Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong
2014-12-01
Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator
Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.
1984-01-01
A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.
Neutron Capture Gamma-Ray Libraries for Nuclear Applications
NASA Astrophysics Data System (ADS)
Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.
2011-06-01
The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.
Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Cs-133 and I-127
NASA Astrophysics Data System (ADS)
Umezawa, Seigo; Igashira, Masayuki; Katabuchi, Tatuya; Dominic, Moraru; Yanagida, Shotaro; Okamiya, Tomohiro
2017-09-01
The neutron capture cross sections and the capture gamma-ray spectra of 127I and 133Cs at incident neutron energies from 15 to 100 keV have been measured by the time-of-flight method. Capture gamma-rays were detected with an anti-Compton NaI(Tl) spectrometer, and the pulse-height weighting technique was applied to derive capture yields. The capture cross sections of 127I and 133Cs were determined using the standard capture cross section of 197Au. The total errors of the cross sections were 3.8-5.1%. The obtained cross sections were compared with evaluated values in JENDL-4.0 and ENDF/B-VII.1. For 127I, the energy dependence is different between the present results and the evaluations. For 133Cs, the evaluated values in JENDL-4.0 agree with the present results but the evaluated values in ENDF/B-VII.1 are smaller than the present results by 14%-18%. The capture gamma-ray spectra of 133Cs and 127I were derived by unfolding the pulse height spectra with detector response functions.
Thermal-neutron capture for A=26-35
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunmei, Z.; Firestone, R.B.
2001-06-01
The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time themanyexperimental data of the thermal-neutron captures have been measuredand published. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures for nuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, andmore » 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".« less
Thermal-neutron capture for A=36-44
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunmei, Z.; Firestone, R.B.
2003-01-01
The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time the manyexperimental data of the thermal-neutron captures have been measured andpublished. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures fornuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, andmore » 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".« less
Detection of Neutrons with Scintillation Counters
DOE R&D Accomplishments Database
Hofstadter, R.
1948-11-01
Detection of slow neutrons by: detection of single gamma rays following capture by cadmium or mercury; detection of more than one gamma ray by observing coincidences after capture; detection of heavy charged particles after capture in lithium or baron nuclei; possible use of anthracene for counting fast neutrons investigated briefly.
Neutron Capture Experiments Using the DANCE Array at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashdorj, D.; MonAme Scientific Research Center, Ulaanbaatar; Mitchell, G. E.
2009-03-31
The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectramore » for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.« less
Study on the keV neutron capture reaction in 56Fe and 57Fe
NASA Astrophysics Data System (ADS)
Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya
2014-03-01
The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.
Progress on the Europium Neutron-Capture Study using DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agvaanluvsan, U; Becker, J A; Macri, R A
2006-09-05
The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu andmore » {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.« less
Thermal-neutron capture gamma-rays. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuli, J.K.
1997-05-01
The energy and photon intensity of gamma rays as seen in thermal-neutron capture are presented in ascending order of gamma energy. All those gamma-rays with intensity of {ge} 2% of the strongest transition are included. The two strongest transitions seen for the target nuclide are indicated in each case. Where the target nuclide mass number is indicated as nat the natural target was used. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. All data for A > 44 are taken from Evaluated Nuclear Structure Data File (4/97), a computermore » file of evaluated nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory, on behalf of the Nuclear Structure and Decay and Decay Data network, coordinated by the International Atomic Energy Agency, Vienna. These data are published in Nuclear Data Sheets, Academic Press, San Diego, CA. The data for A {le} 44 is taken from ``Prompt Gamma Rays from Thermal-Neutron Capture,`` M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data and Nuclear Data Tables 26, 511 (1981).« less
Thermal-neutron capture gamma-rays. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuli, J.K.
1997-05-01
The energy and photon intensity of gamma rays as seen in thermal-neutron capture are presented ordered by Z, A of target nuclei. All gamma-rays with intensity of {ge}2% of the strongest transition are included. The strongest transition is indicated in each case. Where the target nuclide mass number is indicated as nat the natural target was used. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. All data for A > 44 are taken from Evaluated Nuclear Structure Data File (4/97), a computer file of evaluated nuclear structure data maintainedmore » by the National Nuclear Data Center, Brookhaven National Laboratory, on behalf of the Nuclear Structure and Decay and Decay Data network, coordinated by the International Atomic Energy Agency, Vienna. These data are published in Nuclear Data Sheets, Academic Press, San Diego, CA. The data for A {le} 44 is taken from ``Prompt Gamma Rays from Thermal-Neutron Capture,`` M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data and Nuclear Data Tables 26, 511 (1981).« less
NASA Astrophysics Data System (ADS)
Ullmann, J. L.
2014-09-01
The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.
Simultaneous CT and SPECT tomography using CZT detectors
Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.
2002-01-01
A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.
Solving the Mystery of Short Gamma Ray Bursts
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2006-01-01
Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.
The calculation of neutron capture gamma-ray yields for space shielding applications
NASA Technical Reports Server (NTRS)
Yost, K. J.
1972-01-01
The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshima, Masumi; Kin, Tadahiro; Kimura, Atsushi
Multi-step cascades from the {sup 62}Ni(n{sub cold},{gamma}) {sup 63}Ni reaction were studied via a {gamma}-ray spectroscopy method. With a {gamma}-ray detector array multiple {gamma}-ray coincident events were accumulated. By selecting full cascade events from the capture state to the ground state, we have developed a new computer-based level construction method and it is applied to excited level assignment in {sup 63}Ni.
NASA Astrophysics Data System (ADS)
Turkoglu, Danyal
Precise knowledge of prompt gamma-ray intensities following neutron capture is critical for elemental and isotopic analyses, homeland security, modeling nuclear reactors, etc. A recently-developed database of prompt gamma-ray production cross sections and nuclear structure information in the form of a decay scheme, called the Evaluated Gamma-ray Activation File (EGAF), is under revision. Statistical model calculations are useful for checking the consistency of the decay scheme, providing insight on its completeness and accuracy. Furthermore, these statistical model calculations are necessary to estimate the contribution of continuum gamma-rays, which cannot be experimentally resolved due to the high density of excited states in medium- and heavy-mass nuclei. Decay-scheme improvements in EGAF lead to improvements to other databases (Evaluated Nuclear Structure Data File, Reference Input Parameter Library) that are ultimately used in nuclear-reaction models to generate the Evaluated Nuclear Data File (ENDF). Gamma-ray transitions following neutron capture in 93Nb have been studied at the cold-neutron beam facility at the Budapest Research Reactor. Measurements have been performed using a coaxial HPGe detector with Compton suppression. Partial gamma-ray production capture cross sections at a neutron velocity of 2200 m/s have been deduced relative to that of the 255.9-keV transition after cold-neutron capture by 93Nb. With the measurement of a niobium chloride target, this partial cross section was internally standardized to the cross section for the 1951-keV transition after cold-neutron capture by 35Cl. The resulting (0.1377 +/- 0.0018) barn (b) partial cross section produced a calibration factor that was 23% lower than previously measured for the EGAF database. The thermal-neutron cross sections were deduced for the 93Nb(n,gamma ) 94mNb and 93Nb(n,gamma) 94gNb reactions by summing the experimentally-measured partial gamma-ray production cross sections associated with the ground-state transitions below the 396-keV level and combining that summation with the contribution to the ground state from the quasi-continuum above 396 keV, determined with Monte Carlo statistical model calculations using the DICEBOX computer code. These values, sigmam and sigma 0, were (0.83 +/- 0.05) b and (1.16 +/- 0.11) b, respectively, and found to be in agreement with literature values. Comparison of the modeled population and experimental depopulation of individual levels confirmed tentative spin assignments and suggested changes where imbalances existed.
Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu
2010-01-01
The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.
Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars
NASA Technical Reports Server (NTRS)
Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.
1989-01-01
It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.
NASA Astrophysics Data System (ADS)
Lee, Taewoong; Lee, Hyounggun; Lee, Wonho
2015-10-01
This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.
Determining the solar-flare photospheric scale height from SMM gamma-ray measurements
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.
1991-01-01
A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.
Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy
NASA Technical Reports Server (NTRS)
Evans, Larry G.; Squyres, Steven W.
1987-01-01
The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.
(n,{gamma}) Experiments on tin isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baramsai, B.; Mitchell, G. E.; Walker, C. L.
2013-04-19
Neutron capture experiments on highly enriched {sup 117,119}Sn isotopes were performed with the DANCE detector array located at the Los Alamos Neutron Science Center. The DANCE detector provides detailed information about the multi-step {gamma}-ray cascade following neutron capture. Analysis of the experimental data provides important information to improve understanding of the neutron capture reaction, including a test of the statistical model, the assignment of spins and parities of neutron resonances, and information concerning the Photon Strength Function (PSF) and Level Density (LD) below the neutron separation energy. Preliminary results for the (n,{gamma}) reaction on {sup 117,119}Sn are presented. Resonance spinsmore » of the odd-A tin isotopes were almost completely unknown. Resonance spins and parities have been assigned via analysis of the multi-step {gamma}-ray spectra and directional correlations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaswamy, M.K.; Skeel, W.L.; Jastram, P.S.
1960-06-01
The gamma rays following the electron-capture decay of 7.5 year Ba/sup 133/ were studied by means of a coincidence scintillation spectrometer. Gamma rays at 79, 79, 274, presence of a 56 kev gamma ray was confirmed. The resulting decay scheme with levels at 79, 158, 381, and 437 kev is in excellent agreement with previous work. Spin and parity assignments are made for these levels. (auth)
NASA Astrophysics Data System (ADS)
Aim-O, P.; Wongsawaeng, D.; Tancharakorn, S.; Sophon, M.
2017-09-01
High-density cement mixed with crumb rubber has been studied to be a gamma ray and neutron shielding material, especially for photonuclear reactions that may occur from accelerators where both types of radiation exist. The Buildup factors from gamma ray scattering, prompt and secondary gamma ray emissions from neutron capture and mechanical properties were evaluated. For buildup factor studies, two different geometries were used: narrow beam and broad beam. Prompt Gamma Neutron Activation Analysis (PGNAA) was carried out to determine the prompt and secondary gamma ray emissions. The compressive strength of samples was evaluated by using compression testing machine which was central point loading crushing test. The results revealed that addition of crumb rubber increased the buildup factor. Gamma ray spectra following PGNAA revealed no prompt or secondary gamma ray emission. Mechanical testing indicated that the compressive strength of the shielding material decreased with increasing volume percentage of crumb rubber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.
2006-03-13
Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less
Informing neutron capture nucleosynthesis on short-lived nuclei with (d,p) reactions
NASA Astrophysics Data System (ADS)
Cizewski, Jolie A.; Ratkiewicz, Andrew; Escher, Jutta E.; Lepailleur, Alexandre; Pain, Steven D.; Potel, Gregory
2018-01-01
Neutron capture on unstable nuclei is important in understanding abundances in r-process nucleosynthesis. Previously, the non-elastic breakup of the deuteron in the (d,p) reaction has been shown to provide a neutron that can be captured by the nucleus and the gamma-ray decay of the subsequent compound nucleus can be modelled to predict the gamma-ray decay of the compound nucleus in the (n,γ) reaction. Preliminary results from the 95Mo(d,pγ) reaction in normal kinematics support the (d,pγ) reaction as a valid surrogate for neutron capture. The techniques to measure the (d,pγ) reaction in inverse kinematics have been developed.
Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel
2013-02-12
A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.
Nuclear Deexcitation Gamma Ray Lines from Accelerated Particle Interactions
2002-01-01
MeV) 10−1 1 10 102 103 104 105 C ou nt s s− 1 M eV −1 neutron capture 12C 56Fe, 24Mg, 20Ne, 28Si 16O 16O, 15N positron annihilation Fig. 1.— Gamma...1996). The results of these efforts have established gamma-ray spectroscopy as an important tool for exploration of high-energy processes in solar...Murphy et al. 1997) is shown in Figure 1. Among the main results of the investigations using gamma-ray spectroscopy are (1) the determination of the
NASA Technical Reports Server (NTRS)
Lindstrom, David J.; Lindstrom, Richard M.
1989-01-01
Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.
GRO: Black hole models for gamma ray bursts
NASA Technical Reports Server (NTRS)
Shaham, Jacob
1993-01-01
This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.
Characterization of the Gamma Response of a Cadmium Capture-gated Neutron Spectrometer
NASA Astrophysics Data System (ADS)
Hogan, Nathaniel; Rees, Lawrence; Czirr, Bart; Bastola, Suraj
2010-10-01
We have studied the gamma response of a newly developed capture-gated neutron spectrometer. Such spectrometers detect a dual signal from incoming neutrons, allowing for differentiation between other particles, such as gamma rays. The neutron provides a primary light pulse in either plastic or liquid scintillator through neutron-proton collisions. A capture material then delivers a second pulse as the moderated neutron captures in the intended material, which then de-excites with the release of gamma energy. The presented spectrometer alternates one centimeter thick plastic scintillators with sheets of cadmium inserted in between for neutron capture. The neutron capture in cadmium offers a release of gamma energy ˜ 9 MeV. To verify that the interaction was caused by a neutron, the response functions of both events must be well known. Due to the prior existence of many capture-gated neutron spectrometers, the proton recoil pulse has already been studied, but the capture pulse is unique to each spectrometer and must be measured. Experimental results agree with theoretical Monte-Carlo code, both suggesting that the optics and geometry of the spectrometer play a large role in its efficiency. Results prove promising for the efficiency of the spectrometer.
Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector
NASA Astrophysics Data System (ADS)
Jones, James L.
1997-02-01
The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.
Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Bussard, R. W.
1978-01-01
A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.
Review of Livermore-Led Neutron Capture Studies Using DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, W; Sheets, S; Agvaanluvsan, U
2007-05-11
We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decaymore » properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.« less
Exploring for oil with nuclear physics
NASA Astrophysics Data System (ADS)
Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa
2017-09-01
Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.
Neutron/Gamma-ray discrimination through measures of fit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek
2015-07-01
Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulsesmore » obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)« less
In situ capture gamma-ray analysis of coal in an oversize borehole
Mikesell, J.L.; Dotson, D.W.; Senftle, F.E.; Zych, R.S.; Koger, J.; Goldman, L.
1983-01-01
In situ capture gamma-ray analysis in a coal seam using a high resolution gamma-ray spectrometer in a close-fitting borehole has been reported previously. In order to check the accuracy of the method under adverse conditions, similar measurements were made by means of a small-diameter sonde in an oversize borehole in the Pittsburgh seam, Greene County, Pennsylvania. The hole was 5 times the diameter of the sonde, a ratio that substantially increased the contribution of water (hydrogen) to the total spectral count and reduced the size of the sample measured by the detector. The total natural count, the 40K,count, and the intensities of capture gamma rays from Si, Ca, H, and Al were determined as a function of depth above, through, and below the coal seam. From these logs, the depth and width of the coal seam and its partings were determined. Spectra were accumulated in the seam for 1 h periods by using neutron sources of different strengths. From the spectra obtained by means of several 252Cf neutron sources of different sizes, the ultimate elemental analysis and ash content were determined. The results were not as good as those obtained previously in a close-fitting borehole. However, the results did improve with successively larger source-to-detector distances, i.e.,as the count contribution due to hydrogen in the water decreased. It was concluded that in situ borehole analyses should be made in relatively close-fitting boreholes. ?? 1983.
NASA Astrophysics Data System (ADS)
Dhibar, M.; Mazumdar, I.; Chavan, P. B.; Patel, S. M.; Anil Kumar, G.
2018-03-01
LaBr3:Ce scintillators have recently become commercially available in sizes large enough for measurements of high energy gamma-rays. In this communication, we report our studies on properties and response of large volume square bars (2‧‧ ×2‧‧ ×8‧‧) of LaBr3:Ce detectors, individually, and in a compact array of four square bars, with gamma-rays up to 22.5 MeV. The properties studied are, uniformity of the crystal, internal radioactivity, energy resolution, timing resolution, linearity of the response and detection efficiencies. The response of the detectors for 22.5 MeV γ-rays produced from 11B(p , γ)12C capture reaction and for 15.1 MeV γ-rays produced from 12C(p ,p‧ γ)12C inelastic scattering reaction are studied in detail. The measured absolute efficiencies (both total detection and photo-peak) for 662 keV gamma-rays from 137Cs are compared to those obtained using realistic GEANT4 simulations. The primary aim of the array is to measure high energy gamma-rays (5-50 MeV) produced from the de-excitation of excited Giant Dipole Resonance (GDR) states, radiative capture reactions, nuclear Bremsstrahlung process and inelastic scattering process. The highly satisfactory performance of the array provides the impetus for future efforts toward building a bigger array.
NASA Astrophysics Data System (ADS)
Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration
2017-02-01
Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.
Comparison of Muon Capture in Light and in Heavy Nuclei
NASA Astrophysics Data System (ADS)
Measday, David F.; Stocki, Trevor J.
2007-10-01
We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The (μ-,νn) reaction is always dominant. In light nuclei, reactions such as (μ-,νp) and (μ-,νpn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as (μ-,ν3n) and (μ-,ν4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kin, Tadahiro; Oshima, Masumi; Furutaka, Kazuyoshi
We are developing a new method to identify nuclear levels based on neutron capture reactions, named 'TELLA-2.' Measured data of prompt gamma rays from {sup 33}S(n,{gamma}){sup 34}S was used to improve the method. We will show how we obtain candidates of nuclear levels.
Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators
NASA Astrophysics Data System (ADS)
Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; van Loef, E. V.; Shah, K.
2016-04-01
We report on a new family of scintillators - Lithium alkaline halides, developed based on the alkaline halides by introducing lithium for dual mode gamma-neutron detection. Many different compositions were grown, among which LiSr2I5 (LSI), LiCa2I5 (LCI), LiSr2Br5 (LSB) activated with divalent Europium show good gamma and neutron detection properties. LSI shows the main emission at 497 nm under X-ray excitation. It also shows good proportionality, which in combination with the light yield as high as 60000 photons/MeV, results in an energy resolution of 3.5% at 662 keV. The electron or gamma equivalent energy (GEE) of the thermal neutron peak due to the 6Li neutron capture is 4.1 MeV, which amounts to a very high neutron light yield of 245000 photons. The decay times for neutrons are faster compared to that for gamma-rays, hence we achieved good pulse shape discrimination (PSD) between gamma and neutron events. Our initial studies on the effects of Eu concentration on the properties of LSI show that 3%-4% Eu concentration is optimal for the best performance in terms of gamma and neutron light yields and pulse shape discrimination. LCI shows the main emission at 475 nm under X-ray excitation and a very high gamma light yield of 90000 photons/MeV. The measured energy resolution is 6% at 662 keV. The electron equivalent energy for neutron detection has been measured to be around 3 MeV, which gives a neutron light yield of 270 000 photons. The measured decay times for neutrons are faster compared to gamma decays and the PSD between the gamma-rays and neutrons is not as good as LSI. LSB shows two emissions at 410 and 475 nm under X-ray excitation. The measured light yield is 32000 ph/MeV gamma-ray with an energy resolution of 6% at 662 keV. The electron equivalent energy of the 6Li capture peak was measured to be 3.3 MeV.
Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Stern, S. Alan
1995-01-01
With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NSs are inefficient at producing gamma rays; or (2) the gamma rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Clouds like our own is not higher than a few percent.
NASA Astrophysics Data System (ADS)
Tsuchiya, H.; Harada, H.; Koizumi, M.; Kitatani, F.; Takamine, J.; Kureta, M.; Iimura, H.
2013-11-01
Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in melted fuel (MF) that will be removed from the Fukushima Daiichi nuclear power plant. The problem is complex due to the expected presence of strong neutron absorbing impurities such as 10B and high radiation field that is mainly caused by 137Cs. To identify the impurities under the high radiation field, NRD is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). We investigated with Geant4 the performance of a gamma-ray detector for NRCA in NRD. The gamma-ray detector has a well shape, consisting of cylindrical and tube type LaBr3 scintillators. We show how it measures 478 keV gamma rays derived from 10B(n, αγ) reaction in MF under a high 137Cs-radiation environment. It was found that the gamma-ray detector was able to well suppress the Compton edge of 662-keV gamma rays of 137Cs and had a high peak-to-Compton continuum ratio, by using the tube type scintillator as a back-catcher detector. Then, we demonstrate that with this ability, detection of 478-keV gamma rays from 10B is accomplished in realistic measuring time.
Capture and fission with DANCE and NEUANCE
Jandel, M.; Baramsai, B.; Bond, E.; ...
2015-12-23
A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomericmore » states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.« less
Capture and fission with DANCE and NEUANCE
NASA Astrophysics Data System (ADS)
Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.
2015-12-01
A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.
Senftle, F.E.; Moxham, R.M.; Tanner, A.B.
1972-01-01
The recent availability of borehole logging sondes employing a source of neutrons and a Ge(Li) detector opens up the possibility of analyzing either decay or capture gamma rays. The most efficient method for a given element can be predicted by calculating the decay-to-capture count ratio for the most prominent peaks in the respective spectra. From a practical point of view such a calculation must be slanted toward short irradiation and count times at each station in a borehole. A simplified method of computation is shown, and the decay-to-capture count ratio has been calculated and tabulated for the optimum value in the decay mode irrespective of the irradiation time, and also for a ten minute irradiation time. Based on analysis of a single peak in each spectrum, the results indicate the preferred technique and the best decay or capture peak to observe for those elements of economic interest. ?? 1972.
Radiation effects in accelerator components
NASA Astrophysics Data System (ADS)
Borden, M. J.
1995-05-01
A review of basic radiation effects is presented. The fundamental definitions of radioactivity are given for alpha, beta, positron decay, gamma-ray emission and electron capture. The interaction of neutrons with material is covered including: absorption through radiative capture, neutron-proton interaction, alpha particle emission, neutron-multi-neutron reactions and fission. Basic equations defining inelastic and elastic scattering are presented with examples of neutron energy loss per collision for several elements. Photon interactions are considered for gamma-rays and x-rays. Photoelectric collisions, the Compton effect and pair production are reviewed. Electron-proton interactions are discussed with emphasis placed on defect production. Basic displacement damage mechanisms for photon and particle interaction are presented. Several examples of radiation effects to plastics, electronics and ceramics are presented. Extended references are given for each example.
Linear combination reading program for capture gamma rays
Tanner, Allan B.
1971-01-01
This program computes a weighting function, Qj, which gives a scalar output value of unity when applied to the spectrum of a desired element and a minimum value (considering statistics) when applied to spectra of materials not containing the desired element. Intermediate values are obtained for materials containing the desired element, in proportion to the amount of the element they contain. The program is written in the BASIC language in a format specific to the Hewlett-Packard 2000A Time-Sharing System, and is an adaptation of an earlier program for linear combination reading for X-ray fluorescence analysis (Tanner and Brinkerhoff, 1971). Following the program is a sample run from a study of the application of the linear combination technique to capture-gamma-ray analysis for calcium (report in preparation).
GPU-based prompt gamma ray imaging from boron neutron capture therapy.
Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae
2015-01-01
The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.
NASA Technical Reports Server (NTRS)
Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.
2004-01-01
Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.
NASA Astrophysics Data System (ADS)
Fomin, Nadia
2012-03-01
The NPDGamma experiment aims to measure the parity-odd correlation between the neutron spin and the direction of the emitted photon in neutron-proton capture. A parity violating asymmetry (to be measured to 10-8) from this process can be directly related to the strength of the hadronic weak interaction between nucleons. As part of the commissioning runs on the Fundamental Neutron Physics beamline at the Spallation Neutron Source at ORNL, the gamma-ray asymmetry from the parity-violating capture of cold neutrons on ^35Cl was measured, primarily to check for systematic effects and false asymmtries. The current precision from existing world measurements on this asymmetry is at the level of 10-6 and we believe we can improve it. The analysis methodology as well as preliminary results will be presented.
The Chase to Capture Gamma Ray Bursts
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2008-01-01
Gamma-ray bursts are the most powerful explosions in the universe, thought to be the birth cries of black holes. It has taken 40 years of international cooperation and competition to begin to unravel the mystery of their origin. The most recent chapter in this field is being written by the SWIFT mission, a fast-response satellite with 3 power telescopes. An international team from countries all over the world participates in the chase to capture the fading light of bursts detected by SWIFT. This talk will discuss the challenges and excitement of building this space observatory. New results will be presented on our growing understanding of exploding stars and fiery mergers of orbiting stars.
NASA Astrophysics Data System (ADS)
Ayaz-Maierhafer, Birsen; Britt, Carl G.; August, Andrew J.; Qi, Hairong; Seifert, Carolyn E.; Hayward, Jason P.
2017-10-01
In this study, we report on a constrained optimization and tradeoff study of a hybrid, wearable detector array having directional sensing based upon gamma-ray occlusion. One resulting design uses CLYC detectors while the second feasibility design involves the coupling of gamma-ray-sensitive CsI scintillators and a rubber LiCaAlF6 (LiCAF) neutron detector. The detector systems' responses were investigated through simulation as a function of angle in a two-dimensional plane. The expected total counts, peak-to-total ratio, directionality performance, and detection of 40 K for accurate gain stabilization were considered in the optimization. Source directionality estimation was investigated using Bayesian algorithms. Gamma-ray energies of 122 keV, 662 keV, and 1332 keV were considered. The equivalent neutron capture response compared with 3 He was also investigated for both designs.
NASA Astrophysics Data System (ADS)
Nowicki, S. F.; Mesick, K.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Stonehill, L. C.; Hardgrove, C.; Dibb, S.; Gabriel, T. S. J.; West, S.
2017-12-01
Elpasolites are a promising new family of inorganic scintillators that can detect both gamma rays and neutrons within a single detector volume, reducing the instrument size, weight, and power (SWaP), all of which are critical for planetary science missions. The ability to distinguish between neutron and gamma events is done through pulse shape discrimination (PSD). The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) utilizes elpasolites in a next-generation, highly capable, low-SWaP gamma-ray and neutron spectrometer. We present simulated capabilities of EPICS sensitivities to neutron and gamma-rays, and demonstrate how EPICS can constrain the origin of Phobos between the following three main hypotheses: 1) accretion after a giant impact with Mars, 2) co-accretion with Mars, and 3) capture of an external body. The MCNP6 code was used to calculate the neutron and gamma-ray flux that escape the surface of Phobos, and GEANT4 to model the response of the EPICS instrument on orbit around Phobos.
Senftle, F.E.; Macy, R.J.; Mikesell, J.L.
1979-01-01
The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.
An airport cargo inspection system based on X-ray and thermal neutron analysis (TNA).
Ipe, Nisy E; Akery, A; Ryge, P; Brown, D; Liu, F; Thieu, J; James, B
2005-01-01
A cargo inspection system incorporating a high-resolution X-ray imaging system with a material-specific detection system based on Ancore Corporation's patented thermal neutron analysis (TNA) technology can detect bulk quantities of explosives and drugs concealed in trucks or cargo containers. The TNA process utilises a 252Cf neutron source surrounded by a moderator. The neutron interactions with the inspected object result in strong and unique gamma-ray signals from nitrogen, which is a key ingredient in modern high explosives, and from chlorinated drugs. The TNA computer analyses the gamma-ray signals and automatically determines the presence of explosives or drugs. The radiation source terms and shielding design of the facility are described. For the X-ray generator, the primary beam, leakage radiation, and scattered primary and leakage radiation were considered. For the TNA, the primary neutrons and tunnel scattered neutrons as well as the neutron-capture gamma rays were considered.
Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Stern, S. Alan
1994-01-01
With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NS's are inefficient at producing gamma-rays; or (2) the gamma-rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Cloud like our own is not higher than a few percent.
NASA Astrophysics Data System (ADS)
Hiramatsu, K.; Yoshihashi, S.; Kusaka, S.; Sato, F.; Hoashi, E.; Murata, I.
2017-09-01
Accelerator based neutron sources (ABNS) are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.
GPU-based prompt gamma ray imaging from boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less
TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Suh, T; Yoon, D
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, C. M., E-mail: coopercm@fusion.gat.com; Pace, D. C.; Paz-Soldan, C.
2016-11-15
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.
2016-11-01
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.
Cooper, C M; Pace, D C; Paz-Soldan, C; Commaux, N; Eidietis, N W; Hollmann, E M; Shiraki, D
2016-11-01
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.
Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; ...
2016-08-30
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20,000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Furthermore, magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less
Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force
NASA Astrophysics Data System (ADS)
Martini, M.; Goriely, S.; Hilaire, S.; Péru, S.; Minato, F.
2016-01-01
The dipole excitations of nuclei play an important role in nuclear astrophysics processes in connection with the photoabsorption and the radiative neutron capture that take place in stellar environment. We present here the results of a large-scale axially-symmetric deformed QRPA calculation of the γ-ray strength function based on the finite-range Gogny force. The newly determined γ-ray strength is compared with experimental photoabsorption data for spherical as well as deformed nuclei. Predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes are also discussed.
Prompt gamma-ray imaging for small animals
NASA Astrophysics Data System (ADS)
Xu, Libai
Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.
Development of a Quasi-monoenergetic 6 MeV Gamma Facility at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Nowicki, Suzanne F.; Hunter, Stanley D.; Parsons, Ann M.
2012-01-01
The 6 MeV Gamma Facility has been developed at NASA Goddard Space Flight Center (GSFC) to allow in-house characterization and testing of a wide range of gamma-ray instruments such as pixelated CdZnTe detectors for planetary science and Compton and pair-production imaging telescopes for astrophysics. The 6 MeV Gamma Facility utilizes a circulating flow of water irradiated by 14 MeV neutrons to produce gamma rays via neutron capture on oxygen (O-16(n,p)N-16 yields O-16* yields O-16 + gamma). The facility provides a low cost, in-house source of 2.742, 6.129 and 7.117 MeV gamma rays, near the lower energy range of most accelerators and well above the 2.614 MeV line from the Th-228 decay chain, the highest energy gamma ray available from a natural radionuclide. The 7.13 s half-life of the N-16 decay allows the water to be irradiated on one side of a large granite block and pumped to the opposite side to decay. Separating the irradiation and decay regions allows for shielding material, the granite block, to be placed between them, thus reducing the low-energy gamma-ray continuum. Comparison between high purity germanium (HPGe) spectra from the facility and a manufactured source, Pu-238/C-13, shows that the low-energy continuum from the facility is reduced by a factor approx. 30 and the gamma-ray rate is approx.100 times higher at 6.129 MeV.
Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog; Clarno, Kevin T.; Liu, Yuxuan
The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) neutronics simulator MPACT has used a single recoverable fission energy for each fissionable nuclide assuming that all recoverable energies come only from fission reaction, for which capture energy is merged with fission energy. This approach includes approximations and requires improvement by separating capture energy from the merged effective recoverable energy. This report documents the procedure to generate recoverable neutron capture energies and the development of a program called CapKappa to generate capture energies. Recoverable neutron capture energies have been generated by using CapKappa withmore » the evaluated nuclear data file (ENDF)/B-7.0 and 7.1 cross section and decay libraries. The new capture kappas were compared to the current SCALE-6.2 and the CASMO-5 capture kappas. These new capture kappas have been incorporated into the Simplified AMPX 51- and 252-group libraries, and they can be used for the AMPX multigroup (MG) libraries and the SCALE code package. The CASL VERA neutronics simulator MPACT does not include a gamma transport capability, which limits it to explicitly estimating local energy deposition from fission, neutron, and gamma slowing down and capture. Since the mean free path of gamma rays is typically much longer than that for the neutron, and the total gamma energy is about 10% to the total energy, the gamma-smeared power distribution is different from the fission power distribution. Explicit local energy deposition through neutron and gamma transport calculation is significantly important in multi-physics whole core simulation with thermal-hydraulic feedback. Therefore, the gamma transport capability should be incorporated into the CASL neutronics simulator MPACT. However, this task will be timeconsuming in developing the neutron induced gamma production and gamma cross section libraries. This study is to investigate an approximate model to estimate gammasmeared power distribution without performing any gamma transport calculation. A simple approximate gamma smearing model has been investigated based on the facts that pinwise gamma energy depositions are almost flat over a fuel assembly, and assembly-wise gamma energy deposition is proportional to kappa-fission energy deposition. The approximate gamma smearing model works well for single assembly cases, and can partly improve the gamma smeared power distribution for the whole core model. Although the power distributions can be improved by the approximate gamma smearing model, still there is an issue to explicitly obtain local energy deposition. A new simple approach or gamma transport/diffusion capability may need to be incorporated into MPACT to estimate local energy deposition for more robust multi-physics simulation.« less
X-ray and gamma-ray line production by nonthermal ions
NASA Technical Reports Server (NTRS)
Bussard, R. W.; Omidvar, K.; Ramaty, R.
1977-01-01
X-ray production was calculated at approximately 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation. A refinement of the OBK approximation was used to obtain an improved charge exchange cross section. This, and the corresponding ionization cross section were used to determine equilibrium charge fractions for iron ions as functions of their energy. The effective X-ray line production cross section was found to be sharply peaked in energy at about 8 to 12 MeV/amu. Because fast ions of similar energies can also excite nuclear levels, the ratio of selected strong gamma ray line emissivities to the X-ray line emissivity was also calculated. Limits set by this method on the intensity of gamma ray line emission from the galactic center and the radio galaxy Centaurus A are generally lower than those reported in the literature.
Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition
NASA Technical Reports Server (NTRS)
Reedy, R. C.; Arnold, J. R.; Trombka, J. I.
1973-01-01
The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.
NASA Astrophysics Data System (ADS)
Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis
2017-01-01
A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.
2014-05-01
A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.
The Firework of Electromagnetic Counterparts from GW170817
NASA Astrophysics Data System (ADS)
Siegel, Daniel
2018-01-01
The gravitational-wave signal of the binary neutron star merger GW170817 was followed by a firework of electromagnetic transients across the entire electromagnetic spectrum. The gamma-ray emission has provided strong evidence for the association of short gamma-ray bursts (SGRBs) with binary neutron star mergers and the ultraviolet, optical, and near-infrared emission is consistent with a kilonova indicative of the formation of heavy elements in the merger ejecta by the rapid neutron capture process (r-process). In this talk, I will discuss and review theoretical scenarios to interpret the gamma-ray, X-ray, and radio observations. I will present recent results from general-relativistic magnetohydrodynamic simulations and discuss possible scenarios and mass ejection mechanisms that can give rise to the observed kilonova features. In particular, I will argue that massive winds from neutrino-cooled post-merger accretion disks most likely synthesized the heavy r-process elements in GW170817.
NASA Astrophysics Data System (ADS)
Brdar, Vedran; Kopp, Joachim; Liu, Jia
2017-03-01
Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.
Ishikawa, M; Ono, K; Sakurai, Y; Unesaki, H; Uritani, A; Bengua, G; Kobayashi, T; Tanaka, K; Kosako, T
2004-11-01
A new thermal neutron monitor for boron neutron capture therapy was developed in this study. We called this monitor equipped boron-loaded plastic scintillator that uses optical fiber for signal transmission as an [scintillator with optical fiber] SOF detector. A water phantom experiment was performed to verify how the SOF detector compared with conventional method of measuring thermal neutron fluence. Measurements with a single SOF detector yielded indistinguishable signals for thermal neutrons and gamma rays. To account for the gamma ray contribution in the signal recorded by the SOF detector, a paired SOF detector system was employed. This was composed of an SOF detector with boron-loaded scintillator and an SOF detector with a boron-free scintillator. The difference between the recorded counts of these paired SOF detectors was used as the measure of the gamma ray contribution in the measured neutron fluence. The paired SOF detectors were ascertained to be effective in measuring thermal neutron flux in the range above 10(6)(n/cm(2)/s). Clinical trials using paired SOF to measure thermal neutron flux during therapy confirmed that paired SOF detectors were effective as a real-time thermal neutron flux monitor.
Bell, Zane W.
2000-01-01
A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.
High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target
NASA Technical Reports Server (NTRS)
Metzger, A. E.; Parker, R. H.; Yellin, J.
1986-01-01
Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.
Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.
Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru
2016-09-01
The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shu, Di-Yun; Geng, Chang-Ran; Tang, Xiao-Bin; Gong, Chun-Hui; Shao, Wen-Cheng; Ai, Yao
2018-07-01
This paper was aimed to explore the physics of Cherenkov radiation and its potential application in boron neutron capture therapy (BNCT). The Monte Carlo toolkit Geant4 was used to simulate the interaction between the epithermal neutron beam and the phantom containing boron-10. Results showed that Cherenkov photons can only be generated from secondary charged particles of gamma rays in BNCT, in which the 2.223 MeV prompt gamma rays are the main contributor. The number of Cherenkov photons per unit mass generated in the measurement region decreases linearly with the increase of boron concentration in both water and tissue phantom. The work presented the fundamental basis for applications of Cherenkov radiation in BNCT. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.
Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro
2015-12-01
The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neutron radiative capture methods for surface elemental analysis
Trombka, J.I.; Senftle, F.; Schmadebeck, R.
1970-01-01
Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.
A new gamma ray imaging diagnostic for runaway electron studies at DIII-D
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.
2015-11-01
A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.
Solar gamma rays. [in solar flares
NASA Technical Reports Server (NTRS)
Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.
1974-01-01
The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.
NASA Astrophysics Data System (ADS)
Mauerhofer, E.; Havenith, A.; Carasco, C.; Payan, E.; Kettler, J.; Ma, J. L.; Perot, B.
2013-04-01
The Forschungszentrum Jülich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA) [1]. The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of some elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kin, Tadahiro; Oshima, Masumi; Furutaka, Kazuyoshi
We developed a spectrometer for multiple prompt gamma-ray measurements to identify nuclear levels to determine neutron capture cross sections. From a test of finding candidates of {sup 15}N levels with a developing method, we found performance of the spectrometer is sufficient.
A high-resolution gamma-ray and hard X-ray spectrometer for solar flare observations in Max 1991
NASA Technical Reports Server (NTRS)
Lin, R. P.; Curtis, D. W.; Harvey, P.; Hurley, K.; Primbsch, J. H.; Smith, D. M.; Pelling, R. M.; Duttweiler, F.
1988-01-01
A long duration balloon flight instrument for Max 1991 designed to study the acceleration of greater than 10 MeV ions and greater than 15 keV electrons in solar flares through high resolution spectroscopy of the gamma ray lines and hard X-ray and gamma ray continuum is described. The instrument, HIREGS, consists of an array of high-purity, n-type coaxial germanium detectors (HPGe) cooled to less than 90 K and surrounded by a bismuth germanate (BGO) anticoincidence shield. It will cover the energy range 15 keV to 20 MeV with keV spectral resolution, sufficient for accurate measurement of all parameters of the expected gamma ray lines with the exception of the neutron capture deuterium line. Electrical segmentation of the HPGe detector into a thin front segment and a thick rear segment, together with pulse-shape discrimination, provides optimal dynamic range and signal-to-background characteristics for flare measurements. Neutrons and gamma rays up to approximately 0.1 to 1 GeV can be detected and identified with the combination of the HPGe detectors and rear BGO shield. The HIREGS is planned for long duration balloon flights (LDBF) for solar flare studies during Max 1991. The two exploratory LDBFs carried out at mid-latitudes in 1987 to 1988 are described, and the LDBFs in Antarctica, which could in principle provide 24 hour/day solar coverage and very long flight durations (20 to 30 days) because of minimal ballast requirements are discussed.
Test of the statistical model in {sup 96}Mo with the BaF{sub 2}{gamma} calorimeter DANCE array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheets, S. A.; Mitchell, G. E.; Agvaanluvsan, U.
2009-02-15
The {gamma}-ray cascades following the {sup 95}Mo(n,{gamma}){sup 96}Mo reaction were studied with the {gamma} calorimeter DANCE (Detector for Advanced Neutron Capture Experiments) consisting of 160 BaF{sub 2} scintillation detectors at the Los Alamos Neutron Science Center. The {gamma}-ray energy spectra for different multiplicities were measured for s- and p-wave resonances below 2 keV. The shapes of these spectra were found to be in very good agreement with simulations using the DICEBOX statistical model code. The relevant model parameters used for the level density and photon strength functions were identical with those that provided the best fit of the data frommore » a recent measurement of the thermal {sup 95}Mo(n,{gamma}){sup 96}Mo reaction with the two-step-cascade method. The reported results strongly suggest that the extreme statistical model works very well in the mass region near A=100.« less
Response of Cs 2LiYCl 6:Ce (CLYC) to High Energy Protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coupland, Daniel David Schechtman; Stonehill, Laura Catherine; Goett III, John Jerome
2015-11-23
Cs 2LiYCl 6:Ce (CLYC) is a promising new inorganic scintillator for gamma and neutron detection. As a gamma-ray detector, it exhibits bright light output and better resolution and proportionality of response than traditional gamma-ray scintillators such as NaI. It is also highly sensitive to thermal neutrons through capture on 6Li, and recent experiments have demonstrated sensitivity to fast neutrons through interactions with 35Cl. The response of CLYC to other forms of radiation has not been reported. We have performed the first measurements of the response of CLYC to several-hundred MeV protons. We have collected digitized waveforms from proton events, andmore » compare to those produced by gammas and thermal neutrons. Finally, we discuss the potential for pulse shape discrimination between them.« less
Nuclear Structure of Rhenium-186 Revealed by Neutron-Capture Gamma Rays
2014-03-01
σ0 [b] Reference 84(6) This Work 114(3) S. J. Friesenhahn [40] 112(2) S. F. Mughabghab [38] 100(8) H. Pomerance [41] 101(20) L. Seren [42] 116...41] H. Pomerance, "Thermal neutron capture cross sections," Phys. Rev., vol. 88, p. 412, 1952. [42] L. Seren , H. N. Friedlander and S. H. Turkel
Study of the Photon Strength Functions for Gadolinium Isotopes with the DANCE Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashdorj, D.; Mitchell, G. E.; Baramsai, B.
2009-03-10
The gadolinium isotopes are interesting for reactor applications as well as for medicine and astrophysics. The gadolinium isotopes have some of the largest neutron capture cross sections. As a consequence they are used in the control rod in reactor fuel assembly. From the basic science point of view, there are seven stable isotopes of gadolinium with varying degrees of deformation. Therefore they provide a good testing ground for the study of deformation dependent structure such as the scissors mode. Decay gamma rays following neutron capture on Gd isotopes are detected by the DANCE array, which is located at flight pathmore » 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a specific isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. Various photon strength function models are used for comparison with experimentally measured DANCE data and provide insight for understanding the statistical decay properties of deformed nuclei.« less
NASA Astrophysics Data System (ADS)
Kinomura, A.; Suzuki, R.; Oshima, N.; O'Rourke, B. E.; Nishijima, T.; Ogawa, H.
2014-12-01
A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.
Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction
NASA Astrophysics Data System (ADS)
Tan, V. H.; Son, P. N.
2016-06-01
The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.
On the possible gamma-ray burst-gravitational wave association in GW150914
NASA Astrophysics Data System (ADS)
Janiuk, Agnieszka; Bejger, M.; Charzyński, S.; Sukova, P.
2017-02-01
Data from the Fermi Gamma-ray Burst Monitor satellite observatory suggested that the recently discovered gravitational wave source, a pair of two coalescing black holes, was related to a gamma-ray burst. The observed high-energy electromagnetic radiation (above 50 keV) originated from a weak transient source and lasted for about 1 s. Its localization is consistent with the direction to GW150914. We speculate about the possible scenario for the formation of a gamma-ray burst accompanied by the gravitational-wave signal. Our model invokes a tight binary system consisting of a massive star and a black hole which leads to the triggering of a collapse of the star's nucleus, the formation of a second black hole, and finally to the binary black hole merger. For the most-likely configuration of the binary spin vectors with respect to the orbital angular momentum in the GW150914 event, the recoil speed (kick velocity) acquired by the final black hole through gravitational wave emission is of the order of a few hundred km/s and this might be sufficient to get it closer to the envelope of surrounding material and capture a small fraction of matter from the remnant of the host star. The gamma-ray burst is produced by the accretion of this remnant matter onto the final black hole. The moderate spin of the final black hole suggests that the gamma-ray burst jet is powered by weak neutrino emission rather than the Blandford-Znajek mechanism, and hence explains the low power available for the observed GRB signal.
Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors
NASA Astrophysics Data System (ADS)
Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi
2011-06-01
We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.
NASA Astrophysics Data System (ADS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.
2014-02-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.
Neutron Capture gamma ENDF libraries for modeling and identification of neutron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleaford, B
2007-10-29
There are a number of inaccuracies and data omissions with respect to gammas from neutron capture in the ENDF libraries used as field reference information and by modeling codes used in JTOT. As the use of Active Neutron interrogation methods is expanded, these shortfalls become more acute. A new, more accurate and complete evaluated experimental database of gamma rays (over 35,000 lines for 262 isotopes up to U so far) from thermal neutron capture has recently become available from the IAEA. To my knowledge, none of this new data has been installed in ENDF libraries and disseminated. I propose tomore » upgrade libraries of {sup 184,186}W, {sup 56}Fe, {sup 204,206,207}Pb, {sup 104}Pd, and {sup 19}F the 1st year. This will involve collaboration with Richard Firestone at LBL in evaluating the data and installing it in the libraries. I will test them with the transport code MCNP5.« less
NASA Astrophysics Data System (ADS)
Kotov, Yu. D.; Arkhangelskaja, I. V.; Arkhangelsky, A. I.; Kuznetsov, S. N.; Glyanenko, A. S.; Kalmykov, P. A.; Amandzholova, D. B.; Samoylenko, V. T.; Yurov, V. N.; Pavlov, A. V.; Chervyakova, O. I.; Afonina, I. V.
The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares' hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25∘ up to +30∘. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares' hard X-rays and γ-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E ¿ 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones γ-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to α α-lines, annihilation line, nuclear lines, and neutron capture line on1H (2.223 MeV). In the spectrum of the January 20, 2005 solar flare the feature in the range of 15-21 MeV was detected for the first time. It can be associated with lines of 15.11 MeV (12C +16O) or 20.58 MeV (from neutron radiative capture on3He), or with their combination. Also several e-dominant flares without any gamma-lines in energy spectra were identified. All detected faint solar flares were e-dominant according to the preliminary data analysis.Thin structure with characteristic timescale of 30-160 s was observed at 99 % significance level on some solar flares stronger than M1.0 temporal profiles in the low-energy gamma-band in the energy ranges corresponding to the identified spectral features or whole gamma-band energy boundaries. According to the results of the preliminary analysis during the flare of January 20, 2005, thin structure with timescale from 7 ms to 35 ms was detected at 99 % confidence level in the energy range of 0.1-20 MeV. Some thin structure with characteristic timescale 50-110 s was observed on temporal profiles of several faint events.About 3 % of the identified events were gamma-ray bursts. During some bursts high-energy gamma-emission was observed, for example Emax = 147 ± 3 MeV for GRB050525.
PELAN applications and recent field tests
NASA Astrophysics Data System (ADS)
Martinez, Juan J.; Holslin, Daniel T.
2004-10-01
When neutrons interact with particular nuclei, the resulting energy of the interaction can be released in the form of gamma rays, which are characteristic of the nucleus involved in the reaction. The PELAN (Pulsed Elemental Analysis with Neutrons) system uses a pulsed neutron generator and an integral thermalizing shield that induce reactions that cover most of the entire gamma ray energy spectra1. The neutron generator uses a D-T reaction, which releases fast 14MeV neutrons responsible for providing information on those nuclei that mostly respond to inelastic scattering. During the time period between pulses, the fast neutrons undergo multiple inelastic interactions that lower their energy making them easier to be captured by certain nuclei; this energy spectrum of gamma rays induced by these interactions are designated as the gamma ray thermal spectra. The PELAN system has been used for a number of applications where non-intrusive, non-destructive interrogation is needed. Although Pulsed Fast Thermal Neutron Analysis (PFTNA) has been around for approximately 30 years, the technology has never been successfully commercialized for practical applications. The following report illustrates examples of the performance of on a number of applications of interrogation of Unexploded Ordnance (UXO), mine confirmation, large vehicle bombs inspection and illicit drug smuggling detection.
Rapid response sensor for analyzing Special Nuclear Material
Mitra, S. S.; Doron, O.; Chen, A. X.; ...
2015-06-18
Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauerhofer, E.; Havenith, A.; Kettler, J.
The Forschungszentrum Juelich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA). The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of somemore » elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.« less
Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only
NASA Technical Reports Server (NTRS)
Masarik, J.; Reedy, R. C.
1994-01-01
High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.
Comparing Data from Telescopic X-Ray Instruments: Can We Trust All Satellites?
NASA Astrophysics Data System (ADS)
Joyce, Quianah T.; Fortenberry, Alexander; Gendre, Bruce
2017-01-01
In astronomy and astrophysics, X-ray emissions from cosmic entities aid in revealing what type of sources they emanate from. Swift, NASA’s latest X-ray satellite, has not been operating at its intended configurations. The satellite is experiencing difficulties maintaining a stable temperature in its charge capture device. This research intends to determine if this complication causes discrepancies in Swift’s collected data by using gamma-ray burst data. Gamma-ray bursts are excellent comparison candidates due to their brightness and fluctuations. We compared archived data of GRB 130427A and GRB 090423A from Swift and the European Space Agency’s XMM-Newton observatory. Next, we reduced the data and produced the respective spectra. We then analyzed and compared the spectra to one another to find any discrepancies. We have determined, based on data analysis of the spectra, that Swift is working properly despite the cooling malfunction.
Thermal Neutron Capture onto the Stable Tungsten Isotopes
NASA Astrophysics Data System (ADS)
Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Revay, Zs.; Szentmiklósi, L.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J.; Krticka, M.; Nichols, A.
2012-02-01
Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullmann, John L; Couture, A J; Keksis, A L
2010-01-01
A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.
Principles and status of neutron-based inspection technologies
NASA Astrophysics Data System (ADS)
Gozani, Tsahi
2011-06-01
Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally and energetically significantly different from the background, thus making them readily distinguishable. The penetrability of neutrons as probes and signatures as well as the gamma ray signatures make neutron interrogation applicable to the inspection of large conveyances such as cars, trucks, marine containers and also smaller objects like explosive mines concealed in the ground. The application of nuclear interrogation techniques greatly depends on operational requirements. For example explosive mines and IED detection clearly require one-sided inspection, which excludes transmission based inspection (e.g., transmission radiography) and greatly limits others. The technologies developed over the last decades are now being implemented with good results. Further advances have been made over the last several years that increase the sensitivity, applicability and robustness of these systems. The principle, applications and status of neutron-based inspection techniques will be reviewed.
Pulse height tests of a large diameter fast LaBr₃:Ce scintillation detector.
Naqvi, A A; Khiari, F Z; Maslehuddin, M; Gondal, M A; Al-Amoudi, O S B; Ukashat, M S; Ilyas, A M; Liadi, F A; Isab, A A; Khateeb-ur Rehman; Raashid, M; Dastageer, M A
2015-10-01
The pulse height response of a large diameter fast 100 mm × 100 mm LaBr3:Ce detector was measured for 0.1-10 MeV gamma-rays. The detector has a claimed time resolution of 608 ps for 511 keV gamma rays, but has relatively poor energy resolution due to the characteristics of its fast photomultiplier. The detector pulse height response was measured for gamma rays from cobalt, cesium, and bismuth radioisotope sources as well as prompt gamma rays from thermal neutron capture in water samples contaminated with mercury (3.1 wt%), boron (2.5 wt%), cadmium (0.25 wt%), chromium (52 wt%), and nickel (22 wt%) compounds. The energy resolution of the detector was determined from full width at half maximum (FWHM) of element-characteristic gamma ray peaks in the pulse height spectrum associated with the element present in the contaminated water sample. The measured energy resolution of the 100 mm × 100 mm detector varies from 12.7±0.2% to 1.9±0.1% for 0.1 to 10 MeV gamma rays, respectively. The graph showing the energy resolution ΔE/E(%) versus 1/√Eγ was fitted with a linear function to study the detector light collection from the slope of the curve. The slope of the present 100 mm × 100 mm detector is almost twice as large as the slope of a similar curve of previously published data for a 89 mm × 203 mm LaBr3:Ce detector. This indicates almost two times poorer light collection in the 100 mm × 100 mm detector as compared to the other detector. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ion-Induced Afterpulsing in the Neutron Multiplicity Meter's Photomultiplier Tubes
NASA Astrophysics Data System (ADS)
Nedlik, Christopher; Schnee, Richard; Bunker, Raymond; Chen, Yu; Neutron Multiplicity Meter Collaboration
2013-10-01
The nature of the dark matter in the Universe remains a mystery in modern physics. A leading candidate, Weakly Interacting Massive Particles (WIMPs), may be detectable via scattering from nuclear targets in terrestrial detectors, located underground to prevent fake signals from cosmic-ray showers. The Neutron Multiplicity Meter (NMM) is a detector capable of measuring the muon-induced neutron flux deep underground, a problematic background for WIMP detection. The NMM is a 4.4-tonne Gd-loaded water-Cherenkov detector atop a 20-kilotonne lead target in the Soudan Mine. It measures high-energy neutrons (>50 MeV) by moderating and then detecting (via Gd capture gammas) the secondary neutrons emerging from the lead following a high-energy neutron interaction. The short time scale (~10 μs) for neutron capture in Gd-loaded water enables a custom multiplicity trigger to discriminate against the dominant gamma-ray background. Despite excellent rejection of the gamma-ray-induced background, NMM neutron-candidate events are not entirely background-free. One type of background is from ion-induced afterpulsing (AP) in the four 20'' Hamamatsu R7250 photomultiplier tubes (PMTs) used to monitor the NMM's two water tanks. We show that ion-induced AP in the PMTs can mimic the NMM's low-energy neutron response, potentially biasing a candidate event's measured multiplicity. We present detailed studies of the AP in order to allow identification of AP-induced background events.
Compact fission counter for DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C Y; Chyzh, A; Kwan, E
2010-11-06
The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additionalmore » signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.
2014-02-18
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes inmore » two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinomura, A., E-mail: a.kinomura@aist.go.jp; Suzuki, R.; Oshima, N.
2014-12-15
A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at amore » pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.« less
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wheeler, F.J.
1981-01-01
The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less
Low energy proton capture study of the 14N(p, gamma)15O reaction
NASA Astrophysics Data System (ADS)
Daigle, Stephen Michael
The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong
2017-04-01
The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)
The High Energy Telescope on EXIST: Hunting High Red-shift GRBs and Other Exotic Transients
NASA Astrophysics Data System (ADS)
Hong, JaeSub; Grindlay, J.; Allen, B.; Skinner, G. K.; Finger, M. H.; Jernigan, J. G.; EXIST Team
2009-01-01
The current baseline design of the High Energy Telescope (HET) on EXIST will localize high red-shift Gamma-Ray Bursts (GRBs) and other exotic transients fast (<10 sec) and accurately (<17") in order to allow the rapid (<1-2 min) follow-up onboard optical/IR imaging and spectroscopy. HET employs coded-aperture imaging with 5.5m2 CZT detector and a large hybrid tungsten mask (See also Skinner et al. in this meeting). The wide energy band coverage (5-600 keV) is optimal for capturing these transients and highly obscured AGNs. The continuous scan with the wide field of view ( 45 deg radius at 25% coding fraction) increases the chance of capturing rare elusive events such as soft Gamma-ray repeaters and tidal disruption events of stars by dormant supermassive black holes. Sweeping nearly the entire sky every two orbits (3 hour) will also establish a finely-sampled long-term history of the X-ray variability of many X-ray sources, opening up a new time domain of the variability study. In light of the new EXIST design concept, we review the observing strategy to maximize the science return and report the latest development of the CZT detectors for HET.
The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.
Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D
2011-11-30
The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.
NASA Technical Reports Server (NTRS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, Ann M.; Arens, Ellen E.
2010-01-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Th ere is evidence that some of the perlite has compacted over time, com promising the thermal performance and possibly also structural integr ity of the tanks. Therefore an Non-destructive Testing (NDT) method for measuring the perlite density or void fraction is urgently needed. Methods based on neutrons are good candidates because they can readil y penetrate through the 1.75 cm outer steel shell and through the ent ire 120 cm thickness of the perlite zone. Neutrons interact with the nuclei of materials to produce characteristic gamma rays which are the n detected. The gamma ray signal strength is proportional to the atom ic number density. Consequently, if the perlite is compacted then the count rates in the individual peaks in the gamma ray spectrum will i ncrease. Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. With commercially available portable neutron generators it is possible to produce simul taneously fluxes of neutrons in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scatt ering which is sensitive to Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA) and this is sensitive to Si, AI, Na, Kand H. Thus the two energy ranges produce complementary information. The R&D program has three phases: numerical simulations of neutron and gamma ray transport with MCNP s oftware, evaluation of the system in the laboratory on test articles and finally mapping of the perlite density in the cryogenic tanks at KSC. The preliminary MCNP calculations have shown that the fast/therma l neutron NDT method is capable of distinguishing between expanded an d compacted perlite with excellent statistics.
NASA Astrophysics Data System (ADS)
Dahing, Lahasen@Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie
2014-09-01
In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.
Determination of the effective sample thickness via radiative capture
Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; ...
2015-09-14
Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial γ-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the γ rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of γ-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thicknessmore » until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Morales, J. R.; Chesta, M. A.; Cancino, S. A.; Miranda, P. A.; Dinator, M. I.; Avila, M. J.
2005-01-01
Proton induced X-ray emission (PIXE) has been applied to the measurement of the production cross section of a radionuclide decaying by electron capture. By performing a PIXE type experiment on the daughter nuclide important advantages are obtained. The determination of some factors with usually large uncertainties, like solid angle and detector efficiency were avoided. The method was applied to the determination of cross section of the reaction 63Cu(d, p)64Cu at 2.4 MeV for 64Cu production. This result is in full agreement with that obtained through the decay of the 1346 keV gamma ray of 64Cu.
NASA Astrophysics Data System (ADS)
Nasrabadi, M. N.; Bakhshi, F.; Jalali, M.; Mohammadi, A.
2011-12-01
Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by 14N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A 252Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C3H6N6). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.
Bomb/no bomb: From multivariate analysis to artificial neural systems
NASA Astrophysics Data System (ADS)
Shea, Patrick; Liu, Felix; Yedidia, Barak
1992-05-01
Systems for the detection of explosives hidden in checked airline baggage have been under development at the Science Applications International Corporation (SAIC) for the FAA since 1985. In May of 1987, the first prototype was fielded for testing at San Francisco International Airport. In 1989, the first production unit was field at JFK Airport in New York. Since than, over 550,000 bags have been screened by SAIC units around the world. The system uses thermal neutron activation (TNA) to detect the presence of explosives. In this technique a suitcase on a conveyor belt moves past a source and an array of detectors. Neutrons from the source easily penetrate the luggage, and are absorbed by all of the materials present. Different elements will emit different energy gamma rays after absorbing these neutrons (much like fluorescence). These gamma rays are of a high enough energy that they easily penetrate the luggage, and are detected by a detector array which surrounds the cavity enclosing the suitcase and conveyor belt. The detectors record the number of gamma rays observed at each energy. The number of gamma rays of a characteristic energy which are observed depends on the amount of the element present, its location, the number of neutrons present, and the probability that the element will capture a thermal neutron and emit the gamma ray. Since this probability is a known constant for any particular element, and the number of neutrons present and the number of characteristic gamma rays are measured, the amount of each element and its location can, in theory, be determined from the array of signals. Commercial and military explosives, such as are used by terrorists, have several characteristics which distinguish them from most objects in luggage. On of these characteristics is a high density of nitrogen. A description of the decision algorithms is presented, and the artificial neural system (ANS) is discussed. On-line experience and decision surfaces are also covered.
Measuring Fission Chain Dynamics Through Inter-event Timing of Correlated Particles
NASA Astrophysics Data System (ADS)
Monterial, Mateusz
Neutrons born from fission may go on to induce subsequent fissions in self-propagating series of reactions resulting in a fission chain. Fissile materials comprise all isotopes capable of sustaining nuclear fission chain reactions, and are therefore a necessary prerequisite for the construction of a nuclear weapon. As a result the accountancy and characterization of fissile material is of great importance for national security and the international community. The rate at which neutrons "multiply" in a fissile material is a function of the composition, total mass, density, and shape of the object. These are key characteristics sought out in areas of nuclear non-proliferation, safeguards, treaty verification and emergency response. This thesis demonstrates a novel technique of measuring the underlying fission chain dynamics in fissile material through temporal correlation of neutrons and gamma rays emitted from fission. Fissile material exhibits key detectable signatures through the emission of correlated neutrons and gamma rays from fission. The Non-Destructive Assay (NDA) community has developed mature techniques of assaying fissile material that detect these signatures, such as neutron counting by thermal capture based detectors, and gamma-ray spectroscopy. An alternative use of fast organic scintillators provides three additional capabilities: (1) discrimination between neutrons and gamma-ray pulses (2) sub-nanosecond scale timing between correlated events (3) measurement of deposited neutron energy in the detector. This thesis leverages these capabilities into to measure a new signature, which is demonstrated to be sensitive to both fissile neutron multiplication and presence of neutronically coupled reflectors. In addition, a new 3D imaging method of sources of correlated gamma rays and neutrons is presented, which can improve estimation of total source volume and localization.
Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baramsai, B.; Mitchell, G. E.; Chyzh, A.
2011-06-01
A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{supmore » {pi}} = 1{sup -} and 2{sup -}.« less
NEUTRON ABSORPTION AND SHIELDING DEVICE
Axelrad, I.R.
1960-06-21
A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.
Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy
Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro
2013-01-01
Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood 24Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood 24Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood 24Na was determined using a germanium counter. The activity of 24Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood 24Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible. PMID:23392825
Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy.
Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro
2013-07-01
Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their (24)Na and (38)Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to (24)Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive (24)Na is mainly generated from (23)Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood (24)Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood (24)Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood (24)Na was determined using a germanium counter. The activity of (24)Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood (24)Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible.
NASA Astrophysics Data System (ADS)
Streicher, Michael W.
A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.
Electromagnetic Chirps from Neutron Star–Black Hole Mergers
NASA Astrophysics Data System (ADS)
Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan; Tsang, David; Kelly, Bernard J.
2018-02-01
We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.
Electromagnetic Chirps from Neutron Star-Black Hole Mergers
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan B.; Tsang, David; Kelly, Bernard J.
2018-01-01
We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.
A fast scintillator Compton telescope for medium-energy gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Bloser, Peter F.; Ryan, James M.; Legere, Jason S.; Julien, Manuel; Bancroft, Christopher M.; McConnell, Mark L.; Wallace, Mark; Kippen, R. Marc; Tornga, Shawn
2010-07-01
The field of medium-energy gamma-ray astronomy urgently needs a new mission to build on the success of the COMPTEL instrument on the Compton Gamma Ray Observatory. This mission must achieve sensitivity significantly greater than that of COMPTEL in order to advance the science of relativistic particle accelerators, nuclear astrophysics, and diffuse backgrounds, and bridge the gap between current and future hard X-ray missions and the high-energy Fermi mission. Such an increase in sensitivity can only come about via a dramatic decrease in the instrumental background. We are currently developing a concept for a low-background Compton telescope that employs modern scintillator technology to achieve this increase in sensitivity. Specifically, by employing LaBr3 scintillators for the calorimeter, one can take advantage of the unique speed and resolving power of this material to improve the instrument sensitivity while simultaneously enhancing its spectroscopic and imaging performance. Also, using deuterated organic scintillator in the scattering detector will reduce internal background from neutron capture. We present calibration results from a laboratory prototype of such an instrument, including time-of-flight, energy, and angular resolution, and compare them to simulation results using a detailed Monte Carlo model. We also describe the balloon payload we have built for a test flight of the instrument in the fall of 2010.
FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, W; Agvaanluvsan, U; Wilk, P
2008-02-08
We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward inmore » capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron reaction cross sections show resonance behavior or follow 1/v of the incident neutrons. In the case of odd-odd nuclei, the modeling problem is particularly difficult because degenerate states (rotational bands) present in even-even nuclei have separated in energy. Our work included interpretation of the {gamma}-ray spectra to compare with the Statistical Model and provides information on level density and statistical decay. Neutron capture cross sections are of programmatic interest to defense sciences because many elements were added to nuclear devices in order to determine various details of the nuclear detonation, including fission yields, fusion yields, and mix. Both product nuclei created by (n,2n) reactions and reactant nuclei are transmuted by neutron capture during the explosion. Very few of the (n,{gamma}) cross sections for reactions that create products measured by radiochemists have ever been experimentally determined; most are calculated by radiochemical equivalences. Our new experimentally measured capture cross sections directly impact our knowledge about the uncertainties in device performances, which enhances our capability of carrying out our stockpile stewardship program. Europium and gadolinium cross sections are important for both astrophysics and defense programs. Measurements made prior to this project on stable europium targets differ by 30-40%, which was considered to be significantly disparate. Of the gadolinium isotopes, {sup 151}Gd is important for stockpile stewardship, and {sup 153}Gd is of high interest to astrophysics, and nether of these (radioactive) gadolinium (n,{gamma}) cross sections have been measured. Additional stable gadolinium isotopes, including {sup 157,160}Gd are of interest to astrophysics. Historical measurements of gadolinium isotopes, including {sup 152,154}Gd, had disagreements similar to the 30-40% disagreements found in the historical europium data. Actinide capture cross section measurements are important for both Stockpile Stewardship and for nuclear forensics. We focused on the {sup 242m}Am(n,{gamma}) measurement, as there was no existing capture measurement for this isotope. The cross-section measurements (cross section vs. E{sub n}) were made at the Detector for Advanced Neutron Capture Experiments. DANCE is comprised of a highly segmented array of barium fluoride (BaF{sub 2}) crystals specifically designed for neutron capture-gamma measurements, using small radioactive targets (less than one milligram). A picture of half the array, along with a photo of one crystal, is shown in Fig. 1. DANCE provides the world's leading capability for measurements of neutron capture cross sections with radioactive targets. The DANCE is a 4{pi} calorimeter and uses the intense spallation neutron source the Lujan Center at the Los Alamos National Laboratory. The detector array consists of 159 barium fluoride crystals arranged in a sphere around the target.« less
Multi-particle inspection using associated particle sources
Bingham, Philip R.; Mihalczo, John T.; Mullens, James A.; McConchie, Seth M.; Hausladen, Paul A.
2016-02-16
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.
Nuclear medicine program progress report for quarter ending September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.
1997-01-01
The reactor production yields of tungsten-188 produced by neutron capture by enriched tungsten-186 in the HFIR and other reactors are nearly an order of magnitude lower than expected by calculation using established cross section values. Since neutron capture of tungsten-188 may be the major factor which significantly reduces the observed yields of tungsten-188, the authors have evaluated the possible burn-up cross section of the tungsten-188 product. Tungsten-189 was produced by irradiating a radioactive target containing a known amount of {sup 188}W. In order to reduce the radiation level to an acceptable level (<20% detector dead time), the authors chemically removedmore » >90% of {sup 188}Re, which is the decay product of {sup 188}W, prior to irradiation. They were able to confirm the two predominant {gamma}-rays in the decay of {sup 189}W, 260.1 {+-} 1.4 and 421.5 {+-} 1.6 keV. By following the decay of these {gamma}-rays in two sets of experiments, a half-life of 10.8 {+-} 0.3 m was obtained for {sup 189}W. Based on a knowledge of the {sup 188}W content of target (52.6 mBq), neutron flux of 5 {times} 10{sup 13} n {center_dot} s{sup {minus}1} {center_dot} cm{sup {minus}2}, irradiation time of 10 min and with the assumption of 100% intensity for 260.1 and 421.5 keV {gamma}-rays, a cross-section of 12.0 {+-} 2.5 b was calculated for burn-up cross-section of {sup 188}W, which helps explain the greatly reduced production yields of {sup 188}W.« less
Neutron Activation Analysis of Water - A Review
NASA Technical Reports Server (NTRS)
Buchanan, John D.
1971-01-01
Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.
Bubble chambers for experiments in nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiGiovine, B.; Henderson, D.; Holt, R. J.
A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions tomore » excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the gamma-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.« less
Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A
2014-12-01
An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian C.; Behling, Richard S.; Imel, George R.
Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less
The Sun as a Library for High-Energy Astrophysics
NASA Astrophysics Data System (ADS)
Smith, David M.
2017-08-01
Our maternal G dwarf star gives us life, light, warmth, and a surprisingly well-stocked library of high-energy phenomena to study and compare to more distant, violent objects. I will give a survey of what we see from the Sun -- X-rays, gamma-rays, radio emission, energetic neutral atoms, neutrinos, and particles accelerated in the low and high corona -- and of the physical processes and emission mechanisms thought to be involved, including magnetic reconnection, Fermi acceleration, thermal and nonthermal bremsstrahlung, coherent and incoherent radio emission, and gamma-ray line mechanisms: nuclear de-excitation, pion decay, neutron capture, and positron annihilation. I will outline the range of transient coronal behaviors from hypothetical nanoflares below the limit of individual detection to coronal mass ejections and the largest flares, comparing the latter to what is observed from other stars. Throughout the presentation, I will look for parallels with a variety of cosmic objects and observations, with no guarantee that any particular comparison is quantitatively appropriate. Finally, I will advertise the recent contributions of focusing hard X-ray observations with NuSTAR and the FOXSI rockets.
Feasibility study for wax deposition imaging in oil pipelines by PGNAA technique.
Cheng, Can; Jia, Wenbao; Hei, Daqian; Wei, Zhiyong; Wang, Hongtao
2017-10-01
Wax deposition in pipelines is a crucial problem in the oil industry. A method based on the prompt gamma-ray neutron activation analysis technique was applied to reconstruct the image of wax deposition in oil pipelines. The 2.223MeV hydrogen capture gamma rays were used to reconstruct the wax deposition image. To validate the method, both MCNP simulation and experiments were performed for wax deposited with a maximum thickness of 20cm. The performance of the method was simulated using the MCNP code. The experiment was conducted with a 252 Cf neutron source and a LaBr 3 : Ce detector. A good correspondence between the simulations and the experiments was observed. The results obtained indicate that the present approach is efficient for wax deposition imaging in oil pipelines. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA-Lewis experiences with multigroup cross sections and shielding calculations
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1972-01-01
The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.
TGF Afterglows: A New Radiation Mechanism From Thunderstorms
NASA Astrophysics Data System (ADS)
Rutjes, C.; Diniz, G.; Ferreira, I. S.; Ebert, U.
2017-10-01
Thunderstorms are known to create terrestrial gamma ray flashes (TGFs) which are microsecond-long bursts created by runaway of thermal electrons from propagating lightning leaders, as well as gamma ray glows that possibly are created by relativistic runaway electron avalanches (RREA) that can last for minutes or more and are sometimes terminated by a discharge. In this work we predict a new intermediate thunderstorm radiation mechanism, which we call TGF afterglow, as it is caused by the capture of photonuclear neutrons produced by a TGF. TGF afterglows are milliseconds to seconds long; this duration is caused by the thermalization time of the intermediate neutrons. TGF afterglows indicate that the primary TGF has produced photons in the energy range of 10-30 MeV; they are nondirectional in contrast to the primary TGF. Gurevich et al. might have reported TGF afterglows in 2011.
Database of prompt gamma rays from slow neutron capture forelemental analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.
2004-12-31
The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRPmore » on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative analysis of complicated capture-gamma spectra by means ofPGAA. Therefore, the main goal of the CRP was to improve the quality andquantity of the required data in order to make possible the reliableapplication of PGAA in fields such as materials science, chemistry,geology, mining, archaeology, environment, food analysis and medicine.This aim wasachieved thanks to the dedicated work and effort of theparticipants. The CD-ROM included with this publication contains thedatabase, the retrieval system, the three CRM reports, and otherimportant electronic documents related to the CRP. The IAEA wishes tothanks all CRP participants who contributed to the success of the CRP andthe formulation of this publication. Special thanks are due to R.B.Firestone for his leading roll in the development of this CRP and hiscomprehensive compilation, analysis and provision of the adopteddatabase, and to V. Zerkin for the software developments associatedwiththe retrieval system. An essential component of this data compilation isthe extensive sets of new measurements of capture gamma-ray energies andintensities undertaken at Budapest by Zs. Revay under the direction ofG.L. Molnar. The extensive participation and assistance of H.D. Choi isalso greatly appreciated. Other participants inthis CRP were: R.M.Lindstrom, S.M. Mughabghab, A.V.R. Reddy, V.H. Tan and C.M. Zhou. Thanksare also due to S.C. Frankle and M.A. Lone for their active participationas consultants at some of the meetings. Finally, the participants wish tothank R. Paviotti-Corcuera (Nuclear Data Section, Division of Physicaland Chemical Sciences), who was the IAEA responsible officer for the CRP,this publication and the resulting database. The participants aregrateful to D.L. Muir and A.L. Nichols, successive Heads of the NuclearData Section, for their active and enthusiastic encouragement infurthering the work of the CRP.« less
NASA Astrophysics Data System (ADS)
Göttsche, Malte; Schirm, Janet; Glaser, Alexander
2016-12-01
Gamma-ray spectrometry has been successfully employed to identify unique items containing special nuclear materials. Template information barriers have been developed in the past to confirm items as warheads by comparing their gamma signature to the signature of true warheads. Their development has, however, not been fully transparent, and they may not be sensitive to some relevant evasion scenarios. We develop a fully open template information barrier concept, based on low-resolution measurements, which, by design, reduces the extent of revealed sensitive information. The concept is based on three signatures of an item to be compared to a recorded template. The similarity of the spectrum is assessed by a modification of the Kolmogorov-Smirnov test to confirm the isotopic composition. The total gamma count rate must agree with the template as a measure of the projected surface of the object. In order to detect the diversion of fissile material from the interior of an item, a polyethylene mask is placed in front of the detector. Neutrons from spontaneous and induced fission events in the item produce 2.223 MeV gamma rays from neutron capture by hydrogen-1 in the mask. This peak is detected and its intensity scales with the item's fissile mass. The analysis based on MCNP Monte Carlo simulations of various plutonium configurations suggests that this concept can distinguish a valid item from a variety of invalid ones. The concept intentionally avoids any assumptions about specific spectral features, such as looking for specific gamma peaks of specific isotopes, thereby facilitating a fully unclassified discussion. By making all aspects public and allowing interested participants to contribute to the development and benchmarking, we enable a more open and inclusive discourse on this matter.
NASA Technical Reports Server (NTRS)
Thompson, David
2012-01-01
Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.
Fermi's Motion Produces a Study in Spirograph
2017-12-08
The LAT's sensitivity to gamma rays is greatest in the center of its wide field of view and decreases toward the edge. LAT scientists regard the effective limit of the instrument's field of view to be 78.5 degrees (red circle) from its center. View a video of this here: bit.ly/Y2K4LN. Credit: NASA/DOE/Fermi LAT Collaboration ----- NASA's Fermi Gamma-ray Space Telescope orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps across the entire sky every three hours, capturing the highest-energy form of light -- gamma rays -- from sources across the universe. These range from supermassive black holes billions of light-years away to intriguing objects in our own galaxy, such as X-ray binaries, supernova remnants and pulsars. Now a Fermi scientist has transformed LAT data of a famous pulsar into a mesmerizing movie that visually encapsulates the spacecraft's complex motion. Click here to continue reading: 1.usa.gov/WhYwCU NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Close, D.A.; Franks, L.A.; Kocimski, S.M.
1984-08-16
An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes Ponce De Leon, J.; Sanchez Del Rio, C.
1956-01-01
In this paper the identification of the isomeric state of Zn/sup 67/ by a new method is described. The isotopes Zn/sup 68/ and Zn/sup 67/ being both stable, the capture of slow neutrons by Zn/sup 68/ leads sometimes to the formation of the isomeric state of Zn/sup 67/; the state is identified by its half life, measured by delayed coincidences between the capture and the isomeric gamma rays. (auth)
Decay properties of Bk 97 243 and Bk 97 244
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, I.; Kondev, F. G.; Greene, J. P.
2018-01-01
Electron capture decays of Bk-243 and Bk-244 have been studied by measuring the gamma-ray spectra of mass-separated sources and level structures of Cm-243 and Cm-244 have been deduced. In Cm-243, the electron capture population to the ground state, 1/2(+)[631], and 1/2(+)[620] Nilsson states have been observed. The octupole K-pi = 2(-) band was identified in Cm-244 at 933.6 keV. In addition, spins and parities were deduced for several other states and two-quasiparticle configurations have been tentatively assigned to them
Integral -tracking extreme radiation across the Universe
NASA Astrophysics Data System (ADS)
2002-10-01
Gamma rays are released by the most violent events in the Universe. Unlike the serene beauty of the stars that we can see with our own eyes, the gamma-ray Universe is a place of wild explosions, cosmic collisions, and matter being sucked into black holes or trapped in super-strong magnetic fields. So far, astronomers have only had glimpses of this violence; Integral will bring it into sharp focus. Exploring the turbulent Universe Gamma rays carry large quantities of energy away from the violent events where they are created, such as supernova explosions, black holes, and the mysterious gamma-ray bursts. Integral will find a lot more out about these powerful gamma-ray sources. Very massive stars end their lives in big explosions called supernovae. These outbursts liberate more energy than the combined light of millions upon millions of stars, much of it in the form of gamma rays. New chemical elements are created as results of such explosions. In fact, all atoms heavier than iron are created due to such explosions. For this reason, we call supernovae the chemical factories” of the Universe. However, we do not know completely how new atoms are created when a star explodes. Integral will look into it as one of its first scientific objectives. After the explosion, each supernova leaves behind a dead 'heart'. This heart is incredibly dense and can be either a neutron star or a black hole. Both can generate gamma rays because they possess incredibly strong gravitational fields that can capture passing dust, gas and, possibly, larger celestial objects. When matter falls through a gravitational field, it heats up and releases energy. In the case of neutron stars and black holes, the energy released is very intense and is given off in the form of x-rays and gamma rays. As well as black holes from supernovae, called stellar black holes, the Universe contains a variety of far more massive black holes that are found at the core of some galaxies, the galactic black holes. Galactic black holes also give off gamma rays, and with such awesome power that you can detect them almost halfway across the known Universe. As well as making the most accurate studies of these objects to date, Integral will also investigate the mysterious blasts of gamma rays that explode across the Universe about once a day, the gamma-ray bursts. They can last just a few seconds and can come from any direction in space. The origin of gamma-ray bursts has remained unexplained for years, from their first observation in the late 1960s. Today, many scientists think that gamma ray bursts could be linked to the death throes of the very first stars. Alternatively, they could be generated by colliding neutron stars, or could be caused by the explosion of supermassive stars at the end of their lives, the hypernovae. Integral's instruments will study gamma-ray bursts with the highest accuracy ever and may discover something about their origins. Integral’s instruments Integral has four instruments to give the spacecraft maximum versatility in its task of studying the gamma-ray Universe. Designed to complement each other, their combined observations will allow scientists to get a very complete and accurate picture of each celestial target at different wavelengths. The first two are dedicated gamma-ray instruments. Imager on Board the Integral Satellite (IBIS) is the sharpest-resolution gamma-ray camera ever built. Spectrometer on Integral (SPI) will measure the energy of gamma rays with exceptional accuracy. In particular, it will be more sensitive to fainter radiation than any previous gamma-ray spectrometer. The other two instruments are designed to provide complementary scientific data about Integral’s targets. The Joint European X-Ray Monitor (JEM-X) will make observations simultaneously with the main gamma-ray instruments and will provide images at X-ray wavelengths. The Optical Monitoring Camera (OMC) will do the same but at visible-light wavelengths. The total weight of the four instruments is about 2 tonnes, roughly half the launch weight of Integral. Integral's orbit and operations After launch, Integral will follow an elliptical orbit that is inclined by 51.6° to the Earth’s equator. In this orbit, it will cycle between 9000 kilometres and 153 000 kilometres above Earth, completing one revolution of the Earth every 72 hours. This eccentric orbit is necessary because there are ‘radiation belts’ that surround the Earth and these would interfere with Integral’s ability to see gamma rays. It is important for Integral to be outside these belts. Its elliptical orbit is designed to keep it outside the radiation belts for 90% of its trajectory around Earth. Once Integral is in orbit, it must communicate with Earth to download its scientific data and to receive commands. Communicating with and controlling Integral is a task spread over a number of different sites. Firstly, astronomers submit proposals for observations to the Integral Science Operations Centre (ISOC) at Noordwijk, The Netherlands. Experts at ISOC evaluate the proposals and draw up a list of targets and detailed observation schedules for Integral. The schedules are sent to the Mission Operations Centre (MOC) at the European Space Operations Centre (ESOC) in Darmstadt, Germany. There everything is transformed into commands that Integral will understand. Signals to and from Integral go through two tracking stations, one at Redu in Belgium, the second at Goldstone in California, United States. The MOC also ensures the correct performance of the spacecraft. After Integral has collected observations, the raw science data is forwarded to the Integral Science Data Centre (ISDC) in Versoix near Geneva, Switzerland. There it is converted into usable data files, archived, and distributed to the astronomical community. A worldwide network of space science institutes and observatories will receive the data very quickly. This is essential especially when sudden and short-lasting phenomena such as gamma-ray bursts occur. In this case, all observatories need to receive the information within one minute to be able to point their telescopes immediately at the area of the sky where the gamma-ray burst has been detected. Building Integral Integral was selected as a mission by ESA in June 1993. The prime contractor for the spacecraft was Alenia Aerospazio, Turin, Italy. Alenia involved 26 subcontracting companies from 12 European countries to build the spacecraft’s service module. This provides the essentials for the spacecraft such as power (via solar panels), satellite control, and the communications link to the ground. Alenia was also responsible for integrating the four science instruments on-board the spacecraft, known collectively as the payload module. Four consortia of academic and industrial partners, variously located throughout Europe, built the instruments. Integral has faced many technological challenges. However, the greatest was finding a way to focus gamma rays, which are so powerful they pass through ordinary mirrors. To overcome this, Integral’s gamma-ray instruments and its X-ray monitor use a technique called coded-mask imaging. Instead of focusing, the coded mask blocks some gamma rays, creating a recognisable shadow on the detector beneath. Ground computer systems process the data coming from the gamma-ray detector looking for this shadow. Once it finds the shadow pattern, it groups the gamma rays together, forming an image. Gamma rays from different astronomical objects enter the instruments at different angles and so cast different shadows, allowing gamma rays from multiple sources to be separated. Integral has been developed and built at a cost of 330 million Euros. This price does not include the cost of launch, which Russia is providing free in exchange for observing time on Integral. Neither does the cost include the price of the science instruments, which have been provided by academic and industrial consortia. To reduce costs, the design for the service module was reused from ESA’s XMM-Newton satellite. Note to editors: historical perspective on gamma-ray astronomy Scientists have placed small gamma-ray detectors on satellites since the early 1960s. However, the most extraordinary discovery came in the late 1960s from a series of military satellites designed to monitor the ban on nuclear bombs being tested on Earth. These satellites detected the appropriately named gamma-ray bursts, which explode without warning about once a day, from random directions in the sky. In 1972, the NASA probe SAS-2 confirmed that the Universe is bathed in a perpetual shower of gamma rays. In 1975, ESA launched the gamma-ray satellite COS-B, that worked until being switched off in 1982. COS-B produced the first map of the gamma-ray sky and identified a number of bright gamma ray sources. It was followed by the Russian-French mission GRANAT, in 1989-1998, and NASA’s Compton Gamma-ray Observatory (CGRO), in 1991-2000. The CGRO satellite greatly increased our understanding of gamma-ray astronomy. Soon we can expect Integral to dazzle the world with the next leap in technology.
New teaching aid “Physical Methods of Medical Introscopy”
NASA Astrophysics Data System (ADS)
Ulin, S. E.
2017-01-01
Description of a new teaching aid, in which new methods of reconstruction of hidden images by means of nuclear magnetic resonance, X-gamma-ray, and ultrasonic tomography, is presented. The diagnostics and therapy methods of various oncological diseases with the use of medicine proton and ions beams, as well as neutron capture therapy, are considered. The new teaching aid is intended for senior students and postgraduates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinnett, Jacob; Venkataraman, Ram
The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.
Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches
NASA Technical Reports Server (NTRS)
Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.;
2012-01-01
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches
NASA Technical Reports Server (NTRS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.;
2012-01-01
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
NASA Astrophysics Data System (ADS)
Matthews, James
The present volume on high energy gamma-ray astronomy discusses the composition and properties of heavy cosmic rays greater than 10 exp 12 eV, implications of the IRAS Survey for galactic gamma-ray astronomy, gamma-ray emission from young neutron stars, and high-energy diffuse gamma rays. Attention is given to observations of TeV photons at the Whipple Observatory, TeV gamma rays from millisecond pulsars, recent data from the CYGNUS experiment, and recent results from the Woomera Telescope. Topics addressed include bounds on a possible He/VHE gamma-ray line signal of Galactic dark matter, albedo gamma rays from cosmic ray interactions on the solar surface, source studies, and the CANGAROO project. Also discussed are neural nets and other methods for maximizing the sensitivity of a low-threshold VHE gamma-ray telescope, a prototype water-Cerenkov air-shower detector, detection of point sources with spark chamber gamma-ray telescopes, and real-time image parameterization in high energy gamma-ray astronomy using transputers. (For individual items see A93-25002 to A93-25039)
Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru
2016-11-01
Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.
Very high-energy gamma rays from gamma-ray bursts.
Chadwick, Paula M
2007-05-15
Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOLOTNIKOV,A.E.; ABDUL-JABBAR, N.M.; BABALOLA, S.
2007-08-21
In the past, various virtual Frisch-grid designs have been proposed for cadmium zinc telluride (CZT) and other compound semiconductor detectors. These include three-terminal, semi-spherical, CAPture, Frisch-ring, capacitive Frisch-grid and pixel devices (along with their modifications). Among them, the Frisch-grid design employing a non-contacting ring extended over the entire side surfaces of parallelepiped-shaped CZT crystals is the most promising. The defect-free parallelepiped-shaped crystals with typical dimensions of 5x5{approx}12 mm3 are easy to produce and can be arranged into large arrays used for imaging and gamma-ray spectroscopy. In this paper, we report on further advances of the virtual Frisch-grid detector design formore » the parallelepiped-shaped CZT crystals. Both the experimental testing and modeling results are described.« less
Characterization of a prototype neutron portal monitor detector
NASA Astrophysics Data System (ADS)
Nakhoul, Nabil
The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.
The Gamma-ray Universe through Fermi
NASA Technical Reports Server (NTRS)
Thompson, David J.
2012-01-01
Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.
Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption
NASA Astrophysics Data System (ADS)
Boettcher, Markus; Barnacka, Anna
2014-08-01
It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.
Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches
NASA Astrophysics Data System (ADS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.
2013-02-01
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
Analysis of Gamma-Ray Data from Solar Flares in Cycles 21 and 22
NASA Technical Reports Server (NTRS)
Vestrand, W. Thomas
1998-01-01
One of our primary accomplishments under grant NAGW-35381 was the systematic derivation and compilation, for the first time, of physical parameters for all gamma-ray flares detected by the SMM GRS during its ten year lifetime. The flare parameters derived from the gamma-ray spectra include: bremsstrahlung fluence and best-fit power-law parameters, narrow nuclear line fluence, positron annihilation line fluence, neutron capture line fluence, and an indication of whether or not greater than 10 MeV emissions were present. We combined this compilation of flare parameters with our plots of counting rate time histories and flare spectra to construct an atlas of gamma-ray flare characteristics. The atlas time histories display four energy bands: 56-199 kev, 298526 keV, 4-8 MeV, and 10-25 MeV. These energy bands respectively measure nonrelativistic bremsstrahlung, trans-relativistic bremsstrahlung, nuclear de-excitation, and ultra-relativistic bremsstrahlung. The atlas spectra show the integrated high-energy spectra measured for all GRS flares and dissects them into electron bremsstrahlung, positron annihilation and nuclear emission components. The atlas has been accepted for publication in the Astrophysical Journal Supplements and is currently in press. The atlas materials were also supplied to the Solar Data Analysis Center at Goddard Space Flight Center and were made available through a web site at the University of New Hampshire. Since a uniform methodology was adopted for deriving the flare parameters, this atlas will be very useful for future statistical and correlative studies of solar flares-three independent groups are presently using it to correlate interplanetary energetic particle measurements with our gamma-ray measurements. A better model for the response of the GRS instrument to high energy radiation was also developed. A refined response model was needed because the old model was not adequate for predicting the first and second escape peaks associated with strong nuclear lines nor could it accurately describe the Compton continuum shape. The new response was developed using a GEANT based simulation code and tested against preflight calibration data. The refinement of the response model and the removal of systematic errors now allow more detailed spectral studies of the GRS gamma-ray measurements. This refined response function was supplied to the Solar DAC at Goddard and was also made available via a web site at the University of New Hampshire.
HPGe detector shielding optimization with MCNPX for the MEDINA PGNAA cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicol, T.; Perot, B.; Carasco, C.
2015-07-01
Radioactive waste repositories must guarantee the non-toxicity of the waste in the long term, not only regarding radioactivity but also regarding other environmental contamination such as toxic chemicals. Analytical methods already exist for chemical characterization (ICP-MS, ICP-AES...) but they are based on test sampling. A possible alternative, for waste packages with an appropriate gamma radiation level, is to use Prompt Gamma Neutron Activation Analysis (PGNAA), a non-destructive measurement technique sensitive to several toxic chemicals. In view of the characterization of radioactive wastes in Germany and France, collaboration between the CEA Cadarache (France) and the Forschungszentrum Juelich (Germany) was initiated amore » few years ago. FZJ holds a PGNAA graphite cell called MEDINA (Multi Element Detection based on Instrumental Neutron Activation), allowing the characterization of 225 L drums. Fast neutrons are emitted from a D-T pulsed 14 MeV neutron generator and thermalized in graphite to induced radiative captures in the waste materials. Prompt capture gamma rays are detected using a 104% relative efficiency n-type HPGe. However, HPGe crystal is sensitive to fast neutron damage and to thermal neutron activation. A thermal neutron shield made of lithium fluorine and lithium carbonate is already used around the detector. In order to further decrease the current of fast and thermal neutrons coming into the crystal without penalizing MEDINA sensitivity (by decreasing the thermal neutron flux and neutron die away time of the cell, the gamma detection efficiency, or increasing the gamma background), some configurations based on easy-to-implement modifications of MEDINA have been simulated with MCNPX with a model of the cell already validated by experiments. Results show that fast and thermal neutron incoming current in the HPGe could easily be reduced by about a factor of 2 by additional quantities of graphite and by replacing lithium carbonate by lithium fluorine with a higher {sup 6}Li concentration. In addition, these modifications slightly increase the thermal neutron flux in the cell without deteriorating the neutron die away time, and reduce the gamma background about a factor of 2 during the neutron pulse but 5 times less after it. More important changes have also been tested, such as the addition of polyethylene and lead between the neutron generator and the HPGe detector, which is more effective regarding neutron shielding but decreases the neutron die away time, partly compensated by a larger initial thermal neutron flux. Concerning gamma background, hydrogen capture gamma ray (2.23 MeV) is increased due to the presence of polyethylene but lead around the HPGe decreases the total gamma background. In conclusion, simple modifications are possible to improve detector shielding and life time before thermal annealing of the crystal, without reducing MEDINA cell performances. Some of these modifications will be tested in the coming months. (authors)« less
NASA Astrophysics Data System (ADS)
Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.
2017-01-01
Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.
Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray and Optical Bands
NASA Technical Reports Server (NTRS)
Hartman, R. C.; Villata, M.; Balonek, T. J.; Bertsch, D. L.; Bock, H.; Boettcher, M.; Carini, M. T.; Collmar, W.; DeFrancesco, G.; Ferrera, E. C.;
2001-01-01
Light curves of 3C 279 are presented in optical (R-band), X-rays (RXTE/PCA), and gamma rays (CGRO/EGRET) for 1999 Jan-Feb and 2000 Jan-Mar. During both of those epochs the gamma-ray levels were high, and all three observed bands demonstrated substantial variation, on time scales as short as one day. Correlation analyses provided no consistent pattern, although a rather significant optical/gamma-ray correlation was seen in 1999, with a gamma-ray lag of approximately 2.5 days, and there are other suggestions of correlations in the light curves. For comparison, correlation analysis is also presented for the gamma-ray and X-ray light curves during the large gamma-ray flare in 1996 Feb and the two gamma-bright weeks leading up to it; the correlation at that time was strong, with a gamma-ray/X-ray offset of no more than one day.
Highlights of GeV Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.
Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.
Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A
2012-07-01
The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.
GRO/OSSE Observations of Nuclear Line Emission from the Intense Flares of June 1991
NASA Astrophysics Data System (ADS)
Murphy, R. J.; Share, G. H.; Johnson, W. N.; Kinzer, R. L.; Kroeger, R.; Kurfess, J. D.; Strickman, M. S.; Grove, J. E.; Cameron, R.; Jung, G.; Grabelsky, D.; Matz, S. M.; Purcell, W.; Ulmer, M. P.; Frye, G.; Jenkins, T.; Jensen, C.
1992-05-01
The Oriented Scintillation Spectroscopy Experiment (OSSE) on the Compton Gamma Ray Observatory is comprised of 4 independently-oriented large-area ( ~ 500 cm(2) /detector at 511 keV) NaI detectors covering the energy range from 0.050 to 10 MeV. Solar observations are typically performed with two of the detectors staring at the Sun and two alternating between viewing the Sun and viewing background regions on two-minute timescales. In June of 1991, OSSE observed 4 of the X10+ flares from Active Region 6659. Intense gamma-ray line emission at 0.511 MeV (positron annihilation) and 2.223 MeV (neutron capture), and from several deexcitation lines of carbon and oxygen were recorded. Using a combination of data from sunward-pointing and off-pointing detectors to avoid saturation effects during the intense portions of the flares, background-subtracted spectra have been obtained. These spectra were fit to derive photon fluxes for the above-mentioned gamma-ray lines. Preliminary lower limits to the integrated fluxes in the 2.223 MeV line (not accounting for saturation effects and based on data collected only during the OSSE observation times) are about 300, 200, 30 and 100 photons/cm(2) for the June 4, 6, 9 and 11 flares, respectively. This is to be compared to a fluence of about 300 photons/cm(2) for the 1982 June 3 flare observed by the SMM Gamma-Ray Spectrometer. Integrated fluxes for the other lines will be presented and compared to line flux measurements of flares obtained with the SMM/GRS. This work is supported under NASA contract S10987C.
Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; D'Abrusco, R.; Tosti, G.
2012-04-02
One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less
UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; Ajello, M.; D'Abrusco, R.
2012-06-10
One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less
NASA Technical Reports Server (NTRS)
Becker, Peter A.; Kafatos, Menas
1995-01-01
We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically in gamma - ray blazars, then these objects should appear as bright MeV sources when viewed along off-axis lines of sight.
Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar
NASA Technical Reports Server (NTRS)
Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.;
2012-01-01
The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.
Fermi's Motion Produces a Study in Spirograph
2013-02-27
Final still from Fermi video [bit.ly/Y2K4LN]. Credit: NASA/DOE/Fermi LAT Collaboration ----- NASA's Fermi Gamma-ray Space Telescope orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps across the entire sky every three hours, capturing the highest-energy form of light -- gamma rays -- from sources across the universe. These range from supermassive black holes billions of light-years away to intriguing objects in our own galaxy, such as X-ray binaries, supernova remnants and pulsars. Now a Fermi scientist has transformed LAT data of a famous pulsar into a mesmerizing movie that visually encapsulates the spacecraft's complex motion. Click here to continue reading: 1.usa.gov/WhYwCU NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Gamma-ray spectroscopy in the decay of (83)Se to levels of (83)Br.
Krane, K S
2015-03-01
High-resolution γ ray spectroscopy experiments have been done to study the emissions from the radioactive decay of 22-min (83g)Se produced from neutron capture using samples of enriched (82)Se. Energy and intensity values have been obtained to roughly an order of magnitude greater precision than in previous studies. Based on energy sums, 2 new levels are proposed in the daughter (83)Br and one previously proposed level is shown to be doubtful. Some 25 new transitions appear to decay with the (83)Se halflife, about half of which can be accommodated among the previous or newly proposed levels. Several previous γ ray placements are shown to be inconsistent with the new determinations of the (83)Br energy levels, but cannot be accommodated anywhere else among the known levels. As a result of the missing γ ray placements, some of the β branchings in the decay to levels of (83)Br appear to be negative. Gamma rays from the 2.4-h decay of the daughter (83)Br to levels of (83)Kr have also been observed, along with decays of (81g)(,m)Se present as a small impurity in the enriched samples and also as a strong component in irradiated samples of natural Se. Copyright © 2014 Elsevier Ltd. All rights reserved.
SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.
1976-01-01
Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.
Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki
2015-12-01
Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.
2016-10-01
An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.
NASA Technical Reports Server (NTRS)
Vestrand, W. Thomas
1990-01-01
This paper presents a new radiation diagnostic for assaying the energy spectrum and the angular distribution of energetic ions incident on thick hydrogen-rich thermal targets. This diagnostic compares the number of emergent photons in the narrow neutron capture line at 2.223 MeV to the number of Compton scattered photons that form a low-energy tail on the line. It is shown that the relative strength of the tail can be used as a measure of the hardness of the incident ion-energy spectrum. Application of this diagnostic to solar flare conditions is the main thrust of the work presented here. It is examined how the strength of the Compton tail varies with flare viewing angle and the angular distribution of the flare-accelerated particles. Application to compact X-ray binary systems is also briefly discussed.
Gericke, M T; Bowman, J D; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ishimoto, S; Jones, G L; Lauss, B; Leuschner, M B; Losowski, B; Mahurin, R; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P-N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H
2005-01-01
The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.
Fermi Gamma-Ray Space Telescope: Science Highlights for the First 8 Months
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2010-01-01
The Fermi Gamma-ray Space Telescope was launched on June 11, 2008 and since August 2008 has successfully been conducting routine science observations of high energy phenomena in the gamma-ray sky. A number of exciting discoveries have been made during its first year of operation, including blazar flares, high-energy gamma-ray bursts, and numerous new,gamma-ray sources of different types, among them pulsars and Active Galactic Nuclei (AGN). fermi-LAT also performed accurate mea.<;urement of the diffuse gamma-radiation which clarifies the Ge V excess reported by EGRET almost 10 years ago, high precision measurement of the high energy electron spectrum, and other observations. An overview of the observatory status and recent results as of April 30, 2009, are presented. Key words: gamma-ray astronomy, cosmic rays, gamma-ray burst, pulsar, blazar. diffuse gamma-radiation
NASA Astrophysics Data System (ADS)
Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.
2016-02-01
The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.
The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o}more » {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less
Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-12-18
The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.
Mercuric iodine room temperature gamma-ray detectors
NASA Technical Reports Server (NTRS)
Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.
1990-01-01
high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.
NASA Astrophysics Data System (ADS)
Torii, T.; Sanada, Y.; Watanabe, A.
2017-12-01
In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.
Lunar occultations for gamma-ray source measurements
NASA Technical Reports Server (NTRS)
Koch, David G.; Hughes, E. B.; Nolan, Patrick L.
1990-01-01
The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.
PING Gamma Ray and Neutron Measurements of a Meter-Sized Carbonaceous Asteroid Analog
NASA Technical Reports Server (NTRS)
Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Parsons, A.; Schweitzer, J.;
2011-01-01
Determining the elemental composition of carbonaceous (spectral type C) asteroids is still one of the basic problems when studying these objects. The only main source of elemental composition information for asteroids is from their optical, NIR and IR properties, which include their spectral reflectance characteristics, albedo, polarization, and the comparison of optical spectroscopy with meteorite groups corresponding to asteroids of every spectral type. Unfortunately, these sources reflect observations from widely contrasting spatial scales that presently yield a void in the continuum of microscopic and macroscopic evidence, a lack of in situ measurement confirmation, and require deeper sensing techniques to discern the nature of these asteroids. The Probing In situ with Neutrons and Gamma rays (PING) instrument is ideally suited to address this problem because it can be used to determine the bulk elemental composition, H and C content, the average atomic weight and density of the surface and subsurface layers of C-type asteroids, and can provide measurements used to determine the difference between and distinguish between different types of asteroids. We are currently developing the PING instrument that combines gamma ray and neutron detectors with a 14 Me V pulsed neutron generator to determine the in-situ bulk elemental abundances and geochemistry of C-type asteroids with a spatial resolution of 1 m down to depths of tens of cm to 1 m. One aspect of the current work includes experimentally testing and optimizing PING on a known meter-sized Columbia River basalt C-type asteroid analog sample that has a similar composition and the same neutron response as that of a C-type asteroid. An important part of this effort focuses on utilizing timing measurements to isolate gamma rays produced by neutron inelastic scattering, neutron capture and delayed activation processes. Separating the gamma ray spectra by nuclear processes results in higher precision and sensitivity elemental composition measurements. Using gated data acquisition techniques allows for the unambiguous identification of gamma ray lines from different isotopes and nuclear processes, especially in situations when limited detector resolution results in overlapping gamma ray lines that cannot be individually resolved. In this paper, we will present the PING basalt layering experimental data, taken at the test facility at NASA Goddard Space Flight Center using the time tagged event-by-event data analysis technique, compared to our MCNPX computer simulation results for the C-type asteroid and basalt layering simulant models. Comparison of these data will show the advantages, validity, and measurement sensitivity of PING's nuclear interrogation methods to obtain more precise and sensitive in situ bulk elemental composition and density measurements of the subsurface of asteroids.
NASA Astrophysics Data System (ADS)
Fradkin, M. I.; Gorchakov, E. V.; Kaplin, V. A.; Kaplin, D. V.; Kurnosova, L. V.; Labenskij, A. G.; Runtso, M. F.; Topchiev, N. P.
The conditions required for gamma-ray astronomy measurements at energies of 10 - 1000 GeV by a gamma-ray telescope on the International Space Station are discussed. It is shown that the properties of the detected gamma rays can be determined accurately at 30 - 1000 GeV, even if the space station solar arrays fall in the aperture of the gamma-ray telescope. Measurements of the secondary gamma-ray spectrum using a ground-based model of the gamma-ray telescope have been carried out, and the resulting spectrum at energies of 1 - 100 GeV is presented.
Structure of the Odd-Odd Nucleus {sup 188}Re
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balodis, M.; Berzins, J.; Simonova, L.
2009-01-28
Thermal neutron capture gamma-ray spectra for {sup 187}Re(n,{gamma}){sup 188}Re reaction were measured. Singles and coincidence spectra were detected in order to develop the level scheme. The evaluation is in progress, of which the first results are obtained from the analysis of coincidence spectra, allowing to check the level scheme below 500 keV excitation energy. Seven low-energy negative parity bands are developed in order to find better energies for rotational levels. With a good confidence, a few positive parity bands are developed as well. Rotor plus two quasiparticle model calculations, employing effective matrix element method are performed for the system ofmore » six negative parity rotational bands.« less
Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group
NASA Technical Reports Server (NTRS)
1988-01-01
Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.
Terrestrial Gamma-Ray Flashes (TGFs)
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2010-01-01
This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.
Space instrumentation for gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Teegarden, B. J.
1999-02-01
The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.
Gamma-ray Output Spectra from 239 Pu Fission
Ullmann, John
2015-05-25
The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less
NASA Technical Reports Server (NTRS)
1991-01-01
An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.
Wang, Peihe; Cai, Yuanyuan; Lin, Dongju; Jiang, Yingxiao
2017-08-07
Gamma ray can promote cancer cell apoptosis and cell cycle arrest. It is often used in the clinical treatment of tumors, including lung cancer. In this study, we aimed to explore the role of gamma ray treatment and its correlation with BTG2 in cell proliferation, apoptosis, and cell cycle arrest regulation in a lung cancer cell line. A549 cell viability, apoptosis rate, and cell cycle were investigated after gamma ray treatment. We then used siRNA for BTG2 to detect the effect of BTG2 knockdown on the progress of gamma ray-treated lung cancer cells. Finally, we investigated the signaling pathway by which gamma ray might regulate BTG2. We found that gamma ray inhibited A549 cell viability and promoted apoptosis and cell cycle arrest, while BTG2 knockdown could relieve the effect caused by gamma ray on A549 cells. Moreover, we confirmed that the effect of BTG2 partly depends on p53 expression and gamma ray-promoting BTG2 expression through the JNK/NF-κB signaling pathway. Our study assessed the possible mechanism of gamma ray in tumor treatment and also investigated the role of BTG2 in gamma ray therapy. All these findings might give a deep understanding of the effect of gamma ray on the progression of lung cancer involving BTG2.
Significance of medium energy gamma ray astronomy in the study of cosmic rays
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.
1975-01-01
Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.
Gamma-Ray Astronomy Across 6 Decades of Energy: Synergy between Fermi, IACTs, and HAWC
NASA Technical Reports Server (NTRS)
Hui, C. Michelle
2017-01-01
Gamma Ray Observatories, Gamma-Ray Astrophysics, GeV TeV Sky Survey, Galaxy, Galactic Plane, Source Distribution, The gamma-ray sky is currently well-monitored with good survey coverage. Many instruments from different waveband/messenger (X rays, gamma rays, neutrinos, gravitational waves) available for simultaneous observations. Both wide-field and pointing instruments in development and coming online in the next decade LIGO
[Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The
Komives, A; Sint, A K; Bowers, M; Snow, M
2005-01-01
A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.
Neutron response of GafChromic® EBT2 film
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chen; Liu, Yuan-Hao; Chen, Wei-Lin; Jiang, Shiang-Huei
2013-03-01
Neutron and gamma-ray mixed field dosimetry remains one of the most challenging topics in radiation dosimetry studies. However, the requirement for accurate mixed field dosimetry is increasing because of the considerable interest in high-energy radiotherapy machines, medical ion beams and BNCT epithermal neutron beams. Therefore, this study investigated the GafChromic® EBT2 film. The linearity, reproducibility, energy dependence and homogeneity of the film were tested in a 60Co medical beam, 6-MV LINAC and 10-MV LINAC. The linearity and self-developing effect of the film irradiated in an epithermal neutron beam were also examined. These basic detector characteristics showed that EBT2 film can be effectively applied in mixed field dosimetry. A general detector response model was developed to determine the neutron relative effectiveness (RE) values. The RE value of fast neutrons varies with neutron spectra. By contrast, the RE value of thermal neutrons was determined as a constant; it is only 32.5% in relation to gamma rays. No synergy effect was observed in this study. The lithium-6 capture reaction dominates the neutron response in the thermal neutron energy range, and the recoil hydrogen dose becomes the dominant component in the fast neutron energy region. Based on this study, the application of the EBT2 film in the neutron and gamma-ray mixed field is feasible.
Performance study of the gamma-ray bursts polarimeter POLAR
NASA Astrophysics Data System (ADS)
Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.
2016-07-01
The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.
Fermi Gamma-Ray Space Telescope: Highlights of the GeV Sky
NASA Technical Reports Server (NTRS)
Thomspon, D. J.
2011-01-01
Because high-energy gamma rays can be produced by processes that also produce neutrinos. the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potenl ial targds for neutrino observations. Gamma-ray bursts. active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. \\Vhile important to gamma-ray astrophysics. such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.
Kinashi, Yuko; Yokomizo, Natsuya; Takahashi, Sentaro
2017-04-01
To use the 53BP1 foci assay to detect DNA double-strand breaks induced by fractionated neutron beam irradiation of normal cells. The Kyoto University Research Reactor heavy-water facility and gamma-ray irradiation system were used as experimental radiation sources. After fixation of Chinese Hamster Ovary cells with 3.6% formalin, immunofluorescence staining was performed. Number and size of foci were analyzed using ImageJ software. Fractionated neutron irradiation induced 25% fewer 53BP1 foci than single irradiation at the same dose. By contrast, gamma irradiation induced 30% fewer 53BP1 foci than single irradiation at the same dose. Fractionated neutron irradiation induced larger foci than gamma irradiation, raising the possibility that persistent unrepaired DNA damage was amplified due to the high linear energy transfer component in the neutron beam. Unrepaired cluster DNA damage was more prevalent after fractionated neutron irradiation than after gamma irradiation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
The Andromeda galaxy in gamma-rays
NASA Technical Reports Server (NTRS)
Oezel, M. E.; Berkhuijsen, E. M.
1987-01-01
Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.
Gamma ray spectroscopy in astrophysics. [conferences
NASA Technical Reports Server (NTRS)
Cline, T. L. (Editor); Ramaty, R. (Editor)
1978-01-01
Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.
Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results
NASA Technical Reports Server (NTRS)
Moiseev, Alexander; Mitchell, John; Thompson, David
2012-01-01
The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.
Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; Desiante, R.; Becerra González, J.; D'Ammando, F.; Larsson, S.; Raiteri, C. M.; Reinthal, R.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Ramakrishnan, V.; Jorstad, S. G.; Marscher, A. P.; Bala, V.; MacDonald, N. R.; Kaur, N.; Sameer; Baliyan, K.; Acosta-Pulido, J. A.; Lazaro, C.; Martí-nez-Lombilla, C.; Grinon-Marin, A. B.; Pastor Yabar, A.; Protasio, C.; Carnerero, M. I.; Jermak, H.; Steele, I. A.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.
2017-07-01
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims: We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods: We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results: PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
Observation of nuclear reactors on satellites with a balloon-borne gamma-ray telescope
NASA Technical Reports Server (NTRS)
O'Neill, Terrence J.; Kerrick, Alan D.; Ait-Ouamer, Farid; Tumer, O. Tumay; Zych, Allen D.
1989-01-01
Four Soviet nuclear-powered satellites flying over a double Compton gamma-ray telescope resulted in the detection of gamma rays with 0.3-8.0 MeV energies on April 15, 1988, as the balloonborne telescope searched, from a 35-km altitude, for celestial gamma-ray sources. The satellites included Cosmos 1900 and 1932. The USSR is the only nation currently employing moderated nuclear reactors for satellite power; reactors in space may cause significant problems for gamma-ray astronomy by increasing backgrounds, especially in the case of gamma-ray bursts.
Future Hard X-ray and Gamma-Ray Missions
NASA Astrophysics Data System (ADS)
Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team
2017-01-01
With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.
Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.
Fan, Xilong; Messenger, Christopher; Heng, Ik Siong
2017-11-03
Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.
Pulsed high-energy gamma rays from PSR 1055-52
NASA Technical Reports Server (NTRS)
Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.
1993-01-01
The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.
NASA Technical Reports Server (NTRS)
Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.
1992-01-01
The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.
Prompt fission gamma-ray studies at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, M.; Rusev, G.; Bond, E. M.
2014-11-26
Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL,more » for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.« less
NASA Astrophysics Data System (ADS)
Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.
2016-09-01
Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.
Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carraminana, Alberto; Collaboration: HAWC Collaboration
Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less
Very High-Energy Gamma-Ray Sources.
ERIC Educational Resources Information Center
Weekes, Trevor C.
1986-01-01
Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)
Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2010-01-01
Because high-energy gamma rays are produced by powerful sources, the Fermi Gamma-ray Space Telescope provides a window on extreme conditions in the Universe. Some key observations of the constantly changing gamma-ray sky include: (1) Gamma-rays from pulsars appear to come from a region well above the surface of the neutron star; (2) Multiwavelength studies of blazars show that simple models of jet emission are not always adequate to explain what is seen; (3) Gamma-ray bursts can constrain models of quantum gravity; (4) Cosmic-ray electrons at energies approaching 1 TeV suggest a local source for some of these particles.
Current and Future Research at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, M.; Baramsai, B.; Bredeweg, T. A.
2015-05-28
An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the Detector for Advanced Neutron Capture Experiments (DANCE) is presented. Three major projects are currently under way: 1) high precision measurements of neutron capture cross sections on Uranium isotopes, 2) research aimed at studies of the short-lived actinide isomer production in neutron capture on 235U and 3) measurements of correlated data of fission observables. New projects include developments of auxiliary detectors to improve the capability of DANCE. We are building a compact, segmented NEUtron detector Array at DANCE (NEUANCE), which will be installedmore » in the central cavity of the DANCE array. It will thus provide experimental information on prompt fission neutrons in coincidence with the prompt fission gamma-rays measured by 160 BaF 2 crystals of DANCE. Additionally, unique correlated data will be obtained for neutron capture and neutron-induced fission using the DANCE-NEUANCE experimental set up in the future.« less
The large area high resolution gamma ray astrophysics facility - HR-GRAF
NASA Astrophysics Data System (ADS)
Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.
1990-03-01
The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.
Masunaga, Shin-Ichiro; Nagasawa, Hideko; Hiraoka, Masamitsu; Sakurai, Yoshinori; Uto, Yoshihiro; Hori, Hitoshi; Nagata, Kenji; Suzuki, Minoru; Maruhashi, Akira; Kinashi, Yuko; Ono, Koji
2004-01-01
It is difficult to deliver a therapeutic amount of 10B from conventional 10B-carriers for boron neutron capture therapy (BNCT) throughout the target tumors, especially into the intratumor hypoxic cells which have low uptake capacities. We evaluated the usefulness of 5 new 10B-compounds (TX-2041, TX-2042, TX-2058, TX-2059 and TX-2060) as 10B-carriers in BNCT. They are 2-nitroimidazole-sodium borocaptate-10B (BSH) conjugates, that is, hybrid compounds that have both a hypoxic tumor cell sensitizing unit under gamma-ray irradiation, 2-nitroimidazoles and a thermal neutron-sensitizing unit, BSH. The 5 new compounds were administered to SCC VII tumor-bearing mice intraperitoneally. As a control, BSH was also administered in the same manner. Then, the 10B concentrations in the tumors and normal tissues were measured by gamma-ray spectrometry. Based on the data of the pharmacokinetics analyses, TX-2060 was chosen for a subsequent tumor-irradiation study. SCC VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with TX-2060 or BSH in the same manner as in the pharmacokinetics analyses. To obtain similar intratumor 10B concentrations during radiation exposure, irradiation with thermal neutrons or gamma-rays was started from 60 min after administration of the 10B-carrier. Right after irradiation, the tumors were excised, minced and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the micronucleus (MN) frequency in cells without BrdU-labelling (= quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. Meanwhile, the MN frequency in total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU. The clonogenic cell survival was also determined in mice given no BrdU. 10B distribution analyses in tumors, muscles, blood and liver indicated that TX-2060 has the most favorable characteristics for concentrating a sufficient amount of 10B in tumors and maintaining a high enough 10B concentration during irradiation. In addition, TX-2060 had a significantly stronger radio-sensitization effect with reactor thermal neutron beams than BSH on both total and Q cells in solid tumors. Further, TX-2060 clearly exhibited a radio-sensitization effect with gamma-rays, not only on total cells but also on Q and hypoxic tumor cells, which was not achieved by BSH. 10B-carrier, with a gamma-ray-sensitizing effect on tumor cells as well as the potential to keep 10B in tumors and sensitize tumor cells more markedly than conventional 10B-carriers, such as TX-2060, is a promising candidate for use in BNCT.
Gamma ray astrophysics. [emphasizing processes and absorption
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1974-01-01
Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.
Portable compton gamma-ray detection system
Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA
2008-03-04
A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.
Simultaneous optical/gamma-ray observations of GRBs
NASA Technical Reports Server (NTRS)
Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.
1994-01-01
Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.
NASA Technical Reports Server (NTRS)
Ramaty, R.; Lingenfelter, R. E.
1986-01-01
Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.
Future prospects for gamma-ray
NASA Technical Reports Server (NTRS)
Fichtel, C.
1980-01-01
Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.
Arcsec source location measurements in gamma-ray astronomy from a lunar observatory
NASA Astrophysics Data System (ADS)
Koch, D. G.; Hughes, B. E.
1990-03-01
The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.
Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-08-14
We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.
Reexamining the role of the ( n , γ f ) process in the low-energy fission of U 235 and Pu 239
Lynn, J. E.; Talou, P.; Bouland, O.
2018-06-01
In this paper, themore » $$(n,{\\gamma}f)$$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $$^{235}\\mathrm{U}$$ and $$^{239}\\mathrm{Pu}$$. Observed fluctuations of the average prompt fission neutron multiplicity and average total $${\\gamma}$$-ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the $M1$ transitions to the prefission $${\\gamma}$$-ray spectrum of $$^{239}\\mathrm{Pu}$$ is explained by the dominant fission probabilities of $${0}^{+}$$ and $${2}^{+}$$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through $M1$ transitions. The impact of an additional low-lying $M1$ scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. In conclusion, calculations are extended to the fast energy range where $$(n,{\\gamma}f)$$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.« less
Reexamining the role of the ( n , γ f ) process in the low-energy fission of U 235 and Pu 239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, J. E.; Talou, P.; Bouland, O.
In this paper, themore » $$(n,{\\gamma}f)$$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $$^{235}\\mathrm{U}$$ and $$^{239}\\mathrm{Pu}$$. Observed fluctuations of the average prompt fission neutron multiplicity and average total $${\\gamma}$$-ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the $M1$ transitions to the prefission $${\\gamma}$$-ray spectrum of $$^{239}\\mathrm{Pu}$$ is explained by the dominant fission probabilities of $${0}^{+}$$ and $${2}^{+}$$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through $M1$ transitions. The impact of an additional low-lying $M1$ scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. In conclusion, calculations are extended to the fast energy range where $$(n,{\\gamma}f)$$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.« less
Discoveries by the Fermi Gamma Ray Space Telescope
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2011-01-01
Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.
Search for gamma ray lines from supernovae and supernova remnants
NASA Technical Reports Server (NTRS)
Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.
1974-01-01
A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.
Nuclear Astrophysics At ISAC With DRAGON
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Auria, John M.
2005-05-24
The unique DRAGON (recoil mass separator) facility is now available to provide measurements of radiative capture reactions involving short-lived exotic reactants which are considered important in explosive stellar scenarios such as novae and X-ray bursts. A description of the first study completed, the 1H(21Na,22Mg){gamma} reaction, will be summarized and updated. In addition, the planned program for DRAGON will be presented along with a summary of the upgrade of the ISAC Radioactive Beams laboratory.
Advances in neutron based bulk explosive detection
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; Strellis, Dan
2007-08-01
Neutron based explosive inspection systems can detect a wide variety of national security threats. The inspection is founded on the detection of characteristic gamma rays emitted as the result of neutron interactions with materials. Generally these are gamma rays resulting from thermal neutron capture and inelastic scattering reactions in most materials and fast and thermal neutron fission in fissile (e.g.235U and 239Pu) and fertile (e.g.238U) materials. Cars or trucks laden with explosives, drugs, chemical agents and hazardous materials can be detected. Cargo material classification via its main elements and nuclear materials detection can also be accomplished with such neutron based platforms, when appropriate neutron sources, gamma ray spectroscopy, neutron detectors and suitable decision algorithms are employed. Neutron based techniques can be used in a variety of scenarios and operational modes. They can be used as stand alones for complete scan of objects such as vehicles, or for spot-checks to clear (or validate) alarms indicated by another inspection system such as X-ray radiography. The technologies developed over the last two decades are now being implemented with good results. Further advances have been made over the last few years that increase the sensitivity, applicability and robustness of these systems. The advances range from the synchronous inspection of two sides of vehicles, increasing throughput and sensitivity and reducing imparted dose to the inspected object and its occupants (if any), to taking advantage of the neutron kinetic behavior of cargo to remove systematic errors, reducing background effects and improving fast neutron signals.
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.
2014-03-01
Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.
Gamma-ray irradiation enhanced boron-10 compound accumulation in murine tumors.
Liu, Yong; Nagata, Kenji; Masunaga, Shin-ichiro; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji
2009-11-01
Previous studies have demonstrated that X-ray irradiation affects angiogenesis in tumors. Here, we studied the effects of gamma-ray irradiation on boron-10 compound accumulation in a murine tumor model. The mouse squamous cell carcinoma was irradiated with gamma-ray before BSH ((10)B-enriched borocaptate sodium) administration. Then, the boron-10 concentrations in tumor and normal muscle tissues were measured by prompt gamma-ray spectrometry (PGA). A tumor blood flow assay was performed, and cell killing effects of neutron irradiation with various combinations of BSH and gamma-rays were also examined. BSH concentrations of tumor tissues were 16.1 +/- 0.6 microg/g, 16.7 +/- 0.5 microg/g and 17.8 +/- 0.5 microg/g at 72 hours after gamma-ray irradiation at doses of 5, 10, and 20 Gy, compared with 13.1 +/- 0.5 microg/g in unirradiated tumor tissues. The enhancing inhibition of colony formation by neutron irradiation with BSH was also found after gamma-ray irradiation. In addition, increasing Hoechst 33342 perfusion was also observed. In this study, we demonstrated that gamma-ray irradiation enhances BSH accumulation in tumors. The present results suggest that the enhancement of (10)B concentration that occurs after gamma-ray irradiation may be due to the changes in the extracellular microenvironment, including in tumor vessels, induced by gamma-ray irradiation.
Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 1
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1985-01-01
Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. The topic areas covered in this volume include gamma ray bursts, gamma rays from point sources, and diffuse gamma ray emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in
2008-06-15
Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less
Fermi gamma-ray imaging of a radio galaxy.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D
2010-05-07
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.
NASA Astrophysics Data System (ADS)
Peplowski, Patrick N.; Wilson, Jack T.; Beck, Andrew W.; Burks, Morgan; Goldsten, John O.; Lawrence, David J.
2018-01-01
Gamma-ray spectroscopy investigations characterize the chemical composition of planetary surfaces by measuring element-characteristic gamma rays with energies of ∼100 keV to ∼9 MeV. Over this energy range, the mean free path of a gamma ray varies from about 1 to 25 cm, therefore gamma-ray measurements sample subsurface composition. Many elements emit gamma rays at multiple, often widely spaced energies, so gamma-ray measurements can in principle also be used to identify depth-dependent variations in subsurface composition. We report results from laboratory measurements and radiation transport modeling designed to demonstrate this capability. The laboratory measurements verified the presence of depth-dependent gamma-ray signatures, and were then used to benchmark radiation transport simulations that were used to model realistic Mars-like scenarios. The models indicate that compositionally distinct subsurface deposits, buried to depths of ∼80 cm (125 g/cm2), can be identified using gamma-ray measurements. Going beyond identification to characterization (burial depth, relative composition of the layers) of the deposits requires knowledge of the vertical and horizontal variability in the water content of the near-surface surface materials, the local Galactic Cosmic Ray environment (magnitude and energy distribution), the depth-dependent neutron flux, gamma-ray production cross sections, and knowledge of the composition and column density of the atmosphere. The results of our experiments and models provided a basis for examining the utility of using orbiter- and lander-based gamma-ray measurements to identify subsurface deposits on Mars.
Fermi LAT Search for Dark Matter in Gamma-Ray Lines and the Inclusive Photon Spectrum
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Barbiellini, G.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.;
2012-01-01
Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Flux upper limits are presented for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray background from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. We give cross section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.
Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum
Ackermann, M.
2012-07-05
Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Furthermore, we present the flux upper limits for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray background from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. Here, we give cross-section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.
Integral's first look at the gamma-ray Universe
NASA Astrophysics Data System (ADS)
2002-12-01
The high-energy Universe is a violent place of exploding stars and their collapsed remnants such as the ultra-compressed neutron stars and, at the most extreme, all-consuming black holes. These celestial objects create X-rays and gamma rays that are many times more powerful than the optical radiation we can see with our eyes and optical telescopes. Integral’s Principal Investigators - the scientists responsible for the instruments on board - explain the crucial role that high-energy missions like Integral play in astronomy. “X-ray and gamma-ray astronomy is a pathfinder to unusual objects. At optical wavelengths, the number of stars is staggering. At X-ray and gamma-ray wavelengths, there are fewer objects, but the ones that remain are the really peculiar ones.” As a first test, Integral observed the Cygnus region of the sky, looking particularly at that enigmatic object, Cygnus X-1. Since the 1960s, we have known this object to be a constant generator of high-energy radiation. Most scientists believe that Cygnus X-1 is the site of a black hole, containing around five times the mass of our Sun and devouring a nearby star. Observing Cygnus X-1, which is relatively close by in our own Galaxy - ‘only’ 10 000 light years from us - is a very important step towards understanding black holes. This will also help understand the monstrous black hole - three million times the mass of our Sun - at the centre of our Galaxy. During the initial investigations, scientists had a pleasant surprise when Integral captured its first gamma-ray burst. These extraordinary celestial explosions are unpredictable, occurring from random directions about twice a day. Their precise origin is contentious: they could be the result of massive stars collapsing in the distant Universe or alternatively the result of a collision between two neutron stars. Integral promises to provide vital clues to solving this particular celestial mystery. To study these peculiarities, Integral carries two powerful gamma-ray instruments. It has a camera, or imager, called IBIS and a spectrometer, SPI. Spectrometers are used to measure the energy of the gamma rays received. Gamma-ray sources are often extremely variable and can fluctuate within minutes or seconds. It is therefore crucial to record data simultaneously in different wavelengths. To achieve this, Integral also carries an X-ray and an optical monitor (JEM-X and OMC). All four instruments will observe the same objects, at the same time. In this way they can capture fleeting events completely. Integral sends the data from all the instruments to the Integral Science Data Centre (ISDC) near Geneva, Switzerland, where they are processed for eventual release to the scientific community. “We have been optimising the instruments’ performance to produce the best overall science. We expect to be ready for astronomers around the world to use Integral by the end of the year,” says Arvind Parmar, acting Integral Project Scientist at ESA. “These images and spectra prove that Integral can certainly do the job it was designed to do, and more", which is to unlock some of the secrets of the high-energy Universe. Integral’s primary mission will last for two years, but it is carrying enough fuel to continue for five years, all being well. Notes to Editors Integral was launched on board a Russian Proton rocket from the Baikonur Cosmodrome, Kazakhstan, on 17 October 2002. The satellite was placed in a tilted orbit that looped from 600 to 153 000 kilometres above the Earth and back again. Integral’s own thrusters then steered the spacecraft, in a series of five manoeuvres, into its operational orbit, between 9 000 and 153 000 kilometres above the Earth. Although Integral orbits above the Earth's atmosphere and weather, it still has ‘space weather’ to contend with. Space weather consists of a constant rain of tiny particles that can temporarily blind detectors designed to register gamma radiation. “The flashes last about 0.1 seconds and have to be filtered out with software,” says Pietro Ubertini, IBIS Principal Investigator. JEM-X proved to be particularly susceptible to space weather and scientists had to ‘re-tune’ it. * * * Cygnus X-1 is one of the brightest high-energy emitters in the sky. Relative to its parent constellation, Cygnus - the Swan, Cygnus X-1 it is located about halfway along the row of stars that mark the Swan’s neck, at about 10 000 light years from Earth. Cygnus X-1 was discovered in the 1960s and is thought to be a black hole, ripping its companion star to pieces. The companion star, HDE 226868, is a blue supergiant with a surface temperature of around 31 000K. It orbits the black hole once every 5.6 days.
The Role of Beam Geometry in Population Statistics and Pulse Profiles of Radio and Gamma-ray Pulsars
NASA Technical Reports Server (NTRS)
Gonthier, Peter L.; VanGuilder, Robert; Harding, Alice K.
2004-01-01
We present results of a pulsar population synthesis study that incorporates a number of recent developments and some significant improvements over our previous study. We have included the results of the Parkes multi-beam pulsar survey in our select group of nine radio surveys, doubling our sample of radio pulsars. More realistic geometries for the radio and gamma-ray beams are included in our Monte Carlo computer code that simulates the characteristics of the Galactic population of radio and gamma-ray pulsars. We adopted with some modifications the radio beam geometry of Arzoumanian, Chernoff & Cordes (2002). For the gamma-ray beam, we have assumed the slot gap geometry described in the work of Muslimov & Harding (2003). To account for the shape of the distribution of radio pulsars in the P(dot) - P diagram, we continue to find that decay of the magnetic field on a timescale of 2.8 Myr is needed. With all nine surveys, our model predicts that EGRET should have seen 7 radio-quiet (below the sensitivity of these radio surveys) and 19 radio-loud gamma-ray pulsars. AGILE (nominal sensitivity map) is expected to detect 13 radio-quiet and 37 radio-loud gamma-ray pulsars, while GLAST, with greater sensitivity is expected to detect 276 radio-quiet and 344 radio-loud gamma-ray pulsars. When the Parkes multi-beam pulsar survey is excluded, the ratio of radio-loud to radio-quiet gamma-ray pulsars decreases, especially for GLAST. The decrease for EGRET is 45%, implying that some fraction of EGRET unidentified sources are radio-loud gamma-ray pulsars. In the radio geometry adopted, short period pulsars are core dominated. Unlike the EGRET gamma-ray pulsars, our model predicts that when two gamma-ray peaks appear in the pulse profile, a dominant radio core peak appears in between the gamma-ray peaks. Our findings suggest that further improvements are required in describing both the radio and gamma-ray geometries.
Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey
NASA Technical Reports Server (NTRS)
Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.
2010-01-01
The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.
Probe for contamination detection in recyclable materials
Taleyarkhan, Rusi
2003-08-05
A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.
NASA Astrophysics Data System (ADS)
Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.
2013-05-01
High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.
Horiguchi, Yukichi; Kudo, Shinpei; Nagasaki, Yukio
2011-01-01
Poly(ethylene glycol)-block-poly(2-(N,N-diethylamino)ethyl methacrylate) (PEG-b-PAMA) was found to solubilize fullerenes such as C60, and this technique was applied to metallofullerenes. Gd@C82 was easily dissolved in water in the presence of PEG-b-PAMA without any covalent derivatization, forming a transparent complex about 20–30 nm in diameter. Low cytotoxicity was confirmed in vitro. Neutron irradiation of cultured cells (colon-26 adenocarcinoma) with Gd@C82-PEG-b-PAMA-complexed nanoparticles showed effective cytotoxicity, indicating the effective emission of gamma rays and internal conversion electrons produced from the neutron capture reaction of Gd. This result suggests a potentially valuable approach to gadolinium-based neutron capture therapy. PMID:27877415
Combined Photoneutron And X Ray Interrogation Of Containers For Nuclear Materials
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; Shaw, Timothy; King, Michael J.; Stevenson, John; Elsalim, Mashal; Brown, Craig; Condron, Cathie
2011-06-01
Effective cargo inspection systems for nuclear material detection require good penetration by the interrogating radiation, generation of a sufficient number of fissions, and strong and penetrating detection signatures. Inspection systems need also to be sensitive over a wide range of cargo types and densities encountered in daily commerce. Thus they need to be effective with highly hydrogenous cargo, where neutron attenuation is a major limitation, as well as with dense metallic cargo, where x-ray penetration is low. A system that interrogates cargo with both neutrons and x-rays can, in principle, achieve high performance over the widest range of cargos. Moreover, utilizing strong prompt-neutron (˜3 per fission) and delayed-gamma ray (˜7 per fission) signatures further strengthens the detection sensitivity across all cargo types. The complementary nature of x-rays and neutrons, used as both probing radiation and detection signatures, alleviates the need to employ exceedingly strong sources, which would otherwise be required to achieve adequate performance across all cargo types, if only one type of radiation probe were employed. A system based on the above principles, employing a commercially-available 9 MV linac was developed and designed. Neutrons are produced simultaneously with x-rays by the photonuclear interaction of the x-ray beam with a suitable converter. A total neutron yield on the order of 1011 n/s is achieved with an average electron beam current of 100 μA. If fissionable material is present, fissions are produced both by the high-energy x-ray beam and by the photoneutrons. Photofission and neutron fission dominate in hydrogenous and metallic cargos, respectively. Neutron-capture gamma rays provide information on the cargo composition. The prompt neutrons resulting from fission are detected by two independent detector systems: by very efficient Differential Die Away Analysis (DDAA) detectors, and by direct detection of neutrons with energies higher than 3 MeV using a recently developed fluorine-based threshold activation detector (TAD). The delayed gamma-ray signals are measured with high efficiency with the same TAD and with additional lower-cost plastic scintillators.
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
1995-01-01
A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.
NASA Astrophysics Data System (ADS)
Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.
2018-02-01
We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.
Recommended Priorities for NASA's Gamma Ray Astronomy Program 1999-2013
NASA Technical Reports Server (NTRS)
Carol, Ladd
1999-01-01
The Gamma-Ray Astronomy Program Working Group (GRAPWG) recommends priorities for the NASA Gamma-Ray Astronomy Program. The highest priority science topic is nuclear astrophysics and sites of gamma ray line emission. Other high priority topics are gamma ray bursts, hard x-ray emission from accreting black holes and neutron stars, the Advanced Compton Telescope (ACT), the High-resolution Spectroscopic Imager (HSI), and the Energetic X-ray Imaging Survey Telescope (EXIST). The recommendations include special consideration for technology development, TeV astronomy, the ultra-long duration balloon (ULDB) program, the International Space Station, optical telescope support, and data analysis and theory.
Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons
NASA Technical Reports Server (NTRS)
Lin, Robert P.
1989-01-01
The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.
Gamma-ray transfer and energy deposition in supernovae
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.
1995-01-01
Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.
Characteristics of gamma-ray line flares
NASA Technical Reports Server (NTRS)
Bai, T.; Dennis, B.
1983-01-01
Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.
The POPOP4 library and codes for preparing secondary gamma-ray production cross sections
NASA Technical Reports Server (NTRS)
Ford, W. E., III
1972-01-01
The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor.
NASA Technical Reports Server (NTRS)
Lang, F. L.; Werntz, C. W.; Crannell, C. J.; Trombka, J. I.; Chang, C. C.
1986-01-01
The ratio of the flux of 15.10-MeV gamma rays to the flux of 4.438-MeV gamma rays resulting from excitation of the corresponding states in C-12 as a sensitive measure of the spectrum of the exciting particles produced in solar flares and other cosmic sources. These gamma rays are produced predominantly by interactions with C-12 and O-16, both of which are relatively abundant in the solar photosphere. Gamma ray production cross sections for proton interactions have been reported previously for all important channels except for the production of 15.10-MeV gamma rays from O-16. The first reported measurement of the 15.10-MeV gamma ray production cross section from p + O-16 is presented here. The University of Maryland cyclotron was employed to produce 40-, 65-, and 86-MeV protons which interacted with CH2 and BeO targets. The resultant gamma ray spectra were measured with a high-purity germanium semiconductor detector at 70, 90, 110, 125, and 140 degrees relative to the direction of the incident beam for each proton energy. Other gamma ray lines resulting from direct excitation and spallation reactions with C-12 and 0-16 were observed as well, and their gamma ray production cross sections described.
The self-absorption effect of gamma rays in /sup 239/Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Hsiao-Hua
1989-01-01
Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less
Using gamma-ray emission to measure areal density of inertial confinement fusion capsulesa)
NASA Astrophysics Data System (ADS)
Hoffman, N. M.; Wilson, D. C.; Herrmann, H. W.; Young, C. S.
2010-10-01
Fusion neutrons streaming from a burning inertial confinement fusion capsule generate gamma rays via inelastic nuclear scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density (ρR) and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, C12 nuclei emit gamma rays at 4.44 MeV after excitation by 14.1 MeV neutrons from D+T fusion. These gamma rays can be measured by a new gamma-ray detector under development. Analysis of predicted signals is in progress, with results to date indicating that the method promises to be useful for diagnosing imploded capsules.
Characterization of gamma rays existing in the NMIJ standard neutron field.
Harano, H; Matsumoto, T; Ito, Y; Uritani, A; Kudo, K
2004-01-01
Our laboratory provides national standards on fast neutron fluence. Neutron fields are always accompanied by gamma rays produced in neutron sources and surroundings. We have characterised these gamma rays in the 5.0 MeV standard neutron field. Gamma ray measurement was performed using an NE213 liquid scintillator. Pulse shape discrimination was incorporated to separate the events induced by gamma rays from those by neutrons. The measured gamma ray spectra were unfolded with the HEPRO program package to obtain the spectral fluences using the response matrix prepared with the EGS4 code. Corrections were made for the gamma rays produced by neutrons in the detector assembly using the MCNP4C code. The effective dose equivalents were estimated to be of the order of 25 microSv at the neutron fluence of 10(7) neutrons cm(-2).
A Search for Ultra--High-Energy Gamma-Ray Emission from Five Supernova Remnants
NASA Astrophysics Data System (ADS)
Allen, G. E.; Berley, D.; Biller, S.; Burman, R. L.; Cavalli-Sforza, M.; Chang, C. Y.; Chen, M. L.; Chumney, P.; Coyne, D.; Dion, C. L.; Dorfan, D.; Ellsworth, R. W.; Goodman, J. A.; Haines, T. J.; Hoffman, C. M.; Kelley, L.; Klein, S.; Schmidt, D. M.; Schnee, R.; Shoup, A.; Sinnis, C.; Stark, M. J.; Williams, D. A.; Wu, J.-P.; Yang, T.; Yodh, G. B.
1995-07-01
The majority of the cosmic rays in our Galaxy with energies in the range of ~1010--1014 eV are thought to be accelerated in supernova remnants (SNRs). Measurements of SNR gamma-ray spectra in this energy region could support or contradict this concept. The Energetic Gamma-Ray Experiment Telescope (EGRET) collaboration has reported six sources of gamma rays above 108 eV whose coordinates are coincident with SNRs. Five of these sources are within the field of view of the CYGNUS extensive air shower detector. A search of the CYGNUS data set reveals no evidence of gamma-ray emission at energies ~1014 eV for these five SNRs. The flux upper limits from the CYGNUS data are compared to the lower energy fluxes measured with the EGRET detector using Drury, Aharonian, & Volk's recent model of gamma-ray production in the shocks of SNRs. The results suggest one or more of the following: (1) the gamma-ray spectra for these five SNRs soften by about 1014 eV, (2) the integral gamma-ray spectra of the SNRs are steeper than about E-1.3, or (3) most of the gamma rays detected with the EGRET instrument for each SNR are not produced in the SNR's shock but are produced at some other site (such as a pulsar).
Gamma Ray Bursts-Afterglows and Counterparts
NASA Technical Reports Server (NTRS)
Fishman, Gerald J
1998-01-01
Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.
GRI: The Gamma-Ray Imager mission
NASA Astrophysics Data System (ADS)
Knödlseder, J.; Gri Consortium
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a
NASA Technical Reports Server (NTRS)
Aharonian, F. A.; Mamidjanian, E. A.; Nikolsky, S. I.; Tukish, E. I.
1985-01-01
The recently observed primary ultra high energy gamma-rays (UHEGR) testify to the cosmic ray (CR) acceleration in the Galaxy. The available data may be interpreted as gamma-ray production due to photomeson production in CR sources.
X-ray and gamma ray astronomy detectors
NASA Technical Reports Server (NTRS)
Decher, Rudolf; Ramsey, Brian D.; Austin, Robert
1994-01-01
X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.
Future Facilities for Gamma-Ray Pulsar Studies
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2003-01-01
Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.
Gamma ray constraints on the Galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.
1991-01-01
We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.
Gamma ray constraints on the galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.
1992-01-01
Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.
Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyzh, A; Wu, C Y; Ullmann, J
2010-08-24
The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.
The Mystery of Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2004-01-01
Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.
The Goddard program of gamma ray transient astronomy
NASA Technical Reports Server (NTRS)
Cline, T. L.; Desai, U. D.; Teegarden, B. J.
1980-01-01
Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.
The Utilization of Classifications in High-Energy Astrophysics Experiments
NASA Astrophysics Data System (ADS)
Atwood, Bill
2012-03-01
The history of high-energy gamma observations stretches back several decades. But it was with the launch of the Energetic Gamma Ray Experiment Telescope (EGRET) in 1991 onboard the Compton Gamma Ray Observatory (CGRO) [1], that the field entered a new era of discovery. At the high-energy end of the electromagnetic spectrum, incoming particles of light, photons, interact with matter mainly by producing electron-positron pairs and this process dominates above an energy of 10-30MeV depending on the material. To a high degree the directionality of the incoming gamma ray is reflected in the e+ and e-, and hence the detection of the trajectories of the e+e- pair can be used to infer the direction of the originating photon. Measuring these high-energy charged particles is the domain of high-energy particle physics and so it should be of little surprise that particle physicists played a significant role in the design and construction of EGRET, as well as the design and implementation of analysis methods for the resulting data. Prior to EGRET, only a handful of sources in the sky were known as high-energy gamma-ray emitters. During EGRET's 9-years mission the final catalog included over 270 sources including new types such as Gamma Ray Bursts (GRBs). This set the stage for the next-generation mission, the Gamma ray Large Area Space Telescope (GLAST) [2]. Very early in the EGRET mission, the realization that the high-energy gamma-ray sky was extremely interesting led to a competition to develop the next-generation instruments. The technology used in EGRET was frozen in the late 1970s and by 1992, enormous advances had been made in experimental particle physics. In particular the effort to develop solid state detectors, targeted for use at the Super Conducting Super Collider (SSC), had made the technology of silicon strip detectors (SSDs) commercially viable for use in large area arrays. Given the limitations imposed by the space environment (e.g., operate in a vacuum, scarce availability of electric power, etc.), this was the ideal technology for the next gamma-ray mission. Consistent with contemporary practice in particle physics, a nearly complete and detailed computer model of GLAST was made to study performance and optimize the design. The jargon in the field refers to such models generically as "the Monte Carlo" (MC) and it included a complete suite of radiation transport codes modeling most of the known interactions that particles undergo upon passage through matter. The MC is also used to provide a randomized source of incoming particles which can be made to mimic celestial sources of gamma rays as well as background cosmic rays. The cosmic rays referred to here are comprised of two main components: trapped radiation in the earth's magnetosphere and a flux of primary charged particles originating from outside. Both fluxes contain a variety of particle types including protons, heavier nuclei, electrons, and positrons. It cannot be emphasized too strongly the value that such a tool brings. Having the "Monte Carlo Truth" for each simulated event allows for the evaluation of what went right and what went wrong both at the detector level as well as at the data analysis level. The Monte Carlo simulations of GLAST are at the heart of its success today. The simulations allowed for the development of the reconstruction analysis (RA) of the flight data prior to the existence of the instrument. The RA transforms the collections of sensor readouts in an event into tracks, energies, and other higher analysis entities. In the case of GLAST, there were many iterations of the RA, first to prove the merits of the design and then, post awarding of the flight instrument contract, the creation of the code to be used in the initial phases of the mission. Since then, the now renamed Fermi-LAT mission is engaged in the 8th such iteration. Critical to the success of any experiment are the identification and quantification of the "signal." Mostly all experiments have backgrounds or artifacts which obscure a clear signal and in the area of high-energy gamma-ray astronomy the situation is extreme. By the very nature of the detection method for gamma rays, it leaves the apparatus vulnerable to interpret cosmic rays as "signal." In low earth orbit the incoming rate of cosmic rays can exceed the gamma-ray rate by over 10,000. To achieve residual background levels in the percent range requires an aggregate separation power of upwards to a million-to-one while at the same time preserving a high efficiency for capturing the signal. From the triggering, to onboard filtering and ultimately the analysis on the ground, the goal is the same: kill background - keep gamma rays. The LAT, the hardware trigger, is a combination of sensor responses coincident at the microsecond timescale, causing all the sensors to be readout forming an "event." The LAT trigger was constructed to be highly efficient for gamma rays and as inefficient as possible for cosmic rays. The rejection power achieved by the trigger is about 5:1 while retaining over 98% efficiency for gamma rays. This still leaves a data event stream hopelessly large to downlink to the ground. A bank of onboard computers does a preliminary event reconstruction to increase the rejection power. For the LAT, this resulted in another factor of ∼5 while maintaining a gamma-ray efficiency of over 96%. Hence, what is downlinked to ground is an orbit averaged rate of about 400 cps of which only a few cps are gamma rays. All this complexity as to actual event composition (e.g., which cosmic ray events make it to the ground), is modeled in the simulations and provides a realistic facsimile to real data and this serves as the input to the ground analysis. Part of the requirements for the mission was to demonstrate prior to launch that the science goals were achievable and this included background rejection at a specified level. During the several years of development working toward this goal it was realized that the science requirements as written were not achievable mainly due to a background which we termed as "irreducible." Positrons hitting the outer protective layers of the LAT (the thermal blanket and micrometeor shield) can annihilate with the atomic electrons producing gammas and cosmic ray protons interacting with the same material produce neutral pions which then promptly decay into two gamma rays. In some cases, the only particles entering the fiducial volume of the detector are gamma rays from these processes and they are indistinguishable from celestial gamma rays. The rejection was increased until the majority of the remainder was "irreducible" in origin along with a demonstration that this residual could be subtracted with appropriately small systematic errors. The LAT instrument and reconstruction of the gamma-ray data from it fall into the realm of particle physics. Our first attempts at background rejection followed standard practice in particle physics: identify good discrimination variables and make cuts. What is meant by "cuts" is to accept (or reject) events for which a given variable (or variables) falls within (or outside) a certain range of values. This method, however, soon revealed itself to be inadequate especially when considering the resulting efficiency for retaining gamma rays. We then turned to data mining techniques which had seen considerable success in the life sciences and financial industries. In the end the classification tree technology was found to be inadequate by itself. A hybrid approach was developed in which first cuts are made using some of the discrimination variables to whittle down the problem and then the simplified problem is solved using a classification tree. In the next section we will see why classification trees offer a substantial increase in efficiency over the "cut and keep" paradigm. Other machine learning methods were tried, such as neural nets, but they were found to be inferior for this problem. It should come as little surprise to find that other gamma-ray experiments also found the classification tree technology advantageous for similar reasons. In particular the ground based Imaging Air Cherenkov Telescope (IACT), MAGIC [3], successfully developed a background rejection for its data based on classification trees. There are several packages which provide classification tree (CT)-based technology [4]. Some of these are commercial while others are free. Please see the references for specifics. In the discussion which follows, the commercial product by TIBCO (SpotfireMiner) is used [5].
Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2011-01-01
Intense millisecond flashes of MeV photons have been observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma- Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for these TGF observations. On several occasions, intense beams of high-energy electrons and positrons have been observed at the geomagnetic conjugate points of TGFs.
Low energy gamma ray emission from the Cygnus OB2 association
NASA Technical Reports Server (NTRS)
Chen, Wan; White, Richard L.
1992-01-01
According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.
Production of gamma rays with energies greater than 30 MeV in the atmosphere
NASA Technical Reports Server (NTRS)
Thompson, D.; Fichtel, C.; Kniffen, D.
1974-01-01
A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. Experimental results compare reasonably well with a three-dimensional Monte Carlo calculation of atmospheric gamma ray production. Inclusion of upward-moving gamma rays makes possible the use of atmospheric secondaries for in-flight calibration of satellite gamma ray detectors.
Soft gamma rays from black holes versus neutron stars
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1992-01-01
The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.
A model for the UHE gamma-rays from Hercules X-1
NASA Technical Reports Server (NTRS)
Eichler, D.; Vestrand, W. T.
1985-01-01
An outburst of gamma rays with energies E gamma 10 to the 12th power eV was recently detected from the X-ray pulsar Hercules X-1. The outburst had a 3 minute duration and occurred at a time during the 35 day X-ray modulation that is associated with X-ray turnon. The gamma rays also have the same 1.24 second modulation that is observed at X-ray energies. Subsequently a 40 minute outburst was detected at E gamma 10 to the 14th power eV. The interaction of ultrahigh energy particles with a precessing accretion disk explain the observed gamma ray light curve. The constraints one can place on acceleration mechanisms and the possibility that the UHE particles are accelerated by shocks in an accretion flow are explained.
The gamma-ray light curves of SN 1987A
NASA Technical Reports Server (NTRS)
Leising, Mark D.; Share, Gerald H.
1990-01-01
Observations of the SN 1987A ejecta in four Co-56-decay gamma-ray lines, obtained using the SMM gamma-ray spectrometer between February 1987 and May 1989, are reported and analyzed. The instrument characteristics and data-reduction procedures are described, and the results are presented in extensive tables and graphs and discussed with reference to theoretical models. Gamma-ray fluxes significantly above possible instrumental levels (as determined from analysis of pre-1987 data) were detected in the second half of 1987 and the first half of 1988. The data are found to favor a model with some Co-56 in regions of low gamma-ray optical depth by 200 d after the SN outburst over models with all Co-56 at one depth within a uniform expanding envelope. Also investigated are the gamma-ray contribution to the total bolometric luminosity and the escape (and potential observability) of Co-57 gamma rays.
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1986-01-01
Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.
NASA Technical Reports Server (NTRS)
1983-01-01
Topics addressing the characteristics and emission mechanisms of gamma ray bursts and neutron and gamma ray emission from solar flares are discussed. In addition, observational aspects of gamma ray astronomy are addressed with particular attention given to optical transients associated with gamma ray bursts.
NASA Technical Reports Server (NTRS)
Kniffen, Donald A.; Elliott, William W.
1999-01-01
The final report consists of summaries of work proposed, work accomplished, papers and presentations published and continuing work regarding the cooperative agreement. The work under the agreement is based on high energy gamma ray source data analysis collected from the Energetic Gamma-Ray Experiment Telescope (EGRET).
NASA Astrophysics Data System (ADS)
Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.
2016-02-01
During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.
High energy gamma-ray observations of SN 1987A
NASA Technical Reports Server (NTRS)
Sood, R. K.; Thomas, J. A.; Waldron, L.; Manchanda, R. K.; Rochester, G. K.
1988-01-01
Results are presented from observations of SN 1987A made with a combined high energy gamma ray and hard X-ray payload carried on a balloon flight over Alice Springs, Australia on April 5, 1988. The payload instrumentation is described, emphasizing the characteristics of the gamma-ray detector. The gamma-ray emission profile is illustrated and the preliminary results of the observations are summarized.
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.
1989-01-01
Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band.
GLAST and Ground-Based Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
McEnery, Julie
2008-01-01
The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.
Dysprosium-159 for transmission imaging and bone mineral analysis.
Rao, D V; Govelitz, G F; Sastry, K S
1977-01-01
The suitability of the intense Kalpha x rays of terbium emitted in the electron-capture decay of 159Dy for use in transmission imaging and bone mineral analysis is investigated. It is found that this radionuclide offers all the advantages of radiations from 210 Pb and none of the disadvantages inherent in the use of the latter. Yields of the Kalpha and Kbeta x rays of terbium and the 58-keV gamma rays emitted in 159 Dy decay are determined using a high-resolution Si(Li) photon spectrometer. Attenuation coefficients for these photons in gadolinium (critical) absorber are measured in a narrow-beam geometry. For Tb Kbeta x rays, whose average energy is only about 0.4 keV above the K edge or Gd, our experimental attenuation coefficient is about 10% less than the theoretical value given by Storm and Israel. Transmission images of regular and irregular bones obtained using 159Dy are presented.
Spallation processes and nuclear interaction products of cosmic rays.
Silberberg, R; Tsao, C H
1990-08-01
Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.
Accelerator based epithermal neutron source
NASA Astrophysics Data System (ADS)
Taskaev, S. Yu.
2015-11-01
We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert C. Haight; John L. Ullmann; Daniel D. Strottman
This Workshop was held on September 3--4, 1999, following the 10th International Symposium on Capture Gamma-Ray Spectroscopy. Presentations were made by 14 speakers, 6 from the US and 8 from other countries on topics relevant to s-, r- and rp-process nucleosynthesis. Laboratory experiments, both present and planned, and astrophysical observations were represented as were astrophysical models. Approximately 50 scientists participated in this Workshop. These Proceedings consist of copies of vu-graphs presented at the Workshop. For further information, the interested readers are referred to the authors.
NASA Astrophysics Data System (ADS)
Yastrebinskii, R. N.
2018-04-01
The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.
TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, A.; Buckley, J. H.; Bugaev, V.
2016-04-20
The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less
A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2009-01-01
Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.
Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan
2017-01-01
Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite
Repeated irradiations with gamma-rays at a Dose of 0.5 Gy may exacerbate asthma.
Fang, Su-ping; Tago, Fumitoshi; Tanaka, Takashi; Simura, Noriko; Muto, Yasuko; Goto, Resuke; Kojima, Shuji
2005-06-01
We previously showed that 0.5 Gy whole-body gamma-ray irradiation with a single or small number of repeated exposures inhibits tumor growth in mice, via elevation of the IFN-gamma/IL-4 ratio concomitantly with a decrease in the percentage of B cells. Here we examined whether repeated 0.5 Gy gamma-rays irradiation can improve asthma in an OVA-induced asthmatic mouse model. We found that repeated irradiation (10 times) with 0.5 Gy of gamma-rays significantly increased total IgE in comparison with the disease-control group. The levels of IL-4 and IL-5 were also significantly higher in the gamma-ray-irradiated group, while that of IFN-gamma was significantly lower, resulting in a further decrease of the IFN-gamma/IL-4 ratio from the normal value. These results indicate that the repeated irradiation with gamma-rays may exacerbate asthma, and may have opposite effects on different immune reactions unlike the irradiation with a single or small number of repeated exposures.
Lightning Initiation and Propagation
2009-08-22
ray (gamma ray ) and multiple-station (>24) cosmic - ray - muon detection network (TERA) pl:esently in place. Upgrade TERA with LaBr3 detectors to...DATES COVERED 4. TITLE AND SUBTITLE Lightning Initistion and Propagation Including the Role of X- Rays , Gamma Rays , and Cosmic Rays 5a... rays , gamma rays , and cosmic rays in the initiation and propagation of lightning and in the phenomenology of thunderclouds. The experimental
GLAST: Exploring Nature's Highest Energy Processes with the Gamma-ray Large Area Space Telescope
NASA Technical Reports Server (NTRS)
Digel, Seth; Myers, J. D.; White, Nicholas E. (Technical Monitor)
2001-01-01
The Gamma-ray Large Area Space Telescope (GLAST) is an international and multi-agency space mission that will study the cosmos in the energy range 10 keV-300 GeV. Several successful exploratory missions in gamma-ray astronomy led to the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Gamma Ray Observatory (CGRO). Launched in 1991, EGRET made the first complete survey of the sky in the 30 MeV-10 GeV range. EGRET showed the high-energy gamma-ray sky to be surprisingly dynamic and diverse, with sources ranging from the sun and moon to massive black holes at large redshifts. Most of the gamma-ray sources detected by EGRET remain unidentified. In light of the discoveries with EGRET, the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope vastly more capable than instruments flown previously, as well as a secondary instrument to augment the study of gamma-ray bursts. The main instrument, the Large Area Telescope (LAT), will have superior area, angular resolution, field of view, and deadtime that together will provide a factor of 30 or more advance in sensitivity, as well as provide capability for study of transient phenomena. The GLAST Burst Monitor (GBM) will have a field of view several times larger than the LAT and will provide spectral coverage of gamma-ray bursts that extends from the lower limit of the LAT down to 10 keV. The basic parameters of the GBM are compared to those of the Burst and Transient Source Experiment (BATSE) instrument on CGRO in Table 1-2. With the LAT and GBM, GLAST will be a flexible observatory for investigating the great range of astrophysical phenomena best studied in high-energy gamma rays. NASA plans to launch GLAST in late 2005.
A method to evaluate hydraulic fracture using proppant detection.
Liu, Juntao; Zhang, Feng; Gardner, Robin P; Hou, Guojing; Zhang, Quanying; Li, Hu
2015-11-01
Accurate determination of the proppant placement and propped fracture height are important for evaluating and optimizing stimulation strategies. A technology using non-radioactive proppant and a pulsed neutron gamma energy spectra logging tool to determine the placement and height of propped fractures is proposed. Gd2O3 was incorporated into ceramic proppant and a Monte Carlo method was utilized to build the logging tools and formation models. Characteristic responses of the recorded information of different logging tools to fracture widths, proppant concentrations and influencing factors were studied. The results show that Gd capture gamma rays can be used to evaluate propped fractures and it has higher sensitivity to the change of fracture width and traceable proppant content compared with the exiting non-radioactive proppant evaluation techniques and only an after-fracture measurement is needed for the new method; The changes in gas saturation and borehole size have a great impact on determining propped fractures when compensated neutron and pulsed neutron capture tool are used. A field example is presented to validate the application of the new technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Tanaka, T.; Allafort, A.; Ballet, J.; Funk, S.; Giordano, F.; Hewitt, J.; Lemoine-Goumard, M.; Tajima, H.; Tibolla, O.; Uchiyama, Y.
2011-01-01
We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.04622 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. In the Fermi-LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of = 1.85 0.06 (stat)+0.18 0.19 (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi-LAT energy range, the model can fit the data considering the statistical and systematic errors.
Gamma-Ray Pulsar Candidates for GLAST
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2008-01-01
The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.
Low energy prompt gamma-ray tests of a large volume BGO detector.
Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A
2012-01-01
Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gamma-Ray Astrophysics: New Insight Into the Universe
NASA Technical Reports Server (NTRS)
Fichtel, Carl E.; Trombka, Jacob I.
1997-01-01
During the 15 years that have passed since the first edition of this book was published, there has been a major increase in our knowledge of gamma-ray astronomy. Much of this advance arises from the extensive results that have been forthcoming from the Compton Gamma-Ray Observatory. There has been the discovery of a new class of gamma-ray objects, namely high-energy gamma- ray-emitting blazars, a special class of Active Galactic Nuclei, whose basic high-energy properties now seem to be understood. A much improved picture of our galaxy now exists in the frequency range of gamma rays. The question of whether cosmic rays are galactic or metagalactic now seems settled with certainty. Significant new information exists on the gamma-ray properties of neutron star pulsars, Seyfert galaxies, and gamma-ray bursts. Substantial new insight has been obtained on solar phenomena through gamma-ray observations. Hence, this seemed to be an appropriate time to write a new edition of this book to add the important scientific implications of these many new findings. The special importance of gamma-ray astrophysics had long been recognized by many physicists and astronomers, and theorists had pursued many aspects of the subject well before the experimental results began to become available. The slower development of the experimental side was not because of a lack of incentive, but due to the substantial experimental difficulties that had to be overcome. Thus, as the gamma-ray results became available in much greater number and detail, it was possible to build upon the theoretical work that already existed and to make substantial progress in the study of many of the phenomena involved. Consequently, a much better understanding of many of the astrophysical phenomena mentioned here and others is now possible. Our principal aims in writing this book are the same as they were for the first edition: to provide a text which describes the significance of gamma-ray astrophysics and to assemble in one place a treatment of gamma rays emitted from bodies in the solar i system, from objects in our galaxy, as well as from interactions between cosmic rays and the interstellar medium, and from beyond our galaxy. Thus, this book is intended for those in astrophysics who wish to have the opportunity to learn more about the evolving field of gamma-ray astronomy and its relationship to the high-energy, evolutionary processes occurring in the universe. The last three chapters of the book provide a general discussion of the experimental aspects of the field that seemed best treated together, separately from the astrophysical aspects of gamma-ray astronomy that are discussed in the first ten chapters.
Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS
NASA Astrophysics Data System (ADS)
Pinzke, Anders
The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.
Gamma-Ray Astronomy Technology Needs
NASA Technical Reports Server (NTRS)
Gehrels, N.; Cannizzo, J. K.
2012-01-01
In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.
Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Cannizzo, John K.
2010-01-01
The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.
Nuclear gamma rays from energetic particle interactions
NASA Technical Reports Server (NTRS)
Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.
1978-01-01
Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.
Fermi Bubbles: an elephant in the gamma-ray sky
NASA Astrophysics Data System (ADS)
Malyshev, Dmitry
2017-03-01
The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.
NASA Technical Reports Server (NTRS)
Sagdeev, Roald
1995-01-01
The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.
The structure and content of the galaxy and galactic gamma rays. [conferences
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Stecker, F. W.
1976-01-01
Papers are presented dealing with galactic structure drawing on all branches of galactic astronomy with emphasis on the implications of the new gamma ray observations. Topics discussed include: (1) results from the COS-B gamma ray satellite; (2) results from SAS-2 on gamma ray pulsar, Cygnus X-3, and maps of the galactic diffuse flux; (3) recent data from CO surveys of the galaxy; (4) high resolution radio surveys of external galaxies; (5) results on the galactic distribution of pulsars; and (6) theoretical work on galactic gamma ray emission.
Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT
NASA Technical Reports Server (NTRS)
Thompson, David J.
2015-01-01
The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.
A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility.
Galford, J E
2017-04-01
The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gamma Ray Pulsars: Multiwavelength Observations
NASA Technical Reports Server (NTRS)
Thompson, David J.
2004-01-01
High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.
NASA Technical Reports Server (NTRS)
Hays, Elizabeth
2009-01-01
An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.
Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT.
Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gwon, C; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Primack, J R; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Watters, K; Winer, B L; Wolff, M T; Wood, K S; Ylinen, T; Ziegler, M
2009-08-14
Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.
NASA Goddard Space Flight Center, on Behalf of the Fermi Large Area Telescope Collaboration
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Because high-energy gamma rays can be produced by processes that also produce neutrinos, the gamma-ray survey of the sky by the Fermi (Gamma-ray Space Telescope offers a view of potential targets for neutrino observations. Gamma-ray bursts. Active Galactic Nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. While important to gamma-ray astrophysics, such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT)on the Fermi spacecraft.
Cosmic rays, gamma rays and synchrotron radiation from the Galaxy
Orlando, Elena
2012-07-30
Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less
Evaluation of a LiI(Eu) neutron detector with coincident double photodiode readout
NASA Astrophysics Data System (ADS)
Yang, H.; Menaa, N.; Bronson, F.; Kastner, M.; Venkataraman, R.; Mueller, W. F.
2011-10-01
Previous work showed that enriched 6Li halide scintillation crystal is a good candidate for portable neutron-sensitive detectors. Photodiode readout is a good alternative to PMT in compact devices. These detectors are often required to work in presence of a strong gamma background. Therefore, great discrimination against gamma rays is crucial. Because of the high Q-value of the 6Li(n,α) 3H reaction, the light yield of a neutron capture signal corresponds to 3-4 MeV gamma equivalent in spite of the quenching effect of heavily charged particles. As a result, energy discrimination is quite effective against gamma signals generated in thin crystals. However, direct gamma interactions inside the photodiode can create pulses whose amplitude is large enough to interfere with thermal neutron peak. This study shows an innovative design based on coincident readout to solve this problem. In this design, two photodiodes are attached on both sides of the LiI crystal. The output signal is only accepted when both photodiodes give out coincident output. The method is proved to effectively suppress background in the neutron window in a 420 mR/h 137Cs field down to the level of natural background.
Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.
Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen
2017-08-24
The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.
The 3C 279 Campaign of Winter 1999: A Gamma-Optical Correlation?
NASA Technical Reports Server (NTRS)
Hartman, R. C.; Villata, M.; Raiteri, C. M.; Sobrito, M.; DeFrancesco, G.; Ostorero, L.; Tosti, G.; Kurtanidze, O.; Nikolashvili, M.; Takalo, L.
2000-01-01
Preliminary results are presented from the gamma-optical campaign of January-February 1999 on 3C 279. During this period we obtained good optical sampling of the source, the best ever for a gamma-bright OVV quasar. Its large and fast variations have been compared with the gamma-ray fluxes obtained simultaneously by Energy Gamma Ray Experiment Telescope (EGRET), on Compton Gamma Ray Observatory (CGRO). Despite rather poor counting statistics in the gamma-ray data, a fair correlation is found, with the gamma variations following those in the optical by 3-4 days. This is the first time such a significant day-scale correlation has been observed between the optical and gamma emissions from a OVV quasar. Its implications are currently under study.
Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
A Study of Spatially-Coincident IceCube Neutrinos and Fermi Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
Seymour, Hannah; Mukherjee, Reshmi; Shaevitz, Michael; Santander, Marcos
2016-03-01
The IceCube neutrino telescope has detected very-high-energy neutrino events with energies between several hundred TeV to a few PeV beginning inside the detector. These events are unlikely to have originated in the atmosphere, and are suspected to come from astrophysical sources, the likes of which can also be observed in gamma rays by the Fermi Gamma-Ray Space Telescope. We present an analysis of archival GeV gamma-ray data collected with the Large Area Telescope onboard the Fermi satellite to search for gamma-ray sources spatially coincident with the locations of high-enery muon neutrinos detected by IceCube. The combined detection of gamma rays and neutrinos from an astrophysical source will allow us to identify cosmic-ray acceleration sites. With gratitude to the Nevis Laboratories REU program.
NASA Technical Reports Server (NTRS)
Guiriec, S.; Kouveliotou, C.; Hartmann, D. H.; Granot, J.; Asano, K.; Meszaros, P.; Gill, R.; Gehrels, N.; McEnery, J.
2016-01-01
The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB -ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.
Blazar 3C 66A: Another extragalactic source of ultra-high-energy gamma-ray photons
NASA Astrophysics Data System (ADS)
Neshpor, Yu. I.; Stepanyan, A. A.; Kalekin, O. P.; Fomin, V. P.; Chalenko, N. N.; Shitov, V. G.
1998-03-01
he observations of the object 3C 66A which were carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in November-December 1996 revealed a flux of ultra-high-energy (>10^12 eV) gamma-ray photons from this blazar. According to preliminary estimates, the photon flux is (31) 10^11 photons cm^-2 s^-1. The blazar 3C 66A is the third extragalactic object from which a flux of ultra- high-energy gamma-ray photons was detected. Fluxes of gamma-ray photons were previously detected from the galaxies Mk 421 and Mk 501 at the Whipple observatory. This result provides further evidence that active processes proceed in blazars which are accompanied by the generation of cosmic rays responsible for the emission of gamma-ray photons.
Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.
Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P
2012-01-13
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Validating (d,p gamma) as a Surrogate for Neutron Capture
Ratkiewicz, A.; Cizewski, J.A.; Pain, S.D.; ...
2015-05-28
The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate formore » (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.« less
Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487
NASA Technical Reports Server (NTRS)
Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.;
2014-01-01
Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and radio flares could be established. Conclusions. If the gamma-ray flux is a mixture of synchrotron self-Compton (SSC) and external Compton (EC) emission, the observed GeV spectral variability may result from varying relative contributions of these two emission components. This explanation fits the observed changes in the overall IR to gamma-ray SED.
Pulsed Gamma Rays from the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope
Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...
2009-06-19
In this paper, we report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power E(dotabove) = 3.5 x 10 33 erg s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 andmore » 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the "normal" gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) × 10 –8 cm –2 s –1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Finally, based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ/E(dotabove) ≃ 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.« less
Gamma-sky.net: Portal to the gamma-ray sky
NASA Astrophysics Data System (ADS)
Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes
2017-01-01
http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!
Gamma-Ray Pulsar Candidates for GLAST
NASA Technical Reports Server (NTRS)
Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.
2007-01-01
The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.
High energy gamma ray astronomy
NASA Technical Reports Server (NTRS)
Fichtel, Carl E.
1987-01-01
High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.
NASA Astrophysics Data System (ADS)
Sharma, M.; Nattress, J.; Wilhelm, K.; Jovanovic, I.
2017-06-01
We demonstrate an all-solid-state design for a composite heterogeneous scintillation detector sensitive to interactions with high-energy photons (gammas), fast neutrons, and thermal neutrons. The scintillator exhibits triple pulse shape discrimination, effectively separating electron recoils, fast neutron recoils, and neutron captures. This is accomplished by combining the properties of two distinct scintillators, whereby a 51-mm diameter, 51-mm tall cylinder of pulse shape discriminating plastic is wrapped by a 320-μm thick sheet of 6LiF:ZnS(Ag), optically coupling the scintillators to each other and to the photomultiplier tube. In this way, the sensitivity to neutron captures is achieved without the need to load the plastic scintillator with a capture agent. We demonstrate a figure of merit of up to 1.2 for fast neutrons/gammas and 5.7 for thermal neutrons/gammas. Intrinsic capture efficiency is found to be 0.46±0.05% and is in good agreement with simulation, while gamma rejection was 10-6 with respect to the capture region and 10-4 with respect to the recoil region using a 300 keVee threshold. Finally, we show an improvement in capture-gated neutron spectroscopy by rejecting accidental gamma coincidences using pulse shape discrimination in the plastic scintillator.
NASA Astrophysics Data System (ADS)
Abdo, Aws Ahmad
2007-08-01
Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.
NASA Astrophysics Data System (ADS)
Fukuda, Yoshiyuki; Moriyama, Shigetaka
2012-07-01
A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.
NASA Technical Reports Server (NTRS)
Cline, Thomas L.
1987-01-01
The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.
Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology
NASA Technical Reports Server (NTRS)
Puget, J. L.
1973-01-01
An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.
REVIEWS OF TOPICAL PROBLEMS: On the nature of cosmic gamma-ray bursts
NASA Astrophysics Data System (ADS)
Luchkov, B. I.; Mitrofanov, I. G.; Rozental', I. L.
1996-07-01
Current hypotheses of gamma-ray burst origin are analysed. About 30 years after their discovery, it is still unclear where gamma-ray bursts are created (Solar system, Galaxy or Metagalaxy). Nor is the mechanism of their production known. This paper reviews on-going gamma-ray experiments and suggests possible lines of further studies on their origin.
A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission
NASA Technical Reports Server (NTRS)
Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.;
2012-01-01
With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
Dissecting the Gamma-Ray Background in Search of Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.
2014-02-01
Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitivemore » with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.« less
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.
1994-01-01
Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.
Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study.
Polf, J C; Peterson, S; Ciangaru, G; Gillin, M; Beddar, S
2009-02-07
In this paper, we present the results of a preliminary study of secondary 'prompt' gamma-ray emission produced by proton-nuclear interactions within tissue during proton radiotherapy. Monte Carlo simulations were performed for mono-energetic proton beams, ranging from 2.5 MeV to 250 MeV, irradiating elemental and tissue targets. Calculations of the emission spectra from different biological tissues and their elemental components were made. Also, prompt gamma rays emitted during delivery of a clinical proton spread-out Bragg peak (SOBP) in a homogeneous water phantom and a water phantom containing heterogeneous tissue inserts were calculated to study the correlation between prompt gamma-ray production and proton dose delivery. The results show that the prompt gamma-ray spectra differ significantly for each type of tissue studied. The relative intensity of the characteristic gamma rays emitted from a given tissue was shown to be proportional to the concentration of each element in that tissue. A strong correlation was found between the delivered SOBP dose distribution and the characteristic prompt gamma-ray production. Based on these results, we discuss the potential use of prompt gamma-ray emission as a method to verify the accuracy and efficacy of doses delivered with proton radiotherapy.
The locations of cosmic explosions
NASA Technical Reports Server (NTRS)
Fruchter, A. S.; Levan, A. J.; Strolger, L.; Vreeswijk, P. M.; Bersier, D.; Burud, I.; Castro-Ceron, J. M.; Consclice, C.; Dahlen, T.; Strolger, L.
2005-01-01
When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. Recently, it has become apparent that stellar collapse can power the even more brilliant relativistic explosions known as long-duration gamma-ray bursts. In some cases, a gamma-ray burst and a supernova have been observed from the same event. One would thus expect that gamma-ray bursts and supernovae should be found in similar environments. Here we show that this expectation is wrong. Using Hubble Space Telescope imaging of the host galaxies of long-duration gamma-ray bursts and core-collapse supernovae, we demonstrate that while the distribution of the supernovae in their hosts traces the blue light of young stars, the gamma-ray bursts are much more concentrated on the very brightest regions of their hosts. Furthermore, the host galaxies of the gamma-ray bursts are significantly fainter and more irregular than the hosts of the supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the very most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long-duration gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
Ohlinger, R.D.; Humphrey, H.W.
1985-08-26
A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.
Detecting pin diversion from pressurized water reactors spent fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Young S.; Sitaraman, Shivakumar
Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and takingmore » the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.« less
Long gamma-ray bursts and core-collapse supernovae have different environments.
Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E
2006-05-25
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST
NASA Technical Reports Server (NTRS)
Chen, Andrew; Ritz, Steven
1999-01-01
Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.
NASA Astrophysics Data System (ADS)
Wunderer, Cornelia B.; GRI Collaboration
2006-09-01
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.
GRI: the gamma-ray imager mission
NASA Astrophysics Data System (ADS)
Knödlseder, Jürgen
2006-06-01
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.
A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)
NASA Technical Reports Server (NTRS)
Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.
2006-01-01
We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification
NASA Astrophysics Data System (ADS)
Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee
2017-05-01
Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
NASA Astrophysics Data System (ADS)
Aleksandrov, A. P.; Berezovoy, A. N.; Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseyev, A. A.; Ulin, S. Y.
1985-09-01
Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimation material can lead to the appearance of a gamma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.
An Unusual Supernova in the Error Box of the Gamma-Ray Burst of 25 April 1998
NASA Technical Reports Server (NTRS)
Galama , T. J.; Vreeswijk, P. M.; vanParadijs, J.; Kouveliotou, C.; Augusteijn, T.; Boehnhardt, H.; Brewer, J. P.; Doublier, V.; Gonzalez, J.-F.; Leibundgut, B.;
1999-01-01
The discovery of afterglows associated with gamma-ray bursts at X-ray, optical and radio wavelengths and the measurement of the redshifts of some of these events has established that gamma-ray bursts lie at extreme distances, making them the most powerful photon-emitters known in the Universe. Here we report the discovery of transient optical emission in the error box of the gamma-ray burst GRB980425, the light curve of which was very different from that of previous optical afterglows associated with gamma-ray bursts. The optical transient is located in a spiral arm of the galaxy ESO 184-GS2, which has a redshift velocity of only 2,550 km/ s. Its optical spectrum and location indicate that it is a very luminous supernova, which has been identified as SN1998bw. If this supernova and GRB980425 are indeed associated, the energy radiated in gamma-rays is at least four orders of magnitude less than in other gamma-ray bursts, although its appearance was otherwise unremarkable: this indicates that very different mechanisms can give rise to gamma-ray bursts. But independent of this association, the supernova is itself unusual, exhibiting an unusual light curve at radio wavelengths that requires that the gas emitting the radio photons be expanding relativistically.
Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander
2014-02-01
Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less
Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)
NASA Technical Reports Server (NTRS)
Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.
1998-01-01
Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.
Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM
NASA Technical Reports Server (NTRS)
Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.
2007-01-01
Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.
Separation of gamma-ray and neutron events with CsI(Tl) pulse shape analysis
NASA Astrophysics Data System (ADS)
Ashida, Y.; Nagata, H.; Koshio, Y.; Nakaya, T.; Wendell, R.
2018-04-01
Fast neutrons are a large background to measurements of gamma-rays emitted from excited nuclei, such that detectors that can efficiently distinguish between the two are essential. In this paper we describe the separation of gamma-rays from neutrons with the pulse shape information of the CsI(Tl) scintillator, using a fast neutron beam and several gamma-ray sources. We find that a figure of merit optimized for this separation takes on large and stable values (nearly 4) between 5 and 10 MeV of electron equivalent deposited energy, the region of most interest to the study of nuclear de-excitation gamma-rays. Accordingly, this work demonstrates the ability of CsI(Tl) scintillators to reject neutron backgrounds to gamma-ray measurements at these energies.
Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.;
2014-01-01
A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.;
2013-01-01
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.
The GeV Gamma-Ray Emission Detected by Fermi-LAT Adjacent to SNR Kesteven 41
NASA Astrophysics Data System (ADS)
Liu, Bing; Chen, Yang; Zhang, Xiao; Zhang, Gao-Yuan; Xing, Yi; Pannuti, Thomas G.
2017-02-01
Gamma-ray observations for Supernova remnant (SNR)-molecular cloud (MC) association systems play an important role in the research on the acceleration and propagation of cosmic-ray protons. Through the analysis of 5.6 years of Fermi-Large Area Telescope observation data, here we report on the detection of a gamma-ray emission source near the SNR Kesteven 41 with a significance of 24σ in 0.2-300 GeV. The best-fit location of the gamma-ray source is consistent with the MC with which the SNR interacts. Several hypotheses including both leptonic and hadronic scenarios are considered to investigate the origin of these gamma-rays. The gamma-ray emission can be naturally explained by the decay of neutral pions produced via the collision between high energy protons accelerated by the shock of Kesteven 41 and the adjacent MC. The electron energy budget would be too high for the SNR if the gamma-rays were produced via inverse Compton (IC) scattering off the Cosmic Microwave Background (CMB) photons.
Fermi: The Gamma-Ray Large Area Telescope Mission Status
NASA Technical Reports Server (NTRS)
McEnery, Julie
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Space Telescope Mission Status
NASA Technical Reports Server (NTRS)
McEnery, Julie E
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of a population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2015-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Space Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications
NASA Technical Reports Server (NTRS)
Harding, Alice K.
2011-01-01
The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.
Search for gamma-ray emission from AE Aquarii with seven year of Fermi LAT observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Torres, Diego F.; Rea, Nanda
2016-11-14
AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (more » $${P}_{\\mathrm{spin}}$$ = 33.08 s) white dwarfs (WDs) known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. When using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the WD. We detected no gamma-ray pulsations above 3σ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aqr is detected by Fermi LAT. We also impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $$1.3\\times {10}^{-12}$$ erg cm -2 s -1 in the 100 MeV–300 GeV energy range, providing constraints on models.« less
NASA Astrophysics Data System (ADS)
Aleksandrov, A. P.; Berezovoj, A. N.; Gal'Per, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseev, A. A.; Ulin, S. E.; Shchvets, N. I.
1984-11-01
Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimator material can lead to the appearance of a gramma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.
The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-03-25
The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 × 10 –8 ph cm –2 s –1 (for E>100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 × 10 –8 ph cm –2 s –1 (for E>100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range ~1-5 GeV. The rotational energy-loss rate (more » $$\\dot{E}$$) of these neutron stars spans five decades, from ~3 × 10 33 erg s –1 to 5 × 10 38 erg s –1, and the apparent efficiencies for conversion to gamma-ray emission range from ~0.1% to ~ unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by ≳0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. In conclusion, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.« less
Fermi GBM: Highlights from the First Year
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2009-01-01
The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.
Recombining plasma in the gamma-ray-emitting mixed-morphology supernova remnant 3C 391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergin, T.; Sezer, A.; Saha, L.
2014-07-20
A group of middle-aged mixed-morphology (MM) supernova remnants (SNRs) interacting with molecular clouds (MCs) has been discovered to be strong GeV gamma-ray emitters by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope (Fermi-LAT). The recent observations of the Suzaku X-ray satellite have revealed that some of these interacting gamma-ray-emitting SNRs, such as IC443, W49B, W44, and G359.1-0.5, have overionized plasmas. 3C 391 (G31.9+0.0) is another Galactic MM SNR interacting with MCs. It was observed in GeV gamma rays by Fermi-LAT as well as in the 0.3-10.0 keV X-ray band by Suzaku. In this work, 3C 391more » was detected in GeV gamma rays with a significance of ∼18σ and we showed that the GeV emission is point-like in nature. The GeV gamma-ray spectrum was shown to be best explained by the decay of neutral pions assuming that the protons follow a broken power-law distribution. We revealed radiative recombination structures of silicon and sulfur from 3C 391 using Suzaku data. In this paper, we discuss the possible origin of this type of radiative plasma and hadronic gamma rays.« less
GRI: The Gamma-Ray Imager mission
NASA Astrophysics Data System (ADS)
Knödlseder, Jürgen; GRI Consortium
With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.
GRI: The Gamma-Ray Imager mission
NASA Astrophysics Data System (ADS)
Knödlseder, Jürgen; GRI Consortium
2006-06-01
With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.
Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
Ackermann, M.
2012-01-12
Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less
Status of the GAMMA-400 Project
NASA Technical Reports Server (NTRS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.;
2013-01-01
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Abdul-Majid, S
1987-01-01
The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.
Fermi GBM Observations of Terrestrial Gamma-Ray Flashes
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.;
2010-01-01
This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, Igor V.; Porter, Troy A.
2007-06-14
We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less
NEAR Gamma Ray Spectrometer Characterization and Repair
NASA Technical Reports Server (NTRS)
Groves, Joel Lee; Vajda, Stefan
1998-01-01
This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.
Multiwavelength Study of Gamma-Ray Bright Blazars
NASA Astrophysics Data System (ADS)
Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.
2011-01-01
We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Sizing up the population of gamma-ray binaries
NASA Astrophysics Data System (ADS)
Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick
2017-12-01
Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.
Cosmic gamma-rays and cosmic nuclei above 1 TeV
NASA Technical Reports Server (NTRS)
Watson, A. A.
1986-01-01
Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.
Preliminary Iron Distribution on Vesta
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Mittlefehldt, David W.
2013-01-01
The distribution of iron on the surface of the asteroid Vesta was investigated using Dawn's Gamma Ray and Neutron Detector (GRaND) [1,2]. Iron varies predictably with rock type for the howardite, eucrite, and diogenite (HED) meteorites, thought to be representative of Vesta. The abundance of Fe in howardites ranges from about 12 to 15 wt.%. Basaltic eucrites have the highest abundance, whereas, lower crustal and upper mantle materials (cumulate eucrites and diogenites) have the lowest, and howardites are intermediate [3]. We have completed a mapping study of 7.6 MeV gamma rays produced by neutron capture by Fe as measured by the bismuth germanate (BGO) detector of GRaND [1]. The procedures to determine Fe counting rates are presented in detail here, along with a preliminary distribution map, constituting the necessary initial step to quantification of Fe abundances. We find that the global distribution of Fe counting rates is generally consistent with independent mineralogical and compositional inferences obtained by other instruments on Dawn such as measurements of pyroxene absorption bands by the Visual and Infrared Spectrometer (VIR) [4] and Framing Camera (FC) [5] and neutron absorption measurements by GRaND [6].
Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.
1972-01-01
A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.
Sources of GeV Photons and the Fermi Results
NASA Astrophysics Data System (ADS)
Dermer, Charles D.
This chapter presents the elaborated lecture notes on Sources of GeV Photons and the Fermi Results given by Charles D. Dermer at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". The Fermi Gamma-ray Space Telescope made important discoveries and established new results in various areas of astrophysics: from our solar system to remote gamma-ray bursts, from pulsar physics to limits on dark matter and Lorentz invariance violations. The author gives a broad overview of these results by discussing GeV instrumentation and the GeV sky as seen by Fermi, the Fermi catalogs on gamma-ray sources, pulsars and active galactic nuclei, relativistic jet physics and blazars, gamma-rays from cosmic rays in the Galaxy, from star-forming galaxies and from clusters of galaxies, the diffuse extra-galactic gamma-ray background, micro-quasars, radio galaxies, the extragalactic background light, gamma-ray bursts, Fermi acceleration, ultra-high energy cosmic rays, and black holes.
Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi
2007-07-12
The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less
Ground-based very high energy gamma ray astronomy: Observational highlights
NASA Technical Reports Server (NTRS)
Turver, K. E.
1986-01-01
It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.
Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen
2011-11-01
To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.
Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.
Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J
2006-02-09
The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.
Helios-2 Vela-Ariel-5 gamma-ray burst source position
NASA Technical Reports Server (NTRS)
Cline, T. L.; Trainor, J. H.; Desai, U. D.; Klebesadel, R. W.; Ricketts, M.; Heluken, H.
1979-01-01
The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure.
Measurement of radiative proton capture on F 18 and implications for oxygen-neon novae reexamined
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akers, C.; Laird, A. M.; Fulton, B. R.
The rate of the F-18(p, gamma)Ne-19 reaction affects the final abundance of the gamma-ray observable radioisotope F-18, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, F-19. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the F-18(p, gamma)Ne-19 reaction. Themore » strength of the 665 keV resonance (E-x = 7.076 MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of F-18 at any astrophysical energy.« less
Cosmic ray albedo gamma rays from the quiet sun
NASA Technical Reports Server (NTRS)
Seckel, D.; Stanev, T.; Gaisser, T. K.
1992-01-01
We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).
NASA Technical Reports Server (NTRS)
Jones, W. V. (Editor); Wefel, J. P. (Editor)
1985-01-01
The potential of the Space Station as a platform for cosmic-ray and high-energy gamma-ray astronomy is discussed in reviews, reports, and specific proposals. Topics examined include antiparticles and electrons, science facilities and new technology, high-energy nuclear interactions, nuclear composition and energy spectra, Space Shuttle experiments, Space Station facilities and detectors, high-energy gamma rays, and gamma-ray facilities and techniques. Consideration is given to universal-baryon-symmetry testing on the scale of galactic clusters, particle studies in a high-inclination orbit, balloon-borne emulsion-chamber results on ultrarelativistic nucleus-nucleus interactions, ionization states of low-energy cosmic rays, a large gamma-ray telescope for point-source studies above 1 GeV, and the possible existence of stable quark matter.
The supernova-gamma-ray burst-jet connection.
Hjorth, Jens
2013-06-13
The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Albert, A.
2013-07-01
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign andmore » show that, despite their low latitudes, most of them are likely of extragalactic origin.« less
Ackermann, M.; Ajello, M.; Albert, A.; ...
2013-06-17
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. In addition, for each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. Finally, we proceed to discuss the 27 sources found at Galactic latitudes smaller thanmore » 10° and show that, despite their low latitudes, most of them are likely of extragalactic origin.« less
The goals of gamma-ray spectroscopy in high energy astrophysics
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.
1990-01-01
The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.
The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays
NASA Technical Reports Server (NTRS)
Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.
2011-01-01
In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.
Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory
NASA Technical Reports Server (NTRS)
Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.
1992-01-01
Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.
Very-high-energy gamma rays from a distant quasar: how transparent is the universe?
Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J
2008-06-27
The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.
Gamma-ray burster recurrence timescales
NASA Technical Reports Server (NTRS)
Schaefer, B. E.; Cline, T. L.
1984-01-01
Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.
Multiwavelength Photometric and Spectropolarimetric Analysis of the FSRQ 3C 279
NASA Astrophysics Data System (ADS)
Patiño-Álvarez, V. M.; Fernandes, S.; Chavushyan, V.; López-Rodríguez, E.; León-Tavares, J.; Schlegel, E. M.; Carrasco, L.; Valdés, J.; Carramiñana, A.
2018-06-01
In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multiwavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry. Based on the behaviour of the gamma-ray light curve with respect to other bands, we identified three different activity periods. One of the activity periods shows anomalous behaviour with no gamma-ray counterpart associated with optical and NIR flares. Another anomalous activity period shows a flare in gamma-rays, 1 mm and polarization degree, however, it does not have counterparts in the UV continuum, optical and NIR bands. We find a significant overall correlation of the UV continuum emission, the optical and NIR bands. This correlation suggests that the NIR to UV continuum is co-spatial. We also find a correlation between the UV continuum and the 1 mm data, which implies that the dominant process in producing the UV continuum is synchrotron emission. The gamma-ray spectral index shows statistically significant variability and an anti-correlation with the gamma-ray luminosity. We demonstrate that the dominant gamma-ray emission mechanism in 3C 279 changes over time. Alternatively, the location of the gamma-ray emission zone itself may change depending on the activity state of the central engine.
Fermi/LAT study of gamma-ray emission in the direction of the monceros loop supernova remnant
Katagiri, H.; Sugiyama, S.; Ackermann, M.; ...
2016-10-31
Here, we present an analysis of the gamma-ray measurements by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Monoceros Loop (G205.5+0.5). The brightest gamma-ray peak is spatially correlated with the Rosette Nebula, which is a molecular cloud complex adjacent to the southeast edge of the SNR. After subtraction of this emission by spatial modeling, the gamma-ray emission from the SNR emerges, which is extended and fit by a Gaussian spatial template. The gamma-ray spectra are significantly better reproduced by a curved shape than a simple power law. The luminosities between 0.2 and 300 GeV aremore » $$\\sim 4\\times {10}^{34}$$ erg s -1 for the SNR and $$\\sim 3\\times {10}^{34}$$ erg s -1 for the Rosette Nebula, respectively. We also argue that the gamma-rays likely originate from the interactions of particles accelerated in the SNR. Furthermore, the decay of neutral pions produced in nucleon–nucleon interactions of accelerated hadrons with interstellar gas provides a reasonable explanation for the gamma-ray emission of both the Rosette Nebula and the Monoceros SNR.« less
Moisture effect in prompt gamma measurements from soil samples.
Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Raashid, M A; Isab, A H
2016-09-01
The variation in intensity of 1.78MeV silicon, 6.13MeV oxygen, and 2.22MeV hydrogen prompt gamma rays from soil samples due to the addition of 5.1, 7.4, 9.7, 11.9 and 14.0wt% water was studied for 14MeV incident neutron beams utilizing a LaBr3:Ce gamma ray detector. The intensities of 1.78MeV and 6.13MeV gamma rays from silicon and oxygen, respectively, decreased with increasing sample moisture. The intensity of 2.22MeV hydrogen gamma rays increases with moisture. The decrease in intensity of silicon and oxygen gamma rays with moisture concentration indicates a loss of 14MeV neutron flux, while the increase in intensity of 2.22MeV gamma rays with moisture indicates an increase in thermal neutron flux due to increasing concentration of moisture. The experimental intensities of silicon, oxygen and hydrogen prompt gamma rays, measured as a function of moisture concentration in the soil samples, are in good agreement with the theoretical results obtained through Monte Carlo calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Ali, M. O.
2012-09-01
Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims: Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods: Data obtained in 20.2 h of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results: No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions: The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 μG in the inner lobes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.
2011-12-01
We report the discovery of {gamma}-ray pulsations ({ge}0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the {gamma}-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold {gamma}-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 {+-} 0.01 {+-} 0.01 cycles which are aligned with the X-ray peaks. The first {gamma}-ray peak trails themore » radio pulse by 0.08 {+-} 0.01 {+-} 0.01, while its amplitude decreases with increasing energy as for the other {gamma}-ray pulsars. Spectral analysis of the pulsed {gamma}-ray emission suggests a simple power law of index -2.1 {+-} 0.1 {+-} 0.2 with an exponential cutoff at 3.0{sub -0.7}{sup +1.1} {+-} 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral {gamma}-ray photon flux above 0.1 GeV is (13.7 {+-} 1.4 {+-} 3.0) x 10{sup -8} cm{sup -2} s{sup -1}, which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10{sup 34} erg s{sup -1} and an efficiency {eta} of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10{sup -8} cm{sup -2} s{sup -1} for off-pulse emission from the object.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Ackermann, M.; Ajello, M.
2009-07-10
We report the discovery of {gamma}-ray pulsations ({>=}0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the {gamma}-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold {gamma}-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 {+-} 0.01 {+-} 0.01 cycles which are aligned with the X-ray peaks. The first {gamma}-ray peak trails themore » radio pulse by 0.08 {+-} 0.01 {+-} 0.01, while its amplitude decreases with increasing energy as for the other {gamma}-ray pulsars. Spectral analysis of the pulsed {gamma}-ray emission suggests a simple power law of index -2.1 {+-} 0.1 {+-} 0.2 with an exponential cutoff at 3.0{sup +1.1} {sub -0.7} {+-} 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral {gamma}-ray photon flux above 0.1 GeV is (13.7 {+-} 1.4 {+-} 3.0) x 10{sup -8} cm{sup -2} s{sup -1}, which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10{sup 34} erg s{sup -1} and an efficiency {eta} of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10{sup -8} cm{sup -2} s{sup -1} for off-pulse emission from the object.« less
NASA Technical Reports Server (NTRS)
Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.
1985-01-01
A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.
Multiwavelength Challenges in the Fermi Era
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2010-01-01
The gamma-ray surveys of the sky by AGILE and the Fermi Gamma-ray Space Telescope offer both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources of interest can be difficult both in terms of logistics and in terms of generating scientific interest.
Duval, J.S.
1987-01-01
A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.
A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy
NASA Astrophysics Data System (ADS)
Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.
2018-01-01
A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.
New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts
Atwood, W. B.; Baldini, L.; Bregeon, J.; ...
2013-08-19
Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less
Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.
Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku
2018-05-25
Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.
A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.
Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J
2005-05-12
The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.
The second FERMI large area telescope catalog of gamma-ray pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Ajello, M.; Allafort, A.
2013-09-19
This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less
The second fermi large area telescope catalog of gamma-ray pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Ajello, M.; Allafort, A.
2013-09-19
This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less
NASA Astrophysics Data System (ADS)
Limkitjaroenporn, P.; Kaewkhao, J.
2014-10-01
In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African's zircons are 4.6716±0.0040 g/cm3 and 4.5505±0.0018 g/cm3, respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223-662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.
2007-12-17
We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Mainmore » Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.« less
High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae
NASA Astrophysics Data System (ADS)
Vurm, Indrek; Metzger, Brian D.
2018-01-01
The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.
Novel methods for estimating 3D distributions of radioactive isotopes in materials
NASA Astrophysics Data System (ADS)
Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.
2016-09-01
In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.
A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays
NASA Astrophysics Data System (ADS)
Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo
We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.
Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less
Coded-aperture imaging of the Galactic center region at gamma-ray energies
NASA Technical Reports Server (NTRS)
Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.
1991-01-01
The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.
Hard X-ray and low-energy gamma-ray spectrometers
NASA Technical Reports Server (NTRS)
Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.
1988-01-01
Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.
NASA Technical Reports Server (NTRS)
Stecker, F. W. (Editor); Trombka, J. I. (Editor)
1973-01-01
Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.
NASA Technical Reports Server (NTRS)
Lingenfelter, R. E.; Ramaty, R.
1986-01-01
Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.
Investigation of gamma rays from the galactic center
NASA Technical Reports Server (NTRS)
Helmken, H. F.
1973-01-01
Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.
An Ordinary Gamma-Ray Burst with Extraordinary Consequences
2017-10-18
On Aug. 17, the Gamma-ray Burst Monitor on NASA's Fermi Gamma-ray Space Telescope caught a short burst of gamma rays from the spectacular smashup of two neutron stars, setting off a chain of events that marks the first-ever detection of a cosmic event in gravitational waves and different kinds of light. NASA scientists Colleen Wilson-Hodge and Tyson Littenberg explain what happened and what it means for science and discovery.
New Mexico Play Fairway Analysis: Gamma Ray Logs and Heat Generation Calculations for SW New Mexico
Shari Kelley
2015-10-23
For the New Mexico Play fairway Analysis project, gamma ray geophysical well logs from oil wells penetrating the Proterozoic basement in southwestern New Mexico were digitized. Only the portion of the log in the basement was digitized. The gamma ray logs are converted to heat production using the equation (Bucker and Rybach, 1996) : A[µW/m3] = 0.0158 (Gamma Ray [API] – 0.8).
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
1995-09-01
We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.
Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data
NASA Astrophysics Data System (ADS)
Burns, Eric; Fermi Gamma-ray Burst Monitor Team
2018-01-01
The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.
Chlorine signal attenuation in concrete.
Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B
2015-11-01
The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T
2007-03-01
A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.
Development of the instruments for the Gamma Ray Observatory
NASA Technical Reports Server (NTRS)
Madden, J. J.; Kniffen, D. A.
1986-01-01
The Gamma Ray Observatory (GRO) is to be launched in 1988 by the STS. The GRO will feature four very large instruments: the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), the Energetic Gamma Ray Experiment Telescope (EGRET) and the Burst and Transient Source Experiment (BATSE). The instruments weigh from 900-1200 kg each, and required the development of specialized lifting and dolly devices to permit their assembly, manipulation and testing. The GRO is intended a{s a tool for studying discrete celestial objects such as black holes, neutron stars and other gamma-ray emitting objects, scanning for nucleosynthesis processes, mapping the Galaxy and other, high energy galaxies in terms of gamma rays, searching for cosmological effects and observing gamma ray bursts. The instruments will be sensitive from the upper end mof X-rya wavelengths to the highest energies possible. Details of the hardware and performance specifications of each of the instruments are discussed.
NASA Astrophysics Data System (ADS)
Su, Meng
2014-06-01
Data from the Fermi-LAT revealed two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. Such structure has been confirmed with multi-wavelength observations. With the most up to date Fermi-LAT data analysis, I will show that the Fermi bubbles have a spectral cutoff at both low energy < 1 GeV and high energy > 150 GeV. Detailed analysis of the spectral features will help us to distinguish the leptonic origin from hadronic origin of the gamma-ray emission from the bubbles. I will also describe what we expect to learn about the bubbles from future gamma-ray telescopes after Fermi, with an emphasis on Dark Matter Particle Explorer and Pair Production Gamma-ray Unit.
Search for medium-energy gamma-ray pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, W.E. Jr.
1987-01-01
Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less
A three-dimensional study of 30- to 300-MeV atmospheric gamma rays
NASA Technical Reports Server (NTRS)
Thompson, D. J.
1974-01-01
A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. A knowledge of these atmospheric secondaries has significant applications to the study of cosmic gamma rays. For detectors carried on balloons, atmospherically produced gamma rays are the major source of background. For satellite detectors, atmospheric secondaries provide a calibration source. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. A new model of atmospheric secondary production has calculated the depth, the energy, and the zenith angle dependence of gamma rays above 30 MeV, using a comprehensive three-dimensional Monte Carlo model of the nucleon-meson-electromagnetic cascade.
Observations of the Large Magellanic Cloud with Fermi
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-03-18
Context. The Large Magellanic Cloud (LMC) is to date the only normal external galaxy that has been detected in high-energy gamma rays. High-energy gamma rays trace particle acceleration processes and gamma-ray observations allow the nature and sites of acceleration to be studied. Aims. We characterise the distribution and sources of cosmic rays in the LMC from analysis of gamma-ray observations. Methods. We analyse 11 months of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope and compare it to tracers of the interstellar medium and models of the gamma-ray sources in the LMC. Results.more » The LMC is detected at 33σ significance. The integrated >100 MeV photon flux of the LMC amounts to (2.6 ± 0.2) × 10 -7 ph cm -2 s -1 which corresponds to an energy flux of (1.6 ± 0.1) × 10 -10 erg cm -2 s -1, with additional systematic uncertainties of 16%. The analysis reveals the massive star forming region 30 Doradus as a bright source of gamma-ray emission in the LMC in addition to fainter emission regions found in the northern part of the galaxy. The gamma-ray emission from the LMC shows very little correlation with gas density and is rather correlated to tracers of massive star forming regions. The close confinement of gamma-ray emission to star forming regions suggests a relatively short GeV cosmic-ray proton diffusion length. In conclusion, the close correlation between cosmic-ray density and massive star tracers supports the idea that cosmic rays are accelerated in massive star forming regions as a result of the large amounts of kinetic energy that are input by the stellar winds and supernova explosions of massive stars into the interstellar medium.« less
Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)
NASA Astrophysics Data System (ADS)
Eger, Peter
2015-08-01
The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-07-02
Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. In this paper, we report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Finally, direct detection of gamma-raymore » pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.« less
MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton
2016-12-20
Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays frommore » the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.« less
Galactic X-ray emission from pulsars
NASA Technical Reports Server (NTRS)
Harding, A. K.
1981-01-01
The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.
FERMI LAT discovery of extended gamma-ray emissions in the vicinity of the HB 3 supernova remnant
Katagiri, H.; Yoshida, K.; Ballet, J.; ...
2016-02-11
We report the discovery of extended gamma-ray emission measured by the Large Area Tele- scope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova rem- nant (SNR) HB 3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in inter- actions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions betweenmore » accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission fromW3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.« less
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.
Design and construction of the Mini-Calorimeter of the AGILE satellite
NASA Astrophysics Data System (ADS)
Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.
2009-01-01
AGILE is a small space mission of the Italian Space Agency (ASI) devoted to gamma-ray and hard-X astrophysics, successfully launched on April 23, 2007. The AGILE Payload is composed of three instruments: a gamma-ray imager based on a tungsten-silicon tracker (ST), for observations in the gamma ray energy range 30 MeV-50 GeV, a Silicon based X-ray detector, SuperAGILE (SA), for imaging in the range 18-60 keV and a CsI(Tl) Mini-Calorimeter (MCAL) that detects gamma rays or charged particles energy loss in the range 300 keV-100 MeV. MCAL is composed of 30 CsI(Tl) scintillator bars with photodiode readout at both ends, arranged in two orthogonal layers. MCAL can work both as a slave of the ST and as an independent gamma-ray detector for transients and gamma-ray bursts detection. In this paper a detailed description of MCAL is presented together with its performance.
FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagiri, H.; Yoshida, K.; Ballet, J.
2016-02-20
We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides amore » reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.« less
2004-09-19
KENNEDY SPACE CENTER, FLA. - A closeup of one of the solar cells that will be removed and replaced on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
2004-09-19
KENNEDY SPACE CENTER, FLA. - A closeup of one of the solar cells that will be removed and replaced on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
Low-mass X-ray binaries and gamma-ray bursts
NASA Technical Reports Server (NTRS)
Lasota, J. P.; Frank, J.; King, A. R.
1992-01-01
More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.
Tanaka, Kenichi; Sakurai, Yoshinori; Hayashi, Shin-Ichiro; Kajimoto, Tsuyoshi; Uchida, Ryohei; Tanaka, Hiroki; Takata, Takushi; Bengua, Gerard; Endo, Satoru
2017-09-01
This study investigated the optimum composition of the MAGAT polymer gel which is to be used in the quality assurance measurement of the thermal neutron, fast neutron and gamma ray components in the irradiation field used for boron neutron capture therapy at the Kyoto University Reactor. Simulations using the PHITS code showed that when combined with the gel, 6 Li concentrations of 0, 10 and 100ppm were found to be potentially usable. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano
2018-02-01
Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.
Multiwavelength observations of unidentified high energy gamma ray sources
NASA Technical Reports Server (NTRS)
Halpern, Jules P.
1993-01-01
As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with cataloged objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. Even a rudimentary understanding of their nature awaits identifications and follow-up work at other wavelengths to tell us what they are. The as yet unidentified sources are potentially the most interesting, since they may represent unrecognized new classes of astronomical objects, such as radio-quiet pulsars or new types of active galactic nuclei (AGN's). This two-year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. According to plan, in the first year concentration was on the identification and study of Geminga. The second year will be devoted to studies of similar unidentified gamma-ray sources which will become available in the first EGRET catalogs. The results obtained so far are presented in the two papers which are reproduced in the Appendix. In these papers, we discuss the pulse profiles of Geminga, the geometry and efficiency of the magnetospheric accelerator, the distance to Geminga, the implications for theories of polar cap heating, the effect of the magnetic field on the surface emission and environment of the neutron star, and possible interpretations of a radio-quiet Geminga. The implications of the other gamma-ray pulsars which were discovered to have high gamma-ray efficiency are also discussed, and the remaining unidentified COS B sources are attributed to a population of efficient gamma-ray sources, some of which may be radio quiet.
DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE BLAZAR RBS 0413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Arlen, T.
2012-05-10
We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) {gamma}-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based {gamma}-ray observatory, detected VHE {gamma} rays from RBS 0413 with a statistical significance of 5.5 standard deviations ({sigma}) and a {gamma}-ray flux of (1.5 {+-} 0.6{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -8} photons m{sup -2} s{sup -1} ({approx}1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 {+-} 0.68{sub stat}more » {+-} 0.30{sub syst}. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE {gamma} rays from RBS 0413 with a statistical significance of more than 9{sigma}, a power-law photon index of 1.57 {+-} 0.12{sub stat}+{sup 0.11}{sub -0.12sys}, and a {gamma}-ray flux between 300 MeV and 300 GeV of (1.64 {+-} 0.43{sub stat}{sup +0.31}{sub -0.22sys}) Multiplication-Sign 10{sup -5} photons m{sup -2} s{sup -1}. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the {gamma}-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.« less
Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn
Loh, Alan; Corbel, Stéphane; Dubus, Guillaume
2017-02-16
Solar flares are regularly detected by the Large Area Telescope (LAT) on board the Fermi satellite, however no γ-ray emission from other stellar eruptions has ever been captured. The Swift detection in 2014 April of a powerful outburst originating from DG CVn, with associated optical and radio emissions, enticed us to search for possible 0.1–100 GeV emission from this flaring nearby binary star using the Fermi/LAT. No γ-ray emission is detected from DG CVn in 2014, but we report a significant γ-ray excess in 2012 November, at a position consistent with that of the binary. There are no reports ofmore » contemporary flaring at other wavelengths from DG CVn or any other source within the error circle of the γ-ray source. As a result, we argue that the γ-ray flare is more likely to have been associated with a background blazar than with DG CVn and identify a candidate for follow-up study.« less
Fermi Gamma-Ray Observatory-Science Highlights for the First 8 Months
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2009-01-01
This viewgraph presentation reviews the science highlights for the first 8 months of the Fermi Gamma-Ray Observatory. Results from pulsars, flaring AGN, gamma ray bursts, diffuse radiation, LMC and electron spectrum are also presented.
Exploring the High Energy Universe: GLAST Mission and Science
NASA Technical Reports Server (NTRS)
McEnery, Julie
2007-01-01
GLAST, the Gamma-Ray Large Area Space Telescope, is NASA's next-generation high-energy gamma-ray satellite scheduled for launch in Autumn 2007. GLAST will allow measurements of cosmic gamma-ray sources in the 10 MeV to 100 GeV energy band to be made with unprecedented sensitivity. Amongst its key scientific objectives are to understand particle acceleration in Active Galactic Nuclei, Pulsars and Supernovae Remnants, to provide high resolution measurements of unidentified gamma-ray sources, to study transient high energy emission from objects such as gamma-ray bursts, and to probe Dark Matter and the early Universe. Dr. McEnery will present an overview of the GLAST mission and its scientific goals.
Study on Effects of Gamma-Ray Irradiation on TlBr Semiconductor Detectors
NASA Astrophysics Data System (ADS)
Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro
Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy.
Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey
NASA Technical Reports Server (NTRS)
Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.
1995-01-01
We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.
Gamma Rays at Very High Energies
NASA Astrophysics Data System (ADS)
Aharonian, Felix
This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.
Very high energy gamma ray extension of GRO observations
NASA Technical Reports Server (NTRS)
Weekes, Trevor C.
1992-01-01
This has been an exiciting year for high energy gamma-ray astronomy, both from space and from ground-based observatories. It has been a particularly active period for the Whipple Observatory gamma-ray group. In phase 1 of the Compton Gamma Ray Observatory (GRO), there has not been too much opportunity for overlapping observations with the Energetic Gamma Ray Experiment Telescope (EGRET) and the other GRO telescopes; however, significant progress was made in the development of data analysis techniques and in improving the sensitivity of the technique which will have direct application in correlative observations in phase 2. Progress made during the period 1 Jul. 1991 - 31 Dec. 1991 is presented.
Method and system for detecting explosives
Reber, Edward L [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID; Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Derr, Kurt W [Idaho Falls, ID
2009-03-10
A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.
Explosives detection system and method
Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.
2007-12-11
A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.
Galactic gamma-ray sources, SNOBs, and giant H2 regions
NASA Technical Reports Server (NTRS)
Montmerle, T.
1985-01-01
Progress towards understanding the nature of the COS-B galactic gamma-ray sources was made by two recent developments. The developments are: (1) the existence of extensive wide-latitude CO surveys, from the Northern Hemisphere, and from the Southern Hemisphere which give more precise information on molecular cloud population of the Perseus, Sagittarius, and Carina spiral arms; (2) the study of the time variability of gamma-ray sources in gamma-rays but also at other wavelengths, leading to the discovery of four new variable sources in addition to the already known Crab and Vela pulsars. Three classes of gamma-ray sources are found; invariable sources, active sources, and passive sources.
Method and an apparatus for non-invasively determining the quantity of an element in a body organ
Vartsky, D.; Ellis, K.J.; Cohn, S.H.
1980-06-27
An apparatus and a method for determining in a body organ the amount of an element with the aid of a gaseous gamma ray source, where the element and the source are paired in predetermined pairs, and with the aid of at least one detector selected from the group consisting of Ge(Li) and NaI(Tl). Gamma rays are directed towards the organ, thereby resonantly scattering the gamma rays from nuclei of the element in the organ; the intensity of the gamma rays is detected by the detector; and the amount of the element in the organ is then substantially proportional to the detected intensity of the gamma rays.
NASA Technical Reports Server (NTRS)
Forrest, D. J.
1978-01-01
The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.
MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.
Hendriks, P H G M; Maucec, M; de Meijer, R J
2002-09-01
gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.
Method of photon spectral analysis
Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.
1993-01-01
A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.
Method of photon spectral analysis
Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.
1993-04-27
A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.
Astrophysical gamma-ray production by inverse Compton interactions of relativistic electrons
NASA Technical Reports Server (NTRS)
Schlickeiser, R.
1979-01-01
The inverse Compton scattering of background photon gases by relativistic electrons is a good candidate for the production of high-energy gamma rays in the diffuse interstellar medium as well as in discrete sources. By discussing the special case of the scattering of the diffuse starlight in the interstellar medium by cosmic ray electrons, we demonstrate that previous derivations of the gamma ray source function for this process on the basis of the Thomson limit of the Klein-Nishina cross section lead to incorrect values for gamma-ray energies above 100 MeV. It is shown that the Thomson limit is not applicable for the calculation of gamma-ray source functions in astrophysical circumstances in which target photons with energies greater than 1 eV are scattered by relativistic electrons.
The Gamma-Ray Albedo of the Moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.
2008-03-25
We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less
The Gamma-ray Albedo of the Moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.
2007-09-28
We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less
NASA Technical Reports Server (NTRS)
1991-01-01
This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.
Research in cosmic and gamma ray astrophysics
NASA Technical Reports Server (NTRS)
Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.
1989-01-01
Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.
Neutron-gamma discrimination via PSD plastic scintillator and SiPMs
NASA Astrophysics Data System (ADS)
Taggart, M. P.; Payne, C.; Sellin, P. J.
2016-10-01
The reduction in availability and inevitable increase in cost of traditional neutron detectors based on the 3He neutron capture reaction has resulted in a concerted effort to seek out new techniques and detection media to meet the needs of national nuclear security. Traditionally, the alternative has been provided through pulse shape discrimination (PSD) using liquid scintillators. However, these are not without their own inherent issues, primarily concerning user safety and ongoing maintenance. A potential system devised to separate neutron and gamma ray pulses utilising the PSD technique takes advantage of recent improvements in silicon photomultiplier (SiPM) technology and the development of plastic scintillators exhibiting the PSD phenomena. In this paper we present the current iteration of this ongoing work having achieved a Figure of Merit (FoM) of 1.39 at 1.5 MeVee.
Discovery of gamma-ray pulsations from the transitional redback PSR J1227-4853
Johnson, Tyrel J.; Ray, Paul S.; Roy, Jayanta; ...
2015-06-10
Here, the 1.69 ms spin period of PSR J1227–4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270–4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227–4853 can be fit by one broad peak, which occurs at nearlymore » the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227–4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.« less
NASA Technical Reports Server (NTRS)
Kaaret, Philip
1995-01-01
This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.
Proof-of-principle contraband detection system for nonintrusive inspection
NASA Astrophysics Data System (ADS)
Sredniawski, Joseph J.; Debiak, T.; Kamykowski, E.; Rathke, John E.; Schmor, P.; Milton, Bill; Stanford, G.; Rogers, Joel; Boyd, J.; Brondo, J.
1997-02-01
A proof-of-principle (POP) contraband detection system (CDS), is under construction at Northrop Grumman's Advanced Technology and Development Center. We employ gamma resonance absorption to detect nitrogen or chlorine in explosives and certain forms of illegal drugs. Using tomography, 3D images of the total density and selected element density are generated. These characteristics together may be utilized with considerable confidence in determining if contraband is present in baggage or cargo. The CDS employs a high current DC electrostatic accelerator that provides a beam of proton sat either 1.75 or 1.89 MeV. These high energy particles impinge upon a target coated with 13C or 34S. The resultant resonant gamma rays are preferentially absorbed in either 14N or 35Cl. Because of the penetrating power of the gamma rays, this approach can be utilized for inspection of fully loaded aircraft containers such as the LD3. With proper design for handling baggage and with certain CDS design features not present in the POP, throughputs approaching 2000 bags/hour are estimated. Furthermore, the technology being developed for the CDS accelerator may have other applications such as for Boron Neutron Capture Therapy or Neutron Radiography. Our current program calls for testing of the POP CDS by late 1996. This paper presents the overall design, and characteristics of the CDS POP and the status of the program.
Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.
2011-11-30
We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 {+-} 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 {+-} 0.004 {+-} 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 {+-} 3 {+-} 11) x 10{sup -8} cm{sup -2} s{sup -1}. The photon spectrum is well-described by an exponentially cut-offmore » power law of the form dF/dE = kE{sup -{Gamma}}e{sup (-E/E{sub c})} where the energy E is expressed in GeV. The photon index is {Gamma} = 1.5 {+-} 0.1 {+-} 0.1 and the exponential cut-off is E{sub c} = 2.4 {+-} 0.3 {+-} 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 {+-} 4 rad m{sup -2} but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.« less
Mihailescu, Lucian; Vetter, Kai M
2013-08-27
Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.
Energy dependence of polarization across broad deexcitation gamma-ray line profiles
NASA Astrophysics Data System (ADS)
Werntz, Carl; Lang, F. L.
1998-04-01
The energy profiles of deexcitation gamma-ray lines from recoiling inelastically scattered nuclei exhibit detailed structure. MeV-wide gamma-ray lines from the direction of the Orion nebula have been detected (H. Bloemen, et al., Astr. and Astrophys. L5, 281 (1994).) by COMPTEL whose source is postulated to be cosmic ray carbon and oxygen nuclei shock accelerated near supernova remnants colliding with ambient hydrogen and helium. Even when the heavy ion velocity distributions are isotropic, structure characteristic of the multipolarity of the gamma transition remains (A. M. Bykov et al, Astr. and Astrophys. 607, L37 (1996); B. Kozlovsky et al, Astrophys. J. 484, (1997).). In experiments in which the energy dependent structure of the deexcitation gamma-ray profiles is not resolved, the gammas display a high degree of linear polarization that rapidly changes with gamma-beam angle. We calculate the polarization, both linear and circular, as a function of gamma-ray energy across the laboratory line profiles of C12*(4.44) and O16*(6.13) inelastically excited by protons and alphas. We then investigate the polarization in the surviving structures for isotropic energetic ions colliding with ^1H and ^4He.
NASA Astrophysics Data System (ADS)
Kuzmichev, L.; Astapov, I.; Bezyazeekov, P.; Boreyko, V.; Borodin, A.; Brückner, M.; Budnev, N.; Chiavassa, A.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Epimakhov, S.; Fedorov, O.; Gafarov, A.; Grebenyuk, V.; Grinyuk, A.; Haungs, A.; Horns, D.; Huege, T.; Ivanova, A.; Jurov, D.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kiryuhin, V.; Kokoulin, R.; Kompaniets, K.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigal, R.; Osipova, E.; Pakharukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popesku, M.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Pushnin, A.; Rubtsov, G.; Ryabov, E.; Sagan, Y.; Samoliga, V.; Schröder, F. G.; Semeney, Yu.; Silaev, A.; Silaev, A.; Sidorenko, A.; Skurikhin, A.; Slunecka, V.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Sulakov, V.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.
2017-06-01
We present the current status of high-energy cosmic-ray physics and gamma-ray astronomy at the Tunka Astrophysical Center (AC). This complex is located in the Tunka Valley, about 50 km from Lake Baikal. Present efforts are focused on the construction of the first stage of the gamma-ray observatory TAIGA - the TAIGA prototype. TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is designed for the study of gamma rays and charged cosmic rays in the energy range 1013 eV-1018 eV. The array includes a network of wide angle timing Cherenkov stations (TAIGA-HiSCORE), each with a FOV = 0.6 sr, plus up to 16 IACTs (FOV - 10∘× 10∘). This part covers an area of 5 km2. Additional muon detectors (TAIGA-Muon), with a total coverage of 2000 m2, are distributed over an area of 1 km2.
2004-09-19
KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, points to the two new solar cells removed and replaced on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
2004-09-19
KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, places a new solar cell on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
2004-09-19
KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, places a new solar cell on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
2004-09-19
KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), Spectrolab technicians begin lifting the protective cover from the Swift spacecraft. Two of Swift’s solar cells on the solar array will be removed and replaced. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
2004-09-19
KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, points to an area on the Swift spacecraft’s solar array where cells will be removed and replaced. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
2004-09-19
KENNEDY SPACE CENTER, FLA. - In the clean room at NASA’s Hangar AE on Cape Canaveral Air Force Station (CCAFS), a Spectrolab technician, Anna Herrera, removes one of the solar cells that will be replaced on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.
NASA Technical Reports Server (NTRS)
Fichtel, Carl E.
1990-01-01
In the near future, high energy (E greater than 20 MeV) gamma ray astronomy offers the promise of a new means of examining the closest galaxies. Two and possibly three local galaxies, the Small and Large Magellanic Clouds and M31, should be visible to the high energy gamma ray telescope on the Gamma Ray Observatory, and the first should be seen by GAMMA-1. With the assumptions of adequate cosmic ray production and reasonable magnetic field strengths, both of which should likely be satisfied, specific predictions of the gamma ray emission can be made separating the concepts of the galactic and universal nature of cosmic rays. A study of the synchrotron radiation from the Large Magellanic Cloud (LMC) suggests that the cosmic ray density is similar to that in the local region of our galaxy, but not uniform. It is hoped the measurements will be able to verify this independent of assumptions about the magnetic fields in the LMC.
Gamma-ray Astrophysics: a New Look at the Universe
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Fichtel, C. E.; Grindlay, J.; Hofstadter, R.
1978-01-01
Gamma-ray astronomy which includes the spectral region from above approximately 100 keV to greater than or equal to 1000 GeV permits investigation of the most energetic photons originating in our galaxy and beyond and provides the most direct means of studying the largest transfers of energy occurring in astrophysical processes. Of all the electromagnetic spectrum, high-energy gamma-ray astronomy measures most directly the presence and dynamic effects of the energetic charged cosmic ray particles, element synthesis, and particle acceleration. Further, gamma rays suffer negligible absorption or scatterings as they travel in straight paths; hence, they may survive billions of years and still reveal their source. The high energy processes in stellar objects (including our Sun), the dynamics of the cosmic-ray gas, the formation of clouds and nebulae, galactic evolution and even certain aspects of cosmology and the origin of the universe may be explored by gamma-ray observations.
The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory
NASA Technical Reports Server (NTRS)
Ryan, James M.; Lockwood, John A.
1989-01-01
The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.
SEARCHING FOR OVERIONIZED PLASMA IN THE GAMMA-RAY-EMITTING SUPERNOVA REMNANT G349.7+0.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergin, T.; Sezer, A.; Saha, L.
2015-05-10
G349.7+0.2 is a supernova remnant (SNR) expanding in a dense medium of molecular clouds and interacting with clumps of molecular material emitting gamma-rays. We analyzed the gamma-ray data of the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope and detected G349.7+0.2 in the energy range of 0.2–300 GeV with a significance of ∼13σ, showing no extended morphology. Modeling of the gamma-ray spectrum revealed that the GeV gamma-ray emission dominantly originates from the decay of neutral pions, where the protons follow a broken power-law distribution with a spectral break at ∼12 GeV. To search for features of radiative recombinationmore » continua in the eastern and western regions of the remnant, we analyzed the Suzaku data of G349.7+0.2 and found no evidence for overionized plasma. In this paper, we discuss possible scenarios to explain the hadronic gamma-ray emission in G349.7+0.2 and the mixed morphology nature of this SNR.« less
Associating Long-term Gamma-ray Variability with the Superorbital Period of LS I + 61 Deg. 303
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bonamente, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.;
2013-01-01
Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the gamma-ray binary LS I + 61?303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the approx. 26.4960 day orbital period. Here we show that, during the time of our observations, the gamma-ray emission of LS I + 61 deg. 303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use gamma-ray observations to study the outflows of massive stars in eccentric binary systems.
Discovery of Giant Gamma-ray Bubbles in the Milky Way
NASA Astrophysics Data System (ADS)
Su, Meng
Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending ˜50 degrees above and below the Galactic center with a width of ˜40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ˜ E-2) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at 1.5 -- 2 keV which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜ 10 Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen.
Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C 279
NASA Technical Reports Server (NTRS)
Hartman, R. C.; Boettcher, M.; Aldering, G.; Aller, H.; Aller, M.; Backman, D. E.; Balonek, T. J.; Bertsch, D. L.; Bloom, S. D.; Bock, H.;
2001-01-01
Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.
A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray-luminous Classical Nova to Date
NASA Astrophysics Data System (ADS)
Finzell, Thomas; Chomiuk, Laura; Metzger, Brian D.; Walter, Frederick M.; Linford, Justin D.; Mukai, Koji; Nelson, Thomas; Weston, Jennifer H. S.; Zheng, Yong; Sokoloski, Jennifer L.; Mioduszewski, Amy; Rupen, Michael P.; Dong, Subo; Starrfield, Sumner; Cheung, C. C.; Woodward, Charles E.; Taylor, Gregory B.; Bohlsen, Terry; Buil, Christian; Prieto, Jose; Wagner, R. Mark; Bensby, Thomas; Bond, I. A.; Sumi, T.; Bennett, D. P.; Abe, F.; Koshimoto, N.; Suzuki, D.; Tristram, P. J.; Christie, Grant W.; Natusch, Tim; McCormick, Jennie; Yee, Jennifer; Gould, Andy
2018-01-01
It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanisms involved in the production ofgamma-rays are still not well understood. We present here a comprehensive multiwavelength data set—from radio to X-rays—for the most gamma-ray-luminous classical nova to date, V1324 Sco. Using this data set, we show that V1324 Sco is a canonical dusty Fe II-type nova, with a maximum ejecta velocity of 2600 km s‑1 and an ejecta mass of a few × {10}-5 {M}ȯ . There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324 Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324 Sco with other gamma-ray-detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma-rays in novae.
Geochemistry of Vesta and Ceres: In-flight calibration of Dawn
NASA Astrophysics Data System (ADS)
Prettyman, T. H.; Feldman, W. C.; McSween, H. Y.
2009-04-01
The purpose of the Dawn mission is to investigate processes that contributed to the formation and early evolution of solid bodies in the solar system by exploring Vesta and Ceres, which are the two largest bodies in the main astreroid belt. Because they were formed at different heliocentric distances, Vesta and Ceres incorporated different amounts of water and other volatiles, which strongly influenced their thermal evolution. Vesta, which is thought to be the source of the basaltic, Howardite, Eucrite, and Diogenite (HED) meteorites, is dry and underwent igneous differentiation. In contrast, low-temperature, aqueous processing must have played an important role in the evolution of Ceres, which is rich in water and other volatiles, and may still contain subsurface liquid water. By exploring both Vesta and Ceres, the gradient in the composition of the solar nebula and role of water in planetary evolution can be investigated. The Dawn payload includes redundant framing cameras (FC), a visible and infrared spectrometer (VIR), and a gamma ray and neutron detector (GRaND), which, along with radio science, will measure surface geomorphology, composition, and mineralogy, and provide constraints on the internal structure of Vesta and Ceres. For both Vesta and Ceres, global mapping data will be acquired from circular polar orbits. In low altitude orbits, GRaND will map the elemental composition of Vesta and Ceres to depths less than one meter, including major rock forming elements and light elements (such as H, C, and N), which are the primary constituents of ices. GRaND consists of 21 radiation sensors, which measure the spectrum of neutrons and gamma rays originating from interactions between galactic cosmic rays and the material constituents of the asteroids and, separately, backgrounds from spacecraft materials. GRaND uses a bismuth germanate (BGO) scintillator for gamma ray spectroscopy, which has high efficiency, enabling the measurement of gamma rays up to 10 MeV, including capture gamma rays from Fe and Ti. Below 3 MeV, the BGO sensor works in combination with a 16-element array of CdZnTe semiconductors, which have relatively high resolution, enabling accurate measurement of the densely populated, low energy region of the gamma ray spectrum, which contains gamma rays from radioactive decay (K, Th, and U) and from nuclear reactions (for example, with Mg, Si, and H). Thermal, epithermal, and fast neutrons are measured using a combination of boron-loaded plastic and lithium-loaded glass scintillators. At Vesta, gamma ray and neutron spectroscopy will be used to determine geochemical trends that can be compared with HED data. For example, a scatter plot of the average atomic mass (determined from fast neutrons) and magnesium number can be used to tell the difference between diogenite and eucrite compositions, which are HED end-members. Correlations with MgO (for example, with FeO or SiO2) also strongly differentiate between diogenite and eucrite, and, in combination with optical spectroscopy, can be used to determine whether an olivine-rich mantle is exposed in Vesta's large south polar crater. At Ceres, neutron spectroscopy can be used to determine water abundance and layering (for example, ice may be present in the shallow subsurface at high latitudes), which will provide constraints on recharge and loss mechanisms (for example, emplacement via water volcanism vs. gradual replenishment from a subsurface acquifer). In addition, nuclear spectroscopy can be used to determine the possible presence of CO2 and NH3 ices on the surface of Ceres as well as the composition of non-icy materials, including the hydration state and composition of surface minerals. GRaND was calibrated in the laboratory prior to delivery to the spacecraft. In addition, the response of the instrument to the space radiation environment was measured during Earth-Mars cruise, which followed launch in September of 2007. Because the data were acquired when the energetic particle flux was minimal, the measurements are ideal for determining the background from galactic cosmic rays under conditions that would be ideal for science data acquisition at Vesta and Ceres. In February of 2009, the spacecraft will fly by Mars. At closest approach, the spacecraft will be within 500 km of Mars, providing GRaND with a strong source of planetary neutrons and gamma rays, which will be used to cross-calibrate GRaND against elemental abundance data acquired by the Mars Odyssey Gamma Ray Spectrometer instrument suite. Here, we describe the instrument response model and its application to the analysis of the space radiation background during cruise and cross-calibration against Odyssey data at Mars. The model is applied to determine the expected performance of GRaND at Vesta and Ceres.
Ultralow energy calibration of LUX detector using Xe 127 electron capture
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-12-01
We report an absolute calibration of the ionization yields(more » $$\\textit{Q$$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $$^{127}$$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with $$^{127}$$I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil $$\\textit{in situ}$$ measurements that have been explored in liquid xenon.« less