry. Photo-cross-linking offers the possibility to precisely determine RNA-protein interactions. However, despite the inherent specificity of enzymes, approaches for site-specific introduction of photo-cross-linking moieties into nucleic acids are scarce. Methyltransferases in combination with synthetic analogues of their natural cosubstrate S-adenosyl-l-methionine (AdoMet) allow for the post-synthetic site-specific modification of biomolecules. We report on three novel AdoMet analogues bearing the most widespread photo-cross-linking moieties (aryl azide, diazirine, and benzophenone). We show that these photo-cross-linkers can be enzymatically transferred to the methyltransferase target, that is, the mRNA cap, with high efficiency. Photo-cross-linking of the resulting modified mRNAs with the cap interacting protein eIF4E was successful with aryl azide and diazirine but not benzophenone, reflecting the affinity of the modified 5' caps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis.

    PubMed

    Long, Lin; Liu, Jianbo; Lu, Kaishun; Zhang, Tao; Xie, Yunqing; Ji, Yinglu; Wu, Xiaochun

    2018-05-02

    As a promising candidate for artificial enzymes, catalytically active nanomaterials show several advantages over natural enzymes, such as controlled synthesis at low cost, tunability of catalytic activities, and high stability under stringent conditions. Rod-shaped Au-Pt core/shell nanoparticles (Au@Pt NRs), prepared by Au nanorod-mediated growth, exhibit peroxidase-like activities and could serve as an inexpensive replacement for horseradish peroxidase, with potential applications in various bio-detections. The determination of measles virus is accomplished by a capture-enzyme-linked immunosorbent assay (ELISA) using Au@Pt NR-antigen conjugates. Based on the enhanced catalytic properties of this nanozyme probe, a linear response was observed up to 10 ng/mL measles IgM antibodies in human serum, which is 1000 times more sensitive than commercial ELISA. Hence, these findings provide positive proof of concept for the potential of Au@Pt NR-antigen conjugates in the development of colorimetric biosensors that are simple, robust, and cost-effective.

  15. Development of a low-cost detection method for miRNA microarray.

    PubMed

    Li, Wei; Zhao, Botao; Jin, Youxin; Ruan, Kangcheng

    2010-04-01

    MicroRNA (miRNA) microarray is a powerful tool to explore the expression profiling of miRNA. The current detection method used in miRNA microarray is mainly fluorescence based, which usually requires costly detection system such as laser confocal scanner of tens of thousands of dollars. Recently, we developed a low-cost yet sensitive detection method for miRNA microarray based on enzyme-linked assay. In this approach, the biotinylated miRNAs were captured by the corresponding oligonucleotide probes immobilized on microarray slide; and then the biotinylated miRNAs would capture streptavidin-conjugated alkaline phosphatase. A purple-black precipitation on each biotinylated miRNA spot was produced by the enzyme catalytic reaction. It could be easily detected by a charge-coupled device digital camera mounted on a microscope, which lowers the detection cost more than 100 fold compared with that of fluorescence method. Our data showed that signal intensity of the spot correlates well with the biotinylated miRNA concentration and the detection limit for miRNAs is at least 0.4 fmol and the detection dynamic range spans about 2.5 orders of magnitude, which is comparable to that of fluorescence method.

  16. Development and evaluation of a Sarcocystis neurona-specific IgM capture enzyme-linked immunosorbent assay.

    PubMed

    Murphy, J E; Marsh, A E; Reed, S M; Meadows, C; Bolten, K; Saville, W J A

    2006-01-01

    Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease of horses caused primarily by the protozoal parasite Sarcocystis neurona. Currently available antemortem diagnostic testing has low specificity. The hypothesis of this study was that serum and cerebrospinal fluid (CSF) of horses experimentally challenged with S neurona would have an increased S neurona-specific IgM (Sn-IgM) concentration after infection, as determined by an IgM capture enzyme linked immunoassay (ELISA). The ELISA was based on the S neurona low molecular weight protein SNUCD-1 antigen and the monoclonal antibody 2G5 labeled with horseradish peroxidase. The test was evaluated using serum and CSF from 12 horses experimentally infected with 1.5 million S neurona sporocysts and 16 horses experimentally infected with varying doses (100 to 100,000) of S neurona sporocysts, for which results of histopathologic examination of the central nervous system were available. For horses challenged with 1.5 million sporocysts, there was a significant increase in serum Sn-IgM concentrations compared with values before infection at weeks 2-6 after inoculation (P < .0001). For horses inoculated with lower doses of S neurona, there were significant increases in serum Sn-IgM concentration at various points in time after inoculation, depending on the challenge dose (P < .01). In addition, there was a significant increase between the CSF Sn-IgM concentrations before and after inoculation (P < .0001). These results support further evaluation of the assay as a diagnostic test during the acute phase of EPM.

  17. Specific probe selection from landscape phage display library and its application in enzyme-linked immunosorbent assay of free prostate-specific antigen.

    PubMed

    Lang, Qiaolin; Wang, Fei; Yin, Long; Liu, Mingjun; Petrenko, Valery A; Liu, Aihua

    2014-03-04

    Probes against targets can be selected from the landscape phage library f8/8, displaying random octapeptides on the pVIII coat protein of the phage fd-tet and demonstrating many excellent features including multivalency, stability, and high structural homogeneity. Prostate-specific antigen (PSA) is usually determined by immunoassay, by which antibodies are frequently used as the specific probes. Herein we found that more advanced probes against free prostate-specific antigen (f-PSA) can be screened from the landscape phage library. Four phage monoclones were selected and identified by the specificity array. One phage clone displaying the fusion peptide ERNSVSPS showed good specificity and affinity to f-PSA and was used as a PSA capture probe in a sandwich enzyme-linked immunosorbent assay (ELISA) array. An anti-human PSA monoclonal antibody (anti-PSA mAb) was used to recognize the captured antigen, followed by horseradish peroxidase-conjugated antibody (HRP-IgG) and o-phenylenediamine, which were successively added to develop plate color. The ELISA conditions such as effect of blocking agent, coating buffer pH, phage concentration, antigen incubation time, and anti-PSA mAb dilution for phage ELISA were optimized. On the basis of the optimal phage ELISA conditions, the absorbance taken at 492 nm on a microplate reader was linear with f-PSA concentration within 0.825-165 ng/mL with a low limit of detection of 0.16 ng/mL. Thus, the landscape phage is an attractive biomolecular probe in bioanalysis.

  18. Detection of egg drop syndrome virus antigen or genome by enzyme-linked immunosorbent assay or polymerase chain reaction.

    PubMed

    Dhinakar Raj, G; Sivakumar, S; Matheswaran, K; Chandrasekhar, M; Thiagarajan, V; Nachimuthu, K

    2003-10-01

    Mouse monoclonal antibodies (mAbs) were produced against an Indian isolate of egg drop syndrome (EDS) virus and characterized. Four hybridoma clones were secreting mAbs that bound to a 100 kDa protein, presumably the hexon protein. These mAbs were found to cross-react with two other Indian isolates of EDS virus and to the reference UK 127 strain. Three of these mAbs were mapped to the same epitope compared with the other mAb (F8), which bound to a different epitope. An antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed using the F8 mAbs as capture antibody and polyclonal chicken serum against EDS virus as detection antibody. A polymerase chain reaction (PCR) was used to detect the EDS viral genome. Following experimental infection of oestrogen-treated chickens with EDS virus, cloacal swabs, oviduct, uterus and spleen were collected at different days post-infection and used in both AC-ELISA and PCR, directly and after a single passage in embryonated duck eggs. The sensitivity and specificity of antigen detection by AC-ELISA or PCR was 95% and 98%, respectively. For diagnosis of EDS viral infections, PCR is recommended due to its ease and the lack of requirement of prepared reagents such as mAbs or conjugates. We recommend that PCR be performed directly on boiled tissue homogenates. Any negative samples may be passaged in embryonated duck eggs and the allantoic fluids tested by PCR before a conclusive negative diagnosis is given.

  19. Enzyme-linked immunosorbent assay for detection of organophosphorylated butyrylcholinesterase: A biomarker of exposure to organophosphate agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liming; Du, Dan; Lu, Donglai

    2011-05-05

    A sandwich enzyme-linked immunosorbent assay (sELISA) is developed for detection of organophosphorylated butyrylcholinesterase (OP-BChE), a potential biomarker for human exposure to organophosphate insecticides and nerve agents. A pair of antibodies specific to OP-BChE adduct were identified through systematic screening of several anti BChE antibodies (anti-BChE) and anti-phosphoserine antibodies (anti-Pser) from different sources. The selected anti-BChE (set as capture antibody) antibodies recognize both phosphorylated and nonphosphorylated BChE. These antibodies can therefore be used to capture both BChE and OP-BChE from the sample matrices. The anti- Pser (set as detecting antibody) was used to recognize the OP moiety of OP-BChE adducts. Withmore » the combination of the selected antibody pair, several key parameters (such as the concentration of anti-BChE and anti-Pser, and the blocking agent) were optimized to enhance the sensitivity and selectivity of the sELISA. Under the optimal conditions, the sELISA has shown a wide linear range from 0.03 nM to 30 nM, with a detection limit of 0.03 nM. Furthermore, the sELISA was successfully applied to detect OP-BChE using in-vitro biological samples such as rat plasma spiked with OP-BChE with excellent adduct recovery (z>99 %). These results demonstrate that this novel approach holds great promise to develop an ELISA kit and offers a simple and cost-effective tool for screening/evaluating exposure to organophosphate insecticides and nerve agents.« less

  20. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups.

  1. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  2. A Patient with Crimean-Congo Hemorrhagic Fever Serologically Diagnosed by Recombinant Nucleoprotein-Based Antibody Detection Systems

    PubMed Central

    Tang, Qing; Saijo, Masayuki; Zhang, Yuzhen; Asiguma, Muer; Tianshu, Dong; Han, Lei; Shimayi, Bawudong; Maeda, Akihiko; Kurane, Ichiro; Morikawa, Shigeru

    2003-01-01

    We treated a male patient with Crimean-Congo hemorrhagic fever (CCHF). The diagnosis of CCHF was confirmed by reverse transcription-PCR and recombinant nucleoprotein (rNP)-based immunoglobulin G (IgG) and IgM capture enzyme-linked immunosorbent assays of serially collected serum samples. The patient was treated with intravenous ribavirin and recovered with no consequences. The study indicates that rNP-based CCHF virus antibody detection systems are useful for confirming CCHF virus infections. This case also suggests that intravenous ribavirin therapy may be promising for the treatment of CCHF patients. PMID:12738657

  3. Excited-State Charge Separation in the Photochemical Mechanism of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase**

    PubMed Central

    Heyes, Derren J; Hardman, Samantha J O; Hedison, Tobias M; Hoeven, Robin; Greetham, Greg M; Towrie, Michael; Scrutton, Nigel S

    2015-01-01

    The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond–microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called “reactive” intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts. PMID:25488797

  4. Excited-state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase.

    PubMed

    Heyes, Derren J; Hardman, Samantha J O; Hedison, Tobias M; Hoeven, Robin; Greetham, Greg M; Towrie, Michael; Scrutton, Nigel S

    2015-01-26

    The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond-microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called "reactive" intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed Central

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-01-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay. PMID:7512096

  6. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-02-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay.

  7. Elimination of falsely reactive results in a commercially-available West Nile virus IgM capture enzyme-linked immunosorbent assay by heterophilic antibody blocking reagents.

    PubMed

    Prince, Harry E; Lapé-Nixon, Mary; Givens, Tara S; Bradshaw, Tiffany; Nowicki, Marek J

    2017-05-01

    All sera initially reactive in the Focus Diagnostics West Nile virus IgM capture enzyme-linked immunosorbent assay (WNV IgM ELISA) must be retested with background subtraction to identify falsely-reactive (FR) samples due to antibodies that bind to immunoglobulins of other animal species (heterophilic antibodies). In some settings, such as pre-transplant testing of organ donors, the reporting delay associated with retesting can have an adverse impact on donor procurement and organ placement. We sought to determine if inclusion of heterophilic antibody blockers in assay conjugate could eliminate the nonspecific reactivity of FR samples. Of 6 blocking reagents evaluated using a well-characterized FR sample, immunoglobulin inhibiting reagent from Bioreclamation (IIR) and blocker from Fitzgerald Industries (BFI) were superior in their ability to inhibit false reactivity; these 2 blockers were then used to evaluate 20 additional FR and 21 truly-reactive (TR) samples. Both blockers eliminated the reactivity of 20/21 FR samples, whereas all 21 TR samples remained reactive; further, all 13 truly non-reactive (NR) samples evaluated remained non-reactive when using blocker-containing conjugate. A subset of 22 samples were tested in parallel using the initial lot and a second lot of IIR and BFI; with one exception, all samples showed the same qualitative result using both lots of a given blocker. These findings demonstrate that modification of the Focus WNV IgM screening ELISA to include heterophilic antibody blocker IIR or BFI in assay conjugate eliminates the reactivity of most FR samples, markedly reducing the number of samples requiring further testing by background subtraction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of an enzyme-linked immunosorbent assay for detection of cellular and in vivo LRRK2 S935 phosphorylation

    PubMed Central

    Delbroek, Lore; Van Kolen, Kristof; Steegmans, Liesbeth; da Cunha, Raquel; Mandemakers, Wim; Daneels, Guy; De Bock, Pieter-Jan; Zhang, Jinwei; Gevaert, Kris; De Strooper, Bart; Alessi, Dario R.; Verstreken, Patrik; Moechars, Diederik W.

    2014-01-01

    After the discovery of kinase activating mutations in leucine-rich repeat kinase 2 (LRRK2) as associated with autosomal dominant forms of Parkinson’s disease, inhibition of the kinase is being extensively explored as a disease modifying strategy. As signaling properties and substrate(s) of LRRK2 are poorly documented, autophosphorylation has been an important readout for the enzyme’s activity. Western blotting using anti-phospho-S910 or S935 LRRK2 antibodies showed effectiveness in demonstrating inhibitory effects of compounds. In this communication we describe two types of enzyme-linked immunosorbent assays (ELISA) to determine LRRK2 protein levels and kinase activity. Both assays take advantage of the sensitivity of the earlier described total and pS935 antibodies for detection (Nichols et al., Biochem. J. 2010) [10]. The first assay is based on anti-GFP-based capturing of overexpressed LRRK2 and is highly suitable to show cellular effects of kinase inhibitors in a 96-well format. In the other platform anti-LRRK2-based capturing allows detection of endogenously expressed LRRK2 in rat tissue with no significant signal in tissue from LRRK2 knockout rats. Furthermore, both assays showed a significant reduction in pS935 levels on cellular and transgenic R1441C/G LRRK2. With the anti-LRRK2 ELISA we were able to detect LRRK2 phosphorylation in human peripheral blood mononuclear cells (PBMC). To conclude, we report two sensitive assays to monitor LRRK2 expression and kinase activity in samples coming from cellular and in vivo experimental settings. Both can show their value in drug screening and biomarker development but will also be useful in the elucidation of LRRK2-mediated signaling pathways. PMID:23313773

  9. Embedded enzymes catalyse capture

    NASA Astrophysics Data System (ADS)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  10. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.

    PubMed

    Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.

  11. The Kinetic Reaction Mechanism of the Vibrio cholerae Sodium-dependent NADH Dehydrogenase*♦

    PubMed Central

    Tuz, Karina; Mezic, Katherine G.; Xu, Tianhao; Barquera, Blanca; Juárez, Oscar

    2015-01-01

    The sodium-dependent NADH dehydrogenase (Na+-NQR) is the main ion transporter in Vibrio cholerae. Its activity is linked to the operation of the respiratory chain and is essential for the development of the pathogenic phenotype. Previous studies have described different aspects of the enzyme, including the electron transfer pathways, sodium pumping structures, cofactor and subunit composition, among others. However, the mechanism of the enzyme remains to be completely elucidated. In this work, we have studied the kinetic mechanism of Na+-NQR with the use of steady state kinetics and stopped flow analysis. Na+-NQR follows a hexa-uni ping-pong mechanism, in which NADH acts as the first substrate, reacts with the enzyme, and the oxidized NAD leaves the catalytic site. In this conformation, the enzyme is able to capture two sodium ions and transport them to the external side of the membrane. In the last step, ubiquinone is bound and reduced, and ubiquinol is released. Our data also demonstrate that the catalytic cycle involves two redox states, the three- and five-electron reduced forms. A model that gathers all available information is proposed to explain the kinetic mechanism of Na+-NQR. This model provides a background to understand the current structural and functional information. PMID:26004776

  12. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  13. [Establishment of enzyme-linked immunosorbent assay (ELISA) for measuring human urinary uromodulin and application of the method in patients with IgA nephropathy].

    PubMed

    Liu, Ying; Chen, Yu-qing; Zhou, Jing-jing; Han, Jia; Liang, Yu; Li, Xue-ying; Zhang, Hong

    2012-04-18

    To establish a method of enzyme-linked immunosorbent assay (ELISA) to measure urinary uromodulin and explore the urinary uromudulin level in IgA nephropathy. The rabbit anti-human uromodulin polyclonal antibodies were coated on plates to capture uromodulin and the mouse anti-human uromodulin monoclonal antibody was used as detecting antibody to set up ELISA procedure. The precision and repeatability of this ELISA method were evaluated, and then this method was compared with the commercialized Tamm-Horsfall Glycoprotein ELISA Kit by examining urinary uromodulin levels in 55 individuals. Finally, the urinary uromodulin level in 166 IgA nephropathy patients were detected as well as 48 normal controls with this established method. The detecting range of uromodulin was 0.78-12.5 μg/L by this method. The coefficient of variation within-run was 7.5%, and between-run of coefficient of variation was 7.9%. Correlation of this method and comercialized kit was good (r=0.615, P<0.001). The urinary uromodulin/urinary creatinine ratio in IgA nephropathy was significantly lower than that in normal controls. The established ELISA method is sensitive and repeatable, and can be used in further studies.

  14. Pistachio (Pistacia vera L.) Detection and Quantification Using a Murine Monoclonal Antibody-Based Direct Sandwich Enzyme-Linked Immunosorbent Assay.

    PubMed

    Liu, Changqi; Chhabra, Guneet S; Sathe, Shridhar K

    2015-10-21

    A commercially available direct sandwich enzyme-linked immunosorbent assay (ELISA) (BioFront Technologies, Tallahassee, FL, USA) using murine anti-pistachio monoclonal antibodies (mAbs) as capture and detection antibodies was evaluated. The assay was sensitive (limit of detection = 0.09 ± 0.02 ppm full fat pistachio, linear detection range = 0.5-36 ppm, 50% maximum signal concentration = 7.9 ± 0.7 ppm), reproducible (intra- and inter-assay variability < 24% CV), and rapid (post-extraction testing time ∼ 1.5 h). The target antigen was stable and detectable in whole pistachio seeds subjected to autoclaving (121 °C, 15 psi, 15, 30 min), blanching (100 °C, 5, 10 min), frying (191 °C, 1 min), microwaving (500, 1000 W, 3 min), and dry roasting (140 °C, 30 min; 168 °C, 12 min). No cross-reactivity was observed in 156 food matrices, each tested at 100,000 ppm, suggesting the ELISA to be pistachio specific. The pistachio recovery ranges for spiked (10 ppm) and incurred (10-50000 ppm) food matrices were 93.1-125.6% and 35.7-112.2%, respectively. The assay did not register any false-positive or -negative results among the tested commercial and laboratory prepared samples.

  15. [Trypanosoma cruzi in triatomines from Nuevo Leon, Mexico].

    PubMed

    Molina-Garza, Zinnia Judith; Rosales-Encina, José Luis; Galaviz-Silva, Lucio; Molina-Garza, Daniel

    2007-01-01

    To determine the prevalence of Trypanosoma cruzi in triatomines from Nuevo León using the standardization of an improved enzyme-linked immunosorbent assay test. From July to September 2005, 52 triatomines were captured in General Terán, a municipality located in Nuevo León. They were analyzed using optical microscopy (OM) and a polymerase chain reaction (PCR), as standards of reference, to develop a technique for detecting the parasite using enzyme-linked immunosorbent assay (ELISA). Using OM and PCR, 31 triatomines were found to be positive and 21 negative. Using ELISA, 27 samples were identified as positive and 25 negative (specificity 100%, sensitivity 87%, negative predictive value 84%, and positive predictive value 100%). The prevalence of infected triatomines was 59.61% with OM and PCR, and 51.92% with ELISA. Our data confirm that the ELISA assay in triatomines is a fast, reliable and useful tool. Since it was possible to simultaneously analyze a large number of samples with high sensibility and specificity values, the ELISA test proves to be useful for new epidemiologic studies having a high number of vectors. It is also less expensive than PCR. It is therefore recommended for epidemiological and preventive surveillance programs as a first screening test before conducting a confirmatory test using PCR.

  16. Thermoelectric ELISA for quantification of 8OHdG in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Nestorova, Gergana

    This research demonstrates the feasibility of a novel method for performing thermoelectric enzyme-linked immunosorbent assay (ELISA) in a microfluidic device. The feasibility of the thermoelectric ELISA is demonstrated by measuring the concentration of 8-hydroxy 2-deoxyguanosine (8OHdG) in urine samples from amyloid precursor protein (APP) transgenic mice. The detection method is based on formation of a complex between 8OHdG and anti-8OHdG capture antibody conjugated to biotin. The complex is immobilized over the measuring junctions of a thermopile via biotin streptavidin interaction. The concentration of the analyte is determined by using enzyme linked secondary IgG antibody specific to the primary one. The concentration of 8OHdG is determined by the initiation of an enzymatic reaction between glucose and glucose oxidase that is conjugated to the secondary IgG antibody. The heat released by the reaction of glucose and glucose oxidase is measured using an antimony-bismuth thermopile integrated in a microfluidic device. The amount of heat detected by the sensor is inversely proportional to the concentration of 8OHdG. A standard calibration curve using known concentrations of synthetic 8OHdG is generated and used to determine the concentration of the oxidized guanine in mouse urine samples.

  17. Antibody class capture assay (ACCA) for rubella-specific IgM antibody.

    PubMed

    Isaac, M; Payne, R A

    1982-01-01

    Enzyme-linked immunosorbent assays for IgM antirubella were carried out on 1,546 sera, using an IgM capture method with a F (ab')2 conjugate (ACCA). Under the conditions described, sera containing IgM antirubella bound up to 15 times as much enzyme activity as negative specimens. Paired serum specimens from 27 patients, serial serum specimens from 6 patients, and single serum specimens from 15 patients who had had recent rubella were examined by the haemagglutination inhibition test (HAI) in the presence and absence of 2-mercaptoethanol following sucrose density gradient centrifugation (SDGC). ACCA confirmed all the results found with HAI following SDGC. Specimens were examined from ten patients with congenital rubella; ACCA confirmed the results found with both immunofluorescence following SDGC and radioimmunoassay. Pre- and post-vaccination specimens from 123 patients who had been vaccinated against rubella were examined. An IgM response could only be demonstrated in the 57 cases when IgG was absent in the first specimen. The specificity of the assay was confirmed by testing 31 serum specimens from rubella immune patients that also contained rheumatoid factor, 163 serum specimens from patients with acute infections other than rubella, and 12 serum specimens from infants with miscellaneous neonatal abnormalities other than congenital rubella. The ACCA proved a simple, sensitive, and specific test for IgM antirubella and the results compared favourably with those obtained by the SDGC technique.

  18. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum.

    PubMed

    Dussart, Philippe; Labeau, Bhety; Lagathu, Gisèle; Louis, Philippe; Nunes, Marcio R T; Rodrigues, Sueli G; Storck-Herrmann, Cécile; Cesaire, Raymond; Morvan, Jacques; Flamand, Marie; Baril, Laurence

    2006-11-01

    We evaluated a one-step sandwich-format microplate enzyme immunoassay for detecting dengue virus NS1 antigen (Ag) in human serum by use of Platelia Dengue NS1 Ag kits (Bio-Rad Laboratories, Marnes La Coquette, France). We collected 299 serum samples from patients with dengue disease and 50 serum samples from patients not infected with dengue virus. For the 239 serum samples from patients with acute infections testing positive by reverse transcription-PCR and/or virus isolation for one of the four dengue virus serotypes, the sensitivity of the Platelia Dengue NS1 Ag kit was 88.7% (95% confidence interval, 84.0% to 92.4%). None of the serum samples from patients not infected with dengue virus tested positive with the Platelia Dengue NS1 Ag kit. A diagnostic strategy combining the Platelia Dengue NS1 Ag test for acute-phase sera and immunoglobulin M capture enzyme-linked immunosorbent assay for early-convalescent-phase sera increased sensitivity only from 88.7% to 91.9%. Thus, NS1 antigen detection with the Platelia Dengue NS1 Ag kit could be used for first-line testing for acute dengue virus infection in clinical diagnostic laboratories.

  19. Supported inhibitor for fishing lipases in complex biological media and mass spectrometry identification.

    PubMed

    Delorme, Vincent; Raux, Brigitt; Puppo, Rémy; Leclaire, Julien; Cavalier, Jean-François; Marc, Sylvain; Kamarajugadda, Pavan-Kumar; Buono, Gérard; Fotiadu, Frédéric; Canaan, Stéphane; Carrière, Frédéric

    2014-12-01

    A synthetic phosphonate inhibitor designed for lipase inhibition but displaying a broader range of activity was covalently immobilized on a solid support to generate a function-directed tool targeting serine hydrolases. To achieve this goal, straightforward and reliable analytical techniques were developed, allowing the monitoring of the solid support's chemical functionalization, enzyme capture processes and physisorption artifacts. This grafted inhibitor was tested on pure lipases and serine proteases from various origins, and assayed for the selective capture of lipases from several complex biological extracts. The direct identification of captured enzymes by mass spectrometry brought the proof of concept on the efficiency of this supported covalent inhibitor. The features and limitations of this "enzyme-fishing" proteomic tool provide new insight on solid-liquid inhibition process. Copyright © 2014. Published by Elsevier B.V.

  20. Thermometric enzyme linked immunosorbent assay: TELISA.

    PubMed

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  1. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  2. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  3. Comparison of the membrane-filtration fluorescent antibody test, the enzyme-linked immunosorbent assay, and the polymerase chain reaction to detect Renibacterium salmoninarum in salmon ovarian fluid

    USGS Publications Warehouse

    Pascho, Ronald J.; Chase, Dorothy M.; McKibben, Constance L.

    1998-01-01

    Ovarian fluid samples from naturally infected chinook salmon (Oncorhynchus tshawytscha) were examined for the presence of Renibacterium salmoninarum by the membrane-filtration fluorescent antibody test (MF-FAT), an antigen capture enzyme-linked immunosorbent assay (ELISA), and a nested polymerase chain reaction (PCR). On the basis of the MF-FAT, 64% (66/103) samples contained detectable levels of R. salmoninarum cells. Among the positive fish, the R. salmoninarum concentrations ranged from 25 cells/ml to 4.3 × 109cells/ml. A soluble antigenic fraction of R. salmoninarum was detected in 39% of the fish (40/103) by the ELISA. The ELISA is considered one of the most sensitive detection methods for bacterial kidney disease in tissues, yet it did not detect R. salmoninarum antigen consistently at bacterial cell concentrations below about 1.3 × 104cells/ml according to the MF-FAT counts. When total DNA was extracted and tested in a nested PCR designed to amplify a 320-base-pair region of the gene encoding a soluble 57-kD protein of R. salmoninarum, 100% of the 100 samples tested were positive. The results provided strong evidence that R. salmoninarum may be present in ovarian fluids thought to be free of the bacterium on the basis of standard diagnostic methods.

  4. Alemtuzumab: validation of a sensitive and simple enzyme-linked immunosorbent assay.

    PubMed

    Jilani, Iman; Keating, Michael; Giles, Francis J; O'Brien, Susan; Kantarjian, Hagop M; Albitar, Maher

    2004-12-01

    Alemtuzumab (MabCampath) is a humanized rat monoclonal antibody that targets the CD52 antigen. It has been approved for the treatment of patients with resistant chronic lymphocytic leukaemia (CLL). Measuring plasma/serum levels of alemtuzumab is important for optimizing the dosing and scheduling of therapy; however, current assays in serum or plasma, based on the capture of alemtuzumab using CD52, are complicated and difficult to adapt for high throughput testing. We developed a simple sandwich enzyme-linked immunosorbent assay (ELISA) to measure alemtuzumab that takes advantage of the remaining rat sequence in alemtuzumab. Using specific anti-rat immunoglobulin (Ig) antibodies (absorbed against human Ig), alemtuzumab levels were measured in the serum and plasma of patients treated with alemtuzumab. Levels were similar between plasma and serum samples, in fresh samples and samples stored at 4 degrees C for 24 h, but were significantly lower in samples stored at room temperature for 24h. The assay was successfully used to determine serum alemtuzumab pre- and post-treatment. This assay is simple and adaptable for high throughput testing, with a limit of detection of 0.05 microg/ml and a coefficient of variation of +/-12.5%. No false positivity was observed in >200 samples tested. This validated assay should help optimize the dosing and scheduling of alemtuzumab therapy. The underlying principles are also applicable to the measurement of other humanized antibodies using an appropriate anti-Ig.

  5. In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings

    PubMed Central

    Evers, Maurits; Alleaume, Anne-Marie; Horos, Rastislav

    2016-01-01

    RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based. PMID:27729395

  6. Development of a quantitative NS1-capture enzyme-linked immunosorbent assay for early detection of yellow fever virus infection.

    PubMed

    Ricciardi-Jorge, Taissa; Bordignon, Juliano; Koishi, Andrea; Zanluca, Camila; Mosimann, Ana Luiza; Duarte Dos Santos, Claudia Nunes

    2017-11-24

    Yellow fever is an arboviral disease that causes thousands of deaths every year in Africa and the Americas. However, few commercial diagnostic kits are available. Non-structural protein 1 (NS1) is an early marker of several flavivirus infections and is widely used to diagnose dengue virus (DENV) infection. Nonetheless, little is known about the dynamics of Yellow fever virus (YFV) NS1 expression and secretion, to encourage its use in diagnosis. To tackle this issue, we developed a quantitative NS1-capture ELISA specific for YFV using a monoclonal antibody and recombinant NS1 protein. This test was used to quantify NS1 in mosquito and human cell line cultures infected with vaccine and wild YFV strains. Our results showed that NS1 was detectable in the culture supernatants of both cell lines; however, a higher concentration was maintained as cell-associated rather than secreted into the extracellular milieu. A panel of 73 human samples was used to demonstrate the suitability of YFV NS1 as a diagnostic tool, resulting in 80% sensitivity, 100% specificity, a 100% positive predictive value and a 95.5% negative predictive value compared with RT-PCR. Overall, the developed NS1-capture ELISA showed potential as a promising assay for the detection of early YF infection.

  7. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis1

    PubMed Central

    Chen, Yanmei; Hoehenwarter, Wolfgang

    2015-01-01

    Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K+ and Na+ transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism. PMID:26471895

  8. Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma.

    PubMed

    Thålin, Charlotte; Daleskog, Maud; Göransson, Sophie Paues; Schatzberg, Daphne; Lasselin, Julie; Laska, Ann-Charlotte; Kallner, Anders; Helleday, Thomas; Wallén, Håkan; Demers, Mélanie

    2017-06-01

    There is an emerging interest in the diverse functions of neutrophil extracellular traps (NETs) in a variety of disease settings. However, data on circulating NETs rely largely upon surrogate NET markers such as cell-free DNA, nucleosomes, and NET-associated enzymes. Citrullination of histone H3 by peptidyl arginine deiminase 4 (PAD4) is central for NET formation, and citrullinated histone H3 (H3Cit) is considered a NET-specific biomarker. We therefore aimed to optimize and validate a new enzyme-linked immunosorbent assay (ELISA) to quantify the levels of H3Cit in human plasma. A standard curve made of in vitro PAD4-citrullinated histones H3 allows for the quantification of H3Cit in plasma using an anti-histone antibody as capture antibody and an anti-histone H3 citrulline antibody for detection. The assay was evaluated for linearity, stability, specificity, and precision on plasma samples obtained from a human model of inflammation before and after lipopolysaccharide injection. The results revealed linearity and high specificity demonstrated by the inability of detecting non-citrullinated histone H3. Coefficients of variation for intra- and inter-assay variability ranged from 2.1 to 5.1% and from 5.8 to 13.5%, respectively, allowing for a high precision. Furthermore, our results support an inflammatory induction of a systemic NET burden by showing, for the first time, clear intra-individual elevations of plasma H3Cit in a human model of lipopolysaccharide-induced inflammation. Taken together, our work demonstrates the development of a new method for the quantification of H3Cit by ELISA that can reliably be used for the detection of NETs in human plasma.

  9. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... microagglutination test, the enzyme-linked immunosorbent assay test (ELISA), or the rapid serum test for all poultry... react on rapid serum test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that... inhibition (HI) test, the microhemagglutination inhibition test, the enzyme-linked immunosorbent assay (ELISA...

  10. Bioconjugation of silk fibroin nanoparticles with enzyme and Peptide and their characterization.

    PubMed

    Wang, Fei; Zhang, Yu-Qing

    2015-01-01

    Bombyx mori silk fibroin is a type of protein-based polymer with unique characteristics that is widely used in the research and development of medical biomaterials. The degummed filament of silk fibroin can be dissolved in a highly concentrated salt solution. After desalination, the regenerated liquid silk fibroin (LSF) solution could be made into various forms of silk biomaterials, such as powder, fiber, film, porous matrix, 3D scaffold, and hydrogel, depending on its application. In this study, we mixed the liquid silk solution with enzymes, including oxidase and hydrolase, and rapidly injected the mixture into an excess of acetone. The enzyme retained most of its enzymatic activity and was also captured in silk fibroin nanoparticles (SFNs), which instantly formed via a configuration transition of the regenerated silk protein from a random coil and α-helix to a β-sheet. The resulting enzyme-captured SFNs displayed a fine crystal structure with a high activity recovery and good thermal stability. Moreover, the affinities of these modified enzymes to their substrate did not evidently suffer from the capture. When only the liquid silk solution was rapidly injected into acetone, the resulting globular SFNs with the same crystallinity were also a good carrier that was covalently conjugated to enzymes and insulin. Thus, silk protein nanoparticles are of potential value as an enzyme or peptide delivery system for the research and development of medical biomaterials. In this report, the bioconjugation of SFNs with glucose oxidase, superoxidase, β-glucosidase, L-asparaginase, neutral protease, and insulin and their characterization are described in detail. © 2015 Elsevier Inc. All rights reserved.

  11. Conversion of a Capture ELISA to a Luminex xMAP Assay using a Multiplex Antibody Screening Method

    PubMed Central

    Baker, Harold N.; Murphy, Robin; Lopez, Erica; Garcia, Carlos

    2012-01-01

    The enzyme-linked immunosorbent assay (ELISA) has long been the primary tool for detection of analytes of interest in biological samples for both life science research and clinical diagnostics. However, ELISA has limitations. It is typically performed in a 96-well microplate, and the wells are coated with capture antibody, requiring a relatively large amount of sample to capture an antigen of interest . The large surface area of the wells and the hydrophobic binding of capture antibody can also lead to non-specific binding and increased background. Additionally, most ELISAs rely upon enzyme-mediated amplification of signal in order to achieve reasonable sensitivity. Such amplification is not always linear and can thus skew results. In the past 15 years, a new technology has emerged that offers the benefits of the ELISA, but also enables higher throughput, increased flexibility, reduced sample volume, and lower cost, with a similar workflow 1, 2. Luminex xMAP Technology is a microsphere (bead) array platform enabling both monoplex and multiplex assays that can be applied to both protein and nucleic acid applications 3-5. The beads have the capture antibody covalently immobilized on a smaller surface area, requiring less capture antibody and smaller sample volumes, compared to ELISA, and non-specific binding is significantly reduced. Smaller sample volumes are important when working with limiting samples such as cerebrospinal fluid, synovial fluid, etc. 6. Multiplexing the assay further reduces sample volume requirements, enabling multiple results from a single sample. Recent improvements by Luminex include: the new MAGPIX system, a smaller, less expensive, easier-to-use analyzer; Low-Concentration Magnetic MagPlex Microspheres which eliminate the need for expensive filter plates and come in a working concentration better suited for assay development and low-throughput applications; and the xMAP Antibody Coupling (AbC) Kit, which includes a protocol, reagents, and consumables necessary for coupling beads to the capture antibody of interest. (See Materials section for a detailed list of kit contents.) In this experiment, we convert a pre-optimized ELISA assay for TNF-alpha cytokine to the xMAP platform and compare the performance of the two methods 7-11. TNF-alpha is a biomarker used in the measurement of inflammatory responses in patients with autoimmune disorders. We begin by coupling four candidate capture antibodies to four different microsphere sets or regions. When mixed together, these four sets allow for the simultaneous testing of all four candidates with four separate detection antibodies to determine the best antibody pair, saving reagents, sample and time. Two xMAP assays are then constructed with the two most optimal antibody pairs and their performance is compared to that of the original ELISA assay in regards to signal strength, dynamic range, and sensitivity. PMID:22806215

  12. Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection

    PubMed Central

    Tokel, Onur; Yildiz, Umit Hakan; Inci, Fatih; Durmus, Naside Gozde; Ekiz, Okan Oner; Turker, Burak; Cetin, Can; Rao, Shruthi; Sridhar, Kaushik; Natarajan, Nalini; Shafiee, Hadi; Dana, Aykutlu; Demirci, Utkan

    2015-01-01

    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ~105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. PMID:25801042

  13. Demonstration of 3 alpha(17 beta)-hydroxysteroid dehydrogenase distinct from 3 alpha-hydroxysteroid dehydrogenase in hamster liver.

    PubMed Central

    Ohmura, M; Hara, A; Nakagawa, M; Sawada, H

    1990-01-01

    NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. Images Fig. 1. Fig. 2. PMID:2317205

  14. The kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats: calibration to the indirect immunofluorescence assay and computerized standardization of results through normalization to control values.

    PubMed Central

    Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W

    1987-01-01

    The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results. PMID:3032390

  15. The kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats: calibration to the indirect immunofluorescence assay and computerized standardization of results through normalization to control values.

    PubMed

    Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W

    1987-01-01

    The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results.

  16. Carrier free immobilization and characterization of trypsin.

    PubMed

    Menfaatli, Esra; Zihnioglu, Figen

    2015-04-01

    Pancreatic trypsin was immobilized by cross-linked enzyme aggregates (CLEA) which is a carrier free immobilization method. Ammonium sulfate was chosen for enzyme precipitation which was followed by cross linking of formed aggregates via glutaraldehyde. Concentrations of precipitant and cross linker were respectively optimized as 60% ammonium sulfate and 1% glutaraldehyde. Optimum pH and temperature for CLEA was increased compared to free enzyme. Furthermore, pH, thermal and storage stability were improved. Presence of additives had no effects on enzyme activity. Prepared cross-linked trypsin aggregates are convenient for in situ protein fragmentation and can be used for protein identification.

  17. A novel cross-linked enzyme aggregates (CLEAs) of papain and neutrase-production, partial characterization and application.

    PubMed

    Chen, Zhongqin; Wang, Yanwei; Liu, Wei; Wang, Jingya; Chen, Haixia

    2017-02-01

    The neutrase (EC 3.4.24.4) and papain (EC 3.4.22.2) were together immobilized ascross-linked enzyme aggregates (N-P-CLEAs) and their properties were characterized. The influence of the precipitant, cross-linking ratio of glutaraldehyde and cross-linking time were investigated. Ethanol was selected as the more efficient precipitant compared with ammonium sulfate. The proper cross-linking ratio of enzyme and glutaraldehyde was 1:5 (v/v) and the optimized cross-linking time was 4h. N-P-CLEAs showed obvious improvement in thermal stability and pH stability than the free enzyme (P<0.05) and could hold relatively high activity retention in nonpolar and hydrophilic solvents and without activity loss at 4°C for more than six months. The cross-linking reaction had been appeared in N-P-CLEAs and more orderly microscopic surface morphology of N-P-CLEAs was observed. The molecular weight and thermal denaturation temperature of N-P-CLEAs were increased while the isoelectric point was decreased compared with those of the free enzymes. Application of N-P-CLEAs in bean proteins and zein showed a higher degree of hydrolysis, such as the hydrolysis degree of mung bean protein hydrolyzed by N-P-CLEAs was 12%, increased by approximately 4.5% compared to that of free enzyme. The results demonstrated that the N-P-CLEAs was suitable for application in food protein hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of electrochemical based sandwich enzyme linked immunosensor for Cryptosporidium parvum detection in drinking water.

    PubMed

    Thiruppathiraja, Chinnasamy; Saroja, Veerappan; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Alagar, Muthukaruppan

    2011-10-01

    Cryptosporidium parvum is one of the most important biological contaminants in drinking water and generates significant risks to public health. Due to low infectious dose of C. parvum, remarkably sensitive detection methods are required for water and food industry analysis. This present study describes a simple, sensitive, enzyme amplified sandwich form of an electrochemical immunosensor using dual labeled gold nanoparticles (alkaline phosphatase and anti-oocysts monoclonal antibody) in indium tin oxide (ITO) as an electrode to detect C. parvum. The biosensor was fabricated by immobilizing the anti-oocysts McAb on a gold nanoparticle functionalized ITO electrode, followed by the corresponding capture of analytes and dual labeled gold nanoparticle probe to detect the C. parvum target. The outcome shows the sensitivity of electrochemical immune sensor enhanced by gold nanoparticles with a limit of detection of 3 oocysts/mL in a minimal processing period. Our results demonstrated the sensitivity of the new approach compared to the customary method and the immunosensors showed acceptable precision, reproducibility, stability, and could be readily applied to multi analyte determination for environmental monitoring.

  19. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    NASA Astrophysics Data System (ADS)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  20. Comparative study of indirect immunofluorescence, enzyme-linked immunosorbent assay, and the Tzanck smear test for the diagnosis of pemphigus.

    PubMed

    Zhou, Tingting; Fang, Siyue; Li, Chunlei; Hua, Hong

    2016-11-01

    Pemphigus is one of the potentially fatal autoimmune blistering diseases. An early and accurate diagnosis is important for prognosis and therapy. It may be difficult to diagnosis based on clinical grounds alone. Direct and indirect immunofluorescence, enzyme-linked immunosorbent assay, the Tzanck smear test, or histopathology are all available for the diagnosis of pemphigus. However, there are no generally accepted diagnostic criteria for the diagnosis of this condition at present. To evaluate the diagnostic value of indirect immunofluorescence, enzyme-linked immunosorbent assay, and the Tzanck smear test for the diagnosis of pemphigus in dental clinics. A single-center retrospective study was conducted, and the clinical data of 33 patients with pemphigus and 61 controls were collected and analyzed from the Department of Oral Medicine, Peking University School of Stomatology, during 2010-2014. The sensitivities and specificities of indirect immunofluorescence, enzyme-linked immunosorbent assay, and the Tzanck smear test were calculated and compared in two groups. Sensitivities for the Tzanck smear test, indirect immunofluorescence, and enzyme-linked immunosorbent assay were 96.7%, 84.8%, and 84.8%, respectively, whereas the specificities of these tests were 60%, 91.8%, and 96.7%, respectively. The serial tests for the Tzanck smear test and enzyme-linked immunosorbent assay showed 82% sensitivity and 98.7% specificity. The serial test for the Tzanck smear test and enzyme-linked immunosorbent assay may represent a simple, rapid, and reliable way to definitive diagnosis of pemphigus. It is recommended as a common test for the diagnosis of pemphigus in dental clinics. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of L-phenylalanine.

    PubMed

    Cui, Jian-Dong; Zhang, Si; Sun, Li-Mei

    2012-06-01

    Cross-linked enzyme aggregates of phenylalanine ammonia lyase (PAL-CLEAs) from Rhodotorula glutinis were prepared. The effects of the type of aggregating agent, its concentration, and that of cross-linking agent were studied. PAL-CLEAs production was most effective using ammonium sulfate (40 % saturation), followed by cross-linking for 1 h with 0.2 % (v/v) glutaraldehyde. Moreover, the storage and operational stability of the resulting PAL-CLEAs were also investigated. Compared to the free enzyme, the PAL-CLEAs exhibited the expected increased stability of the enzyme against various deactivating conditions such as pH, temperature, denaturants, and organic solvents and showed higher storage stability than its soluble counterpart. Additionally, the reusability of PAL-CLEAs with respect to the biotransformation of L-phenylalanine was evaluated. PAL-CLEAs could be recycled at least for 12 consecutive batch reactions without dramatic activity loss, which should dramatically increase the commercial potential of PAL for synthesis of L: -phenylalanine. To the best of our knowledge, this is the first report of immobilization of PAL as cross-linked enzyme aggregates.

  2. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    NASA Astrophysics Data System (ADS)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the spectroscopic investigation of the interactions of CO 2 with amine molecules under simulated CO2 capture conditions. Industrial CO2 capture processes involve fluidization and require degradation-resistant sorbents in the form of pellets. Agglomeration of silica-based CO2 capture sorbents involved the formulation of a polymer binder solution and the design of a scalable pelletization process. The characterization of these pellets revealed the formation of a CO 2-permeable polymer-silica network, which is resistant to attrition, and exhibits similar CO2 capture and degradation performance as the non-pelletized sorbents. The performance of these sorbents and pellets was tested in lab-scale and bench-scale adsorption units, using in-house fabricated fixed-bed and fluidized-bed reactors. A compartmental modeling technique was used to simulate the CO2 adsorption process and to elucidate the kinetic and thermodynamic parameters that impact the commercial viability of emerging CO2 capture technologies. The fundamental concepts and experimental techniques developed for the preparation of CO2 capture sorbents served as a basis for fabricating amine-functionalized polymer-silica hybrids for applications in catalysis of organic reactions. (i) Basic catalysts for carbon-carbon addition reactions were prepared by immobilization of amine molecules on silica supports. The activity of these catalysts and the mechanisms of base-catalyzed organic condensation reactions were investigated by an in-situ FTIR micro-scale reactor. (ii) Particle-loaded PVA composite membranes were selected for immobilization of glucose oxidase (GOx). GOx was immobilized by adsorption at pH values between 3.5 and 7.1. The results showed that adsorption was primarily achieved via hydrophobic interactions, and that PVA membranes loaded with amine-functionalized particles could help retain the activity of immobilized GOx by providing a proper hydrophilic/hydrophobic balance to the immobilized enzymes micro-environment.

  3. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    PubMed Central

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrolysis process. However, multiple factors affecting hydrolysis: cellulose structure and complex enzyme-substrate interactions during hydrolysis make it diffucult to develop mathematical kinetic models that can simulate hydrolysis in presence of multiple enzymes with high fidelity. In this study, a comprehensive hydrolysis model based on stochastic molecular modeling approch in which each hydrolysis event is translated into a discrete event is presented. The model captures the structural features of cellulose, enzyme properties (mode of actions, synergism, inhibition), and most importantly dynamic morphological changes in the substrate that directly affect the enzyme-substrate interactions during hydrolysis. Results Cellulose was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Cellulose hydrolysis results predicted by model simulations agree well with the experimental data from literature. Coefficients of determination for model predictions and experimental values were in the range of 0.75 to 0.96 for Avicel hydrolysis by CBH I action. Model was able to simulate the synergistic action of multiple enzymes during hydrolysis. The model simulations captured the important experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the hydrolysis and degree of synergism among enzymes. Conclusions The model was effective in capturing the dynamic behavior of cellulose hydrolysis during action of individual as well as multiple cellulases. Simulations were in qualitative and quantitative agreement with experimental data. Several experimentally observed phenomena were simulated without the need for any additional assumptions or parameter changes and confirmed the validity of using the stochastic molecular modeling approach to quantitatively and qualitatively describe the cellulose hydrolysis. PMID:23638989

  4. Detection of HIV-1 by digoxigenin-labelled PCR and microtitre plate solution hybridisation assay and prevention of PCR carry-over by uracil-N-glycosylase.

    PubMed

    King, J A; Ball, J K

    1993-09-01

    An extremely sensitive and convenient microtiter plate solution hybridisation assay for the detection of HIV-1 PCR products was developed. The PCR product is labelled by direct incorporation of digoxigenin-dUTP and after denaturation is captured by a microtitre plate coated with a streptavidin-linked biotinylated probe. The PCR/probe hybrids are reacted with an alkaline phosphate conjugated anti-digoxigenin antibody and detected using an alkaline phosphatase enzyme amplification system. The use of uracil-N-glycosylase and dUTP instead of dTTP in the PCR is used to effectively control carry-over from previous PCR products. The assay can detect single HIV-1 DNA molecules in a background DNA of 0.75 microgram.

  5. Characterization of an 18-kilodalton Brucella cytoplasmic protein which appears to be a serological marker of active infection of both human and bovine brucellosis.

    PubMed Central

    Goldbaum, F A; Leoni, J; Wallach, J C; Fossati, C A

    1993-01-01

    Some anticytoplasmic protein monoclonal antibodies (MAbs) from mice immunized by infection with Brucella ovis cells have been obtained. One of these MAbs, BI24, was used to purify by immunoaffinity a protein with a pI of 5.6 and a molecular mass of 18 kDa. This protein was present in all of the rough and smooth Brucella species studied, but it could not be detected in Yersinia enterocolitica 09. Three internal peptides of this protein were partially sequenced; no homology with other bacterial proteins was found. The immunogenicity of the 18-kDa protein was studied with both human and bovine sera by a capture enzyme-linked immunosorbent assay system with MAb BI24. Images PMID:8370742

  6. Characterization of an 18-kilodalton Brucella cytoplasmic protein which appears to be a serological marker of active infection of both human and bovine brucellosis.

    PubMed

    Goldbaum, F A; Leoni, J; Wallach, J C; Fossati, C A

    1993-08-01

    Some anticytoplasmic protein monoclonal antibodies (MAbs) from mice immunized by infection with Brucella ovis cells have been obtained. One of these MAbs, BI24, was used to purify by immunoaffinity a protein with a pI of 5.6 and a molecular mass of 18 kDa. This protein was present in all of the rough and smooth Brucella species studied, but it could not be detected in Yersinia enterocolitica 09. Three internal peptides of this protein were partially sequenced; no homology with other bacterial proteins was found. The immunogenicity of the 18-kDa protein was studied with both human and bovine sera by a capture enzyme-linked immunosorbent assay system with MAb BI24.

  7. Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors.

    PubMed

    Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha

    2013-08-01

    Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. ANCA-associated vasculitis in Greek siblings with chronic exposure to silica.

    PubMed

    Brener, Z; Cohen, L; Goldberg, S J; Kaufman, A M

    2001-11-01

    We present the case of two siblings with similar environmental exposure to silica. Both of them developed perinuclear antineutrophil cytoplasmic antibody (p-ANCA)-associated vasculitis with pulmonary-renal syndrome. p-ANCAs were present with antimyeloperoxidase specificity on capture enzyme-linked immunosorbent assay. Treatment with corticosteroids and cyclophosphamide resulted in resolution of the clinical picture. Chronic exposure to silica is the leading environmental factor associated with ANCA-positive vasculitis. Several clusters of systemic vasculitis have been described. Positive and negative human leukocyte antigens (HLA) have been reported in systemic vasculitis. Affected brothers in our case shared one parental HLA haplotype. To the best of our knowledge, this is the first report of a family cluster of silica-induced, ANCA-associated systemic vasculitis with members sharing some of their HLA antigens.

  9. Visual Detection of Canine Parvovirus Based on Loop-Mediated Isothermal Amplification Combined with Enzyme-Linked Immunosorbent Assay and with Lateral Flow Dipstick

    PubMed Central

    SUN, Yu-Ling; YEN, Chon-Ho; TU, Ching-Fu

    2013-01-01

    ABSTRACT Loop-mediated isothermal amplification (LAMP) combined with enzyme-linked immunosorbent assay (LAMP–ELISA) and with lateral flow dipstick (LAMP–LFD) are rapid, sensitive and specific methods for the visual detection of clinical pathogens. In this study, LAMP–ELISA and LAMP–LFD were developed for the visual detection of canine parvovirus (CPV). For LAMP, a set of four primers (biotin-labeled forward inner primers) was designed to specifically amplify a region of the VP2 gene of CPV. The optimum time and temperature for LAMP were 60 min and 65°C, respectively. The specific capture oligonucleotide probes, biotin-labeled CPV probe for LAMP–ELISA and fluorescein isothiocyanate-labeled CPV probe for LAMP–LFD were also designed for hybridization with LAMP amplicons on streptavidin-coated wells and LFD strips, respectively. For the comparison of detection sensitivity, conventional PCR and LAMP for CPV detection were also performed. The CPV detection limits by PCR, PCR–ELISA, LAMP, LAMP–ELISA and LAMP–LFD were 102, 102, 10−1, 10−1 and 10−1 TCID50/ml, respectively. In tests using artificially contaminated dog fecal samples, the samples with CPV inoculation levels of ≥1 TCID50/ml gave positive results by both LAMP–ELISA and LAMP–LFD. Our data indicated that both LAMP–ELISA and LAMP–LFD are promising as rapid, sensitive and specific methods for an efficient diagnosis of CPV infection. PMID:24334855

  10. A negative-pressure-driven microfluidic chip for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay.

    PubMed

    Lin, Yen-Heng; Chen, Ying-Ju; Lai, Chao-Sung; Chen, Yi-Ting; Chen, Chien-Lun; Yu, Jau-Song; Chang, Yu-Sun

    2013-01-01

    This paper describes an integrated microfluidic chip that is capable of rapidly and quantitatively measuring the concentration of a bladder cancer biomarker, apolipoprotein A1, in urine samples. All of the microfluidic components, including the fluid transport system, the micro-valve, and the micro-mixer, were driven by negative pressure, which simplifies the use of the chip and facilitates commercialization. Magnetic beads were used as a solid support for the primary antibody, which captured apolipoprotein A1 in patients' urine. Because of the three-dimensional structure of the magnetic beads, the concentration range of the target that could be detected was as high as 2000 ng ml(-1). Because this concentration is 100 times higher than that quantifiable using a 96-well plate with the same enzyme-linked immunosorbent assay (ELISA) kit, the dilution of the patient's urine can be avoided or greatly reduced. The limit of detection was determined to be approximately 10 ng ml(-1), which is lower than the cutoff value for diagnosing bladder cancer (11.16 ng ml(-1)). When the values measured using the microfluidic chip were compared with those measured using conventional ELISA using a 96-well plate for five patients, the deviations were 0.9%, 6.8%, 9.4%, 1.8%, and 5.8%. The entire measurement time is 6-fold faster than that of conventional ELISA. This microfluidic device shows significant potential for point-of-care applications.

  11. Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes*

    PubMed Central

    Schaefer, Jonathan B.; Morgan, David O.

    2011-01-01

    The attachment of lysine 48 (Lys48)-linked polyubiquitin chains to proteins is a universal signal for degradation by the proteasome. Here, we report that long Lys48-linked chains are resistant to many deubiquitinating enzymes (DUBs). Representative enzymes from this group, Ubp15 from yeast and its human ortholog USP7, rapidly remove mono- and diubiquitin from substrates but are slow to remove longer Lys48-linked chains. This resistance is lost if the structure of Lys48-linked chains is disrupted by mutation of ubiquitin or if chains are linked through Lys63. In contrast to Ubp15 and USP7, Ubp12 readily cleaves the ends of long chains, regardless of chain structure. We propose that the resistance to many DUBs of long, substrate-attached Lys48-linked chains helps ensure that proteins are maintained free from ubiquitin until a threshold of ubiquitin ligase activity enables degradation. PMID:22072716

  12. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    PubMed

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  13. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  14. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  15. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  16. Development of Antigen Detection Assay for Diagnosis of Tuberculosis Using Sputum Samples

    PubMed Central

    Pereira Arias-Bouda, Lenka M.; Nguyen, Lan N.; Ho, Ly M.; Kuijper, Sjoukje; Jansen, Henk M.; Kolk, Arend H. J.

    2000-01-01

    The rising incidence of tuberculosis worldwide means an increasing burden on diagnostic facilities, so tests simpler than Ziehl-Neelsen staining are needed. Such tests should be objective, reproducible, and have at least as good a detection limit as 104 bacteria/ml. A capture enzyme-linked immunosorbent assay (ELISA) was developed for detection of lipoarabinomannan (LAM) in human sputum samples. As a capture antibody, we used a murine monoclonal antibody against LAM, with rabbit antiserum against Mycobacterium tuberculosis as a source of detector antibodies. The sensitivity of the capture ELISA was evaluated by using purified LAM and M. tuberculosis whole cells. We were able to detect 1 ng of purified LAM/ml and 104 M. tuberculosis whole cells/ml. LAM could also be detected in culture filtrate of a 3-week-old culture of M. tuberculosis. The culture filtrate contained approximately 100 μg of LAM/ml. The detection limit in sputum pretreated with N-acetyl-l-cysteine and proteinase K was 104 M. tuberculosis whole cells per ml. Thirty-one (91%) of 34 sputum samples from 18 Vietnamese patients with tuberculosis (32 smear positive and 2 smear negative) were positive in the LAM detection assay. In contrast, none of the 25 sputum samples from 21 nontuberculous patients was positive. This specific and sensitive assay for the detection of LAM in sputum is potentially useful for the diagnosis of tuberculosis. PMID:10834989

  17. Development of Prototype Filovirus Recombinant Antigen Immunoassays

    PubMed Central

    Boisen, Matt L.; Oottamasathien, Darin; Jones, Abigail B.; Millett, Molly M.; Nelson, Diana S.; Bornholdt, Zachary A.; Fusco, Marnie L.; Abelson, Dafna M.; Oda, Shun-ichiro; Hartnett, Jessica N.; Rowland, Megan M.; Heinrich, Megan L.; Akdag, Marjan; Goba, Augustine; Momoh, Mambu; Fullah, Mohammed; Baimba, Francis; Gbakie, Michael; Safa, Sadiki; Fonnie, Richard; Kanneh, Lansana; Cross, Robert W.; Geisbert, Joan B.; Geisbert, Thomas W.; Kulakosky, Peter C.; Grant, Donald S.; Shaffer, Jeffery G.; Schieffelin, John S.; Wilson, Russell B.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.; Khan, S. Humarr; Pitts, Kelly R.

    2015-01-01

    Background. Throughout the 2014–2015 Ebola outbreak in West Africa, major gaps were exposed in the availability of validated rapid diagnostic platforms, protective vaccines, and effective therapeutic agents. These gaps potentiated the development of prototype rapid lateral flow immunodiagnostic (LFI) assays that are true point-of-contact platforms, for the detection of active Ebola infections in small blood samples. Methods. Recombinant Ebola and Marburg virus matrix VP40 and glycoprotein (GP) antigens were used to derive a panel of monoclonal and polyclonal antibodies. Antibodies were tested using a multivariate approach to identify antibody-antigen combinations suitable for enzyme-linked immunosorbent assay (ELISA) and LFI assay development. Results. Polyclonal antibodies generated in goats were superior reagents for capture and detection of recombinant VP40 in test sample matrices. These antibodies were optimized for use in antigen-capture ELISA and LFI assay platforms. Prototype immunoglobulin M (IgM)/immunoglobulin G (IgG) ELISAs were similarly developed that specifically detect Ebola virus–specific antibodies in the serum of experimentally infected nonhuman primates and in blood samples obtained from patients with Ebola from Sierra Leone. Conclusions. The prototype recombinant Ebola LFI assays developed in these studies have sensitivities that are useful for clinical diagnosis of acute ebolavirus infections. The antigen-capture and IgM/IgG ELISAs provide additional confirmatory assay platforms for detecting VP40 and other ebolavirus-specific immunoglobulins. PMID:26232440

  18. Extremophilic Enzymatic Response for Protection against UV-Radiation Damage

    DTIC Science & Technology

    2012-09-17

    superoxide dismutase from the thermophile E1 is a very active enzyme and extremely efficient in its function as antioxidant by capturing superoxide radicals...Ollivet-Besson, Papić, L., Blamey J.M. “Optimization of the antioxidant activity of the enzyme superoxide dismutase from the thermophile E1 induced by...antioxidant enzymes , superoxide dismutase and catalase, from selected microorganisms and the contribution of these enzymes to the resistance to extreme and

  19. Captured metagenomics: large-scale targeting of genes based on ‘sequence capture’ reveals functional diversity in soils

    PubMed Central

    Manoharan, Lokeshwaran; Kushwaha, Sandeep K.; Hedlund, Katarina; Ahrén, Dag

    2015-01-01

    Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances. PMID:26490729

  20. Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors.

    PubMed

    Wells, R M; McIntyre, R H; Morgan, A K; Davie, P S

    1986-01-01

    The plasma electrolytes, Na+, K+, Ca2+, Cl- and osmolarities had high values in capture-stressed big gamefish. Blood metabolites measured after stress showed glucose and lactate elevations. The activity of the plasma enzymes alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, creatine kinase and lactate dehydrogenase suggested tissue disruptions following severe capture stress. Haematocrit values and methaemoglobin were high in capture-stressed gamefish. The plasma chemistry of resting and capture-stressed snapper (Chrysophrys auratus) was studied for comparison. Specific differences in plasma biochemistry appeared to be the result of different strategies of fish behaviour during capture.

  1. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  2. Study on the preparation process of cross-linked porous cassava starch

    NASA Astrophysics Data System (ADS)

    Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua

    2017-04-01

    Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.

  3. Development of Glycoprotein Capture-Based Label-Free Method for the High-throughput Screening of Differential Glycoproteins in Hepatocellular Carcinoma*

    PubMed Central

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-01-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers. PMID:21474793

  4. Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assay-capillary isoelectric focusing (ELISA-cIEF).

    PubMed

    Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-06-07

    This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

  5. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    PubMed

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  6. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adney, W. S.; Jeoh, T.; Beckham, G. T.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonlymore » used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that 'tuning' enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.« less

  7. Altered enzyme-linked immunosorbent assay immunoglobulin M (IgM)/IgG optical density ratios can correctly classify all primary or secondary dengue virus infections 1 day after the onset of symptoms, when all of the viruses can be isolated.

    PubMed

    Falconar, Andrew K I; de Plata, Elsa; Romero-Vivas, Claudia M E

    2006-09-01

    We compared dengue virus (DV) isolation rates and tested whether acute primary (P) and acute/probable acute secondary (S/PS) DV infections could be correctly classified serologically when the patients' first serum (S1) samples were obtained 1 to 3 days after the onset of symptoms (AOS). DV envelope/membrane protein-specific immunoglobulin M (IgM) capture and IgG capture enzyme-linked immunosorbent assay (ELISA) titrations (1/log(10) 1.7 to 1 log(10) 6.6 dilutions) were performed on 100 paired S1 and S2 samples from suspected DV infections. The serologically confirmed S/PS infections were divided into six subgroups based on their different IgM and IgG responses. Because of their much greater dynamic ranges, IgG/IgM ELISA titer ratios were more accurate and reliable than IgM/IgG optical density (OD) ratios recorded at a single cutoff dilution for discriminating between P and S/PS infections. However, 62% of these patients' S1 samples were DV IgM and IgG titer negative (or=2.60 and <2.60) discriminatory IgM/IgG OD (DOD) ratios on these S1 samples than those published previously to correctly classify the highest percentage of these P and S/PS infections. The DV isolation rate was highest (12/12; 100%) using IgG and IgM titer-negative S1 samples collected 1 day AOS, when 100% of them were correctly classified as P or S/PS infections using these higher DOD ratios.

  8. Evaluation of a competitive enzyme-linked immunosorbent assay for measurements of soluble HLA-G protein.

    PubMed

    Rasmussen, M; Dahl, M; Buus, S; Djurisic, S; Ohlsson, J; Hviid, T V F

    2014-08-01

    The human leukocyte antigen (HLA) class Ib molecule, HLA-G, has gained increased attention because of its assumed important role in immune regulation. The HLA-G protein exists in several soluble isoforms. Most important are the actively secreted HLA-G5 full-length isoform generated by alternative splicing retaining intron 4 with a premature stop codon, and the cleavage of full-length membrane-bound HLA-G1 from the cell surface, so-called soluble HLA-G1 (sHLA-G1). A specific and sensitive immunoassay for measurements of soluble HLA-G is mandatory for conceivable routine testing and research projects. We report a novel method, a competitive immunoassay, for measuring HLA-G5/sHLA-G1 in biological fluids. The sHLA-G immunoassay is based upon a competitive enzyme-linked immunosorbent assay (ELISA) principle. It includes a recombinant sHLA-G1 protein in complex with β2-microglobulin and a peptide as a standard, biotinylated recombinant sHLA-G1 as an indicator, and the MEM-G/9 anti-HLA-G monoclonal antibody (mAb) as the capture antibody. The specificity and sensitivity of the assay were evaluated. Testing with different recombinant HLA class I proteins and different anti-HLA class I mAbs showed that the sHLA-G immunoassay was highly specific. Optimal combinations of competitor sHLA-G1 and capture mAb concentrations were determined. Two versions of the assay were tested. One with a relatively wide dynamic range from 3.1 to 100.0 ng/ml, and another more sensitive version ranging from 1.6 to 12.5 ng/ml. An intra-assay coefficient of variation (CV) of 15.5% at 88 ng/ml and an inter-assay CV of 23.1% at 39 ng/ml were determined. An assay based on the competitive sHLA-G ELISA may be important for measurements of sHLA-G proteins in several conditions: assisted reproduction, organ transplantation, cancer, and certain pregnancy complications, both in research studies and possibly in the future also for clinical routine use. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    PubMed Central

    Minic, Zoran; Thongbam, Premila D.

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885

  10. The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.

    PubMed

    Minic, Zoran; Thongbam, Premila D

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  11. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads.

    PubMed

    Tang, Dianping; Su, Biling; Tang, Juan; Ren, Jingjing; Chen, Guonan

    2010-02-15

    A novel nanoparticle-based electrochemical immunoassay of carbohydrate antigen 125 (CA125) as a model was designed to couple with a microfluidic strategy using anti-CA125-functionalized magnetic beads as immunosensing probes. To construct the immunoassay, thionine-horseradish peroxidase conjugation (TH-HRP) was initially doped into nanosilica particles using the reverse micelle method, and then HRP-labeled anti-CA125 antibodies (HRP-anti-CA125) were bound onto the surface of the synthesized nanoparticles, which were used as recognition elements. Different from conventional nanoparticle-based electrochemical immunoassays, the recognition elements of the immunoassay simultaneously contained electron mediator and enzyme labels and simplified the electrochemical measurement process. The sandwich-type immunoassay format was used for the online formation of the immunocomplex in an incubation cell and captured in the detection cell with an external magnet. The electrochemical signals derived from the carried HRP toward the reduction of H(2)O(2) using the doped thionine as electron mediator. Under optimal conditions, the electrochemical immunoassay exhibited a wide working range from 0.1 to 450 U/mL with a detection limit of 0.1 U/mL CA125. The precision, reproducibility, and stability of the immunoassay were acceptable. The assay was evaluated for clinical serum samples, receiving in excellent accordance with results obtained from the standard enzyme-linked immunosorbent assay (ELISA) method. Concluding, the nanoparticle-based assay format provides a promising approach in clinical application and thus represents a versatile detection method.

  12. Low-Energy Solvents For Carbon Dioxide Capture Enabled By A Combination Of Enzymes And Vacuum Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, Sonja; House, Alan; Liu, Kun

    An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. Themore » vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for enzyme-enhanced aqueous K2CO3 solvent with vacuum stripping were considered and a corresponding set of sensitivity studies were developed. The cases were evaluated using bench-scale and laboratory-based observations, AspenPlus® process simulation and modeling, AspenTech’s CCE® Parametric Software, current vendor quotations, and project partners’ know-how of unit operations. Overall, the DOE target of 90% CO2 capture could be met using the benign enzyme-enhanced aqueous K2CO3-based alternative to NETL Case 10. The model-predicted plant COE performance, scaled to 550 MWe net output, was 9% higher than NETL Case 10 for an enzyme-activated case with minimized technical risk and highest confidence in physical system performance utilizing commercially available equipment. A COE improvement of 2.8% versus NETL Case 10 was predicted when favorable features of improved enzyme longevity and additional power output from a very low pressure (VLP) turbine were combined, wherein corresponding high capital and operational costs limited the level of COE benefit. The environmental, health and safety (EH&S) profile of the system was found to be favorable and was compliant with the Federal EH&S legislation reviewed. Further work on a larger scale test unit is recommended to reduce the level of uncertainty inherent in extrapolating findings from a bench-scale unit to a full scale PCC plant, and to further investigate several identified opportunities for improvement. Production feasibility and suitability of carbonic anhydrases for scale-up testing was confirmed both through the current project and through parallel efforts.« less

  13. A Dendrimer-based Immunosensor for Improved Capture and Detection of Tumor Necrosis Factor-α Cytokine

    PubMed Central

    Bosnjakovic, Admira; Mishra, Manoj K.; Han, Hye Jung; Romero, Roberto; Kannan, Rangaramanujam M.

    2012-01-01

    A dendrimer-based sandwich type enzyme-linked immunosorbent assay (ELISA) was developed for the improved detection of recombinant human tumor necrosis factor-alpha (TNF-α) for early diagnosis of perinatal diseases. Hydroxyl-terminated generation four poly(amidoamine) dendrimer (G4-OH) was used for the development of a solid phase bio-sensing platform. The surface of the ELISA plate was modified with polyethylene-glycol (PEG) and thiol-functionalized G4-OH was immobilized on the PEG-functionalized plate. A capture antibody was oxidized and covalently immobilized onto the dendrimer-modified ELISA plate, which provides favorable orientation for the antigen binding sites towards the analyte. The dendrimer-modified plate showed enhanced sensitivity, and the detection limit for TNF-α was found to be 0.48 pg mL−1, which is significantly better than the commercially available ELISA kit. The selectivity of the dendrimer-modified ELISA plate was further evaluated with a mixture of cytokines, which showed results for similar to that of TNF-α alone. The modified plate provides a greater opportunity for the detection of a wide range of cytokines and biomarkers. PMID:22365129

  14. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  15. A theoretical study of concentration of profiles of primary cytochemical-enzyme reaction products in membrane-bound cell organelles and its application to lysosomal acid phosphatase.

    PubMed

    Cornelisse, C J; Hermens, W T; Joe, M T; Duijndam, W A; van Duijn, P

    1976-11-01

    A numerical method was developed for computing the steady-state concentration gradient of a diffusible enzyme reaction product in a membrane-limited compartment of a simplified theoretical cell model. In cytochemical enzyme reactions proceeding according to the metal-capture principle, the local concentration of the primary reaction product is an important factor in the onset of the precipitation process and in the distribution of the final reaction product. The following variables were incorporated into the model: enzyme activity, substrate concentration, Km, diffusion coefficient of substrate and product, particle radius and cell radius. The method was applied to lysosomal acid phosphatase. Numerical values for the variables were estimated from experimental data in the literature. The results show that the calculated phosphate concentrations inside lysosomes are several orders of magnitude lower than the critical concentrations for efficient phosphate capture found in a previous experimental model study. Reasons for this apparent discrepancy are discussed.

  16. DNA Knots: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  17. Optical Imaging of Targeted β-Galactosidase in Brain Tumors to Detect EGFR Levels

    PubMed Central

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-01-01

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging. PMID:25775241

  18. Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels.

    PubMed

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-04-15

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.

  19. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    DOE PAGES

    Asztalos, Andrea; Daniels, Marcus; Sethi, Anurag; ...

    2012-08-01

    In this study, degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing -1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, -glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose,more » several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. As a result, we present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. In conclusion, our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate properties with a goal of cost effective enzymatic hydrolysis.« less

  20. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  1. Specific detection of tetanus toxoid using an aptamer-based matrix.

    PubMed

    Modh, Harshvardhan B; Bhadra, Ankan K; Patel, Kinjal A; Chaudhary, Rajeev K; Jain, Nishant K; Roy, Ipsita

    2016-11-20

    Batch-to-batch variation of therapeutic proteins produced by biological means requires rigorous monitoring at all stages of the production process. A large number of animals are employed for risk assessment of biologicals, which has low ethical and economic acceptability. Research is now focussed on the validation of in vitro and ex vivo tests to replace live challenges. Among in vitro methods, enzyme-linked immunosorbent assay (ELISA) is considered to be the gold standard for estimation of integrity of tetanus toxoid. ELISA utilizes antibodies for detection, which, because of their biological origin and limited modifiability, may have low stability and result in irreproducibility. We have developed a method using highly specific and selective RNA aptamers for detection of tetanus toxoid. Using displacement assay, we first identified aptamers which bind to different aptatopes on the surface of the toxoid. Pairs of these aptamers were employed as capture-detection ligands in a sandwich-ALISA (aptamer-linked immobilized sorbent assay) format. The binding efficiency was confirmed by the fluorescence intensity in each microtire plate well. Using aptamers alone, detection of tetanus toxoid was possible with the same level of sensitivity as antibody. Aptamers were also used in the capture ALISA format. Adjuvanted tetanus toxoid was subjected to accelerated stress testing, including thermal, mechanical and freeze-thawing stress conditions. The loss in antigenicity of the preparation determined by ALISA in each case was found to be similar to that determined by conventional ELISA. Thus, it is possible to replace antibodies with aptamers to develop a more robust detection tool for tetanus toxoid. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The effects of altered N-linked oligosaccharide structures on maturation and targeting of lysosomal enzymes in Dictyostelium discoideum.

    PubMed

    Freeze, H H; Koza-Taylor, P; Saunders, A; Cardelli, J A

    1989-11-15

    We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.

  3. Novel photoelectrochemical immunosensor for disease-related protein assisted by hemin/G-quadruplex-based DNAzyme on gold nanoparticles to enhance cathodic photocurrent on p-CuBi2O4 semiconductor.

    PubMed

    Lv, Shuzhen; Zhang, Kangyao; Lin, Zhenzhen; Tang, Dianping

    2017-10-15

    A novel p-type semiconductor material (p-CuBi 2 O 4 ) is designed for the construction of split-type photoelectrochemical (PEC) immunosensor for alpha-fetoprotein (AFP) with the hemin assistant to enhance the cathodic photocurrent. Initially, the photocathode of PEC immunosensor is fabricated by p-CuBi 2 O 4 on a layer of gold nanoparticles (AuNPs, as a front contact of p-CuBi 2 O 4 ) to enhance the efficiency of charge separation. In the presence of target AFP, a sandwich-type immunoreaction was carried out in capture antibody-coated microplate by using detection antibody and hemin-based G-quadruplex (labeled on the AuNP) as the signal probe. Upon exonuclease I (Exo I) introduction, the enzyme digested the hemin/G-quadruplex-based DNAzyme to release the hemin[Fe(III)], which captured the generated electrons of p-CuBi 2 O 4 -based photocathode to enhance photocurrent via the reduction of hemin[Fe(III)] to hemin[Fe(II)] in PEC detection system. Under the optimal conditions, the split-type photocathodic immunosensor showed a wide linear dynamic range from 50pgmL -1 to 20ngmL -1 at a limit of detection (LOD) of 14.7pgmL -1 toward target AFP. Moreover, the PEC immunosensor also displayed high specificity and good reproducibility. Favorably, method accuracy was evaluated to analyze human serum specimens, and gave matched-well results in comparison with commercially available enzyme-linked immunosorbent assay (ELISA) method. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Detection of walnut residues in foods using an enzyme-linked immunosorbent assay.

    PubMed

    Niemann, Lynn; Taylor, Steve L; Hefle, Susan L

    2009-08-01

    Tree nuts, including walnuts, can be responsible for allergic reactions. Food manufacturers have the responsibility to declare the presence of walnuts on packaged foods even when trace residues may be present from the use of shared equipment or the adventitious contamination of ingredients. The aim of this study was to develop a rapid, sensitive, and specific enzyme-linked immunosorbent assay (ELISA) method for the detection of walnut protein residues. Mixtures of raw and roasted English walnuts of several varieties were defatted, powdered, and used as separate antigens in sheep and New Zealand white rabbits. An ELISA was developed using the sheep antiroasted walnut serum as the capture reagent and rabbit antiroasted walnut serum as the detector reagent followed by addition of commercial goat anti-rabbit IgG antibody labeled with alkaline phosphatase and subsequent substrate addition. The performance of the ELISA was validated by testing known amounts of walnut (0 to 100 ppm) either spiked into or manufactured into milk chocolate, cookies, muffins, or ice cream. Recoveries of 1 to 100 ppm walnut-in-chocolate ranged from 71.6% to 119%+/- 7% to 16.5%. The walnut ELISA has a detection limit of 1 ppm (1 microg/g) walnut in several food matrices. Substantial cross-reactivity was observed with pecan while minimal cross-reactivity was noted for hazelnut, mustard, mace, and poppy seed among almost 100 foods and food ingredients tested. This walnut ELISA can be used to detect undeclared walnut residues in foods and ingredients and as a tool to validate the effectiveness of allergen control programs for walnuts.

  5. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    PubMed

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  6. EVALUATION OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY FOR BIOLOGICAL MONITORING OF 3-PHENOXYBENZOIC ACID IN URINE

    EPA Science Inventory

    Abstract describes the development of an enzyme-linked immunosorbent assay (ELISA) method for monitoring 2,4-dichlorophenoxyacetic acid (2,4-D exposures). The ELISA is compared with a gas chromatograhy/mass spectrometry procedure. ELISA method development steps and comparative ...

  7. Young inversion with multiple linked QTLs under selection in a hybrid zone.

    PubMed

    Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius P; Mandáková, Terezie; Prasad, Kasavajhala V S K; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Kathryn; Schranz, M Eric; Wing, Rod; Lysak, Martin A; Schmutz, Jeremy; Rokhsar, Daniel S; Mitchell-Olds, Thomas

    2017-04-03

    Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.

  8. Young inversion with multiple linked QTLs under selection in a hybrid zone

    PubMed Central

    Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius; Mandáková, Terezie; Prasad, Kasavajhala V. S. K.; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N.; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W.; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Katherine; Schranz, M. Eric; Wing, Rod; Lysak, Martin A.; Schmutz, Jeremy; Rokhsar, Daniel S.; Mitchell-Olds, Thomas

    2017-01-01

    Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favored alleles at multiple loci. However, it is unknown whether favored mutations slowly accumulate on older inversions or if young inversions spread because they capture preexisting adaptive Quantitative Trait Loci (QTLs). By genetic mapping, chromosome painting and genome sequencing we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation. PMID:28812690

  9. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    DOE PAGES

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; ...

    2014-11-03

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability andmore » alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. In conclusion, at pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction.« less

  10. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    PubMed Central

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; Bresson, Jamie A.; Lakhapatri, Satish L.; Solis, Earl O. P.; Fox, Richard J.; Broering, James M.; Benoit, Michael R.; Zimmerman, Sabrina A.; Novick, Scott J.; Liang, Jack; Lalonde, James J.

    2014-01-01

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability and alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. At pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction. PMID:25368146

  11. Alteration of Escherichia coli topoisomerase IV conformation upon enzyme binding to positively supercoiled DNA.

    PubMed

    Crisona, Nancy J; Cozzarelli, Nicholas R

    2006-07-14

    Escherichia coli topoisomerase IV (topo IV) is an essential enzyme that unlinks the daughter chromosomes for proper segregation at cell division. In vitro, topo IV readily distinguishes between the two possible chiralities of crossing segments in a DNA substrate. The enzyme relaxes positive supercoils and left-handed braids 20 times faster, and with greater processivity, than negative supercoils and right-handed braids. Here, we used chemical cross-linking of topo IV to demonstrate that enzyme bound to positively supercoiled DNA is in a different conformation from that bound to other forms of DNA. Using three different reagents, we observed novel cross-linked species of topo IV when positively supercoiled DNA was in the reaction. We show that the ParE subunits are in close enough proximity to be cross-linked only when the enzyme is bound to positively supercoiled DNA. We suggest that the altered conformation reflects efficient binding by topo IV of the two DNA segments that participate in the strand passage reaction.

  12. Enzyme-linked immunosorbent assay detection and bioactivity of Cry1Ab protein fragments

    USDA-ARS?s Scientific Manuscript database

    Enzyme-linked immunosorbent assay (ELISA) has emerged as the preferred detection method for Cry proteins in environmental matrices. Concerns exist that ELISAs are capable of detecting fragments of Cry proteins, which may lead to an over-estimation of the concentration of these proteins in the enviro...

  13. A review of Cry protein detection with enzyme-linked immunosorbent assays

    USDA-ARS?s Scientific Manuscript database

    Several detection methods are available to monitor the fate of Cry proteins in the environment, enzyme-linked immunosorbent assays (ELISAs) have emerged as the preferred detection method, due to their cost-effectiveness, ease of use, and rapid results. Validation of ELISAs is necessary to ensure acc...

  14. An enzyme-linked immunosorbent assay for determination of dicyclanil in animal tissue

    USDA-ARS?s Scientific Manuscript database

    Dicyclanil is a pyrimidine-derived insect growth regulator used in veterinary medicine for the prevention of myiasis or fly-strike. It is toxic to animals and humans. In this paper, for the first time, a competitive indirect enzyme-linked immunosorbent assay was developed for the determination of ...

  15. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    USDA-ARS?s Scientific Manuscript database

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  16. 76 FR 15791 - National Poultry Improvement Plan and Auxiliary Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... microhemagglutination inhibition test, the enzyme-linked immunosorbent assay (ELISA) test,\\3\\ a polymerase chain [[Page... samplings and/or culture of reactors. \\3\\ Procedures for the enzyme-linked immunosorbent assay (ELISA) test... Immunosorbent Assay (ELISA),'' Proceedings, 30th Western Poultry Disease Conference, pp. 63-66, March 1981...

  17. Environmental Technology Verification Report for Abraxis Ecologenia® 17β-Estradiol (E2) Microplate Enzyme-Linked Immunosorbent Assay (ELISA) Test Kits

    EPA Science Inventory

    This verification test was conducted according to procedures specifiedin the Test/QA Planfor Verification of Enzyme-Linked Immunosorbent Assay (ELISA) Test Kis for the Quantitative Determination of Endocrine Disrupting Compounds (EDCs) in Aqueous Phase Samples. Deviations to the...

  18. Production of superparamagnetic nanobiocatalysts for green chemistry applications.

    PubMed

    Gasser, Christoph A; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2016-08-01

    Immobilization of enzymes on solid supports is a convenient method for increasing enzymatic stability and enabling enzyme reuse. In the present work, a sorption-assisted surface conjugation method was developed and optimized to immobilize enzymes on the surface of superparamagnetic nanoparticles. An oxidative enzyme, i.e., laccase from Trametes versicolor was used as model enzyme. The immobilization method consists of the production of superparamagnetic nanoparticles by co-precipitation of FeCl2 and FeCl3. Subsequently, the particle surface is modified with an organosilane containing an amino group. Next, the enzymes are adsorbed on the particle surface before a cross-linking agent, i.e., glutaraldehyde is added which links the amino groups on the particle surface with the amino groups of the enzymes and leads to internal cross-linking of the enzymes as well. The method was optimized using response surface methodology regarding optimal enzyme and glutaraldehyde amounts, pH, and reaction times. Results allowed formulation of biocatalysts having high specific enzymatic activity and improved stability. The biocatalysts showed considerably higher stability compared with the dissolved enzymes over a pH range from 3 to 9 and in the presence of several chemical denaturants. To demonstrate the reusability of the immobilized enzymes, they were applied as catalysts for the production of a phenoxazinone dye. Virtually, 100 % of the precursor was transformed to the dye in each of the ten conducted reaction cycles while on average 84.5 % of the enzymatic activity present at the beginning of a reaction cycle was retained after each cycle highlighting the considerable potential of superparamagnetic biocatalysts for application in industrial processes.

  19. Estimating rates of denitrification enzyme activity in wetland soils and direct simultaneous quantification of nitrogen and nitrous oxide by membrane inlet mass spectrometry

    EPA Science Inventory

    Denitrification enzyme activity (DEA) was measured in short-term (4 h) anaerobic assays using Membrane Inlet Mass Spectrometry (MIMS) and electron capture gas chromatography (GC-ECD). Using MIMS, modifications of the instrument and sample handling allowed for the simultaneous me...

  20. 49 CFR 563.9 - Data capture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. Link to an amendment published at 76 FR 47489, Aug. 5, 2011. The EDR must capture and record the data elements for events in accordance...

  1. Construction of a Simple, Inexpensive Multiple Enzyme-Linked Immunosorbent Assay Microdilution Plate Washer

    PubMed Central

    Stobbs, L. W.

    1990-01-01

    In this paper, plans are given for the construction of an inexpensive enzyme-linked immunosorbent assay plate washer from readily available materials. The wash unit uses an intermittent wash cycle based on a wash manifold cycling over the microdilution plates for a predetermined time. Laboratory tests showed that the unit provided reliable, rapid washing of plates with tap water, with no detectable contamination between wells. Substrate absorbance values for test samples from machine-washed plates were equal to or greater than absorbance values for corresponding samples from plates washed manually by an accepted protocol, by using either enzyme-linked immunosorbent assay wash buffer or tap water. Images PMID:16348216

  2. Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam.

    PubMed

    Migliardini, Fortunato; De Luca, Viviana; Carginale, Vincenzo; Rossi, Mosè; Corbo, Pasquale; Supuran, Claudiu T; Capasso, Clemente

    2014-02-01

    The biomimetic approach represents an interesting strategy for carbon dioxide (CO2) capture, offering advantages over other methods, due to its specificity for CO2 and its eco-compatibility, as it allows concentration of CO2 from other gases, and its conversion to water soluble ions. This approach uses microorganisms capable of fixing CO2 through metabolic pathways or via the use of an enzyme, such as carbonic anhydrase (CA, EC 4.2.1.1). Recently, our group cloned and purified a novel bacterial α-CA, named SspCA, from the thermophilic bacteria, Sulfurihydrogenibium yellowstonense YO3AOP1 living in hot springs at temperatures of up to 110 °C. This enzyme showed an exceptional thermal stability, retaining its high catalytic activity for the CO2 hydration reaction even after being heated at 70 °C for several hours. In the present paper, the SspCA was immobilized within a polyurethane (PU) foam. The immobilized enzyme was found to be catalytically active and showed a long-term stability. A bioreactor containing the "PU-immobilized enzyme" (PU-SspCA) as shredded foam was used for experimental tests aimed to verify the CO2 capture capability in conditions close to those of a power plant application. In this bioreactor, a gas phase, containing CO2, was put into contact with a liquid phase under conditions, where CO2 contained in the gas phase was absorbed and efficiently converted into bicarbonate by the extremo-α-CA.

  3. Hemostatic Function of Apheresis Platelets Stored at 4 deg C and 22 deg C

    DTIC Science & Technology

    2014-05-01

    utilized. Thromboxane B2 (TxB2) enzyme immunoassay kits were purchased from Cayman Chemicals (Ann Arbor, MI), and human soluble CD40L (sCD40L) extra...sensitive platinum enzyme linked immunosorbent assay kits were pur chased from eBioscience (Vienna, Austria). CG4+ and CHEM8+ cartridges were purchased from...TruCount tubes (BD Biosciences). Enzyme linked immunosorbent assay Commercially available kits were used to assess sCD40L and TxB2 levels released into

  4. Human immune response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay.

    PubMed Central

    Siegel, L S

    1988-01-01

    To determine the immune status of persons receiving botulinum pentavalent (ABCDE) toxoid and to evaluate the effectiveness of the vaccine, we surveyed immunized individuals for neutralizing antibodies to type A and to type B botulinum toxins. After the primary series of three immunizations administered at 0, 2, and 12 weeks, 21 of 23 persons tested (91%) had a titer for type A that was greater than or equal to 0.08 international units (IU)/ml, and 18 (78%) had a titer for type B of greater than or equal to 0.02 IU/ml. (One international unit is defined as the amount of antibody neutralizing 10,000 mouse 50% lethal doses of type A or B botulinum toxin). Just before the first annual booster, 10 of 21 (48%) and 14 of 21 (67%) people lacked a detectable titer for type A and for type B, respectively. After the first booster, all individuals tested had a demonstrable titer to both types A and B. Of 77 persons who had previously received from one to eight boosts of the toxoid, 74 (96%) had an A titer of greater than or equal to 0.25 IU/ml and would not require an additional booster, according to the recommendations of the Centers for disease Control. However, only 44 of 77 (57%) had a B titer of greater than or equal to 0.25 IU/ml. In each group by booster number, even the group having had eight boosts, at least one person would require reimmunization on the basis of B titer. There was a wide range of antibody levels among individuals at the same point in the immunization scheme. Results from an enzyme linked immunosorbent assay, with purified type A or type B neurotoxin as the capture antigen, were compared with neutralization test results on 186 serum samples for type A and 168 samples for type B. Statistically, the correlation coefficients for results from the two assays were high (r = 0.69, P < 0.0001, for type A and r = 0.77, P < 0.0001, for type B). However, due to the wide dispersion of values obtained, using enzyme-linked immunosorbent assay results to predict neutralizing antibody levels is unwarranted. PMID:3235662

  5. Feeding profile of Mepraia spinolai, a sylvatic vector of Chagas disease in Chile.

    PubMed

    Chacón, F; Bacigalupo, A; Quiroga, J F; Ferreira, A; Cattan, P E; Ramírez-Toloza, G

    2016-10-01

    American trypanosomiasis is a chronic disease transmitted mainly by vectors. The hematophagous triatomine vectors transmit Trypanosoma cruzi to a wide variety of mammals, which usually are their food source. This study determined the feeding profile of Mepraia spinolai, a sylvatic triatomine vector, present in endemic areas of Chile. Vectors were captured in the north-central area of Chile. Samples of intestinal contents were analyzed by an Enzyme-linked immunosorbent assay (ELISA) that identifies and discriminates the presence of serum antigens from Homo sapiens and nine animal species (Canis familiaris, Felis catus, Capra hircus, Mus musculus, Gallus gallus, Octodon degus, Thylamys elegans, Phyllotis darwini and Oryctolagus cuniculus). Our data indicate the most frequent feeding source in this area was P. darwini, followed by O. degus, O. cuniculus, M. musculus, G. gallus, T. elegans, C. familiaris, F. catus and C. hircus. Mixed food sources were also identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Serologic evidence of exposure of raptors to influenza A virus.

    PubMed

    Redig, Patrick T; Goyal, Sagar M

    2012-06-01

    Serum or plasma samples from raptors that prey or scavenge upon aquatic birds were tested by a commercially available blocking enzyme-linked immunosorbent assay for the evidence of antibodies to influenza A virus. Samples were taken from birds (n = 616) admitted to two rehabilitation centers in the United States. In addition, samples from 472 migrating peregrine falcons (Falco peregrinus) trapped on autumnal and vernal migrations for banding purposes were also tested. Only bald eagles were notably seropositive (22/406). One each of peregrine falcon, great horned owl (Bubo virginianus), and Cooper's hawk (Accipiter cooperi) from a total of 472, 81, and 100, respectively, were also positive. None of the turkey vultures (n = 21) or black vultures (n = 8) was positive. No clinical signs referable to avian influenza were seen in any bird at the time of capture. These data indicate that, among raptors, bald eagles do have exposure to influenza A viruses.

  7. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India.

    PubMed

    Yadav, Pragya D; Raut, Chandrashekhar G; Shete, Anita M; Mishra, Akhilesh C; Towner, Jonathan S; Nichol, Stuart T; Mourya, Devendra T

    2012-09-01

    The study deals with the survey of different bat populations (Pteropus giganteus, Cynopterus sphinx, and Megaderma lyra) in India for highly pathogenic Nipah virus (NiV), Reston Ebola virus, and Marburg virus. Bats (n = 140) from two states in India (Maharashtra and West Bengal) were tested for IgG (serum samples) against these viruses and for virus RNAs. Only NiV RNA was detected in a liver homogenate of P. giganteus captured in Myanaguri, West Bengal. Partial sequence analysis of nucleocapsid, glycoprotein, fusion, and phosphoprotein genes showed similarity with the NiV sequences from earlier outbreaks in India. A serum sample of this bat was also positive by enzyme-linked immunosorbent assay for NiV-specific IgG. This is the first report on confirmation of Nipah viral RNA in Pteropus bat from India and suggests the possible role of this species in transmission of NiV in India.

  8. Seroprevalence of Filovirus Infection of Rousettus aegyptiacus Bats in Zambia.

    PubMed

    Changula, Katendi; Kajihara, Masahiro; Mori-Kajihara, Akina; Eto, Yoshiki; Miyamoto, Hiroko; Yoshida, Reiko; Shigeno, Asako; Hang'ombe, Bernard; Qiu, Yongjin; Mwizabi, Daniel; Squarre, David; Ndebe, Joseph; Ogawa, Hirohito; Harima, Hayato; Simulundu, Edgar; Moonga, Ladslav; Kapila, Penjaninge; Furuyama, Wakako; Kondoh, Tatsunari; Sato, Masahiro; Takadate, Yoshihiro; Kaneko, Chiho; Nakao, Ryo; Mukonka, Victor; Mweene, Aaron; Takada, Ayato

    2018-06-08

    Bats are suspected to play important roles in the ecology of filoviruses, including ebolaviruses and marburgviruses. A cave-dwelling fruit bat, Rousettus aegyptiacus, has been shown to be a reservoir of marburgviruses. Using an enzyme-linked immunosorbent assay with the viral glycoprotein antigen, we detected immunoglobulin G antibodies specific to multiple filoviruses in 158 of 290 serum samples of R aegyptiacus bats captured in Zambia during the years 2014-2017. In particular, 43.8% of the bats were seropositive to marburgvirus, supporting the notion that this bat species continuously maintains marburgviruses as a reservoir. Of note, distinct peaks of seropositive rates were repeatedly observed at the beginning of rainy seasons, suggesting seasonality of the presence of newly infected individuals in this bat population. These data highlight the need for continued monitoring of filovirus infection in this bat species even in countries where filovirus diseases have not been reported.

  9. Evaluation of Raman spectroscopy in comparison to commonly performed dengue diagnostic tests

    NASA Astrophysics Data System (ADS)

    Khan, Saranjam; Ullah, Rahat; Khurram, Muhammad; Ali, Hina; Mahmood, Arshad; Khan, Ajmal; Ahmed, Mushtaq

    2016-09-01

    This study demonstrates the evaluation of Raman spectroscopy as a rapid diagnostic test in comparison to commonly performed tests for an accurate detection of dengue fever in human blood sera. Blood samples of 104 suspected dengue patients collected from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study. Out of 104 samples, 52 (50%) were positive based on immunoglobulin G (IgG), whereas 54 (52%) were positive based on immunoglobulin M (IgM) antibody tests. For the determination of the diagnostic capabilities of Raman spectroscopy, accuracy, sensitivity, specificity and false positive rate have been calculated in comparison to normally performed IgM and IgG captured enzyme-linked immunosorbent assay tests. Accuracy, precision, specificity, and sensitivity for Raman spectroscopy in comparison to IgM were found to be 66%, 70%, 72%, and 61%, whereas based on IgG they were 47%, 46%, 52%, and 43%, respectively.

  10. Challenge with Bovine viral diarrhea virus by exposure to persistently infected calves: protection by vaccination and negative results of antigen testing in nonvaccinated acutely infected calves

    PubMed Central

    Johnson, Bill J.; Briggs, Robert E.; Ridpath, Julia F.; Saliki, Jeremiah T.; Confer, Anthony W.; Burge, Lurinda J.; Step, Douglas L.; Walker, Derek A.; Payton, Mark E.

    2006-01-01

    Abstract Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves. PMID:16639944

  11. Activation of innate immunity by prostate specific antigen (PSA).

    PubMed

    Kodak, James A; Mann, Dean L; Klyushnenkova, Elena N; Alexander, Richard B

    2006-11-01

    Prostate specific antigen (PSA) is a serine protease secreted by the prostatic epithelium. The only known function of the protein is to cleave seminogelin. We wished to determine if PSA activated peripheral blood mononuclear cells (PBMC). PBMC and selected sub-populations were cultured with purified PSA. Secretion of IFNgamma was measured by cytokine capture flow cytometry and enzyme-linked immunosorbent assay. We observed secretion of IFNgamma and a proliferative response in PBMC cultured with PSA. We found that NK cells were the source of the IFNgamma but NK cells were not directly stimulated by PSA. Rather, a soluble factor secreted primarily by CD14 monocytes in response to PSA stimulated NK cells to secrete IFNgamma. PSA induces a pro-inflammatory response that results in the secretion of INFgamma by NK cells. The presence of large amounts of PSA could contribute to the common finding of inflammatory infiltrates in the prostate.

  12. Detection of classical swine fever virus E2 gene in cattle serum samples from cattle herds of Meghalaya.

    PubMed

    Chakraborty, A K; Karam, A; Mukherjee, P; Barkalita, L; Borah, P; Das, S; Sanjukta, R; Puro, K; Ghatak, S; Shakuntala, I; Sharma, I; Laha, R G; Sen, A

    2018-03-01

    The present study focused on the detection and genetic characterisation of 5' untranslated region (5'UTR) and E2 gene of classical swine fever virus (CSFV, family Flaviviridae , genus Pestivirus ) from bovine population of the northeastern region of India. A total of 134 cattle serum samples were collected from organised cattle farms and were screened for CSFV antigen with a commercial antigen capture enzyme linked immunosorbent assay (Ag-ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). A total of 10 samples were positive for CSFV antigen by ELISA, while all of them were positive in PCR for 5'UTR region. Full length E2 region of CSFV were successfully amplified from two positive samples and used for subsequent phylogenetic analysis and determination of protein 3D structure which showed similarity with reported CSFV isolate from Assam of sub-genogroup 2.1, with minor variations in protein structure.

  13. QUANTITATIVE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DETERMINATION OF POLYCHLORINATED BIPHENYLS IN ENVIRONMENTAL SOIL AND SEDIMENT SAMPLES

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of Aroclors 1242, 1248, 1254, and 1260 in soil and sediments was developed and its performance compared with that of gas chromatography (GC). The detection limits for Aroclors 1242 and 1248 in soil ar...

  14. Epitope-blocking enzyme-linked immunosorbent assay for detection of antibodies to Ross River virus in vertebrate sera.

    PubMed

    Oliveira, Nidia M M; Broom, Annette K; Mackenzie, John S; Smith, David W; Lindsay, Michael D A; Kay, Brian H; Hall, Roy A

    2006-07-01

    We describe the development of an epitope-blocking enzyme-linked immunosorbent assay (ELISA) for the sensitive and rapid detection of antibodies to Ross River virus (RRV) in human sera and known vertebrate host species. This ELISA provides an alternative method for the serodiagnosis of RRV infections.

  15. Highly broad-specific and sensitive enzyme-linked immunosorbent assay for screening sulfonamides: Assay optimization and application to milk samples

    USDA-ARS?s Scientific Manuscript database

    A broad-specific and sensitive immunoassay for the detection of sulfonamides was developed by optimizing the conditions of an enzyme-linked immunosorbent assay (ELISA) in regard to different monoclonal antibodies (MAbs), assay format, immunoreagents, and several physicochemical factors (pH, salt, de...

  16. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  17. Biological Monitoring of 3-Phenoxybenzoic Acid in Urine by an Enzyme -Linked Immunosorbent Assay

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was employed for determination of the pyrethroid biomarker, 3-phenoxybenzoic acid (3-PBA) in human urine samples. The optimized coating antigen concentration was 0.5 ng/mL with a dilution of 1:4000 for the 3-PBA antibody and 1:6...

  18. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  19. Revealing a Novel Otubain-like Enzyme from Leishmania infantum with Deubiquitinating Activity toward K48-linked Substrate

    NASA Astrophysics Data System (ADS)

    Azevedo, Clênia S.; Guido, Bruna C.; Pereira, Jhonata L.; Nolasco, Diego O.; Corrêa, Rafael; Magalhães, Kelly G.; Motta, Flávia N.; Santana, Jaime M.; Grellier, Philippe; Bastos, Izabela M. D.

    2017-03-01

    Deubiquitinating enzymes (DUBs) play an important role in regulating a variety of eukaryotic processes. In this context, exploring the role of deubiquitination in Leishmania infantum could be a promising alternative to search new therapeutic targets for leishmaniasis. Here we present the first characterization of a DUB from L. infantum, otubain (OtuLi), and its localization within parasite. The recombinant OtuLi (rOtuLi) showed improved activity on lysine 48 (K48)-linked over K63-linked tetra-ubiquitin (Ub) and site-directed mutations on amino acids close to the catalytic site (F82) or involved in Ub interaction (L265 and F182) caused structural changes as shown by molecular dynamics, resulting in a reduction or loss of enzyme activity, respectively. Furthermore, rOtuLi stimulates lipid droplet biogenesis (an inflammatory marker) in peritoneal macrophages and induces IL-6 and TNF-α secretion in peritoneal macrophages, both proinflammatory cytokines. Our findings suggest that OtuLi is a cytoplasmic enzyme with K48-linked substrate specificity that could play a part in proinflammatory response in stimulated murine macrophages.

  20. Immunity to human cytomegalovirus measured and compared by complement fixation, indirect fluorescent-antibody, indirect hemagglutination, and enzyme-linked immunosorbent assays.

    PubMed Central

    Brandt, J A; Kettering, J D; Lewis, J E

    1984-01-01

    The complement fixation test is currently the test employed most frequently to determine the presence of antibody to human cytomegalovirus. Several other techniques have been adapted for this purpose. A comparison of cytomegalovirus antibody titers was made between the complement fixation test, a commercially available enzyme-linked immunosorbent assay, an indirect immunofluorescent technique, and a modified indirect hemagglutination test. Forty-three serum samples were tested for antibodies by each of the above procedures. The enzyme-linked immunosorbent, immunofluorescent, and indirect hemagglutination assays were in close agreement on all samples tested; the titers obtained with these methods were all equal to or greater than the complement fixation titer for 38 of the 41 samples (92.6%). Two samples were anticomplementary in the complement fixation test but gave readable results in the other tests. The complement fixation test was the least sensitive of the procedures examined. The commercial enzyme-linked immunosorbent assay system was the most practical method and offered the highest degree of sensitivity in detecting antibodies to cytomegalovirus. PMID:6321544

  1. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay K. S.; Choi, Seung Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-03-01

    Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes.Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00346j

  2. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs).

    PubMed

    Sheldon, Roger A

    2011-11-01

    Cross-linked enzyme aggregates (CLEAs) have many economic and environmental benefits in the context of industrial biocatalysis. They are easily prepared from crude enzyme extracts, and the costs of (often expensive) carriers are circumvented. They generally exhibit improved storage and operational stability towards denaturation by heat, organic solvents, and autoproteolysis and are stable towards leaching in aqueous media. Furthermore, they have high catalyst productivities (kilograms product per kilogram biocatalyst) and are easy to recover and recycle. Yet another advantage derives from the possibility to co-immobilize two or more enzymes to provide CLEAs that are capable of catalyzing multiple biotransformations, independently or in sequence as catalytic cascade processes.

  3. Highly efficient method towards in situ immobilization of invertase using cryogelation.

    PubMed

    Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz

    2013-12-01

    A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

  4. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.

  5. Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors.

    PubMed

    El-Maiss, Janwa; Cuccarese, Marco; Maerten, Clément; Lupattelli, Paolo; Chiummiento, Lucia; Funicello, Maria; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2018-06-06

    In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC + ); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC + ; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide linear range from 1.0 to 12.5 mM as well as a good sensitivity (0.66 μA/mM cm 2 ) and a high selectivity to glucose. These films would distinguish between healthy (3.8 and 6.5 mM) and hyperglycemic subjects (>7 mM). Finally, we show that this electro-cross-linking process allows the development of miniaturized biosensors through the functionalization of a single electrode out of a microelectrode array. Elegant and versatile, this electro-cross-linking process can also be used for the development of enzymatic biofuel cells.

  6. Administering and Detecting Protein Marks on Arthropods for Dispersal Research.

    PubMed

    Hagler, James R; Machtley, Scott A

    2016-01-28

    Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.

  7. Immunocapture loop-mediated isothermal amplification assays for the detection of canine parvovirus.

    PubMed

    Sun, Yu-Ling; Yen, Chon-Ho; Tu, Ching-Fu

    2017-11-01

    A loop-mediated isothermal amplification (LAMP) assay was used for rapid canine parvovirus (CPV) diagnosis. To reduce the time required and increase the sensitivity of the assay, an immunocapture (IC) technique was developed in this study to exclude the DNA extraction step in molecular diagnostic procedures for CPV. A polyclonal rabbit anti-CPV serum was produced against VP2-EpC that was cloned via DNA recombination. The polyclonal anti-VP2-EpC serum was used for virus capture to prepare microtubes. IC-LAMP was performed to amplify a specific CPV target gene sequence from the CPV viral particles that were captured on the microtubes, and the amplicons were analyzed using agarose electrophoresis or enzyme-linked immunosorbent assay (IC-LAMP-ELISA) and lateral-flow dipstick (IC-LAMP-LFD). The detection sensitivities of IC-LAMP, IC-LAMP-ELISA, and IC-LAMP-LFD were 10 -1 , 10 -1 , and 10 -1 TCID 50 /mL, respectively. Using the IC-LAMP-ELISA and IC-LAMP-LFD assays, the complete CPV diagnostic process can be achieved within 1.5h. Both of the developed IC-LAMP-based assays are simple, direct visual and efficient techniques that are applicable to the detection of CPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mapping 3D genome architecture through in situ DNase Hi-C.

    PubMed

    Ramani, Vijay; Cusanovich, Darren A; Hause, Ronald J; Ma, Wenxiu; Qiu, Ruolan; Deng, Xinxian; Blau, C Anthony; Disteche, Christine M; Noble, William S; Shendure, Jay; Duan, Zhijun

    2016-11-01

    With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.

  9. CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage.

    PubMed

    Romme Christensen, Jeppe; Komori, Mika; von Essen, Marina Rode; Ratzer, Rikke; Börnsen, Lars; Bielekova, Bibi; Sellebjerg, Finn

    2018-05-01

    Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.

  10. Comparison of five commercial anti-tetanus toxoid immunoglobulin G enzyme-linked immunosorbent assays.

    PubMed

    Perry, A L; Hayes, A J; Cox, H A; Alcock, F; Parker, A R

    2009-12-01

    Five commercially available enzyme-linked immunosorbent assays for the measurement of anti-tetanus toxoid immunoglobulin G (IgG) antibodies were evaluated for performance. The data suggest that there are manufacturer-dependent differences in sensitivity and accuracy for the determination of tetanus toxoid IgG antibodies that could result in different diagnostic interpretations.

  11. Development of an enzyme-linked immunosorbent assay for determination of the furaltadone etabolite, 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) in animal tissues

    USDA-ARS?s Scientific Manuscript database

    A rapid, sensitive, and specific competitive direct enzyme-linked immunosorbent assay (cdELISA) for determination of protein bound 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) residues is described to monitor the illegal use of furaltadone. Polyclonal and monoclonal antibodies were produced in...

  12. Development of a Multianalyte Enzyme-Linked Immunosorbent Assay for Permethrin and Aroclors and Its Implementation for Analysis of Soil/Sediment and House Dust ExtractsExtracts

    EPA Science Inventory

    Development of a multianalyte enzyme-linked immunosorbent assay (ELISA) for detection of permethrin and aroclors 1248 or 1254, and implementation of the assay for analysis of soil/sediment samples are described. The feasibility of using the multianalyte ELISA to monitor aroclors ...

  13. Immunological Tools: Engaging Students in the Use and Analysis of Flow Cytometry and Enzyme-linked Immunosorbent Assay (ELISA)

    ERIC Educational Resources Information Center

    Ott, Laura E.; Carson, Susan

    2014-01-01

    Flow cytometry and enzyme-linked immunosorbent assay (ELISA) are commonly used techniques associated with clinical and research applications within the immunology and medical fields. The use of these techniques is becoming increasingly valuable in many life science and engineering disciplines as well. Herein, we report the development and…

  14. DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv Antibody

    DTIC Science & Technology

    2016-03-01

    performance in an enzyme-linked immunosorbent assay ( ELISA ), with little regard for quantification of the full spectrum of variables affecting antibody...Program (ATP) Quality MS2 coat protein (MS2CP) Enzyme-linked immunosorbent assay ( ELISA ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...5 2.7 ELISA ................................................................................................................5

  15. COMPARISON OF BIOASSAY AND ENZYME-LINKED IMMUNOSORBENT ASSAY FOR QUANTIFICATION OF 'SPODOPTERA FRUGIPERDA' NUCLEAR POLYHEDROSIS VIRUS IN SOIL

    EPA Science Inventory

    Standard curves with known amounts of Spodoptera frugiperda nuclear polyhedrosis virus (NPV) in soil were established with a bioassay and with an enzyme-linked immunosorbent assay (ELISA). The bioassay detected as few as 4 x 10 to the 4th power polyhedral inclusion bodies (PIB)/g...

  16. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay

    USDA-ARS?s Scientific Manuscript database

    Enzyme-linked immunosorbent assays (ELISAs) usually focus on the detection of a single analyte or a single group of analytes, e.g., fluoroquinolones or sulfonamides. However, it is often necessary to simultaneously monitor the two classes of antimicrobial residues in different food matrices. In th...

  17. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR THE URINARY BIOMONITORING OF 2,4-DICHLOROPHRENOCYACETIC ACID (2,4-D)

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...

  18. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural smaples

    USDA-ARS?s Scientific Manuscript database

    A monoclonal antibody-based competitive antibody-coated enzyme-linked immunosorbent assay (ELISA) was developed and optimized for determining chlorpyrifos residue in agricultural products. The IC50 and IC10 of this ELISA were 3.3 ng/mL and 0.1 ng/mL respectively. The average recoveries recovery rate...

  19. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification.

    PubMed

    Tang, Dianping; Tang, Juan; Su, Biling; Chen, Guonan

    2010-10-27

    A new sandwich-type electrochemical immunoassay for ultrasensitive detection of staphylococcal enterotoxin B (SEB) in food was developed using horseradish peroxidase-nanosilica-doped multiwalled carbon nanotubes (HRPSiCNTs) for signal amplification. Rabbit polyclonal anti-SEB antibodies immobilized on the screen-printed carbon electrode (SPCE) and covalently bound to the HRPSiCNTs were used as capture antibodies and detection antibodies, respectively. In the presence of SEB analyte, the sandwich-type immunocomplex could be formed between the immobilized anti-SEB on the SPCE and anti-SEB-labeled HRPSiCNTs, and the carried HRP could catalyze the electrochemical reduction of H2O2 with the help of thionine. The high content of HRP in the HRPSiCNTs could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with the increase of SEB in the sample, and exhibited a dynamic range of 0.05-15 ng/mL with a low detection limit (LOD) of 10 pg/mL SEB (at 3σ). Intra- and interassay coefficients of variation were below 10%. In addition, the assay was evaluated with SEB spiked samples including watermelon juice, soymilk, apple juice, and pork food, receiving excellent correlation with results from commercially available enzyme-linked immunosorbent assay (ELISA).

  20. Evaluation of Two Enzyme-Linked Immunosorbent Assay Kits for Chikungunya Virus IgM Using Samples from Deceased Organ and Tissue Donors

    PubMed Central

    Altrich, Michelle L.; Nowicki, Marek J.

    2016-01-01

    The identification of nearly 3,500 cases of chikungunya virus (CHIKV) infection in U.S. residents returning in 2014 and 2015 from areas in which it is endemic has raised concerns within the transplant community that, should recently infected individuals become organ and/or tissue donors, CHIKV would be transmitted to transplant recipients. Thus, tests designed to detect recent CHIKV infection among U.S. organ and tissue donors may become necessary in the future. Accordingly, we evaluated 2 enzyme-linked immunosorbent assays (ELISAs) for CHIKV IgM readily available in the United States using 1,000 deidentified serum or plasma specimens collected from donors between November 2014 and March 2015. The Euroimmun indirect ELISA identified 38 reactive specimens; however, all 38 were negative for CHIKV IgG and IgM in immunofluorescence assays (IFAs) conducted at a reference laboratory and, thus, were falsely reactive in the Euroimmun CHIKV IgM assay. The InBios IgM-capture ELISA identified 26 reactive samples, and one was still reactive (index ≥ 1.00) when retested using the InBios kit with a background subtraction modification to identify false reactivity. This reactive specimen was CHIKV IgM negative but IgG positive by IFAs at two reference laboratories; plaque reduction neutralization testing (PRNT) demonstrated CHIKV-specific reactivity. The IgG and PRNT findings strongly suggest that the InBios CHIKV IgM-reactive result represents true reactivity, even though the IgM IFA result was negative. If testing organ/tissue donors for CHIKV IgM becomes necessary, the limitations of the currently available CHIKV IgM ELISAs and options for their optimization must be understood to avoid organ/tissue wastage due to falsely reactive results. PMID:27535838

  1. Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays.

    PubMed

    Berg, Brandon; Cortazar, Bingen; Tseng, Derek; Ozkan, Haydar; Feng, Steve; Wei, Qingshan; Chan, Raymond Yan-Lok; Burbano, Jordi; Farooqui, Qamar; Lewinski, Michael; Di Carlo, Dino; Garner, Omai B; Ozcan, Aydogan

    2015-08-25

    Standard microplate based enzyme-linked immunosorbent assays (ELISA) are widely utilized for various nanomedicine, molecular sensing, and disease screening applications, and this multiwell plate batched analysis dramatically reduces diagnosis costs per patient compared to nonbatched or nonstandard tests. However, their use in resource-limited and field-settings is inhibited by the necessity for relatively large and expensive readout instruments. To mitigate this problem, we created a hand-held and cost-effective cellphone-based colorimetric microplate reader, which uses a 3D-printed opto-mechanical attachment to hold and illuminate a 96-well plate using a light-emitting-diode (LED) array. This LED light is transmitted through each well, and is then collected via 96 individual optical fibers. Captured images of this fiber-bundle are transmitted to our servers through a custom-designed app for processing using a machine learning algorithm, yielding diagnostic results, which are delivered to the user within ∼1 min per 96-well plate, and are visualized using the same app. We successfully tested this mobile platform in a clinical microbiology laboratory using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests using a total of 567 and 571 patient samples for training and blind testing, respectively, and achieved an accuracy of 99.6%, 98.6%, 99.4%, and 99.4% for mumps, measles, HSV-1, and HSV-2 tests, respectively. This cost-effective and hand-held platform could assist health-care professionals to perform high-throughput disease screening or tracking of vaccination campaigns at the point-of-care, even in resource-poor and field-settings. Also, its intrinsic wireless connectivity can serve epidemiological studies, generating spatiotemporal maps of disease prevalence and immunity.

  2. Rapid and sensitive sandwich enzyme-linked immunosorbent assay for detection of staphylococcal enterotoxin B in cheese.

    PubMed Central

    Morissette, C; Goulet, J; Lamoureux, G

    1991-01-01

    A rapid and sensitive screening sandwich enzyme-linked immunosorbent assay (ELISA) was developed for the detection of staphylococcal enterotoxin B (SEB) in cheese by using a highly avid anti-SEB antibody (Ab) as the capture Ab (CAb) and as the biotinylated Ab conjugate. The glutaraldehyde fixation method for the immobilization of CAb on polystyrene dipsticks was superior to the adsorption fixation and the adsorption-glutaraldehyde fixation methods. The glutaraldehyde fixation method resulted in a higher surface-saturating CAb concentration as evaluated by the peroxidase saturation technique and by the ability of the CAb-coated dipstick to discriminate between positive and negative controls (index of discrimination). Of nine blocking agents used alone or in pairs, lysine-human serum albumin, bovine serum albumin, human serum albumin, and gelatin effectively saturated available sites on the CAb-coated dipsticks without causing interference with the antigen-Ab reactions. The addition of 1% polyethylene glycol to the diluent of the biotinylated anti-SEB Ab conjugate improved the detection of SEB. A concentration of 4% polyethylene glycol allowed a 5-min reaction time for the streptavidin-biotin-horseradish peroxidase conjugate. Cheddar cheese homogenate reduced the sensitivity of the SEB assay; however, the sensitivity was restored when 1.6% (wt/vol) of either a nonionic detergent (Mega-9) or two zwitterionic detergents (Zwittergent 3-10 and 3-12 detergent) was added to the diluent. By using the rapid sandwich ELISA, a minimum of 0.5 to 1.0 ng of SEB per ml was detected within 45 min. The whole procedure for the analysis of the cheddar cheese samples was completed within 1 h.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2039234

  3. Optimized enzyme-linked immunosorbent assay for detecting cytomegalovirus infections during clinical trials of recombinant vaccines.

    PubMed

    Pagnon, Anke; Piras, Fabienne; Gimenez-Fourage, Sophie; Dubayle, Joseline; Arnaud-Barbe, Nadège; Hessler, Catherine; Caillet, Catherine

    2017-11-01

    In clinical trials of cytomegalovirus (CMV) glycoprotein B (gB) vaccines, CMV infection is detected by first depleting serum of anti-gB antibodies and then measuring anti-CMV antibodies with a commercially available enzyme-linked immunosorbent assay (ELISA) kit, with confirmation of positive findings by immunoblot. Identification of CMV immunoantigens for the development of an ELISA that detects specifically CMV infection in clinical samples from individuals immunized with gB vaccines. Sensitivity and specificity of ELISAs using antigenic regions of CMV proteins UL83/pp65, UL99/pp28, UL44/pp52, UL80a/pp38, UL57, and UL32/pp150 were measured. An IgG ELISA using a UL32/pp150 [862-1048] capture peptide was the most specific (93.7%) and sensitive (96.4%) for detecting CMV-specific antibodies in sera. The ELISA successfully detected CMV-specific antibodies in 22 of 22 sera of subjects who had been vaccinated with a gB vaccine but who had later been infected with CMV. The ELISA was linear over a wide range of CMV concentrations (57-16,814 ELISA units/mL) and was reproducible as indicated by a 5% intra-day and 7% inter-day coefficients of variation. The signal was specifically competed by UL32/pp150 [862-1048] peptide but not by CMV-gB or herpes simplex virus 2 glycoprotein D. Lipid and hemoglobin matrix did not interfere with the assay. The UL32/pp150 [862-1048] IgG ELISA can be used for the sensitive and specific detection of CMV infection in gB-vaccinated individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of a sensitive enzyme-linked immunosorbent assay for the measurement of biologically active etanercept in patients with ankylosing spondylitis.

    PubMed

    Wang, Lei; Wang, Xiaoxia; Li, Ying; Cheng, Zeneng

    2016-01-01

    Etanercept is the first tumor necrosis factor inhibitor to be approved for rheumatic disease treatment. Its in vivo concentration is usually detected with commercial enzyme-linked immunosorbent assay (ELISA) kits; specifically, previous researchers have mostly used double-antibody sandwich ELISA technology. Double-antibody sandwich ELISA is employed to detect the total etanercept rather than biologically active etanercept, which is more relevant in terms of therapeutic drug monitoring. In this work, a sensitive ELISA that employed its antigen TNF-α to capture biologically active etanercept for concentration detection was established and validated for etanercept pharmacokinetic (PK) study in patients with ankylosing spondylitis (AS). The proposed assay was demonstrated to be precise and accurate over the linear range of 12.5-400pg/mL. The intra- and inter-assay relative standard deviation ranged from 3.9 to 12.2% and 6.2 to 11.1%, respectively, and recovery varied between 90.1 and 99.7%, confirming the assay's reliability. The effectiveness and accuracy of the assay was also validated according to quality samples containing etanercept with different TNF-α concentrations, and with plasma samples from patients with AS. To complete the study, both the proposed assay and double-antibody sandwich ELISA were applied to the PK study of etanercept in patients and compared. The multiple-dose results of both analytical methods were consistent, while the drug exposure of the first dose as-detected by the proposed assay was lower than that detected by double-antibody sandwich ELISA. In conclusion, the proposed ELISA was shown to provide more accurate concentration data for therapeutic drug monitoring in comparison to commercial ELISA kits. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibody to turkey coronavirus.

    PubMed

    Abdelwahab, Mohamed; Loa, Chien Chang; Wu, Ching Ching; Lin, Tsang Long

    2015-06-01

    Nucleocapsid (N) protein gene of turkey coronavirus (TCoV) was expressed in a prokaryotic system and used to develop an enzyme-linked immunosorbent assay (ELISA) for detection of antibody to TCoV. Anti-TCoV hyperimmune turkey serum and normal turkey serum were used as positive or negative controls for optimization of the ELISA. Goat anti-turkey IgG (H+L) conjugated with horseradish peroxidase was used as detector antibody. Three hundred and twenty two turkey sera from the field were used to evaluate the performance of ELISA and determine the cut-off point of ELISA. The established ELISA was also examined with serum samples obtained from turkeys experimentally infected with TCoV. Those serum samples were collected at various time intervals from 1 to 63 days post-infection. The optimum conditions for differentiation between anti-TCoV hyperimmune serum and normal turkey serum were recombinant TCoV N protein concentration at 20 μg/ml, serum dilution at 1:800, and conjugate dilution at 1:10,000. Of the 322 sera from the field, 101 were positive for TCoV by immunofluorescent antibody assay (IFA). The sensitivity and specificity of the ELISA relative to IFA test were 86.0% and 96.8%, respectively, using the optimum cut-off point of 0.2 as determined by logistic regression method. Reactivity of anti-rotavirus, anti-reovirus, anti-adenovirus, or anti-enterovirus antibodies with the recombinant N protein coated on the ELISA plates was not detected. These results indicated that the established antibody-capture ELISA in conjunction with recombinant TCoV N protein as the coating protein can be utilized for detection of antibodies to TCoV in turkey flocks. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Comparison of Three Different Sensitive Assays for Hepatitis B Virus DNA in Monitoring of Responses to Antiviral Therapy

    PubMed Central

    Chan, Henry L. Y.; Leung, Nancy W. Y.; Lau, Tracy C. M.; Wong, May L.; Sung, Joseph J. Y.

    2000-01-01

    The aim of our study was to compare the performances of two new hepatitis B virus (HBV) DNA assays, a cross-linking assay (NAXCOR) and a hybrid-capture amplification assay (Digene), versus the widely used branched-DNA (bDNA) assay (Chiron) in the monitoring of HBV DNA levels during antiviral treatment. Serial serum samples from 12 chronically HBV infected patients undergoing a phase II trial of an antiviral drug, 2′,3′-dideoxy-5-fluoro-3′-thiacytidine (FTC), were studied. A total of 96 serum samples were tested for HBV DNA using the cross-linking, hybrid-capture amplification, and bDNA assays. In the comparison of the cross-linking and bDNA assays, concordant results were found in 77 (80.3%) samples, no significant difference was found between the median log10 HBV DNA levels (6.66 versus 7.17 meq/ml), and the results of the two assays were closely correlated (r = 0.95). In the comparison of the hybrid-capture amplification and bDNA assays, concordant results were found in 79 (82.3%) samples, no significant difference was found between the median log10 HBV DNA levels (6.98 versus 6.99 meq/ml), and the results of the two assays were closely correlated (r = 0.99). Six (6.3%) samples by the cross-linking assay and 10 (10.4%) samples by the bDNA assay required retesting because of unacceptably high within-run coefficients of variance. No sample required retesting in the hybrid-capture amplification assay according to the internal validation. In conclusion, the cross-linking and hybrid-capture amplification assays were as sensitive as the bDNA assay for HBV DNA detection and can be recommended for monitoring of HBV DNA levels during antiviral treatment. PMID:10970358

  7. Controlled viable release of selectively captured label-free cells in microchannels.

    PubMed

    Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan

    2011-12-07

    Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.

  8. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    PubMed

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Development and Validation of Monoclonal Antibody-Based Antigen Capture ELISA for Detection of Group A Porcine Rotavirus.

    PubMed

    Memon, Atta Muhammad; Bhuyan, Anjuman Ara; Chen, Fangzhou; Guo, Xiaozhen; Menghwar, Harish; Zhu, Yinxing; Ku, Xugang; Chen, Shuhua; Li, Zhonghua; He, Qigai

    2017-05-01

    Porcine rotavirus-A (PoRVA) is one of the common causes of mild to severe dehydrating diarrhea, leading to losses in weaning and postweaning piglets. A rapid, highly specific, and sensitive antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed for detection of PoRVA, by using VP6 (a highly conserved and antigenic protein of group-A rotavirus)-directed rabbit polyclonal antibodies (capture antibody) and murine monoclonal antibodies (detector antibody). The detection limit of AC-ELISA was found to be equal to that of conventional reverse transcription-polymerase chain reaction (RT-PCR; about 10 2.5 TCID 50 /mL). For validation of the in-house AC-ELISA, 295 porcine fecal/diarrhea samples, collected from different provinces of China, were evaluated and compared with conventional RT-PCR and TaqMan RT-quantitative PCR (qPCR). The sensitivity and specificity of this in-house AC-ELISA relative to RT-qPCR were found to be 91.67% and 100%, respectively, with the strong agreement (kappa = 0.972) between these two techniques. Total detection rate with AC-ELISA, conventional RT-PCR, and RT-qPCR were found to be 11.2%, 11.5%, and 12.2%, respectively, without any statistical significant difference. Moreover, AC-ELISA failed to detect any cross-reactivity with porcine epidemic diarrhea virus, transmissible gastroenteritis virus, pseudorabies virus, and porcine circovirus-2. These results suggested that our developed method was rapid, highly specific, and sensitive, which may help in large-scale surveillance, timely detection, and preventive control of rotavirus infection in porcine farms.

  10. Standardization of a cytometric p24-capture bead-assay for the detection of main HIV-1 subtypes.

    PubMed

    Merbah, Mélanie; Onkar, Sayali; Grivel, Jean-Charles; Vanpouille, Christophe; Biancotto, Angélique; Bonar, Lydia; Sanders-Buell, Eric; Kijak, Gustavo; Michael, Nelson; Robb, Merlin; Kim, Jerome H; Tovanabutra, Sodsai; Chenine, Agnès-Laurence

    2016-04-01

    The prevailing method to assess HIV-1 replication and infectivity is to measure the production of p24 Gag protein by enzyme-linked immunosorbent assay (ELISA). Since fluorescent bead-based technologies offer a broader dynamic range and higher sensitivity, this study describes a p24 capture Luminex assay capable of detecting HIV-1 subtypes A-D, circulating recombinant forms (CRF) CRF01_AE and CRF02_AG, which together are responsible for over 90% of HIV-1 infections worldwide. The success of the assay lies in the identification and selection of a cross-reactive capture antibody (clone 183-H12-5C). Fifty-six isolates that belonged to six HIV-1 subtypes and CRFs were successfully detected with p-values below 0.021; limits of detection ranging from 3.7 to 3 × 104 pg/ml. The intra- and inter-assay variation gave coefficient of variations below 6 and 14%, respectively. The 183-bead Luminex assay also displayed higher sensitivity of 91% and 98% compared to commercial p24 ELISA and a previously described Luminex assay. The p24 concentrations measured by the 183-bead Luminex assay showed a significant correlation (R=0.92, p<0.0001) with the data obtained from quantitative real time PCR. This newly developed p24 assay leverages the advantages of the Luminex platform, which include smaller sample volume and simultaneous detection of up to 500 analytes in a single sample, and delivers a valuable tool for the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.

  12. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-06-17

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.

  13. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture

    USGS Publications Warehouse

    Zhang, S.; Zhang, Z.; Lu, Y.; Rostam-Abadi, M.; Jones, A.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90days at 50??C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4M), nitrate (0.05M) and chloride (0.3M) typically found in flue gas scrubbing liquids than their free counterparts. ?? 2011 Elsevier Ltd.

  14. DEVELOPMENT OF DIOXIN TOXICITY EVALUATION METHOD IN HUMAN MILK BY ENZYME-LINKED IMMUNOSORBENT ASSAY-ASSAY VALIDATION FOR HUMAN MILK. (R825433)

    EPA Science Inventory

    In this study, the development of a toxicity evaluation method for dioxins in human milk by enzyme-linked immunosorbent assay (ELISA) was reported. A total of 17 human milk samples were tested by ELISA and by gas chromatography/mass spectrometry (GC/MS) to assess whether the E...

  15. Effects of Early Altitude Exposure Following Traumatic Injury and Hemorrhagic Shock

    DTIC Science & Technology

    2017-06-27

    chemokines by multiplex enzyme-linked immunosorbent assay ( ELISA ) (Quansys, Logan, UT), including the following: interleukin 1 alpha and beta (IL...Tissue Cytokine Profiles Fourteen cytokines and chemokines were analyzed from serum and intestinal tissues via multiplex ELISA . There were no...2017-3567, 25 Jul 2017. LIST OF ABBREVIATIONS AND ACRONYMS AE aeromedical evacuation BCA bicinchoninic acid ELISA enzyme-linked immunosorbent

  16. Comparison of enzyme-linked immunosorbent assay, surface plasmon resonance and biolayer interferometry for screening of deoxynivalenol in wheat and wheat dust

    USDA-ARS?s Scientific Manuscript database

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techni...

  17. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    PubMed

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Multicenter comparison of levels of antibody to the Neisseria meningitidis group A capsular polysaccharide measured by using an enzyme-linked immunosorbent assay.

    PubMed Central

    Carlone, G M; Frasch, C E; Siber, G R; Quataert, S; Gheesling, L L; Turner, S H; Plikaytis, B D; Helsel, L O; DeWitt, W E; Bibb, W F

    1992-01-01

    There is no standard immunoassay for evaluating immune responses to meningococcal vaccines. We developed an enzyme-linked immunosorbent assay to measure total levels of antibody to Neisseria meningitidis group A capsular polysaccharide. Five laboratories measured the antibody levels in six paired pre- and postvaccination serum samples by using the enzyme-linked immunosorbent assay. Methylated human serum albumin was used to bind native group A polysaccharide to microtiter plate surfaces. The between-laboratory coefficients of variation for pre- and postvaccination sera had ranges of 31 to 91 and 17 to 31, respectively. The mean laboratory coefficients of variation for pre- and postvaccination sera, respectively, were 17 and 11 (Molecular Biology Laboratory, Centers for Disease Control), 12 and 15 (Immunodiagnostic Methods Laboratory, Centers for Disease Control), 22 and 19 (Dana-Farber Cancer Institute), 38 and 38 (Bacterial Polysaccharide Laboratory, U.S. Food and Drug Administration), and 11 and 10 (Praxis Biologics, Inc.). Standardization of this enzyme-linked immunosorbent assay should allow interlaboratory comparison of meningococcal vaccine immunogenicity, thus providing a laboratory-based assessment tool for evaluating meningococcal vaccines. PMID:1734048

  19. Immobilization of DNA onto poly(dimethylsiloxane) surfaces and application to a microelectrochemical enzyme-amplified DNA hybridization assay.

    PubMed

    Liu, Daojun; Perdue, Robbyn K; Sun, Li; Crooks, Richard M

    2004-07-06

    This paper describes immobilization of DNA onto the interior walls of poly(dimethylsiloxane) (PDMS) microsystems and its application to an enzyme-amplified electrochemical DNA assay. DNA immobilization was carried out by silanization of the PDMS surface with 3-mercaptopropyltrimethoxysilane to yield a thiol-terminated surface. 5'-acrylamide-modified DNA reacts with the pendant thiol groups to yield DNA-modified PDMS. Surface-immobilized DNA oligos serve as capture probes for target DNA. Biotin-labeled target DNA hybridizes to the PDMS-immobilized capture DNA, and subsequent introduction of alkaline phosphatase (AP) conjugated to streptavidin results in attachment of the enzyme to hybridized DNA. Electrochemical detection of DNA hybridization benefits from enzyme amplification. Specifically, AP converts electroinactive p-aminophenyl phosphate to electroactive p-aminophenol, which is detected using an indium tin oxide interdigitated array (IDA) electrode. The IDA electrode eliminates the need for a reference electrode and provides a steady-state current that is related to the concentration of hybridized DNA. At present, the limit of detection of the DNA target is 1 nM in a volume of 20 nL, which corresponds to 20 attomoles of DNA.

  20. Enzymic cross-linkage of monomeric extensin precursors in vitro. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everdeen, D.S.; Kiefer, S.; Willard, J.J.

    Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, the authors purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers inmore » the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. They therefore identified the cross-linking activity as extensin peroxidase.« less

  1. Comparison of five techniques for the detection of Renibacterium salmoninarum in adult coho salmon.

    USGS Publications Warehouse

    Pascho, R.J.; Elliott, D.G.; Mallett, R.W.; Mulcahy, D.

    1987-01-01

    Samples of kidney, spleen, coelomic fluid, and blood from 56 sexually mature coho salmon Oncorhynchus kisutch were examined for infection by Renibacterium salmoninarum by five methods. The overall prevalence (all sample types combined) of R. salmoninarum in the fish was 100% by the enzyme-linked immunosorbent assay, 86% by the combined results of the direct fluorescent antibody and the direct filtration-fluorescent antibody techniques, 39% by culture, 11% by counterimmunoelectrophoresis, and 5% by agarose gel immunodiffusion. There was a significant positive correlation (P < 0.001) between the enzyme-linked immunosorbent assay absorbance levels and the counts by fluorescent antibody techniques for kidney, spleen, and coelomic fluid, and significant positive correlations (P < 0.001) in enzyme-linked immunosorbent assay absorbance levels for all four of the sample types.

  2. Chemiluminescence assay for the detection of biological warfare agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langry, K; Horn, J

    A chemiluminescent homogeneous immunoassay and a hand-size multiassay reader are described that could be used for detecting biological materials. The special feature of the assay is that it employs two different antibodies that each bind to a unique epitope on the same antigen. Each group of epitope-specific antibodies has linked to it an enzyme of a proximal-enzyme pair. One enzyme of the pair utilizes a substrate in high concentration to produce a second substrate required by the second enzyme. This new substrate enables the second enzyme to function. The reaction of the second enzyme is configured to produce light. Thismore » chemiluminescence is detected with a charge-coupled device (CCD) camera. The proximal pair enzymes must be in close proximity to one another to allow the second enzyme to react with the product of the first enzyme. This only occurs when the enzyme-linked antibodies are attached to the antigen, whether antigen is a single protein with multiple epitopes or the surface of a cell with a variety of different antigens. As a result of their juxtaposition, the enzymes produce light only in the presence of the biological material. A brief description is given as to how this assay could be utilized in a personal bio-agent detector system.« less

  3. Thermostable Carbonic Anhydrases in Biotechnological Applications

    PubMed Central

    Di Fiore, Anna; Alterio, Vincenzo; Monti, Simona M.; De Simone, Giuseppina; D’Ambrosio, Katia

    2015-01-01

    Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application. PMID:26184158

  4. Nano and Microparticle-Enhanced Immunosensor Approaches for the Detection of Cancer Biomarker Proteins

    NASA Astrophysics Data System (ADS)

    Mani, Vigneshwaran

    Accurate, sensitive, point-of-care multiplexed protein measurements are critical for early disease detection and monitoring, impacting biomarker and drug discovery, and personalized medicine. Significant application involves monitoring panels of proteins in the blood that are biomarkers for diagnosing cancer. However, measurements of biomarker panels in blood or other bodily fluids have been slow to integrate into current practice of cancer diagnostics partly due to the lack of technically simple, low-cost, sensitive, point-of-care multiplexed measurement devices, as well as the lack of rigorously validated protein panels. The present thesis in part addresses these limitations by the development of electrochemical and surface plasmon resonance (SPR) immunosensors utilizing 1mum superparamagnetic labels for accurate detection of prostate cancer biomarker proteins in patient serum samples. Electrochemical discrete immunosensors featuring nanostructured surface with densely packed 5 nm glutathione-coated gold nanoparticles coupled with multi-enzyme magnetic particle (MP) labels enabled measurement of prostate specific antigen (PSA) with a detection limit (DL) of 0.5 pg mL-1 in undiluted serum. Such low DLs are attributed to high surface area, conductivity of nanostructured surface, and multi-enzyme signal amplification. DLs are further improved by utilizing MP bioconjugated with more than 100,000 antibody labels to offline capture proteins from the serum sample matrix, minimizing nonspecific binding of interfering proteins on sensor surface before detection. This approach provided an unprecedented 10 fg DL mL-1 for PSA in undiluted serum using a flow SPR biosensor. Finally electrochemical microfluidic immunoarrays featuring nanostructured surface and offline protein capture by multi-label MPs enabled multiplexed detection of prostate cancer biomarkers PSA and interleukin-6 (IL-6). These approaches provided up to 1000-fold lower DLs compared to commercial bead based assays. The high sensitivity of these approaches will allow monitoring of biomarker levels in diseases states where proteins are in sub pg mL -1 concentrations that are normally challenging to detect using traditional methods such as enzyme linked immunosorbent assays (ELISA). Further emphases will be on SPR-based fundamental studies on binding affinity enhancement of MP conjugates to protein surfaces. In addition, this thesis describes the assembly of glucose/O2 enzymatic biofuel cells for power generation utilizing layer-by-layer films of osmium redox polymers and enzymes. Towards the end, the present thesis describes a simple, low-cost and accurate paper-based electrochemical device fabrication methods and its applications towards monitoring genotoxic activities in the environmental samples.

  5. The stability of prostatic acid phosphatase, as measured by a capture immunoenzyme assay.

    PubMed

    Lin, T M; Chin-See, M W; Halbert, S P

    1984-03-27

    A capture immunoenzyme assay (CIEA) for prostatic acid phosphatase (PAP) was developed and used to study the stability of this isoenzyme. Immunospecifically purified goat antibodies to PAP were covalently bound to special discs and used to capture the enzyme in serum samples in a weakly acidic medium during the first incubation (2 h) at 37 degrees C. The capture enzyme was then measured by its catalytic activity with p-nitrophenyl phosphate as substrate during the second incubation (1 h) at 37 degrees C. As much as 98% of the PAP in test specimens was captured and measured by this CIEA. The test results were expressed as enzymatic activity (U/l), extrapolated from a standard curve which was linear between 0.026 and 70 U/l. In test sera stored at 4 degrees C, the PAP was variably stable for 7 to 70 days, but the enzyme was quite stable in serum when stored at -20 degrees C for at least 156 days. At room temperature, when the sera were appropriately acidified, there was no loss of enzymatic activity for periods of 15 days, and in some cases, a large proportion of activity was still intact after 70 days. At 4 degrees C, as well as -20 degrees C, acidified serum and the partially purified PAP standard showed complete stability for at least 7 months. The CIEA reactivity of positive test specimens was inhibited by L(+)-tartaric acid, but not by cupric sulfate. The acid phosphatases of blood cell extracts were non-reactive in the CIEA procedure. The CIEA results of 224 serum samples from patients with and without prostate cancer correlated very well with those obtained by two direct enzymatic and two commercial RIA procedures, with correlation coefficients between 0.960 and 0.993, and diagnostic agreement between 86% and 100%.

  6. Evaluation of a commercial enzyme-linked immunosorbent assay for detection of antibodies against the H5 subtype of Influenza A virus in waterfowl

    USDA-ARS?s Scientific Manuscript database

    Serologic tools for rapid testing of subtype-specific influenza A (IA) virus antibody in wild birds and poultry are limited. In the current study, the ID Screen Influenza H5 Antibody Competition enzyme-linked immunosorbent assay (ELISA) was tested for the detection of antibodies to the H5 subtype o...

  7. Replacement of Antibodies in Pseudo-ELISAs: Molecularly Imprinted Nanoparticles for Vancomycin Detection.

    PubMed

    Canfarotta, Francesco; Smolinska-Kempisty, Katarzyna; Piletsky, Sergey

    2017-01-01

    The enzyme-linked immunosorbent assay (ELISA) is a widely employed analytical test used to quantify a given molecule. It relies on the use of specific antibodies, linked to an enzyme, to target the desired molecule. The reaction between the enzyme and its substrate gives rise to the analytical signal that can be quantified. Thanks to their robustness and low cost, molecularly imprinted polymer nanoparticles (nanoMIPs) are a viable alternative to antibodies. Herein, we describe the synthesis of nanoMIPs imprinted for vancomycin and their subsequent application in an ELISA-like format for direct replacement of antibodies.

  8. Population dynamics of Microtus pennsylvanicus in corridor-linked patches

    USGS Publications Warehouse

    Coffman, C.J.; Nichols, J.D.; Pollock, K.H.

    2001-01-01

    Corridors have become a key issue in the discussion of conservation planning: however, few empirical data exist on the use of corridors and their effects on population dynamics. The objective of this replicated, population level, capture-re-capture experiment on meadow voles was to estimate and compare population characteristics of voles between (1) corridor-linked fragments, (2) isolated or non-linked fragments, and (3) unfragmented areas. We conducted two field experiments involving 22600 captures of 5700 individuals. In the first, the maintained corridor study, corridors were maintained at the time of fragmentation, and in the second, the constructed corridor study, we constructed corridors between patches that had been fragmented for some period of time. We applied multistate capture-recapture models with the robust design to estimate adult movement and survival rates, population size, temporal variation in population size, recruitment, and juvenile survival rates. Movement rates increased to a greater extent on constructed corridor-linked grids than on the unfragmented or non-linked fragmented grids between the pre- and post-treatment periods. We found significant differences in local survival on the treated (corridor-linked) grids compared to survival on the fragmented and unfragmented grids between the pre- and post-treatment periods. We found no clear pattern of treatment effects on population size or recruitment in either study. However, in both studies, we found that unfragmented grids were more stable than the fragmented grids based on lower temporal variability in population size. To our knowledge, this is the first experimental study demonstrating that corridors constructed between existing fragmented populations can indeed cause increases in movement and associated changes in demography, supporting the use of constructed corridors for this purpose in conservation biology.

  9. Isolation and characterization of a novel endo-beta-galactofuranosidase from Bacillus sp.

    PubMed

    Ramli, N; Fujinaga, M; Tabuchi, M; Takegawa, K; Iwahara, S

    1995-10-01

    A soil bacterium capable of growing on a polysaccharide-containing beta(1-->6)galactofuranoside residues derived from the acidic polysaccharide of Fusarium sp. as a carbon source has been isolated. From various bacteriological characteristics, the organism was identified as a Bacillus sp. The bacterium produced beta-galactofuranosidase inductively in the culture media. The most effective inducer for the beta-galactofuranosidase production was a polysaccharide containing beta(1-->5) or beta(1-->6)-linked galactofuranoside residues, but gum arabic, gum guar, gum ghati, arabinogalactam, araban, and pectic acid did not induce the enzyme. The enzyme had three different molecular weight forms. The low molecular-weight form was purified by a combination of Toyopearl HW-55 and DEAE-Toyopearl 650S column chromatographies, and preparative polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 67,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 6 and 37 degrees C, and was stable between pH 4 to 8 at 5 degrees C. The action of the enzyme was inhibited by the addition of Cd2+, Co2+, Hg2+, Zn2+, iodoacetic acid, and EDTA. The purified enzyme cleaved beta(1-->5) and beta(1-->6)-linked galactofuranosyl chains. Based upon the mode of liberation of galactofuranosyl residues from pyridylamino-beta(1-->6)-linked galactofuranoside oligomers, the enzyme can be classified as an endo-beta-galactofuranosidase that randomly hydrolyzes the linkage.

  10. Enzyme immobilisation in biocatalysis: why, what and how.

    PubMed

    Sheldon, Roger A; van Pelt, Sander

    2013-08-07

    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

  11. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    PubMed

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  12. Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations.

    PubMed

    Reeve, Stephanie M; Scocchera, Eric; Ferreira, Jacob J; G-Dayanandan, Narendran; Keshipeddy, Santosh; Wright, Dennis L; Anderson, Amy C

    2016-07-14

    Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.

  13. Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes

    PubMed Central

    Vršanská, Martina; Voběrková, Stanislava; Jiménez Jiménez, Ana María; Strmiska, Vladislav; Adam, Vojtěch

    2017-01-01

    The key to obtaining an optimum performance of an enzyme is often a question of devising a suitable enzyme and optimisation of conditions for its immobilization. In this study, laccases from the native isolates of white rot fungi Fomes fomentarius and/or Trametes versicolor, obtained from Czech forests, were used. From these, cross-linked enzyme aggregates (CLEA) were prepared and characterised when the experimental conditions were optimized. Based on the optimization steps, saturated ammonium sulphate solution (75 wt.%) was used as the precipitating agent, and different concentrations of glutaraldehyde as a cross-linking agent were investigated. CLEA aggregates formed under the optimal conditions showed higher catalytic efficiency and stabilities (thermal, pH, and storage, against denaturation) as well as high reusability compared to free laccase for both fungal strains. The best concentration of glutaraldehyde seemed to be 50 mM and higher efficiency of cross-linking was observed at a low temperature 4 °C. An insignificant increase in optimum pH for CLEA laccases with respect to free laccases for both fungi was observed. The results show that the optimum temperature for both free laccase and CLEA laccase was 35 °C for T. versicolor and 30 °C for F. fomentarius. The CLEAs retained 80% of their initial activity for Trametes and 74% for Fomes after 70 days of cultivation. Prepared cross-linked enzyme aggregates were also investigated for their decolourisation activity on malachite green, bromothymol blue, and methyl red dyes. Immobilised CLEA laccase from Trametes versicolor showed 95% decolourisation potential and CLEA from Fomes fomentarius demonstrated 90% decolourisation efficiency within 10 h for all dyes used. These results suggest that these CLEAs have promising potential in dye decolourisation. PMID:29295505

  14. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.

    PubMed

    Wu, Fei; Minteer, Shelley

    2015-02-02

    It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pas, H.H.; Robillard, G.T.

    1988-07-26

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less

  16. Development of a monoclonal antibody-based, congener-specific and solvent-tolerable direct enzyme-linked immunosorbgent assay for the detection of 2,2',4,4'-tetrabromodiphenyl ether in environmental samples

    USDA-ARS?s Scientific Manuscript database

    A sensitive direct enzyme-linked immunosorbent assay (ELISA) for the detection of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in environmental samples was developed. A hapten mimicking the whole structure of BDE-47 was synthesized by introducing a butyric acid spacer to 5-hydroxy-BDE-47 and coupled ...

  17. Quantitation of antibodies to Haemophilus influenzae type b in humans by enzyme-linked immunosorbent assay.

    PubMed Central

    Dahlberg, T

    1981-01-01

    The enzyme-linked immunosorbent assay was adapted to detect serum immunoglobulin G, immunoglobulin M, immunoglobulin A, and secretory immunoglobulin A antibodies to Haemophilus influenzae type b capsular polysaccharide in humans. I studied serum samples from 92 healthy children of various ages, 50 healthy adults, 24 patients with various H. influenzae type b infections, and 16 patients with clinical signs of epiglottis and cellulitis suspected to be caused by H. influenzae type b. The mean antibody titers of the sera from healthy children increased with age and reached adult levels in children more than 6 years old. A significant antibody response to capsular polysaccharide was observed in serum samples from the majority of patients with infections due to H. influenzae type b and in 4 of 16 patients with clinical signs of epiglottis and cellulitis. In addition to the enzyme-linked immunosorbent assay, the antibody responses of patients were tested by a bactericidal assay. When the two methods were compared, there was no evident correlation (r, about 0.22). The enzyme-linked immunosorbent assay was further adapted to test secretory immunoglobulin A antibodies specific to capsular polysaccharide in nasopharynx secretions and in milk samples from lactating women. Antibodies were detected in 12 of 24 secretions and 9 of 11 milk samples. PMID:7019237

  18. The quick acquisition technique for laser communication between LEO and GEO

    NASA Astrophysics Data System (ADS)

    Zhang, Li-zhong; Zhang, Rui-qin; Li, Yong-hao; Meng, Li-xin; Li, Xiao-ming

    2013-08-01

    The sight-axis alignment can be accomplished by the quick acquisition operation between two laser communication terminals, which is the premise of establishing a free-space optical communication link. Especially for the laser communication links of LEO (Low Earth Orbit)-Ground and LEO-GEO (Geostationary Earth Orbit), since the earth would break the transmission of laser and break the communication as well, so the effective time for each communication is very shot (several minutes~ dozens of minutes), as a result the communication terminals have to capture each other to rebuild the laser communication link. In the paper, on the basis of the analysis of the traditional methods, it presents a new idea that using the long beacon light instead of the circular beacon light; thereby the original of two-dimensional raster spiral scanning is replaced by one-dimensional scanning. This method will reduce the setup time and decrease the failure probability of acquisition for the LEO-GEO laser communication link. Firstly, the analysis of the external constraint conditions in the acquisition phase has been presented in this paper. Furthermore, the acquisition algorithm models have been established. The optimization analysis for the parameters of the acquisition unit has been carried out, and the ground validation experiments of the acquisition strategy have also been performed. The experiments and analysis show that compared with traditional capturing methods, the method presented in this article can make the capturing time be shortened by about 40%, and the failure probability of capturing be reduced by about 30%. So, the method is significant for the LEO-GEO laser communication link.

  19. Enzyme catalysis captured using multiple structures from one crystal at varying temperatures.

    PubMed

    Horrell, Sam; Kekilli, Demet; Sen, Kakali; Owen, Robin L; Dworkowski, Florian S N; Antonyuk, Svetlana V; Keal, Thomas W; Yong, Chin W; Eady, Robert R; Hasnain, S Samar; Strange, Richard W; Hough, Michael A

    2018-05-01

    High-resolution crystal structures of enzymes in relevant redox states have transformed our understanding of enzyme catalysis. Recent developments have demonstrated that X-rays can be used, via the generation of solvated electrons, to drive reactions in crystals at cryogenic temperatures (100 K) to generate 'structural movies' of enzyme reactions. However, a serious limitation at these temperatures is that protein conformational motion can be significantly supressed. Here, the recently developed MSOX (multiple serial structures from one crystal) approach has been applied to nitrite-bound copper nitrite reductase at room temperature and at 190 K, close to the glass transition. During both series of multiple structures, nitrite was initially observed in a 'top-hat' geometry, which was rapidly transformed to a 'side-on' configuration before conversion to side-on NO, followed by dissociation of NO and substitution by water to reform the resting state. Density functional theory calculations indicate that the top-hat orientation corresponds to the oxidized type 2 copper site, while the side-on orientation is consistent with the reduced state. It is demonstrated that substrate-to-product conversion within the crystal occurs at a lower radiation dose at 190 K, allowing more of the enzyme catalytic cycle to be captured at high resolution than in the previous 100 K experiment. At room temperature the reaction was very rapid, but it remained possible to generate and characterize several structural states. These experiments open up the possibility of obtaining MSOX structural movies at multiple temperatures (MSOX-VT), providing an unparallelled level of structural information during catalysis for redox enzymes.

  20. Exertional myopathy in a grizzly bear (Ursus arctos) captured by leghold snare.

    PubMed

    Cattet, Marc; Stenhouse, Gordon; Bollinger, Trent

    2008-10-01

    We diagnosed exertional myopathy (EM) in a grizzly bear (Ursus arctos) that died approximately 10 days after capture by leghold snare in west-central Alberta, Canada, in June 2003. The diagnosis was based on history, post-capture movement data, gross necropsy, histopathology, and serum enzyme levels. We were unable to determine whether EM was the primary cause of death because autolysis precluded accurate evaluation of all tissues. Nevertheless, comparison of serum aspartate aminotransferase and creatine kinase concentrations and survival between the affected bear and other grizzly bears captured by leghold snare in the same research project suggests EM also occurred in other bears, but that it is not generally a cause of mortality. We propose, however, occurrence of nonfatal EM in grizzly bears after capture by leghold snare has potential implications for use of this capture method, including negative effects on wildlife welfare and research data.

  1. Production of Monoclonal Antibody Against Excretory-Secretory Antigen of Fasciola hepatica and Evaluation of Its Efficacy in the Diagnosis of Fascioliasis.

    PubMed

    Abdolahi Khabisi, Samaneh; Sarkari, Bahador; Moshfe, Abdolali; Jalali, Sedigheh

    2017-02-01

    Parasitological methods are not helpful for the diagnosis of fascioliasis in acute and invasive periods of the disease. Detection of coproantigens seems to be a suitable alternative approach in the diagnosis of fascioliasis. The present study aimed to develop a reliable antigen detection system, using monoclonal antibodies raised against excretory-secretory (ES) antigen of Fasciola hepatica, for the diagnosis of fascioliasis. Fasciola adult worms were collected from the bile ducts of infected animals. Species of the fluke was determined by polymerase chain reaction-restriction fragment length polymorphism (RFLP-PCR). ES antigen of F. hepatica was prepared. For production of monoclonal antibodies, mice were immunized with ES antigens of F. hepatica. Spleen cells from the immunized mice were fused with NS-1 myeloma cells, using polyethylene glycol. Hybridoma cells secreting specific antibody were expanded and cloned by limiting dilution. Moreover, polyclonal antibody was produced against F. hepatica ES antigen in rabbits. A capture enzyme-linked immunosorbent assay (ELISA) system, using produced monoclonal antibody, was designed and stool samples of infected animals along with control samples were tested by the system. The capture ELISA detected the coproantigen in 27 of 30 (90%) parasitologically confirmed fascioliasis cases, while 4 of 39 (10.25%) samples infected with other parasitic infections showed a positive reaction in this system. No positive reactivity was found with healthy control samples. Accordingly, sensitivity of 90% and specificity of 94.2% were obtained for the capture ELISA system. The results were compared with those obtained with commercial BIO-X ELISA, and a very good (kappa = 0.9) agreement was found between the commercial kit and the developed capture ELISA. Findings of this study showed that the produced monoclonal antibody has appropriate performance for the detection of Fasciola coproantigen in stool samples and can be appropriately used for the diagnosis of fascioliasis.

  2. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides with the intercalators at the junction point.

    PubMed

    Ueno, Y; Mikawa, M; Hoshika, S; Takeba, M; Kitade, Y; Matsuda, A

    2001-01-01

    3'-3'-Linked oligodeoxynucleotides (ODNs) with the anthraquinonyl group at the junction point were synthesized on a DNA synthesizer using a controlled pore glass (CPG), which has pentaerythritol carrying the intercalator at one of the four hydroxymethyl groups. Stability of the triplexes with the target duplexes was studied by thermal denaturation. The 3'-3'-linked ODNs with the anthraquinonyl group enhanced the thermal stability of the triplexes when compared with those without the intercalator and the unmodified nonamer. The inhibitory activity of the 3'-3'-linked ODNs against the cleavage of the target DNA by the restriction enzyme Hind III was tested. It was found that the 3'-3'-linked ODN with the anthraquinonyl group at the junction point inhibited the cleavage by the enzyme more effectively than the nonamer and the 3'-3'-linked ODN without the intercalator.

  3. The Missing Link: The Use of Link Words and Phrases as a Link to Manuscript Quality

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.

    2016-01-01

    In this article, I provide a typology of transition words/phrases. This typology comprises 12 dimensions of link words/phrases that capture 277 link words/phrases. Using QDA Miner, WordStat, and SPSS--a computer-assisted mixed methods data analysis software, content analysis software, and statistical software, respectively--I analyzed 74…

  4. BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. 1. POTENTIOMETRIC ENZYME ELECTRODE. (R823663)

    EPA Science Inventory

    A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
    nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
    modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
    OPH ...

  5. Mass-tag enhanced immuno-laser desorption/ionization mass spectrometry for sensitive detection of intact protein antigens.

    PubMed

    Lorey, Martina; Adler, Belinda; Yan, Hong; Soliymani, Rabah; Ekström, Simon; Yli-Kauhaluoma, Jari; Laurell, Thomas; Baumann, Marc

    2015-05-19

    A new read-out method for antibody arrays using laser desorption/ionization-mass spectrometry (LDI-MS) is presented. Small, photocleavable reporter molecules with a defined mass called "mass-tags" are used for detection of immunocaptured proteins from human plasma. Using prostate specific antigen (PSA), a biomarker for prostate cancer, as a model antigen, a high sensitivity generic detection methodology based immunocapture with a primary antibody and with a biotin labeled secondary antibody coupled to mass-tagged avidin is demonstrated. As each secondary antibody can bind several avidin molecules, each having a large number of mass-tags, signal amplification can be achieved. The developed PSA sandwich mass-tag analysis method provided a limit of detection below 200 pg/mL (6 pM) for a 10 μL plasma sample, well below the clinically relevant cutoff value of 3-4 ng/mL. This brings the limit of detection (LOD) for detection of intact antigens with matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) down to levels comparable to capture by anti-peptide antibodies selected reaction monitoring (SISCAPA SRM) and enzyme linked immunosorbent assay (ELISA), as 6 pM corresponds to a maximal amount of 60 amol PSA captured on-spot. We propose the potential use of LDI (laser desorption/ionization) with mass-tag read-out implemented in a sandwich assay format for low abundant and/or early disease biomarker detection.

  6. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments.

    PubMed

    Povedano, Eloy; Vargas, Eva; Montiel, Víctor Ruiz-Valdepeñas; Torrente-Rodríguez, Rebeca M; Pedrero, María; Barderas, Rodrigo; Segundo-Acosta, Pablo San; Peláez-García, Alberto; Mendiola, Marta; Hardisson, David; Campuzano, Susana; Pingarrón, José M

    2018-04-23

    This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system. The resulting amperometric biosensors demonstrated reproducibility throughout the entire protocol, sensitive determination with no need for using amplification strategies, and competitiveness with the conventional enzyme-linked immunosorbent assay methodology and the few electrochemical biosensors reported so far in terms of simplicity, sensitivity and assay time. The DNA sensor exhibited higher sensitivity and allowed the detection of the gene-specific methylations conversely to the immunosensor, which detected global DNA methylation. In addition, the DNA sensor demonstrated successful applicability for 1 h-analysis of specific methylation in two relevant tumor suppressor genes in spiked biological fluids and in genomic DNA extracted from human glioblastoma cells.

  7. Anti-Brucella Antibodies in Moose (Alces alces gigas), Muskoxen (Ovibos moschatus), and Plains Bison (Bison bison bison) in Alaska, USA.

    PubMed

    Nymo, Ingebjørg Helena; Beckmen, Kimberlee; Godfroid, Jacques

    2016-01-01

    We used an indirect enzyme-linked immunosorbent assay (iELISA) and the rose bengal test (RBT) to test for anti-Brucella antibodies in moose (Alces alces gigas), muskoxen (Ovibos moschatus), and plains bison (Bison bison bison) from various game management units (GMUs) in Alaska, US, sampled from 1982 to 2010. A portion of the sera had previously been tested with the standard plate test (SPT), the buffered Brucella antigen (BBA) card test, and the card test (CARD). No antibody-positive plains bison were identified. Anti-Brucella antibodies were detected in moose (iELISA, n=4/87; RBT, n=4/87; SPT, n=4/5; BBA, n=4/4) from GMU 23 captured in 1992, 1993, and 1995 and in muskoxen (iELISA, n=4/52; RBT, n=4/52; CARD, n=4/35) from GMUs 26A and 26B captured in 2004, 2006, and 2007. A negative effect of infection on the health of individuals of these species is probable. The presence of antibody-positive animals from 1992 to 2007 suggests presence of brucellae over time. The antibody-positive animals were found in northern Alaska, an area with a historically higher prevalence of Brucella-positive caribou, and a spillover of Brucella suis biovar 4 from caribou may have occurred. Brucella suis biovar 4 causes human brucellosis, and transmission from consumption of moose and muskoxen is possible.

  8. Thermometric enzyme linked immunosorbent assay in continuous flow system: optimization and evaluation using human serum albumin as a model system.

    PubMed

    Borrebaeck, C; Börjeson, J; Mattiasson, B

    1978-06-15

    Thermometric enzyme-linked immunosorbent assay (TELISA) is described. After the procedure of optimization, human serum albumin was assayed using anti-human serum albumin bound to Sepharose CL 4-B in the enzyme thermistor unit and catalase as label on the free antigen. The model system was used for assays down to 10(-13)M and the preparation of immobilized antibodies was used repeatedly up to 100 times. Comparative studies of the TELISA technique with bromocresol green, immunoturbidimetric and rocket immunoelectrophoretic methods were carried out and showed that TELISA could be used as an alternative method.

  9. Entrapment of Carbon Dioxide in the Active Site of Carbonic Anhydrase II*♦

    PubMed Central

    Domsic, John F.; Avvaru, Balendu Sankara; Kim, Chae Un; Gruner, Sol M.; Agbandje-McKenna, Mavis; Silverman, David N.; McKenna, Robert

    2008-01-01

    The visualization at near atomic resolution of transient substrates in the active site of enzymes is fundamental to fully understanding their mechanism of action. Here we show the application of using CO2-pressurized, cryo-cooled crystals to capture the first step of CO2 hydration catalyzed by the zinc-metalloenzyme human carbonic anhydrase II, the binding of substrate CO2, for both the holo and the apo (without zinc) enzyme to 1.1Å resolution. Until now, the feasibility of such a study was thought to be technically too challenging because of the low solubility of CO2 and the fast turnover to bicarbonate by the enzyme (Liang, J. Y., and Lipscomb, W. N. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 3675–3679). These structures provide insight into the long hypothesized binding of CO2 in a hydrophobic pocket at the active site and demonstrate that the zinc does not play a critical role in the binding or orientation of CO2. This method may also have a much broader implication for the study of other enzymes for which CO2 is a substrate or product and for the capturing of transient substrates and revealing hydrophobic pockets in proteins. PMID:18768466

  10. Selection, Characterization and Application of Nucleic Acid Aptamers for the Capture and Detection of Human Norovirus Strains

    PubMed Central

    Escudero-Abarca, Blanca I.; Suh, Soo Hwan; Moore, Matthew D.; Dwivedi, Hari P.; Jaykus, Lee-Ann

    2014-01-01

    Human noroviruses (HuNoV) are the leading cause of acute viral gastroenteritis and an important cause of foodborne disease. Despite their public health significance, routine detection of HuNoV in community settings, or food and environmental samples, is limited, and there is a need to develop alternative HuNoV diagnostic reagents to complement existing ones. The purpose of this study was to select and characterize single-stranded (ss)DNA aptamers with binding affinity to HuNoV. The utility of these aptamers was demonstrated in their use for capture and detection of HuNoV in outbreak-derived fecal samples and a representative food matrix. SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used to isolate ssDNA aptamer sequences with broad reactivity to the prototype GII.2 HuNoV strain, Snow Mountain Virus (SMV). Four aptamer candidates (designated 19, 21, 25 and 26) were identified and screened for binding affinity to 14 different virus-like particles (VLPs) corresponding to various GI and GII HuNoV strains using an Enzyme-Linked Aptamer Sorbant Assay (ELASA). Collectively, aptamers 21 and 25 showed affinity to 13 of the 14 VLPs tested, with strongest binding to GII.2 (SMV) and GII.4 VLPs. Aptamer 25 was chosen for further study. Its binding affinity to SMV-VLPs was equivalent to that of a commercial antibody within a range of 1 to 5 µg/ml. Aptamer 25 also showed binding to representative HuNoV strains present in stool specimens obtained from naturally infected individuals. Lastly, an aptamer magnetic capture (AMC) method using aptamer 25 coupled with RT-qPCR was developed for recovery and detection of HuNoV in artificially contaminated lettuce. The capture efficiency of the AMC was 2.5–36% with an assay detection limit of 10 RNA copies per lettuce sample. These ssDNA aptamer candidates show promise as broadly reactive reagents for use in HuNoV capture and detection assays in various sample types. PMID:25192421

  11. Ecological and Control Techniques for Sand Flies (Diptera: Psychodidae) Associated with Rodent Reservoirs of Leishmaniasis

    DTIC Science & Technology

    2013-09-12

    found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet , without having to locate or capture...tissues was highly effective for linking adult sand flies with their larval diet , without having to locate or capture the sand fly larvae themselves. In a...overall adult population of sand flies in an area. However, indirect methods have been used to identify the diets of larvae of other insects through

  12. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine.

    PubMed

    Yasukawa, Tomoyuki; Kiba, Yuya; Mizutani, Fumio

    2015-01-01

    A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide. A sandwich-type immunocomplex was formed by albumin and antibody labeled with glucose oxidase (GOx). Captured GOx catalyzed the reduction of Fe(CN)6(3-) to Fe(CN)6(4-), which was oxidized electrochemically to determine the captured albumin. The responses for creatinine and albumin increased with the concentrations in millimolar order and over the range 18.75 - 150 μg mL(-1), respectively. The present sensor would be a distinct demonstration for producing quantitative dual-assays for various biomolecules used for clinical diagnoses.

  13. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture.

    PubMed

    Merle, Geraldine; Fradette, Sylvie; Madore, Eric; Barralet, Jake E

    2014-06-17

    Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent.

  14. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    PubMed Central

    Dalal, Sohel; Sharma, Aparna; Gupta, Munishwar Nath

    2007-01-01

    Background The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Results Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The Vmax/Km values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. Conclusion A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes. PMID:17880745

  15. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities.

    PubMed

    Dalal, Sohel; Sharma, Aparna; Gupta, Munishwar Nath

    2007-06-08

    The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The V(max)/K(m) values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50 degrees C, 60 degrees C and 70 degrees C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.

  16. Medical Surveillance Monthly Report (MSMR). Volume 21, Number 11, November 2014

    DTIC Science & Technology

    2014-11-01

    enzyme -linked immu- nosorbent assay (ELISA) utilizing an outer membrane protein antigen from C. jejuni Penner serotypes 1, 2, and 3.20 Acute and...Human serum antibody response to Campylobacter jejuni infection as measured in an enzyme -linked immunosorbent assay. Infect Immun. 1984;44: 292–298...Georgia: USD, Inc., 1990. 23. Coates D, Hutchinson DN, Bolton FJ. Survival of thermophilic Campylobacters on fi ngertips and their elimination by

  17. Magnetic Affinity Enzyme-Linked Immunoassay for Diagnosis of Schistosomiasis Japonicum in Persons with Low-Intensity Infection

    PubMed Central

    Yu, Qin; Yang, Hai; Feng, Youmei; Zhu, Yanhong; Yang, Xiangliang

    2012-01-01

    Most schistosome-endemic areas in China are characterized by low-intensity infections that are independent of prevalence. To establish an effective diagnostic method, we developed a magnetic affinity enzyme-linked immunoassay based on soluble egg antigens (SEA-MEIA) for diagnosing schistosomiasis in persons with low-intensity infection with Schistosoma japonicum by comparing it with a conventional enzyme-linked immunosorbent assay (ELISA). Our results showed that the SEA-MEIA had a higher sensitivity and greater precision in the diagnosis of low-intensity S. japonicum infections than the ELISA. In addition, when we used Pearson's correlation in associating SEA-MEIA with ELISA, a significant correlation existed between the two assays (r = 0.845, P < 0.001). Our data indicated that SEA-MEIA, with a higher sensitivity and greater ease of performance, would be valuable for diagnosis of schistosomiasis japonicum in persons with low-intensity infections. PMID:22869635

  18. Practical diagnostic testing for human immunodeficiency virus.

    PubMed Central

    Jackson, J B; Balfour, H H

    1988-01-01

    Since the discovery of human immunodeficiency virus (HIV) as the causative agent of acquired immunodeficiency syndrome in 1983, there has been a proliferation of diagnostic tests. These assays can be used to detect the presence of HIV antibody, HIV antigen, HIV ribonucleic and deoxyribonucleic acids, and HIV reverse transcriptase. Enzyme-linked immunosorbent assays, Western blot, radioimmunoprecipitation assays, indirect immunofluorescence assays, reverse transcriptase assays, and several molecular hybridization techniques are currently available. Enzyme-linked immunosorbent, Western blot, and indirect immunofluorescence assays for HIV antibody are very sensitive, specific, and adaptable to most laboratories. An enzyme-linked immunosorbent assay for HIV antigen is also readily adaptable to most laboratories and will be commercially available soon. While the other assays are more tedious, they are valuable confirmatory tests and are suitable for reference laboratories. The biohazards of performing HIV testing can be minimized with proper biosafety measures. Images PMID:3060241

  19. A novel approach for the detection of potentially hazardous pepsin stable hazelnut proteins as contaminants in chocolate-based food.

    PubMed

    Akkerdaas, Jaap H; Wensing, Marjolein; Knulst, André C; Stephan, Oliver; Hefle, Susan L; Aalberse, Rob C; van Ree, Ronald

    2004-12-15

    Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and detecting rabbit antibodies were raised against pepsin-digested hazelnut and untreated hazelnut protein, respectively. The assay showed a detection limit of 0.7 ng/mL hazelnut protein or <1 microg hazelnut in 1 g food matrix and a maximum of 0.034% cross-reactivity (peanut). Chocolate samples spiked with 0.5-100 microg hazelnut/g chocolate showed a mean recovery of 97.3%. In 9/12 food products labeled "may contain nuts", hazelnut was detected between 1.2 and 417 microg hazelnut/g food. It can be concluded that the application of antibodies directed to pepsin-digested food extracts in ELISA can facilitate specific detection of stable proteins that have the highest potential of inducing severe food anaphylaxis.

  20. [Prevalence of antibodies to hantavirus among hemodialysis patients with end-stage renal failure in Kaunas and its district].

    PubMed

    Dargevicius, Arvydas; Petraityte, Rasa; Sribikiene, Birute; Sileikiene, Elvyra; Razukeviciene, Loreta; Ziginskiene, Edita; Vorobjoviene, Rita; Razanskiene, Ausra; Sasnauskas, Kestutis; Bumblyte, Inga Arūne; Kuzminskis, Vytautas

    2007-01-01

    The objective of this study was to investigate the prevalence of antibodies to hantaviruses among hemodialysis patients with end-stage renal failure in Kaunas and its district. Serums of 218 patients from four dialysis centers of Kaunas district were tested by using the immunoglobulin G antibody-capture enzyme-linked immunosorbent assay (ELISA). The reactivity of ELISA-positive sera was proven in Western blot tests using various hantavirus recombinant nucleocapsid proteins. The yeast-expressed nucleocapsid proteins were used for testing. Antibodies against Dobrava/Hantaan and Puumala hantaviruses were found in 16 patients (seroprevalence 7.4%). Most of the sera were positive for Dobrava hantavirus (81%). The ratio of males to females was 1.2:1. Seroprevalence was significantly higher in older patients. Results indicate that antibodies to two hantaviruses (Dobrava/Hantaan virus and Puumala virus) are prevalent among hemodialysis patients in Kaunas district with approximately the same seroprevalence as in neighboring countries.

  1. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE PAGES

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  2. A simple sandwich ELISA (WELYSSA) for the detection of lyssavirus nucleocapsid in rabies suspected specimens using mouse monoclonal antibodies.

    PubMed

    Xu, Gelin; Weber, Patrick; Hu, Qiaoling; Xue, Honggang; Audry, Laurent; Li, Chengping; Wu, Jie; Bourhy, Herve

    2007-10-01

    Monoclonal antibody (MAb)-based capture enzyme-linked immunosorbent assays (ELISA) were developed for the diagnosis of rabies-suspect specimens. A combination of four mouse monoclonal antibodies directed against the rabies virus nucleocapsid was selected and used for the detection. The test was optimized and standardized so that maximum concordance could be maintained with the standard procedures of rabies diagnosis recommended by the WHO expert committee. Using prototype viruses from the different genotypes of lyssavirus and from various geographic origins and phylogenetic lineages, this paper presents a reliable, rapid and transferable diagnostic method, named WELYSSA that readily permits the detection of lyssaviruses belonging to the 7 genotypes of lyssavirus circulating in Europe, Africa, Asia and Oceania. The threshold of detection of lyssavirus nucleocapsids is low (0.8 ng/ml). With a panel of 1030 specimens received for rabies diagnostic testing, this test was found to be highly specific (0.999) and sensitive (0.970) when compared to other recommended rabies diagnostic methods.

  3. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  4. Acute arboviral infections in Guinea, West Africa, 2006.

    PubMed

    Jentes, Emily S; Robinson, Jaimie; Johnson, Barbara W; Conde, Ibrahima; Sakouvougui, Yosse; Iverson, Jennifer; Beecher, Shanna; Bah, M Alpha; Diakite, Fousseny; Coulibaly, Mamadi; Bausch, Daniel G; Bryan, Juliet

    2010-08-01

    Acute febrile illnesses comprise the majority of the human disease burden in sub-Saharan Africa. We hypothesized that arboviruses comprised a considerable proportion of undiagnosed febrile illnesses in Guinea and sought to determine the frequency of arboviral disease in two hospitals there. Using a standard case definition, 47 suspected cases were detected in approximately 4 months. Immunoglobulin M antibody capture enzyme-linked immunosorbent assays and plaque-reduction neutralization assays revealed that 63% (30/47) of patients were infected with arboviruses, including 11 West Nile, 2 yellow fever, 1 dengue, 8 chikungunya, and 5 Tahyna infections. Except for yellow fever, these are the first reported cases of human disease from these viruses in Guinea and the first reported cases of symptomatic Tahyna infection in Africa. These results strongly suggest that arboviruses circulate and are common causes of disease in Guinea. Improving surveillance and laboratory capacity for arbovirus diagnoses will be integral to understanding the burden posed by these agents in the region.

  5. Acute Arboviral Infections in Guinea, West Africa, 2006

    PubMed Central

    Jentes, Emily S.; Robinson, Jaimie; Johnson, Barbara W.; Conde, Ibrahima; Sakouvougui, Yosse; Iverson, Jennifer; Beecher, Shanna; Bah, M. Alpha; Diakite, Fousseny; Coulibaly, Mamadi; Bausch, Daniel G.

    2010-01-01

    Acute febrile illnesses comprise the majority of the human disease burden in sub-Saharan Africa. We hypothesized that arboviruses comprised a considerable proportion of undiagnosed febrile illnesses in Guinea and sought to determine the frequency of arboviral disease in two hospitals there. Using a standard case definition, 47 suspected cases were detected in approximately 4 months. Immunoglobulin M antibody capture enzyme-linked immunosorbent assays and plaque-reduction neutralization assays revealed that 63% (30/47) of patients were infected with arboviruses, including 11 West Nile, 2 yellow fever, 1 dengue, 8 chikungunya, and 5 Tahyna infections. Except for yellow fever, these are the first reported cases of human disease from these viruses in Guinea and the first reported cases of symptomatic Tahyna infection in Africa. These results strongly suggest that arboviruses circulate and are common causes of disease in Guinea. Improving surveillance and laboratory capacity for arbovirus diagnoses will be integral to understanding the burden posed by these agents in the region. PMID:20682888

  6. Occurrence of West Nile virus antibodies in wild birds, horses, and humans in Poland.

    PubMed

    Niczyporuk, Jowita Samanta; Samorek-Salamonowicz, Elżbieta; Lecollinet, Sylvie; Pancewicz, Sławomir Andrzej; Kozdruń, Wojciech; Czekaj, Hanna

    2015-01-01

    Serum samples of 474 wild birds, 378 horses, and 42 humans with meningitis and lymphocytic meningitis were collected between 2010 and 2014 from different areas of Poland. West Nile virus (WNV) antibodies were detected using competition enzyme linked immunosorbent assays: ELISA-1 ID Screen West Nile Competition, IDvet, ELISA-2 ID Screen West Nile IgM Capture, and ELISA-3 Ingezim West Nile Compac. The antibodies were found in 63 (13.29%) out of 474 wild bird serum samples and in one (0.26%) out of 378 horse serum samples. Fourteen (33.33%) out of 42 sera from patients were positive against WNV antigen and one serum was doubtful. Positive samples obtained in birds were next retested with virus microneutralisation test to confirm positive results and cross-reactions with other antigens of the Japanese encephalitis complex. We suspect that positive serological results in humans, birds, and horses indicate that WNV can be somehow closely related with the ecosystem in Poland.

  7. Occurrence of West Nile Virus Antibodies in Wild Birds, Horses, and Humans in Poland

    PubMed Central

    Niczyporuk, Jowita Samanta; Samorek-Salamonowicz, Elżbieta; Lecollinet, Sylvie; Pancewicz, Sławomir Andrzej; Kozdruń, Wojciech; Czekaj, Hanna

    2015-01-01

    Serum samples of 474 wild birds, 378 horses, and 42 humans with meningitis and lymphocytic meningitis were collected between 2010 and 2014 from different areas of Poland. West Nile virus (WNV) antibodies were detected using competition enzyme linked immunosorbent assays: ELISA-1 ID Screen West Nile Competition, IDvet, ELISA-2 ID Screen West Nile IgM Capture, and ELISA-3 Ingezim West Nile Compac. The antibodies were found in 63 (13.29%) out of 474 wild bird serum samples and in one (0.26%) out of 378 horse serum samples. Fourteen (33.33%) out of 42 sera from patients were positive against WNV antigen and one serum was doubtful. Positive samples obtained in birds were next retested with virus microneutralisation test to confirm positive results and cross-reactions with other antigens of the Japanese encephalitis complex. We suspect that positive serological results in humans, birds, and horses indicate that WNV can be somehow closely related with the ecosystem in Poland. PMID:25866767

  8. Effect of temperature and mixing speed on immobilization of crude enzyme from Aspergillus niger on chitosan for hydrolyzing cellulose

    NASA Astrophysics Data System (ADS)

    Hamzah, Afan; Gek Ela Kumala, P.; Ramadhani, Dwi; Maziyah, Nurul; Rahmah, Laila Nur; Soeprijanto, Widjaja, Arief

    2017-05-01

    Conversion of cellulose into reducing sugar through enzymatic hydrolysis has advantageous because it produces greater product yield, higher selectivity, require less energy, more moderate operating conditions and environment friendly. However, the nature of the enzyme that is difficult to separate and its expensive price become an obstacle. These obstacles can be overcome by immobilizing the enzyme on chitosan material so that the enzyme can be reused. Chitosan is chosen because it is cheap, inert, hydrophilic, and biocompatible. In this research, we use covalent attachment and combination between covalent attachment and cross-linking method for immobilizing crude enzyme. This research was focusing in study of Effect of temperature and mixing speed on Immobilization Enzyme From Aspergillus Niger on Chitosan For Hydrolyzing both soluble (Carboxymethylcellulose) and insoluble Cellulose (coconut husk). This Research was carried out by three main step. First, coconut husk was pre-treated mechanically and chemically, Second, Crude enzyme from Aspergillus niger strain was immobilized on chitosan in various immobilization condition. At last, the pre-treated coconut husk and Carboxymetylcellulose (CMC) were hydrolyzed by immobilized cellulose on chitosan for reducing sugar production. The result revealed that the most reducing sugar produced by immobilized enzyme on chitosan+GDA with immobilization condition at 30 °C and 125 rpm. Enzyme immobilized on chitosan cross-linked with GDA produced more reducing sugar from preteated coconut husk than enzyme immobilized on chitosan.

  9. Soluble PD-L1 with PD-1-binding capacity exists in the plasma of patients with non-small cell lung cancer.

    PubMed

    Takeuchi, Masahiro; Doi, Tomomitsu; Obayashi, Kunie; Hirai, Ayako; Yoneda, Kazue; Tanaka, Fumihiro; Iwai, Yoshiko

    2018-04-01

    PD-L1 is one of the important immune checkpoint molecules that can be targeted by cancer immunotherapies. PD-L1 has a soluble form (sPD-L1) and a membrane-bound form (mPD-L1). Conventional enzyme-linked immunosorbent assay (ELISA) systems can detect sPD-L1 using anti-PD-L1 capture antibody through the antigen-antibody reaction, but cannot evaluate the quality and function of sPD-L1. In this study, we developed a novel ELISA system for the detection and quantification of sPD-L1 with PD-1-binding capacity (bsPD-L1). To capture bsPD-L1 through the ligand-receptor reaction, the anti-PD-L1 capture antibody in the conventional ELISA was replaced with PD-1-Ig fusion protein in the new ELISA. The new ELISA could detect bsPD-L1 in 29 out of 75 plasma samples from patients with non-small cell lung cancer (NSCLC), with higher sensitivity and frequency than the conventional ELISA. The western blot analysis showed that sPD-L1 in the plasma was glycosylated. Treatment of the samples with glycosidase reduced the absorbance determined by the new ELISA but had no effect on the absorbance determined by the conventional ELISA. These results suggest that glycosylation of sPD-L1 is important for its binding to the immobilized PD-1 in the new ELISA. Our new ELISA system may be useful for the evaluation of functional sPD-L1 with PD-1-binding capacity in cancer patients. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  10. Detection of target staphylococcal enterotoxin B antigen in orange juice and popular carbonated beverages using antibody-dependent antigen-capture assays.

    PubMed

    Principato, MaryAnn; Njoroge, Joyce M; Perlloni, Andrei; O' Donnell, Michael; Boyle, Thomas; Jones, Robert L

    2010-10-01

    There is a critical need for qualitative and quantitative methodologies that provide the rapid and accurate detection of food contaminants in complex food matrices. However, the sensitivity of the assay can be affected when antigen-capture is applied to certain foods or beverages that are extremely acidic. This study was undertaken to assess the effects of orange juice and popular carbonated soft drink upon the fidelity of antibody-based antigen-capture assays and to develop simple approaches that could rescue assay performance without the introduction of additional or extensive extraction procedures. We examined the effects of orange juice and a variety of popular carbonated soft drink beverages upon a quantitative Interleukin-2 (IL-2) enzyme-linked immunosorbent assay (ELISA) assay system and a lateral flow device (LFD) adapted for the detection of staphylococcal enterotoxin B (SEB) in foods. Alterations in the performance and sensitivity of the assay were directly attributable to the food matrix, and alterations in pH were especially critical. The results demonstrate that approaches such as an alteration of pH and the use of milk as a blocking agent, either singly or in combination, will partially rescue ELISA performance. The same approaches permit lateral flow to efficiently detect antigen. Practical Application: The authors present ways to rescue an ELISA assay compromised by acidity in beverages and show that either the alteration of pH, or the use of milk as a blocking agent are not always capable of restoring the assay to its intended efficiency. However, the same methods, when employed with lateral flow technology, are rapid and extremely successful.

  11. Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers.

    PubMed

    Fukushi, Shuetsu; Tani, Hideki; Yoshikawa, Tomoki; Saijo, Masayuki; Morikawa, Shigeru

    2012-10-12

    The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW) and New World (NW) complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF) in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA) and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs) derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs) to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture) ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV)-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses.

  12. Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum.

    PubMed

    Cardelli, J A; Bush, J M; Ebert, D; Freeze, H H

    1990-05-25

    Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.

  13. Wobbly strings: calculating the capture rate of a webcam using the rolling shutter effect in a guitar

    NASA Astrophysics Data System (ADS)

    Cunnah, David

    2014-07-01

    In this paper I propose a method of calculating the time between line captures in a standard complementary metal-oxide-semiconductor (CMOS) webcam using the rolling shutter effect when filming a guitar. The exercise links the concepts of wavelength and frequency, while outlining the basic operation of a CMOS camera through vertical line capture.

  14. Wobbly Strings: Calculating the Capture Rate of a Webcam Using the Rolling Shutter Effect in a Guitar

    ERIC Educational Resources Information Center

    Cunnah, David

    2014-01-01

    In this paper I propose a method of calculating the time between line captures in a standard complementary metal-oxide-semiconductor (CMOS) webcam using the rolling shutter effect when filming a guitar. The exercise links the concepts of wavelength and frequency, while outlining the basic operation of a CMOS camera through vertical line capture.

  15. Linking animal-borne video to accelerometers reveals prey capture variability.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori

    2013-02-05

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78-89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83-0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging.

  16. Extraction of erythrocyte enzymes for the preparation of polyhemoglobin-catalase-superoxide dismutase.

    PubMed

    Gu, Jingsong; Chang, Thomas Ming Swi

    2009-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study on extracting these enzymes from red blood cells and analyzing the amount of enzymes needed for adequate protection from ischemia-reperfusion.

  17. Evaluation of commercial a-amylase enzyme-linked immunosorbent assy (ELISA) test kits for wheat

    USDA-ARS?s Scientific Manuscript database

    a-Amylase enzyme is associated with preharvest sprouting (PHS) and late-maturity a amylase (LMA) in wheat, and reduces wheat and flour quality. Various means have been developed to measure the presence of a-amylase, thereby predicting end-use quality; most are based on enzyme activity. An alternativ...

  18. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minjing; Qian, Wei-jun; Gao, Yuqian

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less

  19. Recovery Act: Innovative CO 2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO 2 Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    The overall goal of this DOE Phase 2 project was to further develop and conduct pilot-scale and field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO 2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stabilitymore » in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO 2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO 2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.« less

  20. Small-scale land-use variability affects Anopheles spp. distribution and concomitant Plasmodium infection in humans and mosquito vectors in southeastern Madagascar.

    PubMed

    Zohdy, Sarah; Derfus, Kristin; Headrick, Emily G; Andrianjafy, Mbolatiana Tovo; Wright, Patricia C; Gillespie, Thomas R

    2016-02-24

    Deforestation and land-use change have the potential to alter human exposure to malaria. A large percentage of Madagascar's original forest cover has been lost to slash-and-burn agriculture, and malaria is one of the top causes of mortality on the island. In this study, the influence of land-use on the distribution of Plasmodium vectors and concomitant Plasmodium infection in humans and mosquito vectors was examined in the southeastern rainforests of Madagascar. From June to August 2013, health assessments were conducted on individuals living in sixty randomly selected households in six villages bordering Ranomafana National Park. Humans were screened for malaria using species-specific rapid diagnostic tests (RDTs), and surveyed about insecticide-treated bed net (ITN) usage. Concurrently, mosquitoes were captured in villages and associated forest and agricultural sites. All captured female Anopheline mosquitoes were screened for Plasmodium spp. using a circumsporozoite enzyme-linked immunosorbent assay (csELISA). Anopheles spp. dominated the mosquito communities of agricultural and village land-use sites, accounting for 41.4 and 31.4 % of mosquitoes captured respectively, whereas Anopheles spp. accounted for only 1.6 % of mosquitoes captured from forest sites. Interestingly, most Anopheles spp. (67.7 %) were captured in agricultural sites in close proximity to animal pens, and 90.8 % of Anopheles mosquitoes captured in agricultural sites were known vectors of malaria. Three Anopheline mosquitoes (0.7 %) were positive for malaria (Plasmodium vivax-210) and all positive mosquitoes were collected from agricultural or village land-use sites. Ten humans (3.7 %) tested were positive for P. falciparum, and 23.3 % of those surveyed reported never sleeping under ITNs. This study presents the first report of malaria surveillance in humans and the environment in southeastern Madagascar. These findings suggest that even during the winter, malaria species are present in both humans and mosquitoes; with P. falciparum found in humans, and evidence of P. vivax-210 in mosquito vectors. The presence of P. vivax in resident vectors, but not humans may relate to the high incidence of humans lacking the Duffy protein. The majority of mosquito vectors were found in agricultural land-use sites, in particular near livestock pens. These findings have the potential to inform and improve targeted malaria control and prevention strategies in the region.

  1. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    PubMed Central

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-01-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289

  2. Enzyme-Linked Antibodies: A Laboratory Introduction to the ELISA Assay

    NASA Astrophysics Data System (ADS)

    Anderson, Gretchen L.; McNellis, Leo A.

    1998-10-01

    A fast and economical laboratory exercise is presented that qualitatively demonstrates the power of enzyme-linked antibodies to detect a specific antigen. Although ELISAs are commonly used in disease diagnosis in clinical settings, this application uses biotin, covalently attached to albumin, to take advantage of readily available reagents and avoids problems associated with potentially pathogenic antigens. The laboratory exercise is suitable for high school or freshman level biochemistry courses, and can be completed within two hours.

  3. A Novel, Rapid Assay for Detection and Differentiation of Serotype-Specific Antibodies to Venezuelan Equine Encephalitis Complex Alphaviruses

    DTIC Science & Technology

    2005-01-01

    Research Center Detachment, Lima, Peru Abstract. An epitope-blocking enzyme-linked immunosorbent assay was developed for the rapid differentiation of...subtype and variety of antibodies to VEEV in equines, humans, or rodent reservoir hosts can be critical for determining the potential of a naturally...of human sera from Mexico and Peru using a blocking enzyme-linked immunosorbent assay and plaque reduction neutralization tests* Serum number Country

  4. Detection of anticentromere antibodies using cloned autoantigen CENP-B.

    PubMed

    Rothfield, N; Whitaker, D; Bordwell, B; Weiner, E; Senecal, J L; Earnshaw, W

    1987-12-01

    A solid-phase enzyme-linked immunosorbent assay has been established using a cloned fusion protein, CtermCENP-B [beta-gal], as antigen. The fusion protein carries the major epitope of CENP-B, the major centromeric autoantigen. The enzyme-linked immunosorbent assay was more sensitive than immunofluorescence techniques in detecting anticentromere antibodies in patients with scleroderma or Raynaud's disease, and was weakly positive in 3% of normal controls and in 3% of 70 patients with other connective tissue diseases.

  5. Development and Application of a Saccharomyces cerevisiae-Expressed Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay for Detection of Antibodies against Infectious Bronchitis Virus

    PubMed Central

    Gibertoni, Aliandra M.; Montassier, Maria de Fátima S.; Sena, Janete A. D.; Givisiez, Patrícia E. N.; Furuyama, Cibele R. A. G.; Montassier, Hélio J.

    2005-01-01

    A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA. PMID:15815038

  6. Comparison of 2 Luminex-based Multiplexed Protein Assays for Quantifying Microglia Activation and Inflammatory Proteins

    DTIC Science & Technology

    2016-04-01

    streptavidin-phycoerythrin (PE) similar to sandwich enzyme-linked immunosorbent assays ( ELISAs ). The 3 fluorescent markers (2 beads plus PE) allow for...within the kit, this worked out to a set of expensive, problematic, and subjective ELISA . The space on the black-96 well plate was split between cell...ARL US Army Research Laboratory BBB blood–brain barrier CSF cerebral spinal fluid DOD US Department of Defense ELISA enzyme-linked immunosorbent

  7. Absorption of p,p'-dichlorodiphenyldichloroethylene and dieldrin in largemouth bass from a 60-D slow-release pellet and detection using a novel enzyme-linked immunosorbent assay method for blood plasma

    USGS Publications Warehouse

    Muller, Jennifer K.; Sepulveda, Maria S.; Borgert, Christopher J.; Gross, Timothy S.

    2005-01-01

    This work describes the uptake of two organochlorine pesticides from slow-release pellets by largemouth bass and the utility of a blood plasma enzyme-linked immunosorbent assay (ELISA) method for exposure verification. We measured blood and tissue levels by gas chromatography/mass spectrometry and by a novel ELISA method, and present a critical comparison of the results.

  8. Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.

    PubMed

    Narayanan, Chitra; Bernard, David N; Bafna, Khushboo; Gagné, Donald; Chennubhotla, Chakra S; Doucet, Nicolas; Agarwal, Pratul K

    2018-03-06

    Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 10 5 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification.

    PubMed

    Guan, Weihua; Chen, Liben; Rane, Tushar D; Wang, Tza-Huei

    2015-09-03

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  10. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    PubMed Central

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-01-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806

  11. Differentiated effect of ageing on the enzymes of Krebs' cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex.

    PubMed

    Villa, R F; Gorini, A; Hoyer, S

    2006-11-01

    The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.

  12. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    NASA Astrophysics Data System (ADS)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  13. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  14. Connected vehicle data capture and management (DCM) and dynamic mobility applications (DMA) : focused standards coordination plan.

    DOT National Transportation Integrated Search

    2012-11-01

    The Connected Vehicle Mobility Standards Coordination Plan project links activities in three programs (Data Capture and Management, Dynamic Mobility Applications, and ITS Standards). The plan coordinates the timing, intent and relationship of activit...

  15. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment.

    PubMed

    Ba, Sidy; Arsenault, Alexandre; Hassani, Thanina; Jones, J Peter; Cabana, Hubert

    2013-12-01

    Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.

  16. Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), A New Post-translational Modification in Mammals.

    PubMed

    Maynard, Jason C; Burlingame, Alma L; Medzihradszky, Katalin F

    2016-11-01

    Intracellular GlcNAcylation of Ser and Thr residues is a well-known and widely investigated post-translational modification. This post-translational modification has been shown to play a significant role in cell signaling and in many regulatory processes within cells. O-GlcNAc transferase is the enzyme responsible for glycosylating cytosolic and nuclear proteins with a single GlcNAc residue on Ser and Thr side-chains. Here we report that the same enzyme may also be responsible for S-GlcNAcylation, i.e. for linking the GlcNAc unit to the peptide by modifying a cysteine side-chain. We also report that O-GlcNAcase, the enzyme responsible for removal of O-GlcNAcylation does not appear to remove the S-linked sugar. Such Cys modifications have been detected and identified in mouse and rat samples. This work has established the occurrence of 14 modification sites assigned to 11 proteins unambiguously. We have also identified S-GlcNAcylation from human Host Cell Factor 1 isolated from HEK-cells. Although these site assignments are primarily based on electron-transfer dissociation mass spectra, we also report that S-linked GlcNAc is more stable under collisional activation than O-linked GlcNAc derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Caught in the act

    PubMed Central

    Meyer, Hermann-Josef

    2013-01-01

    The crystal structure of a HECT E3 enzyme has been captured as it transfers ubiquitin to a target protein, revealing the dramatic changes in shape that enable it to modify particular residues in its targets. PMID:23936629

  18. OTUB1 Co-opts Lys48-Linked Ubiquitin Recognition to Suppress E2 Enzyme Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Yu-Chi; Landry, Marie-Claude; Sanches, Mario

    2012-03-26

    Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibitedmore » E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.« less

  19. Binding Assays for the Quantitative Detection of P. brevis Polyether Neurotoxins in Biological Samples and Antibodies as Therapeutic Aids for Polyether Marine Intoxication

    DTIC Science & Technology

    1987-12-01

    editions are obsolete. -I Block 19 continued structure. Preliminary experiments involving conversion of the radio- immunoassay to a urease enzyme linked...the radioimmunoassay to a urease I enzyme linked form have been successful. DTIC GTAB Di tributioul AV~i~b~±~YCoded Avsi abi11i ntY___ tat Special...necessary prior to thin- layer chromatography. A preparative thin- layer chromatography step using silica gel plates (1000 u thickness) utilizes acetone

  20. Glycoprotein-Based Enzyme-Linked Immunosorbent Assays for Serodiagnosis of Infectious Laryngotracheitis

    PubMed Central

    Kanabagatte Basavarajappa, Mallikarjuna; Song, Haichen; Lamichhane, Chinta

    2015-01-01

    For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with vectored vaccine, using recombinant Newcastle disease virus (rNDV) expressing glycoprotein D (gD) as the vaccine vector. PMID:25694519

  1. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  2. Biogenesis of lysosomal enzymes in the alpha-glucosidase II-deficient modA mutant of Dictyostelium discoideum: retention of alpha-1,3-linked glucose on N-linked oligosaccharides delays intracellular transport but does not alter sorting of alpha-mannosidase or beta-glucosidase.

    PubMed

    Ebert, D L; Bush, J M; Dimond, R L; Cardelli, J A

    1989-09-01

    The endoplasmic reticulum-localized enzyme alpha-glucosidase II is responsible for removing the two alpha-1,3-linked glucose residues from N-linked oligosaccharides of glycoproteins. This activity is missing in the modA mutant strain, M31, of Dictyostelium discoideum. Results from both radiolabeled pulse-chase and subcellular fractionation experiments indicate that this deficiency did not prevent intracellular transport and proteolytic processing of the lysosomal enzymes, alpha-mannosidase and beta-glucosidase. However, the rate at which the glucosylated precursors left the rough endoplasmic reticulum was several-fold slower than the rate at which the wild-type precursors left this compartment. Retention of glucose residues did not disrupt the binding of the precursor forms of the enzymes with intracellular membranes, indicating that the delay in movement of proteins from the ER did not result from lack of association with membranes. However, the mutant alpha-mannosidase precursor contained more trypsin-sensitive sites than did the wild-type precursor, suggesting that improper folding of precursor molecules might account for the slow rate of transport to the Golgi complex. Percoll density gradient fractionation of extracts prepared from M31 cells indicated that the proteolytically processed mature forms of alpha-mannosidase and beta-glucosidase were localized to lysosomes. Finally, the mutation in M31 may have other, more dramatic, effects on the lysosomal system since two enzymes, N-acetylglucosaminidase and acid phosphatase, were secreted much less efficiently from lysosomal compartments by the mutant strain.

  3. Linking animal-borne video to accelerometers reveals prey capture variability

    PubMed Central

    Watanabe, Yuuki Y.; Takahashi, Akinori

    2013-01-01

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78–89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83–0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging. PMID:23341596

  4. Enhanced Peroxidase-Like Performance of Gold Nanoparticles by Hot Electrons.

    PubMed

    Wang, Chen; Shi, Yi; Dan, Yuan-Yuan; Nie, Xing-Guo; Li, Jian; Xia, Xing-Hua

    2017-05-17

    Enzyme mimics have been widely used as alternatives to natural enzymes. However, the catalytic performances of enzyme mimics are often decreased due to different spatial structures or absence of functional groups compared to natural enzymes. Here, we report a highly efficient enzyme-like catalytic performance of gold nanoparticles (AuNPs) by visible-light stimulation. The enzyme-like reaction is evaluated by the catalytic reaction of AuNPs oxidizing a typical chromogenic substrate 3,3',5,5'-tetramethylbenzydine (TMB) with hydrogen peroxide as an oxidant. From investigations of the wavelength-dependent reaction rate, radical capture, hole-donor addition, and dark-field scattering spectroscopy experiments, it is revealed that the strong plasmonic absorption of AuNPs facilitates generation of hot electrons, which are transfered from AuNPs to the adsorbed reactant molecule, greatly promoting the catalytic performance of the enzyme-like catalytic reaction. The present work provides a simple method for improving the performance of enzyme mimics, which is expected to find further application in the field of plasmon-enhanced biocatalysis and biosensors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Asthma Kiosk: A Patient-centered Technology for Collaborative Decision Support in the Emergency Department

    PubMed Central

    Porter, Stephen C.; Cai, Zhaohui; Gribbons, William; Goldmann, Donald A.; Kohane, Isaac S.

    2004-01-01

    The authors report on the development and evaluation of a novel patient-centered technology that promotes capture of critical information necessary to drive guideline-based care for pediatric asthma. The design of this application, the asthma kiosk, addresses five critical issues for patient-centered technology that promotes guideline-based care: (1) a front-end mechanism for patient-driven data capture, (2) neutrality regarding patients' medical expertise and technical backgrounds, (3) granular capture of medication data directly from the patient, (4) formal algorithms linking patient-level semantics and asthma guidelines, and (5) output to both patients and clinical providers regarding best practice. The formative evaluation of the asthma kiosk demonstrates its ability to capture patient-specific data during real-time care in the emergency department (ED) with a mean completion time of 11 minutes. The asthma kiosk successfully links parents' data to guideline recommendations and identifies data critical to health improvements for asthmatic children that otherwise remains undocumented during ED-based care. PMID:15298999

  6. Nanostructured Membranes for Enzyme Catalysis and Green Synthesis of Nanoparticles

    EPA Science Inventory

    Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low-pressure membrane approach is marked by reaction and separation selectivity and their tunabil...

  7. Nanostructured Membranes for Green Synthesis of Nanoparticles and Enzyme Catalysis

    EPA Science Inventory

    Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low‐pressure membrane approach is marked by reaction and separation selectivity and their tunabili...

  8. Loss of Complex I activity in the Escherichia coli enzyme results from truncating the C-terminus of subunit K, but not from cross-linking it to subunits N or L.

    PubMed

    Zhu, Shaotong; Canales, Alejandra; Bedair, Mai; Vik, Steven B

    2016-06-01

    Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme.

  9. Sensitivity, specificity and comparison of three commercially available immunological tests in the diagnosis of Cryptosporidium species in animals.

    PubMed

    Danišová, Olga; Halánová, Monika; Valenčáková, Alexandra; Luptáková, Lenka

    The study was conducted to compare the specificity of immunological diagnostic methods used for the diagnosis of Cryptosporidium species capable of causing life-threatening infection in both immunosuppressed and immunocompetent patients. For the detection of Cryptosporidium species in 79 animals with diarrhoea, we used three Copro-antigen tests: RIDASCREEN ® Cryptosporidium test, Cryptosporidium 2nd Generation (ELISA) and RIDA ® QUICK Cryptosporidium. For immunoassays we used positive and negative samples detected by means of polymerase chain reaction and validated by sequencing and nested polymerase chain reaction to confirm the presence six different species of Cryptosporidium species. Prevalence of cryptosporidiosis in the entire group determined by enzyme immunoassay, enzyme linked immunosorbent assay, immuno-chromatographic test and polymerase chain reaction was 34.17%, 27.84%, 6.33% and 27.84%, respectively. Sensitivity of animal samples with enzyme immunoassay, enzyme linked immunosorbent assay, and immuno-chromatographic test was 63.6%, 40.9% and 22.7%, resp., when questionable samples were considered positive, whereas specificity of enzyme immunoassay, enzyme linked immunosorbent assay and immuno-chromatographic test was 75.9%, 78.9% and 100%, respectively. Positive predictive values and negative predictive values were different for all the tests. These differences results are controversial and therefore reliability and reproducibility of immunoassays as the only diagnostic method is questionable. The use of various Cryptosporidium species in diagnosis based on immunological testing and different results obtained by individual tests indicate potential differences in Copro-antigens produced by individual Cryptosporidium species. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Evaluation of Two Enzyme-Linked Immunosorbent Assay Kits for Chikungunya Virus IgM Using Samples from Deceased Organ and Tissue Donors.

    PubMed

    Prince, Harry E; Altrich, Michelle L; Nowicki, Marek J

    2016-10-01

    The identification of nearly 3,500 cases of chikungunya virus (CHIKV) infection in U.S. residents returning in 2014 and 2015 from areas in which it is endemic has raised concerns within the transplant community that, should recently infected individuals become organ and/or tissue donors, CHIKV would be transmitted to transplant recipients. Thus, tests designed to detect recent CHIKV infection among U.S. organ and tissue donors may become necessary in the future. Accordingly, we evaluated 2 enzyme-linked immunosorbent assays (ELISAs) for CHIKV IgM readily available in the United States using 1,000 deidentified serum or plasma specimens collected from donors between November 2014 and March 2015. The Euroimmun indirect ELISA identified 38 reactive specimens; however, all 38 were negative for CHIKV IgG and IgM in immunofluorescence assays (IFAs) conducted at a reference laboratory and, thus, were falsely reactive in the Euroimmun CHIKV IgM assay. The InBios IgM-capture ELISA identified 26 reactive samples, and one was still reactive (index ≥ 1.00) when retested using the InBios kit with a background subtraction modification to identify false reactivity. This reactive specimen was CHIKV IgM negative but IgG positive by IFAs at two reference laboratories; plaque reduction neutralization testing (PRNT) demonstrated CHIKV-specific reactivity. The IgG and PRNT findings strongly suggest that the InBios CHIKV IgM-reactive result represents true reactivity, even though the IgM IFA result was negative. If testing organ/tissue donors for CHIKV IgM becomes necessary, the limitations of the currently available CHIKV IgM ELISAs and options for their optimization must be understood to avoid organ/tissue wastage due to falsely reactive results. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Sandwich enzyme-linked immunosorbent assay (ELISA) for detection of cashew nut in foods.

    PubMed

    Gaskin, Ferdelie E; Taylor, Steve L

    2011-01-01

    The presence of undeclared cashew can pose a health risk to cashew-allergic consumers. The food industry has the responsibility to declare the presence of cashews on packaged foods even when trace residues are or might be present. The objective of this study was to develop a rapid, sensitive, and specific enzyme-linked immunosorbent assay (ELISA) for the detection of cashew residues. Raw and roasted cashews were defatted and used separately to immunize sheep, goats, and rabbits. The cashew ELISA was developed using sheep and rabbit polyclonal anti-roasted cashew sera as capture and detector reagents, respectively, with visualization through an alkaline phosphatase-mediated substrate reaction. The cashew ELISA was shown to have a limit of quantification of 1 ppm (1 μg cashew/g). The ELISA was highly specific except that substantial cross-reactivity was noted with pistachio and a lesser degree of cross-reactivity was noted with hazelnut. The performance of the ELISA was assessed by manufacturing cookies, ice cream, and milk chocolate with added known amounts (0 to 1000 ppm) of cashew. The mean percent recoveries for ice cream, cookies, and milk chocolate were 118%± 2.9%, 84.3%± 4.0%, and 104%± 3.0%, respectively. In a limited retail survey, 4/5 retail samples with cashew declared on ingredient labels tested positive for cashew compared to 5/36 samples of foods with precautionary labels indicating the possible presence of one or more tree nuts and 0/18 samples without cashew declared on the label in any manner. The cashew ELISA can be used to detect undeclared cashew residue in foods and as a potential tool for the food industry to assess the effectiveness of allergen control strategies and to guarantee compliance with food labeling regulatory requirements. © 2011 Institute of Food Technologists®

  12. Reverse enzyme-linked immunosorbent assay using monoclonal antibodies against SAG1-related sequence, SAG2A, and p97 antigens from Toxoplasma gondii to detect specific immunoglobulin G (IgG), IgM, and IgA antibodies in human sera.

    PubMed

    Carvalho, Fernando R; Silva, Deise A O; Cunha-Júnior, Jair P; Souza, Maria A; Oliveira, Taísa C; Béla, Samantha R; Faria, Gabriele G; Lopes, Carolina S; Mineo, José R

    2008-08-01

    The present study aimed to evaluate the performance of three monoclonal antibodies (MAbs) in reverse enzyme-linked immunosorbent assays (ELISAs) for detecting immunoglobulin G (IgG), IgM, and IgA antibodies against Toxoplasma gondii in 175 serum samples from patients at different stages of T. gondii infection, as defined by both serological and clinical criteria, as follows: recent (n = 45), transient (n = 40), and chronic (n = 55) infection as well as seronegative subjects (n = 35). The results were compared with those obtained by indirect ELISA using soluble Toxoplasma total antigen (STAg). Our data demonstrated that MAb A3A4 recognizes a conformational epitope in SAG1-related-sequence (SRS) antigens, while A4D12 and 1B8 recognize linear epitopes defined as SAG2A surface antigen and p97 cytoplasmatic antigen, respectively. Reverse ELISA for IgG with A3A4 or A4D12 MAbs was highly correlated with indirect ELISA for anti-STAg IgG, whereas only A4D12 reverse ELISA showed high correlation with indirect ELISA for IgM and IgA isotypes. To our knowledge, this is the first report analyzing the performance of a reverse ELISA for simultaneous detection of IgG, IgM, and IgA isotypes active toward native SAG2A, SRS, and p97 molecules from STAg, using a panel of human sera from patients with recent and chronic toxoplasmosis. Thus, reverse ELISA based on the capture of native SAG2A and SRS antigens of STAg by MAbs could be an additional approach for strengthening the helpfulness of serological tests assessing the stage of infection, particularly in combination with highly sensitive and specific assays that are frequently used nowadays for diagnosis of toxoplasmosis during pregnancy or congenital infection in newborns.

  13. Measurement of Circulating Progranulin (PGRN/GP88/GEP) by Enzyme-Linked Immunosorbent Assay and Application in Human Diseases.

    PubMed

    Serrero, Ginette; Hicks, David

    2018-01-01

    The enzyme-linked immunosorbent assay (ELISA) is a well-established methodology for detection of analytes in various biological fluids. The assay described herein has been validated for the detection of PGRN/GP88/GEP in blood (serum/ plasma), urine and cerebrospinal fluid (CSF), and synovial fluid and may also be used for breast milk, ductal lavage, nipple aspirates, and saliva. The ability to measure circulating levels of PGRN/GP88/GEP has proven to have clinical utility for several human diseases such as cancer where changes of PGRN/GP88/GEP can be determined as a mean to monitor disease status or response to therapy. In the case of frontotemporal dementia (FTD), the ability to measure PGRN/GP88/GEP levels in plasma and cerebrospinal fluid may be useful in distinguishing PGRN mutation carriers among FTD populations at large. The assay used is a sandwich ELISA where a highly specific antihuman PGRN/GP88/GEP monoclonal antibody is employed as a capture antibody coated on 96-well microplates. After contact with serum (or other bodily fluid), unbound material is washed away before application of another PGRN/GP88/GEP detecting antibody which in turn is detected by a horseradish peroxidase (HRP) conjugated antibody. After further washing to remove all unbound HRP, a substrate (TMB) is added, and after approximately 6 min, a color is developed and can be read as optical density at 620 nm (or 450 nm if using HCL as a stop solution) in a microplate reader. The test described herein is capable of measuring very low levels of PGRN/GP88/GEP such as 0.2 ng/mL as found in CSF of certain FTD patients. Additionally, we have demonstrated the potential clinical utility of measuring the changes of PGRN/GP88/GEP blood levels in cancer patients undergoing therapy.

  14. CO2 capture by means of an enzyme-based reactor

    NASA Technical Reports Server (NTRS)

    Cowan, R. M.; Ge, J-J; Qin, Y-J; McGregor, M. L.; Trachtenberg, M. C.

    2003-01-01

    We report a means for efficient and selective extraction of carbon dioxide (CO(2)) at low to medium concentration from mixed gas streams. CO(2) capture was accomplished by use of a novel enzyme-based, facilitated transport contained liquid membrane (EBCLM) reactor. The parametric studies we report explore both structural and operational parameters of this design. The structural parameters include carbonic anhydrase (CA) concentration, buffer concentration and pH, and liquid membrane thickness. The operational parameters are temperature, humidity of the inlet gas stream, and CO(2) concentration in the feed stream. The data show that this system effectively captures CO(2) over the range 400 ppm to at least 100,000 ppm, at or around ambient temperature and pressure. In a single pass across this homogeneous catalyst design, given a feed of 0.1% CO(2), the selectivity of CO(2) versus N(2) is 1,090 : 1 and CO(2) versus O(2) is 790 :1. CO(2) permeance is 4.71 x 10(-8) molm(-2) Pa(-1) sec(-1). The CLM design results in a system that is very stable even in the presence of dry feed and sweep gases.

  15. Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorus Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Wang, Limin

    We report a new approach for electrochemical quantification of enzymatic inhibition and phosphorylation for biomonitoring of exposure to organophosphorus (OP) pesticides and nerve agents based on a magnetic beads (MBs) immunosensing platform. The principle of this approach is based on the combination of MBs immuno-capture based enzyme activity assay and competitive immunoassay of total amount of enzyme for simultaneous detection of enzyme inhibition and phosphorylation in biological fluids. Butyrylcholinesterase (BChE) was chosen as a model enzyme. In competitive immunoassay, the target total BChE in a sample (mixture of OP-inhibited BChE and active BChE) competes with the BChE modified on themore » MBs to bind to the limited anti-BChE antibody labeled with quantum dots (QDs-anti-BChE), and followed by electrochemical stripping analysis of the bound QDs conjugate on the MBs. This assay shows a linear response over the total BChE concentration range of 0.1~20 nM. Simultaneously, real time BChE activity was measured on an electrochemical carbon nanotube-based sensor coupled with microflow injection system after immuno-capture by MBs-anti-BChE conjugate. Therefore, the formed phosphorylated adduct (OP-BChE) can be estimated by the difference values of the total amount BChE (including active and OP-inhibited) and active BChE from established calibration curves. This approach not only eliminates the difficulty in screening of low-dose OP exposure (less than 20% inhibition of BChE) because of individual variation of BChE values, but also avoids the drawback of the scarce availability of OP-BChE antibody. It is sensitive enough to detect 0.5 nM OP-BChE, which is less than 2% BChE inhibition. This method offers a new method for rapid, accurate, selective and inexpensive quantification of phosphorylated adducts and enzyme inhibition for biomonitoring of OP and nerve agent exposures.« less

  16. Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in Pseudomonas aeruginosa d-Arginine Dehydrogenase.

    PubMed

    Ouedraogo, Daniel; Souffrant, Michael; Vasquez, Sheena; Hamelberg, Donald; Gadda, Giovanni

    2017-05-16

    Mobile loops located at the active site entrance in enzymes often participate in conformational changes required to shield the reaction from bulk solvent, to control the access of the substrate to the active site, and to position residues for substrate binding and catalysis. In d-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH), previous crystallographic data suggested that residues 45-47 in the FAD-binding domain and residues 50-56 in the substrate-binding domain in loop L1 could adopt two distinct conformations. In this study, we have used molecular dynamics, kinetics, and fluorescence spectroscopy on the S45A and A46G enzyme variants of PaDADH to investigate the impact of mutations in loop L1 on the catalytic function of the enzyme. Molecular dynamics showed that the mutant enzymes have probabilities of being in open conformations that are higher than that of wild-type PaDADH of loop L1, yielding an increased level of solvent exposure of the active site. In agreement, the flavin fluorescence intensity was ∼2-fold higher in the S45A and A46G enzymes than in wild-type PaDADH, with a 9 nm bathochromic shift of the emission band. In the variant enzymes, the k cat /K m values with d-arginine were ∼13-fold lower than in wild-type PaDADH. Moreover, the pH profiles for the k cat value with d-arginine showed a hollow, consistent with restricted proton movements in catalysis, and no saturation was achieved with the alternate substrate d-leucine in the reductive half-reaction of the variant enzymes. Taken together, the computational and experimental data are consistent with the dynamics of loop L1 being important for substrate capture and catalysis in PaDADH.

  17. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    PubMed

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  18. Enzymatic cross-linking of soy proteins within non-fat set yogurt gel.

    PubMed

    Soleymanpuori, Rana; Madadlou, Ashkan; Zeynali, Fariba; Khosrowshahi, Asghar

    2014-08-01

    Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.

  19. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. Electronic supplementary information (ESI) available: Additional circular dichroism data and nanoparticle tracking analysis trace. See DOI: 10.1039/c6nr02009g

  20. Structural analysis of N-linked oligosaccharides from glycoproteins secreted by Dictyostelium discoideum: identification of mannose 6-sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-05

    The N-linked oligosaccharides found on the lysosomal enzymes from Dictyostelium discoideum are highly sulfated and contain methylphosphomannosyl residues. Here the authors report studies done on the structure of N-linked oligosaccharides found on proteins secreted during growth, a major portion of which are lysosomal enzymes. Cells were metabolically labeled with (2-/sup 3/H)Man and /sup 35/SO/sub 4/ and a portion of the oligosaccharides were released by a sequential digestion with endoglycosidase H followed by endoglycosidase/peptide N-glycosidase F preparations. The oligosaccharides were separated by anion exchange high performance liquid chromatography into fractions containing from one up to six negative charges. Some of themore » oligosaccharides contained only sulfate esters or phosphodiesters, but most contained both. Less than 2% of the oligosaccharides contained a phosphomonoester or an acid-sensitive phosphodiester typical of the mammalian lysosomal enzymes. A combination of acid and base hydrolysis suggested that most of the sulfate esters were linked to primary hydroxyl groups. The presence of Man-6-SO/sub 4/ was demonstrated by the appearance of 3,6-anhydromannose in acid hydrolysates of base-treated, reduced oligosaccharides.« less

  1. Chemical modification of Saccharomycopsis fibuligera R64 α-amylase to improve its stability against thermal, chelator, and proteolytic inactivation.

    PubMed

    Ismaya, Wangsa Tirta; Hasan, Khomaini; Kardi, Idar; Zainuri, Amalia; Rahmawaty, Rinrin Irma; Permanahadi, Satyawisnu; El Viera, Baiq Vera; Harinanto, Gunawan; Gaffar, Shabarni; Natalia, Dessy; Subroto, Toto; Soemitro, Soetijoso

    2013-05-01

    α-Amylase catalyzes hydrolysis of starch to oligosaccharides, which are further degraded to simple sugars. The enzyme has been widely used in food and textile industries and recently, in generation of renewable energy. An α-amylase from yeast Saccharomycopsis fibuligera R64 (Sfamy) is active at 50 °C and capable of degrading raw starch, making it attractive for the aforementioned applications. To improve its characteristics as well as to provide information for structural study ab initio, the enzyme was chemically modified by acid anhydrides (nonpolar groups), glyoxylic acid (GA) (polar group), dimethyl adipimidate (DMA) (cross-linking), and polyethylene glycol (PEG) (hydrophilization). Introduction of nonpolar groups increased enzyme stability up to 18 times, while modification by a cross-linking agent resulted in protection of the calcium ion, which is essential for enzyme activity and integrity. The hydrophilization with PEG resulted in protection against tryptic digestion. The chemical modification of Sfamy by various modifiers has thereby resulted in improvement of its characteristics and provided systematic information beneficial for structural study of the enzyme. An in silico structural study of the enzyme improved the interpretation of the results.

  2. Influence of galactose cataract on erythrocytic and lenticular glutathione metabolism in albino rats.

    PubMed

    Jyothi, M; Sanil, R; Shashidhar, S

    2011-01-01

    Glutathione depletion has been postulated to be the prime reason for galactose cataract. The current research seeks the prospect of targeting erythrocytes to pursue the lens metabolism by studying the glutathione system. To study the activity of the glutathione-linked scavenger enzyme system in the erythrocyte and lens of rats with cataract. Experiments were conducted in 36 male albino rats weighing 80 ± 20 g of 28 days of age. The rats were divided into two major groups, viz. experimental and control. Six rats in each group were sacrificed every 10 days, for 30 days. Cataract was induced in the experimental group by feeding the rats 30% galactose (w/w). The involvement of reduced glutathione (GSH) and the linked enzymes was studied in the erythrocytes and lens of cataractous as well as control rats. Parametric tests like one-way ANOVA and Student's 't' test were used for comparison. Correlation linear plot was used to compare the erythrocyte and lens metabolism. The concentration of GSH and the activity of linked enzymes were found decreased with the progression of cataract, and also in comparison to the control. The same linear fashion was also observed in the erythrocytes. Depletion of GSH was the prime factor for initiating galactose cataract in the rat model. This depletion may in turn result in enzyme inactivation leading to cross-linking of protein and glycation. The correlation analysis specifies that the biochemical mechanism in the erythrocytes and lens is similar in the rat model.

  3. Evaluation of a computer-assisted, kinetics-based enzyme-linked immunosorbent assay for detection of coronavirus antibodies in cats.

    PubMed Central

    Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W

    1983-01-01

    A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses. PMID:6300184

  4. Evaluation of a computer-assisted, kinetics-based enzyme-linked immunosorbent assay for detection of coronavirus antibodies in cats.

    PubMed

    Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W

    1983-02-01

    A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses.

  5. Production of rare ginsenosides (compound Mc, compound Y and aglycon protopanaxadiol) by β-glucosidase from Dictyoglomus turgidum that hydrolyzes β-linked, but not α-linked, sugars in ginsenosides.

    PubMed

    Lee, Gi-Woong; Kim, Kyoung-Rok; Oh, Deok-Kun

    2012-09-01

    Optimal hydrolytic activity of β-glucosidase from Dictyoglomus turgidum for the ginsenoside Rd was at pH 5.5 and 80 °C, with a half-life of ~11 h. The enzyme hydrolysed β-linked, but not α-linked, sugar moieties of ginsenosides. It produced the rare ginsenosides, aglycon protopanaxadiol (APPD), compounds Y, and Mc, via three unique transformation pathways: Rb(1) → Rd → F(2) → compound K → APPD, Rb(2) → compound Y, and Rc → compound Mc. The enzyme converted 0.5 mM Rb(2) and 0.5 mM Rc to 0.5 mM compound Y and 0.5 mM compound Mc after 3 h, respectively, with molar conversion yields of 100 %.

  6. Connected vehicle Data Capture and Management (DCM) and dynamic mobility applications (DMA) : assessment of relevant standards and gaps for candidate applications.

    DOT National Transportation Integrated Search

    2012-10-01

    The Connected Vehicle Mobility Standards Coordination Plan project links activities in three programs (Data Capture and Management, Dynamic Mobility Applications, and ITS Standards). The plan coordinates the timing, intent and relationship of activit...

  7. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response.

    PubMed

    Shah, Ashish K; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel

    2018-01-01

    The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.

  8. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  9. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    NASA Astrophysics Data System (ADS)

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi

    2016-05-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tianyong; Olson, Daniel G.; Tian, Liang

    Clostridium thermocellum and Thermoanaerobacterium saccharolyticumare thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticumproduce ethanol with a yield of 90% of the theoretical maximum, engineered strains ofC. thermocellumproduce ethanol at lower yields (~50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in theiradhEgenes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, theadhEgenes from six strains ofC. thermocellumandT. saccharolyticumwere cloned and expressed inEscherichia coli, the enzymesmore » produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains ofT. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain ofC. thermocellumhas acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced intoC. thermocellumandT. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. This work describes the characterization of the AdhE enzyme from different strains ofC. thermocellumandT. saccharolyticum.C. thermocellumandT. saccharolyticumare thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production byC. thermocellumandT. saccharolyticum.« less

  11. Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA.

    PubMed

    Frohnmeyer, Esther; Frisch, Farina; Falke, Sven; Betzel, Christian; Fischer, Markus

    2018-03-10

    Aptamers are single-stranded DNA or RNA oligonucleotides, which have been emerging as recognition elements in disease diagnostics and food control, including the detection of bacterial toxins. In this study, we employed the semi-automated just in time-selection to identify aptamers that bind to cholera toxin (CT) with high affinity and specificity. CT is the main virulence factor of Vibrio cholerae and the causative agent of the eponymous disease. For the selected aptamers, dissociation constants in the low nanomolar range (23-56 nM) were determined by fluorescence-based affinity chromatography and cross-reactivity against related proteins was evaluated by direct enzyme-linked aptamer assay (ELAA). Aptamer CT916 has a dissociation constant of 48.5 ± 0.5 nM and shows negligible binding to Shiga-like toxin 1B, protein A and BSA. This aptamer was chosen to develop a sandwich ELAA for the detection of CT from binding buffer and local tap water. Amine-C6- or biotin-modified CT916 was coupled to magnetic beads to serve as the capture element. Using an anti-CT polyclonal antibody as the reporter, detection limits of 2.1 ng/ml in buffer and 2.4 ng/ml in tap water, with a wide log-linear dynamic range from 1 ng/ml to 1000 ng/ml and 500 ng/ml, respectively, were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effective surveillance for early classical swine fever virus detection will utilize both virus and antibody detection capabilities.

    PubMed

    Panyasing, Yaowalak; Kedkovid, Roongtham; Thanawongnuwech, Roongroje; Kittawornrat, Apisit; Ji, Ju; Giménez-Lirola, Luis; Zimmerman, Jeffrey

    2018-03-01

    Early recognition and rapid elimination of infected animals is key to controlling incursions of classical swine fever virus (CSFV). In this study, the diagnostic characteristics of 10 CSFV assays were evaluated using individual serum (n = 601) and/or oral fluid (n = 1417) samples collected from -14 to 28 days post inoculation (DPI). Serum samples were assayed by virus isolation (VI), 2 commercial antigen-capture enzyme-linked immunosorbent assays (ELISA), virus neutralization (VN), and 3 antibody ELISAs. Both serum and oral fluid samples were tested with 3 commercial real-time reverse transcription-polymerase chain reaction (rRT-PCR) assays. One or more serum samples was positive by VI from DPIs 3 to 21 and by antigen-capture ELISAs from DPIs 6 to 17. VN-positive serum samples were observed at DPIs ≥ 7 and by antibody ELISAs at DPIs ≥ 10. CSFV RNA was detected in serum samples from DPIs 2 to 28 and in oral fluid samples from DPIs 4 to 28. Significant differences in assay performance were detected, but most importantly, no single combination of sample and assay was able to dependably identify CSFV-inoculated pigs throughout the 4-week course of the study. The results show that effective surveillance for CSFV, especially low virulence strains, will require the use of PCR-based assays for the detection of early infections (<14 days) and antibody-based assays, thereafter. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Serological Evaluation of Immunity to the Varicella-Zoster Virus Based on a Novel Competitive Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Liu, Jian; Ye, Xiangzhong; Jia, Jizong; Zhu, Rui; Wang, Lina; Chen, Chunye; Yang, Lianwei; Wang, Yongmei; Wang, Wei; Ye, Jianghui; Li, Yimin; Zhu, Hua; Zhao, Qinjian; Cheng, Tong; Xia, Ningshao

    2016-01-01

    Varicella-zoster virus (VZV) is a highly contagious agent of varicella and herpes zoster. Varicella can be lethal to immunocompromised patients, babies, HIV patients and other adults with impaired immunity. Serological evaluation of immunity to VZV will help determine which individuals are susceptible and evaluate vaccine effectiveness. A collection of 110 monoclonal antibodies (mAbs) were obtained by immunization of mice with membrane proteins or cell-free virus. The mAbs were well characterized, and a competitive sandwich ELISA (capture mAb: 8H6; labelling mAb: 1B11) was established to determine neutralizing antibodies in human serum with reference to the FAMA test. A total of 920 human sera were evaluated. The competitive sandwich ELISA showed a sensitivity of 95.6%, specificity of 99.77% and coincidence of 97.61% compared with the fluorescent-antibody-to-membrane-antigen (FAMA) test. The capture mAb 8H6 was characterized as a specific mAb for VZV ORF9, a membrane-associated tegument protein that interacts with glycoprotein E (gE), glycoprotein B (gB) and glycoprotein C (gC). The labelling mAb 1B11 was characterized as a complement-dependent neutralizing mAb specific for the immune-dominant epitope located on gE, not on other VZV glycoproteins. The established competitive sandwich ELISA could be used as a rapid and high-throughput method for evaluating immunity to VZV. PMID:26853741

  14. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios.

    PubMed Central

    Rutter, G A; Denton, R M

    1988-01-01

    1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system. PMID:3421900

  15. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Zunfeng; Voskamp, Patrick; Zhang, Yue; Chu, Fuqiang; Abrahams, Jan Pieter

    2013-04-01

    Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein-protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep•SWNT) can be used to capture the biotinylated DNA- EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg2+. Capturing the EcoRI-DNA complexes on the Strep•SWNT succeeded in the absence of Mg2+, demonstrating that the Strep•SWNT can be used for purifying unstable protein complexes.

  16. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA).

    PubMed

    Kai, Junhai; Puntambekar, Aniruddha; Santiago, Nelson; Lee, Se Hwan; Sehy, David W; Moore, Victor; Han, Jungyoup; Ahn, Chong H

    2012-11-07

    In this work we introduce a novel microfluidic enzyme linked immunoassays (ELISA) microplate as the next generation assay platform for unparalleled assay performances. A combination of microfluidic technology with standard SBS-configured 96-well microplate architecture, in the form of microfluidic microplate technology, allows for the improvement of ELISA workflows, conservation of samples and reagents, improved reaction kinetics, and the ability to improve the sensitivity of the assay by multiple analyte loading. This paper presents the design and characterization of the microfluidic microplate, and its application in ELISA.

  17. Detection of Antibodies to the Biofilm Exopolysaccharide of Histophilus somni following Infection in Cattle by Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Pan, Yu; Fisher, Taylor; Olk, Christina

    2014-01-01

    An enzyme-linked immunosorbent assay (ELISA) was developed to detect bovine antibodies to Histophilus somni exopolysaccharide (EPS), which is created during biofilm formation. When an index value of 0.268 was used, the sensitivity of the assay for infected calves was 90.5% at 3 weeks postinfection, but the number of positive animals increased by week 4. The specificity of the assay for healthy calves was 92.5%. The EPS ELISA may aid in identifying calves with H. somni diseases. PMID:25143338

  18. Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins.

    PubMed

    Carmichael, W W; An, J

    1999-01-01

    Cyanotoxins produced by cyanobacteria (blue-green algae) include potent neurotoxins and hepatotoxins. The hepatotoxins include cyclic peptide microcystins and nodularins plus the alkaloid cylindrospermopsins. Among the cyanotoxins the microcystins have proven to be the most widespread, and are most often implicated in animal and human poisonings. This paper presents a practical guide to two widely used methods for detecting and quantifying microcystins and nodularins in environmental samples-the enzyme linked immunosorbant assay (ELISA) and the protein phosphatase inhibition assay (PPIA).

  19. Binding Assays for the Quantitative Detection of P. brevis Polyether Neurotoxins in Biological Samples and Antibodies as Therapeutic Aids for Polyether Marine Intoxication

    DTIC Science & Technology

    1990-05-15

    was also linked to urease and toxin-enzyme conjugates were evaluated. 4. Toxin Enzyme Conjugates. Brevetoxins linked to either Jack Bean urease or...described in materials and methods. For urease conjugates, 1:2, 1:4 and 1:6 molar ratios were investigated. The following protocol yielded the most...fold excess urease in 1 volume equivalent of water, in three equal aliquots. Total volume after addition is 2-fold the volume in step [2], final

  20. Glycoprotein-based enzyme-linked immunosorbent assays for serodiagnosis of infectious laryngotracheitis.

    PubMed

    Kanabagatte Basavarajappa, Mallikarjuna; Song, Haichen; Lamichhane, Chinta; Samal, Siba K

    2015-05-01

    For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with vectored vaccine, using recombinant Newcastle disease virus (rNDV) expressing glycoprotein D (gD) as the vaccine vector. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus

    PubMed Central

    Wang, Yupeng; Khan, Iram F.; Boissel, Sandrine; Jarjour, Jordan; Pangallo, Joseph; Thyme, Summer; Baker, David; Scharenberg, Andrew M.; Rawlings, David J.

    2014-01-01

    LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20–22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)—a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering. PMID:24682825

  2. Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiguang; Wang, Yiran; Minteer, Shelley D.; Percival Zhang, Y.-H.

    Enzymatic fuel cells (EFCs) use a variety of fuels to generate electricity through oxidoreductase enzymes, such as oxidases or dehydrogenases, as catalysts on electrodes. We have developed a novel synthetic enzymatic pathway containing two free enzymes (maltodextrin phosphorylase and phosphoglucomutase) and one immobilized glucose-6-phosphate dehydrogenase that can utilize an oligomeric substrate maltodextrin for producing electrons mediated via a diaphorase and vitamin K 3 electron shuttle system. Three different enzyme immobilization approaches were compared based on electrostatic force entrapment, chemical cross-linking, and cross-linking with the aid of carbon nanotubes. At 10 mM glucose-6-phosphate (G6P) as a substrate concentration, the maximum power density of 0.06 mW cm -2 and retaining 42% of power output after 11 days were obtained through the method of chemical cross-linking with carbon nanotubes, approximately 6-fold and 3.5-fold better than those of the electrostatic force-based method, respectively. When changed to maltodextrin (degree of polymerization = 19) as the substrate, the EFC achieved a maximum power density of 0.085 mW cm -2. With the advantages of stable, low cost, high energy density, non-inhibitor to enzymes, and environmental friendly, maltodextrin is suggested to be an ideal fuel to power enzymatic fuel cells.

  3. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  4. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP+ Linked Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Singh, Siddhartha; Singh, Amit Kumar; Singh, M Chandrakumar; Pandey, Pramod Kumar

    2017-02-01

    Immobilization of enzymes is valuably important as it improves the stability and hence increases the reusability of enzymes. The present investigation is an attempt for immobilization of purified glucose-6-phosphate dehydrogenase from pigeon pea on different matrix. Maximum immobilization was achieved when alginate was used as immobilization matrix. As compared to soluble enzyme the alginate immobilized enzyme exhibited enhanced optimum pH and temperature. The alginate immobilized enzyme displayed more than 80% activity up to 7 continuous reactions and more than 50% activity up to 11 continuous reactions.

  5. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to usemore » {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.« less

  6. Biotechnology and the Food Industry.

    ERIC Educational Resources Information Center

    Henderson, Jenny; And Others

    1991-01-01

    Traditional and novel uses of enzymes and microbes in the baking, brewing, and dairy industries are described. Cheese, yogurt, baking, brewing, vinegar, soy sauce, single-cell proteins, enzymes, food modification, vanilla, citric acid, monosodium glutamate, xanthan gum, aspartame, and cochineal are discussed. Industrial links with firms involved…

  7. Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen.

    PubMed

    Dong, Huahuang; Liu, Jianli; Zhu, Hong; Ou, Chin-Yih; Xing, Wenge; Qiu, Maofeng; Zhang, Guiyun; Xiao, Yao; Yao, Jun; Pan, Pinliang; Jiang, Yan

    2012-08-31

    HIV-1 p24 antigen is a major viral component of human immunodeficiency virus type 1 (HIV-1) which can be used to identify persons in the early stage of infection and transmission of HIV-1 from infected mothers to infants. The detection of p24 is usually accomplished by using an enzyme-linked immunosorbent assay (ELISA) with low detection sensitivity. Here we report the use of two bio-barcode amplification (BCA) assays combined with polymerase chain reaction (PCR) and gel electrophoresis to quantify HIV-1 p24 antigen. A pair of anti-p24 monoclonal antibodies (mAbs) were used in BCA assays to capture HIV-1 p24 antigen in a sandwich format and allowed for the quantitative measurement of captured p24 using PCR and gel electrophoresis. The first 1 G12 mAb was coated on microplate wells or magnetic microparticles (MMPs) to capture free p24 antigens. Captured p24 in turn captured 1D4 mAb coated gold nanoparticle probes (GNPs) containing double-stranded DNA oligonucleotides. One strand of the oligonucleotides was covalently immobilized whereas the unbound complimentary bio-barcode DNA strand could be released upon heating. The released bio-barcode DNA was amplified by PCR, electrophoresed in agarose gel and quantified. The in-house ELISA assay was found to quantify p24 antigen with a limit of detection (LOD) of 1,000 pg/ml and a linear range between 3,000 and 100,000 pg/ml. In contrast, the BCA-based microplate method yielded an LOD of 1 pg/ml and a linear detection range from 1 to 10,000 pg/ml. The BCA-based MMP method yielded an LOD of 0.1 pg/ml and a linear detection range from 0.1 to 1,000 pg/ml. When combined with PCR and simple gel electrophoresis, BCA-based microplate and MMPs assays can be used to quantify HIV-1 p24 antigen. These methods are 3-4 orders of magnitude more sensitive than our in-house ELISA-based assay and may provide a useful approach to detect p24 in patients newly infected with HIV.

  8. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation.

    PubMed

    Droux, M; Miginiac-Maslow, M; Jacquot, J P; Gadal, P; Crawford, N A; Kosower, N S; Buchanan, B B

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with [14C]iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  9. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn,more » reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.« less

  10. DNA-programmable multiplexing for scalable, renewable redox protein bio-nanoelectronics.

    PubMed

    Withey, Gary D; Kim, Jin Ho; Xu, Jimmy

    2008-11-01

    A universal, site-addressable DNA linking strategy is deployed for the programmable assembly of multifunctional, long-lasting redox protein nanoelectronic devices. This addressable linker, the first incorporated into a redox enzyme-nanoelectronic system, promotes versatility and renewability by allowing the reconfiguration and replacement of enzymes at will. The linker is transferable to all redox proteins due to the simple conjugation chemistry involved. The efficacy of this linking strategy is assessed using two model enzymes, glucose oxidase (GOx) and alcohol dehydrogenase (ADH), self-assembled onto separate nanoelectrode regions comprised of a highly ordered carbon nanotube (CNT) array. The sequence-specificity of DNA hybridization provides the means of encoding spatial address to the self-assembling process that conjugates enzymes tagged with single-stranded DNA (ssDNA) to the tips of designated CNTs functionalized with the complementary strands. In this study, we demonstrate the feasibility of multiplexed, scalable, reconfigurable and renewable transduction of redox protein signals by virtue of DNA addressing.

  11. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites.

    PubMed

    Sakamoto, Seiichi; Putalun, Waraporn; Vimolmangkang, Sornkanok; Phoolcharoen, Waranyoo; Shoyama, Yukihiro; Tanaka, Hiroyuki; Morimoto, Satoshi

    2018-01-01

    Immunoassays are antibody-based analytical methods for quantitative/qualitative analysis. Since the principle of immunoassays is based on specific antigen-antibody reaction, the assays have been utilized worldwide for diagnosis, pharmacokinetic studies by drug monitoring, and the quality control of commercially available products. Berson and Yalow were the first to develop an immunoassay, known as radioimmunoassay (RIA), for detecting endogenous plasma insulin [1], a development for which Yalow was awarded the Nobel Prize in Physiology or Medicine in 1977. Even today, after half a century, immunoassays are widely utilized with some modifications from the originally proposed system, e.g., radioisotopes have been replaced with enzymes because of safety concerns regarding the use of radioactivity, which is referred to as enzyme immunoassay/enzyme-linked immunosorbent assay (ELISA). In addition, progress has been made in ELISA with the recent advances in recombinant DNA technology, leading to increase in the range of antibodies, probes, and even systems. This review article describes ELISA and its applications for the detection of plant secondary metabolites.

  12. A meta-analysis of soil exoenzyme responses to simulated climate change

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Espinosa, N. J.; Blankinship, J. C.; Gallery, R. E.

    2017-12-01

    Microorganisms produce extracellular enzymes to decompose plant matter and drive biogeochemical transformations in soils. Climate change factors, such as warming and altered precipitation patterns, can impact enzyme activity through both direct and indirect mechanisms. Although many individual studies have examined how soil exoenzyme activities respond to climate change manipulations, there is disagreement surrounding the direction of these responses. We performed a synthesis of published studies to examine the influence of warming and altered precipitation on microbial exoenzyme activity. We found that warming increased enzyme activity with a more pronounced effect for oxidative relative to hydrolytic enzymes. Reduced precipitation consistently decreased exoenzyme activity. These responses, however, varied by season, biome, and enzyme type. The majority of studies fitting our criteria (e.g., experiments lasting a minimum of one growing season, paired treatments and controls) were located in North America and Europe. Inferences from this analysis therefore exclude many important ecosystems such as hyper-arid, wetlands, and artic systems. Carbon degrading enzyme activities were less sensitive to climate change manipulations when compared to phosphorus and nitrogen degrading enzyme activities. Linking enzyme activity to biogeochemical processes requires concomitant measurements of organic and inorganic carbon pools, mineralogy, nutrients, microbial biomass and community structure, and heterotrophic respiration within individual studies. Furthermore, linking these parameters to climate and environmental factors will require a comprehensive and consistent inclusion of biotic and abiotic variables among researchers and experiments. Globally, soils contain the largest carbon pools. Understanding the impacts of large-scale perturbations on soil enzyme activity will help to constrain predictions on the fate of biogeochemical transformations and improve model projections.

  13. Development and characterization of serotype-specific monoclonal antibodies against the dengue virus-4 (DENV-4) non-structural protein (NS1).

    PubMed

    Gelanew, Tesfaye; Hunsperger, Elizabeth

    2018-02-06

    Dengue, caused by one of the four serologically distinct dengue viruses (DENV-1 to - 4), is a mosquito-borne disease of serious global health significance. Reliable and cost-effective diagnostic tests, along with effective vaccines and vector-control strategies, are highly required to reduce dengue morbidity and mortality. Evaluation studies revealed that many commercially available NS1 antigen (Ag) tests have limited sensitivity to DENV-4 serotype compared to the other three serotypes. These studies indicated the need for development of new NS1 Ag detection test with improved sensitivity to DENV-4. An NS1 capture enzyme linked immunoassay (ELISA) specific to DENV-4 may improve the detection of DENV-4 cases worldwide. In addition, a serotype-specific NS1 Ag test identifies both DENV and the infecting serotype. In this study, we used a small-ubiquitin-like modifier (SUMO*) cloning vector to express a SUMO*-DENV-4 rNS1 fusion protein to develop NS1 DENV-4 specific monoclonal antibodies (MAbs). These newly developed MAbs were then optimized for use in an anti-NS1 DENV-4 capture ELISA. The serotype specificity and sensitivity of this ELISA was evaluated using (i) supernatants from DENV (1-4)-infected Vero cell cultures, (ii) rNS1s from all the four DENV (1-4) and, (iii) rNS1s of related flaviviruses (yellow fever virus; YFV and West Nile virus; WNV). From the evaluation studies of the newly developed MAbs, we identified three DENV-4 specific anti-NS1 MAbs: 3H7A9, 8A6F2 and 6D4B10. Two of these MAbs were optimal for use in a DENV-4 serotype-specific NS1 capture ELISA: MAb 8A6F2 as the capture antibody and 6D4B10 as a detection antibody. This ELISA was sensitive and specific to DENV-4 with no cross-reactivity to other three DENV (1-3) serotypes and other heterologous flaviviruses. Taken together these data indicated that our MAbs are useful reagents for the development of DENV-4 immunodiagnostic tests.

  14. Paper-based Devices for Isolation and Characterization of Extracellular Vesicles

    PubMed Central

    Chen, Chihchen; Lin, Bo-Ren; Hsu, Min-Yen; Cheng, Chao-Min

    2015-01-01

    Extracellular vesicles (EVs), membranous particles released from various types of cells, hold a great potential for clinical applications. They contain nucleic acid and protein cargo and are increasingly recognized as a means of intercellular communication utilized by both eukaryote and prokaryote cells. However, due to their small size, current protocols for isolation of EVs are often time consuming, cumbersome, and require large sample volumes and expensive equipment, such as an ultracentrifuge. To address these limitations, we developed a paper-based immunoaffinity platform for separating subgroups of EVs that is easy, efficient, and requires sample volumes as low as 10 μl. Biological samples can be pipetted directly onto paper test zones that have been chemically modified with capture molecules that have high affinity to specific EV surface markers. We validate the assay by using scanning electron microscopy (SEM), paper-based enzyme-linked immunosorbent assays (P-ELISA), and transcriptome analysis. These paper-based devices will enable the study of EVs in the clinic and the research setting to help advance our understanding of EV functions in health and disease. PMID:25867034

  15. In vitro selection of single-stranded DNA molecular recognition elements against S. aureus alpha toxin and sensitive detection in human serum.

    PubMed

    Hong, Ka L; Battistella, Luisa; Salva, Alysia D; Williams, Ryan M; Sooter, Letha J

    2015-01-27

    Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX) variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE) targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA) was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.

  16. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    NASA Astrophysics Data System (ADS)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  17. Wild Birds in Romania Are More Exposed to West Nile Virus Than to Newcastle Disease Virus.

    PubMed

    Paştiu, Anamaria Ioana; Pap, Péter László; Vágási, Csongor István; Niculae, Mihaela; Páll, Emőke; Domşa, Cristian; Brudaşcă, Florinel Ghe; Spînu, Marina

    2016-03-01

    The aim of this study was to evaluate the seroprevalence of West Nile virus (WNV) and Newcastle disease virus (NDV) in wild and domestic birds from Romania. During 2011-2014, 159 plasma samples from wild birds assigned to 11 orders, 27 families, and 61 species and from 21 domestic birds (Gallus gallus domesticus, Anas platyrhynchos domesticus) were collected. The sera were assayed by two commercial competitive enzyme-linked immunosorbent assay (cELISA) kits for antibodies against WNV and NDV. We found a high prevalence of WNV antibodies in both domestic (19.1%) and wild (32.1%) birds captured after the human epidemic in 2010. Moreover, the presence of anti-NDV antibodies among wild birds from Romania (5.4%) was confirmed serologically for the first time, as far as we are aware. Our findings provide evidence that wild birds, especially resident ones are involved in local West Nile and Newcastle disease enzootic and epizootic cycles. These may allow virus maintenance and spread and also enhance the chance of new outbreaks.

  18. Comparison of antigen-capture ELISA to stool-culture methods for the detection of asymptomatic Entamoeba species infection in Kafer Daoud, Egypt.

    PubMed

    Abd-Alla, M D; Wahib, A A; Ravdin, J I

    2000-05-01

    We performed a prospective field study in the village of Kafer Daoud in Menofia, Egypt to compare the fecal culture method with enzyme linked immuno assay (ELISA) for detection of 170 kDa lectin antigen in feces for diagnosis of asymptomatic Entamoeba histolytica and Entamoeba dispar infection. All subjects with E. histolytica or E. dispar infection detected by culture also had positive ELISA for amebic antigen in their feces and an additional 57 Entameoba infections missed by culture were detected by ELISA (P < 0.001 compared to culture). The presence of fecal anti-lectin IgA antibodies and serum anti-LC3 (recombinant cysteine-rich lectin protein) IgG antibodies were positive predictors for E. histolytica infection (P < 0.03). Of interest, infection with Trichomonas hominis but not Blastocystis hominis was positively associated with E. histolytica infection (P < 0.05). In conclusion, ELISA for detection of fecal lectin antigen is a more sensitive method than fecal culture for detecting asymptomatic E. histolytica infection.

  19. Development of an algorithm for production of inactivated arbovirus antigens in cell culture

    PubMed Central

    Goodman, C.H.; Russell, B.J.; Velez, J.O.; Laven, J.J.; Nicholson, W.L; Bagarozzi, D.A.; Moon, J.L.; Bedi, K.; Johnson, B.W.

    2015-01-01

    Arboviruses are medically important pathogens that cause human disease ranging from a mild fever to encephalitis. Laboratory diagnosis is essential to differentiate arbovirus infections from other pathogens with similar clinical manifestations. The Arboviral Diseases Branch (ADB) reference laboratory at the CDC Division of Vector-Borne Diseases (DVBD) produces reference antigens used in serological assays such as the virus-specific immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Antigen production in cell culture has largely replaced the use of suckling mice; however, the methods are not directly transferable. The development of a cell culture antigen production algorithm for nine arboviruses from the three main arbovirus families, Flaviviridae, Togaviridae, and Bunyaviridae, is described here. Virus cell culture growth and harvest conditions were optimized, inactivation methods were evaluated, and concentration procedures were compared for each virus. Antigen performance was evaluated by the MAC-ELISA at each step of the procedure. The antigen production algorithm is a framework for standardization of methodology and quality control; however, a single antigen production protocol was not applicable to all arboviruses and needed to be optimized for each virus. PMID:25102428

  20. Novel immunoassay and rapid immunoaffinity chromatography method for the detection and selective extraction of naringin in Citrus aurantium.

    PubMed

    Qu, Huihua; Zhang, Yue; Qu, Baoping; Cheng, Jinjun; Liu, Shuchen; Feng, Shenglan; Wang, Qingguo; Zhao, Yan

    2016-04-01

    In this work, a novel monoclonal antibody specific for naringin was prepared and characterized. Subsequently, an indirect competitive enzyme-linked immunosorbent assay for naringin was developed, with an effective range from 4.8 to 156 ng/mL naringin. Next, an immunoaffinity column was obtained by coupling anti-naringin monoclonal antibodies to CNBr-activated Sepharose 4B and a rapid immunoaffinity chromatography assay for naringin was developed. The immunoaffinity column was used to separate naringin from Citrus aurantium. The results showed that 1 g of the dry Sepharose 4B can couple 10 mg of immunoglobulin G. And the immunoaffinity column can efficiently and specifically capture approximately 250 μg of naringin without cross reacting with its structurally similar compounds. Moreover, our results indicate that the application of immunoaffinity chromatography can simplify the pretreatment and the isolation process greatly compared to conventional methods, providing a potential method for extracting the target component from structurally similar compounds in natural products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Identification of target proteins of mangiferin in mice with acute lung injury using functionalized magnetic microspheres based on click chemistry.

    PubMed

    Wang, Jiajia; Nie, Yan; Li, Yunjuan; Hou, Yuanyuan; Zhao, Wei; Deng, Jiagang; Wang, Peng George; Bai, Gang

    2015-11-18

    Prevention of the occurrence and development of inflammation is a vital therapeutic strategy for treating acute lung injury (ALI). Increasing evidence has shown that a wealth of ingredients from natural foods and plants have potential anti-inflammatory activity. In the present study, mangiferin, a natural C-glucosyl xanthone that is primarily obtained from the peels and kernels of mango fruits and the bark of the Mangifera indica L. tree, alleviated the inflammatory responses in lipopolysaccharide (LPS)-induced ALI mice. Mangiferin-modified magnetic microspheres (MMs) were developed on the basis of click chemistry to capture the target proteins of mangiferin. Mass spectrometry and molecular docking identified 70 kDa heat-shock protein 5 (Hspa5) and tyrosine 3-monooxygenase (Ywhae) as mangiferin-binding proteins. Furthermore, an enzyme-linked immunosorbent assay (ELISA) indicated that mangiferin exerted its anti-inflammatory effect by binding Hspa5 and Ywhae to suppress downstream mitogen-activated protein kinase (MAPK) signaling pathways. Thoroughly revealing the mechanism and function of mangiferin will contribute to the development and utilization of agricultural resources from M. indica L.

  2. Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis.

    PubMed

    Trier, Nicole Hartwig; Holm, Bettina Eide; Heiden, Julie; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar

    2018-02-27

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Anti-citrullinated protein antibodies (ACPA) are crucial for the serological diagnosis of RA, where Epstein-Barr virus (EBV) has been suggested to be an environmental agent in triggering the onset of the disease. This study aimed to analyse antibody reactivity to citrullinated EBV nuclear antigen-2 (EBNA-2) peptides from three different EBV strains (B95-8, GD1 and AG876) using streptavidin capture enzyme-linked immunosorbent assay. One peptide, only found in a single strain (AG876), obtained a sensitivity and specificity of 77% and 95%, respectively and showed high sequence similarity to the filaggrin peptide originally used for ACPA detection. Comparison of antibody reactivity to commercial assays found that the citrullinated peptide was as effective in detecting ACPA as highly sensitive and specific commercial assays. The data presented demonstrate that the citrullinated EBNA-2 peptide indeed is recognised specifically by RA sera and that the single peptide is able to compete with assays containing multiple peptides. Furthermore, it could be hypothesized that RA may be caused by (a) specific strain(s) of EBV.

  3. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    PubMed Central

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-01-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings. PMID:24786974

  4. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  5. Study in Mice Links Key Signaling Molecule to Underlying Cause of Osteogenesis Imperfecta

    MedlinePlus

    ... by mutations in a gene that codes for collagen, an abundant structural component of bone. This type ... linked to defects in enzymes that help process collagen to its mature form. These types of OI ...

  6. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  7. Effect of ageing and ischemia on enzymatic activities linked to Krebs' cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex.

    PubMed

    Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried

    2009-12-01

    The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light mitochondria seems to be more affected in aged animals. These data allow the hypothesis that the observed modifications of catalytic activities in non-synaptic and intra-synaptic mitochondrial enzyme systems linked to energy metabolism, amino acids and glutamate metabolism are primary responsible for the physiopathological responses of cerebral tissue to complete cerebral ischemia for 15 min duration during ageing.

  8. Old Yellow Enzyme: Stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization

    PubMed Central

    Meah, Younus; Massey, Vincent

    2000-01-01

    The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme. PMID:10995477

  9. Preparation and characterization of a dextran-amylase conjugate.

    PubMed

    Marshall, J J

    1976-07-01

    Bacillus amyloliquefaciens alpha-amylase was attached to dextran after activation of the polysaccharide by using a modification of the cyanogen bromide method. The soluble dextran-amylase conjugate was purified by molecular-sieve chromatography. The conjugated enzyme has greater stability than the unmodified enzyme at low pH values, during heat treatment, and on removal of calcium ions with a chelating agent. Attachment of dextran to alpha-amylase did not alter the Michaelis constant of the enzyme acting on starch. The polysaccharide-enzyme conjugate probably consists of a cross-linked aggregate of many dextran and many enzyme molecules, in which a proportion of the enzyme molecules, although not inactivated, are unable to express their activity, except after dextranase treatment.

  10. Comparison of desmoglein ELISA and indirect immunofluorescence using two substrates (monkey oesophagus and normal human skin) in the diagnosis of pemphigus.

    PubMed

    Ng, Patricia P L; Thng, Steven T G; Mohamed, Khatija; Tan, Suat Hoon

    2005-11-01

    A prospective study was performed to assess the usefulness of desmoglein enzyme-linked immunosorbent assay testing compared with indirect immunofluorescence in the diagnosis of new cases of pemphigus, as well as to compare the relative sensitivities of monkey oesophagus and normal human skin as substrates for indirect immunofluorescence. These tests were performed on the sera of 29 consecutive new cases of pemphigus diagnosed over a 2-year period based on clinical, histological and direct immunofluorescence findings. Desmoglein enzyme-linked immunosorbent assay was positive in all patients whereas indirect immunofluorescence was positive in only 25 of 29 patients. All four patients with negative indirect immunofluorescence had positive antinuclear antibodies or cytoplasmic fluorescence that could have masked the anti-intercellular antibodies. Desmoglein enzyme-linked immunosorbent assay appeared to reflect the disease activity better than indirect immunofluorescence in a few patients who had active disease of recent onset. Monkey oesophagus was found to be superior or equal to human skin as a substrate for indirect immunofluorescence in both pemphigus vulgaris and foliaceus.

  11. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl.

    PubMed

    Zhang, Can; Cui, Hanyu; Han, Yufeng; Yu, Fangfang; Shi, Xiaoman

    2018-02-01

    A biomimetic enzyme-linked immunosorbent assay (BELISA) which was based on molecularly imprinted polymers on paper (MIPs-paper) with specific recognition was developed. As a detector, the surface of paper was modified with γ-MAPS by hydrolytic action and anchored the MIP layer on γ-MAPS modified-paper by copolymerization to construct the artificial antibody Through a series of experimentation and verification, we successful got the MIPs-paper and established BELISA for the detection of carbaryl. The development of MIPs-paper based on BELISA was applied to detect carbaryl in real samples and validated by an enzyme-linked immunosorbent assay (ELISA) based on anti-carbaryl biological antibody. The results of these two methods (BELISA and ELISA) were well correlated (R 2 =0.944). The established method of MIPs-paper BELISA exhibits the advantages of low cost, higher stability and being re-generable, which can be applied as a convenient tool for the fast and efficient detection of carbaryl. Copyright © 2017. Published by Elsevier Ltd.

  12. Microbubble Enzyme-Linked Immunosorbent Assay for the Detection of Targeted Microbubbles in in Vitro Static Binding Assays.

    PubMed

    Wischhusen, Jennifer; Padilla, Frederic

    2017-07-01

    Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Simultaneous capture and in situ analysis of circulating tumor cells using multiple hybrid nanoparticles.

    PubMed

    Lee, Hun Joo; Cho, Hyeon-Yeol; Oh, Jin Ho; Namkoong, Kak; Lee, Jeong Gun; Park, Jong-Myeon; Lee, Soo Suk; Huh, Nam; Choi, Jeong-Woo

    2013-09-15

    Using hybrid nanoparticles (HNPs), we demonstrate simultaneous capture, in situ protein expression analysis, and cellular phenotype identification of circulating tumor cells (CTCs). Each HNP consists of three parts: (i) antibodies that bind specifically to a known biomarker for CTCs, (ii) a quantum dot that emits fluorescence signals, and (iii) biotinylated DNA that allows capture and release of CTC-HNP complex to an in-house developed capture & recovery chip (CRC). To evaluate our approach, cells representative of different breast cancer subtypes (MCF-7: luminal; SK-BR-3: HER2; and MDA-MB-231: basal-like) were captured onto CRC and expressions of EpCAM, HER2, and EGFR were detected concurrently. The average capture efficiency of CTCs was 87.5% with identification accuracy of 92.4%. Subsequently, by cleaving the DNA portion with restriction enzymes, captured cells were released at efficiencies of 86.1%. Further studies showed that these recovered cells are viable and can proliferate in vitro. Using HNPs, it is possible to count, analyze in situ protein expression, and culture CTCs, all from the same set of cells, enabling a wide range of molecular- and cellular-based studies using CTCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Cloning and characterization of alpha-glucuronidase enzyme

    USDA-ARS?s Scientific Manuscript database

    Hemicellulose is the second largest source of biomass on Earth. Xylan, a polymer of beta-1,4-linked xylose residues, is a common component of hemicellulose. The enzymes xylanase and beta-xylosidase hydrolyze the xylan into xylose which can then be fermented into value-added products. However, the...

  15. Preparation of a Magnetically Switchable Bioelectrocatalytic System Employing Cross-Linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinwoo; Lee, Dohun; Oh, Eunkeu

    2005-11-18

    Nanostructured magnetic materials (NMMs)[1] have attracted much attention recently because of their broad biotechnological applications including support matrices for enzyme immobilization,[2] immunoassays,[3] drug delivery,[4] and biosensors.[ 5] Specifically, the easy separation and controlled placement of NMMs by means of an external magnetic field enables their application in the development of immobilized enzyme processes[2] and the construction of magnetically controllable bio-electrocatalytic systems.[5, 6] Herein, we demonstrate the use of immobilized enzymes in NMMs for magnetically switchable bio-electrocatalysis.

  16. Membrane contactors for CO2 capture processes - critical review

    NASA Astrophysics Data System (ADS)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  17. Hematology, plasma biochemistry, and tissue enzyme activities of invasive red lionfish captured off North Carolina, USA.

    PubMed

    Anderson, E T; Stoskopf, M K; Morris, J A; Clarke, E O; Harms, C A

    2010-12-01

    The red lionfish Pterois volitans is important not only in the aquarium trade but also as an invasive species in the western Atlantic. Introduced to waters off the southeastern coast of the United States, red lionfish have rapidly spread along much of the East Coast and throughout Bermuda, the Bahamas, and much of the Caribbean. Hematology and plasma biochemistry were evaluated in red lionfish captured from the offshore waters of North Carolina to establish baseline parameters for individual and population health assessment. Blood smears were evaluated for total and differential white blood cell counts, and routine clinical biochemical profiles were performed on plasma samples. To improve the interpretive value of routine plasma biochemistry profiles, tissue enzyme activities (alkaline phosphatase [ALP], alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma-glutamyl transferase [GGT], lactate dehydrogenase [LD], and creatine kinase [CK]) were analyzed from liver, kidney, skeletal muscle, gastrointestinal tract, and heart tissues from five fish. The hematological and plasma biochemical values were similar to those of other marine teleosts except that the estimated white blood cell counts were much lower than those routinely found in many species. The tissue enzyme activity findings suggest that plasma LD, CK, and AST offer clinical relevance in the assessment of red lionfish.

  18. Development of electrochemical biosensors with various types of zeolites

    NASA Astrophysics Data System (ADS)

    Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.

    2018-03-01

    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.

  19. Adsorption induced enzyme denaturation: the role of polymer hydrophobicity in adsorption and denaturation of alpha-chymotrypsin on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers.

    PubMed

    Lahari, Challa; Jasti, Lakshmi S; Fadnavis, Nitin W; Sontakke, Kalpana; Ingavle, Ganesh; Deokar, Sarika; Ponrathnam, Surendra

    2010-01-19

    Effects of changes in hydrophobicity of polymeric support on structure and activity of alpha-chymotrypsin (E.C. 3.4.21.1) have been studied with copolymers of allyl glycidyl ether (AGE) and ethylene glycol dimethacrylate (EGDM) with increasing molar ratio of EGDM to AGE (cross-link density 0.05 to 1.5). The enzyme is readily adsorbed from aqueous buffer at room temperature following Langmuir adsorption isotherms in unexpectedly large amounts (25% w/w). Relative hydrophobicity of the copolymers has been assessed by studying adsorption of naphthalene and Fmoc-methionine by the series of copolymers from aqueous solutions. Polymer hydrophobicity appears to increase linearly on increasing cross-link density from 0.05 to 0.25. Further increase in cross-link density causes a decrease in naphthalene binding but has little effect on binding of Fmoc-Met. Binding of alpha-chymotrypsin to these copolymers follow the trend for Fmoc-methionine binding, rather than naphthalene binding, indicating involvement of polar interactions along with hydrophobic interactions during binding of protein to the polymer. The adsorbed enzyme undergoes extensive denaturation (ca. 80%) with loss of both tertiary and secondary structure on contact with the copolymers as revealed by fluorescence, CD and Raman spectra of the adsorbed protein. Comparison of enzyme adsorption behavior with Eupergit C, macroporous Amberlite XAD-2, and XAD-7 suggests that polar interactions of the EGDM ester functional groups with the protein play a significant role in enzyme denaturation.

  20. Placental sulfatase deficiency: maternal and fetal expression of steroid sulfatase deficiency and X-linked ichthyosis.

    PubMed

    Bradshaw, K D; Carr, B R

    1986-07-01

    PSD-X-linked ichthyosis are manifestations of a similar disorder of an inborn error of metabolism characterized by a deficiency of steroid sulfatase. The decreased enzyme activity is due to the absence of the expression of enzyme (steroid sulfatase) protein. Affected individuals with this disorder are males (X-linked inheritance) with a frequency of 1/2000 to 1/6000 births. Homozygous females from cosanguineous marriages have been reported with this disorder. The diagnosis is suspected and confirmed by: Low estriol excretion; Negative DHEAS loading test Increased DHEAS in amnionic fluid; Normal DHEAS in cord plasma; Possible delayed or abnormal labor patterns; Decreased sulfatase activity in the placenta, fibroblast, erythrocytes, lymphocytes or leukocytes of affected individuals; Development of ichthyosis in male infants at 2 to 3 months of age.

  1. A homolog of Drosophila grainy head is essential for epidermal integrity in mice.

    PubMed

    Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M

    2005-04-15

    The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.

  2. Comparison of commercial enzyme-linked immunosorbent assay kits with agar gel precipitation and hemagglutination-inhibition tests for detecting antibodies to avian influenza viruses.

    PubMed

    Shiraishi, Rikiya; Nishiguchi, Akiko; Tsukamoto, Kenji; Muramatsu, Masatake

    2012-09-01

    We evaluated the utility of 5 commercial enzyme-linked immunosorbent assay (ELISA) kits for detecting antibodies to avian influenza viruses. The sensitivities and specificities of the ELISA kits were compared with those of the agar gel precipitation (AGP) and hemagglutination-inhibition (HI) tests. The results suggest that some ELISA kits might not be suitable for monitoring during the early stages of avian influenza virus infections. Therefore, ELISA kits should only be used in conjunction with a profound knowledge about monitoring of avian influenza.

  3. Sources of variation in an enzyme-linked immunoassay of bluetongue virus in Culicoides variipennis (Diptera: Ceratopogonidae).

    PubMed

    Tabachnick, W J; Mecham, J O

    1991-03-01

    An enzyme-linked immunoassay for detecting bluetongue virus in infected Culicoides variipennis was evaluated using a nested analysis of variance to determine sources of experimental error in the procedure. The major source of variation was differences among individual insects (84% of the total variance). Storing insects at -70 degrees C for two months contributed to experimental variation in the ELISA reading (14% of the total variance) and should be avoided. Replicate assays of individual insects were shown to be unnecessary, since variation among replicate wells and plates was minor (2% of the total variance).

  4. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate.

    PubMed

    Lai, Wenqiang; Tang, Dianping; Zhuang, Junyang; Chen, Guonan; Yang, Huanghao

    2014-05-20

    This work reports on a simple and feasible colorimetric immunoassay with signal amplification for sensitive determination of prostate-specific antigen (PSA, used as a model) at an ultralow concentration by using a new enzyme-chromogenic substrate system. We discovered that glucose oxidase (GOx), the enzyme broadly used in enzyme-linked immunosorbent assay (ELISA), has the ability to stimulate in situ formation of squaric acid (SQA)-iron(III) chelate. GOx-catalyzed oxidization of glucose leads to the formation of gluconic acid and hydrogen peroxide (H2O2). The latter can catalytically oxidize iron(II) to iron(III), which can rapidly (<1 min) coordinate with the SQA. Formation of the iron-squarate complex causes the color of the solution to change from bluish purple to bluish red accompanying the increasing absorbance with the increment of iron(III) concentration. On the basis of the SQA-iron(III) system, a new immunoassay protocol with GOx-labeled anti-PSA detection antibody can be designed for the detection of target PSA on capture antibody-functionalized magnetic immunosensing probe, monitored by recording the color or absorbance (λ = 468 nm) of the generated SQA-iron(III) chelate. The absorbance intensity shows to be dependent on the concentration of target PSA. A linear dependence between the absorbance and target PSA concentration is obtained under optimal conditions in the range from 1.0 pg mL(-1) to 30 ng mL(-1) with a detection limit (LOD) of 0.5 pg mL(-1) (0.5 ppt) estimated at the 3Sblank level. The sensitivity displays to be 3-5 orders of magnitude better than those of most commercialized human PSA ELISA kits. In addition, the developed colorimetric immunoassay was validated by assaying 12 human serum samples, receiving in good accordance with those obtained by the commercialized PSA ELISA kit. Importantly, the SQA-based immunosensing system can be further extended for the detection of other low-abundance proteins or biomarkers by controlling the target antibody.

  5. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities

    PubMed Central

    Joyet, Philippe; Mokhtari, Abdelhamid; Riboulet-Bisson, Eliette; Blancato, Víctor S.; Espariz, Martin; Magni, Christian; Sauvageot, Nicolas

    2017-01-01

    ABSTRACT Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose. IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis. PMID:28455338

  6. Studies of a Halophilic NADH Dehydrogenase. 1: Purification and Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Dalton, Bonnie P.

    1973-01-01

    An NADH dehydrogenase obtained from an extremely halophilic bacterium was purified 570-fold by a combination of gel filtration, chromatography on hydroxyapatite, and ion-exchange chromatography on QAE-Sephadex. The purified enzyme appeared to be FAD-linked and bad an apparent molecular weight of 64000. Even though enzyme activity was stimulated by NaCl, considerable activity (430 % of the maximum activity observed in the presence of 2.5 M NaCl) was observed in the absence of added NaCl. The enzyme was unstable when incubated in solutions of low ionic strength. The presence of NADH enhanced the stability of the enzyme.

  7. Enzyme-linked immunosorbent assays for determination of plasma aldosterone using highly specific polyclonal antibodies.

    PubMed

    Schwartz, F; Hadas, E; Harnik, M; Solomon, B

    1990-01-01

    Two enzyme-linked immunosorbent assays were established and compared for the estimation of plasma aldosterone. In the first method immobilized aldosterone-protein complexes on the ELISA plates compete with aldosterone to be determined for the binding of certain amount of anti-aldosterone antibodies. The sensitivity of this method depends on the protein carrier used to conjugate with aldosterone. In the second method, anti-aldosterone antibodies adsorbed on ELISA plates compete for binding of known amount of the enzyme-labeled aldosterone and aldosterone to be determined. The highly specific rabbit anti-aldosterone antibodies were obtained by injection of aldosterone-oxime thyroglobulin. The detection limit of aldosterone in both methods ranged between 2-20 pg. The proposed assays are suitable for the determination of aldosterone in biological fluids compared with other reported ELISA assays, as well as with RIA.

  8. Microvolume, kinetic-dependent enzyme-linked immunosorbent assay for amoeba antibodies.

    PubMed Central

    Mathews, H M; Walls, K W; Huong, A Y

    1984-01-01

    We describe a microvolume enzyme-linked immunosorbent assay based on enzyme rate kinetics. Antigens from Entamoeba histolytica were adsorbed in wells of disposable polystyrene strips containing 12 flat-bottom wells. After exposure to the serum of a patient and peroxidase-labeled anti-human immunoglobulin G, the rate of color change in specific substrate was determined by eight sequential readings of individual wells over a 2-min period with a microcomputer-controlled model MR-600 automated plate reader. The changes in absorbance readings were converted to slope values for each well by the microcomputer. Thus, 12 samples were read, and results were printed in ca. 3.5 min. Assay conditions are described and data are presented to show that this assay is quantitative for antibody and antigen concentration with a single-tube (well) dilution. PMID:6321547

  9. A little sugar goes a long way: The cell biology of O-GlcNAc

    PubMed Central

    2015-01-01

    Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate–GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport. PMID:25825515

  10. High-throughput assays for DNA gyrase and other topoisomerases

    PubMed Central

    Maxwell, Anthony; Burton, Nicolas P.; O'Hagan, Natasha

    2006-01-01

    We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format. PMID:16936317

  11. High-throughput assays for DNA gyrase and other topoisomerases.

    PubMed

    Maxwell, Anthony; Burton, Nicolas P; O'Hagan, Natasha

    2006-01-01

    We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format.

  12. Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.

    PubMed

    Irani, Seema; Naowarojna, Nathchar; Tang, Yang; Kathuria, Karan R; Wang, Shu; Dhembi, Anxhela; Lee, Norman; Yan, Wupeng; Lyu, Huijue; Costello, Catherine E; Liu, Pinghua; Zhang, Yan Jessie

    2018-05-17

    Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme

    PubMed Central

    Bailey, Lucas J; Tan, Yong Zi; Wei, Hui; Wang, Andrew; Farcasanu, Mara; Woods, Virgil A; McCord, Lauren A; Lee, David; Shang, Weifeng; Deprez-Poulain, Rebecca; Deprez, Benoit; Liu, David R; Koide, Akiko; Koide, Shohei; Kossiakoff, Anthony A

    2018-01-01

    Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies. PMID:29596046

  14. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... immunosorbent assay test (ELISA), or the rapid serum test for all poultry; and the stained antigen, rapid whole... test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that react on the stained... enzyme-linked immunosorbent assay (ELISA) test,3 a polymerase chain reaction (PCR)-based test, or a...

  15. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... immunosorbent assay test (ELISA), or the rapid serum test for all poultry; and the stained antigen, rapid whole... test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that react on the stained... enzyme-linked immunosorbent assay (ELISA) test,3 a polymerase chain reaction (PCR)-based test, or a...

  16. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... immunosorbent assay test (ELISA), or the rapid serum test for all poultry; and the stained antigen, rapid whole... test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that react on the stained... enzyme-linked immunosorbent assay (ELISA) test,3 a polymerase chain reaction (PCR)-based test, or a...

  17. Characterising Complex Enzyme Reaction Data

    PubMed Central

    Rahman, Syed Asad; Thornton, Janet M.

    2016-01-01

    The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution. PMID:26840640

  18. Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof

    DOEpatents

    Woodward, J.

    1998-12-08

    This research provides a structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads. 7 figs.

  19. Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof

    DOEpatents

    Woodward, Jonathan

    1998-01-01

    A structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads.

  20. Metabolome of human gut microbiome is predictive of host dysbiosis.

    PubMed

    Larsen, Peter E; Dai, Yang

    2015-01-01

    Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  1. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  2. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependentmore » on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  3. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE PAGES

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  4. Development and evaluation of antibody-capture immunoassays for detection of Lassa virus nucleoprotein-specific immunoglobulin M and G.

    PubMed

    Gabriel, Martin; Adomeh, Donatus I; Ehimuan, Jacqueline; Oyakhilome, Jennifer; Omomoh, Emmanuel O; Ighodalo, Yemisi; Olokor, Thomas; Bonney, Kofi; Pahlmann, Meike; Emmerich, Petra; Lelke, Michaela; Brunotte, Linda; Ölschläger, Stephan; Thomé-Bolduan, Corinna; Becker-Ziaja, Beate; Busch, Carola; Odia, Ikponmwosa; Ogbaini-Emovon, Ephraim; Okokhere, Peter O; Okogbenin, Sylvanus A; Akpede, George O; Schmitz, Herbert; Asogun, Danny A; Günther, Stephan

    2018-03-01

    The classical method for detection of Lassa virus-specific antibodies is the immunofluorescence assay (IFA) using virus-infected cells as antigen. However, IFA requires laboratories of biosafety level 4 for assay production and an experienced investigator to interpret the fluorescence signals. Therefore, we aimed to establish and evaluate enzyme-linked immunosorbent assays (ELISA) using recombinant Lassa virus nucleoprotein (NP) as antigen. The IgM ELISA is based on capturing IgM antibodies using anti-IgM, and the IgG ELISA is based on capturing IgG antibody-antigen complexes using rheumatoid factor or Fc gamma receptor CD32a. Analytical and clinical evaluation was performed with 880 sera from Lassa fever endemic (Nigeria) and non-endemic (Ghana and Germany) areas. Using the IFA as reference method, we observed 91.5-94.3% analytical accuracy of the ELISAs in detecting Lassa virus-specific antibodies. Evaluation of the ELISAs for diagnosis of Lassa fever on admission to hospital in an endemic area revealed a clinical sensitivity for the stand-alone IgM ELISA of 31% (95% CI 25-37) and for combined IgM/IgG detection of 26% (95% CI 21-32) compared to RT-PCR. The specificity of IgM and IgG ELISA was estimated at 96% (95% CI 93-98) and 100% (95% CI 99-100), respectively, in non-Lassa fever patients from non-endemic areas. In patients who seroconverted during follow-up, Lassa virus-specific IgM and IgG developed simultaneously rather than sequentially. Consistent with this finding, isolated IgM reactivity, i.e. IgM in the absence of IgG, had no diagnostic value. The ELISAs are not equivalent to RT-PCR for early diagnosis of Lassa fever; however, they are of value in diagnosing patients at later stage. The IgG ELISA may be useful for epidemiological studies and clinical trials due its high specificity, and the higher throughput rate and easier operation compared to IFA.

  5. Slow domain reconfiguration causes power-law kinetics in a two-state enzyme.

    PubMed

    Grossman-Haham, Iris; Rosenblum, Gabriel; Namani, Trishool; Hofmann, Hagen

    2018-01-16

    Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.

  6. Structure of a low-population intermediate state in the release of an enzyme product.

    PubMed

    De Simone, Alfonso; Aprile, Francesco A; Dhulesia, Anne; Dobson, Christopher M; Vendruscolo, Michele

    2015-01-09

    Enzymes can increase the rate of biomolecular reactions by several orders of magnitude. Although the steps of substrate capture and product release are essential in the enzymatic process, complete atomic-level descriptions of these steps are difficult to obtain because of the transient nature of the intermediate conformations, which makes them largely inaccessible to standard structure determination methods. We describe here the determination of the structure of a low-population intermediate in the product release process by human lysozyme through a combination of NMR spectroscopy and molecular dynamics simulations. We validate this structure by rationally designing two mutations, the first engineered to destabilise the intermediate and the second to stabilise it, thus slowing down or speeding up, respectively, product release. These results illustrate how product release by an enzyme can be facilitated by the presence of a metastable intermediate with transient weak interactions between the enzyme and product.

  7. A novel helper phage for HaloTag-mediated co-display of enzyme and substrate on phage.

    PubMed

    Delespaul, Wouter; Peeters, Yves; Herdewijn, Piet; Robben, Johan

    2015-05-01

    Phage display is an established technique for the molecular evolution of peptides and proteins. For the selection of enzymes based on catalytic activity however, simultaneous coupling of an enzyme and its substrate to the phage surface is required. To facilitate this process of co-display, we developed a new helper phage displaying HaloTag, a modified haloalkane dehalogenase that binds specifically and covalently to functionalized haloalkane ligands. The display of functional HaloTag was demonstrated by capture on streptavidin-coated magnetic beads, after coupling a biotinylated haloalkane ligand, or after on-phage extension of a DNA oligonucleotide primer with a biotinylated nucleotide by phi29 DNA polymerase. We also achieved co-display of HaloTag and phi29 DNA polymerase, thereby opening perspectives for the molecular evolution of this enzyme (and others) towards new substrate specificities. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene.

    PubMed

    Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan

    2015-11-24

    Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.

  9. Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution.

    PubMed

    Zhang, Shihan; Lu, Hong; Lu, Yongqi

    2013-12-03

    A novel potassium-carbonate-based absorption process is currently being developed to reduce the energy consumption when capturing CO2 from coal combustion flue gas. The process employs the enzyme carbonic anhydrase (CA) as a catalyst to accelerate the rate of CO2 absorption. This study focused on the immobilization of a new variant of the CA enzyme onto a new group of nonporous nanoparticles to improve the enzyme's thermal stability and its chemical resistance to major impurities from the flue gas. The CA enzyme was manufactured at the pilot scale by a leading enzyme company. As carrier materials, two different batches of SiO2-ZrO2 composite nanoparticles and one batch of silica nanoparticle were synthesized using a flame spray pyrolysis method. Classic Danckwerts absorption theory with reaction was applied to determine the kinetics of the immobilized enzymes for CO2 absorption. The immobilized enzymes retained 56-88% of their original activity in a K2CO3/KHCO3 solution over a 60-day test period at 50 °C, compared with a 30% activity retention for their free CA enzyme counterpart. The immobilized CA enzymes also revealed improved chemical stability. The inactivation kinetics of the free and immobilized CA enzymes in the K2CO3/KHCO3 solution were experimentally quantified.

  10. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-Linked Glycoprotein)Levels

    DTIC Science & Technology

    2007-10-01

    termed SIBLINGs (for small integrin binding ligand N-linked glycoproteins) whose members include bone sialoprotein (BSP), osteopontin (OPN), dentin...enzyme-linked immunosorbent assays (ELISAs) for quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), dentin...synthesized as a chimeric protein, composed of three parts: dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP, also

  11. Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate.

    PubMed

    Baltar, Federico

    2017-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the "gatekeepers" of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell's fate. In contrast, cell-free enzymes belong to a kind of "living dead" realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go "beyond the living things," studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  12. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts

    PubMed Central

    McDonald, Andrew G.; Tipton, Keith F.; Davey, Gavin P.

    2016-01-01

    O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4), four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms. PMID:27054587

  13. Magnetic biocatalysts and their uses to obtain bioproducts

    NASA Astrophysics Data System (ADS)

    López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María; Serra, Juan

    2014-08-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media and compared between them and to those showed by the corresponding soluble enzyme. Thus, the hydrolysis of triglycerides or the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB.

  14. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution.

    PubMed

    Varrot, A; Hastrup, S; Schülein, M; Davies, G J

    1999-01-15

    The three-dimensional structure of the catalytic core of the family 6 cellobiohydrolase II, Cel6A (CBH II), from Humicola insolens has been determined by X-ray crystallography at a resolution of 1.92 A. The structure was solved by molecular replacement using the homologous Trichoderma reesei CBH II as a search model. The H. insolens enzyme displays a high degree of structural similarity with its T. reesei equivalent. The structure features both O- (alpha-linked mannose) and N-linked glycosylation and a hexa-co-ordinate Mg2+ ion. The active-site residues are located within the enclosed tunnel that is typical for cellobiohydrolase enzymes and which may permit a processive hydrolysis of the cellulose substrate. The close structural similarity between the two enzymes implies that kinetics and chain-end specificity experiments performed on the H. insolens enzyme are likely to be applicable to the homologous T. reesei enzyme. These cast doubt on the description of cellobiohydrolases as exo-enzymes since they demonstrated that Cel6A (CBH II) shows no requirement for non-reducing chain-ends, as had been presumed. There is no crystallographic evidence in the present structure to support a mechanism involving loop opening, yet preliminary modelling experiments suggest that the active-site tunnel of Cel6A (CBH II) is too narrow to permit entry of a fluorescenyl-derivatized substrate, known to be a viable substrate for this enzyme.

  15. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. 'Keitt') pulp.

    PubMed

    Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T

    2014-10-01

    A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.

  16. Alpha 2-macroglobulin capture allows detection of mast cell chymase in serum and creates a reservoir of angiotensin II-generating activity.

    PubMed

    Raymond, Wilfred W; Su, Sharon; Makarova, Anastasia; Wilson, Todd M; Carter, Melody C; Metcalfe, Dean D; Caughey, George H

    2009-05-01

    Human chymase is a highly efficient angiotensin II-generating serine peptidase expressed by mast cells. When secreted from degranulating cells, it can interact with a variety of circulating antipeptidases, but is mostly captured by alpha(2)-macroglobulin, which sequesters peptidases in a cage-like structure that precludes interactions with large protein substrates and inhibitors, like serpins. The present work shows that alpha(2)-macroglobulin-bound chymase remains accessible to small substrates, including angiotensin I, with activity in serum that is stable with prolonged incubation. We used alpha(2)-macroglobulin capture to develop a sensitive, microtiter plate-based assay for serum chymase, assisted by a novel substrate synthesized based on results of combinatorial screening of peptide substrates. The substrate has low background hydrolysis in serum and is chymase-selective, with minimal cleavage by the chymotryptic peptidases cathepsin G and chymotrypsin. The assay detects activity in chymase-spiked serum with a threshold of approximately 1 pM (30 pg/ml), and reveals native chymase activity in serum of most subjects with systemic mastocytosis. alpha(2)-Macroglobulin-bound chymase generates angiotensin II in chymase-spiked serum, and it appears in native serum as chymostatin-inhibited activity, which can exceed activity of captopril-sensitive angiotensin-converting enzyme. These findings suggest that chymase bound to alpha(2)-macroglobulin is active, that the complex is an angiotensin-converting enzyme inhibitor-resistant reservoir of angiotensin II-generating activity, and that alpha(2)-macroglobulin capture may be exploited in assessing systemic release of secreted peptidases.

  17. α2-Macroglobulin Capture Allows Detection of Mast Cell Chymase in Serum and Creates a Circulating Reservoir of Angiotensin II-generating Activity1

    PubMed Central

    Raymond, Wilfred W.; Su, Sharon; Makarova, Anastasia; Wilson, Todd M.; Carter, Melody C.; Metcalfe, Dean D.; Caughey, George H.

    2009-01-01

    Human chymase is a highly efficient angiotensin II-generating serine peptidase expressed by the MCTC subset of mast cells. When secreted from degranulating cells, it can interact with a variety of circulating anti-peptidases, but is mostly captured by α2-macroglobulin, which sequesters peptidases in a cage-like structure that precludes interactions with large protein substrates and inhibitors, like serpins. The present work shows that α2-macroglobulin-bound chymase remains accessible to small substrates, including angiotensin I, with activity in serum that is stable with prolonged incubation. We used α2-macroglobulin capture to develop a sensitive, microtiter plate-based assay for serum chymase, assisted by a novel substrate synthesized based on results of combinatorial screening of peptide substrates. The substrate has low background hydrolysis in serum and is chymase-selective, with minimal cleavage by the chymotryptic peptidases cathepsin G and chymotrypsin. The assay detects activity in chymase-spiked serum with a threshold of ~1 pM (30 pg/ml), and reveals native chymase activity in serum of most subjects with systemic mastocytosis. α2-Macroglobulin-bound chymase generates angiotensin II in chymase-spiked serum, and appears in native serum as chymostatin-inhibited activity, which can exceed activity of captopril-sensitive angiotensin converting enzyme. These findings suggest that chymase bound to α2-macroglobulin is active, that the circulating complex is an angiotensin-converting enzyme inhibitor-resistant reservoir of angiotensin II-generating activity, and that α2-macroglobulin capture may be exploited in assessing systemic release of secreted peptidases. PMID:19380825

  18. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.

    PubMed

    Chang, Chungyu; Amer, Brendan R; Osipiuk, Jerzy; McConnell, Scott A; Huang, I-Hsiu; Hsieh, Van; Fu, Janine; Nguyen, Hong H; Muroski, John; Flores, Erika; Ogorzalek Loo, Rachel R; Loo, Joseph A; Putkey, John A; Joachimiak, Andrzej; Das, Asis; Clubb, Robert T; Ton-That, Hung

    2018-06-12

    Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA 2M ), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA 2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA 2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA 2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

  19. Highly sensitive reversed-phase high-performance liquid chromatography assay for the detection of Tamm-Horsfall protein in human urine.

    PubMed

    Akimoto, Masaru; Hokazono, Eisaku; Ota, Eri; Tateishi, Takiko; Kayamori, Yuzo

    2016-01-01

    Tamm-Horsfall protein (also known as uromodulin) is the most abundant urinary protein in healthy individuals. Since initially characterized by Tamm and Horsfall, the amount of urinary excretion and structural mutations of Tamm-Horsfall protein is associated with kidney diseases. However, currently available assays for Tamm-Horsfall protein, which are mainly enzyme-linked immunosorbent assay-based, suffer from poor reproducibility and might give false negative results. We developed a novel, quantitative assay for Tamm-Horsfall protein using reversed-phase high-performance liquid chromatography. A precipitation pretreatment avoided urine matrix interference and excessive sample dilution. High-performance liquid chromatography optimization based on polarity allowed excellent separation of Tamm-Horsfall protein from other major urine components. Our method exhibited high precision (based on the relative standard deviations of intraday [≤2.77%] and interday [≤5.35%] repetitions). The Tamm-Horsfall protein recovery rate was 100.0-104.2%. The mean Tamm-Horsfall protein concentration in 25 healthy individuals was 31.6 ± 18.8 mg/g creatinine. There was a strong correlation between data obtained by high-performance liquid chromatography and enzyme-linked immunosorbent assay (r = 0.906), but enzyme-linked immunosorbent assay values tended to be lower than high-performance liquid chromatography values at low Tamm-Horsfall protein concentrations. The high sensitivity and reproducibility of our Tamm-Horsfall protein assay will reduce the number of false negative results of the sample compared with enzyme-linked immunosorbent assay. Moreover, our method is superior to other high-performance liquid chromatography methods, and a simple protocol will facilitate further research on the physiological role of Tamm-Horsfall protein. © The Author(s) 2015.

  20. Use of the Falcon assay screening test--enzyme-linked immunosorbent assay (FAST-ELISA) and the enzyme-linked immunoelectrotransfer blot (EITB) to determine the prevalence of human fascioliasis in the Bolivian Altiplano.

    PubMed

    Hillyer, G V; Soler de Galanes, M; Rodriguez-Perez, J; Bjorland, J; Silva de Lagrava, M; Ramirez Guzman, S; Bryan, R T

    1992-05-01

    A collaborative study between the University of Puerto Rico School of Medicine, the Centers for Disease Control, the Bolivian Ministry of Health, and private voluntary organizations (Foster Parents Plan International and Danchurchaid) working in Bolivia has identified a region in the northwestern Altiplano of Bolivia near Lake Titicaca as harboring the highest prevalence of human fascioliasis in the world reported to date. Two serologic techniques (the Falcon assay screening test-enzyme-linked immunosorbent assay [FAST-ELISA] and the enzyme-linked immunoelectrotransfer blot [EITB]) were used in the determination of its prevalence. One hundred serum samples and 73 stool samples were obtained from Aymara Indians from Corapata, Bolivia. Antibody absorbance levels to Fasciola hepatica excretion-secretion antigens were compared with EITB banding patterns using the same antigen preparation. A positive FAST-ELISA result was defined as an absorbance value greater than the mean plus three standard deviations of two sets of normal negative controls (Puerto Rican and Bolivian). Using this criterion, 53 of 100 sera tested were found positive by this technique. Within this group, 19 (95%) of 20 individuals who were parasite positive were also positive by FAST-ELISA. An additional 24 individuals who were negative for F. hepatica eggs and 10 individuals for whom no specimens were received were also positive by FAST-ELISA. Among the 53 individuals negative for F. hepatica eggs, 29 were also negative by FAST-ELISA. The EITB analysis of the sera from confirmed infected individuals revealed at least three F. hepatica (Fh) bands with molecular weights of 12, 17, and 63 kD, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Development of an Enzyme-Linked Immunosorbent Assay and Immunoaffinity Column Chromatography for Saikosaponin d Using an Anti-Saikosaponin d Monoclonal Antibody.

    PubMed

    Sai, Jiayang; Zhao, Yan; Shan, Wenchao; Qu, Baoping; Zhang, Yue; Cheng, Jinjun; Qu, Huihua; Wang, Qingguo

    2016-03-01

    This work developed a novel immunochemical approach for the quality control of saikosaponin d using an enzyme-linked immunosorbent assay. Splenocytes from mice immunized with the saikosaponin d-bovine serum albumin conjugate were fused with the hypoxanthine-aminopterin-thymidine-sensitive mouse myeloma SP2/0 cell line, and a hybridoma secreting monoclonal antibody against saikosaponin d was successfully obtained. The prepared anti-saikosaponin d monoclonal antibody 1E7F3 has a novel characteristic, showing weak reactivity with compounds that are structurally related to saikosaponin d. Using monoclonal antibody 1E7F3, a specific and reliable enzyme-linked immunosorbent assay was developed to detect saikosaponin d. The system shows a full measurement range from 156.25 to 5000.00 ng × mL(-1). Both intra-assay and inter-assay repeatability and precision were achieved, with relative standard deviations lower than 10.00%. The recovery rates ranged from 92.36% to 101.00%, meeting the requirements for biological samples. There was a good correlation between the enzyme-linked immunosorbent assay and high-performance liquid chromatography analyses of saikosaponin d, and the saikosaponin d levels in formulated Chinese medicines were successfully determined. Furthermore, immunoaffinity column chromatography was established using this anti-saikosaponin d monoclonal antibody, and the elution profile of saikosaponin d was detected by a Bio-Rad QuadTec UV/Vis detector at 203 nm. The results demonstrate that we generated a reliable and more efficient assay system for measuring saikosaponin d and provide a potential approach for purifying and separating saikosaponin d. Georg Thieme Verlag KG Stuttgart · New York.

  2. Detection of Toxoplasma gondii DNA in horse meat from supermarkets in France and performance evaluation of two serological tests.

    PubMed

    Aroussi, Abdelkrim; Vignoles, Philippe; Dalmay, François; Wimel, Laurence; Dardé, Marie-Laure; Mercier, Aurélien; Ajzenberg, Daniel

    2015-01-01

    In France, some cases of severe toxoplasmosis have been linked to the consumption of horse meat that had been imported from the American continent where atypical strains of Toxoplasma gondii are more common than in Europe. Many seroprevalence studies are presented in the literature but risk assessment of T. gondii infection after horse meat consumption is not possible in the absence of validated serological tests and the unknown correlation between detection of antibodies against T. gondii and presence of tissue cysts. We performed magnetic-capture polymerase chain reaction (MC-PCR) to detect T. gondii DNA in 231 horse meat samples purchased in supermarkets in France and evaluated the performance and level of agreement of the modified agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA) in the meat juices. The serological tests lacked sensitivity, specificity, and agreement between them, and there was no correlation with the presence of T. gondii DNA in horse meat, raising concerns about the reliability of T. gondii seroprevalence data in horses from the literature. T. gondii DNA was detected in 43% of horse meat samples but the absence of strain isolation in mice following inoculation of more than 100 horse meat samples suggests a low distribution of cysts in skeletal muscles and a low risk of T. gondii infection associated with horse meat consumption. However, to avoid any risk of toxoplasmosis, thorough cooking of horse meat is recommended. © A. Aroussi et al., published by EDP Sciences, 2015.

  3. Detection of Toxoplasma gondii DNA in horse meat from supermarkets in France and performance evaluation of two serological tests

    PubMed Central

    Aroussi, Abdelkrim; Vignoles, Philippe; Dalmay, François; Wimel, Laurence; Dardé, Marie-Laure; Mercier, Aurélien; Ajzenberg, Daniel

    2015-01-01

    In France, some cases of severe toxoplasmosis have been linked to the consumption of horse meat that had been imported from the American continent where atypical strains of Toxoplasma gondii are more common than in Europe. Many seroprevalence studies are presented in the literature but risk assessment of T. gondii infection after horse meat consumption is not possible in the absence of validated serological tests and the unknown correlation between detection of antibodies against T. gondii and presence of tissue cysts. We performed magnetic-capture polymerase chain reaction (MC-PCR) to detect T. gondii DNA in 231 horse meat samples purchased in supermarkets in France and evaluated the performance and level of agreement of the modified agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA) in the meat juices. The serological tests lacked sensitivity, specificity, and agreement between them, and there was no correlation with the presence of T. gondii DNA in horse meat, raising concerns about the reliability of T. gondii seroprevalence data in horses from the literature. T. gondii DNA was detected in 43% of horse meat samples but the absence of strain isolation in mice following inoculation of more than 100 horse meat samples suggests a low distribution of cysts in skeletal muscles and a low risk of T. gondii infection associated with horse meat consumption. However, to avoid any risk of toxoplasmosis, thorough cooking of horse meat is recommended. PMID:25809058

  4. Clinical and biochemical studies support smokeless tobacco’s carcinogenic potential in the human oral cavity

    PubMed Central

    Mallery, Susan R.; Tong, Meng; Michaels, Gregory C.; Kiyani, Amber R.; Hecht, Stephen S.

    2014-01-01

    In 2007, International Agency for Cancer Research presented compelling evidence that linked smokeless tobacco use to the development of human oral cancer. While these findings imply vigorous local carcinogen metabolism, little is known regarding levels and distribution of Phase I, II and drug egress enzymes in human oral mucosa. In the study presented here, we integrated clinical data, imaging and histopathologic analyses of an oral squamous cell carcinoma that arose at the site of smokeless tobacco quid placement in a patient. Immunoblot and immunohistochemical (IHC) analyses were employed to identify tumor and normal human oral mucosal smokeless tobacco-associated metabolic activation and detoxification enzymes. Human oral epithelium contains every known Phase I enzyme associated with nitrosamine oxidative bioactivation with ~2 fold inter-donor differences in protein levels. Previous studies have confirmed ~3.5 fold inter-donor variations in intraepithelial Phase II enzymes. Unlike the superficially located enzymes in non-replicating esophageal surface epithelium, IHC studies confirmed oral mucosal nitrosamine metabolizing enzymes reside in the basilar and suprabasilar region which notably is the site of ongoing keratinocyte DNA replication. Clearly, variations in product composition, nitrosamine metabolism and exposure duration will modulate clinical outcomes. The data presented here form a coherent picture consistent with the abundant experimental data that links tobacco-specific nitrosamines to human oral cancer. PMID:24265177

  5. Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine.

    PubMed

    Ruedas-Rama, Maria J; Hall, Elizabeth A H

    2010-11-01

    An enzyme-linked analytical nanosphere sensor (ANSor) is described, responding to enzyme-substrate turnover in the vicinity of a quantum dot (QD) due to coimmobilized enzyme and pH sensitive ligand. QD capping by mercapto-alkanoic acids were rejected as a pH sensitive ligand, but with the use of a layer-by-layer assembly on mercaptopropionic capped QDs and an intermediate poly(allylamine hydrochloride) layer, anthraquinone sulfonate (calcium red, CaR) was introduced to modify the pKa in the immobilized system > 8. QD-CaR absorption shows spectral overlap with QD530 emission at all pHs and gives a complex pH dependent fluorescence resonance energy transfer (FRET) efficiency, due to excited state proton transfer (λ(ex) = 540 nm; λ(em) = 585 nm). In contrast QD615-CaR with spectral overlap between the QD and CaR gave a strong and reproducible pH response. QD-urease and QD-creatinine deiminase conjugates could be linked with pH changes produced by enzyme degradation of urea and creatinine, respectively. Close coupling between the pH sensitive QD and enzyme conjugate maximized signal compared with solution based assays: QD-urease and QD-CD bioconjugates were tested in model biological media (Dulbecco's modified Eagle's Medium and fetal calf serum) and in urine, showing a response in 3-4 min.

  6. Effects of acute temperature change, confinement and housing on plasma corticosterone in water snakes, Nerodia sipedon (Colubridae: Natricinae).

    PubMed

    Sykes, Kyle Lea; Klukowski, Matthew

    2009-03-01

    Body temperature affects many aspects of reptilian behavior and physiology, but its effect on hormonal secretion has been little studied, especially in snakes. Major objectives of this study were to determine if acute changes in body temperature during confinement influenced plasma corticosterone levels and if initial body temperatures upon capture in the field were related to baseline corticosterone levels in water snakes (Nerodia sipedon). Water snakes were bled upon capture in the field and after one hour of confinement in a cooled, control, or heated incubator. Since little is known about the potential metabolic changes in response to stress in reptiles, plasma triglyceride levels were also measured. Upon completion of the field study, snakes were housed for 5-8 days without food to determine the effect of chronic stress on both corticosterone and triglyceride levels. Plasma corticosterone concentrations were measured using enzyme-linked immunosorbant assay (ELISA) and plasma triglycerides were determined enzymatically. In the field, experimental alterations of body temperature during confinement had no effect on corticosterone levels. Similarly, there was no correlation between initial body temperature and baseline plasma corticosterone concentrations. However, post-confinement corticosterone levels were approximately three-times greater in females than males. Plasma triglyceride levels were not affected by temperature treatment, confinement, or sex. Compared to field values, both baseline and post-confinement corticosterone levels were elevated after the chronic stress of short-term laboratory housing but triglyceride levels decreased. Overall, these results indicate that sex but not body temperature has a major influence on the adrenocortical stress response in Nerodia sipedon.

  7. Adaptive virus detection using filament-coupled antibodies.

    PubMed

    Stone, Gregory P; Lin, Kelvin S; Haselton, Frederick R

    2006-01-01

    We recently reported the development of a filament-antibody recognition assay (FARA), in which the presence of virions in solution initiates the formation of enzyme-linked immunosorbent assay (ELISA)-like antibody complexes. The unique features of this assay are that processing is achieved by motion of a filament and that, in the presence of a virus, antibody-virus complexes are coupled to the filament at known locations. In this work, we combine the unique features of this assay with a 638-nm laser-based optical detector to enable adaptive control of virus detection. Integration of on-line fluorescence detection yields approximately a five-fold increase in signal-to-noise ratio (SNR) compared to the fluorescence detection method reported previously. A one-minute incubation with an M13K07 test virus is required to detect 10(10) virionsml, and 40 min was required to detect 10(8) virionsml. In tests of the components of an adaptive strategy, a 30-min virus (3.3 x 10(10) virionsml) incubation time, followed by repositioning the filament-captured virus either within the detecting antibody chamber, (20 microg ml) or within the virus chamber, found an increase in signal roughly proportional to the cumulative residence times in these chambers. Furthermore, cumulative fluorescence signals observed for a filament-captured virus after repeated positioning of the filament within the virus chamber are similar to those observed for a single long incubation time. The unique features of the FARA-like design combined with online optical detection to direct subsequent bioprocessing steps provides new flexibility for developing adaptive molecular recognition assays.

  8. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts.

    PubMed

    Wieczorek, Aneta; Fornalewicz, Karolina; Mocarski, Łukasz; Łyżeń, Robert; Węgrzyn, Grzegorz

    2018-04-15

    Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Enzyme immunoassays for detection of gypsy moth nuclear polyhedrosis virus

    Treesearch

    Michael Ma

    1985-01-01

    Enzyme-linked immunosorbent assays (ELISA) were developed for detecting gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (NPV). They were used to detect the presence of NPV in hemoplymph samples collected from infected larvae. The incorporation of hybridoma antibodies with these procedures would make them even more specific for gypsy moth...

  10. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability

    PubMed Central

    Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao

    2015-01-01

    A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188

  11. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    PubMed Central

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  12. Form and performance: body shape and prey-capture success in four drift-feeding minnows

    Treesearch

    Pedro A. Rincón; Markus Bastir; Gary D. Grossman

    2008-01-01

    Identifying links between morphology and performance for ecologically relevant tasks will help elucidate the relationships between organismal design and fitness. We conducted a laboratory study to quantify the relationship between variation in body shape and prey-capture success in four drift-feeding minnow species. We offered drifting prey to individual fish in a test...

  13. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    PubMed

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  14. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Indro Neil; Landick, Robert

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  15. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE PAGES

    Ghosh, Indro Neil; Landick, Robert

    2016-07-16

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  16. Enzyme-linked immunosorbent assay for total sennosides using anti-sennside A and anti-sennoside B monoclonal antibodies.

    PubMed

    Morinaga, Osamu; Uto, Takuhiro; Sakamoto, Seiichi; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2009-01-01

    Total sennosides concentration is a very important factor when rhubarb and senna will be used as crude drugs. However, one-step analytical technique for total sennosides has not been reported except HPLC. An enzyme-linked immunosorbent assay (ELISA) for total sennosides concentration by using the combination of anti-sennoside A (SA) and anti-sennoside B (SB) monoclonal antibodies (MAbs) in a single assay has been investigated. Total sennosides concentration in rhubarb and senna samples determined by newly developed assay system showed good agreement with those analyzed by ELISA using anti-SA MAb and anti-SB MAb, respectively.

  17. Treatment with agalsidase beta during pregnancy in Fabry disease.

    PubMed

    Politei, Juan M

    2010-04-01

    Fabry disease is an X-linked lysosomal storage disease caused by a deficiency of alpha-galactosidase A, which leads to excessive accumulation of glycosphingolipids in most tissues in the body, with life-threatening clinical consequences in the kidney, heart, and cerebrovascular system. Enzyme replacement therapy using exogenously produced alpha-galactosidase has been available for treatment of this multisystem progressive disease since 2001. Two different preparations of enzyme replacement therapy for Fabry disease are available outside of the USA: agalsidase alfa and agalsidase beta. Despite being X-linked, Fabry disease affects many female patients, and this report presents a successful pregnancy of a female patient receiving agalsidase beta.

  18. Development of an Enzyme-Linked Immunosorbent Assay Based on Fusion VP2332-452 Antigen for Detecting Antibodies against Aleutian Mink Disease Virus.

    PubMed

    Chen, Xiaowei; Song, Cailing; Liu, Yun; Qu, Liandong; Liu, Dafei; Zhang, Yun; Liu, Ming

    2016-02-01

    For detection of Aleutian mink disease virus (AMDV) antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed using the recombinant VP2332-452 protein as an antigen. Counterimmunoelectrophoresis (CIEP) was used as a reference test to compare the results of the ELISA and Western blotting (WB); the specificity and sensitivity of the VP2332-452 ELISA were 97.9% and 97.3%, respectively, which were higher than those of WB. Therefore, this VP2332-452 ELISA may be a preferable method for detecting antibodies against AMDV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Enzyme-linked immunosorbent assay compared with neutralization tests for evaluation of live mumps vaccines.

    PubMed Central

    Sakata, H; Hishiyama, M; Sugiura, A

    1984-01-01

    Mumps-specific antibody levels before and after vaccination with live mumps vaccines were determined by enzyme-linked immunosorbent assay (ELISA) and neutralization tests. A correlation was found between neutralization titers and optical density in ELISA. However, postvaccination sera from some vaccinees who failed to seroconvert by neutralization contained significant levels of mumps-specific antibody detectable by ELISA. In some of these serum specimens, the antibody directed to the F polypeptide of mumps virus was predominant. Most sera positive in ELISA neutralized mumps virus upon the addition of fresh guinea pig serum to the virus-serum mixture. Images PMID:6361060

  20. Enzyme-linked immunosorbent assay for Escherichia coli heat-stable enterotoxin type II.

    PubMed Central

    Handl, C; Rönnberg, B; Nilsson, B; Olsson, E; Jonsson, H; Flock, J I

    1988-01-01

    The gene for Escherichia coli heat-stable enterotoxin type II (STII) was fused to the genes for protein A from Staphylococcus aureus and beta-galactosidase in two different expression systems. Antibodies raised in rabbits against the protein A-STII fusion protein recognized the beta-galactosidase-STII fusion protein. The latter fusion protein was used as the immobilized antigen in an enzyme-linked immunosorbent assay (ELISA) for detection of STII. The correlation between the results of the ELISA and the intestinal loop test in piglets was 95%, suggesting that the ELISA can be used to reliably detect STII. Images PMID:3049659

  1. Review on enzyme-linked immunosorbent assays for sulfonamide residues in edible animal products.

    PubMed

    Zhang, Hongyan; Wang, Shuo

    2009-10-31

    The current status of enzyme-linked immunosorbent assays (ELISAs) for sulfonamides in edible animal products is reviewed. The attention was focused on the design and synthesis of haptens, conjugation to carrier protein, production of antibody, application of homologous and heterologous systems, as well as the molecular modeling of the haptens and sulfonamides. Researches have shown that sulfonamides seem to be particularly resistant to attempts to produce broad specificity antibodies. By summarizing the available research on sulfonamide ELISAs, it is hoped that it can be considered as a basis for further investigation aimed at developing the most efficient approaches for detection.

  2. Detection of urinary Vi antigen as a diagnostic test for typhoid fever.

    PubMed Central

    Taylor, D N; Harris, J R; Barrett, T J; Hargrett, N T; Prentzel, I; Valdivieso, C; Palomino, C; Levine, M M; Blake, P A

    1983-01-01

    Since Vi antigen is limited primarily to Salmonella typhi, it has been thought that detection of the antigen may be a useful method for diagnosing acute typhoid fever. The slide coagglutination method and enzyme-linked immunosorbent assay have recently been suggested as ways to detect small quantities of Vi antigen in urine. In Santiago, Chile, we compared the results of these two methods in patients with acute typhoid fever, paratyphoid fever, and other febrile illnesses and in afebrile control subjects. Using a cut-off value that maximally separated typhoid patients from controls, the enzyme-linked immunosorbent assay was positive in 62.4% of 141 patients with culture-proven typhoid infections and in 13.2% of 159 afebrile control subjects. The enzyme-linked immunosorbent assay was false positive in 64.7% of 34 culture-proven paratyphoid A or B patients and 47.1% of 21 patients with other nontyphoidal febrile illnesses. The coagglutination test was positive in 34% of typhoid patients, 14% of afebrile control subjects, and 46% of febrile control subjects. We conclude that these tests when performed with the Vi antibodies employed in this study are of little value for the diagnosis of typhoid fever in this setting. PMID:6630465

  3. Competitive and blocking enzyme-linked immunoassay for detection of fetal bovine serum antibodies to bovine viral diarrhea virus.

    PubMed

    Katz, J B; Hanson, S K

    1987-02-01

    A competitive blocking enzyme-linked immunoassay (CELIA) was developed to detect bovine viral diarrhea virus (BVDV) antibodies in undiluted fetal bovine serum (FBS). The CELIA was based on competition of serum BVDV antibodies with biotin-labelled anti-BVDV immunoglobulins (Ig) for a limited quantity of solid-phase BVDV antigen. Antigen preparation was simple, FBS could be tested undiluted, and detergent-containing washes were unnecessary. A series of dilutions of postnatal bovine BVDV antiserum prepared in FBS and a set of 147 undiluted abbatoir FBS samples were tested by both CELIA and serum neutralization tests (SNT). CELIA results on both sets of specimens correlated positively with SNT titers (r = 0.99 and r = 0.85). Relative to the SNT, CELIA sensitivity was 100%; specificity was 76%. CELIA detected a level of BVDV antibody below the 1:2-titer threshold detectable with the SNT. Advantages, limitations, and theoretical differences between the CELIA and SNT are discussed. A similar comparison of CELIA with non-competitive enzyme-linked immunoassay approaches to BVDV serodiagnosis is made. It is concluded that the CELIA is valuable in selecting only BVDV-seronegative FBS for use in virologic cell culture media.

  4. Application and evaluation of enzyme-linked immunosorbent assay and immunoblotting for detection of antibodies to Treponema hyodysenteriae in swine.

    PubMed Central

    Smith, S. C.; Barrett, L. M.; Muir, T.; Christopher, W. L.; Coloe, P. J.

    1991-01-01

    An enzyme-linked immunoassay (ELISA) has been developed to detect serum Immunoglobulin antibodies G and M to Treponema hyodysenteriae in vaccinated, experimentally infected and naturally infected swine. Naturally infected swine gave ELISA titres that were similar to experimentally infected swine, but were significantly less than the titres of vaccinated swine. When serum from naturally infected swine was used to probe nitrocellulose blots of sodium dodecyl sulphate-polyacrylamide gel electrophoresed whole cell proteins of T. hyodysenteriae, the immunoblotting patterns showed IgG antibodies were produced against many T. hyodysenteriae protein antigens and against lipopolysaccharide (LPS). The IgG antibodies directed against LPS were serotype-specific for that LPS and could be used to identify the serotype involved in the T. hyodysenteriae infection in that herd. IgM immunoblots also reacted with the many protein antigens but were less specific for LPS antigen, with a substantial degree of cross-reaction between the LPS of all serotypes. The data demonstrate that a microplate enzyme-linked immunosorbent assay, coupled with immunoblotting, is a very specific and sensitive test for detection of antibody to Treponema hyodysenteriae in swine. Images Fig. 3 Fig. 4 PMID:1936151

  5. Measurement of ring A-reduced progesterone metabolites by enzyme-linked immunoassay with colorimetric detection: baseline levels of six metabolites, including pregnanolone, in male rat plasma.

    PubMed

    Ocvirk, Rok; Franklin, Keith B J; Pearson Murphy, Beverley E

    2009-02-01

    The performance of an antiserum to progesterone and pregnane neurosteroids was assessed in two competitive assay setups: radioimmunoassay and enzyme-linked immunoassay with colorimetric detection, both with the same limit of detection of 2 pg. The enzyme-linked immunoassay was less labor-intensive and had better precision of measurement and was used to measure progesterone and six of its ring A-reduced metabolites in rat plasma. The measured levels of allopregnanolone and progesterone were in agreement with those reported previously when measured by gas chromatography/mass spectrometry and high-performance liquid chromatography coupled with radioimmunoassay and substantially lower than those previously measured by radioimmunoassay without chromatographic separation. Both isomers of dihydroprogesterone and all four isomers of pregnanolone were detected in rat plasma, indicating that progesterone is metabolized by reduction at the C5 and C3 position of the A ring, in both alpha and beta configurations. In addition to 5beta-dihydroprogesterone and isopregnanolone, which have not been previously detected in the rat, we found considerable amounts of pregnanolone, which is neuroactive, with similar potency to that of allopregnanolone but was previously thought not to be produced in rats.

  6. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant.

    PubMed

    Zhong, Wei; Kuntz, Douglas A; Ember, Brian; Singh, Harminder; Moremen, Kelley W; Rose, David R; Boons, Geert-Jan

    2008-07-16

    Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.

  8. Disentangling DNA molecules

    NASA Astrophysics Data System (ADS)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  9. An enzyme-linked immunosorbent assay-based system for determining the physiological level of poly(ADP-ribose) in cultured cells.

    PubMed

    Ida, Chieri; Yamashita, Sachiko; Tsukada, Masaki; Sato, Teruaki; Eguchi, Takayuki; Tanaka, Masakazu; Ogata, Shin; Fujii, Takahiro; Nishi, Yoshisuke; Ikegami, Susumu; Moss, Joel; Miwa, Masanao

    2016-02-01

    PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The GENCODE exome: sequencing the complete human exome

    PubMed Central

    Coffey, Alison J; Kokocinski, Felix; Calafato, Maria S; Scott, Carol E; Palta, Priit; Drury, Eleanor; Joyce, Christopher J; LeProust, Emily M; Harrow, Jen; Hunt, Sarah; Lehesjoki, Anna-Elina; Turner, Daniel J; Hubbard, Tim J; Palotie, Aarno

    2011-01-01

    Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing. PMID:21364695

  11. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    PubMed

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-06

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic properties of the flap in the Trp mutant, compared to the wild-type enzyme, manifest as a defect in interactions that facilitate the rate-limiting step. Consistent with this notion, the Trp mutant was able to cleave Lys48-linked and Lys11-linked diubiquitin better than the wild-type enzyme, indicating altered mobility and hence reduced selectivity.

  12. Kinetics of reactions of the Actinomadura R39 DD-peptidase with specific substrates.

    PubMed

    Adediran, S A; Kumar, Ish; Nagarajan, Rajesh; Sauvage, Eric; Pratt, R F

    2011-01-25

    The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.

  13. Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts' Properties of Rhizomucor miehei Lipase onto Chitosan.

    PubMed

    de Oliveira, Ulisses M F; Lima de Matos, Leonardo J B; de Souza, Maria Cristiane M; Pinheiro, Bruna B; Dos Santos, José C S; Gonçalves, Luciana R B

    2018-04-01

    Lipase from Rhizomucor miehei (RML) was immobilized onto chitosan support in the presence of some surfactants added at low levels using two different strategies. In the first approach, the enzyme was immobilized in the presence of surfactants on chitosan supports previously functionalized with glutaraldehyde. In the second one, after prior enzyme adsorption on chitosan beads in the presence of surfactants, the complex chitosan beads-enzyme was then cross-linked with glutaraldehyde. The effects of surfactant concentrations on the activities of free and immobilized RML were evaluated. Hexadecyltrimethylammonium bromide (CTAB) promoted an inhibition of enzyme activity while the nonionic surfactant Triton X-100 caused a slight increase in the catalytic activity of the free enzyme and the derivatives produced in both methods of immobilization. The best derivatives were achieved when the lipase was firstly adsorbed on chitosan beads at 4 °C for 1 h, 220 rpm followed by cross-link the complex chitosan beads-enzyme with glutaraldehyde 0.6% v.v -1 at pH 7. The derivatives obtained under these conditions showed high catalytic activity and excellent thermal stability at 60° and 37 °C. The best derivative was also evaluated in the synthesis of two flavor esters namely methyl and ethyl butyrate. At non-optimized conditions, the maximum conversion yield for methyl butyrate was 89%, and for ethyl butyrate, the esterification yield was 92%. The results for both esterifications were similar to those obtained when the commercial enzyme Lipozyme® and free enzyme were used in the same reaction conditions and higher than the one achieved in the absence of the selected surfactant.

  14. Structure and function of α-glucan debranching enzymes.

    PubMed

    Møller, Marie Sofie; Henriksen, Anette; Svensson, Birte

    2016-07-01

    α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.

  15. Enzyme Engineering for In Situ Immobilization.

    PubMed

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  16. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    PubMed Central

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  17. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu

    2013-03-01

    This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. EQCM Immunoassay for Phosphorylated Acetylcholinesterase as a Biomarker for Organophosphate Exposures Based on Selective Zirconia Adsorption and Enzyme-Catalytic Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hua; Wang, Jun; Choi, Daiwon

    2009-03-01

    A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture phosphorylated AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated protein. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulationmore » of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus achieved. Moreover, 4-chloro-1-naphthol (CN) was comparably studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of phosphorylated AChE in human plasma. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures.« less

  19. Development of immunoassays for human urokinase

    NASA Technical Reports Server (NTRS)

    Atassi, M. Zouhair

    1988-01-01

    Radioimmune assays (RIA) and enzyme linked immune assays for measurement of pro-urokinase and the two active forms of the enzyme were developed. Polyclonal and monoclonal antibodies, with desired specificities against preselected synthetic regions of urokinase (UK), were obtained by immunization with the respective synthetic peptides and used to develop RIA for zymogen and the two activated forms of UK.

  20. Nonisotopic detection of human papillomavirus DNA in clinical specimens using a consensus PCR and a generic probe mix in an enzyme-linked immunosorbent assay format.

    PubMed

    Kornegay, J R; Shepard, A P; Hankins, C; Franco, E; Lapointe, N; Richardson, H; Coutleé, F

    2001-10-01

    We assessed the value of a new digoxigenin (DIG)-labeled generic probe mix in a PCR-enzyme-linked immunosorbent assay format to screen for the presence of human papillomavirus (HPV) DNA amplified from clinical specimens. After screening with this new generic assay is performed, HPV DNA-positive samples can be directly genotyped using a reverse blotting method with product from the same PCR amplification. DNA from 287 genital specimens was amplified via PCR using biotin-labeled consensus primers directed to the L1 gene. HPV amplicons were captured on a streptavidin-coated microwell plate (MWP) and detected with a DIG-labeled HPV generic probe mix consisting of nested L1 fragments from types 11, 16, 18, and 51. Coamplification and detection of human DNA with biotinylated beta-globin primers served as a control for both sample adequacy and PCR amplification. All specimens were genotyped using a reverse line blot assay (13). Results for the generic assay using MWPs and a DIG-labeled HPV generic probe mix (DIG-MWP generic probe assay) were compared with results from a previous analysis using dot blots with a radiolabeled nested generic probe mix and type-specific probes for genotyping. The DIG-MWP generic probe assay resulted in high intralaboratory concordance in genotyping results (88% versus 73% agreement using traditional methods). There were 207 HPV-positive results using the DIG-MWP method and 196 positives using the radiolabeled generic probe technique, suggesting slightly improved sensitivity. Only one sample failed to test positive with the DIG-MWP generic probe assay in spite of a positive genotyping result. Concordance between the two laboratories was nearly 87%. Approximately 6% of samples that were positive or borderline when tested with the DIG-MWP generic probe assay were not detected with the HPV type-specific panel, perhaps representing very rare or novel HPV types. This new method is easier to perform than traditional generic probe techniques and uses more objective interpretation criteria, making it useful in studies of HPV natural history.

  1. Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates.

    PubMed

    Ahumada, Katherine; Martínez-Gil, Ana; Moreno-Simunovic, Yerko; Illanes, Andrés; Wilson, Lorena

    2016-11-08

    Aroma is a remarkable factor of quality and consumer preference in wine, representing a distinctive feature of the product. Most aromatic compounds in varietals are in the form of glycosidic precursors, which are constituted by a volatile aglycone moiety linked to a glucose residue by an O -glycosidic bond; glucose is often linked to another sugar (arabinose, rhamnose or apiose). The use of soluble β-glycosidases for aroma liberation implies the addition of a precipitating agent to remove it from the product and precludes its reuse after one batch. An attractive option from a technological perspective that will aid in removing such constraints is the use of immobilized glycosidases. Immobilization by aggregation and crosslinking is a simple strategy producing enzyme catalysts of very high specific activity, being an attractive option to conventional immobilization to solid inert supports. The purpose of this work was the evaluation of co-immobilized β-glycosidases crosslinked aggregates produced from the commercial preparation AR2000, which contains the enzymes involved in the release of aromatic terpenes in Muscat wine (α-l-arabinofuranosidase and β-d-glucopyranosidase). To do so, experiments were conducted with co-immobilized crosslinked enzyme aggregates (combi-CLEAs), and with the soluble enzymes, using an experiment without enzyme addition as control. Stability of the enzymes at the conditions of winemaking was assessed and the volatiles composition of wine was determined by SPE-GC-MS. Stability of enzymes in combi-CLEAs was much higher than in soluble form, 80% of the initial activity remaining after 60 days in contact with the wine; at the same conditions, the soluble enzymes had lost 80% of their initial activities after 20 days. Such higher stabilities will allow prolonged use of the enzyme catalyst reducing its impact in the cost of winemaking. Wine treated with combi-CLEAs was the one exhibiting the highest concentration of total terpenes (18% higher than the control) and the highest concentrations of linalool (20% higher), nerol (20% higher) and geraniol (100% higher), which are the most important terpenes in determining Muscat typicity. Co-immobilized enzymes were highly stable at winemaking conditions, so their reutilization is possible and technologically attractive by reducing the impact of enzyme cost on winemaking cost.

  2. Evaluation of a mandatory quality assurance data capture in anesthesia: a secure electronic system to capture quality assurance information linked to an automated anesthesia record.

    PubMed

    Peterfreund, Robert A; Driscoll, William D; Walsh, John L; Subramanian, Aparna; Anupama, Shaji; Weaver, Melissa; Morris, Theresa; Arnholz, Sarah; Zheng, Hui; Pierce, Eric T; Spring, Stephen F

    2011-05-01

    Efforts to assure high-quality, safe, clinical care depend upon capturing information about near-miss and adverse outcome events. Inconsistent or unreliable information capture, especially for infrequent events, compromises attempts to analyze events in quantitative terms, understand their implications, and assess corrective efforts. To enhance reporting, we developed a secure, electronic, mandatory system for reporting quality assurance data linked to our electronic anesthesia record. We used the capabilities of our anesthesia information management system (AIMS) in conjunction with internally developed, secure, intranet-based, Web application software. The application is implemented with a backend allowing robust data storage, retrieval, data analysis, and reporting capabilities. We customized a feature within the AIMS software to create a hard stop in the documentation workflow before the end of anesthesia care time stamp for every case. The software forces the anesthesia provider to access the separate quality assurance data collection program, which provides a checklist for targeted clinical events and a free text option. After completing the event collection program, the software automatically returns the clinician to the AIMS to finalize the anesthesia record. The number of events captured by the departmental quality assurance office increased by 92% (95% confidence interval [CI] 60.4%-130%) after system implementation. The major contributor to this increase was the new electronic system. This increase has been sustained over the initial 12 full months after implementation. Under our reporting criteria, the overall rate of clinical events reported by any method was 471 events out of 55,382 cases or 0.85% (95% CI 0.78% to 0.93%). The new system collected 67% of these events (95% confidence interval 63%-71%). We demonstrate the implementation in an academic anesthesia department of a secure clinical event reporting system linked to an AIMS. The system enforces entry of quality assurance information (either no clinical event or notification of a clinical event). System implementation resulted in capturing nearly twice the number of events at a relatively steady case load. © 2011 International Anesthesia Research Society

  3. Fungal biodegradation and enzymatic modification of lignin

    PubMed Central

    Dashtban, Mehdi; Schraft, Heidi; Syed, Tarannum A.; Qin, Wensheng

    2010-01-01

    Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed. PMID:21968746

  4. Metabolic indicators of habitat differences in four Minnesota deer populations

    USGS Publications Warehouse

    Seal, U.S.; Nelson, M.E.; Mech, L.D.; Hoskinson, R.L.

    1978-01-01

    Blood samples were collected from 40 white-tailed deer (Odocoileus virginianus) from 4 winter yards in northeastern Minnesota from 17 March 1974 through 23 April 1975. The results of 26 blood assays were examined for the effects of age, sex, capture date, capture method, disease and location. Age-related effects were found for serum chloride, calcium, gamma globulin, creatine phosphokinase (CPK), lactic dehydrogenase (LDH), and alkaline phosphatase. The only sex difference was lower CPK in males. Date of collection effects were found for erythrocyte count, mean corpuscular volume (MCV), serum glucose, and nonesterified fatty acids (NEF A). Capture method affected serum glucose, acid base balance, and serum enzymes. Effects related primarily to capture location or habitat differences were found for erythrocyte count, MCV, mean corpuscular hemoglobin concentration (MCHC), serum urea, cholesterol, LDH, thyroxine, and NEF A. Animals whose assays indicated the poorest nutritional status inhabited wintering areas with the oldest vegetation. Habitat differences can be detected by measuring the physiological status of the local animal populations.

  5. Capture-ELISA for serum IgM antibody to respiratory syncytial virus.

    PubMed Central

    Cevenini, R.; Donati, M.; Bertini, S.; Moroni, A.; Sambri, V.

    1986-01-01

    A four-component solid-phase capture enzyme immunoassay was set up to test for serum IgM antibody to respiratory syncytial (RS) virus and was compared with immunofluorescence assay (IFA). A total of 128 young children with acute respiratory infections were studied. Thirty-six were shown to be RS virus-positive by the detection of RS virus in nasopharyngeal secretions and 92 were RS virus-negative. A serum specimen was collected after admission to the hospital (days 0-4) and a further specimen was obtained during days 10-14. Out of 36 RS virus-positive patients, 28 (77.7%) were found to be positive for IgM by both capture-ELISA and IFA. Out of 92 RS virus-negative patients 5 (5.4%) were IgM-positive. Four false-positive results were obtained by IFA due to the presence of rheumatoid factor. The capture-ELISA was shown to be a reliable technique in detecting specific IgM antibody to RS virus. PMID:3540115

  6. Cross-linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes.

    PubMed

    Antonio, Francesko; Guillem, Rocasalbas; Sonia, Touriño; Clara, Mattu; Piergiorgio, Gentile; Valeria, Chiono; Gianluca, Ciardelli; Tzanov, Tzanko

    2011-10-01

    Collagen sponges loaded with polyphenols from Hamamelis virginiana were investigated as active materials for chronic wound dressings, evaluating in vitro the inhibition of two major enzymes that impair the wound healing process - myeloperoxidase (MPO) and collagenase. Prior to polyphenols loading, collagen was cross-linked with genipin to improve its biostability. The effect of genipin cross-linking and polyphenol concentration in the development of mechanically and enzymatically stable sponges was studied. The tensile strength of the cross-linked collagen increased with the increase of the cross-linking degree, coupled to decrease in the elongation and the swelling capacity of the sponges. The stability of the sponges to collagenase digestion reached maximum when 1 mM genipin was used. However, the biostability decreased more than 10-fold after loading the sponges with polyphenols (0.5 mg/mL), nevertheless, this effect was partially overcome using higher concentration of polyphenols (1 and 2 mg/mL) to inhibit collagenase. Moreover, the polyphenols released from the sponges were sufficient for complete inhibition of MPO activity. No considerable cytotoxicity of the genipin cross-linked collagen loaded with polyphenols was observed evaluating the NIH 3T3 fibroblasts viability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    PubMed

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  8. Enzyme-Mediated Individual Nanoparticle Release Assay

    PubMed Central

    Glass, James R.; Dickerson, Janet C.; Schultz, David A.

    2007-01-01

    Numerous methods have been developed to measure the presence of macromolecular species in a sample, however methods that detect functional activity, or modulators of that activity are more limited. To address this limitation, an approach was developed that utilizes the optical detection of nanoparticles as a measure of enzyme activity. Nanoparticles are increasingly being used as biological labels in static binding assays; here we describe their use in a release assay format where the enzyme-mediated liberation of individual nanoparticles from a surface is measured. A double stranded fragment of DNA is used as the initial tether to bind the nanoparticles to a solid surface. The nanoparticle spatial distribution and number are determined using dark-field optical microscopy and digital image capture. Site specific cleavage of the DNA tether results in nanoparticle release. The methodology and validation of this approach for measuring enzyme-mediated, individual DNA cleavage events, rapidly, with high specificity, and in real-time is described. This approach was used to detect and discriminate between non-methylated and methylated DNA, and demonstrates a novel platform for high-throughput screening of modulators of enzyme activity. PMID:16620746

  9. Improving the 'tool box' for robust industrial enzymes.

    PubMed

    Littlechild, J A

    2017-05-01

    The speed of sequencing of microbial genomes and metagenomes is providing an ever increasing resource for the identification of new robust biocatalysts with industrial applications for many different aspects of industrial biotechnology. Using 'natures catalysts' provides a sustainable approach to chemical synthesis of fine chemicals, general chemicals such as surfactants and new consumer-based materials such as biodegradable plastics. This provides a sustainable and 'green chemistry' route to chemical synthesis which generates no toxic waste and is environmentally friendly. In addition, enzymes can play important roles in other applications such as carbon dioxide capture, breakdown of food and other waste streams to provide a route to the concept of a 'circular economy' where nothing is wasted. The use of improved bioinformatic approaches and the development of new rapid enzyme activity screening methodology can provide an endless resource for new robust industrial biocatalysts.This mini-review will discuss several recent case studies where industrial enzymes of 'high priority' have been identified and characterised. It will highlight specific hydrolase enzymes and recent case studies which have been carried out within our group in Exeter.

  10. Coupled reactions on bioparticles: Stereoselective reduction with cofactor regeneration on PhaC inclusion bodies.

    PubMed

    Spieler, Valerie; Valldorf, Bernhard; Maaß, Franziska; Kleinschek, Alexander; Hüttenhain, Stefan H; Kolmar, Harald

    2016-07-01

    Chiral alcohols are important building blocks for specialty chemicals and pharmaceuticals. The production of chiral alcohols from ketones can be carried out stereo selectively with alcohol dehydrogenases (ADHs). To establish a process for cost-effective enzyme immobilization on solid phase for application in ketone reduction, we used an established enzyme pair consisting of ADH from Rhodococcus erythropolis and formate dehydrogenase (FDH) from Candida boidinii for NADH cofactor regeneration and co-immobilized them on modified poly-p-hydroxybutyrate synthase (PhaC)-inclusion bodies that were recombinantly produced in Escherichia coli cells. After separate production of genetically engineered and recombinantly produced enzymes and particles, cell lysates were combined and enzymes endowed with a Kcoil were captured on the surface of the Ecoil presenting particles due to coiled-coil interaction. Enzyme-loaded particles could be easily purified by centrifugation. Total conversion of 4'-chloroacetophenone to (S)-4-chloro-α-methylbenzyl alcohol could be accomplished using enzyme-loaded particles, catalytic amounts of NAD(+) and formate as substrates for FDH. Chiral GC-MS analysis revealed that immobilized ADH retained enantioselectivity with 99 % enantiomeric excess. In conclusion, this strategy may become a cost-effective alternative to coupled reactions using purified enzymes. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase.

    PubMed

    Lee, J; Hofhaus, G; Lisowsky, T

    2000-07-14

    The yeast ERV1 gene encodes a small polypeptide of 189 amino acids that is essential for mitochondrial function and for the viability of the cell. In this study we report the enzymatic activity of this protein as a flavin-linked sulfhydryl oxidase catalyzing the formation of disulfide bridges. Deletion of the amino-terminal part of Erv1p shows that the enzyme activity is located in the 15 kDa carboxy-terminal domain of the protein. This fragment of Erv1p still binds FAD and catalyzes the formation of disulfide bonds but is no longer able to form dimers like the complete protein. The carboxy-terminal fragment contains a conserved CXXC motif that is present in all homologous proteins from yeast to human. Thus Erv1p represents the first FAD-linked sulfhydryl oxidase from yeast and the first of these enzymes that is involved in mitochondrial biogenesis.

  12. Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W.

    2016-11-17

    Asn-linked glycosylation of newly synthesized polypeptides occurs in the endoplasmic reticulum of eukaryotic cells. Glycan structures are trimmed and remodeled as they transit the secretory pathway, and processing intermediates play various roles as ligands for folding chaperones and signals for quality control and intracellular transport. Key steps for the generation of these trimmed intermediates are catalyzed by glycoside hydrolase family 47 (GH47) α-mannosidases that selectively cleave α1,2-linked mannose residues. Despite the sequence and structural similarities among the GH47 enzymes, the molecular basis for residue-specific cleavage remains obscure. The present studies reveal enzyme–substrate complex structures for two related GH47 α-mannosidases andmore » provide insights into how these enzymes recognize the same substrates differently and catalyze the complementary glycan trimming reactions necessary for glycan maturation.« less

  13. Amperometric Glucose Sensor Using Thermostable Co-Factor Binding Glucose Dehydrogenase

    NASA Astrophysics Data System (ADS)

    Nakazawa, Yukie; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    A thermostable mediator-type enzyme glucose sensor was constructed. The electrode was fabricated using chemically cross-linked thermostable co-factor binding glucose dehydrogenase (GDH) from thermophilic bacteria in carbon paste matrix. The electrode responded directly proportional to D-glucose concentration from 0.01 mM to 3 mM in stirred buffer containing 1 mM 1-methoxyphenazinemethosulfate as a mediator with the steady-state mode. The storage stability was examined by incubating the enzyme electrode at 50oC during the measurement. The cross-linked GDH immobilized electrode showed good storage stability. Ninety percent of its initial response was retained after incubation in buffer solution for 9 days at 50oC. The flow injection analysis (FIA) glucose sensing system was also constructed by immobilizing the cross-linked GDH and ferrocene as a mediator in the carbon paste matrix. The FIA system was able to measure 600 samples for 100 h.

  14. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detectionmore » of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.« less

  15. Linking protein structure and dynamics to catalysis: the role of hydrogen tunnelling

    PubMed Central

    Klinman, Judith P

    2006-01-01

    Early studies of enzyme-catalysed hydride transfer reactions indicated kinetic anomalies that were initially interpreted in the context of a ‘tunnelling correction’. An alternate model for tunnelling emerged following studies of the hydrogen atom transfer catalysed by the enzyme soybean lipoxygenase. This invokes full tunnelling of all isotopes of hydrogen, with reaction barriers reflecting the heavy atom, environmental reorganization terms. Using the latter approach, we offer an integration of the aggregate data implicating hydrogen tunnelling in enzymes (i.e. deviations from Swain–Schaad relationships and the semi-classical temperature dependence of the hydrogen isotope effect). The impact of site-specific mutations of enzymes plays a critical role in our understanding of the factors that control tunnelling in enzyme reactions. PMID:16873120

  16. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the alpha-chymotrypsin-proflavin interaction.

    PubMed

    Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin

    2007-12-01

    Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.

  18. Bad data packet capture device

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Vranas, Pavlos

    2010-04-20

    An apparatus and method for capturing data packets for analysis on a network computing system includes a sending node and a receiving node connected by a bi-directional communication link. The sending node sends a data transmission to the receiving node on the bi-directional communication link, and the receiving node receives the data transmission and verifies the data transmission to determine valid data and invalid data and verify retransmissions of invalid data as corresponding valid data. A memory device communicates with the receiving node for storing the invalid data and the corresponding valid data. A computing node communicates with the memory device and receives and performs an analysis of the invalid data and the corresponding valid data received from the memory device.

  19. Linking Data for Mothers and Babies in De-Identified Electronic Health Data.

    PubMed

    Harron, Katie; Gilbert, Ruth; Cromwell, David; van der Meulen, Jan

    2016-01-01

    Linkage of longitudinal administrative data for mothers and babies supports research and service evaluation in several populations around the world. We established a linked mother-baby cohort using pseudonymised, population-level data for England. Retrospective linkage study using electronic hospital records of mothers and babies admitted to NHS hospitals in England, captured in Hospital Episode Statistics between April 2001 and March 2013. Of 672,955 baby records in 2012/13, 280,470 (42%) linked deterministically to a maternal record using hospital, GP practice, maternal age, birthweight, gestation, birth order and sex. A further 380,164 (56%) records linked using probabilistic methods incorporating additional variables that could differ between mother/baby records (admission dates, ethnicity, 3/4-character postcode district) or that include missing values (delivery variables). The false-match rate was estimated at 0.15% using synthetic data. Data quality improved over time: for 2001/02, 91% of baby records were linked (holding the estimated false-match rate at 0.15%). The linked cohort was representative of national distributions of gender, gestation, birth weight and maternal age, and captured approximately 97% of births in England. Probabilistic linkage of maternal and baby healthcare characteristics offers an efficient way to enrich maternity data, improve data quality, and create longitudinal cohorts for research and service evaluation. This approach could be extended to linkage of other datasets that have non-disclosive characteristics in common.

  20. DETECTION OF NORWALK VIRUS AND OTHER GENOGROUP I HUMAN CALICIVIRUSES BY A MONOCLONAL ANTIBODY, RECOMBINANT ANTIGEN-BASED IMMUNOGLOBULIN M CAPTURE ENZYME IMMUNOASSAY. (R826139)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Robust detection of chromosomal interactions from small numbers of cells using low-input Capture-C

    PubMed Central

    Oudelaar, A. Marieke; Davies, James O.J.; Downes, Damien J.; Higgs, Douglas R.

    2017-01-01

    Abstract Chromosome conformation capture (3C) techniques are crucial to understanding tissue-specific regulation of gene expression, but current methods generally require large numbers of cells. This hampers the investigation of chromatin architecture in rare cell populations. We present a new low-input Capture-C approach that can generate high-quality 3C interaction profiles from 10 000–20 000 cells, depending on the resolution used for analysis. We also present a PCR-free, sequencing-free 3C technique based on NanoString technology called C-String. By comparing C-String and Capture-C interaction profiles we show that the latter are not skewed by PCR amplification. Furthermore, we demonstrate that chromatin interactions detected by Capture-C do not depend on the degree of cross-linking by performing experiments with varying formaldehyde concentrations. PMID:29186505

  2. Implementation of an electronic fingerprint-linked data collection system: a feasibility and acceptability study among Zambian female sex workers.

    PubMed

    Wall, Kristin M; Kilembe, William; Inambao, Mubiana; Chen, Yi No; Mchoongo, Mwaka; Kimaru, Linda; Hammond, Yuna Tiffany; Sharkey, Tyronza; Malama, Kalonde; Fulton, T Roice; Tran, Alex; Halumamba, Hanzunga; Anderson, Sarah; Kishore, Nishant; Sarwar, Shawn; Finnegan, Trisha; Mark, David; Allen, Susan A

    2015-06-27

    Patient identification within and between health services is an operational challenge in many resource-limited settings. When following HIV risk groups for service provision and in the context of vaccine trials, patient misidentification can harm patient care and bias trial outcomes. Electronic fingerprinting has been proposed to identify patients over time and link patient data between health services. The objective of this study was to determine 1) the feasibility of implementing an electronic-fingerprint linked data capture system in Zambia and 2) the acceptability of this system among a key HIV risk group: female sex workers (FSWs). Working with Biometrac, a US-based company providing biometric-linked healthcare platforms, an electronic fingerprint-linked data capture system was developed for use by field recruiters among Zambian FSWs. We evaluated the technical feasibility of the system for use in the field in Zambia and conducted a pilot study to determine the acceptability of the system, as well as barriers to uptake, among FSWs. We found that implementation of an electronic fingerprint-linked patient tracking and data collection system was feasible in this relatively resource-limited setting (false fingerprint matching rate of 1/1000 and false rejection rate of <1/10,000) and was acceptable among FSWs in a clinic setting (2% refusals). However, our data indicate that less than half of FSWs are comfortable providing an electronic fingerprint when recruited while they are working. The most common reasons cited for not providing a fingerprint (lack of privacy/confidentiality issues while at work, typically at bars or lodges) could be addressed by recruiting women during less busy hours, in their own homes, in the presence of "Queen Mothers" (FSW organizers), or in the presence of a FSW that has already been fingerprinted. Our findings have major implications for key population research and improved health services provision. However, more work needs to be done to increase the acceptability of the electronic fingerprint-linked data capture system during field recruitment. This study indicated several potential avenues that will be explored to increase acceptability.

  3. Protein-Linked Glycan Degradation in Infants Fed Human Milk

    PubMed Central

    Dallas, David C.; Sela, David; Underwood, Mark A.; German, J. Bruce; Lebrilla, Carlito

    2014-01-01

    Many human milk proteins are glycosylated. Glycosylation is important in protecting bioactive proteins and peptide fragments from digestion. Protein-linked glycans have a variety of functions; however, there is a paucity of information on protein-linked glycan degradation in either the infant or the adult digestive system. Human digestive enzymes can break down dietary disaccharides and starches, but most of the digestive enzymes required for complex protein-linked glycan degradation are absent from both human digestive secretions and the external brush border membrane of the intestinal lining. Indeed, complex carbohydrates remain intact throughout their transit through the stomach and small intestine, and are undegraded by in vitro incubation with either adult pancreatic secretions or intact intestinal brush border membranes. Human gastrointestinal bacteria, however, produce a wide variety of glycosidases with regio- and anomeric specificities matching those of protein-linked glycan structures. These bacteria degrade a wide array of complex carbohydrates including various protein-linked glycans. That bacteria possess glycan degradation capabilities, whereas the human digestive system, perse, does not, suggests that most dietary protein-linked glycan breakdown will be of bacterial origin. In addition to providing a food source for specific bacteria in the colon, protein-linked glycans from human milk may act as decoys for pathogenic bacteria to prevent invasion and infection of the host. The composition of the intestinal microbiome may be particularly important in the most vulnerable humans-the elderly, the immunocompromised, and infants (particularly premature infants). PMID:24533224

  4. Early evolution of efficient enzymes and genome organization

    PubMed Central

    2012-01-01

    Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight. PMID:23114029

  5. Immobilization of Candida rugosa lipase by adsorption-crosslinking onto corn husk

    NASA Astrophysics Data System (ADS)

    Nuraliyah, A.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Corn husk is one of the agricutural waste that has not been used optimally. corn husk waste allows to be used as immobilized support for biocatalyst because it is easy to obtain, available abundant, renewable and easy to decompose. This research was conducted in two phases, namely the adsorption of enzyme immobilization on the support, followed by cross- linking between the enzyme and support through the addition of glutaraldehyde. The optimum conditions for cross-linked adsorption immobilization using support of corn husk were achieved at concentrations of 0,75 mg / ml at 4 hour reaction time. The biggest unit activity value is obtained at 2,37 U / g support through 0.5% glutaraldehyde addition.

  6. Natural preservatives for superficial scald reduction and enhancement of protective phenolic-linked antioxidant responses in apple during post-harvest storage.

    PubMed

    Sarkar, Dipayan; Ankolekar, Chandrakant; Greene, Duane; Shetty, Kalidas

    2018-05-01

    Superficial scald during post-harvest storage is a serious problem for long-term preservation and shelf-life of some apple and pear cultivars. Development of superficial scald and related physiological disorders such as enzymatic and non-enzymatic browning are associated in part with oxidative breakdown and redox imbalance. Therefore, targeting natural antioxidants from food-grade sources as post-harvest treatment to reduce superficial scald has merit. Such natural antioxidants can potentially counter oxidation-linked damages associated with superficial scald through stimulation of antioxidant enzyme responses and biosynthesis of less-oxidized phenolics involving protective redox-linked pathway such as proline-associated pentose phosphate pathway. Based on this rationale, bioprocessed food-grade oregano extract (OX) and soluble chitosan oligosaccharide (COS) were targeted as post-harvest treatment (2 and 4 g L -1 ) and were compared with diphenylamine (DPA) (1 and 2 g L -1 ) to reduce superficial scald and to improve protective phenolic-linked antioxidant responses in "Cortland" cultivar stored at 4 °C for 15 weeks. Overall, significant reduction of superficial scald and conjugated triene was observed with DPA and OX (2 g L -1 ) post-harvest treatments. Furthermore, stimulation of antioxidant enzyme responses such as increases in superoxide dismutase and guaiacol peroxidase activity was also observed, but was more evident with DPA and COS treatment. Overall, results of this study indicated that critical balance of less-oxidized phenolics and antioxidant enzymes and associated anabolic PPP-linked redox regulation is essential for improving post-harvest preservation and reduction of superficial scald in apple.

  7. Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

    PubMed

    Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee

    2014-06-01

    Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields.

  8. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.

    PubMed

    Abrahamian, Melania; Kagda, Meenakshi; Ah-Fong, Audrey M V; Judelson, Howard S

    2017-12-04

    An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.

  9. Predicting Catalytic Proton Donors and Nucleophiles in Enzymes: How Adding Dynamics Helps Elucidate the Structure-Function Relationships.

    PubMed

    Huang, Yandong; Yue, Zhi; Tsai, Cheng-Chieh; Henderson, Jack A; Shen, Jana

    2018-03-15

    Despite the relevance of understanding structure-function relationships, robust prediction of proton donors and nucleophiles in enzyme active sites remains challenging. Here we tested three types of state-of-the-art computational methods to calculate the p K a 's of the buried and hydrogen bonded catalytic dyads in five enzymes. We asked the question what determines the p K a order, i.e., what makes a residue proton donor vs a nucleophile. The continuous constant pH molecular dynamics simulations captured the experimental p K a orders and revealed that the negative nucleophile is stabilized by increased hydrogen bonding and solvent exposure as compared to the proton donor. Surprisingly, this simple trend is not apparent from crystal structures and the static structure-based calculations. While the generality of the findings awaits further testing via a larger set of data, they underscore the role of dynamics in bridging enzyme structures and functions.

  10. Porcine NAMPT gene: search for polymorphism, mapping and association studies

    USDA-ARS?s Scientific Manuscript database

    NAMPT encodes for an enzyme catalysing the rate-limiting step in NAD biosynthesis. The extracellular form of the enzyme is known as adipokine visfatin. We detected SNP AM999341:g.669T>C in intron 9 and SNP FN392209:g.358A>G in the promoter of the gene. RH mapping linked the gene to microsatellite SW...

  11. Quantitative Structure-Activity Relationships for Organophosphate Enzyme Inhibition (Briefing Charts)

    DTIC Science & Technology

    2011-09-22

    OPs) are a group of pesticides that inhibit enzymes such as acetylcholinesterase. Numerous OP structural variants exist and toxicity data can be...and human toxicity studies especially for OPs lacking experimental data. 15. SUBJECT TERMS QSAR Organophosphates...structure and mechanism of toxicity c) Linking QSAR and OP PBPK/PD 2. Methods a) Physiochemical Descriptors b) Regression Techniques 3. Results a

  12. Nylon bead enzyme-linked immunosorbent assay for detection of sub-picogram quantities of Brucella antigens.

    PubMed Central

    Perera, V Y; Creasy, M T; Winter, A J

    1983-01-01

    An indirect sandwich enzyme-linked immunosorbent assay, using antibody covalently coupled to nylon beads, has been adapted for the detection of Brucella antigens. Optimum conditions were achieved by incubation of 1 ml of reaction mixture with a single bead, and by minimizing nonspecific interactions through the use of beads coated with purified bovine antibodies, preabsorption of third layer rabbit antibodies with normal bovine serum, and treatment of beads with normal goat serum before addition of the goat anti-rabbit enzyme conjugate. Beta-galactosidase was selected for use with clinical samples primarily because of low levels of endogenous enzyme in bovine leukocytes. Use of a fluorogenic substrate enhanced sensitivity 20-fold. Under these conditions, 100 fg of solubilized crude lipopolysaccharide or 8 to 10 Brucella cells was detectable in a fixed volume of 1 ml. A system was also devised for concentrating antigen which permitted ready detection of 2 pg of lipopolysaccharide in a volume of 50 ml (40 fg/ml). Attempts to detect lipopolysaccharide in the presence of concentrated serum or plasma were unsuccessful, but 10 brucellae added to a suspension of leukocytes from 100 ml of normal bovine blood were easily measured. PMID:6415094

  13. Bioconversion of Lignocellulosic Biomass to Fermentable Sugars by Immobilized Magnetic Cellulolytic Enzyme Cocktails.

    PubMed

    Periyasamy, Karthik; Santhalembi, Laishram; Mortha, Gérard; Aurousseau, Marc; Boyer, Agnès; Subramanian, Sivanesan

    2018-06-05

    Enzyme cocktails of reusable, highly stable cellulolytic enzymes play an inevitable role in bioconversion of biomass to biofuels economically. Cellulase, xylanase and β-1,3-glucanase bound silica-amine functionalized iron oxide magnetic nanoparticles (ISN-CLEAs) were prepared and used as the biocatalyst for the depolymerization of cellulosic biomass into monomeric sugar in the present study. The Fe 3 O 4 -NPs and Fe 3 O 4 @SiO 2 -NH 2 -NPs and ISN-CLEAs had an average hydrodynamic size of 82.2, 86.4, and 976.9 nm, respectively, which was confirmed by dynamic light scattering (DLS). About 97% of protein binding was achieved with 135 mM glutaraldehyde at 10 h of cross-linking time and successful binding was confirmed by Fourier transform infrared spectroscopy (FTIR). The ISN-CLEAs exhibited the highest thermal stability of 95% at 50 °C for 2 h and retained extended storage stability of 97% compared to 60% of its free counterpart. Besides, cross-linking allowed ISN-CLEAs reuse for at least eight consecutive cycles retaining over 70% of its initial activity. ISN-CLEAs exhibited approximately 15% increase in carbohydrate digestibility on sugar cane bagasse and eucalyptus pulp than the free enzyme.

  14. Nanoplasmonic Quantification of Tumor-derived Extracellular Vesicles in Plasma Microsamples for Diagnosis and Treatment Monitoring

    PubMed Central

    Liang, Kai; Liu, Fei; Fan, Jia; Sun, Dali; Liu, Chang; Lyon, Christopher J.; Bernard, David W.; Li, Yan; Yokoi, Kenji; Katz, Matthew H.; Koay, Eugene J.; Zhao, Zhen; Hu, Ye

    2017-01-01

    Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples, are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpensive nanoplasmon-enhanced scattering (nPES) assay that directly quantifies tumor-derived EVs from as little as 1 μL of plasma. The assay uses the binding of antibody-conjugated gold nanospheres and nanorods to EVs captured by EV-specific antibodies on a sensor chip to produce a local plasmon effect that enhances tumour-derived EV detection sensitivity and specificity. We identified a pancreatic cancer EV biomarker, ephrin type-A receptor 2 (EphA2), and demonstrate that an nPES assay for EphA2-EVs distinguishes pancreatic cancer patients from pancreatitis patients and healthy subjects. EphA2-EVs were also informative in staging tumour progression and in detecting early responses to neoadjuvant therapy, with better performance than a conventional enzyme-linked immunosorbent assay. The nPES assay can be easily refined for clinical use, and readily adapted for diagnosis and monitoring of other conditions with disease-specific EV biomarkers. PMID:28791195

  15. Online immunocapture ICP-MS for the determination of the metalloprotein ceruloplasmin in human serum.

    PubMed

    Bernevic, Bogdan; El-Khatib, Ahmed H; Jakubowski, Norbert; Weller, Michael G

    2018-04-02

    The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32 S mass trace. The ICP-MS signals were normalized on a 59 Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS.

  16. Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue.

    PubMed

    Bruggink, Kim A; Jongbloed, Wesley; Biemans, Elisanne A L M; Veerhuis, Rob; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2013-02-15

    Amyloid-β (Aβ) deposits are important pathological hallmarks of Alzheimer's disease (AD). Aβ aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an enzyme-linked immunosorbent assay (ELISA) specific for Aβ oligomers by using the same capture and (labeled) detection antibody. The ELISA predominantly recognizes relatively small oligomers (10-25 kDa) and not monomers. In brain tissue of APP/PS1 transgenic mice, we found that Aβ oligomer levels increase with age. However, for measurements in human samples, pretreatment to remove human anti-mouse antibodies (HAMAs) was required. In HAMA-depleted human hippocampal extracts, the Aβ oligomer concentration was significantly increased in AD compared with nondemented controls. Aβ oligomer levels could also be quantified in pretreated cerebrospinal fluid (CSF) samples; however, no difference was detected between AD and control groups. Our data suggest that levels of small oligomers might not be suitable as biomarkers for AD. In addition, we demonstrate the importance of avoiding HAMA interference in assays to quantify Aβ oligomers in human body fluids. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Aspergillus serology: Have we arrived yet?

    PubMed

    Richardson, Malcolm D; Page, Iain D

    2017-01-01

    Aspergillosis presents in various clinical forms, among them chronic pulmonary aspergillosis, which is a spectrum of disease entities including aspergilloma, chronic cavitary pulmonary aspergillosis, and chronic fibrosing pulmonary aspergillosis. Aspergillus also contributes to fungal allergy and sensitization. Analysis of the immune response to Aspergillus and its antigens is an integral part of the diagnosis of these diseases. Over the past half century, the techniques used to determine antibody titers have evolved from testing for precipitating and agglutinating antibodies by agar gel double diffusion and immunolectrophoresis to enzyme-linked immunosorbent assays using recombinant proteins as capture antigens. A resurgence of interest in the detection of immunoglobulins, primarily Aspergillus-specific IgG, has hinted at the possibility of distinguishing between colonization and invasion in immunocompromised patients with invasive aspergillosis. Even though there appears to be a greater degree of discrimination between the clinical forms of aspergillosis there is still a long way to travel. This review presents illustrative examples of where new diagnostic platforms and technologies have been applied to this intriguing spectrum of diseases. © The Authors 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  19. Integrated Smartphone-App-Chip System for On-Site Parts-Per-Billion-Level Colorimetric Quantitation of Aflatoxins.

    PubMed

    Li, Xiaochun; Yang, Fan; Wong, Jessica X H; Yu, Hua-Zhong

    2017-09-05

    We demonstrate herein an integrated, smartphone-app-chip (SPAC) system for on-site quantitation of food toxins, as demonstrated with aflatoxin B1 (AFB1), at parts-per-billion (ppb) level in food products. The detection is based on an indirect competitive immunoassay fabricated on a transparent plastic chip with the assistance of a microfluidic channel plate. A 3D-printed optical accessory attached to a smartphone is adapted to align the assay chip and to provide uniform illumination for imaging, with which high-quality images of the assay chip are captured by the smartphone camera and directly processed using a custom-developed Android app. The performance of this smartphone-based detection system was tested using both spiked and moldy corn samples; consistent results with conventional enzyme-linked immunosorbent assay (ELISA) kits were obtained. The achieved detection limit (3 ± 1 ppb, equivalent to μg/kg) and dynamic response range (0.5-250 ppb) meet the requested testing standards set by authorities in China and North America. We envision that the integrated SPAC system promises to be a simple and accurate method of food toxin quantitation, bringing much benefit for rapid on-site screening.

  20. Heat treatment of unclarified Escherichia coli homogenate improved the recovery efficiency of recombinant hepatitis B core antigen.

    PubMed

    Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti

    2006-10-01

    Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.

Top