Science.gov

Sample records for capture gamma ray

  1. The Chase to Capture Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts are the most powerful explosions in the universe, thought to be the birth cries of black holes. It has taken 40 years of international cooperation and competition to begin to unravel the mystery of their origin. The most recent chapter in this field is being written by the SWIFT mission, a fast-response satellite with 3 power telescopes. An international team from countries all over the world participates in the chase to capture the fading light of bursts detected by SWIFT. This talk will discuss the challenges and excitement of building this space observatory. New results will be presented on our growing understanding of exploding stars and fiery mergers of orbiting stars.

  2. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect

    Sleaford, B W; Firestone, R B; Summers, N; Escher, J; Hurst, A; Krticka, M; Basunia, S; Molnar, G; Belgya, T; Revay, Z; Choi, H D

    2010-11-04

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  3. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  4. Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect

    Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-05-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90percent of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.

  5. Neutron-capture gamma rays below 40 keV

    NASA Astrophysics Data System (ADS)

    Durner, P.; Von Egidy, T.; Hartmann, F. J.

    1989-06-01

    A review of neutron-capture gamma ray measurements below 40 keV is given and experimental methods are discussed. New experiments with a Si(Li) detector have been performed. Energies and absolute intensities of low energy (n, γ) transitions in 28Al, 40K, 52V, 128I, 134Cs, 160Tb, 166Ho, 170Tm, 176Lu, 182Ta, 192Ir, 198Au and 233Th are presented. These new results can serve calibration purposes and provide nuclear structure information.

  6. Linear combination reading program for capture gamma rays

    USGS Publications Warehouse

    Tanner, Allan B.

    1971-01-01

    This program computes a weighting function, Qj, which gives a scalar output value of unity when applied to the spectrum of a desired element and a minimum value (considering statistics) when applied to spectra of materials not containing the desired element. Intermediate values are obtained for materials containing the desired element, in proportion to the amount of the element they contain. The program is written in the BASIC language in a format specific to the Hewlett-Packard 2000A Time-Sharing System, and is an adaptation of an earlier program for linear combination reading for X-ray fluorescence analysis (Tanner and Brinkerhoff, 1971). Following the program is a sample run from a study of the application of the linear combination technique to capture-gamma-ray analysis for calcium (report in preparation).

  7. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    PubMed

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Proposed experiment to measure {gamma}-rays from the thermal neutron capture of gadolinium

    SciTech Connect

    Yano, Takatomi; Ou, I.; Izumi, T.; Yamaguchi, R.; Mori, T.; Sakuda, M.

    2012-11-12

    Gadolinium-157 ({sup 157}Gd) has the largest thermal neutron capture cross section among any stable nuclei. The thermal neutron capture yields {gamma}-ray cascade with total energy of about 8 MeV. Because of these characteristics, Gd is applied for the recent neutrino detectors. Here, we propose an experiment to measure the multiplicity and the angular correlation of {gamma}-rays from the Gd neutron capture. With these information, we expect the improved identification of the Gd neutron capture.

  9. Neutron-capture gamma-ray data for obtaining elemental abundances from planetary spectra.

    SciTech Connect

    Reedy, Robert; Frankle, S. C.

    2001-01-01

    Determination of elemental abundances is a top scientific priority of most planetary missions. Gamma-ray spectroscopy is an excellent method to determine elemental abundances using gamma rays made by nuclear reactions induced by cosmic-ray particles and by the decay of radioactive nuclides [Re73,Re78]. Many important planetary gamma rays are made by neutron-capture reactions. However, much of the data for the energies and intensities of neutron-capture gamma rays in the existing literature [e.g. Lo81] are poor [RF99,RF00]. With gamma-ray spectrometers having recently returned data from Lunar Prospector and NEAR and soon to be launch to Mars, there is a need for good data for neutron-capture gamma rays.

  10. Neutron-Capture Gamma-Ray Data for Obtaining Elemental Abundances from Planetary Spectra

    NASA Technical Reports Server (NTRS)

    Frankle, S. C.; Reedy, R. C.

    2001-01-01

    Newly compiled and evaluated energies and intensities of gamma rays made by the capture of thermal neutrons by elements from H to Zn plus Ge, Sm, and Gd are reported for use in determining elemental composition by planetary gamma-ray spectroscopy. Additional information is contained in the original extended abstract.

  11. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  12. Moisture logging in cased boreholes using capture gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Robert D.; Randall, Russell R.; Meisner, James E.; Boles, Jason L.; Reynolds, Kent D.

    1999-10-01

    A nuclear logging tool has been developed that determines the moisture content of subsurface earth formations by measuring the gamma rays produced by thermal neutron capture in hydrogen. The tool employs a 252Cf fast neutron source and a hyperpure germanium gamma-ray detector. The tool has demonstrated excellent sensitivity to changes in formation moisture content when used in air-filled boreholes cased with steel. The tool is also sensitive to other elements that produce neutron capture gamma rays, such as silicon, calcium, aluminum, sodium, chlorine, chromium, cadmium and mercury. Extensive computer modeling of the tool has been done to aid its design and in the interpretation of logging data taken under a variety of conditions. The logging tool has been calibrated for its moisture and chlorine response in a set of physical models and is now in use logging boreholes at the U.S. Department of Energy Hanford Site.

  13. Photoneutron and Photofission Cross Sections for URANIUM-238 and THORIUM-232 Using Neutron Capture Gamma Rays.

    NASA Astrophysics Data System (ADS)

    Varhue, Walter John

    The photofission and total photoneutron cross sections of ('238)U and ('232)Th have been measured as a function of energy between 4 and 11 Mev. The photons used were those produced in the neutron capture reaction in the Tangential Beam Port Facility of the University of Virginia Reactor. The capture gamma ray sources used were the following; Al, Cr, Co, Cu, Fe, Ni, S, and Ti. A computer code was used to calculate the spectrum of each capture gamma ray beam used in the irradiations. This calculation accounted for the attenuation in the beam and the contribution from neutron capture in Al and H. A second code iteratively solved for the best fit cross section curve for the experimentally obtained yield data. In the total photoneutron measurement, the neutrons were counted with a Halpern type detector containing 4 BF(,3) tubes. The intensity of the beam was determined with LiF thermoluminescent dosimeters. The results agree very well with those of previous studies. In the photofission measurement, fission fragments were counted in Lexan polycarbonate, a solid state nuclear track detector. The efficiency of this counting system has been determined analytically as a function of energy with the aid of published experimental measurements of the angular distribution of fission fragments and the etching properties of Lexan. In general the technique has proved to be successful in producing differential photonuclear cross section results. Resolution of the unfolding technique is limited by the density of principal gamma ray lines available from the capture targets. An obvious improvement would be the use of more capture targets. The results and conclusions of previous studies using neutron capture gamma rays have been placed in doubt due to the nature of calculations used to obtain cross values.

  14. Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113

    SciTech Connect

    Rusev, Gencho Y.

    2012-08-27

    A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

  15. Analytical sensitivities and energies of thermal neutron capture gamma rays II

    USGS Publications Warehouse

    Senftle, F.E.; Moore, H.D.; Leep, D.B.; El-Kady, A.; Duffey, D.

    1971-01-01

    A table of the analytical sensitivities of the principal lines in the thermal neutron capture gamma-ray spectrum from 0 to 3 MeV has been compiled for most of the elements. A tabulation of the full-energy, single-escape, and double-escape peaks has also been made according to energy. The tables are useful for spectral interpretation and calibration. ?? 1971.

  16. Analytical sensitivities and energies of thermal-neutron-capture gamma rays

    USGS Publications Warehouse

    Duffey, D.; El-Kady, A.; Senftle, F.E.

    1970-01-01

    A table of the analytical sensitivities of the principal lines in the thermal-neutron-capture gamma ray spectrum has been compiled for most of the elements. In addition a second table of the full-energy, single-escape, and double-escape peaks has been compiled according to energy for all significant lines above 3 MeV. Lines that contrast well with adjacent lines are noted as prominent. The tables are useful for spectral interpretation and calibration. ?? 1970.

  17. In situ capture gamma-ray analysis of coal in an oversize borehole

    USGS Publications Warehouse

    Mikesell, J.L.; Dotson, D.W.; Senftle, F.E.; Zych, R.S.; Koger, J.; Goldman, L.

    1983-01-01

    In situ capture gamma-ray analysis in a coal seam using a high resolution gamma-ray spectrometer in a close-fitting borehole has been reported previously. In order to check the accuracy of the method under adverse conditions, similar measurements were made by means of a small-diameter sonde in an oversize borehole in the Pittsburgh seam, Greene County, Pennsylvania. The hole was 5 times the diameter of the sonde, a ratio that substantially increased the contribution of water (hydrogen) to the total spectral count and reduced the size of the sample measured by the detector. The total natural count, the 40K,count, and the intensities of capture gamma rays from Si, Ca, H, and Al were determined as a function of depth above, through, and below the coal seam. From these logs, the depth and width of the coal seam and its partings were determined. Spectra were accumulated in the seam for 1 h periods by using neutron sources of different strengths. From the spectra obtained by means of several 252Cf neutron sources of different sizes, the ultimate elemental analysis and ash content were determined. The results were not as good as those obtained previously in a close-fitting borehole. However, the results did improve with successively larger source-to-detector distances, i.e.,as the count contribution due to hydrogen in the water decreased. It was concluded that in situ borehole analyses should be made in relatively close-fitting boreholes. ?? 1983.

  18. Radiative-neutron-capture gamma-ray analysis by a linear combination technique

    USGS Publications Warehouse

    Tanner, A.B.; Bhargava, R.C.; Senftle, F.E.; Brinkerhoff, J.M.

    1972-01-01

    The linear combination technique, when applied to a gamma-ray spectrum, gives a single number indicative of the extent to which the spectral lines of a sought element are present in a complex spectrum. Spectra are taken of the sought element and of various other substances whose spectra interfere with that of the sought element. A weighting function is then computed for application to spectra of unknown materials. The technique was used to determine calcium by radiative-neutron-capture gamma-ray analysis in the presence of interfering elements, notably titanium, and the results were compared with those for two popular methods of peak area integration. Although linearity of response was similar for the methods, the linear combination technique was much better at rejecting interferences. For analyses involving mixtures of unknown composition the technique consequently offers improved sensitivity. ?? 1972.

  19. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  20. Measurement of the keV-neutron capture cross section and capture gamma-ray spectrum of isotopes around N=82 region

    SciTech Connect

    Katabuchi, Tatsuya; Igashira, Masayuki

    2012-11-12

    The keV-neutron capture cross section and capture {gamma}-ray spectra of nuclides with a neutron magic number N= 82, {sup 139}La and {sup 142}Nd, were newly measured by the time-of-flight method. Capture {gamma}-rays were detected with an anti-Compton NaI(T1) spectrometer, and the pulse-height weighting technique was applied to derive the neutron capture cross section. The results were provided with our previous measurements of other nuclides around N= 82, {sup 140}Ce, {sup 141}Pr, {sup 143}Nd and {sup 145}Nd.

  1. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key

    2014-02-24

    Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.

  2. Neutron capture gamma-ray spectroscopic measurements in the actinide region

    SciTech Connect

    Hoff, R.W.; Lougheed, R.W.; Barreau, G.; Boerner, H.; Davidson, W.F.; Schreckenbach, K.; Warner, D.D.; von Egidy, T.; White, D.H.

    1981-09-01

    From recent neutron capture gamma-ray measurements, experimental data for states involving quasiparticle-vibrational admixtures in /sup 227/Ra, /sup 231/Th, /sup 233/Th, /sup 235/U, /sup 237/U, and /sup 239/U have been compared with theoretical calculations by Soloviev's group. This analysis shows the experimental level structure is more complex than that calculated. In the levels of /sup 250/Bk, four Gallagher-Moszkowski pairs are observed. The moment of inertia for each band with antiparallel alignment of odd-nucleon momenta is systematically larger than for its parallel-aligned mate.

  3. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    PubMed

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  4. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  5. Database of prompt gamma rays from slow neutron capture forelemental analysis

    SciTech Connect

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

    2004-12-31

    The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative

  6. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Determination of radiative neutron capture cross sections for unstable nuclei by the {gamma}-ray strength function method

    SciTech Connect

    Utsunomiya, H.; Goriely, S.

    2012-11-12

    An indirect method referred to as the {gamma}-ray strength function method has been devised to determine radiative neutron capture cross sections for unstable nuclei along the valley of {beta}-stability. This method is based on the {gamma}-ray strength function which interconnects radiative neutron capture and photoneutron emission within the statistical model. The method was applied to several unstable nuclei such as {sup 93,95}Zr, {sup 107}Pd, and 121,123Sn. This method offers a versatile application extended to unstable nuclei far from the stability when combined with Coulomb dissociation experiments at RIKEN-RIBF and GSI.

  8. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Cs-133 and I-127

    NASA Astrophysics Data System (ADS)

    Umezawa, Seigo; Igashira, Masayuki; Katabuchi, Tatuya; Dominic, Moraru; Yanagida, Shotaro; Okamiya, Tomohiro

    2017-09-01

    The neutron capture cross sections and the capture gamma-ray spectra of 127I and 133Cs at incident neutron energies from 15 to 100 keV have been measured by the time-of-flight method. Capture gamma-rays were detected with an anti-Compton NaI(Tl) spectrometer, and the pulse-height weighting technique was applied to derive capture yields. The capture cross sections of 127I and 133Cs were determined using the standard capture cross section of 197Au. The total errors of the cross sections were 3.8-5.1%. The obtained cross sections were compared with evaluated values in JENDL-4.0 and ENDF/B-VII.1. For 127I, the energy dependence is different between the present results and the evaluations. For 133Cs, the evaluated values in JENDL-4.0 agree with the present results but the evaluated values in ENDF/B-VII.1 are smaller than the present results by 14%-18%. The capture gamma-ray spectra of 133Cs and 127I were derived by unfolding the pulse height spectra with detector response functions.

  9. Soft Gamma-Ray Repeater Light Echoes Captured by Swift Satellite

    NASA Image and Video Library

    NASA's Fermi Gamma-ray Space Telescope detected a rapid-fire "storm" of high-energy blasts from a highly magnetized neutron star, also called a magnetar, on Jan. 22, 2009. Now astronomers analyzing...

  10. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  11. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  12. A comparison of radiative capture with decay gamma-ray method in bore hole logging for economic minerals

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.

    1972-01-01

    The recent availability of borehole logging sondes employing a source of neutrons and a Ge(Li) detector opens up the possibility of analyzing either decay or capture gamma rays. The most efficient method for a given element can be predicted by calculating the decay-to-capture count ratio for the most prominent peaks in the respective spectra. From a practical point of view such a calculation must be slanted toward short irradiation and count times at each station in a borehole. A simplified method of computation is shown, and the decay-to-capture count ratio has been calculated and tabulated for the optimum value in the decay mode irrespective of the irradiation time, and also for a ten minute irradiation time. Based on analysis of a single peak in each spectrum, the results indicate the preferred technique and the best decay or capture peak to observe for those elements of economic interest. ?? 1972.

  13. Design, construction, and characterization of a facility for neutron capture gamma ray analysis of sulfur in coal using californium-252

    SciTech Connect

    Layfield, J.R.

    1980-03-01

    A study of neutron capture gamma ray analysis of sulfur in coal using californium-252 as a neutron source is reported. Both internal and external target geometries are investigated. The facility designed for and used in this study is described. The external target geometry is found to be inappropriate because of the low thermal neutron flux at the sample location, which must be outside the biological shielding. The internal target geometry is found to have a sufficient thermal neutron flux, but an excessive gamma ray background. A water filled plastic facility, rather than the paraffin filled steel one used in this study, is suggested as a means of increasing flexibility and decreasing the beackground in the internal target geometry.

  14. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  15. Gamma-Ray Strength Function Method:. Away from Photoneutron Emission to Radiative Neutron Capture

    NASA Astrophysics Data System (ADS)

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Iwamoto, C.; Goriely, S.; Daoutidis, I.; Toyokawa, H.; Harada, H.; Kitatani, F.; Iwamoto, N.; Lui, Y. W.; Arteaga, D. P.; Hilaire, S.; Koning, A. J.

    2013-03-01

    Radiative neutron capture cross sections are of direct relevance for the synthesis of heavy elements referred to as the s-process and the r-process in nuclear astrophysics and constitute basic data in the field of nuclear engineering. The surrogate reaction technique is in active use to indirectly determine radiative neutron capture cross sections for unstable nuclei. We have devised an indirect method alternative to the surrogate reaction technique on the basis of the γ-ray strength function (γSF), a nuclear statistical quantity that interconnects photoneutron emission and radiative neutron capture in the Hauser-Feshbach model calculation. We outline the γSF method and show applications of the method to tin, palladium, and zirconium isotopes. In the application of the γSF method, it is important to use γSF's that incorporate extra strengths of PDR and/or M1 resonance emerging around neutron threshold.

  16. Investigation of photoneutron and capture gamma-ray production in Pb and W under irradiation from 16N decay radiation

    NASA Astrophysics Data System (ADS)

    Kebwaro, Jeremiah Monari; Zhao, Yaolin; He, Chaohui

    2015-09-01

    Lead and tungsten are potential alternative materials for shielding reactor ex-core components with high 16N activity when available space limits application of concrete. Since the two materials are vulnerable to photonuclear reactions, the nature and intensity of the secondary radiation resulting from (γ,n) and (n,γ) reactions when 16N decay radiation interact with these materials need to be well known for effective shielding design. In this study the MCNP code was used to calculate the photoneutron and capture gamma-ray spectra in the two materials when irradiated by 16N decay radiation. It was observed that some of the photoneutrons generated in the two materials lie in the low-energy range which is considered optimum for (n,γ) reactions. Lead is more transparent to the photoneutrons when compared to tungsten. The calculations also revealed that the bremsstrahlung generated by the beta spectrum was not sufficient to trigger any additional photoneutrons. Both energetic and less energetic capture gamma-rays are observed when photoneutrons interact with nuclei of the two materials. Depending on the strength of the 16N source term, the secondary radiation could affect the effectiveness of the shield and need to be considered during design.

  17. Determination of wax deposition and corrosion in pipelines by neutron back diffusion collimation and neutron capture gamma rays.

    PubMed

    Abdul-Majid, Samir

    2013-04-01

    Wax deposition in pipelines can be very costly for plant operation in oil industry. New techniques are needed for allocation and thickness determination of wax deposits. The timely removal of wax can make large saving in operational cost. Neutron back diffusion and neutron capture gamma rays were used in this study to measure paraffin, asphalt and polyethylene deposition thicknesses inside pipes and to enable simultaneous determination of scale and pipe corrosion. It was possible to determine a thickness change of less than one mm in 2 min. It was also possible to detect localized scale from a small region of the pipe of approximately 2 cm in diameter. Although experiments were performed in lab, the system can be made portable for field applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Borehole parametric study for neutron induced capture gamma-ray spectrometry using the MCNP code.

    PubMed

    Shahriari, M; Sohrabpour, M

    2000-01-01

    The MCNP Monte Carlo code has been used to simulate neutron transport from an Am-Be source into a granite formation surrounding a borehole. The effects of the moisture and the neutron poison on the thermal neutron flux distribution and the capture by the absorbing elements has been calculated. Thermal and nonthermal captures for certain absorbers having resonance structures in the epithermal and fast energy regions such as W and Si were performed. It is shown that for those absorbers having large resonances in the epithermal regions when they are present in dry formation or when accompanied by neutron poisons the resonance captures may be significant compared to the thermal captures.

  19. Determination of the optimum-size californium-252 neutron source for borehole capture gamma-ray analysis

    USGS Publications Warehouse

    Senftle, F.E.; Macy, R.J.; Mikesell, J.L.

    1979-01-01

    The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.

  20. Fast neutron thermalization and capture gamma-ray generation in soils

    SciTech Connect

    Shue, S.L.; Faw, R.E.; Shultis, J.K.

    1996-12-31

    The penetration of 14-MeV neutrons into five representative soils is investigated with two independent neutron transport calculational procedures. From Monte Carlo and discrete-ordinates codes, the spatial distribution of the thermal fluence and the capture of neutrons in the soils is determined for two neutron source geometries. Finally, empirical approximations of the thermal neutron fluence in the soil are presented for use in PGNAA of contaminants in the soil.

  1. Gamma-ray waveguides

    SciTech Connect

    Tournear, D. M.; Hoffbauer, M. A.; Akhadov, E. A.; Chen, A. T.; Pendleton, S. J.; Williamson, T. L.; Cha, K. C.; Epstein, R. I.

    2008-04-14

    We have developed an approach for gamma-ray optics using layered structures acting as planar waveguides. Experiments demonstrating channeling of 122 keV gamma rays in two prototype waveguides validate the feasibility of this technology. Gamma-ray waveguides allow one to control the direction of radiation up to a few MeV. The waveguides are conceptually similar to polycapillary optics, but can function at higher gamma-ray energies. Optics comprised of these waveguides will be able to collect radiation from small solid angles or concentrate radiation into small area detectors. Gamma-ray waveguides may find applications in medical imaging and treatment, astrophysics, and homeland security.

  2. Impact of a low-energy enhancement in the gamma-ray strength function on the neutron-capture cross section

    SciTech Connect

    Larsen, A. C.; Goriely, S.

    2010-07-15

    A low-energy enhancement of the gamma-ray strength function in several light and medium-mass nuclei has been observed recently in {sup 3}He-induced reactions. The effect of this enhancement on (n,gamma) cross sections is investigated for stable and unstable neutron-rich Fe, Mo, and Cd isotopes. Our results indicate that the radiative neutron capture cross sections may increase considerably due to the low-energy enhancement when approaching the neutron drip line. This could have non-negligible consequences on r-process nucleosynthesis calculations.

  3. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  4. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    SciTech Connect

    Ullmann, John Leonard; Kawano, Toshihiko; Bredeweg, Todd Allen; Baramsai, Bayarbadrakh; Couture, Aaron Joseph; Haight, Robert Cameron; Jandel, Marian; Mosby, Shea Morgan; O'Donnell, John M.; Rundberg, Robert S.; Vieira, David J.; Wilhelmy, Jerry B.; Becker, John A.; Wu, Ching-Yen; Krticka, Milan

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  5. Gamma-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Weekes, T.; Murdin, P.

    2000-11-01

    Gamma-rays are the highest-energy photons in the ELECTROMAGNETIC SPECTRUM and their detection presents unique challenges. On one hand it is easy to detect γ-rays. The interaction cross-sections are large and above a few MeV the pair production interaction, the dominant γ-ray interaction with matter, is easily recognized. Gamma-ray detectors were far advanced when the concept of `γ-ray astronomy' ...

  6. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  7. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  8. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  9. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  10. {gamma}-ray strength function for {sup 116,117}Sn with the pygmy dipole resonance balanced in the photoneutron and neutron capture channels

    SciTech Connect

    Utsunomiya, H.; Kamata, M.; Kondo, T.; Itoh, O.; Akimune, H.; Yamagata, T.; Goriely, S.; Toyokawa, H.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2009-11-15

    Photoneutron cross sections were measured for {sup 117}Sn and {sup 116}Sn near the neutron thresholds at 6.94 and 9.56 MeV, respectively, with quasi-monochromatic laser-Compton scattering {gamma} rays. The {sup 117}Sn cross section, which is strongly enhanced near the low threshold, provides evidence for the presence of extra {gamma} strength in the low-energy tail of the giant dipole resonance. A coherent analysis of the photoneutron data for {sup 117}Sn together with the neutron capture on {sup 116}Sn shows that the {gamma}-ray strength function is balanced in the photoneutron and neutron capture channels in terms of the microscopic Hartree-Fock-Bogoliubov plus quasiparticle random-phase approximation model of E1 strength combined with a pygmy E1 resonance at 8.5 MeV. The high-energy part of the pygmy resonance is also suggested in the photoneutron cross section for {sup 116}Sn.

  11. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  12. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  13. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  14. Upper limit on the steady emission of the 2.223 MeV neutron capture gamma-ray line from the sun

    NASA Technical Reports Server (NTRS)

    Harris, M. J.; Share, G. H.; Beall, J. H.; Murphy, R. J.

    1992-01-01

    A search for steady emission of the 2.223 MeV gamma-ray line arising from the direct capture reaction 1H(n, gamma)2H is presented on the basis of an analysis of SMM data. The upper limits for continuous 2.223 MeV gamma-ray line emission from the active and inactive sun, as established in the present work, are about two orders of magnitude less than previously published results. These findings for inactive periods also suggest that small flares (or a continuous acceleration mechanism) are unlikely to be the source of the heating of the quiet solar corona. It is concluded that the power in accelerated nuclei during inactive periods falls short of the coronal heating requirement by about four orders of magnitude unless there is a large and as yet unobserved population of nuclei at energies below 1 MeV. The energy release in other forms associated with the acceleration process falls short of the heating requirement by about two orders of magnitude if this energy release is in the same proportion to the power in accelerated nuclei as is estimated from observed flares.

  15. Upper limit on the steady emission of the 2.223 MeV neutron capture gamma-ray line from the sun

    NASA Technical Reports Server (NTRS)

    Harris, M. J.; Share, G. H.; Beall, J. H.; Murphy, R. J.

    1992-01-01

    A search for steady emission of the 2.223 MeV gamma-ray line arising from the direct capture reaction 1H(n, gamma)2H is presented on the basis of an analysis of SMM data. The upper limits for continuous 2.223 MeV gamma-ray line emission from the active and inactive sun, as established in the present work, are about two orders of magnitude less than previously published results. These findings for inactive periods also suggest that small flares (or a continuous acceleration mechanism) are unlikely to be the source of the heating of the quiet solar corona. It is concluded that the power in accelerated nuclei during inactive periods falls short of the coronal heating requirement by about four orders of magnitude unless there is a large and as yet unobserved population of nuclei at energies below 1 MeV. The energy release in other forms associated with the acceleration process falls short of the heating requirement by about two orders of magnitude if this energy release is in the same proportion to the power in accelerated nuclei as is estimated from observed flares.

  16. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  17. Study of gamma-ray strength functions

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Dietrich, F.S.

    1980-08-07

    The use of gamma-ray strength function systematics to calculate neutron capture cross sections and capture gamma-ray spectra is discussed. The ratio of the average capture width, GAMMA/sub ..gamma../-bar, to the average level spacing, D/sub obs/, both at the neutron separation energy, can be derived from such systematics with much less uncertainty than from separate systematics for values of GAMMA/sub ..gamma../-bar and D/sub obs/. In particular, the E1 gamma-ray strength function is defined in terms of the giant dipole resonance (GDR). The GDR line shape is modeled with the usual Lorentzian function and also with a new energy-dependent, Breit-Wigner (EDBW) function. This latter form is further parameterized in terms of two overlapping resonances, even for nuclei where photonuclear measurements do not resolve two peaks. In the mass ranges studied, such modeling is successful for all nuclei away from the N = 50 closed neutron shell. Near the N = 50 shell, a one-peak EDBW appears to be more appropriate. Examples of calculated neutron capture excitation functions and capture gamma-ray spectra using the EDBW form are given for target nuclei in the mass-90 region and also in the Ta-Au mass region. 20 figures.

  18. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  19. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  20. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  1. The Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.

    1991-01-01

    The Gamma Ray Observatory (GRO), scheduled for launch by the Space Shuttle in April 1991, weighs 35,000 lbs and will offer 10 to 20 times better sensitivity than any previous gamma ray mission. The four instruments aboard GRO are described. The Burst and Transient Source Experiment (BATSE) will continuously monitor the entire sky for transient gamma-ray events using eight identical, wide-field detectors capable of measuring brightness variations lasting only milliseconds at energies from about 50,000 to 600,000 eV. The Oriented Scintillation Spectrometer Experiment (OSSE) will make comprehensive observations of discrete sources at energies from 100,000 to 10 million eV, where many radioactive elements have emission lines. The observatory's Imaging Compton Telescope will conduct a deep survey of the entire sky at gamma-ray energies between 1 and 30 MeV. The Energetic Gamma Ray Experiment Telescope will cover a broad high-energy spectral range, from about 20 million to 30 billion eV and conduct a sensitive all-sky survey with a wide field of view and good angular resolution.

  2. Scission gamma rays

    SciTech Connect

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kuznetsov, V. L.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2009-11-15

    Gamma rays probably emitted by the fissioning nucleus {sup 236}U* at the instant of the break of the neck or within the time of about 10{sup -21} s after or before this were discovered in the experiment devoted to searches for the effect of rotation of the fissioning nucleus in the process {sup 235}U(n,{gamma}f) and performed in a polarized beam of cold neutrons from the MEPHISTO Guideline at the FRM II Munich reactor. Detailed investigations revealed that the angular distribution of these gamma rays is compatible with the assumption of the dipole character of the radiation and that their energy spectrum differs substantially from the spectrum of prompt fission gamma rays. In the measured interval 250-600 keV, this spectrum can be described by an exponential function at the exponent value of {alpha} = -5 x 10{sup -3} keV{sup -1}. The mechanism of radiation of such gamma rays is not known at the present time. Theoretical models based on the phenomenon of the electric giant dipole resonance in a strongly deformed fissioning nucleus or in a fission fragment predict harder radiation whose spectrum differs substantially from the spectrum measured in the present study.

  3. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  4. Gamma-ray Polarimetry

    SciTech Connect

    Tajima, Hiroyasu

    2003-02-05

    An astrophysics application of a low noise Double-sided Silicon Strip Detector (DSSD) is described. A Semiconductor Multiple-Compton Telescope (SMCT) is being developed to explore the gamma-ray universe in the 0.1-20 MeV energy band. Excellent energy resolution and polarization sensitivity are key features of the SMCT. We have developed prototype modules for a low-noise DSSD system, which reached an energy resolution of 1.3 keV (FWHM) for 122 keV at 0 C. Results of a gamma-ray imaging test are also presented.

  5. Celestial gamma ray study

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1995-01-01

    This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

  6. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  7. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  8. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  9. The Universe in Gamma Rays

    NASA Astrophysics Data System (ADS)

    Schönfelder, Volker

    After describing cosmic gamma-ray production and absorption, the instrumentation used in gamma-ray astronomy is explained. The main part of the book deals with astronomical results, including the somewhat surprising result that the gamma-ray sky is continuously changing.

  10. The gamma-ray telescope Gamma-1

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Nesterov, V. E.; Kalinkin, L. F.; Balibanov, V. M.; Prilutsky, O. F.; Rodin, V. G.; Leikov, N. G.; Bielaoussov, A. S.; Dobrian, L. B.; Poluektov, V. P.

    1985-01-01

    French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented.

  11. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  12. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  13. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  14. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  15. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1993-01-01

    A gamma ray collimator including a housing having first and second sections. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut-out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  16. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    SciTech Connect

    Massaro, F.; Ajello, M.; D'Abrusco, R.; Paggi, A.; Tosti, G.; Gasparrini, D.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

  17. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  18. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  19. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    SciTech Connect

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Bulgarelli, A.; Trifoglio, M.; Di Cocco, G.; Gianotti, F.; Argan, A.; De Paris, G.; Trois, A.; Del Monte, E.; Costa, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Rubini, A.; Sabatini, S.

    2010-09-17

    Terrestrial gamma-ray flashes (TGFs) are very short bursts of high-energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of {approx}5-10 deg. at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the subsatellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  20. Lunar based gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Haymes, R. C.

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed.

  1. Gamma-ray burst observations

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.

    1993-01-01

    The most important observational characteristics of gamma-ray bursts are reviewed, with emphasis on X-ray and gamma-ray data. The observations are used to derive some basic properties of the sources. The sources are found to be isotropically distributed; the burster population is limited in space, and the edge of the distribution is visible.

  2. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  3. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  4. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  5. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  6. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  7. Interpretations and implications of gamma-ray lines from solar flares, the galactic centre and gamma-ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1981-01-01

    Gamma-ray line emission from the Sun results from the nuclear interactions of energetic protons and nuclei with the solar atmosphere. These interactions produce gamma-ray lines from neutron capture, positron annihilation, and nuclear deexcitation. Observation of such gamma-rays can provide unique information on high energy processes at the Sun. Details of solar gamma-ray spectroscopy are discussed along with the galactic center 0.511 MeV line. The richness of astronomy at 0.511 MeV is indicated by the great variety of astrophysical positron production mechanisms and by the many astrophysical sites where such mechanisms could operate. Attention is also given to lines from gamma-ray transients, and the prospects for gamma-ray line detections, taking into account gamma-ray lines from processes of nucleosynthesis and lines from low-energy cosmic ray interactions.

  8. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  9. Solving the Mystery of Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.

  10. Gamma ray lines from the Galactic Center and gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Leiter, D.; Lingenfelter, R. E.

    1981-01-01

    The observations and interpretations of cosmic (nonsolar) gamma ray lines are discussed. The most prominent of these lines is the e(+)e(-) annihilation line which was observed from the Galactic Center and from several gamma ray transients. At the Galactic Center the e(+)e(-) pairs are probably produced by an accreting massive black hole (solar mass of approximately one million) and annihilate within the central light year to produce a line at almost exactly 0.511 MeV. In gamma ray transients the annihilation line is redshifted by factors consistent with neutron star surface redshifts. Other observed transient gamma ray lines appear to be due to cyclotron absorption in the strong magnetic fields of neutron stars, and nuclear deexcitations and neutron capture, which could also occur on or around these objects.

  11. Jet Shockwaves Produce Gamma Rays

    NASA Image and Video Library

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  12. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  13. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  14. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  15. Positronium Annihilation Gamma Ray Laser

    DTIC Science & Technology

    2009-07-01

    estimate of the ignition threshold for DT fuel heated by a burst from an annihilation gamma ray laser; and (IV) A new concept for more rapid laser...distribution; (III) A theoretical estimate of the ignition threshold for DT fuel heated by a burst from an annihilation gamma ray laser; and (IV) A new ...II. Development of Laser systems 26 III. Preliminary estimate of DT ignition 31 IV. New method for cooling positronium 34 CONCLUSIONS

  16. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  17. Neutron capture by Ru: Neutron cross sections of {sup 96,102,104}Ru and gamma-ray spectroscopy in the decays of {sup 97,103,105}Ru

    SciTech Connect

    Krane, K. S.

    2010-04-15

    Cross sections for radiative capture of neutrons have been measured for stable isotopes of Ru with mass numbers 96,102, and 104. From separate irradiations using thermal and epithermal neutrons, independent values for the thermal cross section and effective resonance integral have been determined. Spectroscopic studies of the gamma rays emitted in the decays of {sup 97,103,105}Ru have enabled improvements in the precision of the energies and intensities of the radiations along with corresponding improvements in the beta-decay feeding intensities and the energies of the levels in the respective daughter nuclei. Similar spectroscopic measurements of the decays of {sup 105}Rh (daughter of {sup 105}Ru) and {sup 96}Tc (produced from n,p reactions on {sup 96}Ru) have resulted in improved gamma-ray energies and intensities in those decays.

  18. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  19. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  20. The new prompt gamma-ray catalogue for PGAA

    PubMed

    Molnar; Revay; Belgya; Firestone

    2000-10-01

    A new catalogue of subthermal neutron-induced prompt gamma rays has been created for 79 elements, from hydrogen to uranium (including fission), on the basis of recent measurements at the Budapest guided-neutron PGAA facility. New energy values have been measured using 35Cl neutron-capture gamma rays, while the gamma-ray production cross-sections have been determined with respect to the 1H thermal capture cross-section. The elemental data have been compared with thermal neutron-capture data for individual nuclides from the Evaluated Nuclear Structure Data File, ENSDF, hence isotope identifications could be made. The catalogue contains elemental spectra and a table with nearly 7000 gamma rays with relative intensity over 1% of the strongest line. The average accuracy is about 0.08 keV for energies and about 5% for cross-sections in the whole energy range, from about 40 keV to 11 MeV.

  1. The Gamma-Ray Observatory

    SciTech Connect

    Kniffen, D.A. )

    1989-01-01

    The scientific goals and the design of the NASA Gamma-Ray Observatory (GRO), planned for launch in mid-1990, are described together with the experiments to be performed on the GRO mission and the instruments to be flown on the Observatory. GRO contains a complement of four instruments to span the spectrum from 0.03 to 20,000 MeV in energy, three of which are optimized to make gamma-ray observations using either the photoelectric effect, the Compton scatter, or the pair production processes; the fourth instrument is optimized for high-sensitivity observations of transient events and time-variable sources. The instruments are the Oriented Scintillation Spectrometer Experiment, the Compton Telescope, the Energetic Gamma-Ray Experiment Telescope, and the Burst and Transient Source Experiment.

  2. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  3. Quasars, blazars, and gamma rays.

    PubMed

    Dermer, C D; Schlickeiser, R

    1992-09-18

    Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature.

  4. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  5. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  6. The GAMMA-400 gamma-ray telescope angular resolution

    NASA Astrophysics Data System (ADS)

    Kheymits, Maxim; Leonov, Alexey

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be realized by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Search for signatures of dark matter, surveying the celestial sphere in order to study point and extended sources of gamma-rays, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, study of gamma-ray bursts and gamma-ray emission from the Sun. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution nearby 1% and angular resolution better than 0.02 deg. The methods, developed to reconstruct the direction of incident gamma photon, are presented in this paper. The main point concerns with the space topology of high energy gamma photon interaction in the matter of GAMMA-400. Multiple secondary particles, generated inside gamma-ray telescope, produce significant problems to restore the direction of initial gamma photon. Also back-splash particles, i.e., charged particles and gamma photons generated in calorimeter and moved upward, mask the initial tracks of electron/positron pair from conversion of incident gamma photon. The processed methods allow us to reconstruct the direction of electromagnetic shower axis and extract the electron/positron trace. As a result, the direction of incident gamma photon with the energy of 100 GeV is calculated with an accuracy of more than 0.02 deg.

  7. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  8. Gamma rays for pedestrians

    SciTech Connect

    Lipkin, H.J.

    1987-05-07

    Nuclear gamma radiation does not have many of the properties taken for granted in atomic or molecular radiation and necessary for lasers. The basic science and technology underlying these differences and the proposed methods of overcoming difficulties resulting from them are not properly understood. Considerable illumination in this interdisciplinary problem could be provided by some back-of-the-envelope calculations and simple experimental surveys by small groups of students and postdocs with an elementary knowledge of the nuclear and solid state physics which is evidently not familiar these days to laser physicists. 3 refs.

  9. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  10. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  11. Gamma-ray Line Astronomy

    NASA Astrophysics Data System (ADS)

    Diehl, R.

    2005-07-01

    Gamma-ray lines from radioactive isotopes, ejected into interstellar space by cosmic nucleosynthesis events, are observed with new space telescopes. The Compton Observatory had provided a sky survey for the isotopes 56Co, 22Na, 44Ti, and 26Al, detecting supernova radioactivity and the diffuse glow of long-lived radioactivity from massive stars in the Galaxy. High-resolution spectroscopy is now being exploited with Ge detectors: Since 2002, with ESA's INTEGRAL satellite and the RHESSI solar imager two space-based Ge-gamma-ray telescopes are in operation, measuring Doppler broadenings and line shape details of cosmic gamma-ray lines. First year's results include a detection and line shape measurement of annihilation emission, and 26Al emission from the inner Galaxy and from the Cygnus region. 60Fe gamma-ray intensity is surprisingly low; it may have been detected by RHESSI at 10% of the 26Al brightness, yet is not seen by INTEGRAL. 44Ti emission from Cas A and SN1987A is being studied; no other candidate young supernova remnants have been found through 44Ti. 22Na from novae still is not seen.

  12. On the origin of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Vahia, M. N.; Rao, A. R.

    1988-03-01

    It is argued that observations of gamma ray bursts show that the neutron star model is not tenable. A similarity between gamma ray burst characteristics and solar hard X-ray flares is established. The temporal and spectral features observed in the gamma ray bursts are also seen in the solar hard X-ray flares. The only distinction is in the energy contents of the two. Gamma ray bursts may originate from sources which have Sun-like activity. Large scale Sun-like activity is observed in flare stars, RS CVn binaries, and cataclysmic variables, grouped together as magnetically active stellar systems. These systems have enough energy to produce gamma ray bursts. Positional identification between the gamma ray burst error boxes and the magnetically active stellar systems produces an association of 46 objects with 36 error boxes with a probability of chance coincidence of 10 to the minus 10th power. A gamma ray burst that has a spatial and temporal correlation to a soft X-ray flare associated with a magnetically active stellar system and another time coincidence where the gamma ray burst location is not known to be found. Gamma ray bursts should be considered the stellar equivalent of the solar hard X-ray burst. gamma ray burst location is not known are found. Gamma ray bursts should be considered as stellar equivalents of solar hard X-ray bursts.

  13. Swift's 500th Gamma Ray Burst

    NASA Image and Video Library

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  14. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S.; Oldaker, Mark E.

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  15. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  16. Elemental mapping of planetary surfaces using gamma-ray spectroscopy

    SciTech Connect

    Reedy, R.C.

    1990-01-01

    The gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The {gamma} rays are made by the nuclear excitations induced by these cosmic-ray particles and their secondaries (especially capture or inelastic-scattering reactions induced by neutrons) and decay of the naturally-occurring radioelements. After a short history of planetary {gamma}-ray spectroscopy and its applications, the {gamma}-ray spectrometer planned for the Mars Observer mission is presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces or measure cross sections for the production of {gamma} rays and the status of the theoretical calculations for the processes that make and transport neutrons and {gamma} rays will be reviewed. The emphasis here is on studies of Mars and on new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a high-resolution {gamma}-ray spectrometer. 31 refs., 1 fig., 1 tab.

  17. Relocation of a neutron capture prompt gamma-ray analysis facility at the University of Missouri research reactor and measurement of boron in various materials

    NASA Astrophysics Data System (ADS)

    Lai, Chao-Jen

    2000-10-01

    Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) has been used for many years as an important nuclear analytical method for rapid and non-destructive analysis of trace and major components in a variety of fields. Since its widespread use, PGNAA has become to be regarded as an accurate technique and hundreds of articles have been published to investigate materials. A PGNAA facility was located at beamport A at the University of Missouri Research Reactor Center (MURR) from 1979--1992. Programming changes resulted in its relocation at beamport D. The new facility has a thermal neutron flux of approximately 108 n/cm2/sec over an area of 10 cm2 with a cadmium ratio of 112 for gold. This PGNAA technique was applied to the analyses of five United States Geological Survey (USGS) Rock Standards, and the determination of boron in 16 biological samples from Brookhaven National Laboratory (BNL) and 39 metal samples from Electric Power Research Institute (EPRI). This dissertation also shows the capability of the PGNAA and data comparisons with of trace element to other technique.

  18. Progress in numerical modelling of the Cl influence on gamma-ray spectra from an n-gamma logging tool, by using the improved ENDF data for radiative capture.

    PubMed

    Cywicka-Jakiel, Teresa

    2007-06-01

    Quality of the numerical modelling (MCNP code) of the spectrometric neutron-gamma benchmark experiment, performed at the Polish Calibration Station BGW in Zielona Gora for quantification of the main rock elements: Si, Ca, Fe and H, is considered. Elemental concentrations obtained from the measurements and simulations, for the rock models with water-filled boreholes, are in good agreement. For chlorine present in the borehole, the quality of the numerical reproducibility of the measured elemental concentrations depends on the cross section library used for the Cl(n,gamma)Cl reaction. The standard evaluated nuclear data library ENDF/B-VI Release 2 supplies imperfect data for photon production from thermal neutron capture in Cl. The improved cross sections for Cl(n,gamma)Cl are included in the ENDF/B-VI Release 8 library. Superiority of this new compilation over the previous one is shown in the paper. The accuracies for the Si, Ca and Fe determination have been improved by about 36%, 19.9% and 21.4%, respectively, when the ENDF/B-VI Release 8 library has been used for Cl.

  19. Cosmic gamma-ray lines

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Recent observations of gamma-ray line emissions from gamma-ray bursts, the ISM, the Galactic center, and solar flares are reviewed, and the implications of these observations for high-energy processes in these sources are discussed. Line observations suggest that magnetized neutron stars are probably the best candidate objects for burst sources. Observations of the 1.809-MeV line from Al-26 decay provide evidence for ongoing nucleosynthesis in the Galaxy and information on the spatial distribution of nucleosynthetic sites. The compact 0.511-MeV line source is probably a black hole at or close to the Galactic center. Solar-flare studies have provided new information on the confinement and escape of charged particles at the sun and on multiple acceleration phases in solar flares.

  20. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  1. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  2. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  3. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    NASA Astrophysics Data System (ADS)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  4. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  5. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  6. Thermal neutrons registration by xenon gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Chernysheva, I. V.; Dmitrenko, V. V.; Dukhvalov, A. G.; Krivova, K. V.; Novikov, A. S.; Petrenko, D. V.; Vlasik, K. F.; Ulin, S. E.; Uteshev, Z. M.

    2016-02-01

    Experimental results of thermal neutrons detection by high pressure xenon gamma- ray spectrometers are presented. The study was performed with two devices with sensitive volumes of 0.2 and 2 litters filled with compressed mixture of xenon and hydrogen without neutron-capture additives. Spectra from Pu-Be neutron source were acquired using both detectors. Count rates of the most intensive prompt neutron-capture gamma-ray lines of xenon isotopes were calculated in order to estimate thermal neutrons efficiency registration for each spectrometer.

  7. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  8. Gamma-Ray Interactions for Reachback Analysts

    SciTech Connect

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  9. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  10. Gamma ray bursts inner engines

    NASA Astrophysics Data System (ADS)

    Staff, Jan Erling

    Long gamma ray bursts (GRBs) are brief durations of intense, highly variable gamma radiation coming from point like sources in the Universe. GRBs have been seen in connection with Type 1c supernovae. Their isotropical equivalent energy released in gamma rays is in some cases above 10 54 erg, but the engine creating this energy is unknown. In this thesis several models for the engine are explored. It is shown that cannonballs can in principle form from hyperaccreting disks, however the cannonball model requires almost all supernovae to create cannonballs, and our finding then implies that a hyperaccreting disk is a natural consequence in most supernovae, a notion which remains to be confirmed. General relativistic magnetohydrodynamic simulations of the collapsar model have been performed. Within our setup we found that the duration of the collapsar is too short to explain GRBs, and the energy output is not sufficient. Also the supernova connection could not be explained. I find that the more likely candidate for the GRB engine is an accreting quark star. A quark star has a maximum mass, if the mass increases above this the star will collapse to a black hole. This allows for a two stage engine that might be able to explain features observed in GRBs.

  11. Localization of inclusions in multiple prompt gamma ray analysis: a feasibility study

    NASA Astrophysics Data System (ADS)

    Miceli, A.; Festa, G.; Senesi, R.; Gorini, G.; Andreani, C.

    2013-12-01

    We investigate the feasibility of using low energy gamma rays from neutron capture to localize slabs inside samples. A new system based on two gamma ray detectors with 2D collimators to be tested at the INES beamline at the pulsed neutron source ISIS (Oxford, UK) is described. The system provides a localization of slabs inside extended samples by using gamma ray self-absorption. Geant4 Monte Carlo simulations of the beamline were carried out to model gamma spectra from test samples.

  12. Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission

    DOEpatents

    Close, D.A.; Franks, L.A.; Kocimski, S.M.

    1984-08-16

    An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

  13. Is (d,p{gamma}) a surrogate for neutron capture?

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; O'Malley, P. D.; Bernstein, L. A.; Burke, J. T.; Lesher, S. R.; Gibelin, J. D.; Phair, L. W.; Swan, T.

    2008-04-17

    To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured and compared with the neutron capture cross sections measured by Wisshak et al. The (d,p{gamma}) ratios were measured using an 18.5 MeV deuteron beam from the 88-Inch Cyclotron at LBNL. Preliminary results comparing the surrogate ratios with the known (n,{gamma}) cross sections are discussed.

  14. Gamma-ray strength functions and their relation to astrophysics

    SciTech Connect

    Larsen, A. C.; Buerger, A.; Guttormsen, M.; Hagen, T. W.; Nyhus, H. T.; Rekstad, J. B.; Renstroem, T.; Rose, S. J.; Ruud, I. E.; Siem, S.; Syed, N. U. H.; Toft, H. K.; Tveten, G. M.; Wikan, K.; Algin, E.; Agvaanluvsan, U.; Goergen, A.

    2011-10-28

    The nuclear {gamma}-ray strength function is one of the indispensable inputs needed for reaction-rate calculations, and is particularly important for the neutron-capture cross section. The nuclear physics group at the Oslo Cyclotron Laboratory has developed a method to extract simultaneously nuclear level density and {gamma}-ray strength function from particle-{gamma} coincidence measurements. Data on the strength functions of Sn nuclei as well as for lighter elements are presented. The Sn isotopes all display a resonance-like structure close to the neutron threshold, that could possibly be due to the neutron-skin oscillation mode. This so-called pygmy dipole resonance greatly influences the neutron-capture rates. In the lighter nuclei, an enhancement of the strength function at low {gamma} energies is observed. The possible impact of this increase on Maxwellian-averaged reaction rates has been investigated.

  15. Gamma ray observatory productivity showcase

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Molgaard, D. A.

    1985-01-01

    The Gamma Ray Observatory (GRO) Program has been proclaimed to be the showcase productivity program for NASA and TRW. Among the multiple disciplines of a large-scale program, there is opportunity and need for improved efficiency, effectiveness, and reduction in the cost of doing business. The efforts and tools that will or have been implemented to achieve this end are described. Since the GRO Program is mainly an engineering program with the build of one satellite, the primary emphasis is placed on improving the efficiency and quality of management and engineering.

  16. Gamma ray astronomy from satellites and balloons

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  17. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  18. GAMCIT: A gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Grunsfeld, John M.; Warneke, Brett A.

    1992-01-01

    The origin of celestial gamma ray bursts remains one of the great mysteries of modern astrophysics. The GAMCIT Get-Away-Special payload is designed to provide new and unique data in the search for the sources of gamma ray bursts. GAMCIT consists of three gamma ray detectors, an optical CCD camera, and an intelligent electronics system. This paper describes the major components of the system, including the electronics and structural designs.

  19. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  20. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  1. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  2. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  3. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  4. Low-level gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R.L.

    1990-10-01

    Low-level gamma-ray spectrometry generally equates to high-sensitivity gamma-ray spectrometry that can be attained by background reduction, selective signal identification, or some combination of both. Various methods for selectively identifying gamma-ray events and for reducing the background in gamma-ray spectrometers are given. The relative magnitude of each effect on overall sensitivity and the relative cost'' for implementing them are given so that a cost/benefit comparison can be made and a sufficiently sensitive spectrometer system can be designed for any application without going to excessive or unnecessary expense. 10 refs., 8 figs.

  5. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  6. Origin of the gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Vahia, M. N.; Rao, A. R.

    1988-12-01

    The authors establish a similarity between the gamma ray burst characteristics and solar hard X-ray flares. They show that all the temporal and spectral features observed in gamma ray bursts are also seen in solar hard X-ray flares. The only distinction is in the energy contents of the two. The authors suggest that the gamma-ray bursts originate from sources which have Sun like activity. Large scale Sun like activity has been observed in flare stars, RS CVn binaries and cataclysmic variables which are grouped together as the magnetically active stellar systems. The energetics of such systems is discussed and it is shown that these systems have enough energy to produce gamma-ray bursts. The authors then attempt positional identification between gamma-ray burst error boxes and the magnetically active stellar systems and find an association of 34 objects.

  7. Instrumentation for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  8. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  9. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  10. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  11. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  12. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  13. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  14. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  15. Scanning Gamma Ray Densitometer System for Detonations.

    DTIC Science & Technology

    in loaded detonators and delays. The 317 KEV gamma rays from an Ir192 source were collimated into a beam of 0.002 by 0.100 inch. A scanning system...minus 3%. With Ir192 , density measurements on NOL-130 were reproduced to plus or minus 5%, and on RDX to plus or minus 16%. Based on gamma ray

  16. The History of Gamma-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Schönfelder, V.

    An overview of the history of gamma-ray astronomy is given starting with predictions in the 1950's and first detections in the 1960's. Tremendous efforts have been made since then, with exciting discoveries, which finally culminated in the ``Golden Age'' of gamma-ray astronomy which we are presently experiencing.

  17. The history of gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Schönfelder, V.

    2002-07-01

    An overview of the history of gamma-ray astronomy is given starting with predictions in the 1950s and first detections in the 1960s. Tremendous efforts have been made since then, with exciting discoveries, which finally culminated in the ``Golden Age'' of gamma-ray astronomy which we are presently experiencing.

  18. Gamma-ray spectral analysis algorithm library

    SciTech Connect

    Egger, A. E.

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  19. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  20. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  1. Unveiling the secrets of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Gomboc, Andreja

    2012-07-01

    Gamma Ray Bursts are unpredictable and brief flashes of gamma rays that occur about once a day in random locations in the sky. Since gamma rays do not penetrate the Earth's atmosphere, they are detected by satellites, which automatically trigger ground-based telescopes for follow-up observations at longer wavelengths. In this introduction to Gamma Ray Bursts we review how building a multi-wavelength picture of these events has revealed that they are the most energetic explosions since the Big Bang and are connected with stellar deaths in other galaxies. However, in spite of exceptional observational and theoretical progress in the last 15 years, recent observations raise many questions which challenge our understanding of these elusive phenomena. Gamma Ray Bursts therefore remain one of the hottest topics in modern astrophysics.

  2. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  3. Future Missions for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gamma-ray astronomy has made great advances in recent years, due largely to the recently completed 9-year mission of the Compton Gamma Ray Observatory. In this talk I will give an overview of what advances we may expect in the near future, with particular emphasis on earth-orbiting missions scheduled for flight within the next 5 years. Two missions, the High Energy Transient Explorer and Swift, will provide important new information on the sources of gamma-ray bursts. The Gamma-Ray Large Area Space Telescope will investigate high energy emission from a wide variety of sources, including active galaxies and gamma-ray pulsars. The contributions of ground-based and multiwavelength observations will also be addressed.

  4. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  5. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  6. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  7. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  8. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    SciTech Connect

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, this paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.

  9. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.

    1989-01-01

    It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

  10. Gamma rays from giant molecular clouds

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Kanbach, Gottfried

    1990-01-01

    Giant Molecular Clouds (GMCs) are massive, bounded, cool, dense regions containing mostly H2, but also H I, CO, and other molecules. These clouds occupy less than 1 percent of the galactic volume, but are a substantial part of the interstellar mass. They are irradiated by the high energy cosmic rays which are possibly modulated by the matter and magnetic fields within the clouds. The product of cosmic-ray flux and matter density is traced by the emission of high energy gamma-rays. A spherical cloud model is considered and the gamma ray flux from several GMCs within 1 kpc of the sun which should be detectable by the EGRET (Energetic Gamma-Ray Experimental Telescope) instrument on GRO (Gamma Ray Observatory).

  11. Gamma-Ray Emission from Microquasars

    NASA Astrophysics Data System (ADS)

    Kaufman Bernado, M. M.

    2005-04-01

    Microquasars, X-ray binary systems that generate relativistic jets, were discovered in our Galaxy in the last decade of the XXth century. Their name indicates that they are manifestations of the same physics as quasars but on a completely different scale. Parallel to this discovery, the EGRET instrument on board of the Compton Gamma Ray Observatory detected 271 point like gamma-ray sources 170 of which were not clearly identified with known objects. This marked the beginning of gamma-ray source population studies in the Galaxy. We present in this thesis models for gamma-ray production in microquasars with the aim to propose them as possible parent populations for different groups of EGRET unidentified sources. These models are developed for a variety of scenarios taking into account several possible combinations, i.e. black holes or neutron stars as the compact object, low mass or high mass stellar companions, as well as leptonic or hadronic gamma-ray production processes. We also show that the presented models for gamma-rays emitting microquasars can be used to explain observations from well known sources that are detected in energy ranges other than EGRET's. Finally, we include an alternative gamma-ray producing situation that does not involve microquasars but a specific unidentified EGRET source possibly linked to a magnetized accreting pulsar.

  12. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  13. Zapping Mars Rocks with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    1999-12-01

    Because we do not know what deadly microorganisms might be lurking inside samples returned from Mars, the samples will either have to be sterilized before release or kept in isolation until biological studies declare them safe. One way to execute microorganisms is with radiation, such as gamma rays. Although quite effective in snuffing out bacteria and viruses, gamma rays might also affect the mineralogical, chemical, and isotopic compositions of the zapped rocks and soils. Carl Allen (Lockheed Martin Space Operations, Houston) and a team of 18 other analysts tested the effect of gamma rays on rock and mineral samples like those we expect on Mars. Except for some darkening of some minerals, high doses of gamma rays had no significant effect on the rocks, making gamma radiation a feasible option for sterilizing samples returned from Mars.

  14. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  15. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  16. A new analytical formula for neutron capture gamma dose calculations in double-bend mazes in radiation therapy

    PubMed Central

    Ghiasi, Hosein; Mesbahi, Asghar

    2012-01-01

    Background Photoneutrons are produced in radiation therapy with high energy photons. Also, capture gamma rays are the byproduct of neutrons interactions with wall material of radiotherapy rooms. Aim In the current study an analytical formula was proposed for capture gamma dose calculations in double bend mazes in radiation therapy rooms. Materials and methods A total of 40 different layouts with double-bend mazes and a 18 MeV photon beam of Varian 2100 Clinac were simulated using MCNPX Monte Carlo (MC) code. Neutron capture gamma ray dose equivalent was calculated by the MC method along the maze and at the maze entrance door of all the simulated rooms. Then, all MC resulted data were fitted to an empirical formula for capture gamma dose calculations. Wu–McGinley analytical formula for capture gamma dose equivalent at the maze entrance door in single-bend mazes was also used for comparison purposes. Results For capture gamma dose equivalents at the maze entrance door, the difference of 2–11% was seen between MC and the derived equation, while the difference of 36–87% was found between MC and the Wu–McGinley methods. Conclusion Our results showed that the derived formula results were consistent with the MC results for all of 40 different geometries. However, as a new formula, further evaluations are required to validate its use in practical situations. Finally, its application is recommend for capture gamma dose calculations in double-bend mazes to improve shielding calculations. PMID:24377027

  17. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    % , with Ti and Fe emitting more fast neutrons than light elements like O and Si. Most elements moderate neutrons to thermal energies at similar rates. The main exception is when neutrons scatter from H, in which case neutrons can be rapidly thermalized. The cross sections for the absorption of thermal neutrons can vary widely among elements, with major elements like Ti and Fe having high-capture cross sections. Some trace elements, such as Sm and Gd, have such large neutron-absorption cross sections that, despite their low abundances, can absorb significant amounts of thermal neutrons in the Moon. Because the processes affecting neutrons are complicated, good modeling is needed to properly extract elemental information from measured neutron fluxes. The LAHET Code System (LCS) can be use to calculate neutron fluxes from GCR interactions in the Moon. Lunar Gamma-Ray Spectroscopy: The main sources of planetary gamma-rays are the decay of the naturally occurring radioactive isotopes of K, Th, and U and the interactions of GCRs with atomic nuclei in the planet's surface. Most "cosmogenic" gamma-rays are produced by fast and thermal neutrons made in the planet's surface by GCRs, and their production rates can vary with time. Over 300 gamma-ray lines have been identified that can be emitted from planetary surfaces by a variety of production mechanisms. There exist nuclear databases that can be used to identify and quantify other gamma-ray lines. Use will be made of gamma-rays from major elements, particularly those from Si and O, that have not been routinely used in the past. The fluxes of gamma-rays from a given element can vary depending on many factors besides the concentration of that element. For example, the fluxes of neutron-capture gamma-rays in the planetary region of interest depend on (1) the total cross section for elements to absorb thermalized neutrons and (2) the H content of the top meter of the surface. The fluxes of the fast neutrons that induce inelastic

  18. The evaluated gamma-ray activation file (EGAF)

    SciTech Connect

    Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Belgya, T.; McNabb, D.P.; Sleaford, B.W.

    2004-09-22

    The Evaluated Gamma-ray Activation File (EGAF), a new database of prompt and delayed neutron capture g-ray cross sections, has been prepared as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project to develop a ''Database of Prompt Gamma-rays from Slow Neutron Capture for Elemental Analysis.'' Recent elemental g-ray cross-section measurements performed with the guided neutron beam at the Budapest Reactor have been combined with data from the literature to produce the EGAF database. EGAF contains thermal cross sections for {approx} 35,000 prompt and delayed g-rays from 262 isotopes. New precise total thermal radiative cross sections have been derived for many isotopes from the primary and secondary gamma-ray cross sections and additional level scheme data. An IAEA TECDOC describing the EGAF evaluation and tabulating the most prominent g-rays will be published in 2004. The TECDOC will include a CD-ROM containing the EGAF database in both ENSDF and tabular formats with an interactive viewer for searching and displaying the data. The Isotopes Project, Lawrence Berkeley National Laboratory continues to maintain and update the EGAF file. These data are available on the Internet from both the IAEA and Isotopes Project websites.

  19. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  20. Python in gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph Deil

    2016-03-01

    Gamma-ray astronomy is a relatively new window on the cosmos. The first source detected from the ground was the Crab nebula, seen by the Whipple telescope in Arizona in 1989. Today, about 150 sources have been detected at TeV energies using gamma-ray telescopes from the ground such as H.E.S.S. in Namibia or VERITAS in Arizona, and about 3000 sources at GeV energies using the Fermi Gamma-ray Space Telescope. Soon construction will start for the Cherenkov Telescope Array (CTA), which will be the first ground-based gamma-ray telescope array operated as an open observatory, with a site in the southern and a second site in the northern hemisphere. In this presentation I will give a very brief introduction to gamma-ray astronomy and data analysis, as well as a short overview of the software used for the various missions. The main focus will be on recent attempts to build open-source gamma-ray software on the scientific Python stack and Astropy: ctapipe as a CTA Python pipeline prototype, Fermipy and the Fermi Science Tools for Fermi-LAT analysis, Gammapy as a community-developed gamma-ray Python package and naima as a non-thermal spectral modeling and fitting package.

  1. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  2. Neutron/Gamma-ray discrimination through measures of fit

    SciTech Connect

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-07-01

    Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulses obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)

  3. Mechanisms and sites for astrophysical gamma ray line production

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1978-01-01

    The production of gamma ray lines and estimates of line fluxes resulting from nuclear deexcitations, positron annihilation, and electron capture at various astrophysical sites are discussed. Supernova and nova explosions synthesize long-lived radioactive isotopes and eject them into space where they produce observable gamma ray lines by decaying into excited levels of daughter nuclei or by emitting positrons. Energetic charged particles in the interstellar medium, in supernova remants, in solar or stellar flares, and possibly in the vicinity of compact objects, produce gamma-ray lines by inelastic collisions which either excite nuclear levels or produce positrons and neutrons. Energetic particles can result from acceleration in time-varying magnetic fields (solar flares) or from gravitational accretion onto neutron stars and black holes. Electromagnetic processes in the strong magnetic fields of pulsars can produce positron-electron pairs, with line emission resulting from positron annihilation. Deexcitations of quantized states in strong magnetic fields can also produce lines.

  4. Neutron Capture Surrogate Reaction on 75As in Inverse Kinematics Using (d,p(gamma))

    SciTech Connect

    Peters, W A; Cizewski, J A; Hatarik, R; O?Malley, P D; Jones, K L; Schmitt, K; Moazen, B H; Chae, K Y; Pittman, S T; Kozub, R L; Vieira, D; Jandel, M; Wilhelmy, J B; Matei, C; Escher, J; Bardayan, D W; Pain, S D; Smith, M S

    2009-11-09

    The {sup 75}As(d,p{gamma}) reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV {gamma}-ray from {sup 76}As in coincidence with ejected protons, from exciting {sup 76}As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover {gamma}-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the {sup 75}As experiment, and the efficacy and future plans of the (d,p{gamma}) surrogate campaign in inverse kinematics, are discussed.

  5. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  6. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    SciTech Connect

    Yoon, D; Jung, J; Suh, T

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  7. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  8. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-07

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  9. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  10. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  11. Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  12. Gamma spectrum following neutron capture in {sup 167}Er

    SciTech Connect

    Visser, D.; Khoo, T.L.; Lister, C.J.

    1995-08-01

    Statistical decay from a highly excited state samples all the lower-lying states and, hence, provides a sensitive measure of the level density. Pairing has a major impact on the level density, e.g. creating a pair gap between the 0- and 2-quasiparticle configurations. Hence the shape of the statistical spectrum contains information on pairing, and can be used to provide information on the reduction of pairing with thermal excitation energy. For this reason, we measured the complete spectrum of {gamma}rays following thermal neutron capture in {sup 167}Er. The experiment was performed at the Brookhaven reactor using Compton-suppressed Ge detectors from TESSA. The spectrum, which was corrected for detector response and efficiency, reveals primary (first-step, high-energy) transitions up to nearly 8 MeV, secondary (last-step, lower-energy) transitions, as we as a continuous statistical component. Effort was expanded to identify all lines from contaminant sources and an upper limit of 5% was tentatively set for their contributions. The spectral shape of the statistical spectrum will be compared with theoretical spectra obtained from a calculation of pairing which accounts for a stepwise reduction of the pair correlations as the number of quasiparticles increases. The primary lines which decay directly to the near-yrast states will also be used to deduce the level densities.

  13. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  14. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  15. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  16. Possible X-ray counterparts of gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Maraschi, L.; Markert, T.; Apparao, K. M. V.; Bradt, H.; Helmken, H.; Wheaton, W.; Baity, W. A.; Peterson, L. E.

    1978-01-01

    The results are presented of a survey regarding the X-ray source positions which fall within the error boxes of 10 unidentified gamma-ray sources observed with the aid of the COS-B satellite. In three cases, including CG 135-1, CG 312-1, and CG 327-0, an X-ray source was found within the gamma-ray error box. However, because of the large uncertainty regarding the gamma-ray source positions, the positional coincidence is not necessarily conclusive. It is, therefore, necessary to take into account additional information on the spectral or temporal characteristics of the X-ray sources. It is found that the X-ray source 4U 02416 plus 1 is a possible candidate as the X-ray-counterpart of CG 135 plus 1 in connection with both spectral hardness characteristics and positional coincidence.

  17. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  18. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Sommer, M.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Fishman, G. J.; Harding, A. K.; Hartman, R. C.; Hunter, S. D.; Hurley, K.; Kanbach, G.

    1994-01-01

    The intense gamma-ray burst of 1993 January 31 was detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. Sixteen gamma rays above 30 MeV were imaged in the telescope when only 0.04 gamma rays were expected by chance. Two of these gamma rays have energies of approximately 1 GeV, and the five bin spectrum of the 16 events is fitted by a power law of photon spectral index -2.0 +/- 0.4. The high-energy emission extends for at least 25 s. The most probable direction for this burst is determined from the directions of the 16 gamma rays observed by Egret and also by requiring the position to lie on annulus derived by the Interplanetary Network.

  19. Gamma-ray spectroscopy - Requirements and prospects

    NASA Technical Reports Server (NTRS)

    Matteson, James L.

    1991-01-01

    The only previous space instrument which had sufficient spectral resolution and directionality for the resolution of astrophysical sources was the Gamma-Ray Spectrometer carried by HEAO-3. A broad variety of astrophysical investigations entail gamma-ray spectroscopy of E/Delta-E resolving power of the order of 500 at 1 MeV; it is presently argued that a sensitivity to narrow gamma-ray lines of a few millionths ph/sq cm, from about 10 keV to about 10 MeV, should typify the gamma-ray spectrometers of prospective missions. This performance is achievable with technology currently under development, and could be applied to the NASA's planned Nuclear Astrophysics Explorer.

  20. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  1. Gamma-ray observatory INTEGRAL reloaded

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Edward P. J.

    2017-04-01

    The scientific aims of the European Space Agency's International Gamma-Ray Astrophysics Laboratory are considerably extended because of its unique capability to identify electromagnetic counterparts to sources of gravitational waves and ultra-high-energy neutrinos.

  2. Overview Animation of Gamma-ray Burst

    NASA Image and Video Library

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  3. Gamma-Ray "Raindrops" from Flaring Blazar

    NASA Image and Video Library

    2017-09-28

    This visualization shows gamma rays detected during 3C 279's big flare by the LAT instrument on NASA's Fermi satellite. Gamma rays are represented as expanding circles reminiscent of raindrops on water. The flare is an abrupt shower of "rain" that trails off toward the end of the movie. Both the maximum size of the circle and its color represent the energy of the gamma ray, with white lowest and magenta highest. In a second version of the visualization, a background map shows how the LAT detects 3C 279 and other sources by accumulating high-energy photons over time (brighter squares reflect higher numbers of gamma rays). The movie starts on June 14 and ends June 17. The area shown is a region of the sky five degrees on a side and centered on the position of 3C 279. Read more: go.nasa.gov/1TqximF Credits: NASA/DOE/Fermi LAT Collaboration

  4. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  5. Dark Matter Indirect Detection with Gamma Rays

    DOE PAGES

    Patrick Harding, J.

    2017-07-27

    Searches for weakly interacting massive particle (WIMP) dark matter with gamma-ray instruments are a way to get a unique observational handle on the particle nature of dark matter. I will discuss the details of how to perform these searches, both for annihilating and decaying WIMPs. I will discuss the calculation of the gamma-ray flux from possible sources of dark matter annihilation or decay and show examples of limits which have been calculated using these techniques.

  6. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  7. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  8. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2017-09-28

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  9. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  10. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  11. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  12. Tycho's Star Shines in Gamma Rays

    NASA Image and Video Library

    2017-09-27

    NASA image relase December 13, 2011 Gamma-rays detected by Fermi's LAT show that the remnant of Tycho's supernova shines in the highest-energy form of light. This portrait of the shattered star includes gamma rays (magenta), X-rays (yellow, green, and blue), infrared (red) and optical data. Credit: Gamma ray, NASA/DOE/Fermi LAT Collaboration; X-ray, NASA/CXC/SAO; Infrared, NASA/JPL-Caltech; Optical, MPIA, Calar Alto, O. Krause et al. and DSS To read more go to: www.nasa.gov/mission_pages/GLAST/news/tycho-star.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Measurements of gamma-ray production cross sections for shielding materials of space nuclear systems

    NASA Technical Reports Server (NTRS)

    Orphan, V. J.; John, J.; Hoot, C. G.

    1972-01-01

    Measurements of secondary gamma ray production from neutron interactions have been made over the entire energy range of interest in shielding applications. The epithermal capture gamma ray yields for both resolved gamma ray lines and continuum have been measured from thermal energies to 100 KeV for natural tungsten and U-238, two important candidate shield materials in SNAP reactor systems. Data are presented to illustrate the variation of epithermal capture gamma ray yields with neutron energy. The gamma ray production cross sections from (n,xy) reactions have been measured for Fe and Al from the threshold energies for inelastic scattering to approximately 16 MeV. Typical Fe and Al cross sections obtained with high-neutron energy resolution and averaged over broad neutron-energy groups are presented.

  14. Neutron detection by measuring capture gammas in a calorimetric approach

    NASA Astrophysics Data System (ADS)

    Pausch, Guntram; Herbach, Claus-Michael; Kong, Yong; Lentering, Ralf; Plettner, Cristina; Roemer, Katja; Scherwinski, Falko; Stein, Juergen; Schotanus, Paul; Wilpert, Thomas

    2011-10-01

    The neutron capture detector (NCD) is introduced as a novel detection scheme for thermal and epithermal neutrons that could provide large-area neutron counters by using common detector materials and proven technologies. The NCD is based on the fact that neutron captures are usually followed by prompt gamma cascades, where the sum energy of the gammas equals to the total excitation energy of typically 6-9 MeV. This large sum energy is measured in a calorimetric approach and taken as the signature of a neutron capture event. An NCD consists of a neutron converter, comprising of constituents with large elemental neutron capture cross-section like cadmium or gadolinium, which is embedded in common scintillator material. The scintillator must be large and dense enough to absorb with reasonable probability a portion of the sum energy that exceeds the energy of gammas emitted by common (natural, medical, industrial) radiation sources. An energy window, advantageously complemented with a multiplicity filter, then discriminates neutron capture signals against background. The paper presents experimental results obtained at the cold-neutron beam of the BER II research reactor, Helmholtz-Zentrum Berlin, and at other neutron sources with a prototype NCD, consisting of four BGO crystals with embedded cadmium sheets, and with a benchmark configuration consisting of two separate NaI(Tl) detectors. The detector responses are in excellent agreement with predictions of a simulation model developed for optimizing NCD configurations. NCDs could be deployed as neutron detectors in radiation portal monitors (RPMs). Advanced modular scintillation detector systems could even combine neutron and gamma sensitivity with excellent background suppression at minimum overall expense.

  15. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  16. Duke Beams Hard Gamma Rays, Soft X Rays

    NASA Astrophysics Data System (ADS)

    Feder, Toni

    2002-12-01

    A growing source of gamma rays at Duke has scientists eager to glean insights into nuclear structure and nuclear astrophysics. At the same facility, meanwhile, energies are being edged down toward the biologically significant water window.

  17. Observations of the Moon and the Sun using TeV Gamma Rays and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Nisa, Mehr Un; Hampel, Zig; HAWC Collaboration

    2017-01-01

    The Sun and Moon provide unique targets for studies of cosmic rays and gamma rays above 1 TeV. By observing the deficits (or ``shadows'') in the flux of Galactic cosmic rays created by the Moon and the Sun, we can measure particle deflection in the geomagnetic field, estimate the fraction of hadronic and leptonic antiparticles in the cosmic-ray flux, and probe hard-to-observe properties of the solar magnetic field. In addition, TeV gamma rays from the solar disk can be used to study cosmic-ray interactions in the solar photosphere and place limits on the annihilation of dark matter captured by the Sun's gravity. The High Altitude Water Cherenkov (HAWC) Observatory, operating in central Mexico since the end of 2014, is the only facility currently capable of observing TeV cosmic rays and gamma rays from the Moon and the Sun. We describe the first year of observations of the lunar and solar disks with HAWC, and discuss prospects for conducting solar and Galactic astrophysics with these data. High-Altitude Water Cherenkov Gamma-Ray Observatory.

  18. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  19. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  20. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  1. New insights from cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  2. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  3. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  4. Gamma ray bursts from superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.; Hnatyk, B.; Vilenkin, A.

    2001-08-01

    Cusps of superconducting strings can serve as GRB engines. A powerful beamed pulse of electromagnetic radiation from a cusp produces a jet of accelerated particles, whose propagation is terminated by the shock responsible for GRB. A single free parameter, the string scale of symmetry breaking η~1014 GeV, together with reasonable assumptions about the magnitude of cosmic magnetic fields and the fraction of volume that they occupy, explains the GRB rate, duration, and fluence, as well as the observed ranges of these quantities. The wiggles on the string can drive the short-time structures of GRB. This model predicts that GRBs are accompanied by strong bursts of gravitational radiation which should be detectable by LIGO, VIRGO, and LISA detectors. Another prediction is the diffuse x- and gamma-ray radiation at 8 MeV-100 GeV with a spectrum and flux comparable to the observed. The weakness of the model is the prediction of too low a rate of GRBs from galaxies, as compared with observations. This suggests that either the capture rate of string loops by galaxies is underestimated in our model or that GRBs from cusps are responsible for only a subset of the observed GRBs not associated with galaxies.

  5. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-09-27

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  6. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Lawrence, David J. ,; Elphic, R. C.; Gasnault, O. M.; Maurice, S.; Moore, K. R.; Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  7. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  8. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  9. Gamma-ray limits on neutrino lines

    SciTech Connect

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2016-05-23

    Monochromatic neutrinos from dark matter annihilations (χχ→νν-bar) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  10. Short gamma-ray bursts: A review

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.

    2015-09-01

    Gamma-Ray Bursts (GRBs) are rapid, bright flashes of radiation peaking in the gamma-ray band occurring at an average rate of one event per day at cosmological distances. They are characterized by a collimated relativistic outflow pushing through the interstellar medium shining in gamma-rays powered by a central engine. This prompt phase is followed by a fading afterglow emission at longer wavelength, powered in part by the expanding outflow, and in part by continuous energy injection by the central engine. The observed evidences of supernovae associated to long GRBs (those with a duration of the gamma-ray emission > 2 s) brought to a general consensus on indicating the core collapse of massive stars as the progenitor of these events. Following the most accredited model, short GRBs (the events with a duration of the gamma-ray emission ≤ 2 s) originate from the coalescence of compact binary systems (two neutron stars or neutron star-black hole systems). This paper presents a review of the observational properties of short GRBs and shows how the study of these properties can be used as a tool to unveil their elusive progenitors and provide information on the nature of the central engine powering the observed emission. The increasing evidence for compact object binary progenitors makes short GRBs one of the most promising sources of gravitational waves for the forthcoming Advanced LIGO/Virgo experiments.

  11. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  12. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  13. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  14. On Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; Chardonnet, P.; Cherubini, C.; Dainotti, M. G.; Fraschetti, F.; Geralico, A.; Guida, R.; Patricelli, B.; Rotondo, M.; Rueda Hernandez, J. A.; Vereshchagin, G.; Xue, S.-S.

    2008-09-01

    We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model: 1) the Relative Space-Time Transformation (RSTT) paradigm and 2) the Interpretation of the Burst Structure (IBS) paradigm. These paradigms lead to a "canonical" GRB light curve formed from two different components: a Proper-GRB (P-GRB) and an extended afterglow comprising a raising part, a peak, and a decaying tail. When the P-GRB is energetically predominant we have a "genuine" short GRB, while when the afterglow is energetically predominant we have a so-called long GRB or a "fake" short GRB. We compare and contrast the description of the relativistic expansion of the electron-positron plasma within our approach and within the other ones in the current literature. We then turn

  15. Solar flare gamma-ray line shapes

    NASA Technical Reports Server (NTRS)

    Werntz, C.; Kim, Y. E.; Lang, Frederick L.

    1990-01-01

    A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

  16. Solar flare gamma-ray line shapes

    NASA Technical Reports Server (NTRS)

    Werntz, C.; Kim, Y. E.; Lang, Frederick L.

    1990-01-01

    A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

  17. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  18. Radon concentration monitoring using xenon gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Chernysheva, I.; Grachev, V.; Vlasik, K.; Uteshev, Z.; Shustov, A.; Petrenko, D.; Bychkova, O.

    2017-01-01

    A method for 222Rn concentration monitoring by means of intensity measurement of its daughter nuclei (214Pb and 214Bi) gamma-ray emission using xenon gamma-ray spectrometer is presented. Testing and calibration results for a gamma-spectrometric complex based on xenon gamma-ray detector are described.

  19. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  20. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  1. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  2. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  3. Fuzzy correlations of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Linder, Eric V.; Blumenthal, George R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated.

  4. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  5. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  6. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  7. Gamma rays and neutrons from solar flares

    NASA Astrophysics Data System (ADS)

    Murphy, R. J.

    Recent observations with the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM), along with observations from a number of ground-based and spacecraft detectors, contain a wealth of information on particle acceleration in solar flares. The analysis and interpretation of this data is crucial to the understanding of the flare process. A general analysis of gamma-ray and neutron production in solar flared and a comparison of theoretical calculations with data are presented. An overview of the flare phenomenon is given, recent gamma-ray and particle observations are discussed, the theory of each production process is reviewed and detailed calculations are presented, and a comparison of these calculations with data is made.

  8. Gamma-Ray Bursts Search with HAWC

    NASA Astrophysics Data System (ADS)

    de Leon, Cederik; Salazar Ibarguen, Humberto; Villaseã+/-Or Cendejas, Luis Manuel; HAWC Collaboration

    2017-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray observatory is a wide field-of-view observatory sensitive to gamma rays in the 100 GeV - 100 TeV energy range, located in Mexico at an altitude of 4100 m. In the present work we present results on the search for excesses in the rates of signals from the individual photomultiplier tubes (PMTs) using the Time to Digital Converters (TDC) of HAWC. This search is based on the implementation of the Moving Average Ratio Analysis (MARA) focused on the characterization of the different physical phenomena that may give rise to such excesses: noise in the PMTs, atmospheric conditions related with thunderstorms and excesses of astrophysical origin such as variable sources of high energy gamma rays and in particular GRBs. In particular we present an analysis over the HAWC historical data for the search of such excesses and elaborate on the possible physical interpretation of the found excesses.

  9. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.

  10. Gamma ray line production from cosmic ray spallation reactions

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions.

  11. A simple gamma ray direction finder.

    PubMed

    Fujimoto, K

    2006-07-01

    One of the simplest gamma spectrometry systems that could provide the directional information of incident gamma rays has been developed. The system consists of a 3'' x 3'' phi NaI (Tl) scintillator, a specially shaped lead shield, and software. The measurement was carried out four times by rotating the shield position along the axis of the detector to obtain four energy spectra at one location. Four count rates at a special region of interest in the spectra were fed into the software for determining incident directions of gamma rays. Experiments using (137)Cs and (54)Mn at the same time demonstrated that the direction of gamma rays from several dominant sources from any direction could be identified with good precision by the total measurement time of 10 to 20 min. The system could be used to identify the locations of missing radioactive sources or the cause of elevation in ambient radiation dose rates. The disadvantages of the present system are follows: (1) It requires four time measurements at one location; (2) It can provide one pseudo incident angle when several contamination sources exist around the detector system and emit the same energy gamma rays; and (3) It can scan only one plane geometry that is usually chosen as the horizontal plane.

  12. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  13. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  14. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  15. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  16. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  17. Gamma ray spectrometer for Lunar Scout 2

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  18. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  19. The gamma-ray laser project

    NASA Astrophysics Data System (ADS)

    Collins, Carl B.

    1987-07-01

    Recent approaches to the problem of the gamma-ray laser have focused on upconversion techniques in which metastable nuclei are pumped with long wavelength radiation. At the nuclear level the storage of energy can approach tera-Joules (10 to the 12th power J) per liter for thousands of years. However, any plan to use such a resource for a gamma-ray laser poses problems of a broad interdisciplinary nature requiring the fusion of concepts taken from relatively unrelated fields of physics.

  20. Gamma ray spectroscopy monitoring method and apparatus

    DOEpatents

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  1. Gamma-ray Astrophysics with AGILE

    SciTech Connect

    Longo, Francesco |; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.

  2. INTEGRAL: International Gamma Ray Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Christoph

    1992-07-01

    INTEGRAL is dedicated to the fine spectroscopy and imaging of celestial gamma ray sources in the energy range 15 keV to 10 MeV. The instruments on INTEGRAL will achieve a gamma ray line sensitivity of 3 times 10 to the minus 6th power ph/sq cm/s, a continuum sensitivity of 3 times 10 to the minus 8th power ph/sq cm/s/keV at 1 MeV (approximately 10 mCrab at 1 MeV) and imaging with an angular resolution of better than 20 minutes. This represents an order of magnitude improvement over the Gamma Ray Observatory (GRO) in line sensitivity, energy resolution and angular resolution. Comparison with the low energy gamma ray telescope Sigma also shows a major advance: the continuum sensitivity improvement is considerably more than one order of magnitude between 100 keV and 1 MeV; and the narrow line sensitivity is increased by nearly two orders of magnitude. INTEGRAL consists of two main instruments: a germanium spectrometer and a caesium iodide coded aperture mask imager. These instruments are supplemented by two monitors: an X-ray monitor and an optical transient camera.

  3. {gamma}-ray strength function method and its application to {sup 107}Pd

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Kondo, T.; Itoh, O.; Kamata, M.; Yamagata, T.; Goriely, S.; Daoutidis, I.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Arteaga, D. P.; Hilaire, S.; Koning, A. J.

    2010-12-15

    The {gamma}-ray strength function method is devised to indirectly determine radiative neutron capture cross sections for radioactive nuclei. This method is applied here to the {sup 107}Pd (T{sub 1/2}=6.5x10{sup 6} yr) case. Photoneutron cross sections were measured for {sup 105,106,108}Pd near neutron threshold with quasimonochromatic laser-Compton-scattering {gamma}-ray beams. These photoneutron cross sections as well as the reverse radiative neutron capture cross sections for {sup 104,105}Pd are used to provide constraints on the {sup 107}Pd(n,{gamma}){sup 108}Pd cross section.

  4. Gamma rays and the origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    de Ona Wilhelmi, Emma

    2015-08-01

    Cosmic rays (CRs) are highly energetic nuclei (plus a small fraction of electrons) which fill the Galaxy and carry on average as much energy per unit volume as the energy density of starlight, the interstellar magnetic fields, or the kinetic energy density of interstellar gas. The CR spectrum extends as a featureless power-law up to ~2 PeV (the 'knee') and it is believed to be the result of acceleration of those CRs in Galactic Sources and later diffusion and convection in galactic magnetic fields. Those energetic CRs can interact with the surrounding medium via proton-proton collision resulting in secondary gamma-ray photons, observed from 100 MeV to a few tens of TeV. The results obtained by the current Cherenkov telescopes and gamma-ray satellites with the support of X-ray observations have discovered and identified more than 50 Galactic gamma-ray sources. Among them, the number of Supernova remnants (SNRs) and very-high-energy hard-spectrum sources (natural candidates to originate CRs) are steadily increasing. We expect to increase by a factor 10 at least this population of source with the future CTA experiment. I will review our current knowledge of Galactic gamma-ray sources and their connection with energetic CRs and the scientific prospects for CTA in this field. Those observations, together with a strong multi-wavelenght support from radio to hard X-rays, will finally allow us to establish the origin of the Galactic CRs.

  5. Galactic arm structure and gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.

    1974-01-01

    Unexpectedly high energy gamma radiation over a broad region of the galactic plane in the general direction of the galactic center was observed. A model is proposed wherein the galactic cosmic rays are preferentially located in the high matter density regions of galactic arm segments, as a result of the weight of the matter in these arms tieing the magnetic fields and hence the cosmic rays to these regions. The presently observed galactic gamma ray longitudinal distribution can be explained with the current estimate of the average galactic matter density: if the average arm to interarm matter ratio is five to one for the major arm segments toward the galactic center from the sun; and if the cosmic ray density normalized to its local value is assumed to be directly proportional to the matter density.

  6. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  7. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  8. Gamma Rays from Martian Dust Storms

    NASA Astrophysics Data System (ADS)

    Arabshahi, Shahab; Majid, Walid; Dwyer, Joseph; Rassoul, Hamid

    2017-04-01

    Martian dust storms are suggested to be able to generate electric fields close to the breakdown values for Mars' atmosphere, i.e. 25 kV/m [Farrel et al. 2006]. Such electric fields could initiate large electrostatic discharges on Mars [Ruf et al. 2009]. Additionally, similar to terrestrial thunderstorms, they might also be able to produce bright bursts of X-rays and gamma rays. On Earth, thunderstorm electric fields could produce avalanche of energetic electrons from single seed electron, through Møller scattering with air atoms and molecules. The process is called Relativistic Runaway Electron Avalanche (RREA), and can then generate large flux of X-rays and gamma rays through bremsstrahlung scattering. In this presentation, we have used detailed Monte Carlo simulations to study the possibility of producing large flux of energetic photon from a RREA-like mechanism inside Martian dust storms.

  9. Prospects for Nuclear-gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1973-01-01

    An analysis was made of prospects for gamma rays coming from two sources outside the solar system: (1) radioactive decay of fresh nuclear products to explosive nucleosynthesis, and (2) scattering of low energy cosmic rays. The former should be detectable and will provide a factual base for many suppositions about the site and history of nucleosynthesis. The latter may be detectable and, if so, will probably provide factual information about high-flux regions of cosmic radiation.

  10. Prospects for Nuclear-gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1973-01-01

    An analysis was made of prospects for gamma rays coming from two sources outside the solar system: (1) radioactive decay of fresh nuclear products to explosive nucleosynthesis, and (2) scattering of low energy cosmic rays. The former should be detectable and will provide a factual base for many suppositions about the site and history of nucleosynthesis. The latter may be detectable and, if so, will probably provide factual information about high-flux regions of cosmic radiation.

  11. Experimental Gamma-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Paneque, David

    2012-07-01

    Our knowledge of the γ-ray sky has dramatically changed due to the advent of the new ground-based Imaging Atmospheric Cherenkov Telescopes (H.E.S.S., MAGIC and VEPJTAS) and the satellite-borne instruments (AGILE and Fermi). These facilities boosted the number of γ-ray sources by one order of magnitude in the last 6 years, providing us with about 2000 sources detected above 100 MeV (from space) and about 100 sources detected above 100 GeV (from the ground). The combination of this large leap in experimental capabilities together with the fact that the Universe is still quite unexplored at these extreme energies is evidence of a large scientific discovery potential that will surely make the decade 2010-2020 a golden age for γ-ray astronomy. In this manuscript I provide a subjective review of some of the most exciting observations from this rapidly evolving field during the last two years.

  12. SUB-LUMINOUS {gamma}-RAY PULSARS

    SciTech Connect

    Romani, R. W.; Kerr, M.; Craig, H. A.; Johnston, S.; Cognard, I.; Smith, D. A.

    2011-09-01

    Most pulsars observed by the Fermi Large Area Telescope have {gamma}-ray luminosities scaling with spin-down power E-dot as L{sub {gamma}}{approx}(E-dot x 10{sup 33} erg s{sup -1}){sup 1/2}. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these 'sub-luminous' {gamma}-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with E-dot >10{sup 34} erg s{sup -1} and d {<=} 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.

  13. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  14. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  15. Diffusion of Cosmic-Rays and Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    del Pozo, E. D. C.; Torres, D. F.; Rodríguez Marrero, A. Y.

    It is commonly accepted that supernova remnants (SNR) are one of the most probable scenarios of leptonic and hadronic cosmic-ray (CR) acceleration. Such energetic CR can interact with interstellar gas to produce high-energy gamma rays, which can be detected through ground-based air Cherenkov detectors and space telescopes. Here we present a theoretical model that explains the high energy phenomenology of the neighborhood SNR IC 443, as observed with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope and the Energetic Gamma-ray Experiment Telescope (EGRET). We interpret MAGIC J0616 + 225 as delayed TeV emission of CR diffusing from IC 443, what naturally explains the displacement between EGRET and MAGIC sources.

  16. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  17. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  18. HAWC observatory catches first gamma rays

    NASA Astrophysics Data System (ADS)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  19. Cascade model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Harding, A. K.; Daugherty, J. K.

    1989-01-01

    If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.

  20. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  1. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  2. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  3. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  4. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2015-04-01

    The gamma-ray sky offers a unique view into broad range of astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. The Fermi mission has dramatically demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, covering the electromagnetic spectrum at energies above about 100 keV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has recently embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. The GammaSIG, as a part of the Physics of the Cosmos Program Analysis Group, provides a forum open to all members of the gamma-ray community. The GammaSIG is currently working to bring the community together with a common vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories, including both Fermi and INTEGRAL, and will summarize the status of the community roadmap effort.

  5. Method of Incident Low-Energy Gamma-Ray Direction Reconstruction in GAMMA-400 Gamma-Ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Galper, A. M.; Zverev, V. G.; Leonov, A. A.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Y. T.

    Gamma-telescope GAMMA-400 is designed to measure fluxes of γ-rays and the electron-positron cosmic ray component possibly associated with dark matter particles annihilation or decay; and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts (GRB) and γ-rays from the active Sun. GAMMA-400 gamma-ray space-based telescope scientific goals require fine angular resolution. GAMMA-400 is the pair production telescope. In the converter-tracker the incident gamma-quantum convert into electron-positron pair in the tungsten layer and then the tracks are registered by silicon-strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident gamma direction reconstruction for energies below several GeV. The method of utilising this process to improve the resolution is proposed in the presented work.

  6. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  7. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  8. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  9. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  10. Investigation of gamma rays from the galactic center

    NASA Technical Reports Server (NTRS)

    Helmken, H. F.

    1973-01-01

    Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.

  11. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth

  12. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  13. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  14. Miniaturization in x ray and gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.; Wang, Yuzhong J.; Bradley, James G.

    1993-01-01

    The paper presents advances in two new sensor technologies and a miniaturized associated electronics technology which, when combined, can allow for very significant miniaturization and for the reduction of weight and power consumption in x-ray and gamma-ray spectroscopy systems: (1) Mercuric iodide (HgI2) x-ray technology, which allows for the first time the construction of truly portable, high-energy resolution, non-cryogenic x-ray fluorescence (XRF) elemental analyzer systems, with parameters approaching those of laboratory quality cryogenic instruments; (2) the silicon avalanche photodiode (APD), which is a solid-state light sensitive device with internal amplification, capable of uniquely replacing the vacuum photomultiplier tube in scintillation gamma-ray spectrometer applications, and offering substantial improvements in size, ruggedness, low power operation and energy resolution; and (3) miniaturized (hybridized) low noise, low power amplification and processing electronics, which take full advantage of the favorable properties of these new sensors and allow for the design and fabrication of advanced, highly miniaturized x-ray and gamma-ray spectroscopy systems. The paper also presents experimental results and examples of spectrometric systems currently under construction. The directions for future developments are discussed.

  15. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  16. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  17. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  18. The future of gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2016-06-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades.

  19. Current Topics in Gamma-Ray Astrophysics

    PubMed Central

    Mathews, Grant J.; Maronetti, P.; Salmonson, Jay; Wilson, J. R.

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼1053 ergs lasting several seconds. The associated thermal neutrino emission produces an e+–e − pair plasma by vv¯ annihilation. We show first results of a simulated burst which produces ∼1051 erg in γ rays of the correct spectral and temporal properties. PMID:27551592

  20. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  1. Applications of Monte Carlo simulations of gamma-ray spectra

    SciTech Connect

    Clark, D.D.

    1995-12-31

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry.

  2. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  3. Gamma-ray astronomy--A status report

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1994-01-01

    Gamma-rays provide us with powerful insight into the highest energy processes occurring in the cosmos. This review highlights some of the progress in our understanding of gamma-ray astronomy that has been enabled by new data from GRANAT and the Compton Gamma-Ray Observaatory, and suggests requirements for future progress. In particular, the unique role of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission and concurrent multiwavelength observations is highlighted.

  4. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  5. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, Charles J.; Ziock, Klaus-Peter

    1992-01-01

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

  6. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  7. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  8. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  9. High-energy gamma rays in Hiroshima and Nagasaki: implications for risk and WR.

    PubMed

    Straume, T

    1995-12-01

    Based on the DS86 dosimetry system, nearly all of the dose to survivors of the atomic bombings of Hiroshima and Nagasaki was due to unusually high-energy gamma rays, predominantly in the 2- to 5-MeV range. These high energies resulted in part from neutron capture gamma rays as the bomb neutrons penetrated large distances of air. Because of the inverse relationship between energy and biological effectiveness, these high-energy gamma rays are expected to be substantially less effective in producing biological damage than the radiations commonly used in radiobiology and risk assessment. This observation has implications for radiation protection and risk assessment.

  10. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  11. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  12. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  13. Gamma-Ray Imaging Probes.

    NASA Astrophysics Data System (ADS)

    Wild, Walter James

    1988-12-01

    External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.

  14. Signal source separation and decomposition of the EGRET gamma ray data

    NASA Astrophysics Data System (ADS)

    Minor, Christian Parker

    2004-12-01

    In 1998, Dixon and collaborators discovered a statistically significant halo of gamma rays in the EGRET data from periods 1 through 4 that comprise observations of the gamma-ray sky from several distinct gamma-ray source distributions. An intensity map for the gamma-ray halo, however, could not be recovered with available statistical methods. Thus, the comparison and evaluation of, for example, dark matter models with the gamma-ray halo was limited. The dissertation argues that the morphology of gamma rays from a source distribution is distinguishable and can be used as a kind of spatial features signature for describing the source distribution. A new method, referred to as the analysis framework and based on capturing the spatial characteristics typical of gamma-ray source distributions, has been developed for the comparison of astrophysical models of gamma-ray sources with observational data. The method compensates for the difficulties and uncertainties of incorporating measurements into gamma-ray models by forming a model class from the output (e.g., a sky map) of an individual model that can be sampled to form a mean model. The output of the method is a mean model that is an average of typical members of a Besov space whose member functions all share the morphology of the gamma-ray model. The mean model can also be used in traditional hypothesis testing, like that of Mattox, et al. (1996), for the comparison and evaluation of gamma-ray models with the EGRET data. Results from extensive testing of the analysis framework with simulated data are presented. Results of the application of the analysis framework to the galactic diffuse emission model of Hunter, et al. (1997) are also presented .

  15. Astrophysical constraints from gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Prantzos, Nikos; von Ballmoos, Peter

    2006-10-01

    Gamma-ray lines from cosmic sources provide unique isotopic information, since they originate from energy level transitions in the atomic nucleus. Gamma-ray telescopes explored this astronomical window in the past three decades, detecting radioactive isotopes that have been ejected in interstellar space by cosmic nucleosynthesis events and nuclei that have been excited through collisions with energetic particles. Astronomical gamma-ray telescopes feature standard detectors of nuclear physics, but have to be surrounded by effective shields against local instrumental background, and need special detector and/or mask arrangements to collect imaging information. Due to exceptionally-low signal/noise ratios, progress in the field has been slow compared with other wavelengths. Despite the difficulties, this young field of astronomy is well established now, in particular due to advances made by the Compton Gamma-Ray Observatory in the 90ies. The most important achievements so far concern: short-lived radioactivities that have been detected in a couple of supernovae (56Co and 57Co in SN1987A, 44Ti in Cas A), the diffuse glow of long-lived 26Al that has been mapped along the entire plane of the Galaxy, several excited nuclei that have been detected in solar flares, and, last but not least, positron annihilation that has been observed in the inner Galaxy since the 70ies. High-resolution spectroscopy is now being performed: since 2002, ESAs INTEGRAL and NASAs RHESSI, two space-based gamma-ray telescopes with Ge detectors, are in operation. Recent results include: imaging and line shape measurements of e e annihilation emission from the Galactic bulge, which can hardly be accounted for by conventional sources of positrons; 26Al emission and line width measurement from the inner Galaxy and from the Cygnus region, which can constrain the properties of the interstellar medium; and a diffuse 60Fe gamma-ray line emission which appears rather weak, in view of current theoretical

  16. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  17. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  18. Gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1994-01-01

    While the proposed research received partial funding under this grant, during the term of support substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase one of the work, we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma - gamma pair production and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. This work was followed in phase two by a more complete treatment of the geometry of the radiation zone, and improved connections with observations at other wavelengths.

  19. Photoneutron spectroscopy using monoenergetic gamma rays for bulk explosives detection

    NASA Astrophysics Data System (ADS)

    McFee, J. E.; Faust, A. A.; Pastor, K. A.

    2013-03-01

    To date, the most successful nuclear methods to confirm the presence of bulk explosives have been radiative thermal neutron capture (thermal neutron activation) and prompt radiative emission following inelastic fast neutron scattering (fast neutron analysis). This paper proposes an alternative: photoneutron spectroscopy using monoenergetic gamma rays. If monoenergetic gamma rays whose energies exceed the threshold for neutron production are incident on a given isotope, the emitted neutrons have a spectrum consisting of one or more discrete energies and the spectrum can be used as a fingerprint to identify the isotope. A prototype compact gamma-ray generator is proposed as a suitable source and a commercially available 3He ionization chamber is proposed as a suitable spectrometer. Advantages of the method with respect to the previously mentioned ones may include simpler spectra and low inherent natural neutron background. Its drawbacks include a present lack of suitable commercially available photon sources, induced neutron backgrounds and low detection rates. This paper describes the method, including kinematics, sources, detectors and geometries. Simulations using a modified Geant4 Monte Carlo modelling code are described and results are presented to support feasibility. Further experiments are recommended.

  20. Gamma ray measurements during deuterium and /sup 3/He discharges on TFTR

    SciTech Connect

    Cecil, F.E.; Medley, S.S.

    1987-05-01

    Gamma ray count rates and energy spectra have been measured in TFTR deuterium plasmas during ohmic heating and during injection of deuterium neutral beams for total neutron source strengths up to 6 x 10/sup 15/ neutrons per second. The gamma ray measurements for the deuterium plasmas are in general agreement with predictions obtained using simplified transport models. The 16.6 MeV fusion gamma ray from the direct capture reaction D(/sup 3/He,..gamma..)/sup 5/Li was observed during deuterium neutral beam injection into /sup 3/He plasmas for beam powers up to 7 MW. The measured yield of the 16.6 MeV gamma ray is consistent with the predicted yield. The observation of this capture gamma ray establishes the spectroscopy of the fusion gamma rays from the D-/sup 3/He reactions as a viable diagnostic of total fusion reaction rates and benchmarks the modeling for extension of the technique to D-T plasmas. 21 refs., 12 figs.

  1. Fermi Gamma-ray Space Telescope Observations of Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, P. M.

    2009-04-01

    The Large Area Telescope on the recently launched Fermi Gamma-ray Space Telescope (formerly GLAST), with its large field of view and effective area, combined with its excellent timing capabilities, is poised to revolutionize the field of gamma-ray astrophysics. The large improvement in sensitivity over EGRET is expected to result in the discovery of many new gamma-ray pulsars, which in turn should lead to fundamental advances in our understanding of pulsar physics and the role of neutron stars in the Galaxy. Almost immediately after launch, Fermi clearly detected all previously known gamma-ray pulsars and is producing high precision results on these. An extensive radio and X-ray timing campaign of known (primarily radio) pulsars is being carried out in order to facilitate the discovery of new gamma-ray pulsars. In addition, a highly efficient time-differencing technique is being used to conduct blind searches for radio-quiet pulsars, which has already resulted in new discoveries. I present some recent results from searches for pulsars carried out on Fermi data, both blind searches, and using contemporaneous timing of known radio pulsars.

  2. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  3. The gamma ray north-south effect

    NASA Technical Reports Server (NTRS)

    White, R. S.; O'Neill, T. J.; Tumer, O. T.; Zych, A. D.

    1988-01-01

    Theoretical calculations are presented that explain the balloon observations by O'Neill et al. (1987) of a strong north-south anisotropy of atmospheric gamma rays over the Southern Hemisphere, and to predict the north-south ratios. It is shown that the gamma rays that originate at the longest distances from the telescopes give the largest north-south ratios. Comparisons are made of the experimental north-south ratios measured on balloons launched from Alice Springs, Australia, and from Palestine, Texas, U.S., and predictions are made for ratios at other geomagnetic latitudes and longitudes. It is pointed out that observers who measure backgrounds for celestial sources may be misled unless they correct for the north-south effect.

  4. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  5. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  6. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  7. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  8. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  9. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  10. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  11. Neutrino flux from observable Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Spada, M.; Guetta, D.; Waxman, E.

    2000-12-01

    We derive the flux and spectrum of neutrinos from Gamma Ray Bursts (GRBs), and the corresponding detection rate in a cubic-km neutrino detector, within the frame work of the Internal Shock Model. In this model, GRBs are produced by internal shocks in a highly relativistic wind, and high energy neutrinos result from photo-meson interactions of wind protons with gamma-ray photons. We show that the predicted neutrino flux is only weakly dependent on unknown wind parameters, due to the fact that observed GRB characteristics require these parameters to be strongly correlated. Thus, the predicted neutrino luminosity does not vary strongly from burst to burst. Several tens of events per year, correlated with GRBs, are expected to be detected in a cubic-km detector.

  12. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  13. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  14. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  15. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  16. Ginga Gamma-Ray Burst Line Occurrence

    NASA Technical Reports Server (NTRS)

    Band, David

    1998-01-01

    The purpose of this project is the statistical evaluation of the occurrence of spectral lines in the gamma-ray burst spectra detected by the Ginga burst detector, and the comparison of the Ginga results to the BATSE observations. Two significant line features were detected in the Ginga bursts, but thus far none have been detected in the bursts BATSE detected. These line features may indicate the presence of strong magnetic fields in bursts, and therefore are important physical diagnostics of the conditions in the plasma which radiates the observed gamma-rays. The issue is whether there is a discrepancy between the Ginga and BATSE results; the potential discrepancy must be evaluated statistically. Even if BATSE line detections are announced, the statistical methodology we have developed can be used to estimate the rate at which different types of spectral features occur.

  17. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  18. Gamma-ray imaging with germanium detectors

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  19. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  20. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2016-03-01

    The gamma-ray sky offers a unique view into broad range of high energy astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. In recent years, results from the Fermi mission have further demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, from about 100 keV up to about 100 TeV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. Through a series of workshops and symposia, the GammaSIG is working to bring the community together with one common vision, a vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories and will summarize the status of the community roadmap effort.

  1. The Cannonball Model of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Dar, A.

    2004-06-01

    The cannonball model (CB) of gamma ray bursts (GRBs) is incredibly more successful than the standard blast-wave models (SM) of GRBs, which suffer from profound inadequacies and limited predictive power. Te CB model is falsifiable in its hypothesis and results. Its predictions are summarized in simple analytical expressions, derived, in fair approximations, from first principles. It provides a good description on a universal basis of the properties of long-duration GRBs and of their afterglows (AGs).

  2. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  3. Gamma-Ray Bursts - A Cosmic Riddle

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    1994-12-01

    A deep and abiding mystery is one of the greatest treasures nature has to offer to scientists and the public alike. Gamma-ray bursts have been observed for over 20 years. More than 2000 papers have been published about them and numerous theoretical models proposed, yet no one knows for sure what they are, where they come from, or even if they are a single class of phenomena. Isotropy and confinement (i.e., a deficiency of faint sources compared to that expected for an unbounded homogeneous sample), as exhibited in the BATSE observations from the Compton Gamma-Ray Observatory, have lead us to consider seriously only two sites - an extended Galactic halo populated by neutron stars, or else cosmologically distant sources. Models of both varieties will be reviewed. At the present time, both classes of models are given about equal credence, though ALL current models make troublesome assumptions requiring clarification. Halo models have received several boosts lately, including the realization that the mean velocity of pulsars is greater than previously thought, the certain localization of two out of three (and possibly all) soft gamma-ray repeaters to supernova remnants in our Galaxy and in the LMC, and calculations to show that under certain, albeit highly restrictive assumptions, the BATSE statistics can be satisfied by high velocity neutron stars ejected from the Galaxy. Several current halo oriented theories would like to relate the soft repeaters to the more common ``classical" bursts and claim that the former are an earlier evolutionary stage of the latter. If, on the other hand, the soft repeaters are a separate class, as the cosmologists would require, perhaps there are other classes as well. Amid all this theoretical speculation, the solution to the gamma-ray burst riddle will most likely come from further observation. Some prospects for future observations, especially with the High Energy Transient Experiment, will be briefly discussed.

  4. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  5. Gamma Ray Bursts: an Enigma Being Unraveled

    SciTech Connect

    De Rujula, Alvaro

    2003-05-14

    The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

  6. Fusion gamma-ray measurements for D-3He experiments at JT-60U

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Tobita, K.; Kusama, Y.; Shibata, Y.

    2001-01-01

    Fusion gamma rays were measured in D-3He experiments using negative ion-based neutral beam injection (N-NBI) in reverse shear plasmas of the JT-60 tokamak. 3He gas was puffed at plasma initiation and just before N-NB injection. The D-3He reaction produces 3.6 MeV alphas and 14.7 MeV protons, but there is also a small branch which provides 5Li and 16.7 MeV gamma rays. The total D-3He reaction rate can be evaluated from measurement of gamma rays of the 3He (d,γ) 5Li reactions using a 3 in. diam by 3 in. long Bi4Ge3O12 scintillator. The gamma-ray detector was located 17 m below the plasma center and measured the gamma-rays in a vertical line of sight. The detector was mounted inside a heavy collimator with polyethylene and lead shielding. The floor penetration, a 4×8 cm2 hole, was used as a precollimator. Energy calibration of the detector was done with photopeaks for neutron capture gamma rays from the structural materials in D-D discharges. The detection efficiency was calculated with Monte Carlo code MCNP-4B for 16.7 MeV gammas. The pulse height analysis of the gamma rays resulted in the D-3He fusion power of 110±30 kW in this experiment.

  7. Prompt Gamma Ray Analysis of Soil Samples

    SciTech Connect

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman; Isab, A.H.

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  8. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  9. Solar Two Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Tümer, T.; Bhattacharya, D.; Mohideen, U.; Rieben, R.; Souchkov, V.; Tom, H.; Zweerink, J.

    1999-06-01

    The field of high energy gamma-ray astronomy grew tremendously in the last decade due to the launch of the EGRET detector on the Compton Gamma-Ray Observatory in 1991 and the proliferation of ground-based air Čherenkov telescopes (ACTs) such as the Whipple 10 meter reflector. Interestingly, the ground-based telescopes only see 4-5 of the over 170 objects detected by EGRET. A simple extrapolation of the EGRET objects' energy spectra up to the energies which the ACTs are sensitive suggests that many of them should have been detected. The key to resolving this lack of detections is to observe these sources in the previously unobserved 20-250 GeV energy range. The Solar Two Observatory collaboration is developing a secondary optics system on the central tower of the world's largest solar energy pilot plant, Solar Two, to observe gamma-ray sources in this energy range. The progress in building the secondary optics system to be used to image ˜64 heliostats at Solar Two located in Barstow, California, is presented. We hope to design and build this detector over the next 2 years.

  10. Gamma rays as an indicator of nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter H.

    2007-04-01

    In 1957 the collaboration of E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, and the work by A. G. W. Cameron, laid the foundations for understanding the origin of the elements in terms of a few basic processes and astrophysical environments. Half a century after this pioneering work, there is considerable observational evidence for the basic notions of element synthesis during the big-bang, followed by hydrostatic and explosive stellar nucleosynthesis ever since the first population of stars re-illuminated the Universe, and through particle interactions in the turbulent interstellar medium. In 1969 D. D. Clayton, S. A. Colgate, and G. J. Fishman proposed to search for gamma-ray lines from the decay of 56-Ni, freshly synthesized in supernovae. Evidence for these lines was obtained for SN 1987A, and three decades after this pivotal supernova we have ample gamma-ray line evidence for ongoing nucleosynthesis in the Milky Way from surveys for individual sources and unresolved, integrated diffuse emission from an ensemble of such sources. We review the observational evidence for gamma ray lines from various species, and discuss the astrophysical implications of detections and a few puzzles suggested by lack of detections. We reflect on historic developments, assess the accomplishments, and present an outlook on the future of this branch of nuclear astrophysics.

  11. Gamma-Rays from Nucleosynthesis Ejecta

    NASA Astrophysics Data System (ADS)

    Diehl, R.

    2016-01-01

    Gamma-ray lines from radioactive decay of unstable isotopes produced in massive- star and supernova nucleosynthesis have been measured with INTEGRAL over the past ten years, complementing the earlier COMPTEL survey. 26Al has become a tool to study specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy where Doppler shifted lines add to the astronomical information. Recent findings are that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. 60Fe is co-produced by the sources of 26Al, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. 56Ni and 44Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we summarize latest results using the accumulated multi-year database of observations, and discuss their astrophysical interpretations. We also add a comparison of isotopic ratios between the ISM of the current Galaxy and the solar vicinity at solar-system formation time.

  12. RADIO FLARES FROM GAMMA-RAY BURSTS

    SciTech Connect

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  13. Neutrino bursts from gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Xu, Guohong

    1994-01-01

    If gamma-ray bursts originate at cosmological distances, as strongly indicated by the results from Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), then ultrarelativistic ejecta are the likely consequence of the highly super-Eddington luminosity of the sources. If the energy injection rate varies with time, then the Lorentz factor of the wind also varies, and the shells of ejected matter collide with each other. The collisions between baryons produce pions which decay into high-energy photons, electrons, electron positron pairs, and neutrino pairs. The bulk Lorentz factor of approximately 300 is required if our model is to be compatible with the observed millisecond variability. The strongest gamma-ray bursts are observed to deliver approximately 10(exp -4) ergs/sq cm in 100-200 keV photons. In our scenario more energy may be delivered in a neutrino burst. Typical neutrinos may be approximately 30 GeV if the protons have a Maxwellian energy distribution, and up to approximately TeV if the protons have a power-law distribution. Such neutrino bursts are close to the detection limit of the DUMAND II experiment.

  14. Distribution of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Diaz Rodriguez, Mariangelly; Smith, M.; Tešic, G.

    2014-01-01

    Gamma-Ray Bursts (GRBs) are known to be bright, irregular flashes of gamma rays that typically last just a few seconds, believed to be caused by stellar collapse or the merger of a pair of compact objects. Through previous work, it has been found that GRBs are distributed roughly uniformly over the entire sky, rather than being confined to the relatively narrow band of the Milky Way. Using the Python programming language, we generated a model of GRBs over cosmological distances, based on current empirical GRB distributions. The grbsim python module uses the acceptance-rejection Monte Carlo method to simulate the luminosity and redshift of a large population of GRBs, including cosmological effects such as dark energy and dark matter terms that modify the large-scale structure of space-time. The results of running grbsim are demonstrated to match the distribution of GRBs observed by the Burst Alert Telescope on NASA’s Swift satellite. The grbsim module will subsequently be used to simulate gamma ray and neutrino events for the Astrophysical Multimessenger Observatory Network.

  15. The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Gan, Wei-Qun

    2012-10-01

    Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares, as well as the ambient medium with which these energetic particles interact. The neutron capture line (2.223 MeV), the strongest in the solar gamma-ray spectrum, forms in the deep atmosphere. The energy of these photons can be reduced via Compton scattering. With the fully relativistic GEANT4 toolkit, we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares, and applied them to the flare that occurred on 2005 January 20 (X7.1/2B), one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle. By comparing the fitting results of different models with and without Compton scattering of the neutron capture line, we find that when including the Compton scattering for the neutron capture line, the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s <= 2.3). The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant, which influences the time evolution of the neutron capture line flux as well. The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.

  16. Gamma-ray Emission from the Surface of Martian Satellites as a Function of Elemental Composition

    NASA Astrophysics Data System (ADS)

    Yoshida, Kouhei; Naito, Masayuki; Hasebe, Nobuyuki; Kusano, Hiroki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke

    Mars has two satellites, Phobos and Deimos. The Martian satellites have never been explored from the aspect of elemental composition. Their origins are still mysterious. Gamma-ray spectroscopy from the orbit of spacecraft is a powerful method to investigate elemental distribution and abundance of planets with no or thin atmosphere. In this work, gamma-ray emission from the Martian satellites was calculated as a function of elemental composition. Both chondritic and Martian compositions, which represent captured origin and giant impact origin, respectively, were assumed as elemental composition of Martian satellites. The gamma-ray fluxes induced by galactic cosmic rays at their surface were calculated for both of them. It was found that the elemental compositions of Martian satellites are clearly distinguished between chondritic or Martian by the gamma-ray emission rate ratios of Si/Fe and Ca/Fe and enable us to give strong constraint to the idea for the origin of the Martian satellites.

  17. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  18. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    SciTech Connect

    Nesci, R.; Tosti, G.; Pursimo, T.; Ojha, R.; Kadler, M.

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from the Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index αro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (νpeak) of the synchrotron emission.

  19. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index αro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (νpeak) of the synchrotron emission.« less

  20. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  1. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  2. The possibilities of simultaneous detection of gamma rays, cosmic-ray electrons and positrons on the GAMMA-400 space observatory

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Aptekar, R. L.; Arkhangelskaya, I. V.; Boezio, M.; Bonvicini, V.; Dolgoshein, B. A.; Farber, M. O.; Fradkin, M. I.; Gecha, V. Ya.; Kachanov, V. A.; Kaplin, V. A.; Mazets, E. P.; Menshenin, A. L.; Picozza, P.; Prilutskii, O. F.; Rodin, V. G.; Runtso, M. F.; Spillantini, P.; Suchkov, S. I.; Topchiev, N. P.; Vacchi, A.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.

    2011-02-01

    The GAMMA-400 space observatory will provide precise measurements of gamma rays, electrons, and positrons in the energy range 0.1-3000 GeV. The good angular and energy resolutions, as well as identification capabilities (angular resolution ~0.01°, energy resolution ~1%, and proton rejection factor ~106) will allow us to study the main galactic and extragalactic sources, diffuse gamma-ray background, gamma-ray bursts, and to measure electron and positron fluxes. The peculiar characteristics of the experiment is simultaneous detection of gamma rays and cosmic-ray electrons and positrons, which can be connected with annihilation or decay of dark matter particles.

  3. Celestial Gamma Ray Bursts Detector Development and Model Simulations

    NASA Astrophysics Data System (ADS)

    Mock, Patrick Charles

    1993-12-01

    network, and a new thermal conductivity algorithm. The thermodynamic equations are based on a temperature-dependent equation of state for degenerate matter. The nuclear reaction network is based on the relevant pycnonuclear and electron-capture reactions, and it includes the first estimates for the reaction rates of some extremely neutron-rich nuclei. The simulated models can be divided into two classes. The first set of models assumes a constant accretion rate of 10^10 for eight different neutron stars with masses ranging from 0.1 to 2.8 solar masses and radii ranging from 7 to 150 km. The second set of models assumes eight different constant accretion rates ranging from 10^10 to 10^16 for a neutron star with a mass of 1.4 and a radius of 10 km. I find that the crust of a slowly-accreting neutron star stores up to ~10^45 ergs in the non-equilibrium nuclear composition. This is a sufficient energy source for gamma-ray bursts in the galactic halo if one percent of this energy released as gamma rays. One possible trigger mechanism for releasing this energy is the density inversions which occur naturally during the evolution of the crust. These density inversions store ~10^41 ergs of gravitational energy. If one of them becomes unstable and overturns, the liberated energy could rapidly heat the crust and thereby release the stored nuclear energy. In my simulations the observed density inversions never exceed the threshold for instability described by Blaes, et al. (1992). However, the full range of density inversion has yet to be explored. (SECTION: Dissertation Summaries)

  4. Cosmic Rays in the Gamma-ray Sky

    NASA Astrophysics Data System (ADS)

    Brandt, T. J.

    2016-03-01

    Instruments directly measuring properties of cosmic rays (CRs) have given us insight into their origins, acceleration mechanisms, and propagation. Indirect measurements provide complementary information which can help disentangle particle types and energetics at sources such as supernova remnants (SNRs), can suggest new sources, and can trace the propagation of CRs through, for instance, interactions with a galaxy's interstellar medium. Gamma rays are particularly good at indirectly illuminating CRs as they are sensitive to the pion decay channel (CR+p+ -->π0 --> γ + γ). Recent work, e.g., using the pion turn-on energy to show proton acceleration in 3 SNRs and mapping CR interactions with Galactic gas using Fermi-LAT, bears this out. The survey capability of instruments like Fermi and HAWC nicely complements the isotropized CRs measured near Earth while VERITAS, MAGIC, and HESS Imaging Air Cherenkov Telescopes (IACTs) provide greater insight into potential sources, including constraining maximum energy both within and beyond our Galaxy. Upcoming IACTs like CTA will greatly enhance this. This talk will explore recent results and potential future insights into CRs using gamma-ray emission and touch on direct measurements made with gamma-ray instruments. This work was supported in part by the Fermi-LAT Collaboration.

  5. X ray and gamma ray standards for detector calibration

    NASA Astrophysics Data System (ADS)

    1991-09-01

    The IAEA established a Coordinated Research Program (CRP) on the measurements and evaluation of x- and gamma-ray standards for detector efficiency calibration in 1986 with the aim of alleviating the generation of such discrepancies. Within the framework of this CRP, representatives of nine research groups from six member states and one international organization performed a number of precise measurements and systematic in-depth evaluations of the required decay data. They have also contributed to the development of evaluation methodology and measurement techniques, and stimulated a number of such studies at laboratories not directly involved in the IAEA project. The results of the work of the CRP, which was finished in 1990, are presented in this report. Recommended values of half-lives and photon emission probabilities are given for a carefully selected set of radionuclides that are suitable for detector efficiency calibration (x-rays from 5 to 90 keV and gamma-rays from 30 to about 3000 keV). Detector efficiency calibration for higher gamma-ray energies (up to 14 MeV) is also considered. The evaluation procedures used to obtain the recommended values and their estimated uncertainties are reported, and a summary of the remaining discrepancies is given.

  6. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  7. Environments of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Roming, Peter; Tobler, Jennifer

    2016-01-01

    The death of some of the most massive stars are manifest as long gamma-ray bursts (GRBs). Studying their light curves and spectra are uncovering some of the properties of the "central engine" that remains after the progenitor star collapses, as well as the environment in which they reside. Much of our current understanding comes from data obtained in the gamma-ray to X-ray. Despite this progress in the high-energy regime, our understanding of the soft-energy component (UV/optical) is lacking, particularly with regards to UV/optical flaring from the central engine and distinguishing between interstellar material and wind environments. Although these questions have been addressed for individual bursts, no systematic study in the UV/optical has been done due to the lack of a large homogenous sample. The Swift Ultra-Violet/Optical Telescope (UVOT) has observed more GRBs in the UV/optical than any other telescope. From these observations we have generated a homogenous UV/optical GRB afterglow catalog. From this catalog and coupled with archival Swift X-Ray Telescope (XRT) data, we examine the spectral evolution of GRBs in order to probe the circumburst environment and to test current progenitor models.

  8. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  9. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  10. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  11. Iron K Lines from Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Meszaros, P.; Rees, M. J.

    2003-01-01

    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

  12. Numerical simulations of planetary gamma-ray spectra induced by galactic cosmic rays

    SciTech Connect

    Masarik, J.; Reedy, R.C.

    1994-07-01

    The fluxes of cosmic-ray-produced gamma rays escaping from Mars were calculated using the LAHET Code System and basic nuclear data for {gamma}-ray production. Both surface water content and atmospheric thickness strongly affect the fluxes of {gamma}-ray lines escaping from Mars.

  13. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2016-07-12

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  14. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Isabelle Grenier

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  15. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Grenier, Isabelle

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  16. Interpretation of the pulsed gamma ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma ray emission is produced by synchrotron radiation near the speed of light cylinder. This model can explain the energy flux, double pulse structure, and phase shift with respect to the radio of the gamma ray emission and offers approximate quantitative predictions for other X-ray and gamma-ray fluxes.

  17. CdZnTe gamma ray spectrometer for orbital gamma ray spectroscopy.

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Fuller, K. R.; Storms, S. A.; Soldner, S. A.; Lawrence, David J. ,; Browne, M. C.; Moss, C. E.

    2001-01-01

    We present the design and analysis of a new gamma ray spectrometer for planetary science that uses an array of CdZnTe detectors to achieve the detection efficiency needed for orbital measurements. The use of CdZnTe will provide significantly improved pulse height resolution relative to scintillation-based detectors, with commensurate improvement in the accuracy of elemental abundances determined by gamma ray and neutron spectroscopy. The spectrometer can be flown either on the instrument deck of the spacecraft or on a boom. For deck-mounted systems, a BGO anticoincidence shield is included in the design to suppress the response of the CdZnTe detector to gamma rays that originate in the spacecraft. The BGO shield also serves as a backup spectrometer, providing heritage from earlier planetary science missions and reducing the risk associated with the implementation of new technology.

  18. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  19. Very high energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1976-01-01

    Recent results in ground based very high energy gamma ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest these features may be general. Evidence that a 4.8 hr modulated effect was detected from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  20. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  1. Gamma-ray and neutron spectroscopy of planetary surfaces and atmospheres

    SciTech Connect

    Reedy, R.C.

    1987-01-01

    The neutrons and gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The ..gamma.. rays are made by the decay of the naturally-occurring radioelements and by nuclear excitations induced by cosmic-ray particles and their secondaries (especially neutron capture or inelastic scattering reactions). After a short history of planetary ..gamma..-ray and neutron spectroscopy, the ..gamma..-ray spectrometer and active neutron detection system planned for the Mars Observer Mission are presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces and the status of the theoretical calculations for the processes that make and transport neutrons and ..gamma.. rays will be reviewed. Studies of Mars, including its atmosphere, are emphasized, as are new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a ..gamma..-ray spectrometer. 23 refs., 1 fig.

  2. Novel Chalcogenide Materials for x ray and Gamma ray Detection

    DTIC Science & Technology

    2016-05-01

    then heated to 800 oC in 8h and kept there for 1 d, and finally cooled to room temperature in 1 d. Orange red crystals can be picked out from the...a new heavy atom chalcogenide family of semiconductors for room temperature gamma radiation detection. Its goal was to accelerate nuclear detector...selection criteria relevant to γ-ray detection at room temperature. These include heavy element composition, extended structures and wide energy

  3. Multiwavelength Studies of gamma-ray Binaries

    NASA Astrophysics Data System (ADS)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  4. SAS-2 galactic gamma ray results. 2. Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  5. Theoretical Studies in Gamma-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1998-01-01

    These studies were stimulated by the reported COMPTEL detection of nuclear gamma ray line emission from the Orion star formation region. Although the observation have very recently been retracted, the detailed analyses that we carried out clearly showed that the low energy cosmic rays that would have been required to explain the reported fluxes were exceedingly restrictive and thus highly improbable. More importantly, these studies proved to be the trigger for very productive new work. In particular, they led us into carefully re-examining the problem of the origin of the light elements, Li, Be and B, where we showed that the light elements could, in fact, be produced primarily by Galactic cosmic rays and did not require an unobserved low energy cosmic ray source , as had been suggested. We further showed that the observed abundances of Be and B in old halo stars contradicted the common belief that the Galactic cosmic rays were accelerated out of the well mixed interstellar medium, and required instead that they be accelerated out of freshly synthesized matter from supernovae. This work, in turn, led us to propose a new origin of Galactic cosmic rays from the refractory grains in supernova enriched core of superbubbles, which is now the subject of our on-going research under a new grant from the Astrophysics Theory Program.

  6. Gamma ray bursts and their afterglows

    NASA Astrophysics Data System (ADS)

    Nicuesa Guelbenzu, A.

    2017-03-01

    Gamma-Ray Bursts (GRBs) were among the greatest mysteries in modern astrophysics. They were first observed 50 years ago but it took three decades before optical counterparts could be found and the underlying physical phenomena studied in detail. GRB research represents currently one of the most rapidly growing areas in extragalactic astronomy. This is due in large part to the numerous connections that GRBs have with other disciplines like cosmology, supernovae, stellar evolution, nuclear physics, astroparticle and gravitational wave astronomy. Therefore, their study is of great importance to understand various astrophysical phenomena such as the formation of the first stars, the chemical evolution and the expansion of the Universe. Since gamma radiation can travel along cosmological distances without being affected by any possible intervening absorption, GRBs can be detected from the most distant universe, reaching redshifts up to z = 10 or more.

  7. Search for gamma ray lines from supernovae and supernova remnants

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.

    1974-01-01

    A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.

  8. PRECISE {gamma}-RAY TIMING AND RADIO OBSERVATIONS OF 17 FERMI {gamma}-RAY PULSARS

    SciTech Connect

    Ray, P. S.; Wolff, M. T.; Grove, J. E.; Gwon, C.; Kerr, M.; Parent, D.; Makeev, A.; Abdo, A. A.; Guillemot, L.; Freire, P. C. C.; Kramer, M.; Ransom, S. M.; Rea, N.; Roberts, M. S. E.; Camilo, F.; Dormody, M.; Harding, A. K.; Johnston, S.; Keith, M.; Michelson, P. F.

    2011-06-01

    We present precise phase-connected pulse timing solutions for 16 {gamma}-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multiwavelength follow-up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard power-law component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the {gamma}-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the {gamma}-ray to radio phase offset.

  9. Nuclear gamma rays from compact objects. [nuclear interactions around neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Ramaty, R.

    1978-01-01

    Accreting compact objects may be important gamma ray line sources and may explain recent observations of celestial gamma-ray line emission from a transient source in the direction of the galactic anti-center, from the galactic center, and possibly from the radio galaxy Centaurus A. The identification of the lines from the transient source requires a strong redshift. Such a redshift permits the identification of these lines with the most intense nuclear emission lines expected in nature, positron annihilation, and neutron capture on hydrogen and iron. Their production as a result of nuclear interactions in accreting gas around a neutron star is proposed. The gamma-ray line emission from the galactic center and possibly Centaurus A appears to have a surprisingly high luminosity, amounting to perhaps as much as 10% of the total luminosity of these sources. Such high gamma-ray line emission efficiencies could result from nuclear interactions in accreting gas around a massive black hole.

  10. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  11. Very high energy gamma ray astrophysics

    SciTech Connect

    Lamb, R.C.; Lewis, D.A.

    1992-02-01

    The second reflector (project GRANITE) is on schedule. At present (January 1992) it and the 10 m reflector are obtaining stereoscopic views of gamma-ray air showers from the Crab Nebula which verify the expected performance of the twin reflector telescopes. With the additional improvements of the upgrade (a pending DOE proposal) the twin reflectors should reach a limiting intensity of 1% that of the Crab. The astonishing early results from the EGRET detector aboard the Compton Gamma Ray Observatory indicate that distant quasars (powered by supermassive black holes) are active at GeV energies. The Whipple instruments are poised to see if such behavior continues above 100 GeV, as well as perform sensitive observations of previously reported GeV (Geminga) and TeV (Hercules X-1, etc.) sources. In addition to observing sources and identifying their location in the sky to one arcminute, experiments are planned to search for WIMPS in the mass range 0.1 to 1 TeV, and to determine the abundance of anti-protons in the cosmic rays. The successful performance of the stereoscopic reflectors demonstrates the feasibility of the concept of arrays of Cherenkov receivers. Design studies for a much larger array (CASITA) are just beginning.

  12. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    SciTech Connect

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC{sup 2}-2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations.

  13. Polarized gamma-rays with laser-Compton backscattering

    SciTech Connect

    Ohgaki, H.; Noguchi, T.; Sugiyama, S.

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  14. Gamma ray emission and solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Ramaty, R.

    1978-01-01

    Solar gamma ray line and continuum emission provide information about particle acceleration and its temporal behavior; the energy spectrum, composition and directivity of the accelerated particles; and the composition, density and temperatures of the ambient medium. These data, coupled with the comprehensive photon and particle observations available for the sun, give a detailed picture of the particle acceleration and flare energy release processes. Additional information on elemental and isotopic abundances, surface nuclear reactions and coronal heating mechanisms can be obtained. Implications of present observations and the potential return from future observational are discussed.

  15. Gamma ray bursts from extragalactic sources

    NASA Technical Reports Server (NTRS)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  16. Very high energy gamma ray astrophysics

    NASA Astrophysics Data System (ADS)

    Lamb, R. C.

    1983-03-01

    Sources of very high energy gamma rays (E(BETA) (11) eV) and improvement of the instrumentation of detectors in this energy regime were investigated. Approximately 4 x 10(5) Cerepkov air shower events from the region of Cygnus X-3 and the Crab nebula were collected with the JPL instrumentation during the fall of 1982. Significant improvement on the 1981 sensitivity to source variations and the development of a Cerenkov air shower camera are reported. A suitable mirror and mount for use as a detector auxiliary to the primary 10 inch Mt. Hopkins detector is located.

  17. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  18. Gamma-ray burster counterparts - Radio

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cline, Thomas L.; Desai, U. D.; Teegarden, B. J.; Atteia, J.-L.; Barat, C.; Estulin, I. V.; Evans, W. D.; Fenimore, E. E.; Hurley, K.

    1989-01-01

    Many observers and theorists have suggested that gamma-ray bursters (GRBs) are related to highly magnetized rotating, neutron stars, in which case an analogy with pulsars implies that GRBs would be prodigious emitters of polarized radio emission during quiescence. The paper reports on a survey conducted with the Very Large Array radio telescope of 10 small GRB error regions for quiescent radio emission at wavelengths of 2, 6, and 20 cm. The sensitivity of the survey varied from 0.1 to 0.8 mJy. The observations did indeed reveal four radio sources inside the GRB error regions.

  19. Supernovae, hypernovae and gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Dar, Arnon

    2001-05-01

    Recent observations suggest that gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in core collapse supernova explosions (SNe). The result of the event, probably, is not just a compact object plus a spherical ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk around the compact object. Instabilities in the disk induce a sudden collapse with ejection of jets of highly relativistic ``cannonballs'' of plasma in opposite directions, similar to those ejected by microquasars. The jet of cannonballs exit the supernova shell/ejecta reheated by their collision with it, emitting highly forward-collimated radiation which is Doppler shifted to γ-ray energy. Each cannonball corresponds to an individual pulse in a GRB. They decelerate by sweeping up the ionized interstellar matter in front of them, part of which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. The Cannonball Model cannot predict the timing sequence of these pulses, but it fares very well in describing the total energy, energy spectrum, and time-dependence of the individual γ-ray pulses and afterglows. It also predicts that GRB pulses are accompanied by detectable short pulses of TeV neutrinos and sub TeV γ-rays, that are much more energetic and begin and peak a little earlier. .

  20. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  1. MOLE: A new high-energy gamma-ray diagnostic

    SciTech Connect

    Moran, M.J.; Chang, B.

    1992-01-21

    Continued interest in high-energy {gamma} rays associated with fusion reactions has motivated an ongoing search for simple, effective measurement techniques. Past experiments have measured 16.7-MeV {gamma} rays with Compton-magnetic spectrometers. Some measurements have been performed with threshold Cherenkov detectors with enhanced sensitivity to high-energy {gamma} rays. The Compton spectrometers work quite well, but they require extensive calibrations and tend to be expensive and cumbersome. The threshold Cherenkov detectors are simpler to calibrate and physically compact, but have poor spectral definition and are vulnerable to background signals. This report is to describe a new type of {gamma}-ray detector, the MOLE, that may retain the simplicity of a threshold Cherenkov detector while still having sufficient energy discrimination to be effective for measuring high-energy {gamma}-rays in the presence of lower-energy {gamma}-ray fluxes.

  2. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  3. Gamma-ray Polarimetry with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Kislat, Fabian

    2017-08-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a next-generation Compton and pair-production telescope. It will allow us to perform sensitive polarimetric observations in the 200keV to 3MeV energy range. Due to its wide field of view it will survey the entire sky every 3 hours, enabling polarization measurements not only of persistent, but also of transient sources such as gamma-ray bursts. The polarization of gamma-rays carries geometric information about compact emission regions that are too small to be imaged at any wavelength, and will thus provide qualitatively new insights. In this paper we discuss AMEGO's polarization sensitivity based on detailed simulations of the instrument. We will use these results to discuss the scientific potential of AMEGO to search for violations of Lorentz invariance. Finally, we present predictions for possible observations based on theoretical models of bright gamma-ray bursts, blazar jets, and the high-energy tail of the galactic black hole binary Cygnus X-1. These predictions will demonstrate AMEGO's ability to distinguish different theoretical models.

  4. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program

  5. Nuclear gamma rays from stellar flares

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1978-01-01

    Solar flare observations are consistent with the phenomenological description that a loop of magnetic flux is convected to the surface of the star and twisted. The resulting inductive current parallel to the field is dissipated at an enhanced rate throughout the field volume by current limiting instabilities. The steady state balance between joule heating and thermal conduction along the field lines of force to the denser, cooler surface establishes a temperature distribution. The expansion of heated and ionized surface layers leads to a pressure balance and hence predictable density and X-ray emission measure. The current limitation instabilities result observationally in the parallel current being transferred to run-away ions that reach a kinetic energy of some finite fraction of the inductive potential drop. The nuclear excitation gamma rays produced by such a run-away ion current are calculated for a white dwarf flare.

  6. The radio Aftreglows of Gamma Ray Burts

    NASA Astrophysics Data System (ADS)

    Dado, S.; Dar, A.; de Rujula, A.

    A single simple expression derived from the cannonball (CB) model of gamma ray bursts (GRBs) describes their afterglow (AG) at all times and frequencies; its low- frequency limit predicts their radio afterglow, its high-frequency limit reproduces the successful CB-model predictions for optical and X-ray AGs. I shall discuss all of the observed radio AGs of GRBs with known redshifts, including that of the exceptionally close-by GRB 980425, as well as the time-evolution of the optical spectral index of the AGs. The agreement between theory and observations is excellent, even though the CB model is extraordinarily frugal in the number of parameters required to explain these observations. The properties of the radio AGs of GRBs may be used to verify and measure the predicted hyperluminal speed of their jetted CBs.

  7. The radio Aftreglows of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Dado, S.; Dar, A.; de Rujula, A.

    The best cosmic accelerators are quasars and the GRB projenitors. After decades of observations and scores of theories, we still do not know how they work. But, I shall argue, we now know quite well where GRBs come from and we understand how, their ``beams'' behave, as they make short pulses of gamma rays and long-duration X- ray, optical and radio ``afterglows''. For the afterglows ---on which I shall concentrate--- our understanding, based on the ``Cannonball Model'', is extraordinarily simple, precise and successful. Standard candles live and die and, since GRBs are being understood and are very distant, they may be about to be incarnated as such. The ``sociology'' of GRBs is interesting per se, the avatars of the Cannonball Model are also significant in this sense.

  8. SAS-2 galactic gamma ray results, 1

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

  9. ASTRONOMY: A New Source of Gamma Rays.

    PubMed

    Fender, R P

    2000-06-30

    Relativistic outflows or "jets" are collimated streams of high-energy electrons that emit synchrotron radiation at radio wavelengths and have bulk velocities that are a substantial fraction of the speed of light. They trace the outflow of enormous amounts of energy and matter from a central supermassive black hole in distant radio galaxies. As Fender explains in this Perspective, much smaller, more local sources may also produce such jets. Data presented by Paredes et al. point toward association of one such source, a relatively faint x-ray binary, with a gamma-ray source. This and similar pairs may contribute substantially to the production of high-energy particles and photons within our galaxy.

  10. Report of the X ray and gamma ray sensors panel

    NASA Astrophysics Data System (ADS)

    Szymkowiak, Andrew; Collins, S.; Kurfess, J.; Mahoney, W.; McCammon, D.; Pehl, R.; Ricker, G.

    1991-08-01

    Overall five major areas of technology are recommended for development in order to meet the science requirements of the Astrotech 21 mission set. These are: detectors for high resolution gamma ray spectroscopy, cryogenic detectors for improved x ray spectral and spatial resolution, advanced x ray charge coupled devices (CCDs) for higher energy resolution and larger format, extension to higher energies, liquid and solid position sensitive detectors for improving stopping power in the energy range 5 to 500 keV and 0.2 to 2 MeV. Development plans designed to achieve the desired capabilities on the time scales required by the technology freeze dates have been recommended in each of these areas.

  11. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  12. Gamma Ray/neutron Spectrometers for Planetary Elemental Mapping

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Auchampaugh, G. F.; Barraclough, B. L.; Burt, W. W.; Byrd, R. C.; Drake, D. M.; Edwards, B. C.; Feldman, W. C.; Martin, R. A.; Moss, C. E.

    1993-01-01

    Los Alamos has designed gamma ray and neutron spectrometers for Lunar Scout, two robotic missions to map the Moon from 100 km polar orbits. Knowledge of the elemental composition is desirable in identifying resources and for geochemical studies and can be obtained using gamma ray and neutron spectrometers. Measurements with gamma ray and neutron spectrometers complement each other in determining elemental abundances in a planet's surface. Various aspects of the instruments are discussed.

  13. Interpretation of the pulsed gamma-ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma-ray emission is produced by synchrotron radiation near the speed-of-light cylinder. This model can explain the energy flux, double pulse structure, and phase shift (with respect to the radio) of the gamma-ray emission, and offers approximate quantitative predictions for other X- and gamma-ray fluxes.

  14. A Gamma-Ray Camera for Inspection Control

    SciTech Connect

    Danilenko, K.N.; Ignatyev, G.N.; Semenov, D.S; D Chernov, M.Y.; Morgan, J.

    2000-06-29

    The Research Institute of Pulse Technique has constructed a gamma-ray camera for imaging radioactive materials. The work was performed under the DOE Lab to Lab Dismantlement Transparency Program with the Lawrence Livermore National Laboratory (USA). The gamma-ray camera was intended for imaging radioactive materials, including fissile materials, in a storage container. In this case, the spatial resolution established in the specifications for the gamma ray camera was limited for reasons of inspection non-intrusiveness.

  15. ICF gamma-ray reaction history diagnostics

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  16. Gamma-ray bursts during neutron star formation. Gamma-ray bursts and transient X-ray sources

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Desai, U. D.; Holt, S. S.

    1973-01-01

    Discussions are presented of the associations between cosmic gamma ray bursts and transient X-ray sources, and the release of gravitational binding energy during the formation of neutron stars. The model for studying the associations is described along with the release of neutrinos during the collapse of white dwarfs.

  17. Flooded member detection by gamma ray technique

    SciTech Connect

    Spencer, J.

    1995-12-31

    Following API`s recommended procedures (Draft 17) for the assessment of existing platforms, inspection personnel and platform maintenance engineers need to determine the structural safety and physical integrity of the platform. To perform testing of a platform`s subsea supports, there is now a tool that allows evaluation on short notice without extensive member preparation. The expansion of topside facilities can be undertaken with confidence, and the sale or purchase of the platform is enhanced when proof of the structural integrity is presented. With advances in the use of nucleonics, flooded member testing and evaluation is performed in 5 seconds, successfully and economically. Gamma Ray Flooded Member Detection performed by qualified Tracerco personnel is approved by Lloyds Register for recertification in the North Sea area and is widely used. With today`s emphasis on safe long term use of existing facilities, this easy, proven method of inspection should be the forefront of options available. This paper presents the theory and practical aspects of the use of Gamma Ray radiation to test submerged pipes, legs or structural supports.

  18. Gamma ray tests of Minimal Dark Matter

    SciTech Connect

    Cirelli, Marco; Sala, Filippo; Taoso, Marco; Hambye, Thomas; Panci, Paolo E-mail: thambye@ulb.ac.be E-mail: filippo.sala@cea.fr

    2015-10-01

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  19. Gamma ray tests of Minimal Dark Matter

    SciTech Connect

    Cirelli, Marco; Hambye, Thomas; Panci, Paolo; Sala, Filippo; Taoso, Marco

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  20. Development of gamma ray imaging cameras

    SciTech Connect

    Wehe, D.K.; Knoll, G.F.

    1992-05-28

    In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed would indicate the geometric location of the radiation relative to the camera's orientation, while the brightness and color'' would indicate the intensity and energy of the radiation (and hence identify the emitting isotope). There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project's two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R D efforts for the third year effort. 8 refs.

  1. Development of gamma ray imaging cameras

    NASA Astrophysics Data System (ADS)

    Wehe, D. K.; Knoll, G. F.

    1992-05-01

    In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R&D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed and indicate the geometric location of the radiation relative to the camera's orientation, while the brightness and 'color' would indicate the intensity and energy of the radiation and, hence, identify the emitting isotope. There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project's two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R&D efforts for the third year effort.

  2. Gamma-Ray Bursts: Characteristics and Prospects

    NASA Astrophysics Data System (ADS)

    Azzam, W. J.; Zitouni, H.; Guessoum, N.

    2017-06-01

    Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. They have remained the object of intense research ever since their discovery was declassified in the early 1970s. Several space-borne missions have been dedicated to their study, including the Compton Gamma-Ray Burst Observatory (CGRO) in the 1990s and the current Swift and Fermi satellites. However, despite several decades of focused research, the precise mechanisms behind these enigmatic explosions have not been fully established. In the first part of this paper, we review what is currently known about GRBs. This includes: GRB light-curves and spectra; the different progenitor models, i.e., the "collapsar" and "merger" models; and the afterglow characteristics, including external shocks and the surrounding medium. In the second part of the paper, we present our work, which focuses on utilizing GRBs as cosmological probes. GRBs are ideal cosmological tools, because they have been observed to great distances (redshifts up to z = 9.4) and their radiation is unencumbered by any intervening dust. Although GRBs are not standard candles, the discovery of several energy and luminosity correlations, like the Amati relation which correlates the intrinsic spectral peak energy, Ep,i to the equivalent isotropic energy, Eiso , has ushered in a new era in which GRBs are used to investigate cosmological issues like the star formation rate and the value of the matter-density parameter, ΩM.

  3. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  4. The gamma ray spectrometer for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Chupp, E. L.; Ryan, J. M.; Cherry, M. L.; Gleske, I. U.; Reppin, C.; Pinkau, K.; Rieger, E.; Kanbach, G.; Kinzer, R. L.

    1980-01-01

    The paper describes an actively shielded, multicrystal scintillation spectrometer for measurement of the solar gamma ray flux used by the Solar Maximum Mission Gamma Ray Experiment. The instrument provides a 476-channel pulse height spectrum every 16.38 s over the 0.3-9 MeV energy range; the gamma ray spectral analysis can be extended to at least 15 MeV on command. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines, the intensity of extremely broadened lines, and the photon continuum.

  5. Gamma-ray/neutron spectroscopy from the Mars observer

    NASA Technical Reports Server (NTRS)

    Englert, P.; Reedy, R. C.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Evans, L. G.; Boynton, W. V.

    1987-01-01

    The Gamma-Ray Spectrometer (GRS) experiment on Mars Observer will measure gamma rays and neutrons that escape from Mars. The intensities of gamma-ray lines and of the thermal and epithermal neutrons can be used to study many problems related to Martian volcanism and volatiles. The results of theoretical calculations for the production and transport of gamma rays and neutrons indicate that the GRS should be able to determine the abundances of many elements and the amounts and stratigraphy of H2O and CO2 on and in the top meter of the Martian surface. Design considerations of the GRS are discussed.

  6. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1993-01-01

    Most Galactic optical supernovae are hidden due to severe extinction in the disk, but could be detectable through their gamma-ray afterglow. Ti-44 is among the potentially detectable isotopes in supernova ejecta. HEAO 3 and SMM sky surveys have not detected gamma-ray lines from the decay of Ti-44, thus constraining SN rates and nucleosynthesis. We perform Monte Carlo simulations of the gamma-ray signatures of SN occurring during the last millenium to interpret the gamma-ray paucity.

  7. Inelastic cross sections from gamma-ray measurements

    SciTech Connect

    Nelson, Ronald Owen

    2010-12-06

    Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

  8. Gamma-ray spectral calculations for uranium borehole logging

    SciTech Connect

    Close, D.A.; Evans, M.L.; Jain, M.

    1980-06-01

    Gamma-ray transport calculations were performed to determine the energy distribution of gamma rays inside a borehole introduced into an infinite medium. The gamma rays from the naturally occurring radioactive isotopes of potassium, thorium, and uranium were uniformly distributed in a sandstone formation (having a porosity of 0.30 and a saturation of 1.0) surrounding the borehole. A sonde was placed coaxially inside the borehole. Parametric studies were done to determine how the borehole radius, borehole fluid, and borehole casing influence the gamma-ray flux inside the sonde.

  9. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  10. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  11. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  12. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  13. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  14. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    SciTech Connect

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs.

  15. Reproducibility of (n,γ) gamma ray spectrum in Pb under different ENDF/B releases

    NASA Astrophysics Data System (ADS)

    Kebwaro, J. M.; He, C. H.; Zhao, Y. L.

    2016-04-01

    Radiative capture reactions are of interest in shielding design and other fundamental research. In this study the reproducibility of (n,γ) reactions in Pb when cross-section data from different ENDF/B releases are used in the Monte-Carlo code, MCNP, was investigated. Pb was selected for this study because it is widely used in shielding applications where capture reactions are likely to occur. Four different neutron spectra were declared as source in the MCNP model which consisted of a simple spherical geometry. The gamma ray spectra due to the capture reactions were recorded at 10 cm from the center of the sphere. The results reveal that the gamma ray spectrum produced by ENDF/B-V is in reasonable agreement with that produced when ENDF/B-VI.6 is used. However the spectrum produced by ENDF/B-VII does not reveal any primary gamma rays in the higher energy region (E > 3 MeV). It is further observed that the intensities of the capture gamma rays produced when various releases are used differ by a some margin showing that the results are not reproducible. The generated spectra also vary with the spectrum of the source neutrons. The discrepancies observed among various ENDF/B releases could raise concerns to end users and need to be addressed properly during benchmarking calculations before the next release. The evaluation from ENDF to ACE format that is supplied with MCNP should also be examined because errors might have arisen during the evaluation.

  16. The First Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Briggs, Michael; Connaughton, Valerie; Stanbro, Matthew; Zhang, Binbin; Bhat, Narayana; Fishman, Gerald; Roberts, Oliver; Fitzpatrick, Gerard; McBreen, Shelia; Grove, Eric; Chekhtman, Alexandre

    2015-04-01

    We present summary results from the first catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Space Telescope. The catalog reports parameters for over 2700 TGFs. Since the launch of Fermi in 2008 the TGF detection sensitivity of GBM has been improved several times, both in the flight software and in ground analysis. Starting in 2010 July individual photons were downloaded for portions of the orbits, enabling an off-line search that found weaker and shorter TGFs. Since 2012 November 26 this telemetry mode has been extended to continuous coverage. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs).

  17. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  18. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  19. EGAF: Measurement and Analysis of Gamma-ray Cross Sections

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Abusaleem, K.; Basunia, M. S.; Bečvář, F.; Belgya, T.; Bernstein, L. A.; Choi, H. D.; Escher, J. E.; Genreith, C.; Hurst, A. M.; Krtička, M.; Renne, P. R.; Révay, Zs.; Rogers, A. M.; Rossbach, M.; Siem, S.; Sleaford, B.; Summers, N. C.; Szentmiklosi, L.; van Bibber, K.; Wiedeking, M.

    2014-05-01

    The Evaluated Gamma-ray Activation File (EGAF) is the result of a 2000-2007 IAEA Coordinated Research Project to develop a database of thermal, prompt γ-ray cross sections, σγ, for all elemental and selected radioactive targets. No previous database of this kind had existed. EGAF was originally based on measurements using guided neutron beams from the Budapest Reactor on all elemental targets from Z=1-82, 90 and 92, except for He and Pm. The EGAF σγ data were published in the Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis [1]. An international collaboration has formed to continue the EGAF measurements with isotopically enriched targets, derive total radiative thermal neutron cross sections, σ0, extend the σγ data from thermal to 20 MeV neutrons, compile a completed activation data file, improve sections of the Reference Input Parameter Library (RIPL) with more complete and up to date level and γ-ray data, evaluate statistical γ-ray data from reaction studies, and determine recommended neutron separations energies, Sn, for atomic mass evaluations. A new guided neutron beam facility has become available at the Garching (Munich) FRM II Reactor, and high energy neutron experimental facilities are being developed by a Berkeley area collaboration where 5-33 MeV neutron beams are available at the LBNL 88” cyclotron, 2.5 and 14 MeV beams at the University of California, Berkeley neutron generator laboratory, and high flux, 10 nṡcmṡ-2 s-1, neutron pulses available from the LLNL National Ignition Facility (NIF).

  20. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  1. Compton-dragged Gamma-Ray Bursts Associated with Supernovae.

    PubMed

    Lazzati; Ghisellini; Celotti; Rees

    2000-01-20

    It is proposed that the gamma-ray photons that characterize the prompt emission of gamma-ray bursts are produced through the Compton-drag process, which is caused by the interaction of a relativistic fireball with a very dense soft photon bath. If gamma-ray bursts are indeed associated with supernovae, then the exploding star can provide enough soft photons for radiative drag to be effective. This model accounts for the basic properties of gamma-ray bursts, i.e., the overall energetics, the peak frequency of the spectrum, and the fast variability, with an efficiency that can exceed 50%. In this scenario, there is no need for particle acceleration in relativistic collisionless shocks. Furthermore, although the Poynting flux may be important in accelerating the outflow, no magnetic field is required in the gamma-ray production. The drag also naturally limits the relativistic expansion of the fireball to Gamma less, similar104.

  2. Search on extraterrestrial gamma-ray lines from Southern Hemisphere sources with high energy resolution gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Dacosta, J. M.; Jardim, J. O. D.; Gonzalez-Blanco, F.; Nordemann, D. J. R.; Martin, I. M.; Dutra, S. L. G.; Albernhe, F.; Vedrenne, G.; Boclet, D.; Durouchoux, P.

    1981-07-01

    The scope of the GEL 1 and 2 balloon-borne gamma ray telescope experiments is described. The gamma ray spectrometer to be used on GEL 1 is described. It is designed to study the nature of the Galactic center positron annihilation 511 KeV line. The telescope effect is achieved through the aperture angle formed by the gamma ray spectrometer anticoincidence crystals. The balloon gondola and onboard instrumentation of the balloon are described.

  3. AGILE and Gamma-Ray Bursts

    SciTech Connect

    Longo, Francesco; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2006-05-19

    AGILE is a Scientific Mission dedicated to high-energy astrophysics supported by ASI with scientific participation of INAF and INFN. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of th emission. AGILE can image GRBs with 2-3 arcminutes error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE have recently (December 2005) completed its gamma-ray calibration. It is now (January 2006) undergoing satellite integration and testing. The PLSV launch is planned in early 2006. AGILE is then foreseen to be fully operational during the summer of 2006. It will be the only mission entirely dedicated to high-energy astrophysics above 30 MeV during the period mid-2006/mid-2007.

  4. X-ray and gamma-ray line production by nonthermal ions

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Omidvar, K.; Ramaty, R.

    1977-01-01

    X-ray production was calculated at approximately 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation. A refinement of the OBK approximation was used to obtain an improved charge exchange cross section. This, and the corresponding ionization cross section were used to determine equilibrium charge fractions for iron ions as functions of their energy. The effective X-ray line production cross section was found to be sharply peaked in energy at about 8 to 12 MeV/amu. Because fast ions of similar energies can also excite nuclear levels, the ratio of selected strong gamma ray line emissivities to the X-ray line emissivity was also calculated. Limits set by this method on the intensity of gamma ray line emission from the galactic center and the radio galaxy Centaurus A are generally lower than those reported in the literature.

  5. X-ray and gamma-ray line production by nonthermal ions. [in interstellar medium

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Ramaty, R.; Omidvar, K.

    1978-01-01

    X-ray production at about 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions is calculated, following both electron capture to excited levels and collisional excitation. A refinement of the Oppenheimer-Brinkman-Kramers (1930) approximation is used to obtain an improved charge-exchange cross-section. This, and the corresponding ionization cross section, were used to determine equilibrium charge fractions for iron ions as functions of their energy. The effective X-ray line production cross section was found to be sharply peaked in energy at about 8 to 12 MeV per amu. Since fast ions of similar energies can also excite nuclear levels, the ratio of selected strong gamma-rays line emissivities to the X-ray line emissivity is calculated. These calculations are employed to set limits on the intensity of gamma-rays line emission from the galactic center and the radio galaxy Cen A, and it is found that these limits are generally lower than those reported in the literature.

  6. Estimation of the number of prompt fission gamma rays

    SciTech Connect

    Valentine, T.E.

    2000-07-01

    The correlation between the total gamma-ray energy from fission and the number of prompt neutrons emitted from fission is used to estimate the average number of prompt gamma rays from fission in lieu of performing a measurement. Competition in the emission of prompt gamma rays and neutrons from the de-excitation of fission fragments has been observed experimentally. Mathematical models were used to estimate the properties of prompt gamma rays from the spontaneous fission of various nuclides that are encountered in nuclear safeguard applications. The estimated prompt gamma-ray parameters for spontaneous fission of {sup 238}U, {sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, and {sup 244}Cm are presented. The total prompt gamma-ray energy was estimated using the average number of neutrons from fission for each nuclide. The average energy of prompt gamma rays from fission was estimated, and the average number of prompt gamma rays from fission was estimated. The data presented can be used to characterize spontaneous fission isotopes commonly encountered in nuclear safeguard applications. This information may prove useful for development of advanced nondestructive assay methods. Furthermore, the models presented in this summary provide a mechanism to estimate gamma-ray properties for any fission process. The use of models to estimate gamma-ray properties from fission highlights the fact that little experimental data exist for many spontaneous fission nuclides. Measurements of the gamma-ray properties not only would be useful for developing nondestructive assay methods but also would provide additional information about the fission process.

  7. Performance study of the gamma-ray bursts polarimeter POLAR

    NASA Astrophysics Data System (ADS)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  8. Multiwavelength observations of unidentified high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with catalogued objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. This two year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x-ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. This second year was devoted to studies of unidentified gamma-ray sources from the first EGRET catalog, similar to previous observations. Efforts have concentrated on the sources at low and intermediate Galactic latitudes, which are the most plausible pulsar candidates.

  9. Decay strength distributions in {sup 12}C({sup 12}C,{gamma}) radiative capture

    SciTech Connect

    Jenkins, D. G.; Fulton, B. R.; Marley, P.; Fox, S. P.; Glover, R.; Wadsworth, R.; Watson, D. L.; Courtin, S.; Haas, F.; Lebhertz, D.; Beck, C.; Papka, P.; Rousseau, M.; Sanchez i Zafra, A.; Hutcheon, D. A.; Davis, C.; Ottewell, D.; Pavan, M. M.; Pearson, J.; Ruiz, C.

    2007-10-15

    The heavy-ion radiative capture reaction, {sup 12}C({sup 12}C,{gamma}), has been investigated at energies both on- and off-resonance, with a particular focus on known resonances at E{sub c.m.}=6.0, 6.8, 7.5, and 8.0 MeV. Gamma rays detected in a BGO scintillator array were recorded in coincidence with {sup 24}Mg residues at the focal plane of the DRAGON recoil separator at TRIUMF. In this manner, the relative strength of all decay pathways through excited states up to the particle threshold could be examined for the first time. Isovector M1 transitions are found to be a important component of the radiative capture from the E{sub c.m.}=6.0 and 6.8 MeV resonances. Comparison with Monte Carlo simulations suggests that these resonances may have either J=0 or 2, with a preference for J=2. The higher energy resonances at E{sub c.m.}=7.5 and 8.0 MeV have a rather different decay pattern. The former is a clear candidate for a J=4 resonance, whereas the latter has a dominant J=4 character superposed on a J=2 resonant component underneath. The relationship between these resonances and the well-known quasimolecular resonances as well as resonances in breakup and electrofission of {sup 24}Mg into two {sup 12}C nuclei are discussed.

  10. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  11. SAS-2 galactic gamma-ray results. 2: Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Gamma ray emission was detected from the radio pulsars PSR 1818-04 and PSR 1747-46, in addition to the previously reported gamma ray emission from the Crab and Vela pulsars. Because the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma ray observations suggest a uniquely gamma ray phenomenon occurring in a fraction of the radio pulsars. PSR 1818-04 has a gamma ray luminosity comparable to that of the Crab pulsar, whereas the luminosities of PSR 1747-46 and the Vela pulsar are approximately an order of magnitude lower. SAS-2 data for pulsar correlations yielded upper limits to gamma ray luminosity for 71 other radio pulsars. For five of the closest pulsars, upper limits for gamma ray luminosity are found to be at least three orders of magnitude lower than that of the Crab pulsar. Gamma ray enhancement near the Milky Way satellite galaxy and the galactic plane in the Cygnus region is also discussed.

  12. The muon content of gamma-ray showers

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered.

  13. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and

  14. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and

  15. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  16. MIRAX sensitivity for Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Sacahui, J. R.; Penacchioni, A. V.; Braga, J.; Castro, M. A.; D'Amico, F.

    2016-03-01

    In this work we present the detection capability of the MIRAX (Monitor e Imageador de RAios-X) experiment for Gamma-Ray Bursts (GRBs). MIRAX is an X-ray astronomy mission designed to perform a wide band hard X-ray (10-200 keV) survey of the sky, especially in the Galactic plane. With a total detection area of 169 cm2, large field of view (FoV, 20 ° × 20 °), angular resolution of 1°45‧ and good spectral and time resolution (∼8% at 60 keV, 10 μs), MIRAX will be optimized for the detection and study of transient sources, such as accreting neutron stars (NS), black holes (BH), Active Galactic Nuclei (AGNs), and both short and long GRBs. This is especially important because MIRAX is expected to operate in an epoch when probably no other hard X-ray wide-field imager will be active. We have performed detailed simulations of MIRAX GRB observations using the GEANT4 package, including the background spectrum and images of GRB sources in order to provide accurate predictions of the sensitivity for the expected GRB rate to be observed. MIRAX will be capable of detecting ∼44 GRBs per year up to redshifts of ∼4.5. The MIRAX mission will be able to contribute significantly to GRB science by detecting a large number of GRBs per year with wide band spectral response. The observations will contribute mainly to the part of GRB spectra where a thermal emission is predicted by the Fireball model. We also discuss the possibility of detecting GRB afterglows in the X-ray band with MIRAX.

  17. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  18. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Stanbro, M.; Briggs, M. S.; Roberts, O.; McBreen, S.; Bhat, N.; Fitzpatrick, G.

    2015-12-01

    We present results from the catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. The first release, in January 2015, provided data on 2700 TGFs. Updates are extending the catalog at a rate of ~800 TGFs per year. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and other Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs). In January 2016 additional data will be released online from correlating these TGFs with sferics detected by the World Wide Lightning Location Network (WWLLN). Maps of sferics in the vicinity of each TGF will be provided, as will the locations and times of sferics found to be associated with TGFs.

  19. Terrestrial Gamma Ray Flash Search in the Triggered Gamma Ray Burst Data of Fermi

    NASA Astrophysics Data System (ADS)

    Hughes, M.; Connaughton, V.

    2012-12-01

    Terrestrial Gamma Ray flashes (TGFs) occur near lightning-producing storms. The Fermi Gamma-Ray Burst monitor (GBM) has a catalog of over 200 TGFs which were found using an on-board algorithm. However, the limitations of the on-board algorithm mean that weaker events are undetected, and in normal data-taking mode (0.256 s resolution) cannot be found in an offline analysis. To get an idea of how many TGFs GBM could be expected to detect in an offline analysis of its highest temporal resolution data, we inspected the high-resolution data available around the times of non-TGF triggers gathered over the four years of the Fermi mission. The triggered data were from nearly 1000 gamma ray bursts observed by GBM. After applying statistical tests to the candidates we uncovered, and rejecting likely cosmic-ray events, 28 TGF candidates remained. Comparing the exposures of the high-resolution data with the time taken to record 28 TGFs on-board, we estimate a 36-fold increase in detected TGFs with the availability of high-resolution data throughout the Fermi orbit.

  20. Gamma ray bursts and extreme energy cosmic rays

    SciTech Connect

    Scarsi, Livio

    1998-06-15

    Extreme Energy Cosmic Ray particles (EECR) with E>10{sup 20} eV arriving on Earth with very low flux ({approx}1 particle/Km{sup 2}-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km{sup 2} sr. Projects with these dimensions are now being proposed: Ground Arrays ('Auger' with 2x3500 km{sup 2} sr) or exploiting the Earth Atmosphere as seen from space ('AIR WATCH' and OWL,'' with effective area reaching 1 million km{sup 2} sr). In this last case, by using as a target the 10{sup 13} tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  1. Low intensity X-ray and gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1982-01-01

    A low intensity X-ray and gamma ray spectrometer for imaging, counting, and energy resolving of single invisible radiation particles is described. The spectrometer includes a converting device for converting single invisible radiation particles to visible light photons. Another converting device converts the visible light photons to photoelectrons. A fiber optics coupling device couples together the two converting devices. An intensifying device intensifies the photoelectrons by an average gain factor of between 10 to the 4th power and 10 to the 7th power. The tensifying device is an anti-ion feedback microchannel plate amplifier which is operated substantially below saturation. A displaying device displays the intensified photoelectrons. The displaying device 32 indicates the spatial position, number, and energy of the incoming single invisible radiation particles.

  2. X-rays and Gamma-rays from active galaxies

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.

    1983-01-01

    Photon-photon pair production in active galaxies is considered, and the concept of the annihilation efficiency, the efficiency of the conversion of continuum luminosity of greater than 511 keV into positron annihilation luminosity, is introduced. Equations that give the source's annihilation luminosity and 511-keV flux as a function of its size, continuum luminosity and distance are developed. These are applied to the available X-ray and gamma-ray data on active galaxies in order to make specific predictions. Efficiencies as high as over 6 percent and fluxes up to 0.0008 ph/sq cm s result. While the latter are below present limits, they are within the reach of advanced instruments now in development.

  3. Neutrino astronomy and gamma-ray bursts.

    PubMed

    Waxman, Eli

    2007-05-15

    The construction of large-volume detectors of high energy, greater than 1TeV, neutrinos is mainly driven by the search for extragalactic neutrino sources. The existence of such sources is implied by the observations of ultra-high-energy, greater than or equal to 1019eV, cosmic rays, the origin of which is a mystery. In this lecture, I briefly discuss the expected extragalactic neutrino signal and the current state of the experimental efforts. Neutrino emission from gamma-ray bursts (GRBs), which are probably sources of both high-energy protons and neutrinos, is discussed in some detail. The detection of the predicted GRB neutrino signal, which may become possible in the coming few years, will allow one to identify the sources of ultra-high-energy cosmic rays and to resolve open questions related to the underlying physics of GRB models. Moreover, detection of GRB neutrinos will allow one to test for neutrino properties (e.g. flavour oscillations and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

  4. Development of a Cerium bromide gamma ray spectrometer for space applications

    NASA Astrophysics Data System (ADS)

    Panda, D. K.; Banerjee, D.; Goyal, S. K.; Patel, A. R.; Shukla, A. D.

    2017-09-01

    We present the development of a CeBr3 gamma ray spectrometer with the primary objective of determining the abundance and distribution of Th, U, K, Fe, Al and Si by measuring gamma ray signals produced by radioactive decay, neutron inelastic scattering and neutron capture reactions in the energy region 0.03-8 MeV. The energy resolution of the CeBr3 gamma ray spectrometer developed in-house has been measured at 662 and 1274 keV to be 4.0% and 2.8% respectively. The intrinsic activity count-rate for the 1″ × 1″ CeBr3 gamma ray spectrometer is ∼0.03 counts s-1 for the 40K energy window (1400-1520 keV), and ∼0.001 counts s-1 for the 232Th (2550-2700 keV) energy window. The U concentration of a sample (3A) from a granite rock was estimated to be ∼2.1 ppm and agrees with the 2.04 ppm value determined using a HPGe gamma ray spectrometer. The K concentration of sample 3A was estimated to be 3.8%, and is consistent with the 3.7% value determined independently using a HPGe gamma ray spectrometer.

  5. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    SciTech Connect

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  6. The high-energy component of the ISM - Cosmic rays and gamma rays

    NASA Astrophysics Data System (ADS)

    Bloemen, Hans

    The paper reviews investigations of cosmic-ray (CR) particles in the Galaxy and primarily discusses results of gamma-ray astronomy. Large-scale aspects of CR distribution and transport are addressed including radial gradient and halo size, inverse-Compton gamma-ray halo and 'medium-latitude excess', and spectral variations. The discussion of small-scale aspects of CR distribution and transport encompasses the coupling of CRs and matter as well as the emanation of gamma rays from violent interstellar events. CRs are responsible for the three main continuum components of interstellar gamma-ray emission which typically occurs at about 1 MeV. Several projects that can advance the research of gamma rays are described which include the Gamma-1 experiment, Egret, Comptel, and Batse. Gamma-ray astronomy is considered to have important ramifications for advancing the study of interactions between low-energy CR nuclei and the ISM.

  7. ON THE RECENTLY DISCOVERED CORRELATIONS BETWEEN GAMMA-RAY AND X-RAY PROPERTIES OF GAMMA-RAY BURSTS

    SciTech Connect

    Dado, Shlomo; Dar, Arnon

    2013-09-20

    Recently, many correlations between the prompt {gamma}-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004-2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short-hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

  8. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  9. Gamma-Ray Observatory - The next great observatory in space

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Fishman, Gerald; Kniffen, Donald

    1990-01-01

    The Gamma-Ray Observatory (GRO) which is part of NASA's Great Observatories space program is presented. The GRO is equipped with the Burst and Transient Source Experiment (which detects low-energy gamma-ray photons from 20 keV to 600 keV and locates sources of gamma-ray bursts), the Oriented Scintillation Spectrometer Experiment (which detects celestial gamma rays from 100 keV to 10 MeV and identifies the elements producing these rays by measuring the ray's spectra and time variability), the Imaging Compton Telescope (which images gamma rays with energies from 1 to 30 MeV created when cosmic rays interact with interstellar matter), and the Energetic Gamma-Ray Experiment Telescope (which detects high-energy photons associated with the most energetic processes occurring in nature). After the energies of photons from each source are classified, the gamma-ray mechanisms can be modelled. Nuclei, radioactive isotopes, and nuclear reactions can be identified, and the physical conditions at the radiation's source can also be modelled. From these models, theories can be developed about the creation of elements in the explosion and collapse of giant stars, the acceleration of charged particles to velocities approaching the speed of light, and the destruction of matter and antimatter.

  10. Gamma-Ray Observatory - The next great observatory in space

    SciTech Connect

    Neal, V.; Fishman, G.; Kniffen, D. Essex Corp., Huntsville, AL NASA, Marshall Space Flight Center, Huntsville, AL NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-08-01

    The Gamma-Ray Observatory (GRO) which is part of NASA's Great Observatories space program is presented. The GRO is equipped with the Burst and Transient Source Experiment (which detects low-energy gamma-ray photons from 20 keV to 600 keV and locates sources of gamma-ray bursts), the Oriented Scintillation Spectrometer Experiment (which detects celestial gamma rays from 100 keV to 10 MeV and identifies the elements producing these rays by measuring the ray's spectra and time variability), the Imaging Compton Telescope (which images gamma rays with energies from 1 to 30 MeV created when cosmic rays interact with interstellar matter), and the Energetic Gamma-Ray Experiment Telescope (which detects high-energy photons associated with the most energetic processes occurring in nature). After the energies of photons from each source are classified, the gamma-ray mechanisms can be modelled. Nuclei, radioactive isotopes, and nuclear reactions can be identified, and the physical conditions at the radiation's source can also be modelled. From these models, theories can be developed about the creation of elements in the explosion and collapse of giant stars, the acceleration of charged particles to velocities approaching the speed of light, and the destruction of matter and antimatter.

  11. Gravity in the gamma ray spectrum

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    References K. Fruechte, ,,The gravitational force may be the result of gamma ray energy exchange", http://www.fruechtetheory.com/full.html, Fairmont, Minnesota, USA, 2007. E. Podkletnov, R. Nieminen, ,,A possibility of gravitational force shielding by bulk Y Ba2 Cu3 O7 Superconductor", Physica C, Vol. 203, p. 441, 1992. H. Yoshiki, K. Sakai, M. Ogura, T. Kawai, Y. Masuda, T. Nakajima, T. Takayama, S. Tanaka and A. Yamaguchi, ,,Observation of ultracold-neutron production by 9-˚ cold neutrons in A superfluid helium", Physical review letters, Vol. 68, No. 9, pp. 1323-1326, 1992 F.C. Witteborn, W.M. Fairbank, ,,Experimental comparison of the gravitational force on freely falling electrons and metallic electrons", Physical review letters, Vol. 19, No. 18, 1967.

  12. Optical Afterglows of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pian, Elena

    2007-10-01

    The advent of the Swift mission for Gamma-Ray Bursts (GRBs) in late 2004 has more than doubled the existing sample of detected optical counterparts. The rapid dissemination of the accurate BAT and XRT localizations has allowed ground-based telescopes, especially the automatic ones, to slew timely to the GRB positions and to scan them efficiently in search of an afterglow. For about 25% of the Swift GRBs, the onboard UVOT instrument has also provided an early counterpart detection in the optical, and occasionally in the near-UV. There are now about 200 detected GRB optical afterglows, of which nearly 100 have a redshift measurement. I will review here some of the highlights in this field during the Swift era, with particular emphasis on the early (minutes to hours after explosion) optical light curves, on the afterglows of short GRBs, and on the supernova-GRB connection.

  13. The High Altitude Gamma Ray Observatory, HAWC

    NASA Astrophysics Data System (ADS)

    González, M. M.

    2011-10-01

    The Volcano Sierra Negra in Puebla, Mexico was selected to host HAWC (High Altitude Water Cherenkov), a unique obervatory of wide field of view (2π sr) capable of observing the sky continously at energies from 0.5 TeV to 100 TeV. HAWC is an array of 300 large water tanks (7.3 m diameter × 5 m depth) at an altitude of 4100 m. a. s. l. Each tank is instrumented with three upward-looking photomultipliers tubes. The full array will be capable of observing the most energetic gamma rays from the most violent events in the universe. HAWC will be 15 times more sensitive than its predecesor, Milagro. We present HAWC, the scientific case and capabilities.

  14. Dynamic spectrum of airborne gamma-rays.

    PubMed

    Minato, S

    1990-04-01

    This note describes a method of direct measurement of airborne gamma-rays primarily from 222Rn daughters using a NaI(Tl) scintillation spectrometer with lead shields. This method has the advantage of being able to maintain the system easily compared to other usual systems including a pump. The pulse-height distributions are successively fed to a floppy disk in a personal computer every unit time. The gain shifts can be corrected automatically by a computer program. This technique would be applicable to the estimation of 222Rn daughters concentration and to examination of disequilibrium between 214Pb(RaB) and 214Bi(RaC) and of those height distribution up to about 200 m. The accuracy for estimating the concentration is as good as that of the filter method.

  15. Digital logarithmic airborne gamma ray spectrometer

    NASA Astrophysics Data System (ADS)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  16. Resolving the Extragalactic Gamma-ray Background

    NASA Astrophysics Data System (ADS)

    Ajello, Marco; Di Mauro, Mattia; Manconi, Silvia; Zechlin, Hannes

    2017-08-01

    Models of the extragalactic gamma-ray background (EGB) show that its intensity can be ascribed to the integrated emission of source populations, like blazars, already detected by the Fermi Large Area Telescope (LAT). Taking advantage of the sensitivity increase delivered by Pass 8, the newest event-level analysis, we tested this hypothesis employing a photon fluctuation analysis above 50 GeV. For the first time we were able to resolve nearly the entire EGB and show that blazars contribute at least 85% of the EGB intensity. We will discuss how this analysis can be extended to lower energies and present our current understanding of the origin of the EGB, its ties to the neutrino flux measured by IceCube and the capability to constrain scenarios of dark matter interaction.

  17. Radio Afterglows of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi

    2017-09-01

    This review focuses on the physics of Gamma Ray Bursts probed through their radio afterglow emission. Even though radio band is the least explored of the afterglow spectrum, it has played an important role in the progress of GRB physics, specifically in confirming the hypothesized relativistic effects. Currently radio astronomy is in the beginning of a revolution. The high sensitive Square Kilometer Array (SKA) is being planned, its precursors and pathfinders are about to be operational, and several existing instruments are undergoing upgradation. Thus, the afterglow results from detection statistics and follow up programs are expected to improve in the coming years. We list a few avenues unique to radio band which if explored to full potential have the promise to greatly contribute to the future of GRB physics.

  18. Pulsar gamma rays from polar cap regions

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1992-01-01

    The production is studied of pulsar gamma rays by energetic electrons flowing in the open field region above pulsar polar caps. The propagation was followed of curvature radiation from primary electrons, as well as hard synchrotron radiation generated by secondary pairs, through the pulsar magnetosphere for vacuum dipole open field geometries. Using data from radio and optical observations, models were constructed for the specific geometries and viewing angles appropriate to particular pulsars. These detailed models produce normalized spectra above 10 MeV, pulse profiles, beaming fractions and phase resolved spectra appropriate for direct comparison with COS-B and GRO data. Models are given for the Crab, Vela, and other potentially detectable pulsars; general agreement with existing data is good, although perturbations to the simplified models are needed for close matches. The calculations were extended to the millisecond pulsar range, which allows the production of predictions for the flux and spectra of populations of recycled pulsars and search strategies are pointed out.

  19. The GLAST Gamma-Ray Observatory

    SciTech Connect

    Latronico, L.

    2004-10-27

    GLAST is a space mission that will observe the gamma-ray sky between 20MeV and 1TeV with unprecedented resolution and sensitivity. The Large Area Telescope (LAT), the main instrument onboard the GLAST satellite, is built with state-of-the-art particle physics detectors, and combines a large area is-strip tracker-converter, that will measure direction of incoming photons to an imaging CsI e.m. calorimeter for measurements of photon energies; an outer, segmented Anti-Coincidence Detector will reject charged particle background. In this paper they give an overview of the many physics goals and potential reach of the GLAST observatory and describe in detail the instrument design and performance.

  20. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  1. Very High Energy Gamma Ray Extension of GRO Observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  2. Enhanced gamma-ray activity from the Crab nebula

    NASA Astrophysics Data System (ADS)

    Buehler, R.; Ciprini, S.

    2016-01-01

    Preliminary LAT analysis indicates enhanced gamma-ray activity from the Crab nebula. The daily-averaged gamma-ray emission (E > 100 MeV) from the direction of the Crab Nebula has surpassed 4.0 x 10^-6 ph cm^-2 s^-1 five times in the last 12 days.

  3. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed.

  4. Abundances from solar-flare gamma-ray line spectroscopy

    NASA Technical Reports Server (NTRS)

    Murphy, R. J.; Ramaty, R.; Forrest, D. J.; Kozlovsky, B.

    1985-01-01

    Elemental abundances of the ambient gas at the site of gamma ray line production inthe solar atmosphere are deduced using gamma ray line observations from a solar flare. The resultant abundances are different from local galactic abundances which are thought to be similar to photospheric abundances.

  5. Searching for Prompt Gamma Ray Signals Around Gravitational Wave Triggers

    NASA Astrophysics Data System (ADS)

    Burns, Eric

    One of the next great discoveries in astrophysics will be the first detection of an event in both gravitational waves and photons. I investigate the most promising event for a joint detection: the merging of a neutron star with another neutron star or a black hole, thought to produce short gamma ray bursts. We investigate the possibility of sub-populations of short gamma-ray bursts by comparing the bursts observed by the Swift Burst Alert Telescope and the Fermi Gamma-ray Burst Monitor. We find no evidence that these instruments are observing different short gamma-ray bursts, allowing us to use the Swift redshift distribution for the population observed by the Fermi Gamma-ray Burst Monitor. I discuss expected rates, joint localizations, and prospects for joint science between Advanced LIGO and the Fermi Gamma-ray Burst Monitor. Additionally, I discuss the unexpected candidate GBM gamma-ray counterpart to the first detection of gravitational waves, a binary black hole merger, the likelihood that these events are associated, and the possibility of short gamma-ray bursts arising from the merging of black holes.

  6. The sensitivity of EGRET to gamma-ray polarization

    NASA Technical Reports Server (NTRS)

    Mattox, John R.

    1991-01-01

    A Monte Carlo simulation shows that the EGRET gamma-ray telescope aboard the GRO satellite does not have sufficient sensitivity to detect linear polarization, even for 100-percent polarized gamma-ray sources. This is confirmed by analysis of calibration data. Several data selection techniques suggested to enhance polarization sensitivity have been evaluated and found to not significantly improve sensitivity.

  7. The sensitivity of EGRET to gamma-ray polarization

    NASA Technical Reports Server (NTRS)

    Mattox, John R.

    1991-01-01

    A Monte Carlo simulation shows that the EGRET gamma-ray telescope aboard the GRO satellite does not have sufficient sensitivity to detect linear polarization, even for 100-percent polarized gamma-ray sources. This is confirmed by analysis of calibration data. Several data selection techniques suggested to enhance polarization sensitivity have been evaluated and found to not significantly improve sensitivity.

  8. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  9. Thermonuclear model for. gamma. -ray bursts

    SciTech Connect

    Woosley, S.E.

    1981-08-26

    The evolution of magnetized neutron stars with field strengths of approx. 10/sup 12/ gauss that are accreting mass onto kilometer-sized polar regions at a rate of approx. /sup 13/ M/sub 0/yr/sup -1/ is examined. Based on the results of one-dimensional calculations, one finds that stable hydrogen burning, mediated by the hot CNO-cycle, will lead to a critical helium mass in the range 10/sup 20/ to 10/sup 22/ g km/sup -2/. Owing to the extreme degeneracy of the electron gas providing pressure support, helium burning occurs as a violent thermonuclear runaway which may propagate either as a convective deflagration (Type I burst) or as a detonation wave (Type II burst). Complete combustion of helium into /sup 56/Ni releases from 10/sup 38/ to 10/sup 40/ erg km/sup -2/ and pushes hot plasma with ..beta.. > 1 above the surface of the neutron star. Rapid expansion of the plasma channels a substantial fraction of the explosion energy into magnetic field stress. Spectral properties are expected to be complex with emission from both thermal and non-thermal processes. The hard ..gamma..-outburst of several seconds softens as the event proceeds and is followed by a period, typically of several minutes duration, of softer x-ray emission as the subsurface ashes of the thermonuclear explosion cool. In this model, most ..gamma..-ray bursts currently being observed are located at a distance of several hundred parsecs and should recur on a timescale of months to centuries with convective deflagrations (Type I bursts) being the more common variety. An explanation for Jacobson-like transients is also offered.

  10. LONG GAMMA-RAY TRANSIENTS FROM COLLAPSARS

    SciTech Connect

    Woosley, S. E.; Heger, Alexander E-mail: alex@physics.umn.edu

    2012-06-10

    In the collapsar model for common gamma-ray bursts (GRBs), the formation of a centrifugally supported disk occurs during the first {approx}10 s following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur-blue supergiants with low mass-loss rates, tidally interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common GRB. A broad range of powers is possible, 10{sup 47}-10{sup 50} erg s{sup -1}, and this brightness could be enhanced by beaming. Such events were probably more frequent in the early universe where mass-loss rates were lower. Indeed, this could be one of the most common forms of gamma-ray transients in the universe and could be used to study first generation stars. Several events could be active in the sky at any one time. Recent examples of this sort of event may have been the Swift transients Sw-1644+57, Sw-2058+0516, and GRB 101225A.

  11. Gamma-Ray Bursts: Pulses and Populations

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.; Hakkila, J. E.; Broadbent, M.; Wasserman, I. M.; Wolpert, R. L.

    2013-04-01

    We describe ongoing work on two projects that are enabling more thorough and accurate use of archival BATSE data for elucidating the nature of GRB sources; the methods and tools we are developing will also be valuable for analyzing data from other missions. The first project addresses modeling the spectro-temporal behavior of prompt gamma ray emission from GRBs by modeling gamma ray count and event data with a population of pulses, with the population drawn from one or more families of single-pulse kernels. Our approach is built on a multilevel nonparametric probabilistic framework we have dubbed "Bayesian droplets," and offers several important advances over previous pulse decomposition approaches: (1) It works in the pulse-confusion regime, quantifying uncertainty in the number, locations, and shapes of pulses, even when there is strong overlap. (2) It can self-consistently model pulse behavior across multiple spectral bands. (3) It readily handles a variety of spatio-temporal kernel shapes. (4) It reifies the idea of a burst as a population of pulses, enabling explicit modeling and estimation of the pulse population distribution. We describe the framework and present analyses of prototypical simple and complex GRB light curves. The second project aims to enable accurate demographic modeling of GRBs using the BATSE catalog. We present new calculations of the BATSE sky exposure, encompassing the full duration of the BATSE catalog for the first time, with many improvements over the currently available exposure map. A similar calculation of the detection efficiency is in progress. We also describe public Python software enabling access and accurate modeling of BATSE GRB data. The software enables demographic studies (e.g., modeling log N - log S distributions) with accurate accounting of both selection effects and measurement errors. It also enables spectro-temporal modeling of detailed data from individual GRBs. These projects are supported by NASA through the AISR

  12. Data evaluation methods and improvements to the neutron-capture γ-ray spectrum

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Summers, N. C.; Sleaford, B. W.; Revay, Zs.; Krtička, M.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J. E.; Nichols, A.; Szentmiklósi, L.

    2011-06-01

    Improved neutron-capture γ-ray spectra, not only of interest to the nuclear structure and reactions communities, are needed in a variety of applied and non-proliferation programs. This requires an evaluation of the existing experimental capture-γ data. Elemental neutron-capture data taken from direct measurements at the Budapest Reactor have been used to collate the Evaluated Gamma-ray Activation File, a database of capture γ-ray cross sections. These cross sections are then compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. The aim of this procedure is to obtain the total radiative neutron-capture cross section and confidently increase the number of levels and γ rays that can be assigned to a given isotope in the neutron data libraries. To achieve these goals and provide as complete information as possible in the neutron data libraries, it is also necessary to remain current with recent advances in nuclear structure physics and ensure that the latest data in the Evaluated Nuclear Structure Data File has been taken into consideration. This way an optimal level scheme can be derived by comparison with simulations and available experimental data. New information derived from this study can then be used to improve the nuclear structure and reactions databases with more-complete level schemes, and indeed, provide reliable and accurate input to a variety of applications which require this information. Recent results from neutron capture on the stable tungsten isotopes 182,183,184,186W are presented to illustrate the evaluation process.

  13. Observation of gamma-ray bursts with the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Strickman, M. S.; Kinzer, R. L.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.; Rieger, E.; Reppin, C.; Kanbach, G.

    1982-01-01

    The gamma-ray spectrometer on SMM is sensitive to bursts within its field of view with intensities greater than 0.000005 erg/sq cm above 100 keV. It has detected 17 events between February 1980 and March 1981 with the characteristics of cosmic gamma-ray bursts. The most intense burst, on 19 April 1980, had a photon spectrum consistent with a power law with spectral index - 2.5 from 300 keV to approximately 7 MeV. It is not possible at present to exclude the sun as the source of this burst. Spectra of 11 of the bursts have been studied for line features with no clear evidence for line emission greater than 300 keV. The continuum radiation from about half of these events have hard emission extending to approximately equal to or greater than 2 MeV.

  14. Observation of gamma-ray bursts with the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Strickman, M. S.; Kinzer, R. L.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.; Rieger, E.; Reppin, C.; Kanbach, G.

    1982-01-01

    The gamma-ray spectrometer on SMM is sensitive to bursts within its field of view with intensities greater than 0.000005 erg/sq cm above 100 keV. It has detected 17 events between February 1980 and March 1981 with the characteristics of cosmic gamma-ray bursts. The most intense burst, on 19 April 1980, had a photon spectrum consistent with a power law with spectral index - 2.5 from 300 keV to approximately 7 MeV. It is not possible at present to exclude the sun as the source of this burst. Spectra of 11 of the bursts have been studied for line features with no clear evidence for line emission greater than 300 keV. The continuum radiation from about half of these events have hard emission extending to approximately equal to or greater than 2 MeV.

  15. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    SciTech Connect

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki; Gunji, Shuichi; Toukairin, Noriyuki; Mihara, Tatehiro; Toma, Kenji

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  16. Gamma rays from grazing incidence cosmic rays in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Interactions of grazing incidence, ultra high-energy cosmic rays with the earth's atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond timescales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth's surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 10(exp 20) eV is found to be more than two orders of magnitude higher than Earth-based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic-ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the Earth's atmosphere.

  17. Development of the instruments for the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Madden, J. J.; Kniffen, D. A.

    1986-01-01

    The Gamma Ray Observatory (GRO) is to be launched in 1988 by the STS. The GRO will feature four very large instruments: the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), the Energetic Gamma Ray Experiment Telescope (EGRET) and the Burst and Transient Source Experiment (BATSE). The instruments weigh from 900-1200 kg each, and required the development of specialized lifting and dolly devices to permit their assembly, manipulation and testing. The GRO is intended a{s a tool for studying discrete celestial objects such as black holes, neutron stars and other gamma-ray emitting objects, scanning for nucleosynthesis processes, mapping the Galaxy and other, high energy galaxies in terms of gamma rays, searching for cosmological effects and observing gamma ray bursts. The instruments will be sensitive from the upper end mof X-rya wavelengths to the highest energies possible. Details of the hardware and performance specifications of each of the instruments are discussed.

  18. Search for medium-energy gamma-ray pulsars

    SciTech Connect

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29 are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.

  19. Accelerated and Ambient Abundances in RHESSI Gamma-Ray Flares

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Shih, A. Y.; Lin, R. P.; Share, G. H.; Murphy, R. J.; Schwartz, R. A.; Tolbert, A. K.

    2005-05-01

    The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) has detected nuclear gamma-ray line emission from at least eleven solar flares over the past three years. These gamma-ray lines are produced when flare-accelerated ions collide with the ambient solar medium. In this paper, we use gamma-ray line ratios and Doppler profiles to constrain the relative fluxes of accelerated protons, alphas, and heavier nuclei in the brighter RHESSI gamma-ray flares. We also study the relative fluxes of narrow lines to compare our conclusions about ambient solar abundances in the interaction region to earlier work from the Solar Maximum Mission Gamma-Ray Spectrometer. The work at the University of California was supported by NASA contract NAS 5-98033.

  20. Gamma ray and microwave emission from 1991 June events

    NASA Technical Reports Server (NTRS)

    Enome, Shinzo; Nakajima, Hiroshi; Hudson, Hugh S.; Schwartz, Richard

    1992-01-01

    The Sun showed unprecedented microwave activities in Jun. 1991, which produced four major and numerous weaker bursts and gamma ray emission measured by the Gamma Ray Observatory. The 4 Jun. 1991 event shows a sharp maximum around 03:41 UT and weak emission a few minutes before the maximum in the gamma ray record of the Burst and Transient Source Experiment (BATSE), with a preliminary estimated energy of 5 MeV. Although the 80-GHz and possible 35-GHz records show more prominent emission in the pre-maximum stage. This strongly suggests the first observational evidence for gamma ray and mm-wave emission from relativistic electrons. Comparisons of the other three major events on 6 Jun. at 01:00 UT, 9 Jun. at 01:34 UT, and 11 Jun. at 01:51 UT between gamma ray and microwave emission are also in progress.