Science.gov

Sample records for capture gamma-ray spectra

  1. Neutron-capture gamma-ray data for obtaining elemental abundances from planetary spectra.

    SciTech Connect

    Reedy, Robert; Frankle, S. C.

    2001-01-01

    Determination of elemental abundances is a top scientific priority of most planetary missions. Gamma-ray spectroscopy is an excellent method to determine elemental abundances using gamma rays made by nuclear reactions induced by cosmic-ray particles and by the decay of radioactive nuclides [Re73,Re78]. Many important planetary gamma rays are made by neutron-capture reactions. However, much of the data for the energies and intensities of neutron-capture gamma rays in the existing literature [e.g. Lo81] are poor [RF99,RF00]. With gamma-ray spectrometers having recently returned data from Lunar Prospector and NEAR and soon to be launch to Mars, there is a need for good data for neutron-capture gamma rays.

  2. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  3. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    SciTech Connect

    Ullmann, John Leonard; Kawano, Toshihiko; Bredeweg, Todd Allen; Baramsai, Bayarbadrakh; Couture, Aaron Joseph; Haight, Robert Cameron; Jandel, Marian; Mosby, Shea Morgan; O'Donnell, John M.; Rundberg, Robert S.; Vieira, David J.; Wilhelmy, Jerry B.; Becker, John A.; Wu, Ching-Yen; Krticka, Milan

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  4. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect

    Sleaford, B W; Firestone, R B; Summers, N; Escher, J; Hurst, A; Krticka, M; Basunia, S; Molnar, G; Belgya, T; Revay, Z; Choi, H D

    2010-11-04

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  5. Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect

    Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-05-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90percent of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.

  6. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  7. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore » multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  8. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  9. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Lawrence, David J. ,; Elphic, R. C.; Gasnault, O. M.; Maurice, S.; Moore, K. R.; Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  10. Linear combination reading program for capture gamma rays

    USGS Publications Warehouse

    Tanner, Allan B.

    1971-01-01

    This program computes a weighting function, Qj, which gives a scalar output value of unity when applied to the spectrum of a desired element and a minimum value (considering statistics) when applied to spectra of materials not containing the desired element. Intermediate values are obtained for materials containing the desired element, in proportion to the amount of the element they contain. The program is written in the BASIC language in a format specific to the Hewlett-Packard 2000A Time-Sharing System, and is an adaptation of an earlier program for linear combination reading for X-ray fluorescence analysis (Tanner and Brinkerhoff, 1971). Following the program is a sample run from a study of the application of the linear combination technique to capture-gamma-ray analysis for calcium (report in preparation).

  11. A COMPARISON OF GADRAS SIMULATED AND MEASURED GAMMA RAY SPECTRA

    SciTech Connect

    Jeffcoat, R.; Salaymeh, S.

    2010-06-28

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  12. The width of gamma-ray burst spectra

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus; Borgonovo, Luis

    2015-03-01

    The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper, we propose a new measure to describe spectra: the width of the EFE spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/Gamma-ray Burst Monitor (GBM) and Compton Gamma-ray Observatory/Burst and Transient Source Experiment (BATSE). The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability <10-6). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes - synchrotron and blackbody radiation - the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78 per cent of long GRBs and 85 per cent of short GRBs are incompatible with the minimum width of standard slow cooling synchrotron emission from a Maxwellian distribution of electrons, with fast cooling spectra predicting even wider spectra. Photospheric emission can explain the spectra if mechanisms are invoked to give a spectrum much broader than a blackbody.

  13. Formation of cyclotron lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1989-01-01

    A transmission model of gamma-ray burst sources is studied using the relativistic QED magnetic-resonant opacities including multiple photon scattering, incorporated into a discrete-ordinate radiative-transport scheme. The physics of the cyclotron line-producing region is discussed in general, and the expected line profiles, relative harmonic strengths, and polarizations are indicated under various conditions. The calculated spectra for these models show good agreement with the spectra reported from Ginga for GB 880205 and GB 870303.

  14. Covariance Analysis of Gamma Ray Spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-01

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  15. Covariance analysis of gamma ray spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-15

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  16. The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Gan, Wei-Qun

    2012-10-01

    Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares, as well as the ambient medium with which these energetic particles interact. The neutron capture line (2.223 MeV), the strongest in the solar gamma-ray spectrum, forms in the deep atmosphere. The energy of these photons can be reduced via Compton scattering. With the fully relativistic GEANT4 toolkit, we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares, and applied them to the flare that occurred on 2005 January 20 (X7.1/2B), one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle. By comparing the fitting results of different models with and without Compton scattering of the neutron capture line, we find that when including the Compton scattering for the neutron capture line, the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s <= 2.3). The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant, which influences the time evolution of the neutron capture line flux as well. The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.

  17. Features in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Stanek, Krzysztof Z.; Paczynski, Bohdan; Goodman, Jeremy

    1993-01-01

    Gravitational lensing of cosmological gamma-ray bursts by objects in the mass range about 10 exp 17 to 10 exp 20 g (femtolensing) may introduce complicated interference patterns that might be interpreted as absorption or emission lines in the bursts' spectra. This phenomenon, if detected, may be used as a unique probe of dark matter in the universe. The BATSE spectral data should allow one to detect such spectral features or to put significant upper limits on the cosmic density of a dark matter component that may be in the femtolensing range. Software to generate theoretical spectra has been developed, and it is accessible over the computer network with anonymous ftp.

  18. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  19. Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113

    SciTech Connect

    Rusev, Gencho Y.

    2012-08-27

    A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

  20. Radiative-neutron-capture gamma-ray analysis by a linear combination technique

    USGS Publications Warehouse

    Tanner, A.B.; Bhargava, R.C.; Senftle, F.E.; Brinkerhoff, J.M.

    1972-01-01

    The linear combination technique, when applied to a gamma-ray spectrum, gives a single number indicative of the extent to which the spectral lines of a sought element are present in a complex spectrum. Spectra are taken of the sought element and of various other substances whose spectra interfere with that of the sought element. A weighting function is then computed for application to spectra of unknown materials. The technique was used to determine calcium by radiative-neutron-capture gamma-ray analysis in the presence of interfering elements, notably titanium, and the results were compared with those for two popular methods of peak area integration. Although linearity of response was similar for the methods, the linear combination technique was much better at rejecting interferences. For analyses involving mixtures of unknown composition the technique consequently offers improved sensitivity. ?? 1972.

  1. Magnetic photon splitting and gamma ray burst spectra

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1992-01-01

    The splitting of photons into two photons becomes both possible and significant in magnetic fields in excess of 10(exp 12) Gauss. Below the threshold energy, 2m sub e c(exp 2) for single photon pair production, splitting can be an astronomically observable phenomenon evident in gamma ray burst spectra. In such circumstances, it was found that magnetic photon splitting reprocesses the gamma ray burst continuum by degrading the photon energy, with a net effect that is quite similar to pair cascade reprocessing of the spectrum. Results are presented for the spectral modifications due to splitting, taking into account the different probabilities for splitting for different polarization modes. Unpolarized and polarized pair cascade photon spectra form the input spectra for the model, which calculates the resulting splitting reprocessed spectra numerically by solving the photon kinetic equations for each polarization mode. This inclusion of photon polarizations is found to not alter previous predictions that splitting produce a significant flattening of the hard X ray continuum and a bump at MeV energies below a pair production turnover. The spectrum near the bump is always strongly polarized.

  2. Analysis of gamma-ray burst spectra with cyclotron lines

    NASA Technical Reports Server (NTRS)

    Kargatis, Vincent; Liang, Edison P.

    1992-01-01

    Motivated by the recent developments in the cyclotron resonance upscattering of soft photons or CUSP model of Gamma Ray Burst (GBR) continuum spectra, we revisit a select database of GRBs with credible cyclotron absorption features. We measure the break energy of the continuum, the slope below the break and deduce the soft photon energy or the electron beam Lorentz factor cutoff. We study the correlation (or lack of) between various parameters in the context of the CUSP model. One surprise result is that there appears to be marginal correlation between the break energy and the spectral index below the break.

  3. Cyclotron scattering lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Preece, Robert D.

    1989-01-01

    If cyclotron scattering, rather than absorption, is responsible for the line features observed recently in two gamma-ray burst spectra (Murakami et al., 1988), then the second and higher harmonics are due to resonant scattering events that excite the electron to Landau levels above the ground state. Here, relativistic Compton scattering cross sections are used to estimate the expected ratio of third to second harmonics in the presence of Doppler broadening. At the field strength (1.7 TG) required to give first and second harmonics at 19 keV and 38 keV, there should be no detectable third harmonic in the spectrum.

  4. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  5. Gamma-ray Output Spectra from 239 Pu Fission

    SciTech Connect

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  6. The Extragalactic Background Light and Absorption in Gamma Ray Spectra

    NASA Astrophysics Data System (ADS)

    Gilmore, Rudy C.

    2008-03-01

    Recent state-of-the-art semi-analytic models (SAMs) can now accurately model the history of galaxy formation and evolution. These SAMs utilize a 'forward evolution' approach and include all of the important processes for determining photon emission from galaxies, such as cooling and shock heating of gas, galaxy mergers, star formation and aging, supernova and AGN feedback, and the reprocessing of light by dust. I will be presenting our group's latest prediction of the extra-galactic background light based on this work and will discuss the implications for the attenuation of VHE gamma rays from distant sources due to pair-production. These results will be compared to recent limits placed on the EBL by observations of GeV and TeV blazar spectra by experiments such as H.E.S.S., MAGIC and VERITAS. The implications for reconstructing the intrinsic spectra of distant blazars will be addressed.

  7. Gamma-Ray Bursts, Collisionless Shocks and Synthetic Spectra

    NASA Astrophysics Data System (ADS)

    Hededal, Christian

    2005-06-01

    The radiation from afterglows of gamma-ray bursts (GRB) is generated in collisionless plasma shocks. The two main ingredients behind the radiation are high-energy, non-thermal electrons and a strong magnetic field. I argue that in order to make the right conclusions about gamma-ray burst and afterglow parameters from observations, it is crucial to have a firm understanding of the microphysics of collisionless shock. I present the results of self-consistent, three-dimensional particle-in-cell computational simulations of the collision of weakly magnetized plasma shells: The experiments show how a plasma instability generates a magnetic field in the shock. The field has strength up to percents of the equipartition value. The experiments also reveal a new, non-thermal electron acceleration mechanism that differs substantially from Fermi acceleration. Finally, I present the results from a new numerical tool that enables us to extract synthetic radiation spectra directly from the experiments. The preliminary results differ from synchrotron radiation but are consistent with GRB afterglow observations. I conclude that strong magnetic field generation, non-thermal particle acceleration and the emission of radiation that is consistent with GRB afterglow observations, are all unavoidable consequences of the collision between two relativistic plasma shells.

  8. In situ capture gamma-ray analysis of coal in an oversize borehole

    USGS Publications Warehouse

    Mikesell, J.L.; Dotson, D.W.; Senftle, F.E.; Zych, R.S.; Koger, J.; Goldman, L.

    1983-01-01

    In situ capture gamma-ray analysis in a coal seam using a high resolution gamma-ray spectrometer in a close-fitting borehole has been reported previously. In order to check the accuracy of the method under adverse conditions, similar measurements were made by means of a small-diameter sonde in an oversize borehole in the Pittsburgh seam, Greene County, Pennsylvania. The hole was 5 times the diameter of the sonde, a ratio that substantially increased the contribution of water (hydrogen) to the total spectral count and reduced the size of the sample measured by the detector. The total natural count, the 40K,count, and the intensities of capture gamma rays from Si, Ca, H, and Al were determined as a function of depth above, through, and below the coal seam. From these logs, the depth and width of the coal seam and its partings were determined. Spectra were accumulated in the seam for 1 h periods by using neutron sources of different strengths. From the spectra obtained by means of several 252Cf neutron sources of different sizes, the ultimate elemental analysis and ash content were determined. The results were not as good as those obtained previously in a close-fitting borehole. However, the results did improve with successively larger source-to-detector distances, i.e.,as the count contribution due to hydrogen in the water decreased. It was concluded that in situ borehole analyses should be made in relatively close-fitting boreholes. ?? 1983.

  9. Energetic solar electron spectra and gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Dröge, Wolfgang

    1996-06-01

    We analyze solar energetic electron events measured with particle detectors on board of the ISEE-3 (ICE) and Helios 1 and 2 spacecraft. Energy spectra in the range 0.1 to tens of MeV are generated applying the results of a careful re-examination of the electron response function of the instruments. The spectral shapes of events observed simultaneously, among them five on all three s/c, are in very good agreement inspite of the sometimes considerable difference in azimuthal and radial distances of the s/c with respect to the flare. These findings suggest that transport processes at the Sun and in the interplanetary medium depend only weakly on the electron energy and that the observed spectra are representative of the accelerated electron spectra at the Sun. A comparison of the electron spectra with SMM gamma-ray spectra gives evidence for the existence of different acceleration and emission mechanism in flares with long (LDEs) and short duration (SDEs) soft X-ray emission.

  10. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  11. On the Energy Spectra of Individual Terrestrial Gamma ray Flashes

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Briggs, M. S.; Cramer, E. S.; Connaughton, V.; Dwyer, J. R.; Fitzpatrick, G.

    2015-12-01

    The Fermi Gamma-ray Burst Monitor (GBM) receives enough photons from some TGFs that spectral fitting of individual TGFs is possible. Previous TGF spectral fits relied upon summing the data from many TGFs. However, this spectral analysis of individual GBM TGFs is difficult because the number of photons is only adequate and because the extreme intensity of TGFs requires the analysis to correct for spectral distortions caused by pulse pileup. For each TGF in the sample, we compare Monte Carlo simulated TGF spectra to the observed detector counts. For each comparison, the best fit intensity is found, including correcting the predicted spectrum for pulse pileup. Using likelihood, we determine which of the simulations are consistent with each TGF, thus constraining the properties (e.g., altitude, beam width, etc.) of the TGF.

  12. Measurement of the keV-neutron capture cross section and capture gamma-ray spectrum of isotopes around N=82 region

    SciTech Connect

    Katabuchi, Tatsuya; Igashira, Masayuki

    2012-11-12

    The keV-neutron capture cross section and capture {gamma}-ray spectra of nuclides with a neutron magic number N= 82, {sup 139}La and {sup 142}Nd, were newly measured by the time-of-flight method. Capture {gamma}-rays were detected with an anti-Compton NaI(T1) spectrometer, and the pulse-height weighting technique was applied to derive the neutron capture cross section. The results were provided with our previous measurements of other nuclides around N= 82, {sup 140}Ce, {sup 141}Pr, {sup 143}Nd and {sup 145}Nd.

  13. Proposed experiment to measure {gamma}-rays from the thermal neutron capture of gadolinium

    SciTech Connect

    Yano, Takatomi; Ou, I.; Izumi, T.; Yamaguchi, R.; Mori, T.; Sakuda, M.

    2012-11-12

    Gadolinium-157 ({sup 157}Gd) has the largest thermal neutron capture cross section among any stable nuclei. The thermal neutron capture yields {gamma}-ray cascade with total energy of about 8 MeV. Because of these characteristics, Gd is applied for the recent neutrino detectors. Here, we propose an experiment to measure the multiplicity and the angular correlation of {gamma}-rays from the Gd neutron capture. With these information, we expect the improved identification of the Gd neutron capture.

  14. Broadband turbulent spectra in gamma-ray burst light curves

    SciTech Connect

    Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  15. Computer simulation of gamma-ray spectra from semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Lund, Jim C.; Olschner, Fred; Shah, Kanai S.

    1992-12-01

    Traditionally, researchers developing improved gamma ray detectors have used analytical techniques or, rarely, computer simulations to predict the performance of new detectors. However, with the advent of inexpensive personal computers, it is now possible for virtually all detector researchers to perform some form of numerical computation to predict detector performance. Although general purpose code systems for semiconductor detector performance do not yet exist, it is possible to perform many useful calculations using commercially available, general purpose numerical software packages (such as `spreadsheet' programs intended for business use). With a knowledge of the rudimentary mechanics of detector simulation most researchers, including those with no programming skills, can effectively use numerical simulation methods to predict gamma ray detector performance. In this paper we discuss the details of the numerical simulation of gamma ray detectors with the hope of communicating the simplicity and effectiveness of these methods. In particular, we discuss the steps involved in simulating the pulse height spectrum produced by a semiconductor detector.

  16. MCRaT Simulations of Long Gamma Ray Burst Spectra and Light Curves

    NASA Astrophysics Data System (ADS)

    Parsotan, T.; Lazzati, D.

    2016-10-01

    We present the results of the Monte Carlo Radiation Transfer, MCRaT, simulations of long gamma ray bursts from a variety of stellar progenitors and jet properties, including variable engines. We also compare the resulting spectra to observed data.

  17. ON WEAK REDSHIFT DEPENDENCE OF GAMMA-RAY SPECTRA OF DISTANT BLAZARS

    SciTech Connect

    Essey, Warren; Kusenko, Alexander

    2012-05-20

    Line-of-sight interactions of cosmic rays provide a natural explanation of the hard gamma-ray spectra of distant blazars, which are believed to be capable of producing both gamma rays and cosmic rays. For sources with redshifts z {approx}> 0.1, secondary gamma rays produced in cosmic-ray interactions with background photons close to an observer can dominate over primary gamma rays originating at the source. The transition from one component to another is accompanied by a change in the spectral index depending on the source redshift. We present theoretical predictions and show that they agree with the data from Fermi Large Area Telescope. This agreement, combined with the spectral data from Atmospheric Cherenkov Telescopes, provides evidence of cosmic-ray acceleration by active galactic nuclei and opens new opportunities for studying photon backgrounds and intergalactic magnetic fields.

  18. An iron absorption model of gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.; Kargatis, Vincent E.

    1994-01-01

    Most gamma-ray bursts (GRBs) exhibit deficits of X-rays below approximately 200 keV. Here we consider a spectral model in which the burst source is shielded by an optically thick layer of circumburster material (CBM) rich in iron-group elements whose photoelectric absorption opacity exceeds the Thomson opacity below approximately 120 keV. For power-law distributions of absorption depths along the lines of sight the absorbed spectrum can indeed mimic the typial GRB spectrum. This model predicts that (a) the spectrum should evolve monotonically from hard to soft during each energy release, which is observed in most bursts, especially in fast rise exponential decay bursts; (b) Fe spectral features near 7 keV may be present in some bursts; and (c) the ratio of burst distances to the CBM and to Earth should be approximately 10(exp -11) if the spectral evolution is purely due to Fe stripping by the photons.

  19. Moisture logging in cased boreholes using capture gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Robert D.; Randall, Russell R.; Meisner, James E.; Boles, Jason L.; Reynolds, Kent D.

    1999-10-01

    A nuclear logging tool has been developed that determines the moisture content of subsurface earth formations by measuring the gamma rays produced by thermal neutron capture in hydrogen. The tool employs a 252Cf fast neutron source and a hyperpure germanium gamma-ray detector. The tool has demonstrated excellent sensitivity to changes in formation moisture content when used in air-filled boreholes cased with steel. The tool is also sensitive to other elements that produce neutron capture gamma rays, such as silicon, calcium, aluminum, sodium, chlorine, chromium, cadmium and mercury. Extensive computer modeling of the tool has been done to aid its design and in the interpretation of logging data taken under a variety of conditions. The logging tool has been calibrated for its moisture and chlorine response in a set of physical models and is now in use logging boreholes at the U.S. Department of Energy Hanford Site.

  20. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  1. Database of prompt gamma rays from slow neutron capture forelemental analysis

    SciTech Connect

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

    2004-12-31

    analysis of complicated capture-gamma spectra by means ofPGAA. Therefore, the main goal of the CRP was to improve the quality andquantity of the required data in order to make possible the reliableapplication of PGAA in fields such as materials science, chemistry,geology, mining, archaeology, environment, food analysis and medicine.This aim wasachieved thanks to the dedicated work and effort of theparticipants. The CD-ROM included with this publication contains thedatabase, the retrieval system, the three CRM reports, and otherimportant electronic documents related to the CRP. The IAEA wishes tothanks all CRP participants who contributed to the success of the CRP andthe formulation of this publication. Special thanks are due to R.B.Firestone for his leading roll in the development of this CRP and hiscomprehensive compilation, analysis and provision of the adopteddatabase, and to V. Zerkin for the software developments associatedwiththe retrieval system. An essential component of this data compilation isthe extensive sets of new measurements of capture gamma-ray energies andintensities undertaken at Budapest by Zs. Revay under the direction ofG.L. Molnar. The extensive participation and assistance of H.D. Choi isalso greatly appreciated. Other participants inthis CRP were: R.M.Lindstrom, S.M. Mughabghab, A.V.R. Reddy, V.H. Tan and C.M. Zhou. Thanksare also due to S.C. Frankle and M.A. Lone for their active participationas consultants at some of the meetings. Finally, the participants wish tothank R. Paviotti-Corcuera (Nuclear Data Section, Division of Physicaland Chemical Sciences), who was the IAEA responsible officer for the CRP,this publication and the resulting database. The participants aregrateful to D.L. Muir and A.L. Nichols, successive Heads of the NuclearData Section, for their active and enthusiastic encouragement infurthering the work of the CRP.

  2. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect

    Hochmuth, Kathrin A.; Sigl, Guenter

    2007-12-15

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  3. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    SciTech Connect

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  4. The gamma-ray spectra of 5-carbon alkane isomers in the positron annihilation process

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Zhu, Yinghao; Liu, Yang

    2016-05-01

    The gamma-ray spectra of pentane (C5H12) and its two isomers, i.e., 2-Methylbutane (CH3C(CH3)HC2H5) and 2,2-Dimethylpropane (C(CH3)4) have been studied theoretically in the present work. The recent experimental gamma-ray spectra of these three molecules show that they have the same Doppler shifts, although their molecular structures are dramatically different. In order to reveal why the gamma-ray spectra of these molecules are less sensitive to the molecular structures, the one-dimensional gamma-ray spectra and spherically averaged momentum (SAM) distributions, the two-dimensional angular correlation of annihilation radiation (ACAR), and the three-dimensional momentum distributions of the positron-electron pair are studied. The one-centered momentum distributions of the electrons are found to play more important role than the multi-centered coordinate distributions. The present theoretical predictions have confirmed the experimental findings for the first time. The dominance of the inner valence electrons in the positron-electron annihilation process has also been suggested in the present work.

  5. Inclusive gamma-ray spectra from psi/3095/ and psi-prime/3684/ decays

    NASA Technical Reports Server (NTRS)

    Biddick, C. J.; Burnett, T. H.; Masek, G. E.; Miller, E. S.; Smith, J. G.; Stronski, J. P.; Sullivan, M. K.; Vernon, W.; Badtke, D. H.; Barnett, B. A.

    1977-01-01

    Inclusive gamma-ray experiments were carried out in a e(+)e(-) colliding-beam apparatus with NaI(Tl) arrays as detectors. The inclusive gamma-ray spectra, after cosmic-ray background subtraction, are shown as histograms for the decays of the psi(3095) and psi-prime(3684). The psi spectrum has no significant narrow structure, while the psi-prime spectrum shows at least four peaks. Three major radiative decays of the psi-prime(3684) are found, and their respective branching fractions are computed.

  6. Photoneutron and Photofission Cross Sections for URANIUM-238 and THORIUM-232 Using Neutron Capture Gamma Rays.

    NASA Astrophysics Data System (ADS)

    Varhue, Walter John

    The photofission and total photoneutron cross sections of ('238)U and ('232)Th have been measured as a function of energy between 4 and 11 Mev. The photons used were those produced in the neutron capture reaction in the Tangential Beam Port Facility of the University of Virginia Reactor. The capture gamma ray sources used were the following; Al, Cr, Co, Cu, Fe, Ni, S, and Ti. A computer code was used to calculate the spectrum of each capture gamma ray beam used in the irradiations. This calculation accounted for the attenuation in the beam and the contribution from neutron capture in Al and H. A second code iteratively solved for the best fit cross section curve for the experimentally obtained yield data. In the total photoneutron measurement, the neutrons were counted with a Halpern type detector containing 4 BF(,3) tubes. The intensity of the beam was determined with LiF thermoluminescent dosimeters. The results agree very well with those of previous studies. In the photofission measurement, fission fragments were counted in Lexan polycarbonate, a solid state nuclear track detector. The efficiency of this counting system has been determined analytically as a function of energy with the aid of published experimental measurements of the angular distribution of fission fragments and the etching properties of Lexan. In general the technique has proved to be successful in producing differential photonuclear cross section results. Resolution of the unfolding technique is limited by the density of principal gamma ray lines available from the capture targets. An obvious improvement would be the use of more capture targets. The results and conclusions of previous studies using neutron capture gamma rays have been placed in doubt due to the nature of calculations used to obtain cross values.

  7. Anomaly Detection in Gamma-Ray Vehicle Spectra with Principal Components Analysis and Mahalanobis Distances

    SciTech Connect

    Tardiff, Mark F.; Runkle, Robert C.; Anderson, K. K.; Smith, L. E.

    2006-01-23

    The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates and probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources.

  8. Simulation of gamma-ray spectra for a variety of user-specified detector designs

    NASA Technical Reports Server (NTRS)

    Rester, A. C., Jr.

    1994-01-01

    The gamma-ray spectrum simulation program BSIMUL was designed to allow the operator to follow the path of a gamma-ray through a detector, shield and collimator whose dimensions are entered by the operator. It can also be used to simulate spectra that would be generated by a detector. Several improvements have been made to the program within the last few months. The detector, shield and collimator dimensions can now be entered through an interactive menu whose options are discussed below. In addition, spectra containing more than one gamma-ray energy can now be generated with the menu - for isotopes listed in the program. Adding isotopes to the main routine is also quite easy. Subroutines have been added to enable the operator to specify the material and dimensions of a collimator. This report details the progress made in simulating gamma-ray spectra for a variety of user-specified detector designs. In addition, a short discussion of work done in the related areas of pulse shape analysis and the spectral analysis is included. The pulse shape analysis and spectral analysis work is being performed pursuant to the requirements of contract F-94-C-0006, for the Advanced Research Projects Agency and the U.S. Air Force.

  9. A comparison of radiative capture with decay gamma-ray method in bore hole logging for economic minerals

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.

    1972-01-01

    The recent availability of borehole logging sondes employing a source of neutrons and a Ge(Li) detector opens up the possibility of analyzing either decay or capture gamma rays. The most efficient method for a given element can be predicted by calculating the decay-to-capture count ratio for the most prominent peaks in the respective spectra. From a practical point of view such a calculation must be slanted toward short irradiation and count times at each station in a borehole. A simplified method of computation is shown, and the decay-to-capture count ratio has been calculated and tabulated for the optimum value in the decay mode irrespective of the irradiation time, and also for a ten minute irradiation time. Based on analysis of a single peak in each spectrum, the results indicate the preferred technique and the best decay or capture peak to observe for those elements of economic interest. ?? 1972.

  10. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation.

    PubMed

    Polf, J C; Peterson, S; McCleskey, M; Roeder, B T; Spiridon, A; Beddar, S; Trache, L

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy.

  11. Full-spectrum analysis of natural gamma-ray spectra.

    PubMed

    Hendriks, P H; Limburg, J; de Meijer, R J

    2001-01-01

    In this paper, a new system to measure natural gamma-radiation in situ will be presented. This system combines a high-efficiency BGO scintillation detector with full-spectrum data analysis (FSA). This technique uses the (nearly) full spectral shape and the so-called 'standard spectra' to calculate the activity concentrations of 40K, 232Th and 238U present in a geological matrix (sediment, rock, etc.). We describe the FSA and the determination of the standard spectra. Standard spectra are constructed for various geometries and a comparison in intensity and shape will be made. The performance of such a system has been compared to a more traditional system, consisting of a NaI detector in combination with the 'windows' analysis. For count rates typically encountered in field experiments, the same accuracy is obtained 10-20 times faster using the new system. This allows for shorter integration times and hence shorter measurements or a better spatial resolution. The applicability of such a system will be illustrated via an example of an airborne experiment in which the new system produced results comparable to those of much larger traditional systems. This paper will conclude with a discussion of the current status of the system and an outlook for future research.

  12. PHASE-AVERAGED SPECTRA AND LUMINOSITIES OF GAMMA-RAY EMISSIONS FROM YOUNG ISOLATED PULSARS

    SciTech Connect

    Li, X.; Jiang, Z. J.; Zhang, L.

    2013-03-10

    We study the phase-averaged spectra and luminosities of {gamma}-ray emissions from young, isolated pulsars within a revised outer gap model. In the revised version of the outer gap, there are two possible cases for the outer gaps: the fractional size of the outer gap is estimated through the photon-photon pair process in the first case (Case I), and is limited by the critical field lines in the second case (Case II). The fractional size is described by Case I if the fractional size at the null charge surface in Case I is smaller than that in Case II, and vice versa. Such an outer gap can extend from the inner boundary, whose radial distance to the neutron star is less than that of the null charge surface to the light cylinder for a {gamma}-ray pulsar with a given magnetic inclination. When the shape of the outer gap is determined, assuming that high-energy emission at an averaged radius of the field line in the center of the outer gap, with a Gaussian distribution of the parallel electric field along the gap height, represents typical emission, the phase-averaged {gamma}-ray spectrum for a given pulsar can be estimated in the revised model with three model parameters. We apply the model to explain the phase-averaged spectra of the Vela (Case I) and Geminga (Case II) pulsars. We also use the model to fit the phase-averaged spectra of 54 young, isolated {gamma}-ray pulsars, and then calculate the {gamma}-ray luminosities and compare them with the observed data from Fermi-LAT.

  13. Gamma-ray spectra and doses from the Little Boy replica

    SciTech Connect

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germanium detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10/sup 13/ fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables.

  14. Analytical sensitivities and energies of thermal-neutron-capture gamma rays

    USGS Publications Warehouse

    Duffey, D.; El-Kady, A.; Senftle, F.E.

    1970-01-01

    A table of the analytical sensitivities of the principal lines in the thermal-neutron-capture gamma ray spectrum has been compiled for most of the elements. In addition a second table of the full-energy, single-escape, and double-escape peaks has been compiled according to energy for all significant lines above 3 MeV. Lines that contrast well with adjacent lines are noted as prominent. The tables are useful for spectral interpretation and calibration. ?? 1970.

  15. Analytical sensitivities and energies of thermal neutron capture gamma rays II

    USGS Publications Warehouse

    Senftle, F.E.; Moore, H.D.; Leep, D.B.; El-Kady, A.; Duffey, D.

    1971-01-01

    A table of the analytical sensitivities of the principal lines in the thermal neutron capture gamma-ray spectrum from 0 to 3 MeV has been compiled for most of the elements. A tabulation of the full-energy, single-escape, and double-escape peaks has also been made according to energy. The tables are useful for spectral interpretation and calibration. ?? 1971.

  16. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  17. Experimental and MCNP simulated gamma-ray spectra for the UNCOSS neutron-based explosive detector

    NASA Astrophysics Data System (ADS)

    Eleon, C.; Perot, B.; Carasco, C.; Sudac, D.; Obhodas, J.; Valkovic, V.

    2011-02-01

    In the frame of the FP7 UNCOSS project (Underwater Coastal Sea Surveyor), whose aim is to develop a neutron-based explosive detection system to identify unexploded ordnance (UXO) lying on the sea bottom, the choice of the gamma-ray detector is essential to reach the optimal performances. This paper presents comparative tests between the two candidates: NaI(Tl) and LaBr 3(Ce) detectors, in favour to the 3 in.×3 in. LaBr 3(Ce); thus, confirming the choice previously performed by numerical simulation because of its higher fast timing properties, spectral resolution, and efficiency per volume unit. The gamma-ray spectra produced by 14 MeV tagged neutron beams on the elements of interest (C, O, N, Al, Fe, Si, and Ca) have also been recorded with this detector in order to unfold the spectrum of the interrogated object into elementary contributions. A qualitative comparison with the gamma-ray spectra simulated with the MCNPX computer code and the ENDFB/VII.0 nuclear library has also been performed to validate the numerical model. An additional quantitative validation has been performed with an explosive-like material (ammonium acetate).

  18. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  19. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Guirec, S.; Hays, E.; McEnery, J. E.; Perkins, J. S.; Scargle, J. D.; Troja, E.

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  20. Investigation of photoneutron and capture gamma-ray production in Pb and W under irradiation from 16N decay radiation

    NASA Astrophysics Data System (ADS)

    Kebwaro, Jeremiah Monari; Zhao, Yaolin; He, Chaohui

    2015-09-01

    Lead and tungsten are potential alternative materials for shielding reactor ex-core components with high 16N activity when available space limits application of concrete. Since the two materials are vulnerable to photonuclear reactions, the nature and intensity of the secondary radiation resulting from (γ,n) and (n,γ) reactions when 16N decay radiation interact with these materials need to be well known for effective shielding design. In this study the MCNP code was used to calculate the photoneutron and capture gamma-ray spectra in the two materials when irradiated by 16N decay radiation. It was observed that some of the photoneutrons generated in the two materials lie in the low-energy range which is considered optimum for (n,γ) reactions. Lead is more transparent to the photoneutrons when compared to tungsten. The calculations also revealed that the bremsstrahlung generated by the beta spectrum was not sufficient to trigger any additional photoneutrons. Both energetic and less energetic capture gamma-rays are observed when photoneutrons interact with nuclei of the two materials. Depending on the strength of the 16N source term, the secondary radiation could affect the effectiveness of the shield and need to be considered during design.

  1. Evaluation of the Doppler-Broadening of Gamma-Ray Spectra from Neutron Inelastic Scattering on Light Nuclei

    SciTech Connect

    Womble, Phillip C.; Barzilov, Alexander; Novikov, Ivan; Howard, Joseph; Musser, Jason

    2009-03-10

    Neutron-induced gamma-ray reactions are extensively used in the nondestructive analysis of materials and other areas where the information about the chemical composition of a substance is crucial. The common technique to find the intensity of the gamma ray is to fit gamma-ray line shape with an analytical function, for example, a Gaussian. However, the Gaussian fitting may fail if the gamma-ray peak is Doppler-broadened since this leads to the miscalculation of the area of the peak and, therefore, to misidentification of the material. Due to momentum considerations, Doppler-broadening occurs primarily with gamma rays from neutron-induced inelastic scattering reactions with light nuclei. The recoiling nucleus of interest must have excited states whose lifetimes are much smaller than the time of flight in the material. We have examined various light nuclei bombarded by 14 MeV neutrons to predict when the peak shape of a neutron-induced gamma ray emitted from these nuclei will be Doppler-broadened. We have found that nearly all the gamma rays from neutron-induced gamma-ray reactions on light elements (A<20) are Doppler-broadened with only a few exceptions. This means that utilization of resolution curves derived from isotopic sources or thermal neutron capture reactions have little value in the analysis.

  2. Neutron capture gamma-ray spectroscopic measurements in the actinide region

    SciTech Connect

    Hoff, R.W.; Lougheed, R.W.; Barreau, G.; Boerner, H.; Davidson, W.F.; Schreckenbach, K.; Warner, D.D.; von Egidy, T.; White, D.H.

    1981-09-01

    From recent neutron capture gamma-ray measurements, experimental data for states involving quasiparticle-vibrational admixtures in /sup 227/Ra, /sup 231/Th, /sup 233/Th, /sup 235/U, /sup 237/U, and /sup 239/U have been compared with theoretical calculations by Soloviev's group. This analysis shows the experimental level structure is more complex than that calculated. In the levels of /sup 250/Bk, four Gallagher-Moszkowski pairs are observed. The moment of inertia for each band with antiparallel alignment of odd-nucleon momenta is systematically larger than for its parallel-aligned mate.

  3. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key

    2014-02-24

    Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.

  4. Detection of Anomalous Gamma-Ray Spectra for On-Site Inspection

    SciTech Connect

    Seifert, Carolyn E.; Myjak, Mitchell J.; Pfund, David M.

    2009-05-29

    This work aims to solve some of the technical and logistical challenges inherent in performing On Site Inspection activities under the authority of the Comprehensive Nuclear-Test-Ban Treaty. Inspectors require equipment that can reliably identify the radionuclide signatures of nuclear test explosions amid a background of environmental contamination. Detection of these radiation anomalies by mobile search teams in the air or on the ground can narrow the search field and target specific areas for more detailed inspection or sampling. The need to protect confidential information of the inspected State Party, especially regarding past nuclear testing activities, suggests that full access to measured gamma-ray spectra should be limited. Spectral blinding techniques---in which only a fraction of the information derived from the spectra is displayed and stored---have the potential to meet the needs of both the OSI team and the State Party. In this paper, we describe one such algorithm that we have developed for identifying anomalous spectra from handheld, mobile, or aerial sensors. The algorithm avoids potential sensitivities by reducing the gamma-ray spectrum into a single number that is displayed and stored. A high value indicates that the spectrum is anomalous. The proposed technique does not rely on identifying specific radionuclides, operates well in the presence of high background variability, and can be configured to ignore specific spectral components. In previous work, the algorithm has proven very effective in classifying gamma-ray spectra as anomalous or not, even with poor statistical information. We performed a limited simulation of an airborne search scenario to demonstrate the potential algorithm for OSI missions. The technique successfully detected an injected source of interest whose count rate was an order of magnitude below background levels. We also configured the algorithm to ignore 137Cs as irrelevant to the mission. The resulting alarm metrics were

  5. A code to simulate nuclear reactor inventories and associated gamma-ray spectra.

    PubMed

    Cresswell, A J; Allyson, J D; Sanderson, D C

    2001-01-01

    A computer code has been developed to simulate the gamma-ray spectra that would be measured by airborne gamma spectrometry (AGS) systems from sources containing short-lived fission products. The code uses simple numerical methods to simulate the production and decay of fission products and generates spectra for sodium iodide (NaI) detectors using Monte Carlo codes. A new Monte Carlo code using a virtual array of detectors to reduce simulation times for airborne geometries is described. Spectra generated for a short irradiation and laboratory geometry have been compared with an experimental data set. The agreement is good. Spectra have also been generated for airborne geometries and longer irradiation periods. The application of this code to generate AGS spectra for accident scenarios and their uses in the development and evaluation of spectral analysis methods for such situations are discussed.

  6. Application of blind source separation to gamma ray spectra acquired by GRaND around Vesta

    NASA Astrophysics Data System (ADS)

    Mizzon, H.; Toplis, M. J.; Forni, O.; Prettyman, T. H.; Raymond, C. A.; Russell, C. T.

    2012-12-01

    The bismuth germinate (BGO) scintillator is one of the sensors of the gamma ray and neutron detector (GRaND)1 on board the Dawn spacecraft, that has spent just over one year in orbit around the asteroid 4-Vesta. The BGO detector is excited by energetic gamma-rays produced by galactic cosmic rays (GCR) or energetic solar particles interacting either with Vesta and/or the Dawn spacecraft. In detail, during periods of quiet solar activity, gamma ray spectra produced by the scintillator can be considered as consisting of three signals: i) a contribution of gamma-rays from Vesta produced by GCR interactions at the asteroid's surface, ii) a contribution from the spacecraft excited by neutrons coming from Vesta, and iii) a contribution of the spacecraft excited by local interaction with galactic cosmic rays. While the first two contributions should be positive functions of the solid angle of Vesta in the field of view during acquisition, the last one should have a negative dependence because Vesta partly shields the spacecraft from GCR. This theoretical mix can be written formally as: S=aΩSV+bΩSSCNV+c(4π-Ω)SSCGCR (1) where S is the series of recorded spectra, Ω is the solid angle, SV is the contribution of gamma rays coming from Vesta, SSCNV is the contribution of gamma rays coming from the spacecraft excited by the neutron coming from Vesta and SSCGCR is the contribution of gamma rays coming from the spacecraft excited by GCR. A blind source separation method called independent component analysis enables separating additive subcomponents supposing the mutual statistical independence of the non-Gaussian source signals2. Applying this method to BGO spectra acquired during the first three months of the low-altitude measurement orbit (LAMO) reveals two main independent components. The first one is dominated by the positron electron annihilation peak and is positively correlated to the solid angle. The second is negatively correlated to the solid angle and displays peaks

  7. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  8. Superluminal cascade spectra of TeV {gamma}-ray sources

    SciTech Connect

    Tomaschitz, Roman . E-mail: tom@geminga.org

    2007-03-15

    Astrophysical radiation sources are scrutinized in search of superluminal {gamma}-rays. The tachyonic spectral densities generated by ultra-relativistic electrons in uniform motion are fitted to the high-energy spectra of Galactic supernova remnants, such as RX J0852.0-4622 and the pulsar wind nebulae in G0.9+0.1 and MSH 15-52. The superluminal spectral maps of the unidentified TeV {gamma}-ray sources HESS J1303-631, TeV J2032+4130 and HESS J1825-137 are inferred from EGRET, HEGRA and HESS data. Tachyonic cascade spectra are quite capable of generating the spectral curvature seen in double-logarithmic plots, as well as the extended spectral plateaus defined by EGRET flux points in the GeV band. The curvature of the TeV spectra is intrinsic, caused by the Boltzmann factor in the source densities. The spectral averaging with thermal and exponentially cut power-law electron densities can be done in closed form, and systematic high- and low-temperature expansions of the superluminal spectral densities are derived. Estimates on the electron/proton populations generating the tachyon flux are obtained from the spectral fits, such as power-law indices, temperature and source counts. The cutoff temperatures of the source densities suggest ultra-high-energy protons in MSH 15-52, HESS J1825-137 and TeV J2032+4130.

  9. Qualitative and quantitative validation of the SINBAD code on complex HPGe gamma-ray spectra

    SciTech Connect

    Rohee, E.; Coulon, R.; Normand, S.; Carrel, F.; Dautremer, T.; Barat, E.; Montagu, T.; Jammes, C.

    2015-07-01

    Radionuclides identification and quantification is a serious concern for many applications as safety or security of nuclear power plant or fuel cycle facility, CBRN risk identification, environmental radioprotection and waste measurements. High resolution gamma-ray spectrometry based on HPGe detectors is a performing solution for all these topics. During last decades, a great number of software has been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when photoelectric peaks are folded together with a high ratio between theirs amplitudes, when the Compton background is much larger compared to the signal of a single peak and when spectra are composed of a great number of peaks. This study deals with the comparison between conventional methods in radionuclides identification and quantification and the code called SINBAD ('Spectrometrie par Inference Non parametrique Bayesienne Deconvolutive'). For many years, SINBAD has been developed by CEA LIST for unfolding complex spectra from HPGe detectors. Contrary to conventional methods using fitting procedures, SINBAD uses a probabilistic approach with Bayesian inference to describe spectrum data. This conventional fitting method founded for example in Genie 2000 is compared with the nonparametric SINBAD approach regarding some key figures of merit as the peak centroid evaluation (identification) and peak surface evaluation (quantification). Unfriendly cases are studied for nuclides detection with closed gamma-rays energies and high photoelectric peak intensity differences. Tests are performed with spectra from the International Atomic Energy Agency (IAEA) for gamma spectra analysis software benchmark and with spectra acquired at the laboratory. Results show that SINBAD and Genie 2000 performances are quite similar with sometimes best results for SINBAD with the important difference that to achieve same performances the nonparametric method is user-friendly compared to the

  10. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  11. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Wang, J. C. L.; Lamb, D. Q.; Loredo, T. J.; Wasserman, I. M.; Salpeter, E. E.

    1989-01-01

    Fits of theoretical spectra from Monte Carlo radiation-transfer calculations to dips at approximately 20 and 40 keV in a spectrum of the gamma-ray burst source GB 880 205 give best-fit values and 68 percent-confidence intervals for the magnetic field of (1.71 + or - 0.07) x 10 to the 12th G, the electron density of (1.2 + or - 0.6) x 10 to the 21st electrons/cm-squared, and the cosine of the viewing angle relative to the field of 0.31 + or - 0.05. The dips observed at approximately 20 keV in the spectra are interpreted as cyclotron resonant scattering, in which electrons undergo radiative 0 to 1 to 0 Landau transitions initiated by photons near the first harmonic. Physical self-consistency fixes the temperature, and the equilibrium temperature equals 5.3 + 0.3 or - 0.2 keV. These results suggest that this gamma-ray burst and many others which exhibit a low-energy dip originate from strongly magnetic neutron stars and are galactic in origin.

  12. Spectra of X-ray and Gamma-ray Bursts Produced by Stepping Lightning Leaders

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor

    2013-04-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity. TGFs were serendipitously discovered by BATSE detector aboard the Compton Gamma-Ray Observatory originally launched to perform observations of celestial gamma-ray sources [Fishman et al., Science, 264, 1313, 1994]. These events have also been detected by the RHESSI satellite [Smith et al., Science, 307, 1085, 2005], the AGILE satellite [Marisaldi et al., JGR, 115, A00E13, 2010], and the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010]. Moreover, measurements have correlated TGFs with initial development stages of normal polarity intra-cloud lightning that transports negative charge upward (+IC) [e.g, Lu et al., JGR, 116, A03316, 2011]. Photon spectra corresponding to well-established model of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. However, it has been suggested that high-potential +IC lightning leaders could produce a sufficient number of energetic electrons to explain TGFs [Celestin and Pasko, JGR, 116, A03315, 2011] and Xu et al. [GRL, 39, L08801, 2012] have shown that this mechanism could explain the TGF spectrum for lightning potentials higher than 100 MV. In addition to TGFs, X-ray bursts are produced by negative lightning leaders in association with stepping processes and are observed from the ground [Dwyer et al., GRL, 32, L01803, 2005]. However, the energy spectrum of X-ray bursts from lightning is still poorly known, mainly due to the low fluence detected from the ground. In this work, we use Monte Carlo models to study the acceleration of runaway electrons in the electric field produced around lightning leader tip and the associated bremsstrahlung photon spectra observed by low-orbit satellites in the case of high potential +IC discharges and from the ground in the

  13. Numerical simulations of planetary gamma-ray spectra induced by galactic cosmic rays

    SciTech Connect

    Masarik, J.; Reedy, R.C.

    1994-07-01

    The fluxes of cosmic-ray-produced gamma rays escaping from Mars were calculated using the LAHET Code System and basic nuclear data for {gamma}-ray production. Both surface water content and atmospheric thickness strongly affect the fluxes of {gamma}-ray lines escaping from Mars.

  14. Determination of radiative neutron capture cross sections for unstable nuclei by the {gamma}-ray strength function method

    SciTech Connect

    Utsunomiya, H.; Goriely, S.

    2012-11-12

    An indirect method referred to as the {gamma}-ray strength function method has been devised to determine radiative neutron capture cross sections for unstable nuclei along the valley of {beta}-stability. This method is based on the {gamma}-ray strength function which interconnects radiative neutron capture and photoneutron emission within the statistical model. The method was applied to several unstable nuclei such as {sup 93,95}Zr, {sup 107}Pd, and 121,123Sn. This method offers a versatile application extended to unstable nuclei far from the stability when combined with Coulomb dissociation experiments at RIKEN-RIBF and GSI.

  15. GAMMA-RAY BURST SPECTRA AND SPECTRAL CORRELATIONS FROM SUB-PHOTOSPHERIC COMPTONIZATION

    SciTech Connect

    Chhotray, Atul; Lazzati, Davide

    2015-04-01

    One of the most important unresolved issues in gamma-ray burst (GRB) physics is the origin of the prompt gamma-ray spectrum. Its general non-thermal character and the softness in the X-ray band remain unexplained. We tackle these issues by performing Monte Carlo simulations of radiation–matter interactions in a scattering dominated photon–lepton plasma. The plasma—initially in equilibrium—is driven to non-equilibrium conditions by a sudden energy injection in the lepton population, mimicking the effect of a shock wave or the dissipation of magnetic energy. Equilibrium restoration occurs due to an energy exchange between the photons and leptons. While the initial and final equilibrium spectra are thermal, the transitional photon spectra are characterized by non-thermal features such as power-law tails, high energy bumps, and multiple components. Such non-thermal features are observed at infinity if the dissipation occurs at small to moderate optical depths, and the spectrum is released before thermalization is complete. We model the synthetic spectra with a Band function and show that the resulting spectral parameters are similar to observations for a frequency range of 2–3 orders of magnitude around the peak. In addition, our model predicts correlations between the low-frequency photon index and the peak frequency as well as between the low- and high-frequency indices. We explore baryon and pair-dominated fireballs and reach the conclusion that baryonic fireballs are a better model for explaining the observed features of GRB spectra.

  16. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm.

  17. Progress in numerical modelling of the Cl influence on gamma-ray spectra from an n-gamma logging tool, by using the improved ENDF data for radiative capture.

    PubMed

    Cywicka-Jakiel, Teresa

    2007-06-01

    Quality of the numerical modelling (MCNP code) of the spectrometric neutron-gamma benchmark experiment, performed at the Polish Calibration Station BGW in Zielona Gora for quantification of the main rock elements: Si, Ca, Fe and H, is considered. Elemental concentrations obtained from the measurements and simulations, for the rock models with water-filled boreholes, are in good agreement. For chlorine present in the borehole, the quality of the numerical reproducibility of the measured elemental concentrations depends on the cross section library used for the Cl(n,gamma)Cl reaction. The standard evaluated nuclear data library ENDF/B-VI Release 2 supplies imperfect data for photon production from thermal neutron capture in Cl. The improved cross sections for Cl(n,gamma)Cl are included in the ENDF/B-VI Release 8 library. Superiority of this new compilation over the previous one is shown in the paper. The accuracies for the Si, Ca and Fe determination have been improved by about 36%, 19.9% and 21.4%, respectively, when the ENDF/B-VI Release 8 library has been used for Cl.

  18. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  19. Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

    NASA Astrophysics Data System (ADS)

    Campana, S.; Bernardini, M. G.; Braito, V.; Cusumano, G.; D'Avanzo, P.; D'Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2014-07-01

    We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of gamma-ray burst afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power-law shape with index 2.4. However, for real instruments, this value depends on their low-energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 105-106 counts in the 0.3-10 keV band are needed to constrain the redshift with 10 per cent accuracy. As a test case, we discuss the XMM-Newton observation of GRB 090618 at z = 0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

  20. BATSE observations of gamma-ray burst spectra. I - Spectral diversity

    NASA Technical Reports Server (NTRS)

    Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1993-01-01

    We studied the time-averaged gamma-ray burst spectra accumulated by the spectroscopy detectors of the Burst and Transient Source Experiment. The spectra are described well at low energy by a power-law continuum with an exponential cutoff and by a steeper power law at high energy. However, the spectral parameters vary from burst to burst with no universal values. The break in the spectrum ranges from below 100 keV to more than 1 MeV, but peaks below 200 keV with only a small fraction of the spectra breaking above 400 keV; it is therefore unlikely that a majority of the burst spectra are shaped directly by pair processes, unless bursts originate from a broad redshift range. The correlations among burst parameters do not fulfill the predictions of the cosmological models of burst origin. No correlations with burst morphology or the spatial distribution were found. We demonstrate the importance of using a complete spectral description even if a partial description (e.g., a model without a high-energy tail) is statistically satisfactory.

  1. Comparison of measured and calculated neutron and gamma-ray energy spectra behind an in-line shielded duct

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.; Tang, J.S.

    1982-05-01

    Integral experiments that measure the transport of approx. 14 MeV neutrons through a 0.30-m-diameter duct having a length-to-diameter ratio of 2.83 that is partially plugged with a 0.15 m diameter, 0.51 m long shield comprised of alternating layers of stainless steel type 304 and borated polyethylene have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma ray energy spectra are compared at several locations relative to the mouth of the duct. The measured spectra were obtained using an NE-213 liquid scintillator detector with pulse shape discrimination methods used to simultaneously resolve neutron and gamma ray events. The calculated spectra were obtained using a computer code network that incorporates two radiation transport methods: discrete ordinates (with P/sub 3/ multigroup cross sections) and Monte Carlo (with continuous point cross sections). The two radiation transport methods are required to account for neutrons that singly scatter from the duct to the detectors. The calculated and measured neutron energy spectra above 850 keV agree with 5 to 50% depending on detector location and neutron energy. The calculated and measured gamma ray energy spectra above 750 keV are also in favorable agreement, approx. 5 to 50%, depending on detector location and gamma ray energy.

  2. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  3. Soft Gamma-Ray Repeater Light Echoes Captured by Swift Satellite

    NASA Video Gallery

    NASA's Fermi Gamma-ray Space Telescope detected a rapid-fire "storm" of high-energy blasts from a highly magnetized neutron star, also called a magnetar, on Jan. 22, 2009. Now astronomers analyzing...

  4. The spectra program library: A PC based system for gamma-ray spectra analysis and INAA data reduction

    USGS Publications Warehouse

    Baedecker, P.A.; Grossman, J.N.

    1995-01-01

    A PC based system has been developed for the analysis of gamma-ray spectra and for the complete reduction of data from INAA experiments, including software to average the results from mulitple lines and multiple countings and to produce a final report of analysis. Graphics algorithms may be called for the analysis of complex spectral features, to compare the data from alternate photopeaks and to evaluate detector performance during a given counting cycle. A database of results for control samples can be used to prepare quality control charts to evaluate long term precision and to search for systemic variations in data on reference samples as a function of time. The entire software library can be accessed through a user-friendly menu interface with internal help.

  5. BATSE observations of gamma-ray burst spectra. 2: Peak energy evolution in bright, long bursts

    NASA Technical Reports Server (NTRS)

    Ford, L. A.; Band, D. L.; Matteson, J. L.; Briggs, M. S.; Pendleton, G. N.; Preece, R. D.; Paciesas, W. S.; Teegarden, B. J.; Palmer, D. M.; Schaefer, B. E.

    1995-01-01

    We investigate spectral evolution in 37 bright, long gamma-ray bursts observed with the Burst and Transient Source Experiment (BATSE) spectroscopy detectors. High-resolution spectra are chracterized by the energy of the peak of nu F(sub nu), and the evolution of this quantity is examined relative to the emission intensity. In most cases it is found that this peak energy either rises with or slightly precedes major intensity increases and softens for the remainder of the pulse. Interpulse emission is generally harder early in the burst. For bursts with multiple intensity pulses, later spikes tend to be softer than earlier ones, indicating that the energy of the peak of nu F(sub nu) is bounded by an envelope which decays with time. Evidence is found that bursts in which the bulk of the flux comes well after the event which triggers the instrument tend to show less peak energy variability and are not as hard as several bursts in which the emission occurs promptly after the trigger. Several recently proposed burst models are examined in light of these results and no qualitative conflicts with the observations presented here are found.

  6. Peak fitting and identification software library for high resolution gamma-ray spectra

    NASA Astrophysics Data System (ADS)

    Uher, Josef; Roach, Greg; Tickner, James

    2010-07-01

    A new gamma-ray spectral analysis software package is under development in our laboratory. It can be operated as a stand-alone program or called as a software library from Java, C, C++ and MATLAB TM environments. It provides an advanced graphical user interface for data acquisition, spectral analysis and radioisotope identification. The code uses a peak-fitting function that includes peak asymmetry, Compton continuum and flexible background terms. Peak fitting function parameters can be calibrated as functions of energy. Each parameter can be constrained to improve fitting of overlapping peaks. All of these features can be adjusted by the user. To assist with peak identification, the code can automatically measure half-lives of single or multiple overlapping peaks from a time series of spectra. It implements library-based peak identification, with options for restricting the search based on radioisotope half-lives and reaction types. The software also improves the reliability of isotope identification by utilizing Monte-Carlo simulation results.

  7. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  8. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  9. SPECTRA OF COSMIC RAY ELECTRONS AND DIFFUSE GAMMA RAYS WITH THE CONSTRAINTS OF AMS-02 AND HESS DATA

    SciTech Connect

    Chen, Ding; Jin, Hong-Bo; Huang, Jing

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746–2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.

  10. Design, construction, and characterization of a facility for neutron capture gamma ray analysis of sulfur in coal using californium-252

    SciTech Connect

    Layfield, J.R.

    1980-03-01

    A study of neutron capture gamma ray analysis of sulfur in coal using californium-252 as a neutron source is reported. Both internal and external target geometries are investigated. The facility designed for and used in this study is described. The external target geometry is found to be inappropriate because of the low thermal neutron flux at the sample location, which must be outside the biological shielding. The internal target geometry is found to have a sufficient thermal neutron flux, but an excessive gamma ray background. A water filled plastic facility, rather than the paraffin filled steel one used in this study, is suggested as a means of increasing flexibility and decreasing the beackground in the internal target geometry.

  11. Short versus long gamma-ray bursts: spectra, energetics, and luminosities

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Nava, L.; Ghisellini, G.; Celotti, A.; Firmani, C.

    2009-03-01

    We compare the spectral properties of 79 short and 79 long Gamma-Ray Bursts (GRBs) detected by BATSE and selected with the same limiting peak flux. Short GRBs have a low-energy spectral component harder and a peak energy slightly higher than long GRBs, but no difference is found when comparing short GRB spectra with those of the first 1-2 s emission of long GRBs. These results confirm earlier findings for brighter GRBs. The bolometric peak flux of short GRBs correlates with their peak energy in a similar way to long bursts. Short and long GRBs populate different regions of the bolometric fluence-peak energy plane, short bursts being less energetic by a factor similar to the ratio of their durations. If short and long GRBs had similar redshift distributions, they would have similar luminosities yet different energies, which correlate with the peak energy E_peak for the population of long GRBs. We also test whether short GRBs are consistent with the E_peak-E_iso and E_peak-L_iso correlations for the available sample of short (6 events) and long (92 events) GRBs with measured redshifts and E^obs_peak: while short GRBs are inconsistent with the E_peak-E_iso correlation of long GRBs, they could follow the E_peak-L_iso correlation of long bursts. All the above indications point to short GRBs being similar to the first phases of long bursts. This suggests that a similar central engine (except for its duration) operates in GRBs of different durations.

  12. Use of MCNP + GADRAS in Generating More Realistic Gamma-Ray Spectra for Plutonium and HEU Objects

    SciTech Connect

    Rawool-Sullivan, Mohini; Mattingly, John; Mitchell, Dean

    2012-08-07

    The ability to accurately simulate high-resolution gamma spectra from materials that emit both neutrons and gammas is very important to the analysis of special nuclear materials (SNM), e.g., uranium and plutonium. One approach under consideration has been to combine MCNP and GADRAS. This approach is expected to generate more accurate gamma ray spectra for complex three-dimensional geometries than can be obtained from one-dimensional deterministic transport simulations (e.g., ONEDANT). This presentation describes application of combining MCNP and GADRAS in simulating plutonium and uranium spectra.

  13. Hints of the Existence of Axion-Like-Particles From the Gamma-Ray Spectra of Cosmological Sources

    SciTech Connect

    Sanchez-Conde, M.A.; Paneque, D.; Bloom, E.; Prada, F.; Dominguez, A.; /IAA, Granada /Seville U.

    2009-06-23

    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources, like the possible detection of TeV photons from 3C 66A (a source located at z=0.444) by MAGIC and VERITAS, which should not happen according to conventional models of photon propagation over cosmological distances. Another puzzle is the recent published lower limit to the EBL intensity at 3.6 {micro}m (which is almost twice larger as the previous one), which implies very hard spectra for some detected TeV gamma-ray sources located at z=0.1-0.2. The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like

  14. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  15. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    NASA Astrophysics Data System (ADS)

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo; Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Sung, Jae Hee; Lee, Seong Ku; Cho, Byoung Ick; Choi, Il Woo; Nam, Chang Hee

    2016-07-01

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1-10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  16. Light curves and spectra from off-axis gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.

    2016-10-01

    If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pulse evolution time-scale is Doppler contracted, while the pulse separation is not. For off-axis viewing angles θview ≳ θjet + Γ-1, the pulse broadening significantly smears out the light-curve variability. This is largely independent of geometry and emission processes. To explore a specific case, we set up a simple model of a single pulse under the assumption that the pulse rise and decay are dominated by the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that a highly variable light curve (as seen on-axis) becomes smooth and apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by Swift as a function of redshift, finding that a sizeable fraction (between 10 per cent and 80 per cent) of nearby (z < 0.1) bursts are observed with θview ≳ θjet + Γ-1. Based on these results, we argue that low-luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.

  17. Study of gamma-ray strength functions

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Dietrich, F.S.

    1980-08-07

    The use of gamma-ray strength function systematics to calculate neutron capture cross sections and capture gamma-ray spectra is discussed. The ratio of the average capture width, GAMMA/sub ..gamma../-bar, to the average level spacing, D/sub obs/, both at the neutron separation energy, can be derived from such systematics with much less uncertainty than from separate systematics for values of GAMMA/sub ..gamma../-bar and D/sub obs/. In particular, the E1 gamma-ray strength function is defined in terms of the giant dipole resonance (GDR). The GDR line shape is modeled with the usual Lorentzian function and also with a new energy-dependent, Breit-Wigner (EDBW) function. This latter form is further parameterized in terms of two overlapping resonances, even for nuclei where photonuclear measurements do not resolve two peaks. In the mass ranges studied, such modeling is successful for all nuclei away from the N = 50 closed neutron shell. Near the N = 50 shell, a one-peak EDBW appears to be more appropriate. Examples of calculated neutron capture excitation functions and capture gamma-ray spectra using the EDBW form are given for target nuclei in the mass-90 region and also in the Ta-Au mass region. 20 figures.

  18. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  19. Borehole parametric study for neutron induced capture gamma-ray spectrometry using the MCNP code.

    PubMed

    Shahriari, M; Sohrabpour, M

    2000-01-01

    The MCNP Monte Carlo code has been used to simulate neutron transport from an Am-Be source into a granite formation surrounding a borehole. The effects of the moisture and the neutron poison on the thermal neutron flux distribution and the capture by the absorbing elements has been calculated. Thermal and nonthermal captures for certain absorbers having resonance structures in the epithermal and fast energy regions such as W and Si were performed. It is shown that for those absorbers having large resonances in the epithermal regions when they are present in dry formation or when accompanied by neutron poisons the resonance captures may be significant compared to the thermal captures.

  20. ON THERMALIZATION IN GAMMA-RAY BURST JETS AND THE PEAK ENERGIES OF PHOTOSPHERIC SPECTRA

    SciTech Connect

    Vurm, Indrek; Piran, Tsvi; Lyubarsky, Yuri

    2013-02-20

    The low-energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thomson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the thermalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions in which thermalization can take place. We find that a significant fraction of the available energy should be dissipated at intermediate radii, {approx}10{sup 10} to a few Multiplication-Sign 10{sup 11} cm, and the flow there should be relatively slow: the bulk Lorentz factor could not exceed a few tens for all but the most luminous bursts with the highest E {sub pk} values. The least restrictive constraint for successful thermalization, {Gamma} {approx}< 20, is obtained if synchrotron emission acts as the photon source. This requires, however, a non-thermal acceleration deep below the Thomson photosphere transferring a significant fraction of the flow energy to relativistic electrons with Lorentz factors between 10 and 100. Other processes require bulk flow Lorentz factors of order of a few for typical bursts. We examine the implications of these results to different GRB photospheric emission models.

  1. Gamma-Ray Strength Function Method:. Away from Photoneutron Emission to Radiative Neutron Capture

    NASA Astrophysics Data System (ADS)

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Iwamoto, C.; Goriely, S.; Daoutidis, I.; Toyokawa, H.; Harada, H.; Kitatani, F.; Iwamoto, N.; Lui, Y. W.; Arteaga, D. P.; Hilaire, S.; Koning, A. J.

    2013-03-01

    Radiative neutron capture cross sections are of direct relevance for the synthesis of heavy elements referred to as the s-process and the r-process in nuclear astrophysics and constitute basic data in the field of nuclear engineering. The surrogate reaction technique is in active use to indirectly determine radiative neutron capture cross sections for unstable nuclei. We have devised an indirect method alternative to the surrogate reaction technique on the basis of the γ-ray strength function (γSF), a nuclear statistical quantity that interconnects photoneutron emission and radiative neutron capture in the Hauser-Feshbach model calculation. We outline the γSF method and show applications of the method to tin, palladium, and zirconium isotopes. In the application of the γSF method, it is important to use γSF's that incorporate extra strengths of PDR and/or M1 resonance emerging around neutron threshold.

  2. Cosmic Infrared Background From Population III Stars and Its Effect on Spectra of High-z Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    2005-01-01

    We discuss the contribution of Population III stars to the near-IR (NIR) cosmic infrared background (CIB) and its effect on spectra of high-z, high-energy gamma-ray bursts (GRBs) and other sources. It is shown that if Population III is composed of massive stars, the claimed NIR CIB excess will be reproduced if only approx. 4% plus or minus 2% of all baryons went through these stars. Regardless of the precise amount of the NIR CIB due to them, they likely left enough photons to provide a large optical depth for high-energy photons from distant GRBs. Observations of such GRBs are expected following the planned launch of NASA's GLAST mission. Detecting such damping in the spectra of high-z GRBs will then provide important information on the emissions from the Population III epoch, and the location of this cutoff may serve as an indicator of the GRBs' redshifts. We also point out the difficulty of unambiguously detecting the CIB part originating from Population III in spectra of low-z blazars.

  3. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  4. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  5. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  6. Gamma-ray spectra from low-energy positron annihilation processes in molecules

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Wang, Meishan; Zhu, Yinghao; Liu, Yang; Yang, Chuanlu; Wang, Dehua

    2016-11-01

    The theoretical γ -ray spectra from positron-electron annihilation process in a wide variety of atoms and molecules are studied. The theoretical Doppler broadened γ -ray spectra for core, inner valence, and outer valence electrons of these molecules are studied systematically. The present results show that the experimental γ -ray spectra agree well with inner valence electrons, especially the lowest occupied valence orbital electrons rather than the outer valence electrons. These inner valence electrons show a strong correlation with the corresponding available experimental measurements. These findings are interesting because the outer valence electrons have been supposed to have larger probability annihilating with positrons rather than the inner valence electrons. The present work also suggests that the accurate positron wave functions must be involved to identify the dominance of the bound electrons clearly in positron-electron annihilation process.

  7. Comment on "Gamma-ray spectra from low-energy positron annihilation processes in molecules"

    NASA Astrophysics Data System (ADS)

    Green, D. G.; Gribakin, G. F.

    2017-03-01

    In the article by Ma et al. [Phys. Rev. A 94, 052709 (2016), 10.1103/PhysRevA.94.052709], γ -ray spectra for positron annihilation on molecules were calculated in the independent-particle approximation with the positron wave function set to unity. Based on comparisons with experimental data, they concluded that inner valence electrons play a dominant role in positron annihilation. These conclusions are incorrect and resulted from fallacious analysis that ignored the known effect of the positron wave function on the spectra.

  8. Determination of the optimum-size californium-252 neutron source for borehole capture gamma-ray analysis

    USGS Publications Warehouse

    Senftle, F.E.; Macy, R.J.; Mikesell, J.L.

    1979-01-01

    The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.

  9. The gamma-ray blazar quest: new optical spectra, state of art and future perspectives

    NASA Astrophysics Data System (ADS)

    Massaro, F.; Álvarez Crespo, N.; D'Abrusco, R.; Landoni, M.; Masetti, N.; Ricci, F.; Milisavljevic, D.; Paggi, A.; Chavushyan, V.; Jiménez-Bailón, E.; Patiño-Álvarez, V.; Strader, J.; Chomiuk, L.; La Franca, F.; Smith, Howard A.; Tosti, G.

    2016-10-01

    We recently developed a procedure to recognize γ-ray blazar candidates within the positional uncertainty regions of the unidentified/unassociated γ-ray sources (UGSs). Such procedure was based on the discovery that Fermi blazars show peculiar infrared colors. However, to confirm the real nature of the selected candidates, optical spectroscopic data are necessary. Thus, we performed an extensive archival search for spectra available in the literature in parallel with an optical spectroscopic campaign aimed to reveal and confirm the nature of the selected γ-ray blazar candidates. Here, we first search for optical spectra of a selected sample of γ-ray blazar candidates that can be potential counterparts of UGSs using the Sloan Digital Sky Survey (SDSS DR12). This search enables us to update the archival search carried out to date. We also describe the state-of-art and the future perspectives of our campaign to discover previously unknown γ-ray blazars.

  10. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  11. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  12. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  13. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume II. Software description and listings. [IAEAPU

    SciTech Connect

    Ruhter, W.D.

    1984-05-01

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and has dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV /sup 241/Pu and 208-keV /sup 237/U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings.

  14. Thermal neutrons registration by xenon gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Chernysheva, I. V.; Dmitrenko, V. V.; Dukhvalov, A. G.; Krivova, K. V.; Novikov, A. S.; Petrenko, D. V.; Vlasik, K. F.; Ulin, S. E.; Uteshev, Z. M.

    2016-02-01

    Experimental results of thermal neutrons detection by high pressure xenon gamma- ray spectrometers are presented. The study was performed with two devices with sensitive volumes of 0.2 and 2 litters filled with compressed mixture of xenon and hydrogen without neutron-capture additives. Spectra from Pu-Be neutron source were acquired using both detectors. Count rates of the most intensive prompt neutron-capture gamma-ray lines of xenon isotopes were calculated in order to estimate thermal neutrons efficiency registration for each spectrometer.

  15. Size Effect on Nuclear Gamma-Ray Energy Spectra Acquired by Different Sized CeBr3, LaBr3:Ce, and NaI:Tl Gamma-Ray Detectors

    SciTech Connect

    Guss, Paul; Reed, Michael; Yuan, Ding; Beller, Denis; Cutler, Matthew; Contreras, Chris; Mukhopadhyay, Sanjoy; Wilde, Scott UNLV

    2014-03-01

    Gamma-ray energy spectra were acquired for different sizes of cerium tribromide (CeBr3), cerium-doped lanthanum tribromide (LaBr3:Ce), and thallium-doped sodium iodide (NaI:Tl) detectors. A comparison was conducted of the energy resolution and detection efficiency of these scintillator detectors for different sizes of detectors. The results of this study are consistent with the observation that for each size detector, LaBr3:Ce offers better resolution than either a CeBr3 or NaI:Tl detector of the same size. In addition, CeBr3 and LaBr3:Ce detectors could resolve some closely spaced peaks in the spectra of several radioisotopes that NaI:Tl could not. As the detector size increased, all three detector materials exhibited higher efficiency, albeit with slightly reduced resolution. Significantly, the very low intrinsic activity of CeBr3 is also demonstrated in this study, which, when combined with energy resolution characteristics for a range of detector sizes, could lead to an improved ability to detect special nuclear materials compared to the other detectors.

  16. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  17. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    % , with Ti and Fe emitting more fast neutrons than light elements like O and Si. Most elements moderate neutrons to thermal energies at similar rates. The main exception is when neutrons scatter from H, in which case neutrons can be rapidly thermalized. The cross sections for the absorption of thermal neutrons can vary widely among elements, with major elements like Ti and Fe having high-capture cross sections. Some trace elements, such as Sm and Gd, have such large neutron-absorption cross sections that, despite their low abundances, can absorb significant amounts of thermal neutrons in the Moon. Because the processes affecting neutrons are complicated, good modeling is needed to properly extract elemental information from measured neutron fluxes. The LAHET Code System (LCS) can be use to calculate neutron fluxes from GCR interactions in the Moon. Lunar Gamma-Ray Spectroscopy: The main sources of planetary gamma-rays are the decay of the naturally occurring radioactive isotopes of K, Th, and U and the interactions of GCRs with atomic nuclei in the planet's surface. Most "cosmogenic" gamma-rays are produced by fast and thermal neutrons made in the planet's surface by GCRs, and their production rates can vary with time. Over 300 gamma-ray lines have been identified that can be emitted from planetary surfaces by a variety of production mechanisms. There exist nuclear databases that can be used to identify and quantify other gamma-ray lines. Use will be made of gamma-rays from major elements, particularly those from Si and O, that have not been routinely used in the past. The fluxes of gamma-rays from a given element can vary depending on many factors besides the concentration of that element. For example, the fluxes of neutron-capture gamma-rays in the planetary region of interest depend on (1) the total cross section for elements to absorb thermalized neutrons and (2) the H content of the top meter of the surface. The fluxes of the fast neutrons that induce inelastic

  18. Energetic neutron and gamma-ray spectra under the earth radiation belts according to "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686" orbital complex and "CORONAS-I" satellite data.

    PubMed

    Bogomolov, A V; Dmitriev, A V; Myagkova, I N; Ryumin, S P; Smirnova, O N; Sobolevsky, I M

    1998-01-01

    The spectra of neutrons >10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686", are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm-2 s-1 for neutrons, 0.8 cm-2 s-1 for gamma-rays at the equator and 1.2 cm-2 s-1, 1.9 cm-2 s-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from "CORONAS-1" data are near those for albedo particles.

  19. {gamma}-ray strength function for {sup 116,117}Sn with the pygmy dipole resonance balanced in the photoneutron and neutron capture channels

    SciTech Connect

    Utsunomiya, H.; Kamata, M.; Kondo, T.; Itoh, O.; Akimune, H.; Yamagata, T.; Goriely, S.; Toyokawa, H.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2009-11-15

    Photoneutron cross sections were measured for {sup 117}Sn and {sup 116}Sn near the neutron thresholds at 6.94 and 9.56 MeV, respectively, with quasi-monochromatic laser-Compton scattering {gamma} rays. The {sup 117}Sn cross section, which is strongly enhanced near the low threshold, provides evidence for the presence of extra {gamma} strength in the low-energy tail of the giant dipole resonance. A coherent analysis of the photoneutron data for {sup 117}Sn together with the neutron capture on {sup 116}Sn shows that the {gamma}-ray strength function is balanced in the photoneutron and neutron capture channels in terms of the microscopic Hartree-Fock-Bogoliubov plus quasiparticle random-phase approximation model of E1 strength combined with a pygmy E1 resonance at 8.5 MeV. The high-energy part of the pygmy resonance is also suggested in the photoneutron cross section for {sup 116}Sn.

  20. Streaming of 14-MeV neutrons through an iron duct: comparison of measured neutron and gamma-ray energy spectra with results calculated using the Monte Carlo code MCNP

    SciTech Connect

    Santoro, R.T.; Barnes, J.M.; Soran, P.D.; Alsmiller, R.G. Jr.

    1982-11-01

    Neutron and gamma-ray energy spectra resulting from the streaming of 14 MeV neutrons through a 0.30-m-diameter duct (length-to-diameter ratio = 2.83) have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data and data calculated previously using a combination of discrete ordinates and Monte Carlo methods. Comparisons are made at twelve detector locations on and off the duct axis for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The neutron spectra calculated using MCNP agree with the measured data within approx. 5 to approx. 50%, depending on detector location and neutron energy. Agreement with the measured gamma-ray spectra is also within approx. 5 to approx. 50%. The spectra obtained with MCNP are also in favorable agreement with the previously calculated data and were obtained with less calculational effort.

  1. Gamma-ray spectral analysis algorithm library

    SciTech Connect

    Egger, A. E.

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  2. Upper limit on the steady emission of the 2.223 MeV neutron capture gamma-ray line from the sun

    NASA Technical Reports Server (NTRS)

    Harris, M. J.; Share, G. H.; Beall, J. H.; Murphy, R. J.

    1992-01-01

    A search for steady emission of the 2.223 MeV gamma-ray line arising from the direct capture reaction 1H(n, gamma)2H is presented on the basis of an analysis of SMM data. The upper limits for continuous 2.223 MeV gamma-ray line emission from the active and inactive sun, as established in the present work, are about two orders of magnitude less than previously published results. These findings for inactive periods also suggest that small flares (or a continuous acceleration mechanism) are unlikely to be the source of the heating of the quiet solar corona. It is concluded that the power in accelerated nuclei during inactive periods falls short of the coronal heating requirement by about four orders of magnitude unless there is a large and as yet unobserved population of nuclei at energies below 1 MeV. The energy release in other forms associated with the acceleration process falls short of the heating requirement by about two orders of magnitude if this energy release is in the same proportion to the power in accelerated nuclei as is estimated from observed flares.

  3. Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155-304 and PG 1553+113

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; LAT Collaboration; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Bellazzini, R.; Blandford, R. D.; Bonino, R.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Favuzzi, C.; Focke, W. B.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Guillemot, L.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kocevski, D.; Larsson, S.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Negro, M.; Nuss, E.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Principe, G.; Rainò, S.; Razzano, M.; Simone, D.; Siskind, E. J.; Spada, F.; Spinelli, P.; Thayer, J. B.; Torres, D. F.; Torresi, E.; Troja, E.; Vianello, G.; Wood, K. S.

    2017-04-01

    Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims: The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Methods: Multiple observational campaigns of PKS 2155-304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results: Using the data from CT5, the energy spectra of PKS 2155-304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155-304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155-304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the

  4. The use of the bulk properties of gamma-ray burst prompt emission spectra for the study of cosmology

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam

    The study of bulk spectral properties of Gamma-Ray Bursts (GRBs) is important to understanding the physics behind these powerful explosions and may even be an aide in studying cosmology. The prompt emission spectral properties have long been studied by a growing community of researchers, and many theories have been developed since the discovery of GRBs. Even though the exact physics of these phenomena is not completely understood, GRBs have been proposed to give insight on other astrophysical phenomena from dark matter to the expansion of the universe. Obviously, using GRBs to study cosmology requires a large sample size to adequately constrain results and provide confident conjectures. For this reason, BATSE and GBM results are paramount to the study of the prompt emission of GRBs. Using results from both instruments, I study the bulk spectral properties of GRBs and describe analysis techniques that can be used to study cosmology.

  5. Exploiting Kalman Filtering Non-linear Exponential Fitting to Promote the Energy Resolution of 137Cs and 60Co Gamma Ray Spectra.

    PubMed

    Guo, Huiping; Tian, Chenyang; Xue, Hongbin; Lv, Ning; Wei, Yingguang; Fu, Guangzhi; Lv, Wenhui; Zhao, Kuo; Hou, Yijie

    2017-03-01

    For Cs and Co gamma ray spectra, gamma ray energy is proportional to the amplitude of the pulse signal, and energy resolution can be improved by pulse signal processing with mathematical algorithms. Influenced by system measurement noise and baseline fluctuation, the pulse amplitude is difficult to calculate accurately. A method that combines the Kalman filter baseline estimation with the non-linear exponential fitting has been used. By this method, the pulse signal is divided into two parts: one is the raising edge before the pulse peak, and another is after the pulse peak. The pulse amplitude equals the difference between the pulse starting height and the pulse peak height. The pulse starting height is obtained by Kalman filter baseline estimation on the rising edge of the pulse starting point. The pulse peak height is calculated by nonlinear exponential fitting on the falling edge of the pulse highest point. When the sampling rate is 100 MHz, the pulse signals obtained from a Cd(Zn)Te detector are analyzed by this method. Results have shown that the processed pulses have a more distinguishable amplitude distribution; energy resolution for the Cs spectrum is approximately 2.97% at 662 keV (~19.66 keV FWHM), and for the Co spectrum it is 2.61% at 1,332 keV (~34.76 keV FWHM).

  6. Comparison Between the NIST and the KEBS for the Determination of Air Kerma Calibration Coefficients for Narrow X-Ray Spectra and (137)Cs Gamma-Ray Beams.

    PubMed

    O'Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn

    2010-01-01

    Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients.

  7. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  8. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  9. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  10. Gamma ray astronomy from satellites and balloons

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  11. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  12. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  13. Gamma ray measurements during deuterium and /sup 3/He discharges on TFTR

    SciTech Connect

    Cecil, F.E.; Medley, S.S.

    1987-05-01

    Gamma ray count rates and energy spectra have been measured in TFTR deuterium plasmas during ohmic heating and during injection of deuterium neutral beams for total neutron source strengths up to 6 x 10/sup 15/ neutrons per second. The gamma ray measurements for the deuterium plasmas are in general agreement with predictions obtained using simplified transport models. The 16.6 MeV fusion gamma ray from the direct capture reaction D(/sup 3/He,..gamma..)/sup 5/Li was observed during deuterium neutral beam injection into /sup 3/He plasmas for beam powers up to 7 MW. The measured yield of the 16.6 MeV gamma ray is consistent with the predicted yield. The observation of this capture gamma ray establishes the spectroscopy of the fusion gamma rays from the D-/sup 3/He reactions as a viable diagnostic of total fusion reaction rates and benchmarks the modeling for extension of the technique to D-T plasmas. 21 refs., 12 figs.

  14. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    SciTech Connect

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs.

  15. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  16. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-07

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  17. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  18. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  19. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  20. Reproducibility of (n,γ) gamma ray spectrum in Pb under different ENDF/B releases

    NASA Astrophysics Data System (ADS)

    Kebwaro, J. M.; He, C. H.; Zhao, Y. L.

    2016-04-01

    Radiative capture reactions are of interest in shielding design and other fundamental research. In this study the reproducibility of (n,γ) reactions in Pb when cross-section data from different ENDF/B releases are used in the Monte-Carlo code, MCNP, was investigated. Pb was selected for this study because it is widely used in shielding applications where capture reactions are likely to occur. Four different neutron spectra were declared as source in the MCNP model which consisted of a simple spherical geometry. The gamma ray spectra due to the capture reactions were recorded at 10 cm from the center of the sphere. The results reveal that the gamma ray spectrum produced by ENDF/B-V is in reasonable agreement with that produced when ENDF/B-VI.6 is used. However the spectrum produced by ENDF/B-VII does not reveal any primary gamma rays in the higher energy region (E > 3 MeV). It is further observed that the intensities of the capture gamma rays produced when various releases are used differ by a some margin showing that the results are not reproducible. The generated spectra also vary with the spectrum of the source neutrons. The discrepancies observed among various ENDF/B releases could raise concerns to end users and need to be addressed properly during benchmarking calculations before the next release. The evaluation from ENDF to ACE format that is supplied with MCNP should also be examined because errors might have arisen during the evaluation.

  1. Gamma-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Weekes, T.; Murdin, P.

    2000-11-01

    Gamma-rays are the highest-energy photons in the ELECTROMAGNETIC SPECTRUM and their detection presents unique challenges. On one hand it is easy to detect γ-rays. The interaction cross-sections are large and above a few MeV the pair production interaction, the dominant γ-ray interaction with matter, is easily recognized. Gamma-ray detectors were far advanced when the concept of `γ-ray astronomy' ...

  2. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  3. The average X-ray/gamma-ray spectra of Seyfert galaxies from Ginga and OSSE and the origin of the cosmic X-ray background

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Done, Chris; Smith, David; Mcnaron-Brown, Kellie

    1995-01-01

    We have obtained the first average 2-500 keV spectra of Seyfert galaxies, using the data from Ginga and Compton Gamma-Ray Observatory's (CGRO) Oriented Scintillation Spectrometer Experiment (OSSE). Our sample contains three classes of objects with markedly different spectra: radio-quiet Seyfert 1's and 2's, and radio-loud Seyfert 1's. The average radio-quiet Seyfert 1 spectrum is well-fitted by a power law continuum with the energy spectral index alpha approximately equals 0.9, a Compton reflection component corresponding to a approximately 2 pi covering solid angle, and ionized absorption. There is a high-energy cutoff in the incident power law continuum: the e-folding energy is E(sub c) approximately equals 0.6(sup +0.8 sub -0.3) MeV. The simplest model that describes this spectrum is Comptonization in a relativistic optically-thin thermal corona above the surface of an accretion disk. Radio-quiet Seyfert 2's show strong netural absorption, and there is an indication that their X-ray power laws are intrinsically harder. Finally, the radio-loud Seyfert spectrum has alpha approximately equals 0.7, moderate neutral absorption E(sub C) = 0.4(sup +0.7 sub -0.2) MeV, and no or little Compton reflection. This is incompatible with the radio-quiet Seyfert 1 spectrum, and probably indicating that the X-rays are beamed away from the accretion disk in these objects. The average spectra of Seyferts integrated over redshift with a power-law evolution can explain the hard X-ray spectrum of the cosmic background.

  4. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  5. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  6. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  7. Reply to "Comment on `Gamma-ray spectra from low-energy positron annihilation processes in molecules' "

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Wang, Meishan; Zhu, Yinghao; Yang, Chuanlu

    2017-03-01

    In reply to the Comment of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] on our paper [Phys. Rev. A 94, 052709 (2016), 10.1103/PhysRevA.94.052709], we reconfirm that all the conclusions are based on the observation and the comparisons of the theoretical and experimental data. One criticism of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] concerns the positrophilic electrons and the inner valence electrons. The inner valence electrons or positrophilic electrons show most agreeable widths with the corresponding experimental measurements due to their narrowest momentum distributions for all 59 molecules. However, we agree with the criticism of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] and reconfirm that this agreement does not represent the dominance of the inner valence in the annihilation process. In this Reply, we will clarify the difference between agreement and dominance and illustrate with some figures. Another criticism is about the approximation used in our paper. We emphasize that the averaged discrepancy of 34.2% for these molecules of the theoretical γ -ray spectra from the experimental measurements is due to the neglect of the positron-electron correlations, vibrational couplings, virtual-state formation, even tunneling of core electrons not the neglect of the positron wave function. In this Reply, we will show, even in this zero-order approximation, these positron-induced effects in the electron-positron annihilation process of molecules can also be analyzed with more corrections and explanations.

  8. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  9. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  10. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  11. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  12. Neutron capture by Ru: Neutron cross sections of {sup 96,102,104}Ru and gamma-ray spectroscopy in the decays of {sup 97,103,105}Ru

    SciTech Connect

    Krane, K. S.

    2010-04-15

    Cross sections for radiative capture of neutrons have been measured for stable isotopes of Ru with mass numbers 96,102, and 104. From separate irradiations using thermal and epithermal neutrons, independent values for the thermal cross section and effective resonance integral have been determined. Spectroscopic studies of the gamma rays emitted in the decays of {sup 97,103,105}Ru have enabled improvements in the precision of the energies and intensities of the radiations along with corresponding improvements in the beta-decay feeding intensities and the energies of the levels in the respective daughter nuclei. Similar spectroscopic measurements of the decays of {sup 105}Rh (daughter of {sup 105}Ru) and {sup 96}Tc (produced from n,p reactions on {sup 96}Ru) have resulted in improved gamma-ray energies and intensities in those decays.

  13. Celestial gamma ray study

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1995-01-01

    This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

  14. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  15. Scission gamma rays

    SciTech Connect

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kuznetsov, V. L.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2009-11-15

    Gamma rays probably emitted by the fissioning nucleus {sup 236}U* at the instant of the break of the neck or within the time of about 10{sup -21} s after or before this were discovered in the experiment devoted to searches for the effect of rotation of the fissioning nucleus in the process {sup 235}U(n,{gamma}f) and performed in a polarized beam of cold neutrons from the MEPHISTO Guideline at the FRM II Munich reactor. Detailed investigations revealed that the angular distribution of these gamma rays is compatible with the assumption of the dipole character of the radiation and that their energy spectrum differs substantially from the spectrum of prompt fission gamma rays. In the measured interval 250-600 keV, this spectrum can be described by an exponential function at the exponent value of {alpha} = -5 x 10{sup -3} keV{sup -1}. The mechanism of radiation of such gamma rays is not known at the present time. Theoretical models based on the phenomenon of the electric giant dipole resonance in a strongly deformed fissioning nucleus or in a fission fragment predict harder radiation whose spectrum differs substantially from the spectrum measured in the present study.

  16. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  17. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  18. Search for gamma ray lines from supernovae and supernova remnants

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.

    1974-01-01

    A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.

  19. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  20. Solving the Mystery of Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.

  1. Gamma ray lines from the Galactic Center and gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Leiter, D.; Lingenfelter, R. E.

    1981-01-01

    The observations and interpretations of cosmic (nonsolar) gamma ray lines are discussed. The most prominent of these lines is the e(+)e(-) annihilation line which was observed from the Galactic Center and from several gamma ray transients. At the Galactic Center the e(+)e(-) pairs are probably produced by an accreting massive black hole (solar mass of approximately one million) and annihilate within the central light year to produce a line at almost exactly 0.511 MeV. In gamma ray transients the annihilation line is redshifted by factors consistent with neutron star surface redshifts. Other observed transient gamma ray lines appear to be due to cyclotron absorption in the strong magnetic fields of neutron stars, and nuclear deexcitations and neutron capture, which could also occur on or around these objects.

  2. Very High Energy Gamma Ray Extension of GRO Observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  3. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  4. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  5. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  6. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  7. Using Gamma-Ray and Neutron Emission to Determine Solar Flare Accelerated Particle Spectra and Composition and the Conditions Within the Flare Magnetic Loop

    DTIC Science & Technology

    2007-01-01

    computer codes we have cal- culated the yields of deexcitation lines, escaping neutron spec- tra and the neutron capture line for monoenergetic ...USING GAMMA-RAYAND NEUTRON EMISSION TO DETERMINE SOLAR FLARE ACCELERATED PARTICLE SPECTRA AND COMPOSITION AND THE CONDITIONS WITHIN THE FLARE...California, San Diego, La Jolla, CA Received 2006 May 4; accepted 2006 August 23 ABSTRACT The measurable quantities associated with -ray and neutron

  8. Formation of very hard electron and gamma-ray spectra of flat-spectrum radio quasars in the fast-cooling regime

    NASA Astrophysics Data System (ADS)

    Yan, Dahai; Zhang, Li; Zhang, Shuang-Nan

    2016-07-01

    In the external Compton scenario, we investigate the formation of a very hard electron spectrum in the fast-cooling regime, using a time-dependent emission model. It is shown that a very hard electron distribution, N^' }_e({γ ^' })∝ {γ ^' }^{-p}, with spectral index p ˜ 1.3 is formed below the minimum energy of injection electrons when inverse Compton scattering takes place in the Klein-Nishina regime, i.e. inverse Compton scattering of relativistic electrons on broad-line region radiation in flat-spectrum radio quasars. This produces a very hard gamma-ray spectrum and can explain in reasonable fashion the very hard Fermi-Large Area Telescope (LAT) spectrum of the flat-spectrum radio quasar 3C 279 during the extreme gamma-ray flare in 2013 December.

  9. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  10. HOTSPUR: gamma ray emission from spheres pulsed with D-T neutrons. I. Calibration of improved NE213 detector assembly. II. Comparison of TART/SANDYL electron recoil spectra to experiment; preliminary results

    SciTech Connect

    Goldberg, E.; Hansen, L.F.; Komoto, T.T.; Pohl, B.A.

    1986-09-01

    The NE213 scintillator detector was modified so that the pulse height would be linear with electron energy over the full range of interest - up to 7.1 MeV. Absolute calibration was done with four different calibrated gamma sources. An average correction factor is obtained which normalizes SANDYL calculations with respect to the calibration experiments. The procedure for calculating neutron-induced gamma-ray output and electron recoil spectra is described, and experimental data from a number of spherical assemblies are given and compared to TART/SANDYL calculations. (LEW)

  11. The POPOP4 library and codes for preparing secondary gamma-ray production cross sections

    NASA Technical Reports Server (NTRS)

    Ford, W. E., III

    1972-01-01

    The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor.

  12. Lunar based gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Haymes, R. C.

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed.

  13. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  14. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  15. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  16. Gamma-ray burst observations

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.

    1993-01-01

    The most important observational characteristics of gamma-ray bursts are reviewed, with emphasis on X-ray and gamma-ray data. The observations are used to derive some basic properties of the sources. The sources are found to be isotropically distributed; the burster population is limited in space, and the edge of the distribution is visible.

  17. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  18. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  19. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  20. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  1. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  2. Photon energy conversion efficiency in gamma-ray spectrometry.

    PubMed

    Švec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed.

  3. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  4. Elemental mapping of planetary surfaces using gamma-ray spectroscopy

    SciTech Connect

    Reedy, R.C.

    1990-01-01

    The gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The {gamma} rays are made by the nuclear excitations induced by these cosmic-ray particles and their secondaries (especially capture or inelastic-scattering reactions induced by neutrons) and decay of the naturally-occurring radioelements. After a short history of planetary {gamma}-ray spectroscopy and its applications, the {gamma}-ray spectrometer planned for the Mars Observer mission is presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces or measure cross sections for the production of {gamma} rays and the status of the theoretical calculations for the processes that make and transport neutrons and {gamma} rays will be reviewed. The emphasis here is on studies of Mars and on new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a high-resolution {gamma}-ray spectrometer. 31 refs., 1 fig., 1 tab.

  5. The Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  6. The Gamma-Ray Albedo of the Moon

    SciTech Connect

    Moskalenko, I.V.; Porter, T.A.; /UC, Santa Cruz

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  7. Solar flare gamma-ray line shapes

    NASA Technical Reports Server (NTRS)

    Werntz, C.; Kim, Y. E.; Lang, Frederick L.

    1990-01-01

    A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

  8. Ginga Gamma-Ray Burst Line Occurrence

    NASA Technical Reports Server (NTRS)

    Band, David

    1998-01-01

    The purpose of this project is the statistical evaluation of the occurrence of spectral lines in the gamma-ray burst spectra detected by the Ginga burst detector, and the comparison of the Ginga results to the BATSE observations. Two significant line features were detected in the Ginga bursts, but thus far none have been detected in the bursts BATSE detected. These line features may indicate the presence of strong magnetic fields in bursts, and therefore are important physical diagnostics of the conditions in the plasma which radiates the observed gamma-rays. The issue is whether there is a discrepancy between the Ginga and BATSE results; the potential discrepancy must be evaluated statistically. Even if BATSE line detections are announced, the statistical methodology we have developed can be used to estimate the rate at which different types of spectral features occur.

  9. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  10. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  11. Spectra and angular distributions of atmospheric gamma rays from 0.3 to 10 MeV at lambda = 40 deg

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Gruber, D. E.

    1977-01-01

    Measurements of the spectral and angular distributions of atmospheric gamma sq cm rays in the energy range 0.3-10 MeV over Palestine, Texas, at residual depths of 2.5 and 70 g/sq cm are reported. In confirmation of the general features of a model prediction, the measurements show at 2.5 g/sq cm upward moving fluxes greater than the downward moving fluxes, the effect increasing with energy, and approximate isotropy at 70 g/sq cm. Numerous characteristic gamma-ray lines were observed, most prominently at 0.511, 1.6, 2.3, 4.4, and 6.1 MeV. Their intensities were also compared with model predictions. Observations were made with an actively shielded scintillator counter with two detectors, one of aperture 50 deg FWHM and the other of 120 deg FWHM. Above 1 MeV, contributions to the counting rate from photons penetrating the shield annulus and from neutron interactions were large; they were studied by means of a Monte Carlo code and are extensively discussed.

  12. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  13. Jet Shockwaves Produce Gamma Rays

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  14. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  15. The GAMMA-400 gamma-ray telescope angular resolution

    NASA Astrophysics Data System (ADS)

    Kheymits, Maxim; Leonov, Alexey

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be realized by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Search for signatures of dark matter, surveying the celestial sphere in order to study point and extended sources of gamma-rays, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, study of gamma-ray bursts and gamma-ray emission from the Sun. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution nearby 1% and angular resolution better than 0.02 deg. The methods, developed to reconstruct the direction of incident gamma photon, are presented in this paper. The main point concerns with the space topology of high energy gamma photon interaction in the matter of GAMMA-400. Multiple secondary particles, generated inside gamma-ray telescope, produce significant problems to restore the direction of initial gamma photon. Also back-splash particles, i.e., charged particles and gamma photons generated in calorimeter and moved upward, mask the initial tracks of electron/positron pair from conversion of incident gamma photon. The processed methods allow us to reconstruct the direction of electromagnetic shower axis and extract the electron/positron trace. As a result, the direction of incident gamma photon with the energy of 100 GeV is calculated with an accuracy of more than 0.02 deg.

  16. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  17. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  18. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  19. GAMIDEN: a program to aid in the identification of unknown materials by gamma-ray spectroscopy

    SciTech Connect

    Howerton, R.J.

    1983-05-10

    The intent of the computer code GAMIDEN is to help identify isotopes by their gamma-ray emissions and thus to assist in the nondestructive assay of unknown materials. From both radioactive decays and neutron captures, GAMIDEN searches GAMTOT83, a file of gamma-ray spectra, for matches with observed photon energies. This report describes the search procedure, outlines the use of the code, and gives an example. The code is designed to operate on the CRAY 1 computer at Lawrence Livermore National Laboratory (LLNL). It is written in standard Fortran (ANSI) for the most part but contains some LRLTRAN instructions to make use of the Livermore time-sharing system (LTSS). The code uses about 545,000 words of memory. Typical problems run in about 45 s. The source program and the data file are available on request.

  20. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  1. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  2. Solar Two Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Tümer, T.; Bhattacharya, D.; Mohideen, U.; Rieben, R.; Souchkov, V.; Tom, H.; Zweerink, J.

    1999-06-01

    The field of high energy gamma-ray astronomy grew tremendously in the last decade due to the launch of the EGRET detector on the Compton Gamma-Ray Observatory in 1991 and the proliferation of ground-based air Čherenkov telescopes (ACTs) such as the Whipple 10 meter reflector. Interestingly, the ground-based telescopes only see 4-5 of the over 170 objects detected by EGRET. A simple extrapolation of the EGRET objects' energy spectra up to the energies which the ACTs are sensitive suggests that many of them should have been detected. The key to resolving this lack of detections is to observe these sources in the previously unobserved 20-250 GeV energy range. The Solar Two Observatory collaboration is developing a secondary optics system on the central tower of the world's largest solar energy pilot plant, Solar Two, to observe gamma-ray sources in this energy range. The progress in building the secondary optics system to be used to image ˜64 heliostats at Solar Two located in Barstow, California, is presented. We hope to design and build this detector over the next 2 years.

  3. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Isabelle Grenier

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  4. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Grenier, Isabelle

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  5. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2016-07-12

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  6. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  7. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  8. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  9. Elemental mapping of the moon using gamma rays : past, present, and future /

    SciTech Connect

    Reedy, R. C.

    2001-01-01

    The energies and intensities of gamma rays From a planetary surface can be used to infer the elemental composition of an object with no or a thin atmosphere. The Apollo gamma-ray spectrometers in 1972 and 1973 produced many of the results for the distribution of elements in the Moon that are now generally well accepted. Lunar Prospector in 1998 and 1999 globally mapped the Moon with gamma rays and neutrons. Both missions used spectrometers with poor energy resolution ({approx}8-10%). The Japanese plan to send a high-resolution germanium gamma-ray spectrometer to the Moon in about 2004 on their SELENE mission. However, little has been done since the 1970s on the models used to unfold planetary gamma-ray spectra. More work needs to be done on understanding what to expect in future gamma-ray spectra and how to unfold such data.

  10. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.

    1989-01-01

    It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

  11. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  12. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  13. EGRET detection of high energy gamma rays from the gamma-ray burst of 3 May 1991

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.

    1992-01-01

    On May 3, 1991, the Energetic Gamma Ray Experiment Telescope on the Compton Gamma Ray Observatory detected a gamma-ray burst both in the energy measurement subsystem and independently in the spark chamber assembly. Six individual photons were detected in the spark chamber, allowing a determination of the burst arrival direction which was l(II) = 171.9 deg +/- 1.3 deg, b(II) = 5.3 deg +/- 1.1 deg. Three energy spectra were measured from 1 to 200 MeV; they were measured during the first second after the Burst and Transient Sources Experiment trigger, the next two seconds, and the subsequent four seconds. The first two spectra exhibit a similar differential spectra index of about -2.2 with no apparent high-energy cut-off. By the time of the third spectrum, an additional soft component is evident.

  14. Goddard Contributions to the La Jolla Workshop on Gamma Ray Transients

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Six articles addressing cosmic and solar gamma ray transients are presented. The topics covered include: gamma ray lines from solar flares and cosmic transients including burst spectra; a review of the 1979 March 5 transient; time variation in the 511 KeV flux observed by the ISEE spectrometer; time variations of an absorption feature in the spectrum of the burst on 1980 April 19; and the theory of gamma ray amplification through stimulated annihilation radiation.

  15. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  16. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  17. Multiwavelength Studies of gamma-ray Binaries

    NASA Astrophysics Data System (ADS)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  18. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy.

    PubMed

    Kinomura, A; Suzuki, R; Oshima, N; O'Rourke, B E; Nishijima, T; Ogawa, H

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  19. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    SciTech Connect

    Kinomura, A. Suzuki, R.; Oshima, N.; O’Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  20. Observation of gamma-ray bursts with the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Strickman, M. S.; Kinzer, R. L.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.; Rieger, E.; Reppin, C.; Kanbach, G.

    1982-01-01

    The gamma-ray spectrometer on SMM is sensitive to bursts within its field of view with intensities greater than 0.000005 erg/sq cm above 100 keV. It has detected 17 events between February 1980 and March 1981 with the characteristics of cosmic gamma-ray bursts. The most intense burst, on 19 April 1980, had a photon spectrum consistent with a power law with spectral index - 2.5 from 300 keV to approximately 7 MeV. It is not possible at present to exclude the sun as the source of this burst. Spectra of 11 of the bursts have been studied for line features with no clear evidence for line emission greater than 300 keV. The continuum radiation from about half of these events have hard emission extending to approximately equal to or greater than 2 MeV.

  1. Gamma-ray Line Astronomy

    NASA Astrophysics Data System (ADS)

    Diehl, R.

    2005-07-01

    Gamma-ray lines from radioactive isotopes, ejected into interstellar space by cosmic nucleosynthesis events, are observed with new space telescopes. The Compton Observatory had provided a sky survey for the isotopes 56Co, 22Na, 44Ti, and 26Al, detecting supernova radioactivity and the diffuse glow of long-lived radioactivity from massive stars in the Galaxy. High-resolution spectroscopy is now being exploited with Ge detectors: Since 2002, with ESA's INTEGRAL satellite and the RHESSI solar imager two space-based Ge-gamma-ray telescopes are in operation, measuring Doppler broadenings and line shape details of cosmic gamma-ray lines. First year's results include a detection and line shape measurement of annihilation emission, and 26Al emission from the inner Galaxy and from the Cygnus region. 60Fe gamma-ray intensity is surprisingly low; it may have been detected by RHESSI at 10% of the 26Al brightness, yet is not seen by INTEGRAL. 44Ti emission from Cas A and SN1987A is being studied; no other candidate young supernova remnants have been found through 44Ti. 22Na from novae still is not seen.

  2. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    SciTech Connect

    Dickens, J.K.

    1981-03-01

    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given.

  3. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  4. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  5. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  6. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  7. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  8. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  9. PING Gamma Ray and Neutron Measurements of a Meter-Sized Carbonaceous Asteroid Analog

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    Determining the elemental composition of carbonaceous (spectral type C) asteroids is still one of the basic problems when studying these objects. The only main source of elemental composition information for asteroids is from their optical, NIR and IR properties, which include their spectral reflectance characteristics, albedo, polarization, and the comparison of optical spectroscopy with meteorite groups corresponding to asteroids of every spectral type. Unfortunately, these sources reflect observations from widely contrasting spatial scales that presently yield a void in the continuum of microscopic and macroscopic evidence, a lack of in situ measurement confirmation, and require deeper sensing techniques to discern the nature of these asteroids. The Probing In situ with Neutrons and Gamma rays (PING) instrument is ideally suited to address this problem because it can be used to determine the bulk elemental composition, H and C content, the average atomic weight and density of the surface and subsurface layers of C-type asteroids, and can provide measurements used to determine the difference between and distinguish between different types of asteroids. We are currently developing the PING instrument that combines gamma ray and neutron detectors with a 14 Me V pulsed neutron generator to determine the in-situ bulk elemental abundances and geochemistry of C-type asteroids with a spatial resolution of 1 m down to depths of tens of cm to 1 m. One aspect of the current work includes experimentally testing and optimizing PING on a known meter-sized Columbia River basalt C-type asteroid analog sample that has a similar composition and the same neutron response as that of a C-type asteroid. An important part of this effort focuses on utilizing timing measurements to isolate gamma rays produced by neutron inelastic scattering, neutron capture and delayed activation processes. Separating the gamma ray spectra by nuclear processes results in higher precision and sensitivity

  10. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  11. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    SciTech Connect

    Yoon, D; Jung, J; Suh, T

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  12. Discovery of intense gamma-ray flashes of atmospheric origin

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Bhat, P. N.; Mallozzi, R.; Horack, J. M.; Koshut, T.; Kouveliotou, C.; Pendleton, G. N.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.

    1994-01-01

    Observations have been made of a new terrestrial phenomenon: brief (approx. millisecond), intense flashes of gamma rays, observed with space-borne detectors. These flashes must originate at altitudes in the atmosphere above at least 30 km in order to be observable by orbiting detectors aboard the Compton Gamma-Ray Observatory (CGRO). At least a dozen events have been detected over the past 2 years. The photon spectra from the events are very hard and are consistent with bremsstrahlung emission from energetic (MeV) electrons. The most likely origin of these high energy electrons, while speculative at this time, is a rare type of high altitude electrical discharge above thunderstorm regions.

  13. Neutron/Gamma-ray discrimination through measures of fit

    SciTech Connect

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-07-01

    Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulses obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)

  14. Mechanisms and sites for astrophysical gamma ray line production

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1978-01-01

    The production of gamma ray lines and estimates of line fluxes resulting from nuclear deexcitations, positron annihilation, and electron capture at various astrophysical sites are discussed. Supernova and nova explosions synthesize long-lived radioactive isotopes and eject them into space where they produce observable gamma ray lines by decaying into excited levels of daughter nuclei or by emitting positrons. Energetic charged particles in the interstellar medium, in supernova remants, in solar or stellar flares, and possibly in the vicinity of compact objects, produce gamma-ray lines by inelastic collisions which either excite nuclear levels or produce positrons and neutrons. Energetic particles can result from acceleration in time-varying magnetic fields (solar flares) or from gravitational accretion onto neutron stars and black holes. Electromagnetic processes in the strong magnetic fields of pulsars can produce positron-electron pairs, with line emission resulting from positron annihilation. Deexcitations of quantized states in strong magnetic fields can also produce lines.

  15. TL detectors for gamma ray dose measurements in criticality accidents.

    PubMed

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  16. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  17. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  18. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  19. Environments of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Roming, Peter; Tobler, Jennifer

    2016-01-01

    The death of some of the most massive stars are manifest as long gamma-ray bursts (GRBs). Studying their light curves and spectra are uncovering some of the properties of the "central engine" that remains after the progenitor star collapses, as well as the environment in which they reside. Much of our current understanding comes from data obtained in the gamma-ray to X-ray. Despite this progress in the high-energy regime, our understanding of the soft-energy component (UV/optical) is lacking, particularly with regards to UV/optical flaring from the central engine and distinguishing between interstellar material and wind environments. Although these questions have been addressed for individual bursts, no systematic study in the UV/optical has been done due to the lack of a large homogenous sample. The Swift Ultra-Violet/Optical Telescope (UVOT) has observed more GRBs in the UV/optical than any other telescope. From these observations we have generated a homogenous UV/optical GRB afterglow catalog. From this catalog and coupled with archival Swift X-Ray Telescope (XRT) data, we examine the spectral evolution of GRBs in order to probe the circumburst environment and to test current progenitor models.

  20. Measurements of gamma-ray production cross sections for shielding materials of space nuclear systems

    NASA Technical Reports Server (NTRS)

    Orphan, V. J.; John, J.; Hoot, C. G.

    1972-01-01

    Measurements of secondary gamma ray production from neutron interactions have been made over the entire energy range of interest in shielding applications. The epithermal capture gamma ray yields for both resolved gamma ray lines and continuum have been measured from thermal energies to 100 KeV for natural tungsten and U-238, two important candidate shield materials in SNAP reactor systems. Data are presented to illustrate the variation of epithermal capture gamma ray yields with neutron energy. The gamma ray production cross sections from (n,xy) reactions have been measured for Fe and Al from the threshold energies for inelastic scattering to approximately 16 MeV. Typical Fe and Al cross sections obtained with high-neutron energy resolution and averaged over broad neutron-energy groups are presented.

  1. A New Method for the Reconstruction of Very-High-Energy Gamma-Ray Spectra and Application to Galactic Cosmic-Ray Accelerators

    NASA Astrophysics Data System (ADS)

    Fernandes, Milton Virgílio

    2014-06-01

    In this thesis, high-energy (HE; E > 0.1 GeV) and very-high-energy (VHE; E > 0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESS J1646-458 (2.2° in size) towards the SC Westerlund 1 (Wd 1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESS J1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of

  2. The development of a new edition of the gamma-ray spectrum catalogues designed for presentation in electronic format

    SciTech Connect

    Heath, R.L.

    1997-11-01

    New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization. 8 refs., 8 figs.

  3. Spectral feature of 31 December 1981 gamma-ray burst not confirmed

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Share, G. H.; Chupp, E. L.; Forrest, D. J.; Matz, S. M.

    1984-01-01

    Measurements of a gamma ray burst at 01:37 UT on December 31, 1981 using the SMM gamma ray spectrometer (GRS) are compared with those made by the Konus instruments on Veneras 11-14. Burst time profiles, photon spectra, and detector energy loss spectra for three time intervals are compared for the GRS and the Konus instruments. It is concluded that the SMM spectra exhibit no evidence for the presence of emission features reported by the Konus group.

  4. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  5. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  6. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  7. Spectral evolution of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Teegarden, B.; Cline, T.; Paciesas, W.; Pendleton, G.; Fishman, G.; Meegan, C.

    1992-01-01

    BATSE's Spectral Detectors provide a series of high resolution spectra over the duration of a gamma-ray burst; fits to these spectra show the evolution of the continuum as the burst progresses. The burst continuum can usually be fit by the spectral form AE sup alpha exp(-E/kT) from around 25 keV to more than 3 MeV, with varying trends in the value and evolution of the spectral parameters. As a result of limited statistics for E greater than 1 - 2 MeV in the individual spectra, a high energy power law is not required. Only long duration strong bursts can be studied by fitting a series of spectra, and therefore our conclusions concern only this class of burst. The bursts we analyzed tend to be characterized by a hard-to-soft trend both for individual intensity spikes and for the burst as a whole: the hardness leads the count rate in spectra which resolve the temporal variations, while the hardness of successive spikes decreases. We also summarize the performance of the Spectral Detectors and the development of analysis tools to date.

  8. Observations of GRB 990123 by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Briggs, M. S.; Band, D. L.; Kippen, R. M.; Preece, R. D.; Kouveliotou, C.; vanParadijs, J.; Share, G. H.; Murphy, R. J.; Matz, S. M.; Connors, A.

    1999-01-01

    GRB 990123 was the first burst from which simultaneous optical, X-ray, and gamma-ray emission was detected; its afterglow has been followed by an extensive set of radio, optical, and X-ray observations. We have studied the gamma-ray burst itself as observed by the Compton Gamma Ray Observatory detectors. We find that gamma-ray fluxes are not correlated with the simultaneous optical observations and that the gamma-ray spectra cannot be extrapolated simply to the optical fluxes. The burst is well fitted by the standard four-parameter GRB function, with the exception that excess emission compared with this function is observed below approx. 15 keV during some time intervals. The burst is characterized by the typical hard-to-soft and hardness-intensity correlation spectral evolution patterns. The energy of the peak of the vf (sub v), spectrum, E (sub p), reaches an unusually high value during the first intensity spike, 1470 plus or minus 110 keV, and then falls to approx. 300 keV during the tail of the burst. The high-energy spectrum above approx. 1 MeV is consistent with a power law with a photon index of about -3. By fluence, GRB 990123 is brighter than all but 0.4% of the GRBs observed with BATSE (Burst and Transient Source Experiment), clearly placing it on the -3/2 power-law portion of the intensity distribution. However, the redshift measured for the afterglow is inconsistent with the Euclidean interpretation of the -3/2 power law. Using the redshift value of greater than or equal to 1.61 and assuming isotropic emission, the gamma-ray energy exceeds 10 (exp 54) ergs.

  9. Flare gamma ray continuum emission from neutral pion decay

    NASA Technical Reports Server (NTRS)

    Alexander, David; Mackinnon, Alec L.

    1992-01-01

    We investigate, in detail, the production of solar flare gamma ray emission above 100 MeV via the interaction of high energy protons with the ambient solar atmosphere. We restrict our considerations to the broadband gamma ray spectrum resulting from the decay of neutral pions produced in p-H reactions. Thick-target calculations are performed to determine the photon fluences. However, proton transport is not considered. Inferences about the form of the proton spectrum at 10-100 MeV have already been drawn from de-excitation gamma ray lines. Our aim is to constrain the proton spectrum at higher energies. Thus, the injected proton spectrum is assumed to have the form of a Bessel Function, characteristics of stochastic energy at higher energies. The detailed shape of the gamma ray spectra around 100 MeV is found to have a strong dependence on the spectral index of the power law and on the turnover energy (from Bessel function to power law). As would be expected, the harder the photon spectrum the wider the 100 MeV feature. The photon spectra are to be compared with observations and used to place limits upon the number of particles accelerated and to constrain acceleration models.

  10. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  11. Signal source separation and decomposition of the EGRET gamma ray data

    NASA Astrophysics Data System (ADS)

    Minor, Christian Parker

    2004-12-01

    In 1998, Dixon and collaborators discovered a statistically significant halo of gamma rays in the EGRET data from periods 1 through 4 that comprise observations of the gamma-ray sky from several distinct gamma-ray source distributions. An intensity map for the gamma-ray halo, however, could not be recovered with available statistical methods. Thus, the comparison and evaluation of, for example, dark matter models with the gamma-ray halo was limited. The dissertation argues that the morphology of gamma rays from a source distribution is distinguishable and can be used as a kind of spatial features signature for describing the source distribution. A new method, referred to as the analysis framework and based on capturing the spatial characteristics typical of gamma-ray source distributions, has been developed for the comparison of astrophysical models of gamma-ray sources with observational data. The method compensates for the difficulties and uncertainties of incorporating measurements into gamma-ray models by forming a model class from the output (e.g., a sky map) of an individual model that can be sampled to form a mean model. The output of the method is a mean model that is an average of typical members of a Besov space whose member functions all share the morphology of the gamma-ray model. The mean model can also be used in traditional hypothesis testing, like that of Mattox, et al. (1996), for the comparison and evaluation of gamma-ray models with the EGRET data. Results from extensive testing of the analysis framework with simulated data are presented. Results of the application of the analysis framework to the galactic diffuse emission model of Hunter, et al. (1997) are also presented .

  12. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  13. GAMCIT: A gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Grunsfeld, John M.; Warneke, Brett A.

    1992-01-01

    The origin of celestial gamma ray bursts remains one of the great mysteries of modern astrophysics. The GAMCIT Get-Away-Special payload is designed to provide new and unique data in the search for the sources of gamma ray bursts. GAMCIT consists of three gamma ray detectors, an optical CCD camera, and an intelligent electronics system. This paper describes the major components of the system, including the electronics and structural designs.

  14. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  15. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Finman, L. C.; Hofstadter, R.; Lepetich, J. E.; Lin, Y. C.

    1986-01-01

    A large NaI(Tl) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described.

  16. Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM

    NASA Technical Reports Server (NTRS)

    Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.

    2007-01-01

    Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.

  17. Erratum: Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2007-01-01

    Table 1 in our paper had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays; tau. The correct values for these parameters as described in the original text are given in the table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift.

  18. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  19. Low-level gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R.L.

    1990-10-01

    Low-level gamma-ray spectrometry generally equates to high-sensitivity gamma-ray spectrometry that can be attained by background reduction, selective signal identification, or some combination of both. Various methods for selectively identifying gamma-ray events and for reducing the background in gamma-ray spectrometers are given. The relative magnitude of each effect on overall sensitivity and the relative cost'' for implementing them are given so that a cost/benefit comparison can be made and a sufficiently sensitive spectrometer system can be designed for any application without going to excessive or unnecessary expense. 10 refs., 8 figs.

  20. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  1. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  2. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  3. Fission Product Gamma-Ray Line Pairs Sensitive to Fissile Material and Neutron Energy

    SciTech Connect

    Marrs, R E; Norman, E B; Burke, J T; Macri, R A; Shugart, H A; Browne, E; Smith, A R

    2007-11-15

    The beta-delayed gamma-ray spectra from the fission of {sup 235}U, {sup 238}U, and {sup 239}Pu by thermal and near-14-MeV neutrons have been measured for delay times ranging from 1 minute to 14 hours. Spectra at all delay times contain sets of prominent gamma-ray lines with intensity ratios that identify the fissile material and distinguish between fission induced by low-energy or high-energy neutrons.

  4. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    years, the look-back time indicates that the explosion took place around the time our own galaxy, the Milky Way, was formed and at least 6,000 million years before the solar system was born. GRB 000131 and other gamma-ray bursts are believed to have taken place in remote galaxies. However, due to the huge distance, it has not yet been possible to see the galaxy in which the GRB 000131 event took place (the "host" galaxy). From the observed fading of the afterglow it is possible to estimate that the maximum brightness of this explosion was at least 10,000 times brighter than the host galaxy. Future studies of gamma-ray bursts The present team of astronomers has now embarked upon a detailed study of the surroundings of GRB 000131 with the VLT. A main goal is to observe the properties of the host galaxy. From the observations of about twenty optical counterparts of gamma-ray bursts identified until now, it is becoming increasingly clear that these very rare events are somehow related to the death of massive, short-lived stars . But despite the accumulating amount of excellent data, the details of the mechanism that leads to such dramatic explosions still remain a puzzle to astrophysicists. The detection and present follow-up observations of GRB 000131 highlight the new possibilities for studies of the extremely distant (and very early) Universe, now possible by means of gamma-ray bursts. When observed with the powerful instruments at a large ground-based telescope like the VLT, this incredibly bright class of cosmological objects may throw light on the fundamental processes of star formation in the infant universe. Of no less interest is the opportunity to analyse the chemical composition of the gas clouds at the epoch galaxies formed, by means of the imprints of the corresponding absorption lines on the afterglow spectrum. Waiting for the opportunity In this context, it would be extremely desirable to obtain very detailed (high-dispersion) spectra of the afterglow of a

  5. Proton Calorimetry and Gamma-Rays in Arp 220

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova; Gallagher, John S.; Zweibel, Ellen Gould

    2014-08-01

    Until recently, it was thought that starburst galaxies were both electron and proton calorimeters, making them especially bright in gamma-rays. However, with detections of starburst galaxies M82 and NGC 253 by Fermi, HESS, and VERITAS, we find that such galaxies are only partial proton calorimeters due to significant advection by galactic winds. Thus, to find cosmic-ray proton calorimeters, we must look for much denser systems. Previous models of the cosmic ray interactions in Arp 220 (e.g. Torres 2004) suggest it is a proton calorimeter and that it should already be detectable by Fermi. The Torres model suggests that if Arp 220 is a calorimeter, then it should have been detected in gamma-rays by Fermi at levels above current upper limits. We therefore must question. whether Arp 220 is a true proton calorimeter, and if so what other properties could be responsible for its low gamma ray flux. Here, we further explore the observed ranges on environmental properties and model the central nuclei to predict both the radio and gamma-ray spectra. We test the proton calorimetry hypothesis and estimate the observation time needed for a detection by Fermi for a range of assumptions about conditions in Arp 220.

  6. Gamma-ray strength functions and their relation to astrophysics

    SciTech Connect

    Larsen, A. C.; Buerger, A.; Guttormsen, M.; Hagen, T. W.; Nyhus, H. T.; Rekstad, J. B.; Renstroem, T.; Rose, S. J.; Ruud, I. E.; Siem, S.; Syed, N. U. H.; Toft, H. K.; Tveten, G. M.; Wikan, K.; Algin, E.; Agvaanluvsan, U.; Goergen, A.

    2011-10-28

    The nuclear {gamma}-ray strength function is one of the indispensable inputs needed for reaction-rate calculations, and is particularly important for the neutron-capture cross section. The nuclear physics group at the Oslo Cyclotron Laboratory has developed a method to extract simultaneously nuclear level density and {gamma}-ray strength function from particle-{gamma} coincidence measurements. Data on the strength functions of Sn nuclei as well as for lighter elements are presented. The Sn isotopes all display a resonance-like structure close to the neutron threshold, that could possibly be due to the neutron-skin oscillation mode. This so-called pygmy dipole resonance greatly influences the neutron-capture rates. In the lighter nuclei, an enhancement of the strength function at low {gamma} energies is observed. The possible impact of this increase on Maxwellian-averaged reaction rates has been investigated.

  7. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  8. Scanning Gamma Ray Densitometer System for Detonations.

    DTIC Science & Technology

    in loaded detonators and delays. The 317 KEV gamma rays from an Ir192 source were collimated into a beam of 0.002 by 0.100 inch. A scanning system...minus 3%. With Ir192 , density measurements on NOL-130 were reproduced to plus or minus 5%, and on RDX to plus or minus 16%. Based on gamma ray

  9. Gamma-Ray Interactions for Reachback Analysts

    SciTech Connect

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  10. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  11. Terrestrial Gamma-ray Flash (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial gamma-ray flashes (TGFs) are being observed with the Gamma-ray Burst Monitor (GBM) detectors on Fermi about once every four weeks. These intense millisecond flashes of MeV photons have been observed with four space-borne experiments since their initial discovery by the BATSE-CGRO experiment in the early 1990s. TGFs have extremely hard spectra (harder than GRBs) and photons are seen to extend to over 30 MeV. The GBM-Fermi observations have the highest temporal resolution of any previous TGF observations and time-resolved coarse spectra can be derived. These features will be crucial for testing the leading current model of TGF production: relativistic run-away electron cascades formed in the intense electric fields within thunderstorms.

  12. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  13. Unveiling the secrets of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Gomboc, Andreja

    2012-07-01

    Gamma Ray Bursts are unpredictable and brief flashes of gamma rays that occur about once a day in random locations in the sky. Since gamma rays do not penetrate the Earth's atmosphere, they are detected by satellites, which automatically trigger ground-based telescopes for follow-up observations at longer wavelengths. In this introduction to Gamma Ray Bursts we review how building a multi-wavelength picture of these events has revealed that they are the most energetic explosions since the Big Bang and are connected with stellar deaths in other galaxies. However, in spite of exceptional observational and theoretical progress in the last 15 years, recent observations raise many questions which challenge our understanding of these elusive phenomena. Gamma Ray Bursts therefore remain one of the hottest topics in modern astrophysics.

  14. Future Missions for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gamma-ray astronomy has made great advances in recent years, due largely to the recently completed 9-year mission of the Compton Gamma Ray Observatory. In this talk I will give an overview of what advances we may expect in the near future, with particular emphasis on earth-orbiting missions scheduled for flight within the next 5 years. Two missions, the High Energy Transient Explorer and Swift, will provide important new information on the sources of gamma-ray bursts. The Gamma-Ray Large Area Space Telescope will investigate high energy emission from a wide variety of sources, including active galaxies and gamma-ray pulsars. The contributions of ground-based and multiwavelength observations will also be addressed.

  15. Instrumentation for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  16. The interpretation of gamma-ray enhancements in thunderstorms with and without avalanche multiplication

    NASA Astrophysics Data System (ADS)

    Kelley, N. A.

    2015-12-01

    Relativistic Runaway Electron Avalanches (RREAs) are the acceleration and subsequent multiplication of relativistic electrons inside by electric field. Inside thunderstorms, RREA are thought to be involved in the creation of extraordinarily bright bursts of gamma rays, called Terrestrial Gamma-ray Flashes (TGFs), and long duration production of gamma rays (called gamma-ray glows or thunderstorm ground enhancements (TGEs)). However, Chilingarian has proposed that some electric fields inside thunderstorms may not be strong enough or have large enough spatial extent to result in significant avalanche multiplication by RREA to make a glow. High-energy electrons and gamma rays would still be present by a modification of the spectra (MOS) of cosmic-ray air showers. MOS and RREA glows have both been detected many times from the ground but distinguishing between the two is difficult since differing count rates can be the result of either these two distinct production models or attenuation due to various source distances. We will present GEANT4 models showing how these spectra differ as a function of source distance as well as discuss the differences in their gamma ray/electron signature in ground-based, gamma-ray detectors. These models will be compared to measurements made with instruments already in place in Mexico and Japan.

  17. High-energy gamma rays in Hiroshima and Nagasaki: implications for risk and WR.

    PubMed

    Straume, T

    1995-12-01

    Based on the DS86 dosimetry system, nearly all of the dose to survivors of the atomic bombings of Hiroshima and Nagasaki was due to unusually high-energy gamma rays, predominantly in the 2- to 5-MeV range. These high energies resulted in part from neutron capture gamma rays as the bomb neutrons penetrated large distances of air. Because of the inverse relationship between energy and biological effectiveness, these high-energy gamma rays are expected to be substantially less effective in producing biological damage than the radiations commonly used in radiobiology and risk assessment. This observation has implications for radiation protection and risk assessment.

  18. High energy gamma-rays and hadrons at Mount Fuji

    NASA Technical Reports Server (NTRS)

    Amenomori, M.; Nanjo, H.; Konishi, E.; Hotta, N.; Mizutani, K.; Kasahara, K.; Kobayashi, T.; Mikumo, E.; Sato, K.; Yuda, T.

    1985-01-01

    The energy spectra of high energy gamma-rays and hadrons were obtained by the emulsion chamber with 40 c.u. thickness at Mt. Fuji (3750 m). These results are compared with the Monte Carlo calculation based on the same model which is used in a family analysis. Our data are compatible with the model of heavy-enriched primary and scaling in the fragmentation region.

  19. Gamma rays from the de-excitation of C-12 resonance 15.11 MeV and C-12 resonance 4.44 MeV as probes of energetic particle spectra

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1977-01-01

    The flux of 15.11 MeV gamma rays relative to the flux 4.44 MeV gamma rays was calculated from measured cross sections for excitation of the corresponding states of C-12 and from experimental determinations of the branching ratios for direct de-excitation of these states to the ground state. Because of the difference in threshold energies for excitation of these two levels, the relative intensities in the two lines are particularly sensitive to the spectral distribution of energetic particles which excite the corresponding nuclear levels. For both solar and cosmic emission, the observability of the 15.11 MeV line is expected to be enhances by low source-background continuum in this energy range.

  20. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    NASA Astrophysics Data System (ADS)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krtička, M.; Bečvář, F.

    2009-03-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  1. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    SciTech Connect

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krticka, M.; Becvar, F.

    2009-03-31

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  2. Modifications of a method for low energy gamma-ray incident angle reconstruction in the GAMMA-400 gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Galper, A. M.; Topchiev, N. P.; Bonvicini, V.; Adriani, O.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bobkov, S. G.; Boezio, M.; Dalkarov, O. D.; Egorov, A. E.; Glushkov, N. A.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kheymits, M. D.; Korepanov, V. E.; Longo, F.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Moskalenko, I. V.; Naumov, P. Yu; Picozza, P.; Runtso, M. F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Yurkin, Yu T.; Zverev, V. G.

    2017-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the gamma-ray fluxes in the energy range from ∼20 MeV to ∼1 TeV, performing a sensitive search for high-energy gamma-ray emission when annihilating or decaying dark matter particles. Such measurements will be also associated with the following scientific goals: searching for new and studying known Galactic and extragalactic discrete high-energy gamma-ray sources (supernova remnants, pulsars, accreting objects, microquasars, active galactic nuclei, blazars, quasars). It will be possible to study their structure with high angular resolution and measuring their energy spectra and luminosity with high-energy resolution; identify discrete gamma-ray sources with known sources in other energy ranges. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolutions for gamma rays above 10 GeV. The gamma-ray telescope angular and energy resolutions for the main aperture at 100-GeV gamma rays are ∼0.01% and ∼1%, respectively. The motivation of presented results is to improve physical characteristics of the GAMMA-400 gamma-ray telescope in the energy range of ∼20-100 MeV, most unexplored range today. Such observations are crucial today for a number of high-priority problems faced by modern astrophysics and fundamental physics, including the origin of chemical elements and cosmic rays, the nature of dark matter, and the applicability range of the fundamental laws of physics. To improve the reconstruction accuracy of incident angle for low-energy gamma rays the special analysis of topology of pair-conversion events in thin layers of converter performed. Choosing the pair-conversion events with more precise vertical localization allows us to obtain significantly better angular resolution in comparison with previous and current space and ground-based experiments. For 50-MeV gamma rays the GAMMA-400 gamma-ray telescope angular resolution is better than 50.

  3. Production spectrum of gamma rays in interstellar space through neutral pion decay

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Badhwar, G. D.

    1981-01-01

    A simple representation is obtained of the observed invariant cross section for the production of neutral pions in proton-proton collisions. Using this representation, the differential and integral production spectra of gamma rays in the galaxy are calculated from interactions of cosmic ray nuclei with interstellar gas. It is shown that the uncertainties in deducing interstellar proton spectrum by demodulating the observed spectrum have only a limited effect on the gamma ray spectrum. Also determined is the gamma ray production spectrum through bremsstrahlung process for a typical interstellar electron spectrum derived from the radio spectrum in the galaxy.

  4. Fermi-LAT Gamma-ray Observations of Nova Lupus 2016 (ASASSN-16kt)

    NASA Astrophysics Data System (ADS)

    Cheung, C. C.; Jean, P.; Shore, S. N.; Fermi Large Area Telescope Collaboration

    2016-10-01

    The Fermi Gamma-ray Space Telescope performed a ~6-day Target of Opportunity (ToO) observation of Nova Lupus 2016 (ATel #9538, #9539, CBET #4322) that commenced on September 28. Considering earlier all-sky survey Large Area Telescope (LAT) observations as well, preliminary analysis indicates gamma-ray emission at ~2 sigma was detected around 1 to 2 days after the optical peak on September 25th (pre-validated AAVSO visual lightcurve; ATel #9550, CBET #4322) when the optical spectra show opaque ejecta, similar to previous gamma-ray detected novae (Fermi-LAT collaboration, 2014 Science 345, 554; Cheung et al. 2016 ApJ 826, 142).

  5. Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2006-01-01

    We calculate the intergalactic photon density as a function of both energy and redshift for 0Gamma-rays in intergalactic space owing to interactions with low-energy photons and the 2.7 K cosmic microwave background radiation. We calculate the optical depth of the universe, Tau , for Gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from 0 to 5. We also give an analytic fit with numerical coefficients for approximating (E(Gamma), z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z=0.117 and compare it with the spectrum observed by the HESS air Cerenkov Gamma-ray telescope array.

  6. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  7. Sensitivity of HAWC to gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Taboada, Ignacio; HAWC Collaboration

    2012-12-01

    HAWC is a ground based very high-energy gamma ray detector under construction in Mexico at an altitude of 4100 m a.s.l. Higher altitude, improved design and a larger physical size used to reject CR background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view, ~2sr, and over 90% duty cycle make it ideal to search for GRBs. We review the sensitivity of HAWC to GRBs with two independent data acquisition systems. We show that some of the brightest GRBs observed by Fermi LAT (e.g. GRB 090510) could result in >5 σ observation by HAWC. The observations (or limits) of GRBs by HAWC will provide information on the high-energy spectra of GRBs. The high-energy spectra will teach us about extra galactic background light, the Lorentz boost factor of the jets tha power GRBs and/or particle acceleration models of GRBs. Finally we present limits on > 10 GeV emission from GRB 111016B, recently studied with HAWC's engineering array VAMOS.

  8. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  9. Terrestrial Gamma-ray Flash (TGF) Observations with the Gamma-ray Burst Monitor on the Fermi Observatory

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial Gamma-ray Flashes (TGFs) have now been detected with four different orbiting spacecraft. The latest observations are being made with the scintillation detectors of Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi). Although this experiment was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations, surpassing those of the experiment that discovered TGFs, the BATSE experiment on the Compton Gamma-ray Observatory. Launched in June 2008 from the Kennedy Space Center, the Fermi-GBM has been detecting about one TGF every four weeks. The thick bismuth germinate (BGO) scintillation detectors of the GBM have now observed photon energies from TGFs at energies up to approx.40 MeV. Individual photons are detected with an absolute timing accuracy of 2 microsec. Unlike the BATSE instrument, the GBM data system allows higher counting rates to be recorded and deadtime characteristics are well-known and correctable; thus the saturation effects seen with BATSE are avoided. TGF pulses as narrow as approx.0.1ms have been observed with the GBM. Like BATSE (and unlike RHESSI) an on-board trigger is required to detect TGFs. The minimum time window for this trigger is 16ms. A trigger window this wide greatly reduces the number of detected TGFs, since they most often have a much shorter duration than this window, thus reducing the signal-to-background. New on-board trigger algorithms based on detected photon energies are about to be implemented; this should increase the number of TGF triggers. High-energy spectra from TGFs observed with Fermi-GBM will be described.

  10. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  11. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  12. Python in gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph Deil

    2016-03-01

    Gamma-ray astronomy is a relatively new window on the cosmos. The first source detected from the ground was the Crab nebula, seen by the Whipple telescope in Arizona in 1989. Today, about 150 sources have been detected at TeV energies using gamma-ray telescopes from the ground such as H.E.S.S. in Namibia or VERITAS in Arizona, and about 3000 sources at GeV energies using the Fermi Gamma-ray Space Telescope. Soon construction will start for the Cherenkov Telescope Array (CTA), which will be the first ground-based gamma-ray telescope array operated as an open observatory, with a site in the southern and a second site in the northern hemisphere. In this presentation I will give a very brief introduction to gamma-ray astronomy and data analysis, as well as a short overview of the software used for the various missions. The main focus will be on recent attempts to build open-source gamma-ray software on the scientific Python stack and Astropy: ctapipe as a CTA Python pipeline prototype, Fermipy and the Fermi Science Tools for Fermi-LAT analysis, Gammapy as a community-developed gamma-ray Python package and naima as a non-thermal spectral modeling and fitting package.

  13. Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  14. First results from gamma ray diagnostics in EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, R. J.; Hu, L. Q.; Zhong, G. Q.; Cao, H. R.; Liu, G. Z.; Li, K.; Zhang, Y.; Lin, S. Y.; Zhang, J. Z.

    2016-11-01

    Gamma ray diagnostics has been developed in the EAST tokamak recently. Six BGO scintillator detectors are arranged on the down-half cross-section and pointed at the up-half cross-section of plasma, with space resolution about 15 cm and energy range from 0.3 MeV to 6 MeV. Three main gamma ray peaks in the energy spectra have been observed and are identified as the results of nuclear reactions 207Pb(n, n')207mPb, H(n, γ) D, and D(p, γ)3He, respectively. Upgrading of the system is in progress by using LaBr3(Ce) scintillator, fast photo-multiplier tubes, and a fully digital data acquisition system based on high sample frequency digitizers with digital pulse processing algorithms.

  15. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  16. Generic dark matter signature for gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Barger, V.; Gao, Y.; Keung, W.-Y.; Marfatia, D.

    2009-09-01

    We describe a characteristic signature of dark matter (DM) annihilation or decay into gamma rays. We show that if the total angular momentum of the initial DM particle(s) vanishes, and helicity suppression operates to prevent annihilation/decay into light fermion pairs, then the amplitude for the dominant 3-body final state f+f-γ has a unique form dictated by gauge invariance. This amplitude and the corresponding energy spectra hold for annihilation of DM Majorana fermions or self-conjugate scalars, and for decay of DM scalars, thus encompassing a variety of possibilities. Within this scenario, we analyze Fermi LAT, PAMELA, and HESS data, and predict a hint in future Fermi gamma-ray data that portends a striking signal at atmospheric Cherenkov telescopes.

  17. First results from gamma ray diagnostics in EAST Tokamak.

    PubMed

    Zhou, R J; Hu, L Q; Zhong, G Q; Cao, H R; Liu, G Z; Li, K; Zhang, Y; Lin, S Y; Zhang, J Z

    2016-11-01

    Gamma ray diagnostics has been developed in the EAST tokamak recently. Six BGO scintillator detectors are arranged on the down-half cross-section and pointed at the up-half cross-section of plasma, with space resolution about 15 cm and energy range from 0.3 MeV to 6 MeV. Three main gamma ray peaks in the energy spectra have been observed and are identified as the results of nuclear reactions (207)Pb(n, n')(207m)Pb, H(n, γ) D, and D(p, γ)(3)He, respectively. Upgrading of the system is in progress by using LaBr3(Ce) scintillator, fast photo-multiplier tubes, and a fully digital data acquisition system based on high sample frequency digitizers with digital pulse processing algorithms.

  18. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  19. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  20. Gamma Ray Spectrum Catalogs from Idaho National Laboratory (INL)

    DOE Data Explorer

    Heath, R. L.

    Gamma-ray spectrometry is widely applied as a tool for the assay of radioactive source material to identify the isotopes present and characterize radiation fields. Beginning with the startup of the world's first high-flux beam reactor, Materials Test Reactor (MTR), INL has pioneered the development of x-ray spectrometry for use in basic nuclear research and a variety of disciplines using radioisotopes and other radiation sources. Beginning in the early 1950s, a program was instituted to make the technique a precise laboratory tool. Standards were established for detectors and nuclear electronics to promote the production of commercial laboratory spectrometers. It was also necessary to produce a comprehensive collection of standard detector response functions for individual radio nuclides to permit the use of gamma-ray spectrometers for identification of radioisotopes present in radiation sources. This led to the publication of standard measurement methodology and a set of Gamma-Ray Spectrum Catalogues. These publications, which established standards for detector systems, experimental methods and reference spectra for both NaI (Tl) scintillation detectors and Ge(Li) - Si( Li) semiconductor devices, became standard reference works, distributed worldwide. Over 40,000 copies have been distributed by the Office of Science and Technical Information (OSTI). Unfortunately, although they are still very much in demand, they are all out of print at this time. The INL is converting this large volume of data to a format which is consistent with current information technology and meets the needs of the scientific community. Three are available online with the longest being more than 800 pages in length. Plotted spectra and decay data have been converted to digital formats and updated, including decay scheme graphics. These online catalogs are: • Ge(Li)-Si(Li) Gamma Spectrum Catalog (Published 3-29-1999) • NaI(Tl) Gamma Spectrum Catalog (Published 4-1-1997) • Gamma-ray

  1. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Sommer, M.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Fishman, G. J.; Harding, A. K.; Hartman, R. C.; Hunter, S. D.; Hurley, K.; Kanbach, G.

    1994-01-01

    The intense gamma-ray burst of 1993 January 31 was detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. Sixteen gamma rays above 30 MeV were imaged in the telescope when only 0.04 gamma rays were expected by chance. Two of these gamma rays have energies of approximately 1 GeV, and the five bin spectrum of the 16 events is fitted by a power law of photon spectral index -2.0 +/- 0.4. The high-energy emission extends for at least 25 s. The most probable direction for this burst is determined from the directions of the 16 gamma rays observed by Egret and also by requiring the position to lie on annulus derived by the Interplanetary Network.

  2. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  3. Gamma-ray observatory INTEGRAL reloaded

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Edward P. J.

    2017-04-01

    The scientific aims of the European Space Agency's International Gamma-Ray Astrophysics Laboratory are considerably extended because of its unique capability to identify electromagnetic counterparts to sources of gravitational waves and ultra-high-energy neutrinos.

  4. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  5. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  6. Gamma-ray spectroscopy - Requirements and prospects

    NASA Technical Reports Server (NTRS)

    Matteson, James L.

    1991-01-01

    The only previous space instrument which had sufficient spectral resolution and directionality for the resolution of astrophysical sources was the Gamma-Ray Spectrometer carried by HEAO-3. A broad variety of astrophysical investigations entail gamma-ray spectroscopy of E/Delta-E resolving power of the order of 500 at 1 MeV; it is presently argued that a sensitivity to narrow gamma-ray lines of a few millionths ph/sq cm, from about 10 keV to about 10 MeV, should typify the gamma-ray spectrometers of prospective missions. This performance is achievable with technology currently under development, and could be applied to the NASA's planned Nuclear Astrophysics Explorer.

  7. Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-04-06

    Regenerated high energy emissions from gamma-ray bursts (GRBs) are studied in detail. If the primary emission spectrum extends to TeV range, these very high energy photons will be absorbed by the cosmic infrared background (CIB). The created high energy electron-positron pairs up-scatter not only cosmic microwave background (CMB) photons but also CIB photons, and secondary photons are generated in the GeV-TeV range. These secondary delayed photons may be observed in the near future, and useful for a consistency check for the primary spectra and GRB physical parameters. The up-scattered CIB photons cannot be neglected for low redshift bursts and/or GRBs with a relatively low maximum photon energy. The secondary gamma-rays also give us additional information on the CIB, which is uncertain in observations so far.

  8. SEARCHING FOR {gamma}-RAY BLAZAR CANDIDATES AMONG THE UNIDENTIFIED INTEGRAL SOURCES

    SciTech Connect

    Massaro, F.; Paggi, A.; D'Abrusco, R.; Tosti, G.

    2012-05-10

    The identification of low-energy counterparts for {gamma}-ray sources is one of the biggest challenges in modern {gamma}-ray astronomy. Recently, we developed and successfully applied a new association method to recognize {gamma}-ray blazar candidates that could be possible counterparts for the unidentified {gamma}-ray sources above 100 MeV in the second Fermi Large Area Telescope Catalog. This method is based on the infrared colors of the recent Wide-Field Infrared Survey Explorer (WISE) all-sky survey. In this Letter, we applied our new association method to the case of unidentified INTEGRAL sources (UISs) listed in the fourth soft gamma-ray source catalog. Only 86 UISs out of the 113 can be analyzed due to the sky coverage of the WISE Preliminary Data Release. Among these 86 UISs, we found that 18 appear to have a {gamma}-ray blazar candidate within their positional error region. Finally, we analyzed Swift archival data available for 10 out of these 18 {gamma}-ray blazar candidates, and we found that 7 out of 10 are clearly detected in soft X-rays and/or in the optical-ultraviolet band. We cannot confirm the associations between the UISs and the selected {gamma}-ray blazar candidates due to the discrepancies between the INTEGRAL and the soft X-ray spectra. However, the discovery of the soft X-ray counterparts for the selected {gamma}-ray blazar candidates adds an important clue to help us understand their origin and to confirm their blazar nature.

  9. Searching for Gamma-Ray Blazar Candidates Among the Unidentified INTEGRAL Sources

    SciTech Connect

    Massaro, F.; Paggi, A.; D'Abrusco, R.; Tosti, G.; /Perugia U.

    2012-04-02

    The identification of low-energy counterparts for {gamma}-ray sources is one of the biggest challenge in modern {gamma}-ray astronomy. Recently, we developed and successfully applied a new association method to recognize {gamma}-ray blazar candidates that could be possible counterparts for the unidentified {gamma}-ray sources above 100 MeV in the second Fermi Large Area Telescope (LAT) catalog (2FGL). This method is based on the Infrared (IR) colors of the recent Wide-Field Infrared Survey Explorer (WISE) all-sky survey. In this letter we applied our new association method to the case of unidentified INTEGRAL sources (UISs) listed in the fourth soft gamma-ray source catalog (4IC). Only 86 UISs out of the 113 can be analyzed, due to the sky coverage of the WISE Preliminary data release. Among these 86 UISs, we found that 18 appear to have a {gamma}-ray blazar candidate within their positional error region. Finally, we analyzed the Swift archival data available for 10 out these 18 {gamma}-ray blazar candidates, and we found that 7 out of 10 are clearly detected in soft X-rays and/or in the optical-ultraviolet band. We cannot confirm the associations between the UISs and the selected {gamma}-ray blazar candidates due to the discrepancies between the INTEGRAL and the soft X-ray spectra. However, the discovery of the soft X-ray counterparts for the selected {gamma}-ray blazar candidates adds an important clue to help understand their origin and to confirm their blazar nature.

  10. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  11. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  12. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  13. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  14. Gamma-ray Emission from the Surface of Martian Satellites as a Function of Elemental Composition

    NASA Astrophysics Data System (ADS)

    Yoshida, Kouhei; Naito, Masayuki; Hasebe, Nobuyuki; Kusano, Hiroki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke

    Mars has two satellites, Phobos and Deimos. The Martian satellites have never been explored from the aspect of elemental composition. Their origins are still mysterious. Gamma-ray spectroscopy from the orbit of spacecraft is a powerful method to investigate elemental distribution and abundance of planets with no or thin atmosphere. In this work, gamma-ray emission from the Martian satellites was calculated as a function of elemental composition. Both chondritic and Martian compositions, which represent captured origin and giant impact origin, respectively, were assumed as elemental composition of Martian satellites. The gamma-ray fluxes induced by galactic cosmic rays at their surface were calculated for both of them. It was found that the elemental compositions of Martian satellites are clearly distinguished between chondritic or Martian by the gamma-ray emission rate ratios of Si/Fe and Ca/Fe and enable us to give strong constraint to the idea for the origin of the Martian satellites.

  15. Dense gamma-ray and pair creation using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Lo, Willie; Hasson, Hannah; Dyer, Gilliss; Clarke, Taylor; Fasanelli, Fabio; Yao, Kelly; Marchenka, Ilija; Henderson, Alexander; Dashko, Andriy; Zhang, Yuling; Ditmire, Todd

    2016-10-01

    We report recent results of gamma-ray and e +e- pair creation experiments using the Texas Petawatt laser (TPW) in Austin and the Trident laser at LANL irradiating solid high-Z targets. In addition to achieving record high densities of emerging gamma-rays and pairs at TPW, we measured in detail the spectra of hot electrons, positrons, and gamma-rays, and studied their spectral variation with laser and target parameters. A new type of gamma-ray spectrometer, called the scintillator attenuation spectrometer (SAS), was successfully demonstrated in Trident experiments in 2015. We will discuss the design and results of the SAS. Preliminary results of new experiments at TPW carried out in the summer of 2016 will also be presented.

  16. An Overview of the XGAM Code and Related Software for Gamma-ray Analysis

    SciTech Connect

    Younes, W.

    2014-11-13

    The XGAM spectrum-fitting code and associated software were developed specifically to analyze the complex gamma-ray spectra that can result from neutron-induced reactions. The XGAM code is designed to fit a spectrum over the entire available gamma-ray energy range as a single entity, in contrast to the more traditional piecewise approaches. This global-fit philosophy enforces background continuity as well as consistency between local and global behavior throughout the spectrum, and in a natural way. This report presents XGAM and the suite of programs built around it with an emphasis on how they fit into an overall analysis methodology for complex gamma-ray data. An application to the analysis of time-dependent delayed gamma-ray yields from 235U fission is shown in order to showcase the codes and how they interact.

  17. The Redshift-Dependence of Gamma-Ray Absorption in the Environments of Blazars

    SciTech Connect

    Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-21

    One of the key scientific objectives of the new generation high energy instruments is the quest for signatures from the extragalactic background light (EBL) at UV/optical/IR energies and its evolution by means of photon-photon absorption over extragalactic distances.I will discuss the various methods proposed, and biases that may be introduced when studying the evolution of the EBL with capable {gamma}-ray observatories like e.g. GLAST or CTA, where the {gamma}-ray horizon is probed by means of statistical analysis of absorption features in AGN spectra at various redshifts. In particular, the effect of the redshift-dependence of 'local opacity' in {gamma}-ray loud quasars due to possible {gamma}-ray absorption through photon-photon pair production of jet photons in the external photon environments (accretion disk, broad-line region radiation field) on evolutionary studies of the EBL is highlighted.

  18. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  19. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    SciTech Connect

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC{sup 2}-2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations.

  20. Gamma Ray Bursts from a Quantum Critical Surface

    SciTech Connect

    Chapline, G; Santiago, D I

    2002-11-20

    The logical inconsistency of quantum mechanics and general relativity can be avoided if the relativity principle fails for length scales smaller than the quantum coherence length for the vacuum state. Ordinarily this corresponds to energies near the Planck energy, but recently it has been pointed out that near to the event horizon of a black hole the coherence length can be much larger and Planck scale physics can take over at macroscopic distances from the event horizon. This has dramatic consequences for the phenomenology of black holes. If we assume that at the Planck scale elementary particles interact via a universal 4-point interaction and baryon number conservation is violated, then the rest mass of a star hitting the event horizon of a large black hole would be rapidly converted into a burst of gamma rays followed by a pulse of hard X-rays whose duration is on the order of the light transit time across the black hole. Predictions for the gamma ray spectra are strikingly similar to those observed for cosmic gamma ray bursts.

  1. High-energy gamma-ray observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1994-01-01

    During the period from 1992 May to early 1992 November, the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma Ray Observatory obtained high-energy gamma-ray data for most of the sky. A total of 18 active galaxies have been seen with high certainty, and it is expected that more will be found in the data when a more thorough analysis is complete. All of those that have been seen are radio-loud quasars or BL Lacertae objects; most have already been identified as blazars. No Seyfert galaxies have been found thus far. If the spectra are represented as a power law in energy, spectral slopes ranging from approximately -1.7 to -2.4 are found. A wide range of z-values exits in the observed sample, eight having values in excess of 1.0. Time variations have been seen, with the timescale for a significant change being as short as days in at least one case. These results imply the existence of very large numbers of relativistic particles, probably close to the central object. Although a large extrapolation is required, their existence also suggests that these active galactic nuclei may be the source of the extragalactic cosmic rays.

  2. An Optical Survey of Potential Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Carpenter, Lisa R.

    2006-12-01

    The EGRET instrument aboard the Compton Gamma-Ray Observatory detected 271 sources. Several objects were identified as "high-confidence" AGN, quasars, and low-confidence AGN. 170 sources remain unidentified (Hartman et al. 1999). Our project is to conduct an optical survey of unidentified sources, looking for evidence of blazar activity that may have been missed by the initial EGRET survey. The method of identifying sources used by the EGRET survey was to search for radio spectra peaking at 5 GHz. Such a spectrum is evidence of blazar-like activity. However, a study by Mattox et al. (1997); Mattox, Hartman & Reimer (2001) concluded that any gamma-ray source with a flux density less than 500 mJy at 5 GHz would be difficult to positively identify. The method described above neglects the possibility that blazar-like sources may be dim at such low frequencies and peak instead at higher frequencies (at least 200 Ghz). It has been hypothesized that sources that behave in this way could very well be counterparts to gamma-ray blazars (Tornikoski et al. 2002; Bloom et al. 1997, 2000). Our goal is to determine the magnitudes of objects in the optical wavelengths and check for evidence of blazar-like activity.

  3. Monitoring radioactive plumes by airborne gamma-ray spectrometry

    SciTech Connect

    Grasty, R.L.; Hovgaard, J.; Multala, J.

    1996-06-01

    Airborne gamma-ray spectrometer surveys using large volume sodium-iodide detectors are routinely flown throughout the world for mineral exploration and geological mapping. Techniques have now been developed to detect and map man-made sources of radiation. In Canada, airborne gamma-rays surveys have been flown around nuclear reactors to map {sup 41}Ar plumes from nuclear reactors and to calculate the dose rate at ground level. In May 1986, the Finnish Geological survey aircraft flew through a radioactive plume from the Chernobyl nuclear accident. As the aircraft flew through the plume, the aircraft became increasingly contaminated. By measuring the final aircraft contamination, the activity of the plume could be separated from the contamination due to the aircraft. Within 1 h of encountering the plume, the aircraft activity was comparable to the maximum levels found in the plume. From an analysis of the gamma-ray spectra, the concentration of {sup 131}I and {sup 140}La within the plume were calculated as a function of time.

  4. Continuum Background in Space-Borne Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Evans, Larry G.; Trombka, Jacob I.; Starr, Richard; Boyton, William V.; Bailey, S.

    The background measured with space-borne gamma-ray spectrometers (GRS) in the 100 keV-10 MeV energy region consists of both discrete lines and continuum. The discrete lines originate in the decay of radioactive species. The continuum originates from a number of different processes and can be an important factor in the detection, for example, of weak gamma-ray lines from a planetary surface. Measurements of the gamma-ray background have been made during the cruise portion of a number of planetary missions. The three missions described here are the Apollo 15 and 16 missions each of which carried a 7 cm x 7 cm NaI scintillation detector, the Mars Observer (MO) mission which used a 5.5 cm X 5.5 cm high-purity germanium (HPGe) detector, and the Near Earth Rendezvous Asteroid (NEAR) mission that has a 2.54 cm x 7.6 cm NaI detector. A comparison of the intensity and spectral shape of these background spectra can be useful to help understand how these backgrounds vary with spacecraft size, detector position, and detector size. The use of shields to reduce the background components on these three missions is a test of the effectiveness of different shield designs.

  5. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  6. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  7. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  8. New insights from cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  9. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  10. Contribution to the extragalactic gamma-ray background from the cascades of very-high energy gamma rays from blazars

    NASA Astrophysics Data System (ADS)

    Venters, Tonia M.

    2009-06-01

    As very-high-energy photons propagate through the extragalactic background light (EBL), they interact with the soft photons and initiate electromagnetic cascades of lower energy photons and electrons. The collective intensity of a cosmological population emitting at very-high energies (VHE) will be attenuated at the highest energies through interactions with the EBL and enhanced at lower energies by the resulting cascade. We calculate the cascade radiation created by VHE photons produced by blazars and investigate the effects of cascades on the collective intensity of blazars and the resulting effects on the extragalactic gamma-ray background. We find that cascade radiation greatly enhances the collective intensity from blazars at high energies before turning over due to attenuation. The prominence of the resulting features depends on the blazar gamma-ray luminosity function, spectral index distribution, and the model of the EBL. We additionally calculate the cascade radiation from the distinct spectral sub-populations of blazars, BL Lacertae objects (BL Lacs) and flat-spectrum radio quasars (FSRQs), finding that the collective intensity of BL Lacs is considerably more enhanced by cascade radiation than that of the FSRQs. Finally, we discuss the implications that this analysis and upcoming Fermi observations could have for the nature of the EBL, the evolution of blazars, blazar spectra, and other sources of gamma-ray emission.

  11. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  12. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  13. Gamma-ray limits on neutrino lines

    SciTech Connect

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2016-05-23

    Monochromatic neutrinos from dark matter annihilations (χχ→νν-bar) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  14. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  15. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  16. High-energy spectral breaks in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.; Band, David L.

    1992-01-01

    Model fits are presented for 18 gamma-ray burst spectra from 100 keV to 27 MeV made with the BATSE spectroscopy detectors on the Compton Gamma Ray Observatory. Most of the bursts are well fitted as power laws with spectral indices between -1.36 and -2.29; however, five bursts show definite departures from a simple power-law fit at high energies. Three of these bursts are well fitted with broken power-law spectra and break energies of from 400 to 690 keV, such as might arise from photon-photon interactions. If so, then the source compactness and hence distance will be sharply constrained. Two of the bursts have spectra with sharply confined slope changes and are well fitted with broken power-law spectra with break energies of 1.2 and 1.6 MeV at peak, such as might arise from photon-magnetic field interactions. If so, then these spectral breaks provide strong evidence for the existence of high magnetic fields in the burst emission region.

  17. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    SciTech Connect

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  18. Gamma-ray and neutron spectroscopy of planetary surfaces and atmospheres

    SciTech Connect

    Reedy, R.C.

    1987-01-01

    The neutrons and gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The ..gamma.. rays are made by the decay of the naturally-occurring radioelements and by nuclear excitations induced by cosmic-ray particles and their secondaries (especially neutron capture or inelastic scattering reactions). After a short history of planetary ..gamma..-ray and neutron spectroscopy, the ..gamma..-ray spectrometer and active neutron detection system planned for the Mars Observer Mission are presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces and the status of the theoretical calculations for the processes that make and transport neutrons and ..gamma.. rays will be reviewed. Studies of Mars, including its atmosphere, are emphasized, as are new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a ..gamma..-ray spectrometer. 23 refs., 1 fig.

  19. Blazar Gamma-Rays, Shock Acceleration, and the Extragalactic Background Light

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Baring, Matthew G.; Summerlin, Errol J.

    2007-01-01

    The observed spectra of blazars, their intrinsic emission, and the underlying populations of radiating particles are intimately related. The use of these sources as probes of the extragalactic infrared background, a prospect propelled by recent advances in TeV-band telescopes, soon to be augmented by observations by NASA's upcoming Gamma-Ray Large Area Space Telescope (GLAST), has been a topic of great recent interest. Here, it is demonstrated that if particles in blazar jets are accelerated at relativistic shocks, then GAMMA-ray spectra with indices less than 1.5 can be produced. This, in turn, loosens the upper limits on the near infrared extragalactic background radiation previously proposed. We also show evidence hinting that TeV blazars with flatter spectra have higher intrinsic TeV GAMMA-ray luminosities and we indicate that there may be a correlation of flatness and luminosity with redshift.

  20. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility.

    PubMed

    Takada, M; Baba, M; Yamaguchi, H; Fujitaka, K

    2005-01-01

    Absorbed dose distributions in lineal energy for neutrons and gamma rays of mono-energetic neutron sources from 140 keV to 15 MeV were measured in the Fast Neutron Laboratory at Tohoku University. By using both a tissue-equivalent plastic walled counter and a graphite-walled low-pressure proportional counter, absorbed dose distributions in lineal energy for neutrons were obtained separately from those for gamma rays. This method needs no knowledge of energy spectra and dose distributions for gamma rays. The gamma-ray contribution in this neutron calibration field >1 MeV neutron was <3%, while for <550 keV it was >40%. The measured neutron absolute absorbed doses per unit neutron fluence agreed with the LA150 evaluated kerma factors. By using this method, absorbed dose distributions in lineal energy for neutrons and gamma rays in an unknown neutron field can be obtained separately.

  1. MIRAX sensitivity for Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Sacahui, J. R.; Penacchioni, A. V.; Braga, J.; Castro, M. A.; D'Amico, F.

    2016-03-01

    In this work we present the detection capability of the MIRAX (Monitor e Imageador de RAios-X) experiment for Gamma-Ray Bursts (GRBs). MIRAX is an X-ray astronomy mission designed to perform a wide band hard X-ray (10-200 keV) survey of the sky, especially in the Galactic plane. With a total detection area of 169 cm2, large field of view (FoV, 20 ° × 20 °), angular resolution of 1°45‧ and good spectral and time resolution (∼8% at 60 keV, 10 μs), MIRAX will be optimized for the detection and study of transient sources, such as accreting neutron stars (NS), black holes (BH), Active Galactic Nuclei (AGNs), and both short and long GRBs. This is especially important because MIRAX is expected to operate in an epoch when probably no other hard X-ray wide-field imager will be active. We have performed detailed simulations of MIRAX GRB observations using the GEANT4 package, including the background spectrum and images of GRB sources in order to provide accurate predictions of the sensitivity for the expected GRB rate to be observed. MIRAX will be capable of detecting ∼44 GRBs per year up to redshifts of ∼4.5. The MIRAX mission will be able to contribute significantly to GRB science by detecting a large number of GRBs per year with wide band spectral response. The observations will contribute mainly to the part of GRB spectra where a thermal emission is predicted by the Fireball model. We also discuss the possibility of detecting GRB afterglows in the X-ray band with MIRAX.

  2. Frequency spectrum analysis for spectrum stabilization in airborne gamma-ray spectrometer.

    PubMed

    Zeng, Guoqiang; Tan, Chengjun; Ge, Liangquan; Zhang, Qingxian; Gu, Yi

    2014-02-01

    Abnormal multi-crystal spectral drifts often can be observed when power on the airborne gamma-ray spectrometer. Currently, these spectral drifts of each crystal are generally eliminated through manual adjustment, which is time-consuming and labor-ineffective. To realize this quick automatic spectrum stabilization of multi-crystal, a frequency spectrum analysis method for natural gamma-ray background spectrum is put forward in this paper to replace traditional spectrum stabilization method used characteristic peak. Based on the polynomial fitting of high harmonics in frequency spectrum and gamma-ray spectral drift, it calculates overall spectral drift of natural gamma-ray spectrum and adjusts the gain of spectrometer by this spectral drift value, thus completing quick spectrum stabilization in the power on stage of spectrometer. This method requires no manual intervention and can obtain the overall spectral drift value automatically under no time-domain pre-processing to the natural gamma-ray spectra. The spectral drift value calculated by this method has an absolute error less than five channels (1024 resolution) and a relative error smaller than 0.80%, which can satisfy the quick automatic spectrum stabilization requirement when power on the airborne gamma-ray spectrometer instead of manual operation.

  3. A search for optical counterparts of gamma-ray bursts. Final report

    SciTech Connect

    Park, Hye-Sook

    1995-03-09

    Gamma Ray Bursts (GRBS) are mysterious flashes of gamma rays lasting several tens to hundreds of seconds that occur approximately once per day. NASA launched the orbiting Compton Gamma Ray Observatory to study GRBs and other gamma ray phenomena. CGRO carries the Burst and Transient Experiment (BATSE) specifically to study GRBS. Although BATSE has collected data on over 600 GRBS, and confirmed that GRBs are localized, high intensity point sources of MeV gamma rays distributed isotropically in the sky, the nature and origin of GRBs remains a fundamental problem in astrophysics. BATSE`s 8 gamma ray sensors located on the comers of the box shaped CGRO can detect the onset of GRBs and record their intensity and energy spectra as a function of time. The position of the burst on the sky can be determined to < {plus_minus}10{degrees} from the BATSE data stream. This position resolution is not sufficient to point a large, optical telescope at the exact position of a GRB which would determine its origin by associating it with a star. Because of their brief duration it is not known if GRBs are accompanied by visible radiation. Their seemingly large energy output suggests thatthis should be. Simply scaling the ratio of visible to gamma ray intensities of the Crab Nebula to the GRB output suggests that GRBs ought to be accompanied by visible flashes of magnitude 10 or so. A few photographs of areas containing a burst location that were coincidentally taken during the burst yield lower limits on visible output of magnitude 4. The detection of visible light during the GRB would provide information on burst physics, provide improved pointing coordinates for precise examination of the field by large telescope and provide the justification for larger dedicated optical counterpart instruments. The purpose of this experiment is to detect or set lower limits on optical counterpart radiation simultaneously accompanying the gamma rays from

  4. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  5. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    ESO PR Photo 39b/98 [Preview - JPEG: 800 x 987 pix - 432k] [High-Res - JPEG: 3000 x 3703 pix - 2.5Mb] PR Photo 39a/98 (left) shows a colour composite of three images obtained with the EMMI multi-mode instrument at the ESO 3.58-m New Technology Telescope (NTT) at La Silla on May 4, 1998. The short exposures were obtained through V (green), R (red) and I (near-infrared) filtres. SN 1998bw is the very bright, bluish star at the center (indicated with an arrow), located on an arm of spiral galaxy ESO 184-G82 . There are several other galaxies in the field. Compare with Photo 39b/98 (right) that was obtained before the explosion (ESO 1-m Schmidt Telescope; 15 May 1985; 120-min exposure in red light). In both photos, the field of view measures 3.6 x 3.6 arcmin; North is up and East is left. Note that while the brighter objects are more prominent on the long-exposure Schmidt photo (39b/98), considerably more details can be seen on that obtained by the NTT (39a/98). The ESO astronomers at La Silla decided to continue observations of the new star-like object and set up a comprehensive programme with several telescopes at that observatory. During the subsequent weeks and months, they obtained images through various filtres to determine the brightness in different colours, as well as detailed spectra. These observations soon showed the object to be a supernova . This is a heavy star that explodes during a late and fatal evolutionary stage. The new supernova now received the official designation SN 1998bw . From a careful study based on these observations, it has been concluded that SN 1998bw underwent an exceptionally powerful explosion, more violent than most other supernovae observed so far. It was also unusual in the sense that very strong radio emission was observed within a few days after the explosion - normally this only happens after several weeks. In fact, at radio wavelengths, SN 1998bw was the brightest supernova ever observed. The origin of the Gamma-Ray Burst SN

  6. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  7. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  8. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  9. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  10. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  11. Fuzzy correlations of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Linder, Eric V.; Blumenthal, George R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated.

  12. Gamma-Ray Bursts Search with HAWC

    NASA Astrophysics Data System (ADS)

    de Leon, Cederik; Salazar Ibarguen, Humberto; Villaseã+/-Or Cendejas, Luis Manuel; HAWC Collaboration

    2017-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray observatory is a wide field-of-view observatory sensitive to gamma rays in the 100 GeV - 100 TeV energy range, located in Mexico at an altitude of 4100 m. In the present work we present results on the search for excesses in the rates of signals from the individual photomultiplier tubes (PMTs) using the Time to Digital Converters (TDC) of HAWC. This search is based on the implementation of the Moving Average Ratio Analysis (MARA) focused on the characterization of the different physical phenomena that may give rise to such excesses: noise in the PMTs, atmospheric conditions related with thunderstorms and excesses of astrophysical origin such as variable sources of high energy gamma rays and in particular GRBs. In particular we present an analysis over the HAWC historical data for the search of such excesses and elaborate on the possible physical interpretation of the found excesses.

  13. {gamma}-ray strength function method and its application to {sup 107}Pd

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Kondo, T.; Itoh, O.; Kamata, M.; Yamagata, T.; Goriely, S.; Daoutidis, I.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Arteaga, D. P.; Hilaire, S.; Koning, A. J.

    2010-12-15

    The {gamma}-ray strength function method is devised to indirectly determine radiative neutron capture cross sections for radioactive nuclei. This method is applied here to the {sup 107}Pd (T{sub 1/2}=6.5x10{sup 6} yr) case. Photoneutron cross sections were measured for {sup 105,106,108}Pd near neutron threshold with quasimonochromatic laser-Compton-scattering {gamma}-ray beams. These photoneutron cross sections as well as the reverse radiative neutron capture cross sections for {sup 104,105}Pd are used to provide constraints on the {sup 107}Pd(n,{gamma}){sup 108}Pd cross section.

  14. BATSE spectroscopy catalog of bright gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Teegarden, Bonnard J.; Fantasia, Stephan F.; Palmer, David; Cline, Thomas L.; Matteson, James L.; Band, David L.; Ford, Lyle A.; Fishman, Gerald J.; Meegar, Charles A.

    1994-01-01

    This paper presents comprehensive results on the spectra of 30 bright gamma ray bursts (GRBs) as observed by the Spectroscopy Detectors (SDs) of the Burst And Transient Source Experiment (BATSE). The data selection was strict in including only spectra that are of high reliability for continuum shape studies. This BATSE Spectroscopy Catalog presents fluences, model fits (for five spectral models for three energy ranges), and photon spectra in a standard manner for each burst. Complete information is provided to describe the data selection and analysis procedures. The catalog results are also presented in electronic format (from the Compton Observatory Science Support Center) and CD-ROM format (AAS CD-ROM series, Vol. 2). These electronic formats also present the count spectra and detector response matrices so as to allow for independent study and fitting by researchers outside the BATSE Team. This BATSE Spectroscopy Catalog complements the catalog from BATSE Large Area Detector (LAD) data by Fishman et al. (1994).

  15. Interaction of ultraviolet and X-ray radiation with gamma rays produced by a jet in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zbyszewska, Magda

    1994-01-01

    Recent observations by the Compton Gamma-Ray Observatory give evidence for the existence of a type of blazar with strong gamma-ray emission. Data obtained by EGRET for the quasar 3C 279 show a spectrum between 100 MeV and 10 GeV. Photons of such energies should interact with the X-rays and produce positron/electron pairs. If the optical depth against pair production for the gamma rays is large (tau(gamma gamma) greater than 1), the gamma-ray spectrum should be affected. The importance of this process has been pointed out by, e.g., Maraschi, Ghisellini, & Celotti (1992). Several works (e.g., Dermer 1993; Zbyszewska 1993; Sikora, Begelman, & Rees 1993) concerning gamma-ray radiation from quasar 3C 279 have proposed a model in which the gamma rays are produced via interaction between a moving cloud of relativistic electrons and external soft photons. The presence of gamma rays in active galactic nuclei spectra gives constraints on the localization and the luminosity of the medium which produces ultraviolet/X-ray photons. We investigate what conditions should be fulfilled in the above model to avoid the absorption of the gamma rays due to pair production.

  16. Preliminary results of a gamma-ray burst study in the Konus experiment on the Venera-11 and Venera-12 space probes

    NASA Technical Reports Server (NTRS)

    Mazets, Y. P.; Golentskiy, S. V.; Ilinskiy, V. N.; Panov, V. N.; Aptekar, R. L.; Guryan, Y. A.; Sokolov, I. A.; Sokolova, Z. Y.; Kharitonova, T. V.

    1979-01-01

    Twenty-one gamma-ray bursts and 68 solar flares in the hard X-ray range were detected on Venera-11 and Venera-12 space probes during the initial 50-day observation period. Major characteristics of the equipment used and preliminary data on the temporal structure and energy spectra of the gamma-ray bursts are considered. The pattern of gamma-ray burst frequency distribution vs. intensity, N(S), is established.

  17. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  18. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  19. Gamma ray spectrometer for Lunar Scout 2

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  20. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  1. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  2. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  3. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.

    2004-01-01

    Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.

  4. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  5. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  6. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  7. Gamma-ray Astrophysics with AGILE

    SciTech Connect

    Longo, Francesco |; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.

  8. INTEGRAL: International Gamma Ray Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Christoph

    1992-07-01

    INTEGRAL is dedicated to the fine spectroscopy and imaging of celestial gamma ray sources in the energy range 15 keV to 10 MeV. The instruments on INTEGRAL will achieve a gamma ray line sensitivity of 3 times 10 to the minus 6th power ph/sq cm/s, a continuum sensitivity of 3 times 10 to the minus 8th power ph/sq cm/s/keV at 1 MeV (approximately 10 mCrab at 1 MeV) and imaging with an angular resolution of better than 20 minutes. This represents an order of magnitude improvement over the Gamma Ray Observatory (GRO) in line sensitivity, energy resolution and angular resolution. Comparison with the low energy gamma ray telescope Sigma also shows a major advance: the continuum sensitivity improvement is considerably more than one order of magnitude between 100 keV and 1 MeV; and the narrow line sensitivity is increased by nearly two orders of magnitude. INTEGRAL consists of two main instruments: a germanium spectrometer and a caesium iodide coded aperture mask imager. These instruments are supplemented by two monitors: an X-ray monitor and an optical transient camera.

  9. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  10. HAWC observatory catches first gamma rays

    NASA Astrophysics Data System (ADS)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  11. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  12. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  13. High-energy gamma rays in Hiroshima and Nagasaki: Implications for risk and W{sub R}

    SciTech Connect

    Straume, T.

    1995-12-01

    Based on the DS86 dosimetry system, nearly all of the dose to survivors of the atomic bombings of Hiroshima and Nagasaki was due to unusually high-energy gamma rays, predominantly in the 2- to 5-MeV range. These high energies resulted in part from neutron capture gamma rays as the bomb neutrons penetrated large distances of air. Because of the inverse relationship between energy and biological effectiveness, these high-energy gamma rays are expected to be substantially less effective in producing biological damage than the radiations commonly used in radiobiology and risk assessment. This observation has implications for radiation protection and risk assessment.

  14. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  15. Estimation method of planetary fast neutron flux by a Ge gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hareyama, M.; Fujibayashi, Y.; Yamashita, Y.; Karouji, Y.; Nagaoka, H.; Kobayashi, S.; Reedy, R. C.; Gasnault, O.; Forni, O.; d'Uston, C.; Kim, K. J.; Hasebe, N.

    2016-08-01

    An intensity map of lunar fast neutrons (LFNs) and their temporal variation has been estimated by fitting "sawtooth" peaks in the energy spectra of lunar gamma rays observed by the Kaguya (SELENE) Gamma Ray Spectrometer (GRS) consisting of a high-purity germanium (HPGe) detector with a BGO scintillator. While an ordinary peak in the spectrum is produced by only gamma ray lines, the sawtooth peak is produced by gamma ray lines and recoil nuclei in the detector by Ge(n ,n‧ γ) reaction. We develop a model for the shape of the sawtooth peak and apply it to fit sawtooth peaks together with ordinary peaks in actual observed spectra on the Moon. The temporal variation of LFNs is synchronous with that of galactic cosmic rays (GCRs), and the global distribution of fast neutrons on the lunar surface agrees well with the past observation reported by the Neutron Spectrometer aboard Lunar Prospector. Based on these results, a new method is established to estimate the flux of fast neutrons by fitting sawtooth peaks on the gamma ray spectrum observed by the HPGe detector.

  16. Recent advances in aerial gamma-ray surveying.

    PubMed

    Dickson, Bruce L

    2004-01-01

    Aerial gamma-ray surveying uses NaI(Tl) detectors mounted in small aircraft to measure gamma radiation, emitted from the earth's surface. The data are collected as gamma-ray spectra, typically with 1 s counting times, from which are derived K, U and Th concentrations in the ground. Applications of aerial surveying include geological mapping for mineral exploration, soil mapping for agriculture, pollution studies and location of lost sources. Recent advances in applying statistical methods to the spectral data have resulted in large reductions in the noise levels in the surveys. Some of the methods available to do this include noise adjusted singular value decomposition (NASVD) [Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration (1997) 753] and maximum noise fraction (MNF) and enhanced MNF (eMNF) [Explor. Geophys. 31 (2000) 73]. These methods, in general, apply normalization for variance to the spectra, use a principal component method to obtain the "significant" components of the data and reconstruct cleaned spectra, which are then processed in a standard manner to get radionuclide concentrations. However, they differ in the detail of the application and thus give slightly different results. In this paper, the application of noise reduction methods to various synthetic surveys is used to examine the strengths and weaknesses of the methods. In tests where there are high correlations between U and Th, the eMNF method performs best although the results are improved by prior clustering of the data by the Th/U ratio. If the data show no correlations, then the effectiveness of all the noise removal methods is reduced. If a data set is small (<1500 spectra), then MNF appears to be the better method. Consideration of the various tests suggests an optimum process whereby spectra are sorted into groups by the Th/U ratio of areas identified in a standard processing and then cleaned by eMNF or MNF, depending on the number of spectra

  17. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  18. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  19. A gamma-ray verification system for special nuclear material

    SciTech Connect

    Lanier, R.G.; Prindle, A.L.; Friensehner, A.V.; Buckley, W.M.

    1994-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory (LLNL) has developed a gamma-ray screening system for use by the Materials Management Section of the Engineering Sciences Division at LLNL for verifying the presence or absence of special nuclear material (SNM) in a sample. This system facilitates the measurements required under the ``5610`` series of US Department of Energy orders. MMGAM is an intelligent, menu driven software application that runs on a personal computer and requires a precalibrated multi-channel analyzer and HPGe detector. It provides a very quick and easy-to-use means of determining the presence of SNM in a sample. After guiding the operator through a menu driven set-up procedure, the system provides an on-screen GO/NO-GO indication after determining the system calibration status. This system represents advances over earlier used systems in the areas of ease-of use, operator training requirements, and quality assurance. The system records the gamma radiation from a sample using a sequence of measurements involving a background measurement followed immediately by a measurement of the unknown sample. Both spectra are stored and available for analysis or output. In the current application, the presence of {sup 235}U, {sup 238}U, {sup 239}Pu, and {sup 208}Tl isotopes are indicated by extracting, from the stored spectra, four energy ``windows`` preset around gamma-ray lines characteristic of the radioactive decay of these nuclides. The system is easily extendible to more complicated problems.

  20. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    SciTech Connect

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.

    2015-10-10

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for {sup 56}Ni and {sup 56}Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, {sup 56}Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta.

  1. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    SciTech Connect

    Yin, Kui; Zhao, Yi; Liu, Liangbin; Lee, Shuit-Tong; Shao, Mingwang E-mail: xuegi@nju.edu.cn; Wang, Xiaoliang E-mail: xuegi@nju.edu.cn Xue, Gi E-mail: xuegi@nju.edu.cn

    2014-01-20

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.

  2. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  3. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  4. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  5. Gamma-ray astronomy--A status report

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1994-01-01

    Gamma-rays provide us with powerful insight into the highest energy processes occurring in the cosmos. This review highlights some of the progress in our understanding of gamma-ray astronomy that has been enabled by new data from GRANAT and the Compton Gamma-Ray Observaatory, and suggests requirements for future progress. In particular, the unique role of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission and concurrent multiwavelength observations is highlighted.

  6. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  7. Software developments for gamma-ray data with high multiplicity

    SciTech Connect

    Lauritsen, T.; Crowell, B.; Ahmad, I.

    1995-08-01

    Software capabilities for angle sort of data from the new powerful gamma detector arrays like Gammasphere and EUROGAM which were developed in preceding years, were enhanced and extended to read new data formats. In addition, we can now sort the data for directional correlation ratios (DCO). This version of the software was exported to a university group. For the analysis of, e.g., the quasi-continuum of gamma-rays it is necessary to angle sort the high multiplicity data and perform a careful background subtraction in order to extract the continuum of gamma rays from the feeding and decay of superdeformed bands. We need to angle sort in order to untangle the parts of the spectra which are of E1 nature from those of quadrupole or of M1/E2 nature. We further developed software running on new fast SUN workstations. We now have two such workstations, each equipped with a stacker and a secondary 8-mm tape drive. We enhanced the software to apply an energy-dependent time gate. We can enhance the events that are in true prompt coincidence, and reject random and signals in the germanium detectors coming from neutrons hitting the detector in coincidence with the gamma-ray burst. By applying energy-dependent time gates, in form of a {open_quotes}reduced time{close_quotes}, we can perform this rejection without the loss of efficiency at low energy. Effort has gone into developing low-level tape reader routines for data from the new EUROGAM array with cluster detectors as well as from the new flexible data format from Gammasphere phase II. In addition, we developed software to read data tapes from the local DAPHNE and MSU data-acquisition systems on the new fast UNIX platforms.

  8. Zinc oxide nanowire gamma ray detector with high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Mayo, Daniel C.; Nolen, J. Ryan; Cook, Andrew; Mu, Richard R.; Haglund, Richard F.

    2016-03-01

    Conventional scintillation detectors are typically single crystals of heavy-metal oxides or halides doped with rare-earth ions that record the recombination of electron-hole pairs by photon emission in the visible to ultraviolet. However, the light yields are typically low enough to require photomultiplier detection with the attendant instrumental complications. Here we report initial studies of gamma ray detection by zinc oxide (ZnO) nanowires, grown by vapor-solid deposition. The nanowires grow along the c-axis in a wurtzite structure; they are typically 80 nm in diameter and have lengths of 1- 2 μm. The nanowires are single crystals of high quality, with a photoluminescence (PL) yield from band-edge exciton emission in the ultraviolet that is typically one hundred times larger than the PL yield from defect centers in the visible. Nanowire ensembles were irradiated by 662 keV gamma rays from a Cs-137 source for periods of up to ten hours; gamma rays in this energy range interact by Compton scattering, which in ZnO creates F+ centers that relax to form singly-charged positive oxygen vacancies. Following irradiation, we fit the PL spectra of the visible emission with a sum of Gaussians at the energies of the known defects. We find highly efficient PL from the irradiated area, with a figure of merit approaching 106 photons/s/MeV of deposited energy. Over a period of days, the singly charged O+ vacancies relax to the more stable doubly charged O++ vacancies. However, the overall defect PL returns to pre-irradiation values after about a week, as the vacancies diffuse to the surface of these very thin nanowires, indicating that a self-healing process restores the nanowires to their original state.

  9. HESPERIA studies on the nature of high-energy solar gamma-ray events

    NASA Astrophysics Data System (ADS)

    Zucca, Pietro; Klein, Karl-Ludwig; Share, Gerry; Vilmer, Nicole; Malandraki, Olga; Miteva, Rositsa; Heber, Bernd; Hamadache, Clarisse; Kiener, Juergen; Tatischeff, Vincent; Vainio, Rami

    2016-04-01

    The FERMI/LAT gamma-ray experiment, thanks to its large effective are, observed about 25 solar events with gamma-ray emission above photon energies of 100 MeV. The emission is attributed to pion-decay photons. This implies that the acceleration of protons in the solar corona to energies above 300 MeV is a frequent phenomenon, probably more so than previously thought. In some cases the emission persists over several hours. In the frame of the HESPERIA project, funded by the Horizon 2020 programme of the European Union, we conduct an extensive study on the relationship between these gamma-ray emissions and electromagnetic signatures of accelerated electrons in the corona on the one hand, solar energetic particles (SEPs) detected in space on the other hand. This contribution is to present first results on the sample of 25 gamma-ray events, mainly addressing two subjects: (1) We compare the durations of the gamma-ray emission with the durations of hard X-ray and microwave signatures of electrons in the solar atmosphere, in the attempt to see if long-duration gamma-ray events are accompanied by signatures of long-duration electron acceleration. (2) We show that in each gamma-ray event electrons had rapid access to interplanetary space since the impulsive flare phase. This suggests that particles accelerated during the flare could escape to interplanetary space. We compare the hardness of the proton spectra detected in interplanetary space with the prediction using the properties of the solar microwave bursts. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  10. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  11. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  12. Radon concentration monitoring using xenon gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Chernysheva, I.; Grachev, V.; Vlasik, K.; Uteshev, Z.; Shustov, A.; Petrenko, D.; Bychkova, O.

    2017-01-01

    A method for 222Rn concentration monitoring by means of intensity measurement of its daughter nuclei (214Pb and 214Bi) gamma-ray emission using xenon gamma-ray spectrometer is presented. Testing and calibration results for a gamma-spectrometric complex based on xenon gamma-ray detector are described.

  13. Astrophysical constraints from gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Prantzos, Nikos; von Ballmoos, Peter

    2006-10-01

    Gamma-ray lines from cosmic sources provide unique isotopic information, since they originate from energy level transitions in the atomic nucleus. Gamma-ray telescopes explored this astronomical window in the past three decades, detecting radioactive isotopes that have been ejected in interstellar space by cosmic nucleosynthesis events and nuclei that have been excited through collisions with energetic particles. Astronomical gamma-ray telescopes feature standard detectors of nuclear physics, but have to be surrounded by effective shields against local instrumental background, and need special detector and/or mask arrangements to collect imaging information. Due to exceptionally-low signal/noise ratios, progress in the field has been slow compared with other wavelengths. Despite the difficulties, this young field of astronomy is well established now, in particular due to advances made by the Compton Gamma-Ray Observatory in the 90ies. The most important achievements so far concern: short-lived radioactivities that have been detected in a couple of supernovae (56Co and 57Co in SN1987A, 44Ti in Cas A), the diffuse glow of long-lived 26Al that has been mapped along the entire plane of the Galaxy, several excited nuclei that have been detected in solar flares, and, last but not least, positron annihilation that has been observed in the inner Galaxy since the 70ies. High-resolution spectroscopy is now being performed: since 2002, ESAs INTEGRAL and NASAs RHESSI, two space-based gamma-ray telescopes with Ge detectors, are in operation. Recent results include: imaging and line shape measurements of e e annihilation emission from the Galactic bulge, which can hardly be accounted for by conventional sources of positrons; 26Al emission and line width measurement from the inner Galaxy and from the Cygnus region, which can constrain the properties of the interstellar medium; and a diffuse 60Fe gamma-ray line emission which appears rather weak, in view of current theoretical

  14. Cosmic gamma-ray propagation as a probe for intergalactic media and interactions

    NASA Astrophysics Data System (ADS)

    Huan, Hao

    2012-05-01

    Very-high-energy (VHE) gamma rays beyond 100 GeV, coming from galactic and extragalactic sources, reflect the most energetic non-thermal processes in the universe. The emission of these photons indicates the acceleration of charged particles to very high energies or the existence of exotic particles that annihilate or decay to photons. Observations of VHE gamma rays probing this highest energy window of electromagnetic waves thus can reveal the underlying acceleration processes or new astrophysical particles. The fluxes tend to be power-law spectra and this poses a difficulty for direct observation due to the low flux at the high-energy end and to the limited effective area of space-borne instruments. Ground-based VHE gamma-ray observatories therefore take advantage of the earth atmosphere as a calorimeter and observe the gamma rays indirectly via the electromagnetic cascade shower particles they produce. The shower particles are detected either directly or via the Cherenkov radiation they emit while propagating through the air. The current-generation telescopes adopting this ground-based methodology have confirmed several source categories and are starting to answer various physical and astronomical questions, e.g., the origin of cosmic rays, the nature of dark matter, the black hole accretion processes, etc. Together with multi-wavelength observations covering the full electromagnetic spectrum and astrophysical observatories of other particles (cosmic rays, neutrinos, etc.) VHE gamma-ray astronomy contributes as an indispensable part of the recently emerging field of multi-messenger particle astrophysics. When emitted by extragalactic sources, the VHE gamma rays undergo various interactions in the intergalactic medium as they propagate toward the earth. There is a guaranteed interaction, where the VHE gamma-ray photons are absorbed by the extragalactic background light (EBL), an isotropic background of optical-to-infrared photons coming from starlight or dust re

  15. Evidence of Pre-Equilibrium {gamma}-Ray Emission in Heavy Ion Collisions at Intermediate Incident Energies

    SciTech Connect

    S. Tudisco; F. Amorini; G. Cardella; A. Di Pietro; P. Figuera; G. Lanzalone; A. Musumarra; M. Papa; G. Pappalardo; S. Pirrone; F. Rizzo

    1999-12-31

    The experimental results of {sup 40}Ca + {sup 48}Ca,{sup 40}Ca,{sup 46}Ti reactions are reported. The comparison between {gamma}-ray spectra measured in coincidence with fusion evaporation residues for the three colliding systems shows a clear evidence of pre-equilibrium {gamma}-rays emission in the region around 10 MeV. BNV simulations also predict this emission. The saturation of GDR strength with temperature has been found with some dependence on the colliding system.

  16. Gamma-Ray Measurement of Energetic Heavy Ions at the Sun

    DTIC Science & Technology

    1999-01-01

    We have derived the J-ray line spectra from accelerated heavy ions at the Sun in data from the Solar Maximum Mission (SMM) Gamma Ray Spectrometer and...particles. They provide the only source of information on the composition of accelerated heavy ions at the Sun . Analysis of the integrated spectrum from

  17. New low threshold detectors for measuring electron and gamma ray fluxes from thunderclouds

    NASA Astrophysics Data System (ADS)

    Arakelyan, Karen; Avakyan, Karen; Chilingarian, Ashot; Daryan, Ara; Melkumyan, Laura; Pokhsraryan, David; Sargsyan, David

    2013-02-01

    Strong electric fields inside thunderclouds give rise to enhanced fluxes of high-energy electrons and, consequently, gamma rays and neutrons. During thunderstorms at mountain Aragats, hundreds of Thunderstorm Ground Enhancements (TGEs) comprising millions of energetic electrons and gamma rays, as well as neutrons, were detected at Aragats Space Environmental Center (ASEC) on 3200 m altitude. The energy spectra of the electrons have an exponential shape and extend in energy range 2- 30 MeV. Recovered energy spectra of the gamma rays is also exponential in energy range 2-10 MeV, then turns to power law and is extending up to 100 MeV. It is of upmost importance to research energy spectra of TGE electrons and gamma rays from the lowest possible energies to clarify the shape of energy spectra and huge multiplication of the avalanche particles. The particle detectors operated at ASEC was designed for the registration of solar modulation effects and the lowering energy threshold was not of first importance. Thus, particle detectors have energy threshold of 7-10 MeV. The new generation of ASEC detectors comprises from 1 and 3 cm thick molded plastic scintillators arranged in stacks (3cm and 1cm STAND detectors) and in cubical structures surrounded thick scintillators and NaI crystals for purification of detected neutral flux (Cube 1 cm and Cube 3 cm detectors). In presented paper we describe new detectors and analyze their operational characteristics, as well as provide examples of TGE detection with new techniques.

  18. Using Solar Gamma Rays to Measure Heavy Accelerated Particles at the Sun

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.

    2008-05-01

    Solar flare gamma-ray spectra contain information on heavy (>He) accelerated particle spectra and composition through measurement of highly Doppler broadened (~10%) lines. These gamma-rays are emitted when the nuclei de-excite following their interaction with chromospheric H and He; these are called inverse reactions in contrast to the direct reactions from accelerated p and α-particles that produce narrower lines. The ability to distinguish and measure the broadened features is complicated by their large number, the narrow lines, the presence of strong solar bremsstrahlung and nuclear continua, as well as by instrumental effects. The instrumental continuum from Compton scattering is minimized when the gamma-ray detector has a high photopeak efficiency and is relatively well shielded, as was the case for the Solar Maximum Mission spectrometer (GRS). It is also important that the detector response be well determined. We have constructed a new GRS response matrix based on a Monte Carlo calculation and apply it to spectra from strong nuclear-line flares. We use new theoretical gamma-ray templates derived from nuclear physics calculations for elements such as C, O, Ne, Mg, Si, and Fe to fit the spectra and derive information on the heavy-accelerated ions. This technique can also be applied to data from the RHESSI spectrometer, with its larger Compton continuum, if the instrument response is well determined. This work was supported under NASA Grants NNX07AH81G, NNX07AO74G, and NNG06GG14G.

  19. Solar response of the BATSE instrument on the gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Parnell, T. A.; Wilson, R. B.; Paciesas, W.; Cline, T.; Teegarden, B.; Schaefer, B.; Hudson, Hugh; Matteson, J. L.

    1988-01-01

    The Burst and Transient Source Experiment (BATSE) on board the gamma ray observatory (GRO) aims at comprehensive observations of time profiles, spectra, and locations of high-energy transient sources. The mysterious cosmic gamma ray bursts provided the main motivation for the observations, but BATSE will make excellent observations of many classes of sources, and in particular solar flares. The solar response of BATSE, as inferred from its design parameters, is analyzed for two purposes: the optimization of the solar observations themselves, and the characterization of the solar effects on ordinary nonsolar observations.

  20. Undergraduate Research Projects in Atomic Collisions and Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanders, J. M.; Varghese, S. L.; Haywick, D. W.; Fearn, M. L.

    2003-08-01

    Research projects at University of South Alabama, an undergraduate physics department, have employed a 150-kV Cockcroft-Walton accelerator for atomic collisions and sodium-iodide and high-purity germanium detectors for gamma-ray studies. The atomic collision experiments dealt with electron capture and electron loss in collisions of protons and hydrogen atoms with hydrocarbon molecules. Gamma-ray studies with NaI scintillators determined the potassium content of food using 40K gamma-rays. Environmental studies of river sedimentation use a HPGe detector to determine 137Cs and 210Pb content. Students learn the physics of the interactions of ionizing radiation with matter, while acquiring a familiarity with high-vacuum technique, electronics, data acquisition and analysis, and reporting of results.

  1. Thermonuclear breakup reactions of light nuclei. II - Gamma-ray line production and other applications

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal

    1989-01-01

    The main consequence of nuclear breakup reactions in high-temperature plasmas is shown to be to reduce the production of the gamma-ray lines, due to the breakup of these species at high temperature. Results of the emissivities of all the relevant gamma-ray lines are discussed. It is shown that the magnitude of the breakup effect on the line emissivities depends strongly on temperature, but more importantly on the plasma density and on the available time for the ion processes. Other effects considered include the production of neutrons (from the breakup of helium) and its consequences (such as the production of gamma rays from n-capture reactions and dynamical effects in accretion disk plasmas).

  2. Extra gamma-ray strength for {sup 116,117}Sn arising from pygmy dipole resonance

    SciTech Connect

    Kamata, M.; Utsunomiya, H.; Akimune, H.; Yamagata, T.; Itoh, O.; Iwamoto, C.; Kondo, T.; Toyokawa, H.; Lui, Y.-W.; Goriely, S.

    2010-06-01

    Photoneutron cross sections were measured for {sup 117}Sn and {sup 116}Sn near neutron thresholds with quasi-monochromatic laser Compton scattering gamma-rays. The measured cross sections for {sup 117}Sn and {sup 116}Sn are strongly enhanced from the threshold behavior expected for L = 1 neutron emissions after E1 photoexcitation. This suggests the presence of extra gamma-ray strength in the low-energy tail of the giant dipole resonance. The present cross sections were analyzed together with radiative neutron capture cross sections for {sup 116}Sn within the framework of the statistical model calculation. It is shown that the extra gamma-ray strength can be interpreted as pygmy E1 resonance which was previously reported in the nuclear resonance fluorescence experiment for {sup 116}Sn and {sup 124}Sn.

  3. Fermi/LAT Study of Gamma-Ray Emission in the Direction of the Monoceros Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Katagiri, H.; Sugiyama, S.; Ackermann, M.; Ballet, J.; Casandjian, J. M.; Hanabata, Y.; Hewitt, J. W.; Kerr, M.; Kubo, H.; Lemoine-Goumard, M.; Ray, P. S.

    2016-11-01

    We present an analysis of the gamma-ray measurements by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Monoceros Loop (G205.5+0.5). The brightest gamma-ray peak is spatially correlated with the Rosette Nebula, which is a molecular cloud complex adjacent to the southeast edge of the SNR. After subtraction of this emission by spatial modeling, the gamma-ray emission from the SNR emerges, which is extended and fit by a Gaussian spatial template. The gamma-ray spectra are significantly better reproduced by a curved shape than a simple power law. The luminosities between 0.2 and 300 GeV are ˜ 4× {10}34 erg s-1 for the SNR and ˜ 3× {10}34 erg s-1 for the Rosette Nebula, respectively. We argue that the gamma-rays likely originate from the interactions of particles accelerated in the SNR. The decay of neutral pions produced in nucleon-nucleon interactions of accelerated hadrons with interstellar gas provides a reasonable explanation for the gamma-ray emission of both the Rosette Nebula and the Monoceros SNR.

  4. Semiconductor gamma-ray detectors for nuclear medicine

    NASA Astrophysics Data System (ADS)

    Eskin, Joshua Daniel

    Semiconductor-based gamma-ray-imaging detectors are under development for use in high-resolution nuclear medicine imaging applications. These detectors, based on cadmium zinc telluride, hold great promise for delivering improved spatial resolution and detection efficiency over current methods. This dissertation presents work done on three fronts, all directed toward enhancing the practicality of these imaging devices. Electronic readout systems were built to produce gamma-ray images from the raw signals generated by the imagers. Mathematical models were developed to describe the detection process in detail. Finally, a method was developed for recovering the energy spectrum of the original source by using maximum-likelihood estimation techniques. Two electronics systems were built to read out signals from the imaging detectors. The first system takes signals from a 48 x 48-pixel array at 500 k samples per second. Pulse-height histograms are formed for each pixel in the detector, all in real time. A second system was built to read out four 64 x 64 arrays at 4 million pixels per second. This system is based on digital signal processors and flexible software, making it easily adaptable to new imaging tasks. A mathematical model of the detection process was developed as a tool for evaluating possible detector designs. One part of the model describes how the mobile charge carriers, which are released when a gamma ray is absorbed in a photoelectric interaction, induce signals in a readout circuit. Induced signals follow a 'near- field effect,' wherein only carriers moving close to a pixel electrode produce significant signal. Detector pixels having lateral dimensions that are small compared to the detector thickness will develop a signal primarily due to a single carrier type. This effect is confirmed experimentally in time-resolved measurements and with pulse-height spectra. The second part of the model is a simulation of scattering processes that take place when a gamma

  5. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  6. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  7. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  8. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  9. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  10. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  11. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  12. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  13. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  14. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  15. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  16. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  17. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  18. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  19. SUB-LUMINOUS {gamma}-RAY PULSARS

    SciTech Connect

    Romani, R. W.; Kerr, M.; Craig, H. A.; Johnston, S.; Cognard, I.; Smith, D. A.

    2011-09-01

    Most pulsars observed by the Fermi Large Area Telescope have {gamma}-ray luminosities scaling with spin-down power E-dot as L{sub {gamma}}{approx}(E-dot x 10{sup 33} erg s{sup -1}){sup 1/2}. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these 'sub-luminous' {gamma}-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with E-dot >10{sup 34} erg s{sup -1} and d {<=} 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.

  20. Dark matter constraints from box-shaped gamma-ray features

    SciTech Connect

    Ibarra, Alejandro; Gehler, Sergio López; Pato, Miguel E-mail: sergio.lopez@ph.tum.de

    2012-07-01

    The observation of a sharp spectral feature in the gamma-ray sky would be one of the cleanest ways to identify dark matter and pinpoint its properties. Over the years a lot of attention has been paid to two specific features, namely gamma-ray lines and internal bremsstrahlung. Here, we explore a third class of spectral signatures, box-shaped gamma-ray spectra, that naturally arise in dark matter cascade annihilations or decays into intermediate particles that in turn decay into photons. Using Fermi-LAT data, we derive constraints on the dark matter parameter space for both annihilating and decaying dark matter, and show explicitly that our limits are competitive to strategies employing standard spectral features. More importantly, we find robust limits even in the case of non-degenerate dark matter and intermediate particle masses. This result is particularly relevant in constraining dark matter frameworks with gamma-ray data. We conclude by illustrating the power of box-shaped gamma-ray constraints on concrete particle physics scenarios.

  1. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons are being observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly-Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic runaway avalanche electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. They have generated considerable observational and theoretical interest in recent years. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms.

  2. Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-08-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

  3. Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms

  4. Radiation reaction in the interaction of ultraintense laser with matter and gamma ray source

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Teo, W. R.; Moritaka, Toseo; Takabe, H.

    2016-05-01

    Radiation reaction (RR) force plays an important role in gamma ray production in the interaction of ultraintense laser with relativistic counterpropagating electron at intensity 1022 W/cm2 and beyond. The relationship between emission spectrum and initial kinetic energy of electron at such intensities is yet to be clear experimentally. On the other hand, the energy from both the relativistic electron beam and laser pulse may be converted into the gamma rays. Therefore, the conversion efficiency of energy purely from laser pulse into gamma rays is of great interest. We present simulation results of an electron dynamics in strong laser field by taking into account the RR effects. We investigated how the RR effects influence the emission spectrum and photon number distribution for different laser condition. We showed that the peaks of emission spectra are suppressed if higher initial kinetic energy of electron interacts with long laser pulse duration. We then list the conversion efficiencies of laser pulse energy into gamma ray. We note that an electron with energy of 40 MeV would convert up to 80% of the total of electromagnetic work and initial kinetic energy of electron when interacting with 10 fs laser pulse at intensity 2 ×1023 W/cm2. For a bunch of electron with charge 1 nC would emit around 0.1 J of energy into gamma ray emission.

  5. X-Ray Observations of Unidentified H.E.S.S. Gamma-Ray Sources

    SciTech Connect

    Funk, S.; /SLAC

    2007-10-10

    In a survey of the inner part of the Galaxy, performed with the H.E.S.S. Instrument (High energy stereoscopic system) in 2004 and 2005, a large number of new unidentified very high energy (VHE) {gamma}-ray sources above an energy of 100 GeV was discovered. Often the {gamma}-ray spectra in these sources reach energies of up to {approx} 10 TeV. These are the highest energy particles ever attributed to single astrophysical objects. While a few of these sources can be identified at other wavebands, most of these sources remain unidentified so far. A positive identification of these new g-ray sources with a counterpart object at other wavebands requires (a) a positional coincidence between the two sources,( b) a viable {gamma}-ray emission mechanism and (c) a consistent multiwavelength behavior of the two sources. X-ray observations with satellites such as XMM-Newton, Chandra or Suzaku provide one of the best channels to studying these enigmatic {gamma}-ray sources at other wavebands, since they combine high angular resolution and sensitivity with the ability to access non-thermal electrons through their synchrotron emission. We therefore have started a dedicated program to investigate VHE {gamma}-ray sources with high-sensitivity X-ray instruments.

  6. AN ATTEMPT AT A UNIFIED MODEL FOR THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANTS

    SciTech Connect

    Yuan Qiang; Bi Xiaojun; Liu Siming

    2012-12-20

    Shocks of supernova remnants (SNRs) are important (and perhaps the dominant) agents for the production of the Galactic cosmic rays. Recent {gamma}-ray observations of several SNRs have made this case more compelling. However, these broadband high-energy measurements also reveal a variety of spectral shapes demanding more comprehensive modeling of emissions from SNRs. According to the locally observed fluxes of cosmic-ray protons and electrons, the electron-to-proton number ratio is known to be about 1%. Assuming such a ratio is universal for all SNRs and identical spectral shape for all kinds of accelerated particles, we propose a unified model that ascribes the distinct {gamma}-ray spectra of different SNRs to variations of the medium density and the spectral difference between cosmic-ray electrons and protons observed from Earth to transport effects. For low-density environments, the {gamma}-ray emission is inverse-Compton dominated. For high-density environments like systems of high-energy particles interacting with molecular clouds, the {gamma}-ray emission is {pi}{sup 0}-decay dominated. The model predicts a hadronic origin of {gamma}-ray emission from very old remnants interacting mostly with molecular clouds and a leptonic origin for intermediate-age remnants whose shocks propagate in a low-density environment created by their progenitors via, e.g., strong stellar winds. These results can be regarded as evidence in support of the SNR origin of Galactic cosmic rays.

  7. The second fermi large area telescope catalog of gamma-ray pulsars

    SciTech Connect

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  8. The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-10-01

    This catalog summarizes 117 high-confidence >=0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  9. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    SciTech Connect

    Abdo, A. A.; Ajello, M.; Allafort, A.; Bloom, E. D.; Bottacini, E.; Baldini, L.; Ballet, J.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bregeon, J.; Bhattacharyya, B.; Bissaldi, E.; Bonamente, E.; Brandt, T. J.; Brigida, M.; and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  10. The second FERMI large area telescope catalog of gamma-ray pulsars

    SciTech Connect

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  11. Lower limits on the strengths of gamma ray lines from WIMP dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria; Kilic, Can

    2012-06-01

    We study the spectra of gamma ray signals that arise from dark matter annihilation in the Universe. We focus on the large class of theories where the photon spectrum includes both continuum spectrum of gamma rays that arise from annihilation into standard model states at tree level, as well as monochromatic gamma rays arising from annihilation directly into two photons at the one-loop level. In this class of theories we obtain lower bounds on the ratio of the strength of the gamma ray line relative to the gamma ray continuum as a function of the dark matter mass and spin. These limits are obtained from the unitarity relation between the tree-level amplitude of the primary annihilation channel and the imaginary part of the loop-level amplitude for annihilation directly into photons, with the primary decay products running in the loop. These results are exact in the limit that dark matter annihilation at tree level is exclusively to a single standard model species, occurs through the lowest partial wave and respects CP. Away from this limit the bounds are approximate. Our conclusions agree with known results in the literature for the cases of the minimal supersymmetric standard model, universal extra dimensions and the littlest Higgs with T parity. We use the Fermi-LAT observations to translate these limits into upper bounds on the dark matter annihilation cross section into any specific standard model state.

  12. Performance study of the gamma-ray bursts polarimeter POLAR

    NASA Astrophysics Data System (ADS)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  13. Gamma-Ray Bursts - A Cosmic Riddle

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    1994-12-01

    A deep and abiding mystery is one of the greatest treasures nature has to offer to scientists and the public alike. Gamma-ray bursts have been observed for over 20 years. More than 2000 papers have been published about them and numerous theoretical models proposed, yet no one knows for sure what they are, where they come from, or even if they are a single class of phenomena. Isotropy and confinement (i.e., a deficiency of faint sources compared to that expected for an unbounded homogeneous sample), as exhibited in the BATSE observations from the Compton Gamma-Ray Observatory, have lead us to consider seriously only two sites - an extended Galactic halo populated by neutron stars, or else cosmologically distant sources. Models of both varieties will be reviewed. At the present time, both classes of models are given about equal credence, though ALL current models make troublesome assumptions requiring clarification. Halo models have received several boosts lately, including the realization that the mean velocity of pulsars is greater than previously thought, the certain localization of two out of three (and possibly all) soft gamma-ray repeaters to supernova remnants in our Galaxy and in the LMC, and calculations to show that under certain, albeit highly restrictive assumptions, the BATSE statistics can be satisfied by high velocity neutron stars ejected from the Galaxy. Several current halo oriented theories would like to relate the soft repeaters to the more common ``classical" bursts and claim that the former are an earlier evolutionary stage of the latter. If, on the other hand, the soft repeaters are a separate class, as the cosmologists would require, perhaps there are other classes as well. Amid all this theoretical speculation, the solution to the gamma-ray burst riddle will most likely come from further observation. Some prospects for future observations, especially with the High Energy Transient Experiment, will be briefly discussed.

  14. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  15. Prospects for Nuclear-gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1973-01-01

    An analysis was made of prospects for gamma rays coming from two sources outside the solar system: (1) radioactive decay of fresh nuclear products to explosive nucleosynthesis, and (2) scattering of low energy cosmic rays. The former should be detectable and will provide a factual base for many suppositions about the site and history of nucleosynthesis. The latter may be detectable and, if so, will probably provide factual information about high-flux regions of cosmic radiation.

  16. Gamma-ray activity in the volcanic islands of the Southern Tyrrhenian Sea.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2003-01-01

    Field gamma-ray spectrometry was used for the quantitative assessment of U, Th and K of rocks of Stromboli, Salina, Filicuidi and Panarea (Aeolian arc of the Southern Tyrrhenian, Italy). The air absorbed dose rate was calculated from radioelement concentrations. For some rocks the gamma-ray spectra were analysed with the three photo-peak methods and the response matrix method, which converts the pulse height distribution into the true incident gamma-ray energy spectrum. The higher values of U (8.2-9.8 ppm) coincide with higher Th (20.6-27.8 ppm) concentrations associated with rocks of shoshonitic composition. The spatial variation in radioelement concentration reflects the geochemical differences among the rocks. The air absorbed dose rate varies from 25 to 215 nGy h(-1). The highest values correspond to outcrops located in the eastern part of Stromboli, where the annual effective dose equivalent reaches a value of 264 microSv.

  17. A convenient method for discriminating between natural and depleted uranium by gamma-ray spectrometry.

    PubMed

    Shoji, M; Hamajima, Y; Takatsuka, K; Honoki, H; Nakajima, T; Kondo, T; Nakanishi, T

    2001-08-01

    A convenient method for discriminating between natural and depleted uranium reagent was developed by measuring and analyzing the gamma-ray spectra of some reagents with no standard source. The counting rates (R) of photoelectric peaks of gamma-rays from nuclides with the same radioactivity divided by their emission probability (B) are expressed as a function of gamma-ray energy. The radioactivities of 234Th and 234mPa and 21.72 times that of 235U are equal to the radioactivity of 235U in natural uranium. Therefore, the plot of 21.72-fold R/B for 235U should be on a curve fitted to the points for 234Th and 234mPa in natural uranium. Depleted uranium with a 235U isotopic composition of less than 0.68% could be discriminated from natural uranium in the case of a reagent containing 4.0 g of uranium.

  18. First light at the HAWC high altitude TeV gamma ray detector in Mexico

    NASA Astrophysics Data System (ADS)

    Fiorino, Daniel

    2012-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory -- currently under construction at 4100m altitude at Pico de Orizaba in Mexico -- is a high duty cycle, large field of view detector for gamma rays at TeV energies. The HAWC Observatory will locate and provide spectra for extended and point sources of TeV gamma rays, probe the cosmic ray anisotropy, search for gamma ray bursts, and set limits on extragalactic background light. Data taking at our smaller test array (VAMOS) is currently under way. I will present results of a first study of several months of VAMOS data, including a first skymap, performance tests, and a search for the shadow of the moon in cosmic rays.

  19. Observations with the SMM gamma-ray spectrometer - The impulsive solar flares of 1980 March 29

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Forrest, D. J.; Chupp, E. L.; Cherry, M. L.; Reppin, C.; Rieger, E.; Pinkau, K.; Kanbach, G.; Share, G. H.; Kinzer, R. L.

    1981-01-01

    Gamma-ray continuum emission from 0.3 to 1 MeV was observed with the gamma-ray spectrometer on the Solar Maximum Mission satellite during two impulsive solar flares on 1980 March 29, from active region 2363 at 0918 UT and from active region 2357 at 0955 UT. Evidence is presented for a hardening of the spectrum during the impulsive phase of the flares. The photon intensity greater than 100 keV appears to decay at a slower rate than that at lower energies. Time-integrated photon spectra for both flares are incompatible with a single-temperature thermal-bremsstrahlung model. Upper limits for prompt and delayed gamma-ray lines are presented.

  20. RADIO FLARES FROM GAMMA-RAY BURSTS

    SciTech Connect

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  1. Prompt Gamma Ray Analysis of Soil Samples

    SciTech Connect

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman; Isab, A.H.

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  2. Neutrino bursts from gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Xu, Guohong

    1994-01-01

    If gamma-ray bursts originate at cosmological distances, as strongly indicated by the results from Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), then ultrarelativistic ejecta are the likely consequence of the highly super-Eddington luminosity of the sources. If the energy injection rate varies with time, then the Lorentz factor of the wind also varies, and the shells of ejected matter collide with each other. The collisions between baryons produce pions which decay into high-energy photons, electrons, electron positron pairs, and neutrino pairs. The bulk Lorentz factor of approximately 300 is required if our model is to be compatible with the observed millisecond variability. The strongest gamma-ray bursts are observed to deliver approximately 10(exp -4) ergs/sq cm in 100-200 keV photons. In our scenario more energy may be delivered in a neutrino burst. Typical neutrinos may be approximately 30 GeV if the protons have a Maxwellian energy distribution, and up to approximately TeV if the protons have a power-law distribution. Such neutrino bursts are close to the detection limit of the DUMAND II experiment.

  3. Determination of the measurement threshold in gamma-ray spectrometry.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2017-03-01

    In gamma-ray spectrometry the measurement threshold describes the lover boundary of the interval of peak areas originating in the response of the spectrometer to gamma-rays from the sample measured. In this sense it presents a generalization of the net indication corresponding to the decision threshold, which is the measurement threshold at the quantity value zero for a predetermined probability for making errors of the first kind. Measurement thresholds were determined for peaks appearing in the spectra of radon daughters (214)Pb and (214)Bi by measuring the spectrum 35 times under repeatable conditions. For the calculation of the measurement threshold the probability for detection of the peaks and the mean relative uncertainty of the peak area were used. The relative measurement thresholds, the ratios between the measurement threshold and the mean peak area uncertainty, were determined for 54 peaks where the probability for detection varied between some percent and about 95% and the relative peak area uncertainty between 30% and 80%. The relative measurement thresholds vary considerably from peak to peak, although the nominal value of the sensitivity parameter defining the sensitivity for locating peaks was equal for all peaks. At the value of the sensitivity parameter used, the peak analysis does not locate peaks corresponding to the decision threshold with the probability in excess of 50%. This implies that peaks in the spectrum may not be located, although the true value of the measurand exceeds the decision threshold.

  4. Gamma-ray spectroscopy on irradiated MTR fuel elements

    NASA Astrophysics Data System (ADS)

    Terremoto, L. A. A.; Zeituni, C. A.; Perrotta, J. A.; da Silva, J. E. R.

    2000-08-01

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits.

  5. Search for gamma-ray transients using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  6. High-Energy Spectral Signatures in Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Baring, Matthew D.

    1999-01-01

    One of the principal results obtained by the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) was the detection of several gamma-ray bursts (GRBs) above 100 MeV. The broad-band spectra obtained for these bursts gave no indication of any high-energy spectral attenuation that might preclude detection of bursts by ground-based Cerenkov telescopes (ACTs), thus motivating several TeV observational programs. This paper explores the expectations for the spectral properties in the TeV and sub-TeV bands for bursts, in particular how attenuation of photons by pair creation internal to the source modifies the spectrum to produce distinctive spectral signatures. The energy of spectral breaks and the associated spectral indices provide valuable information that can constrain the bulk Lorentz factor of the GRB outflow at a given time. These characteristics define palpable observational goals for ACT programs, and strongly impact the observability of bursts in the TeV band.

  7. High-Energy Spectral Signatures in Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    One of the principal results obtained by the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) was the detection of several gamma-ray bursts (GRBs) above 100 MeV. The broad-band spectra obtained for these bursts gave no indication of any high energy spectral attenuation that might preclude detection of bursts by ground-based Cerenkov telescopes (ACTs), thus motivating several TeV observational programs. This paper explores the expectations for the spectral properties in the TeV and sub-TeV bands for bursts, in particular how attenuation of photons by pair creation internal to the source modifies the spectrum to produce distinctive spectral signatures. The energy of spectral breaks and the associated spectral indices provide valuable information that can constrain the bulk Lorentz factor of the GRB outflow at a given time. These characteristics define palpable observational goals for ACT programs, and strongly impact the observability of bursts in the TeV band.

  8. Neutrino emission from gamma-ray burst fireballs, revised.

    PubMed

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-08

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  9. Predicting supernova associated to gamma-ray burst 130427a

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ruffini, R.; Kovacevic, M.; Bianco, C. L.; Enderli, M.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.

    2015-07-01

    Binary systems constituted by a neutron star and a massive star are not rare in the universe. The Induced Gravitational Gamma-ray Burst (IGC) paradigm interprets Gamma-ray bursts as the outcome of a neutron star that collapses into a black hole due to the accretion of the ejecta coming from its companion massive star that underwent a supernova event. GRB 130427A is one of the most luminous GRBs ever observed, of which isotropic energy exceeds 1054 erg. And it is within one of the few GRBs obtained optical, X-ray and GeV spectra simultaneously for hundreds of seconds, which provides an unique opportunity so far to understand the multi-wavelength observation within the IGC paradigm, our data analysis found low Lorentz factor blackbody emission in the Episode 3 and its X-ray light curve overlaps typical IGC Golden Sample, which comply to the IGC mechanisms. We consider these findings as clues of GRB 130427A belonging to the IGC GRBs. We predicted on GCN the emergence of a supernova on May 2, 2013, which was later successfully detected on May 13, 2013.

  10. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2015-04-01

    The gamma-ray sky offers a unique view into broad range of astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. The Fermi mission has dramatically demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, covering the electromagnetic spectrum at energies above about 100 keV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has recently embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. The GammaSIG, as a part of the Physics of the Cosmos Program Analysis Group, provides a forum open to all members of the gamma-ray community. The GammaSIG is currently working to bring the community together with a common vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories, including both Fermi and INTEGRAL, and will summarize the status of the community roadmap effort.

  11. Gamma ray emission from middle aged supernova remnants interacting with molecular clouds

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Chevalier, Roger A.

    2016-06-01

    Gamma ray emission from several middle aged supernova remnants (SNRs) has been detected in space-based GeV observations and ground-based TeV observations. The characteristic pion-decay signature identified in spectra of the remnants IC443 and W44 provides strong evidence for cosmic ray (CR) proton acceleration in SNRs. Multi-wavelength observations further reveal a spatial correlation between the molecular cloud (MC) interaction region and the gamma ray emitting region. Radio emission, however, was found not to be well-correlated with the high energy emission. Based on observed MC associations, two scenarios have been proposed to explain the observed gamma ray emission from these middle aged SNRs. In one, accelerated CR particles escape from the SNR and then illuminate nearby MCs, producing gamma ray emission, while the other involves direct interaction between the SNR and molecular clumps. Here I present a new model of the direct interaction type that involves the collision between MC clumps and a radiative SNR. The model can explain the discrepancy between radio and gamma ray emission morphology. The gamma ray spectra from these middle aged SNRs show steeping from GeV to TeV energies that is believed to be due to the limited acceleration time of CR particles. However, the spectral shape cannot be fitted by a simple exponential profile. We derive a time dependent solution for diffusive shock acceleration in the test particle limit and show that it is capable of explaining the observed spectral steepening at high energy.

  12. Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Clearest-Ever Evidence from VLT Spectra of Powerful Event Summary A very bright burst of gamma-rays was observed on March 29, 2003 by NASA's High Energy Transient Explorer (HETE-II) , in a sky region within the constellation Leo. Within 90 min, a new, very bright light source (the "optical afterglow") was detected in the same direction by means of a 40-inch telescope at the Siding Spring Observatory (Australia) and also in Japan. The gamma-ray burst was designated GRB 030329 , according to the date. And within 24 hours, a first, very detailed spectrum of this new object was obtained by the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile). It allowed to determine the distance as about 2,650 million light-years (redshift 0.1685). Continued observations with the FORS1 and FORS2 multi-mode instruments on the VLT during the following month allowed an international team of astronomers [1] to document in unprecedented detail the changes in the spectrum of the optical afterglow of this gamma-ray burst . Their detailed report appears in the June 19 issue of the research journal "Nature". The spectra show the gradual and clear emergence of a supernova spectrum of the most energetic class known, a "hypernova" . This is caused by the explosion of a very heavy star - presumably over 25 times heavier than the Sun. The measured expansion velocity (in excess of 30,000 km/sec) and the total energy released were exceptionally high, even within the elect hypernova class. From a comparison with more nearby hypernovae, the astronomers are able to fix with good accuracy the moment of the stellar explosion. It turns out to be within an interval of plus/minus two days of the gamma-ray burst. This unique conclusion provides compelling evidence that the two events are directly connected. These observations therefore indicate a common physical process behind the hypernova explosion and the associated emission of strong gamma-ray

  13. Fermi Gamma-ray Space Telescope Observations of Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, P. M.

    2009-04-01

    The Large Area Telescope on the recently launched Fermi Gamma-ray Space Telescope (formerly GLAST), with its large field of view and effective area, combined with its excellent timing capabilities, is poised to revolutionize the field of gamma-ray astrophysics. The large improvement in sensitivity over EGRET is expected to result in the discovery of many new gamma-ray pulsars, which in turn should lead to fundamental advances in our understanding of pulsar physics and the role of neutron stars in the Galaxy. Almost immediately after launch, Fermi clearly detected all previously known gamma-ray pulsars and is producing high precision results on these. An extensive radio and X-ray timing campaign of known (primarily radio) pulsars is being carried out in order to facilitate the discovery of new gamma-ray pulsars. In addition, a highly efficient time-differencing technique is being used to conduct blind searches for radio-quiet pulsars, which has already resulted in new discoveries. I present some recent results from searches for pulsars carried out on Fermi data, both blind searches, and using contemporaneous timing of known radio pulsars.

  14. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  15. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth

  16. 209Tl half-life and gamma-ray measurements of radionuclides belonging to the (4 n + 1) decay chain

    NASA Astrophysics Data System (ADS)

    Ardisson, G.; Barci, V.; El Samad, O.

    1994-01-01

    Gamma-ray spectra of radiochemically separated 221Fr, 213Bi and 209Tl sources were measured using coaxial and planar HPGe detectors. The energies and emission probabilities of eight new gamma-ray transitions were observed in the decay of 209Tl; a half-life of (2.161±0.007) min was measured. Twenty-two gamma-rays have been attributed to the β-decay of 213Bi, of which 17 are new with respect to previous studies. The 213Po level scheme was determined using γ-γ coincidence measurements: eight excited states are proposed of which six are new. Preliminary measurements of the α-decay of 221Fr revealed the existence of 18 gamma-ray transitions of which eight are reported for the first time.

  17. Neutron and Gamma-Ray Detectors Based on Quantum Dots

    SciTech Connect

    Dai, S.

    2000-06-01

    Through this funded project, our research group at the Oak Ridge National Laboratory has pioneered and been successful in preparing and evaluating the performance of prototypes of neutron, alpha, and gamma-ray detectors based on various types of nanoparticles. These include organic fluors [2,5-diphenyloxazole (PPO) and 1,4-bis-2-(5-phenyloxazolyl)-benzene (POPOP)]-doped polystyrene and polyvinyltoluene nanoparticles, highly crystalline inorganic ZnS-capped CdSe, ZnS, three-component CdSxSe1-x, Ce3+-doped Y2O3, and Ce3+-doped LaPO4 (LaPO4:Ce) nanocrystals (NCs) in polystyrene (PS) or polyvinyltoluene (PVT). Previously, this effort identified two strong candidate nanoparticles for neutron and gamma detection applications. These two NCs are LaPO4:Ce and CdSxSe1-x (Dai, S. et. al. manuscript in preparation; see Figures 1 and 2). Another key accomplishment of the previously funded project is the development of 6Li3PO4 nanoparticles as a neutron-absorbing material (Dai, S. et. al. manuscript in preparation). Because the size of these nanoparticles is well under the diffraction limit for visible light, the 6Li3PO4 nanoparticles can be utilized as a vehicle for doping large percentages of Li-6 into plastic scintillators for detection of thermal neutrons. Our preliminary results indicate that a transparent polymer composite containing as high as 16 wt% of the 6Li3PO4 nanoparticles can be fabricated. Figure 3 shows the pulse height spectra from thermal neutron detection of plastic scintillators made with 6Li3PO4 nanoparticles and organic fluors, PPO and POPOP. This result confirms the energy transfer from neutron capture reaction at Li-6 ions in the nanoparticles to the scintillation dyes. Polystyrene-based polymers were also proven to be good matrices for 6Li3PO4 and scintillators in neutron detection. This may be due to the fact that they are hydrogeneous matrices, which slow down neutrons and facilitate the neutron capture event. The fact that the plastic matrix has low Z

  18. Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1995-01-01

    With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources

  19. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2016-03-01

    The gamma-ray sky offers a unique view into broad range of high energy astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. In recent years, results from the Fermi mission have further demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, from about 100 keV up to about 100 TeV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. Through a series of workshops and symposia, the GammaSIG is working to bring the community together with one common vision, a vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories and will summarize the status of the community roadmap effort.

  20. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  1. Modeling Gamma Ray Bursts in the Megnetically Dominated Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    Recent observations of broad-band prompt emission spectra of gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Telescope suggest that they do not comply with the predictions of the standard fireball internal shock model. Several independent observations (including detections of high polarization degree of gamma-ray emission and early optical emission of some GRBs, as well as non-detection of PeV neutrinos from GRBs by IceCube) support or are consistent with the hypothesis that at least some GRBs have magnetically dominated jets. This calls for serious, detailed investigations of GRB models in the magnetically dominated regime, which interpret GRB emission as dissipation of strong magnetic fields entrained in the ejecta. On the other hand, because of their complexity, magnetic models are so far much less developed than the baryonic fireball models. Here we propose to tackle this difficult problem, aiming at making solid progress in this direction through a set of numerical investigations. Specifically, we propose to carry out the following simulations. (1) Using a relativistic MHD code, we will perform a global simulation to investigate whether efficient magnetic dissipation would occur when two high-σ magnetic blobs collide with a relativistic speed. (2) We will perform a local simulation of the relativistic collisions between two high-σ fluids, and track the evolution of magnetic field configuration in the colliding region and the interplay between magnetic reconnection and development of magnetic turbulence. (3) Through injecting test particles in the simulation box, we will study how electrons get accelerated in the turbulent reconnection regions. (4) Built upon the above-mentioned numerical simulation results, along with a Monte Carlo code and a synchrotron radiation code developed in our group before, we will develop a full numerical model to simulate lightcurves, time-dependent spectra, and polarization properties of GRB prompt emission within the framework of

  2. Comparison of activation effects in {gamma}-ray detector materials

    SciTech Connect

    Truscott, P.R.; Evans, H.E.; Dyer, C.S.; Peerless, C.L.; Flatman, J.C.; Cosby, M.; Knight, P.; Moss, C.E.

    1996-06-01

    Activation induced by cosmic and trapped radiation in {gamma}-ray detector materials represents a significant source of background for space-based detector systems. Selection of detector materials should therefore include consideration of this background source. Results are presented from measurements of induced radioactivity in different scintillators activated either as a result of irradiation by mono-energetic protons at accelerator facilities, or flight on board the Space Shuttle. Radiation transport computer codes are used to help compare the effects observed from the scintillators, by identifying and quantifying the influence on the background spectra from more than one hundred of the radionuclides produced by spallation. For the space experiment data, the simulation results also permit determination of the contributions to detector activation from the different sources of radiation in the Shuttle cabin.

  3. Ultrahigh energy gamma rays: Carriers of cosmological information

    NASA Technical Reports Server (NTRS)

    Aharonian, F. A.; Atoyan, A. M.

    1985-01-01

    Observational data being the basis of contemporary cosmological models are not numerous: Hubble law of redshift for galaxies, element abundances, and observation of cosmic microwave background radiation (MBR). The significance of MBR discovery predicted in the Big-Band model is particularly stressed. Radio astronomical measurements give an information on MBR only near the Earth. Experimental confirmation of evolution of MBR, i.e., its probing in remote epochs, might obviously present a direct verification of the hypothesis of hot expanding Universe. The carriers of similar cosmological information should be particles which, firstly, effectively interact with MBR, and secondly, make it possible to identify unambiguously the epoch of interaction. A possibility to verify a number of cosmological hypotheses by searching the cutoffs in spectra of ultrahigh energy gamma-rays (UHEGR) from extragalactic sources is discussed.

  4. Terrestrial Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2012-01-01

    Intense of gamma rays have been observed by five different space-borne detectors. The TGFs have hard spectra, with photons extending to over 50 MeV. Most of these flashes last less than a millisecond. Relativistic electrons and positrons associated with TGFs are also seen by orbiting instruments In a special mode of operation, the Fermi-GBM detectors are now detecting an average of about one TGF every two hours. The Fermi spacecraft has been performing special orientations this year which has allowed the Fermi-LAT instrument also detect TGFs. The most likely origin of these high energy photons is bremsstrahlung radiation from electrons, produced by relativistic runaway electrons in intense electric fields within or above thunderstorm regions; the altitude of origin is uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. The observational aspects of TGFs will be the main focus of this talk; theoretical aspects remain speculative.

  5. Pile-up recovery in gamma-ray detection

    SciTech Connect

    Vencelj, Matjaz; Likar, Andrej; Loeher, Bastian; Miklavec, Mojca; Novak, Roman; Pietralla, Norbert; Savran, Deniz

    2012-07-09

    Count rates in gamma-ray detectors are fundamentally limited at the high end by the physics of the detection process but should not be limited further by the design of read-out. Using intense stimuli, such as the ELI, it is desirable to extract the full wealth of information flow that sensors can deliver. We discuss the photon-statistical limitations of scintillation systems and charge-collection issues of solid-state detectors. With high-speed digitizing in particular, two promising approach architectures are those of posterior list mode corrections and of time-domain adaptive filters, introducing a 'rich list mode with uncertainties' and thus a somewhat different look at experimental spectra. Real-time performance is also considered.

  6. Variable VHE gamma-ray emission from Markarian 501

    SciTech Connect

    Albert, Jordi

    2007-02-06

    The blazar Markarian 501 (Mrk 501) was observed at energies above 100 GeV with the MAGIC telescope from May through July 2005. The high sensitivity of the instrument enabled the determination of the flux and spectrum of the source on a night-by-night basis. Throughout our observational campaign, the flux from Mrk 501 was found to vary by an order of magnitude, and to be correlated with spectral changes. Intra-night flux variability with flux-doubling times down to 2 minutes was also observed. The strength of variability increased with the energy of the {gamma}-ray photons. The energy spectra were found to harden significantly with increasing flux, and a spectral peak clearly showed up during very active states. The position of the spectral peak seems to be correlated with the source luminosity.

  7. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  8. The High-energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.; VonMintigny, C.

    1997-01-01

    We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approx. = 1.7-1.8 and column density N(sub H) approx. = 5 x 10(exp 21)/ sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approx. 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with Energetic Gamma Ray Experiment Telescope (EGRET). The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approx. = 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approx. 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

  9. Models for Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Woosley, Stan

    Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce

  10. An in situ gamma ray spectrometer with CsI/p-i-n detector

    NASA Astrophysics Data System (ADS)

    Xu, Clarke X.; Williams, Ron R.

    1995-03-01

    The development of a portable gamma ray spectrometer based on a CsI(Tl) scintillator (1.8 cm×1.8 cm×4 cm) with integral p-i-n diode (1.8 cm×4 cm) is described. A single board computer containing the MC68HC11 microcontroller, a single-chip self-contained computer system, is used for system control. The total size of the instrument is only 12 in×7 in. including the spectrometer and power supply. The system provides a low cost, low power gamma ray spectrometer as compared to the more common PMT-based devices. Spectra can be collected in daily intervals for up to 1 week. Special software which monitors the proper working of the spectrometer insures long term stability. This spectrometer can be used for routine monitoring and detection of gamma ray emitting radio nuclides. Performance of the spectrometer as well as gamma ray spectra are presented. The qualitative and quantitative reliability have shown its potential as a stand alone field monitoring instrument due to its low power consumption and intelligence.

  11. Gamma ray bursts from extragalactic sources

    NASA Technical Reports Server (NTRS)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  12. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  13. Very high energy gamma ray astrophysics

    NASA Astrophysics Data System (ADS)

    Lamb, R. C.

    1983-03-01

    Sources of very high energy gamma rays (E(BETA) (11) eV) and improvement of the instrumentation of detectors in this energy regime were investigated. Approximately 4 x 10(5) Cerepkov air shower events from the region of Cygnus X-3 and the Crab nebula were collected with the JPL instrumentation during the fall of 1982. Significant improvement on the 1981 sensitivity to source variations and the development of a Cerenkov air shower camera are reported. A suitable mirror and mount for use as a detector auxiliary to the primary 10 inch Mt. Hopkins detector is located.

  14. Gamma Ray Bursts: an Enigma Being Unraveled

    SciTech Connect

    De Rujula, Alvaro

    2003-05-14

    The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

  15. Polarized gamma-rays with laser-Compton backscattering

    SciTech Connect

    Ohgaki, H.; Noguchi, T.; Sugiyama, S.

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  16. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an

  17. Properties of accelerated particles at the Sun from gamma-ray and neutron measurements

    NASA Astrophysics Data System (ADS)

    Share, Gerald; Murphy, Ronald

    The properties of accelerated ions and electrons that interact in the solar atmosphere and photosphere can be revealed through measurements of the resulting hard X-ray and gamma-ray emissions. These properties provide information on the acceleration processes and particle transport. Comparison of these properties with those measured in solar energetic particles in space indicates whether the two particle populations have a common origin. These studies require both good spectral measurements and a sound theoretical basis for understanding the processes related to gamma-ray production. We discuss advances in the calculation of gamma-ray spectra from proton, alpha-particle and heavy-ion interactions that are used in determining the spectra and composition of the accelerated particles. We focus on intense flares observed by the Solar Maximum Mission gamma-ray spectrometer and on the remarkable 2005 January 20 flare and Ground Level Event observed by RHESSI and Coronas. Our studies suggest that in most of the flares the heavy interacting particles at the Sun have a composition that is similar to gradual SEP events (i.e. a coronal composition) but that in at least one flare they have a composition close to that observed in impulsive SEP events. We are also finding evidence that the interacting particles may be enhanced in alpha particles and heavier nuclei relative to protons. We discuss details of the 2005 January 20 flare in which we find clear evidence for two distinct acceleration processes occurring within two minutes that produce significantly different particle spectra. Gamma-ray emission from this event was evident up to 4 hours after flare onset. We discuss the implications of these observations. This work was supported by NASA under grants to the University of Maryland and DPRs to NRL.

  18. Properties of Accelerated Particles at the Sun from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Murphy, Ronald; Share, G.; Kozlovsky, B.

    2010-05-01

    The properties of accelerated ions and electrons that interact in the solar atmosphere and photosphere can be revealed through measurements of the resulting hard X-ray and gamma-ray emissions. These properties provide information on the acceleration processes and particle transport. Comparison of these properties with those measured for solar energetic particles in space indicates whether the two particle populations have a common origin. These studies require both good spectral measurements and a sound theoretical basis for understanding the processes related to gamma-ray production. We discuss advances in the calculation of gamma-ray spectra from proton, alpha-particle and heavy-ion interactions that are used to determine the spectra and composition of the accelerated particles. We focus on intense flares observed by the Solar Maximum Mission gamma-ray spectrometer and on the remarkable 2005 January 20 flare and Ground Level Event observed by RHESSI and Coronas. Our studies suggest that in most of these flares the heavy interacting particles at the Sun have a composition that is similar to gradual SEP events (i.e. a coronal composition), but that in at least one flare they have a composition close to that observed in impulsive SEP events. We are also finding evidence that the interacting particles may be enhanced in alpha particles and heavier nuclei relative to protons. We discuss details of the 2005 January 20 flare in which we find clear evidence for two distinct acceleration processes occurring within two minutes that produce significantly different particle spectra. Gamma-ray emission from this event was evident for up to 4 hours after flare onset. We discuss the implications of these observations. This work was supported by NASA under DPRs to NRL and grants to the University of Maryland.

  19. Gamma-ray Spectral Characteristics of Thermal and Non-thermal Emission from Three Black Holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.; Wheaton, William A.

    2004-01-01

    Cygnus X-1 and the gamma-ray transients GROJ0422+32 and GROJ1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high (gamma)-ray intensity state ((gamma)2, for Cygnus X-l), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >= 3) that extended to 1 MeV or beyond. When the sources were in the low-intensity state ((gamma)0, for Cygnus X-l), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to 1 MeV can be characterized by a single power law with a relatively harder photon index 2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the 400 KeV - 1 MeV range, in contrast to the spectral pivoting seen previously at lower (10 keV) energies. The presence of the power-law component in both the high- and low-intensity gammaray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.

  20. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  1. SAS-2 galactic gamma ray results. 2. Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  2. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  3. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  4. Gamma Ray/neutron Spectrometers for Planetary Elemental Mapping

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Auchampaugh, G. F.; Barraclough, B. L.; Burt, W. W.; Byrd, R. C.; Drake, D. M.; Edwards, B. C.; Feldman, W. C.; Martin, R. A.; Moss, C. E.

    1993-01-01

    Los Alamos has designed gamma ray and neutron spectrometers for Lunar Scout, two robotic missions to map the Moon from 100 km polar orbits. Knowledge of the elemental composition is desirable in identifying resources and for geochemical studies and can be obtained using gamma ray and neutron spectrometers. Measurements with gamma ray and neutron spectrometers complement each other in determining elemental abundances in a planet's surface. Various aspects of the instruments are discussed.

  5. A Gamma-Ray Camera for Inspection Control

    SciTech Connect

    Danilenko, K.N.; Ignatyev, G.N.; Semenov, D.S; D Chernov, M.Y.; Morgan, J.

    2000-06-29

    The Research Institute of Pulse Technique has constructed a gamma-ray camera for imaging radioactive materials. The work was performed under the DOE Lab to Lab Dismantlement Transparency Program with the Lawrence Livermore National Laboratory (USA). The gamma-ray camera was intended for imaging radioactive materials, including fissile materials, in a storage container. In this case, the spatial resolution established in the specifications for the gamma ray camera was limited for reasons of inspection non-intrusiveness.

  6. Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.

    1992-01-01

    The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.

  7. Reconstruction of distribution functions of fast ions and runaway electrons in fusion plasmas using gamma-ray spectrometry with applications to ITER

    NASA Astrophysics Data System (ADS)

    Shevelev, A. E.; Khilkevitch, E. M.; Kiptily, V. G.; Chugunov, I. N.; Gin, D. B.; Doinikov, D. N.; Naidenov, V. O.; Litvinov, A. E.; Polunovskii, I. A.; Contributors, JET-EFDA

    2013-12-01

    Gamma-ray spectrometry on ITER can provide information both on confined fusion alpha particles for optimization of plasma heating and runaway electrons, which is important for safe reactor operations. For the purpose of deconvolution of gamma-ray spectra recorded in fusion plasma experiments the DeGaSum code has been developed. The code can be applied for processing of both spectra of monoenergetic gamma rays, which are born in nuclear reactions produced by alpha particles and other fast ions, and continuous bremsstrahlung spectra generated by runaway electrons in the MeV range in the plasma and reactor structure materials. Gamma-ray spectrometer response functions and bremsstrahlung spectra generated by electrons in the MeV energy range are calculated and used in the DeGaSum code. The deconvolution of the discrete spectra allows the identification of nuclear reactions, which give rise to gamma rays, and the calculation of their intensities. By applying the code for continuous hard x-ray spectra, the runaway electron energy distribution can be inferred. It can provide the maximal energy of runaway electrons with accuracy, which satisfies the ITER project requirements. The code has been used for processing of spectra recorded in JET experiments. An application of the deconvolution technique for gamma-ray emission measurements on ITER is discussed.

  8. Very high energy gamma ray astrophysics

    SciTech Connect

    Lamb, R.C.; Lewis, D.A.

    1992-02-01

    The second reflector (project GRANITE) is on schedule. At present (January 1992) it and the 10 m reflector are obtaining stereoscopic views of gamma-ray air showers from the Crab Nebula which verify the expected performance of the twin reflector telescopes. With the additional improvements of the upgrade (a pending DOE proposal) the twin reflectors should reach a limiting intensity of 1% that of the Crab. The astonishing early results from the EGRET detector aboard the Compton Gamma Ray Observatory indicate that distant quasars (powered by supermassive black holes) are active at GeV energies. The Whipple instruments are poised to see if such behavior continues above 100 GeV, as well as perform sensitive observations of previously reported GeV (Geminga) and TeV (Hercules X-1, etc.) sources. In addition to observing sources and identifying their location in the sky to one arcminute, experiments are planned to search for WIMPS in the mass range 0.1 to 1 TeV, and to determine the abundance of anti-protons in the cosmic rays. The successful performance of the stereoscopic reflectors demonstrates the feasibility of the concept of arrays of Cherenkov receivers. Design studies for a much larger array (CASITA) are just beginning.

  9. Development of gamma ray imaging cameras

    SciTech Connect

    Wehe, D.K.; Knoll, G.F.

    1992-05-28

    In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed would indicate the geometric location of the radiation relative to the camera's orientation, while the brightness and color'' would indicate the intensity and energy of the radiation (and hence identify the emitting isotope). There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project's two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R D efforts for the third year effort. 8 refs.

  10. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  11. Gamma ray tests of Minimal Dark Matter

    SciTech Connect

    Cirelli, Marco; Sala, Filippo; Taoso, Marco; Hambye, Thomas; Panci, Paolo E-mail: thambye@ulb.ac.be E-mail: filippo.sala@cea.fr

    2015-10-01

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  12. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  13. Gamma ray tests of Minimal Dark Matter

    SciTech Connect

    Cirelli, Marco; Hambye, Thomas; Panci, Paolo; Sala, Filippo; Taoso, Marco

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  14. Iron K Lines from Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Meszaros, P.; Rees, M. J.

    2003-01-01

    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

  15. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  16. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1993-01-01

    Most Galactic optical supernovae are hidden due to severe extinction in the disk, but could be detectable through their gamma-ray afterglow. Ti-44 is among the potentially detectable isotopes in supernova ejecta. HEAO 3 and SMM sky surveys have not detected gamma-ray lines from the decay of Ti-44, thus constraining SN rates and nucleosynthesis. We perform Monte Carlo simulations of the gamma-ray signatures of SN occurring during the last millenium to interpret the gamma-ray paucity.

  17. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  18. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  19. Gamma-ray spectral calculations for uranium borehole logging

    SciTech Connect

    Close, D.A.; Evans, M.L.; Jain, M.

    1980-06-01

    Gamma-ray transport calculations were performed to determine the energy distribution of gamma rays inside a borehole introduced into an infinite medium. The gamma rays from the naturally occurring radioactive isotopes of potassium, thorium, and uranium were uniformly distributed in a sandstone formation (having a porosity of 0.30 and a saturation of 1.0) surrounding the borehole. A sonde was placed coaxially inside the borehole. Parametric studies were done to determine how the borehole radius, borehole fluid, and borehole casing influence the gamma-ray flux inside the sonde.

  20. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.