Science.gov

Sample records for capture therapy treat

  1. Using the TREAT reactor in support of boron neutron capture therapy (BNCT) experiments: A feasibility analysis

    SciTech Connect

    Grasseschi, G.L.; Schaefer, R.W.

    1996-03-01

    The technical feasibility of using the TREAT reactor facility for boron neutron capture therapy (BNCT) research was assessed. Using one-dimensional neutronics calculations, it was shown that the TREAT core neutron spectrum can be filtered to reduce the undesired radiation (contamination) dose per desired neutron more effectively than can the core spectra from two prominent candidate reactors. Using two-dimensional calculations, it was demonstrated that a non-optimized filter replacing the TREAT thermal column can yield a fluence of desired-energy neutrons more than twice as large as the fluence believed to be required and, at the same time, have a contamination dose per desired neutron almost as low as that from any other candidate facility. The time, effort and cost required to adapt TREAT for a mission supporting BNCT research would be modest.

  2. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy

    SciTech Connect

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gahbauer, R.A.; Barth, R.F.; Soloway, A.H.; Fairchild, R.G. )

    1990-09-01

    This investigation attempts to determine whether increased survival time seen when the F98 glioma model is treated with boron neutron capture therapy (BNCT) is a result of inhibition of tumor growth caused by radiation-induced alterations in endothelial cells and normal tissue components. This indirect effect of radiation has been called the tumor bed effect. A series of tumor-bearing rats was studied, using a standardized investigational BNCT protocol consisting of 50 mg/kg of Na2B12H11SH injected intravenously 14 to 17 hours before neutron irradiation at 4 x 10(12) n/cm2. Ten rats, serving as controls, received no treatment either before or after tumor implantation. A second group of 10 rats was treated with BNCT 4 days before tumor implantation; these animals received no further treatment. The remaining group of 10 rats received no pretreatment but was treated with BNCT 10 days after implantation. Histological and ultrastructural analyses were performed in 2 animals from each group 17 days after implantation. Survival times of the untreated control animals (mean, 25.8 days) did not differ statistically from the survival times of the rats in the pretreated group (mean, 25.5 days). The rats treated with BNCT after implantation survived significantly longer (P less than 0.02; mean, 33.2 days) than the controls and the preirradiated animals. Tumor size indices calculated from measurements taken at the time of death were similar in all groups. These results indicate that, with this tumor model, BNCT does not cause a tumor bed effect in cerebral tissue. The therapeutic gains observed with BNCT result from direct effects on tumor cells or on the peritumoral neovascularity.

  3. Iodine neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  4. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  5. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  6. Advances in Neutron Capture Therapy

    SciTech Connect

    Soloway, A.H.; Barth, R.F.; Carpenter, D.E.

    1993-12-31

    This volume contains the proceedings of the Fifth International Symposium on Neutron Capture Therapy held September 14--17, 1992 in Columbus, Ohio. Individual papers were separately abstracted and indexed for the database.

  7. Boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Haque, A. M.; Moschini, G.; Valkovic, Vlado; Zafiropoulos, D.

    1995-03-01

    The final goal of any radiotherapy project is to expose the tumor as the target to a lethal dose of ionizing radiation, sparing thereby the surrounding healthy tissues to a maximum extent. Precise treatment is nevertheless essential for cure, since the danger exists that the tumor might re-establish itself if every cancer cell is not destroyed. The conventional therapy treatments existing to date, e.g., surgery, radiation therapy, and chemotherapy, have been successful in curing some kinds of cancers, but still there are many exceptions. In the following, the progress of a promising therapy tool, called the boron neutron capture therapy (BNCT), which has made its dynamic evolution in recent years, is briefly described. The approach towards clinical trials with BNCT is described in detail.

  8. Gadolinium as a Neutron Capture Therapy Agent

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  9. Neutron capture therapy for melanoma

    SciTech Connect

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  10. Workshop on neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  11. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  12. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer. PMID:27461603

  13. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  14. Approach to magnetic neutron capture therapy

    SciTech Connect

    Kuznetsov, Anatoly A. . E-mail: spod@sky.chph.ras.ru; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-11-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity.

  15. Porphyrins for boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  16. Boron neutron capture therapy for cancer

    SciTech Connect

    Barth, R.E.; Soloway, A.H. ); Fairchild, R.G. State Univ. of New York, Stony Brook )

    1990-10-01

    Boron neutron capture therapy (BNCT) bring together two components that when kept separate have only minor effects on normal cells. The first component is a stable isotope of boron (boron 10) that can be concentrated in tumor cells. The second is a beam of low-energy neutrons that produces short-range radiation when absorbed, or captured, by the boron. The combination of these two conditions at the site of a tumor releases intense radiation that can destroy malignant tissues. BNCT is based on the nuclear reaction that occurs when boron 10 is irradiated with an absorbs neutrons. The neutrons that it takes up are called thermal, or slow, neutrons. They are of such low energy that they cause little tissue damage as compared with other forms of radiation such as protons, gamma rays and fast neutrons. When an atom of boron 10 captures a neutron, an unstable isotope, boron 11, forms. The boron 11 instantly fissions, yielding lithium 7 nuclei and energetic alpha particles. These heavy particles, which carry 2.79 million electron volts of energy, are a highly lethal form of radiation. If the treatment proceeds as intended, the destructive effects of the capture reaction would occur primarily in those cancer cells that have accumulated boron 10. Normal cells with low concentrations of boron would be spared.

  17. Recent advances in neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1985-01-01

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  18. Spectromicroscopy in Boron Neutron Capture Therapy Research

    NASA Astrophysics Data System (ADS)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  19. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  20. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  1. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  2. Neutron capture therapy research in Australia.

    PubMed

    Allen, B J

    1989-01-01

    Neutron capture therapy research in Australia has continued to grow since the first Australia-Japan workshop in April, 1986. The support base has broadened and the wide range of contributing laboratories includes universities, research institutes, and hospitals. Considerable progress has been made in boron chemistry--an accurate boron assay technique has been developed, boron analogues of chlorpromazine and thiouracil have been synthesised or nearly so, and decaborane conjugation with monoclonal antibodies has been achieved to the required loadings. In vitro cell survival experiments are proceeding in the Moata reactor using human melanoma and mouse cell lines incubated with enriched boronophenylalanine and boron tetraphenyl porphyrins. Electron microscopy examination of radiation damaged morphology shows considerable differences between cell lines. Progress with the nude mouse human melanoma model has been slow because of the lack of a reliable in vivo melanotic melanoma line, and the B16 mouse line is found to be more efficacious. Tailored beam calculations for the 10 MW HIFAR reactor indicate the difficulty of obtaining a suitable therapeutic beam because of the generated gamma dose in the beam filters. A new approach to NCT utilises the enormous cross section of 157Gd and the induced-Auger effect which has been shown to cause double strand breaks in circular DNA.

  3. Boron thermal/epithermal neutron capture therapy

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the /sup 10/B(n, ..cap alpha..)/sup 7/Li reaction is approx. 10..mu.., or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor.

  4. Research needs for neutron capture therapy

    SciTech Connect

    1995-12-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted.

  5. Neutron capture therapy: Years of experimentation---Years of reflection

    SciTech Connect

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

  6. Neutron capture therapy: Years of experimentation---Years of reflection

    SciTech Connect

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

  7. Proton linacs for boron neutron capture therapy

    SciTech Connect

    Lennox, A.J. |

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in {approximately}4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented.

  8. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  9. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  10. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  11. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  12. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized. by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  13. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  14. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  15. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    SciTech Connect

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  16. Proceedings of the first international symposium on neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Brownell, G.L.

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  17. [How I treat... onychomycosis by topical therapy].

    PubMed

    Piérard, G E; Piérard-Franchimont, C

    2015-01-01

    Onychomycosis is a frequent and challenging disease to treat. Well conducted oral therapies are commonly quite effective for a short term period. However, recurrences are frequent. Topical therapies appear globally less active. Studies in this field are rare, although the promotional advertisements to the general public abound nowadays. Various microscopic fungi (dermatophytes, yeasts, molds) should be targeted by the treatment, In addition, the distinct activity conditions of both growth and quiescence of the pathogen fungi should be influenced by the treatments. This is not frequently considered by drug companies and encountered in practice. The antifungal drug penetration inside all the nail layers is important to be performed. PMID:25902599

  18. [How I treat... onychomycosis by topical therapy].

    PubMed

    Piérard, G E; Piérard-Franchimont, C

    2015-01-01

    Onychomycosis is a frequent and challenging disease to treat. Well conducted oral therapies are commonly quite effective for a short term period. However, recurrences are frequent. Topical therapies appear globally less active. Studies in this field are rare, although the promotional advertisements to the general public abound nowadays. Various microscopic fungi (dermatophytes, yeasts, molds) should be targeted by the treatment, In addition, the distinct activity conditions of both growth and quiescence of the pathogen fungi should be influenced by the treatments. This is not frequently considered by drug companies and encountered in practice. The antifungal drug penetration inside all the nail layers is important to be performed.

  19. Research in Boron Neutron Capture Therapy at MIT LABA

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.; Howard, W.B.; Song, H.; Blackburn, B.; Binello, E.

    1997-02-01

    A 4.1 MeV tandem electrostatic accelerator designed for research into Boron Neutron Capture Therapy (BNCT) has recently been installed in the MIT Laboratory for Accelerator Beam Applications (LABA). This accelerator uses a very high current switch mode high voltage power supply in conjunction with a multi-cusp negative ion source to supply the multimilliampere current required for clinical BNCT applications. A number of individual research projects aimed at evaluating the potential of this accelerator design as a hospital-based neutron source for radiation therapy of both tumors and rheumatoid arthritis are described here. {copyright} {ital 1997 American Institute of Physics.}

  20. [Liposomal boron delivery system for neutron capture therapy].

    PubMed

    Nakamura, Hiroyuki

    2008-02-01

    Boron neutron capture therapy (BNCT) is a binary cancer treatment based on the nuclear reaction of two essentially nontoxic species, (10)B and thermal neutrons. High accumulation and selective delivery of boron into tumor tissue are the most important requirements to achieve efficient neutron capture therapy of cancers. This review focuses on the liposomal boron delivery system (BDS) as a recent promising approach that meets these requirements for BNCT. BDS involves two strategies: (1) encapsulation of boron in the aqueous core of liposomes and (2) accumulation of boron in the liposomal bilayer. Various boronated liposomes have been developed and significant boron accumulation into tumor tissue with high tumor/blood boron ratios has been achieved by BDS.

  1. Theoretical and experimental physical methods of neutron-capture therapy

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  2. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    SciTech Connect

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  3. Clinical considerations for neutron capture therapy of brain tumors

    SciTech Connect

    Madoc-Jones, H.; Wazer, D.E.; Zamenhof, R.G.; Harling, O.K.; Bernard, J.A. Jr. )

    1990-01-01

    The radiotherapeutic management of primary brain tumors and metastatic melanoma in brain has had disappointing clinical results for many years. Although neutron capture therapy was tried in the United States in the 1950s and 1960s, the results were not as hoped. However, with the newly developed capability to measure boron concentrations in blood and tissue both quickly and accurately, and with the advent of epithermal neutron beams obviating the need for scalp and skull reflection, it should now be possible to mount such a clinical trial of NCT again and avoid serious complications. As a prerequisite, it will be important to demonstrate the differential uptake of boron compound in brain tumor as compared with normal brain and its blood supply. If this can be done, then a trial of boron neutron capture therapy for brain tumors should be feasible. Because boronated phenylalanine has been demonstrated to be preferentially taken up by melanoma cells through the biosynthetic pathway for melanin, there is special interest in a trial of boron neutron capture therapy for metastatic melanoma in brain. Again, the use of an epithermal beam would make this a practical possibility. However, because any epithermal (or thermal) beam must contain a certain contaminating level of gamma rays, and because even a pure neutron beam causes gamma rays to be generated when it interacts with tissue, we think that it is essential to deliver treatments with an epithermal beam for boron neutron capture therapy in fractions in order to minimize the late-effects of low-LET gamma rays in the normal tissue. I look forward to the remainder of this Workshop, which will detail recent progress in the development of epithermal, as well as thermal, beams and new methods for tracking and measuring the uptake of boron in normal and tumor tissues. 10 references.

  4. Gene therapy to treat cardiac arrhythmias.

    PubMed

    Bongianino, Rossana; Priori, Silvia G

    2015-09-01

    Gene therapy to treat electrical dysfunction of the heart is an appealing strategy because of the limited therapeutic options available to manage the most-severe cardiac arrhythmias, such as ventricular tachycardia, ventricular fibrillation, and asystole. However, cardiac genetic manipulation is challenging, given the complex mechanisms underlying arrhythmias. Nevertheless, the growing understanding of the molecular basis of these diseases, and the development of sophisticated vectors and delivery strategies, are providing researchers with adequate means to target specific genes and pathways involved in disorders of heart rhythm. Data from preclinical studies have demonstrated that gene therapy can be successfully used to modify the arrhythmogenic substrate and prevent life-threatening arrhythmias. Therefore, gene therapy might plausibly become a treatment option for patients with difficult-to-manage acquired arrhythmias and for those with inherited arrhythmias. In this Review, we summarize the preclinical studies into gene therapy for acquired and inherited arrhythmias of the atria or ventricles. We also provide an overview of the technical advances in the design of constructs and viral vectors to increase the efficiency and safety of gene therapy and to improve selective delivery to target organs.

  5. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  6. A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems

    EPA Science Inventory

    This document describes a systematic approach for performing capture zone analysis associated with ground water pump and treat systems. A “capture zone” refers to the three-dimensional region that contributes the ground water extracted by one or more wells or drains. A capture ...

  7. Could New 'Talk Therapy' Cut Cost of Treating Depression?

    MedlinePlus

    ... Could New 'Talk Therapy' Cut Cost of Treating Depression? Behavioral activation would be more accessible than currently ... gold-standard treatment -- cognitive behavioral therapy -- for treating depression in adults, a new study suggests. The researchers ...

  8. Treating alcohol problems with couple therapy.

    PubMed

    McCrady, Barbara S

    2012-05-01

    Couple therapy for treating alcohol use disorders (AUDs) results in less drinking and greater relationship stability and satisfaction in both men and women with AUDs. The theoretical tenets, treatment methods, and research evidence for Alcohol Behavioral Couple Therapy (ABCT) are summarized. The application of ABCT is illustrated through the treatment of a 42-year-old woman with an AUD and her 56-year-old husband. During 12 sessions over a 6-month period, the woman attained abstinence from alcohol and learned cognitive and behavioral coping skills to deal with drinking antecedents. Her husband learned to support her abstinence by stopping drinking himself, helping her cope with drinking urges, and reinforcing her successes. The couple increased positive pleasurable activities that did not involve alcohol and improved their communication skills. Challenges in the treatment included her ambivalence about abstaining, their complicated work and travel schedules, and other life stressors. PMID:22504611

  9. Carborane derivative development for boron neutron capture therapy. Final report

    SciTech Connect

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-04-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [{sup 10}B]. Cytotoxic {sup 7}Li nuclei and {alpha}-particles are emitted, with a range in tissue of 9 and 5 {micro}m, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm {sup 10}B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry.

  10. Experience of boron neutron capture therapy in Japan

    NASA Astrophysics Data System (ADS)

    Kanda, Keiji

    1997-02-01

    In Japan the boron neutron capture therapy has been applied to more than 200 patients, mostly brain tumors and some melanomas. For brain tumors, Kyoto University, Kyoto Prefectural University of Medicine, Tsukuba University and National Kagawa Children's Hospital accept patients, and for melanomas, Kobe University and Mishima Institute of Dermatological Research accept patients so far. Recently the heavy water facility of Kyoto University Reactor has been upgraded for epithermal neutron as well as thermal neutron irradiations, and for the patient treatment during the continuous operation of the KUR.

  11. Boron neutron capture therapy for malignant melanoma: An experimental approach

    SciTech Connect

    Larsson, B.S.; Larsson, B.; Roberto, A. )

    1989-07-01

    Previous studies have shown that some thioamides, e.g., thiouracil, are incorporated as false precursors into melanin during its synthesis. If boronated analogs of the thioamides share this property, the melanin of melanotic melanomas offers a possibility for specific tumoural uptake and retention of boron as a basis for neutron capture therapy. We report on the synthesis of boronated 1H-1,2,4-triazole-3-thiol (B-TZT), boronated 5-carboxy-2-thiouracil (B-CTU), and boronated 5-diethylaminomethyl-2-thiouracil (B-DEAMTU) and the localization of these substances in melanotic melanomas transplanted to mice. The distribution in the mice was studied by boron neutron capture radiography. B-TZT and B-CTU showed the highest tumour:normal tissue concentration ratios, with tumour:liver ratios of about 4 and tumour:muscle ratios of about 14; B-DEAMTU showed corresponding ratios of 1.4 and 5, respectively. The absolute concentration of boron in the tumours, however, was more than three times higher in the mice injected with B-TZT, compared with B-CTU. The results suggest that B-TZT may be the most promising compound of the three tested with regard to possible therapy of melanotic melanomas.

  12. Treating cerebral palsy with aculaser therapy

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Nazir Khan, Malik M.; Nadeem Khan, Malik M.; Qazi, Faiza M.; Awan, Abid H.; Dar, Irfan

    2008-03-01

    A single, open and non comparative study was conducted at Anwar Shah Trust for C.P. & Paralysis in collaboration with the Departments of Neurology and Neurosurgery, Children Hospital Lahore, Pakistan to evaluate the effects of ACULASER THERAPY in childern suffering from Cerebral Palsy (C.P.) and associated Neurological Disorders like epilepsy, cortical blindness, spasticity, hemiplegia, paraplegia, diplegia, quadriplegia, monoplegia, sensory-neural deafness and speech disorders. In all 250 childern were treated and the data was gathered during a period of 3 years from December 2003 till December 2006. These children were further classified according to the type of C.P. (spastic, athetoid, mixed) they suffered from and associated Neurological Disorders. This article shows results in C.P. childern who were treated with ACULASER THERAPY for minimum 6 weeks and more or had minimum of 15 treatment sessions and more. This article also shows that those childern who were given a break in the treatment for 1 month to 1 year did not show any reversal of the signs and symptoms. Analysis of the data showed that out of 171 children with Spasticity and Stiffness 147 showed marked improvement showing 87% success rate, out of 126 children with Epileptic fits, there was a significant reduction in the intensity, frequency and duration of Epileptic fits in 91 children showing 72% success rate, out of 48 children with Cortical Blindness 30 children showed improvement accounting for 63% efficacy rate, out of 105 children with Hearing Difficulties, 63 showed marked improvement accounting for 60% improvement rate, out of 190 children with Speech Disorders 122 showed improvement reflecting 64% improvement rate, out of 96 children with Hemiplegia 71 showed improvement in movement, tone and power accounting for 74% improvement rate, out of 76 children with Quadriplegia 52 showed improvement in gross and fine motor functions showing 69% success rate and out of 58 children with Paraplegia of

  13. Treating Psoriasis: Complementary and Alternative Therapies

    MedlinePlus

    ... or safe. Read more about herbal remedies » Mind/Body Therapies Mind-body techniques can help reduce your stress levels. Learn about mind/body therapies » Alternative Therapies Some psoriasis patients report hands- ...

  14. New compounds for neutron capture therapy (NCT) and their significance

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Clearly the most effective tumor therapy would be obtained by the selective targeting of cytotoxic agents to tumor cells. Although many biomolecules are known to be taken up in tumors, the targeting of cytotoxic agents to tumors is limited by the fact that other essential cell pools compete with equal or even greater effectiveness. The approach of delivering stable non-toxic isotopes to tumor, with activation by means of an external radiation beam, is advantageous for two reasons: (1) it obviates problems associated with high uptake of isotopes in normal tissues, as these cell pools can be excluded from the radiation field, and (2) the general tumor area can be included in the activating beam field; thus, the possibility exists that all microscopic tumor extensions can be irradiated. As long as range of reaction products is short, dose will be restricted to the tumor, with a resultant high therapeutic ratio. This method can be accomplished with either photon activation therapy (PAT) or Neutron Capture Therapy (NCT), the latter will be emphasized here. The range of the high LET, low OER particles from the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is approx. 10 ..mu..m, or one cell diameter; hence this reaction is optimal for cell killing. A number of biomolecules have been investigated as possible vehicles for transport of boron to tumors, including phenothiazines, thiouracils, porphyrins, nucleosides, and amino acids. Biodistributions of these compounds show selective concentration in tumor adequate for therapy. The biological halflives are in the order of days, allowing the possibility of fractionated or protracted irradiations. The radiobiological and physical implication of these parameters on NCT are discussed. The possibility of using an approximately-monoenergetic, scandium-filtered beam of about 2 keV, to reduce the dose from background radiations by about 85%, is also discussed. (ERB)

  15. Boronated antibodies and promazine derivatives for potential neutron capture therapy

    SciTech Connect

    Alam, F.; Soloway, A.H.; Barth, R.F.; Adams, D.M.; Mafune, N.

    1986-01-01

    The theoretical basis for boron neutron capture therapy (BNCT) derives from the irradiation of /sup 10/B with thermal neutrons, resulting in a fission reaction yielding /sup 7/Li and alpha particles. The fission products have short path lengths and high linear energy transfer (LET). Each component of this binary system, thermal neutrons and /sup 10/B, independently are nontumoricidal, but together they can be highly lethal. Success depends on localizing enough of the /sup 10/B (approx.20 ..mu..g/g of tumor) and delivering a requisite fluence of thermal neutrons (approx.10/sup 13/ n/cm/sup 9/) at the site of the tumor. This report describes the boronation of antibodies and the development of boron-containing promazine derivatives to selectively deliver /sup 10/B to tumor cells for BNCT.

  16. Real-time dosimetry for boron-neutron capture therapy

    SciTech Connect

    Bliss, M.; Craig, R.A.; Reeder, P.L.; Sunberg, D.S.

    1994-09-01

    Epithermal/thermal boron neutron-capture therapy (BNCT) is promising treatment method for malignant tumors. Because the doses and dose rates for medical therapeutic radiation are very close to the normal tissue tolerance, small errors in radiation delivery can result in harmful overdoses. A substantial need exists for a device that will monitor, in real time, the radiation dose being delivered to a patient. Pacific Northwest Laboratory (PNL) has developed a scintillating glass optical fiber that is sensitive to thermal neutrons. The small size of the fibers offers the possibility of in vivo dose monitoring at several points within the radiation field. The count rate of such detectors can approach 10 MHz because the lifetime of the cerium activator is fast. Fluxes typical of those in BNCT (i.e., 10{sup 9} n/cm{sup 2}/sec) may be measured because of this potentially high count rate and the small diameter of the fiber.

  17. Accelerator based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  18. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Gayane; Djuraeva, Gulnara; Kim, Andrey; Koblik, Yuriy; Kulabdullaev, Gairatulla; Rakhmonov, Turdimukhammad; Saytjanov, Shavkat

    2015-02-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent is injected. To de- fine the time dependence of the gadolinium concentration ρ(t) in the irradiated region the pharmacokinetics of gadolinium delivery agent (Magnevist) was studied at intratumoral injection in mice and intramuscular injection in rats. A polynomial approximation was applied to the experimental data and the influence of ρ(t) on the relative change of the absorbed dose of gadolinium was studied.

  19. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  20. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  1. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  2. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  3. Computational Dosimetry and Treatment Planning Considerations for Neutron Capture Therapy

    SciTech Connect

    Nigg, David Waler

    2003-03-01

    Specialized treatment planning software systems are generally required for neutron capture therapy (NCT) research and clinical applications. The standard simplifying approximations that work well for treatment planning computations in the case of many other modalities are usually not appropriate for application to neutron transport. One generally must obtain an explicit three-dimensional numerical solution of the governing transport equation, with energy-dependent neutron scattering completely taken into account. Treatment planning systems that have been successfully introduced for NCT applications over the past 15 years rely on the Monte Carlo stochastic simulation method for the necessary computations, primarily because of the geometric complexity of human anatomy. However, historically, there has also been interest in the application of deterministic methods, and there have been some practical developments in this area. Most recently, interest has turned toward the creation of treatment planning software that is not limited to any specific therapy modality, with NCT as only one of several applications. A key issue with NCT treatment planning has to do with boron quantification, and whether improved information concerning the spatial biodistribution of boron can be effectively used to improve the treatment planning process. Validation and benchmarking of computations for NCT are also of current developmental interest. Various institutions have their own procedures, but standard validation models are not yet in wide use.

  4. Assessment of ideal neutron beams for neutron capture therapy.

    PubMed

    Storr, G J

    1992-09-01

    The discrete-ordinates transport computer code DORT has been used to develop a two-dimensional cylindrical phantom model for use as a tool to assess beam design and dose distributions for boron neutron capture therapy. The model uses an S8 approximation for angular fluxes and a P3 Legendre approximation for scattering cross sections. A one-dimensional discrete-ordinates model utilizing the computer code ANISN was used to validate the energy-group structure used in the two-dimensional calculations. In the two-dimensional model the effects of varying basic parameters such as aperture width, neutron source energy, and tissue composition have been studied. Identical results were obtained when comparing narrow beam calculations to fine-mesh higher-order Sn treatments (up to S32), and with P5 cross sections. It is shown that, when the correct assessment volume is used, narrow beams will give little or no advantage for therapy even with an optimum-energy ideal neutron beam.

  5. Thiourea derivatives, methods of their preparation and their use in neutron capture therapy of malignant melanoma

    DOEpatents

    Gabel, D.

    1991-06-04

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  6. Boron containing compounds and their preparation and use in neutron capture therapy

    DOEpatents

    Gabel, D.

    1992-09-01

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  7. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  8. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  9. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  10. Topical herbal therapies for treating osteoarthritis

    PubMed Central

    Cameron, Melainie; Chrubasik, Sigrun

    2014-01-01

    Background Before extraction and synthetic chemistry were invented, musculoskeletal complaints were treated with preparations from medicinal plants. They were either administered orally or topically. In contrast to the oral medicinal plant products, topicals act in part as counterirritants or are toxic when given orally. Objectives To update the previous Cochrane review of herbal therapy for osteoarthritis from 2000 by evaluating the evidence on effectiveness for topical medicinal plant products. Search methods Databases for mainstream and complementary medicine were searched using terms to include all forms of arthritis combined with medicinal plant products. We searched electronic databases (Cochrane Central Register of Controlled Trials (CENTRAL),MEDLINE, EMBASE, AMED, CINAHL, ISI Web of Science, World Health Organization Clinical Trials Registry Platform) to February 2013, unrestricted by language. We also searched the reference lists from retrieved trials. Selection criteria Randomised controlled trials of herbal interventions used topically, compared with inert (placebo) or active controls, in people with osteoarthritis were included. Data collection and analysis Two review authors independently selected trials for inclusion, assessed the risk of bias of included studies and extracted data. Main results Seven studies (seven different medicinal plant interventions; 785 participants) were included. Single studies (five studies, six interventions) and non-comparable studies (two studies, one intervention) precluded pooling of results. Moderate evidence from a single study of 174 people with hand osteoarthritis indicated that treatment with Arnica extract gel probably results in similar benefits as treatment with ibuprofen (non-steroidal anti-inflammatory drug) with a similar number of adverse events. Mean pain in the ibuprofen group was 44.2 points on a 100 point scale; treatment with Arnica gel reduced the pain by 4 points after three weeks: mean difference (MD

  11. Topical herbal therapies for treating osteoarthritis

    PubMed Central

    Cameron, Melainie; Chrubasik, Sigrun

    2014-01-01

    Background Before extraction and synthetic chemistry were invented, musculoskeletal complaints were treated with preparations from medicinal plants. They were either administered orally or topically. In contrast to the oral medicinal plant products, topicals act in part as counterirritants or are toxic when given orally. Objectives To update the previous Cochrane review of herbal therapy for osteoarthritis from 2000 by evaluating the evidence on effectiveness for topical medicinal plant products. Search methods Databases for mainstream and complementary medicine were searched using terms to include all forms of arthritis combined with medicinal plant products. We searched electronic databases (Cochrane Central Register of Controlled Trials (CENTRAL),MEDLINE, EMBASE, AMED, CINAHL, ISI Web of Science, World Health Organization Clinical Trials Registry Platform) to February 2013, unrestricted by language. We also searched the reference lists from retrieved trials. Selection criteria Randomised controlled trials of herbal interventions used topically, compared with inert (placebo) or active controls, in people with osteoarthritis were included. Data collection and analysis Two review authors independently selected trials for inclusion, assessed the risk of bias of included studies and extracted data. Main results Seven studies (seven different medicinal plant interventions; 785 participants) were included. Single studies (five studies, six interventions) and non-comparable studies (two studies, one intervention) precluded pooling of results. Moderate evidence from a single study of 174 people with hand osteoarthritis indicated that treatment with Arnica extract gel probably results in similar benefits as treatment with ibuprofen (non-steroidal anti-inflammatory drug) with a similar number of adverse events. Mean pain in the ibuprofen group was 44.2 points on a 100 point scale; treatment with Arnica gel reduced the pain by 4 points after three weeks: mean difference (MD

  12. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    SciTech Connect

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  13. MCNP speed advances for boron neutron capture therapy

    SciTech Connect

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject`s head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers.

  14. Treating angina pectoris by acupuncture therapy.

    PubMed

    Xu, Lixian; Xu, Hao; Gao, Wei; Wang, Wei; Zhang, Hui; Lu, Dominic P

    2013-01-01

    Acupuncture therapy on PC 6 (Neiguan) has a therapeutic effect on cardiac and chest ailments including angina pectoris. Additional beneficial acupuncture points are PC 4 (Ximen), HT 7 (Shenmen point), PC 7 (Daling point), PC 5 (Jianshi point), PC 3 (Quze point), CV 17 (Danzhong point), CV 6 (Qihai point), BL 15 (Xinshu point), L 20 (Pishu point), BL 17 (Geshu point), BL23 (Shenshu point), BL18 (Ganshu point), HT 5 (Tongli point), and ST36 (Zusanli point). Acupuncture not only quickly relieve the symptoms of acute angina pectoris, but also improve nitroglycerine's therapeutic effects. Therefore, it is an efficient simple therapeutic method used for emergency and for regular angina treatment. Review of studies on acupuncture therapy has shown effectiveness were between 80% to 96.2% that are almost as effective as conventional drug regimen. When compared with conventional medical treatment, the acupuncture therapy shows the obvious advantage of lacking, adverse side effects commonly associated with the Western anti-anginal drugs such as 1) Nitroglycerine (headache--63% with nitroglycerine patch and 50% with spray; syncope--4%; and dizziness--8% with patch; hypotension--4% with patch; and increased angina 2% with patch). 2) Isosorbide mononitrate (dizziness--3 to 5%; nausea/vomiting--2 to 4% and other reactions including hypotension, and syncope even with small doses). 3) Propranolol (bradycardia, chest pain, hypotension, worsening of AV conduction disturbance, Raynaud's syndrome, mental depression, hyperglycemia, etc.). Many conventional anti-anginal medications cause inter-drug reactions with other medications the patients taking for other diseases. Whereas, acupuncture therapy does not pose such an interference with patient's medications. Nevertheless, surgery is still the treatment of choice when acupuncture or conventional drug therapy fails. Combination of conventional drug therapy and acupuncture would considerably decrease the frequency and the required dosage

  15. Treating angina pectoris by acupuncture therapy.

    PubMed

    Xu, Lixian; Xu, Hao; Gao, Wei; Wang, Wei; Zhang, Hui; Lu, Dominic P

    2013-01-01

    Acupuncture therapy on PC 6 (Neiguan) has a therapeutic effect on cardiac and chest ailments including angina pectoris. Additional beneficial acupuncture points are PC 4 (Ximen), HT 7 (Shenmen point), PC 7 (Daling point), PC 5 (Jianshi point), PC 3 (Quze point), CV 17 (Danzhong point), CV 6 (Qihai point), BL 15 (Xinshu point), L 20 (Pishu point), BL 17 (Geshu point), BL23 (Shenshu point), BL18 (Ganshu point), HT 5 (Tongli point), and ST36 (Zusanli point). Acupuncture not only quickly relieve the symptoms of acute angina pectoris, but also improve nitroglycerine's therapeutic effects. Therefore, it is an efficient simple therapeutic method used for emergency and for regular angina treatment. Review of studies on acupuncture therapy has shown effectiveness were between 80% to 96.2% that are almost as effective as conventional drug regimen. When compared with conventional medical treatment, the acupuncture therapy shows the obvious advantage of lacking, adverse side effects commonly associated with the Western anti-anginal drugs such as 1) Nitroglycerine (headache--63% with nitroglycerine patch and 50% with spray; syncope--4%; and dizziness--8% with patch; hypotension--4% with patch; and increased angina 2% with patch). 2) Isosorbide mononitrate (dizziness--3 to 5%; nausea/vomiting--2 to 4% and other reactions including hypotension, and syncope even with small doses). 3) Propranolol (bradycardia, chest pain, hypotension, worsening of AV conduction disturbance, Raynaud's syndrome, mental depression, hyperglycemia, etc.). Many conventional anti-anginal medications cause inter-drug reactions with other medications the patients taking for other diseases. Whereas, acupuncture therapy does not pose such an interference with patient's medications. Nevertheless, surgery is still the treatment of choice when acupuncture or conventional drug therapy fails. Combination of conventional drug therapy and acupuncture would considerably decrease the frequency and the required dosage

  16. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head and Neck Cancer

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Saarilahti, Kauko; Atula, Timo; Collan, Juhani; Salli, Eero; Kortesniemi, Mika; Uusi-Simola, Jouni; Maekitie, Antti; Seppaenen, Marko; Minn, Heikki; Kotiluoto, Petri; Auterinen, Iiro; Savolainen, Sauli; Kouri, Mauri; Joensuu, Heikki

    2007-10-01

    Purpose: Head and neck carcinomas that recur locally after conventional irradiation pose a difficult therapeutic problem. We evaluated safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of such cancers. Methods and Materials: Twelve patients with inoperable, recurred, locally advanced (rT3, rT4, or rN2) head and neck cancer were treated with BNCT in a prospective, single-center Phase I-II study. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 56-74 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed using the RECIST (Response Evaluation Criteria in Solid Tumors) criteria and adverse effects using the National Cancer Institute common toxicity grading v3.0. Intravenously administered boronophenylalanine-fructose (BPA-F, 400 mg/kg) was used as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Ten patients received BNCT twice; 2 were treated once. Ten (83%) patients responded to BNCT, and 2 (17%) had tumor growth stabilization for 5.5 and 7.6 months. The median duration of response was 12.1 months; six responses were ongoing at the time of analysis or death (range, 4.9-19.2 months). Four (33%) patients were alive without recurrence with a median follow-up of 14.0 months (range, 12.8-19.2 months). The most common acute adverse effects were mucositis, fatigue, and local pain; 2 patients had a severe (Grade 3) late adverse effect (xerostomia, 1; dysphagia, 1). Conclusions: Boron neutron capture therapy is effective and safe in the treatment of inoperable, locally advanced head and neck carcinomas that recur at previously irradiated sites.

  17. Deep Frostbite Treated With Hyperbaric Oxygen and Thrombolytic Therapies.

    PubMed

    Higdon, Brian; Youngman, Laura; Regehr, Michelle; Chiou, Andy

    2015-08-01

    The authors present a case of deep frostbite treated with both hyperbaric oxygen and thrombolytic therapies. Both of these therapies are experimental and have not yet achieved widespread clinical use. The patient described in this paper sustained frostbite after becoming intoxicated and falling unconscious in a snowy field. He was treated acutely for hypothermia and came into the authors' care for wound management. Of his 6 digits with extensive, deep frostbite, 1 digit eventually required partial amputation, and another had protracted osteomyelitis treated with intravenous antibiotics. The authors present a case history in the context of current research and provide a listing of previous case reports of hyperbaric oxygen therapy for frostbite.

  18. [Using alternative therapies in treating sleep disturbance].

    PubMed

    Hung, Hsuan-Man; Chen, Chung-Hey

    2011-02-01

    Sleep disturbance is a common health problem among adults, and enhancing sleep quality is an issue of significant importance to healthcare providers. As sleep quality worsens into insomnia, individuals may seek assistance from medication. However, sedative hypnotic drugs pose potentially adverse effects. Also, most medical treatments (e.g., positive pressure assistant ventilators) represent invasive interventions that must be prescribed by physicians. Non-pharmacological alternative therapies are commonly recommended and adopted by community nurses. Alternative therapies for sleep disturbance included exercise, cognitive behavior therapy, multiple strategies, music, and acupressure. In general, moderately intensive walking exercise is the intervention most recommended by professionals to help patients deal with sleep disturbance. Therefore, it is suggested that future researchers devise sleep quality promotion strategies that are suitable for home practice in order to apply the findings and spirit of research already done in this area. PMID:21328208

  19. Therapies for Treating Diabetic Nerve Pain

    MedlinePlus

    ... or neuropathy. Neurologists from the American Academy of Neurology are doctors who identify and treat diseases of ... an educational service of the American Academy of Neurology. It is based on an assessment of current ...

  20. Protein Replacement Therapy Shows Promise in Treating Rare Skin Disorder

    MedlinePlus

    ... 1999 Spotlight on Research 2014 February 2014 (historical) Protein Replacement Therapy Shows Promise in Treating Rare Skin Disorder Replacing a protein that is crucial to ensuring that the skin’s ...

  1. Isodose Curves and Treatment Planning for Boron Neutron Capture Therapy.

    NASA Astrophysics Data System (ADS)

    Liu, Hungyuan B.

    The development of Boron Neutron Capture Therapy (BNCT) has been progressing in both ^{10 }B compound development and testing and neutron beam delivery. Animal tests are now in progress with several ^{10}B compounds and once the results of these animal tests are promising, patient trials can be initiated. The objective of this study is to create a treatment planning method based on the dose calculations by a Monte Carlo code of a mixed radiation field to provide linkage between phantom dosimetry and patient irradiation. The research started with an overall review of the development of BNCT. Three epithermal neutron facilities are described, including the operating Brookhaven Medical Research Reactor (BMRR) beam, the designed Missouri University Research Reactor (MURR) beam, and a designed accelerator based neutron source. The flux and dose distributions in a head model have been calculated for irradiation by these neutron beams. Different beam parameters were inter -compared for effectiveness. Dosimetric measurements in an elliptical lucite phantom and a cylindrical water phantom were made and compared to the MCNP calculations for irradiation by the BMRR beam. Repeated measurements were made and show consistent. To improve the statistical results calculated by MCNP, a neutron source plane was designed to start neutrons at the BMRR irradiation port. The source plane was used with the phantoms for dosimetric calculations. After being verified by different phantom dosimetry and in-air flux measurements at the irradiation port, the source plane was used to calculate the flux and dose distributions in the head model. A treatment planning program was created for use on a PC which uses the MCNP calculated results as input. This program calculates the thermal neutron flux and dose distributions of each component of radiation in the central coronal section of the head model for irradiation by a neutron beam. Different combinations of head orientations and irradiation

  2. Treating the sibling subsystem: an adjunct of divorce therapy.

    PubMed

    Schibuk, M

    1989-04-01

    Sibling therapy, frequently overlooked as a method of treatment, is particularly appropriate in situations that require a deliberate focus on the "unit of continuity," or the subsystem that remains intact during a process of family reorganization. For this and other reasons it can be an effective tool in treating children of divorce. A case illustrating this use of sibling therapy is presented.

  3. [How I treat... chronic insomnia by cognitive and behavioral therapy].

    PubMed

    Dethier, M; Blairy, S; Poirrier, R

    2016-04-01

    Today, insomnia is predominantly treated by pharmacotherapy. Yet, cognitive-behavioral therapy has better long-term outcomes. In this paper, we describe the basic principles of this short-term psychotherapeutic treatment. It combines methods of sleep restriction and stimulus control, the learning of relaxation techniques, advices on sleep hygiene and cognitive therapy techniques applied to cognitions that overwhelm insomniac moments. PMID:27295894

  4. Iodine neutron capture therapy: A new generation of radiotherapy for the thyroid

    SciTech Connect

    Ahmed, K.F.; Stephens, A.G.; Spall, R.D.; Brey, R.R.; Bennion, J.S.

    1997-12-01

    An innovative technique is being pursued that takes advantage of noninvasive, in situ neutron capture therapy concepts for treating hyperthyroidism and thyroid carcinoma. Present treatment techniques include surgical removal of the thyroid or, more frequently, the oral administration of {sup 131}I. Therapeutic applications of {sup 131}I are complicated by the unavoidable and undesirable exposure of ancillary body organs, protracted treatment times due to long effective half-life, and less than ideal radiation emission characteristics, i.e., low-effective energy available for deposition in the target organ. These problems are mitigated through the use of {sup 128}I. Table I provides pertinent radiological characteristics for a comparison of {sup 131}I with {sup 128}I.

  5. Effect of boron neutron capture therapy for recurrent anaplastic meningioma: an autopsy case report.

    PubMed

    Kawaji, Hiroshi; Miyatake, Shin-Ichi; Shinmura, Kazuya; Kawabata, Shinji; Tokuyama, Tsutomu; Namba, Hiroki

    2015-01-01

    A 70-year-old woman died of systemic metastasis from anaplastic meningioma and underwent autopsy. The patient underwent twice total removal of the right sphenoid ridge meningioma 2 years ago. The tumor recurred 3 times, and then stereotactic radiotherapy was employed. Boron neutron capture therapy (BNCT) was performed for the fourth local recurrence and an additional new lesion. Proliferative activity of the newly developed meningioma, which had been treated with BNCT only, was significantly lower than that of untreated metastatic liver tumor, as well as that of the meningioma specimen obtained at the second surgery. Our pathological findings demonstrated, for the first time, the therapeutic effect of BNCT on anaplastic meningioma at an early stage (2.5 months).

  6. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    PubMed Central

    2013-01-01

    Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213

  7. Oral herbal therapies for treating osteoarthritis

    PubMed Central

    Cameron, Melainie; Chrubasik, Sigrun

    2015-01-01

    Background Medicinal plant products are used orally for treating osteoarthritis. Although their mechanisms of action have not yet been elucidated in full detail, interactions with common inflammatory mediators provide a rationale for using them to treat osteoarthritic complaints. Objectives To update a previous Cochrane review to assess the benefits and harms of oral medicinal plant products in treating osteoarthritis. Search methods We searched electronic databases (CENTRAL, MEDLINE, EMBASE, AMED, CINAHL, ISI Web of Science, World Health Organization Clinical Trials Registry Platform) to 29 August 2013, unrestricted by language, and the reference lists from retrieved trials. Selection criteria Randomised controlled trials of orally consumed herbal interventions compared with placebo or active controls in people with osteoarthritis were included. Herbal interventions included any plant preparation but excluded homeopathy or aromatherapy products, or any preparation of synthetic origin. Data collection and analysis Two authors used standard methods for trial selection and data extraction, and assessed the quality of the body of evidence using the GRADE approach for major outcomes (pain, function, radiographic joint changes, quality of life, withdrawals due to adverse events, total adverse events, and serious adverse events). Main results Forty-nine randomised controlled studies (33 interventions, 5980 participants) were included. Seventeen studies of confirmatory design (sample and effect sizes pre-specified) were mostly at moderate risk of bias. The remaining 32 studies of exploratory design were at higher risk of bias. Due to differing interventions, meta-analyses were restricted to Boswellia serrata (monoherbal) and avocado-soyabean unsaponifiables (ASU) (two herb combination) products. Five studies of three different extracts from Boswellia serrata were included. High-quality evidence from two studies (85 participants) indicated that 90 days treatment with 100

  8. Oral herbal therapies for treating osteoarthritis

    PubMed Central

    Cameron, Melainie; Chrubasik, Sigrun

    2015-01-01

    Background Medicinal plant products are used orally for treating osteoarthritis. Although their mechanisms of action have not yet been elucidated in full detail, interactions with common inflammatory mediators provide a rationale for using them to treat osteoarthritic complaints. Objectives To update a previous Cochrane review to assess the benefits and harms of oral medicinal plant products in treating osteoarthritis. Search methods We searched electronic databases (CENTRAL, MEDLINE, EMBASE, AMED, CINAHL, ISI Web of Science, World Health Organization Clinical Trials Registry Platform) to 29 August 2013, unrestricted by language, and the reference lists from retrieved trials. Selection criteria Randomised controlled trials of orally consumed herbal interventions compared with placebo or active controls in people with osteoarthritis were included. Herbal interventions included any plant preparation but excluded homeopathy or aromatherapy products, or any preparation of synthetic origin. Data collection and analysis Two authors used standard methods for trial selection and data extraction, and assessed the quality of the body of evidence using the GRADE approach for major outcomes (pain, function, radiographic joint changes, quality of life, withdrawals due to adverse events, total adverse events, and serious adverse events). Main results Forty-nine randomised controlled studies (33 interventions, 5980 participants) were included. Seventeen studies of confirmatory design (sample and effect sizes pre-specified) were mostly at moderate risk of bias. The remaining 32 studies of exploratory design were at higher risk of bias. Due to differing interventions, meta-analyses were restricted to Boswellia serrata (monoherbal) and avocado-soyabean unsaponifiables (ASU) (two herb combination) products. Five studies of three different extracts from Boswellia serrata were included. High-quality evidence from two studies (85 participants) indicated that 90 days treatment with 100

  9. Tetrakis(p-Carboranylthio-Tetrafluorophenyl)Chlorin (TPFC): Application for Photodynamic Therapy and Boron Neutron Capture Therapy

    PubMed Central

    HIRAMATSU, RYO; KAWABATA, SHINJI; TANAKA, HIROKI; SAKURAI, YOSHINORI; SUZUKI, MINORU; ONO, KOJI; MIYATAKE, SHIN-ICHI; KUROIWA, TOSHIHIKO; HAO, ERHONG; VICENTE, M. GRAÇA H.

    2015-01-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC’s applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm2) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 1012 n/cm2) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37–43 days). PMID:25546823

  10. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy.

    PubMed

    Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H

    2015-03-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days).

  11. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    PubMed

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S

    2009-12-10

    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  12. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  13. Neutron sources for a neutron capture therapy facility

    SciTech Connect

    Lennox, A.J.

    1993-04-01

    Recent advances in the development of boron pharmaceuticals have reopened the possibility of using epithermal neutrons to treat brain tumors containing boron-10. This paper summarizes the approaches being used to generate the neutron sources and identifies specific areas where more research and development are needed.

  14. Gadolinium as an element for neutron capture therapy

    SciTech Connect

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-01-01

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  15. Gadolinium as an element for neutron capture therapy

    SciTech Connect

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-12-31

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  16. Radiowave dielectric investigation of boron compounds distribution in cultured tumour cells: relevance to boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Capuani, S.; Gili, T.; Cametti, C.; Maraviglia, B.; Colasanti, M.; Muolo, M.; Venturini, G.

    2002-07-01

    The distribution of two main Boron neutron capture therapy (BNCT) agents, borocaptate sodium ( BSH) and borono-phenylalanine ( BPA), in C6 rat glioma cells has been investigated by means of radiowave dielectric spectroscopy measurements. Significant differences between cells treated with the two different boron carriers were found in the magnitude of passive electrical cell parameters. This technique offers a new procedure for the measurement of boron compounds interactions with different biological environments at cellular level and is suggested to have the potentiality for becoming an attractive tool for biodistribution studies of BNCT compounds in biological tissues.

  17. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  18. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound.

    PubMed

    Mishima, Y; Ichihashi, M; Tsuji, M; Hatta, S; Ueda, M; Honda, C; Suzuki, T

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  19. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound

    SciTech Connect

    Mishima, Y.; Ichihashi, M.; Tsuji, M.; Hatta, S.; Ueda, M.; Honda, C.; Suzuki, T.

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  20. Commercial Clinical Application of Boron Neutron Capture Therapy

    SciTech Connect

    N /A

    1999-09-03

    CRADA No. 95-CR-09 among the LITCO--now Bechtel BWXT Idaho, LLC; a private company, Neutron Therapies Limited Liability Company, NTL formerly Ionix Corporation; and Washington State University was established in 1996 to further the development of BNCT. NTL has established a laboratory for the synthesis, under US FDA approved current Good Manufacturing Practices (cGMP) guidelines, of key boron intermediates and final boron agents for BNCT. The company has focused initially on the development of the compound GB-10 (Na{sub 2}B{sub 10}H{sub 10}) as the first boron agent of interest. An Investigational New Drug (IND) application for GB-10 has been filed and approved by the FDA for a Phase I human biodistribution trial in patients with non-small cell lung cancer and glioblastoma multiforme at UW under the direction of Professor Keith Stelzer, Principal Investigator (PI). These trials are funded by NTL under a contract with the UW, Department of Radiation Oncology, and the initial phases are nearing completion. Initial results show that boron-10 concentrations on the order of 100 micrograms per gram (100 ppm) can be achieved and maintained in blood with no indication of toxicity.

  1. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas

    PubMed Central

    Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji

    2009-01-01

    Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492

  2. Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy.

    PubMed

    Tachikawa, Shoji; Miyoshi, Tatsuro; Koganei, Hayato; El-Zaria, Mohamed E; Viñas, Clara; Suzuki, Minoru; Ono, Koji; Nakamura, Hiroyuki

    2014-10-21

    closo-Dodecaborate-encapsulating liposomes were developed as boron delivery vehicles for neutron capture therapy. The use of spermidinium as a counter cation of closo-dodecaborates was essential not only for the preparation of high boron content liposome solutions but also for efficient boron delivery to tumors.

  3. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  4. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  5. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor.

    PubMed

    Honda, Ryo; Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2012-12-01

    A highly efficient microalgae cultivation process was developed for carbon dioxide capture using nutrients from treated sewage. A submerged-membrane filtration system was installed in a photobioreactor to achieve high nutrient loading and to maintain a high concentration and production of microalgae. Chlorella vulgaris, Botryococcus braunii and Spirulina platensis were continuously cultivated with simulated treated sewage and 1%-CO(2) gas. The optimum hydraulic retention time (HRT) and solids retention time (SRT) were explored to achieve the maximum CO(2) capture rate, nutrient removal rate and microalgae biomass productivity. The carbon dioxide capture rate and volumetric microalgae productivity were high when the reactor was operated under 1-day (HRT) and 18-days (SRT) conditions. The independent control of HRT and SRT is effective for efficient microalgae cultivation and carbon dioxide capture using treated sewage.

  6. Effect of Boron Neutron Capture Therapy (BNCT) on Normal Liver Regeneration: Towards a Novel Therapy for Liver Metastases

    SciTech Connect

    Jorge E. Cardoso; Elisa M. Heber; David W. Nigg; Osvaldo Calzetta; Herman Blaumann; Juan Longhino; Maria E. Itoiz; Eduardo Bumaschny; Emiliano Pozzi; Amanda E.Schwint; Verónica A. Trivillin

    2007-10-01

    The “TAORMINA project” developed a new method for Boron Neutron Capture Therapy (BNCT) of human multifocal unresectable liver metastases based on whole liver ex-situ BNCT mediated by boronophenylalanine (BPA), followed by whole liver autograft. This technique involved a high risk, prolonged anhepatic phase. The Roffo Institute liver surgeons (JEC) herein propose a novel technique to pursue ex-situ liver BNCT studies with a drastically lower surgical risk for the patient. The technique would involve, sequentially, ex-situ BNCT of left liver segments II and III, partial liver autograft, and induction of partial atrophy of the untreated right liver. The working hypothesis is that the atrophy of the right, untreated, diseased liver would stimulate regeneration of the left, treated, “cured” liver to yield a healthy liver mass, allowing for the resection of the remaining portion of diseased liver. This technique does not involve an anhepatic phase and would thus pose a drastically lower surgical risk to the patient but requires sine qua non that BNCT should not impair the regenerative capacity of normal hepatocytes. The aim of the present study was to assess the effect of therapeutic doses of BNCT mediated by BPA, GB-10 (Na2 10B10H10) or (GB- 10 + BPA) on normal liver regeneration in the Wistar rat employing partial hepatectomy as a regenerative stimulus. BNCT did not cause alterations in the outcome of normal liver regeneration, regenerated liver function or histology. We provide proof of principle to support the development of a novel, promising BNCT technique for the treatment of liver metastases.

  7. Clinical Efficacy of Mudpack Therapy in Treating Knee Osteoarthritis

    PubMed Central

    Xiang, Jie; Wu, Dongying; Li, Jian’an

    2016-01-01

    ABSTRACT Objective The objective of this study was to evaluate the clinical efficacy of mudpack therapy for the treatment of knee osteoarthritis and identify the likely factors associated with the high heterogeneity of combined studies. Design The Medline, Embase, and Cochrane Library databases were systematically searched for randomized controlled trials in which mudpack therapy was used to treat knee osteoarthritis. Results Ten publications that reported the results from a total of 1010 subjects were included in this meta-analysis. Meta-analysis of improvement in joint function at the final follow-up visit suggested, given that the follow-up time was less than 4 mos, that the combined effect size of four studies was −0.30 (−0.62 to 0.02) and the difference did not reach the level of statistical significance. When the follow-up time reached 4 mos, the combined effect size was −1.10 (−2.07 to −0.14) and the difference was significant. The I2 values of the two groups were 21.4% and 93.8%. Conclusion Functional improvement of the knee joint in patients treated with mudpack therapy was not significantly different from that of control subjects at the end of the 4-mo follow-up. The quality of current publications was a factor causing heterogeneity. PMID:26203645

  8. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    PubMed Central

    2010-01-01

    Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E

  9. 10B-editing 1H-detection and 19F MRI strategies to optimize boron neutron capture therapy.

    PubMed

    Capuani, Silvia; Porcari, Paola; Fasano, Fabrizio; Campanella, Renzo; Maraviglia, Bruno

    2008-09-01

    Boron neutron capture therapy (BNCT) is a binary radiation therapy used to treat malignant brain tumours. It is based on the nuclear reaction (10B + n th --> [11B*] --> alpha + 7Li + 2.79 MeV) that occurs when 10B captures a thermal neutron to yield alpha particles and recoiling 7Li nuclei, both responsible of tumour cells destruction by short range and high ionization energy release. The clinical success of the therapy depends on the selective accumulation of the 10B carriers in the tumour and on the high thermal neutron capture cross-section of 10B. Magnetic resonance imaging (MRI) methods provide the possibility of monitoring, through 10B nuclei, the metabolic and physiological processes suitable to optimize the BNCT procedure. In this study, spatial distribution mapping of borocaptate (BSH) and 4-borono-phenylalanine (BPA), the two boron carriers used in clinical trials, has been obtained. The BSH map in excised rat brain and the 19F-BPA image in vivo rat brain, representative of BPA spatial distribution, were reported. The BSH image was obtained by means of double-resonance 10B-editing 1H-detection sequence, named M-Bend, exploiting the J-coupling interaction between 10B and 1H nuclei. Conversely, the BPA map was obtained by 19F-BPA using 19F-MRI. Both images were obtained at 7 T, in C6 glioma-bearing rat brain. Our results demonstrate the powerful of non conventional MRI techniques to optimize the BNCT procedure.

  10. 10B-editing 1H-detection and 19F MRI strategies to optimize boron neutron capture therapy.

    PubMed

    Capuani, Silvia; Porcari, Paola; Fasano, Fabrizio; Campanella, Renzo; Maraviglia, Bruno

    2008-09-01

    Boron neutron capture therapy (BNCT) is a binary radiation therapy used to treat malignant brain tumours. It is based on the nuclear reaction (10B + n th --> [11B*] --> alpha + 7Li + 2.79 MeV) that occurs when 10B captures a thermal neutron to yield alpha particles and recoiling 7Li nuclei, both responsible of tumour cells destruction by short range and high ionization energy release. The clinical success of the therapy depends on the selective accumulation of the 10B carriers in the tumour and on the high thermal neutron capture cross-section of 10B. Magnetic resonance imaging (MRI) methods provide the possibility of monitoring, through 10B nuclei, the metabolic and physiological processes suitable to optimize the BNCT procedure. In this study, spatial distribution mapping of borocaptate (BSH) and 4-borono-phenylalanine (BPA), the two boron carriers used in clinical trials, has been obtained. The BSH map in excised rat brain and the 19F-BPA image in vivo rat brain, representative of BPA spatial distribution, were reported. The BSH image was obtained by means of double-resonance 10B-editing 1H-detection sequence, named M-Bend, exploiting the J-coupling interaction between 10B and 1H nuclei. Conversely, the BPA map was obtained by 19F-BPA using 19F-MRI. Both images were obtained at 7 T, in C6 glioma-bearing rat brain. Our results demonstrate the powerful of non conventional MRI techniques to optimize the BNCT procedure. PMID:18486394

  11. Head and Neck Soft Tissue Sarcomas Treated with Radiation Therapy

    PubMed Central

    Vitzthum, Lucas K.; Brown, Lindsay C.; Rooney, Jessica W.; Foote, Robert L.

    2016-01-01

    Head and neck soft tissue sarcomas (HNSTSs) are rare and heterogeneous cancers in which radiation therapy (RT) has an important role in local tumor control (LC). The purpose of this study was to evaluate outcomes and patterns of treatment failure in patients with HNSTS treated with RT. A retrospective review was performed of adult patients with HNSTS treated with RT from January 1, 1998, to December 31, 2012. LC, locoregional control (LRC), disease-free survival (DFS), overall survival (OS), and predictors thereof were assessed. Forty-eight patients with HNSTS were evaluated. Five-year Kaplan-Meier estimates of LC, LRC, DFS, and OS were 87, 73, 63, and 83%, respectively. Angiosarcomas were found to be associated with worse LC, LRC, DFS, and OS. Patients over the age of 60 had lower rates of DFS. HNSTSs comprise a diverse group of tumors that can be managed with various treatment regimens involving RT. Angiosarcomas have higher recurrence and mortality rates. PMID:27441072

  12. Effect of boron neutron capture therapy for melanotic and amelanotic melanoma transplanted into mouse brain.

    PubMed

    Iwakura, Masaki; Kondoh, Hirofumi; Hiratsuka, Junichi; Ehara, Kazumasa; Tamaki, Norihiko; Mishima, Yutaka

    2002-02-01

    In order to develop a protocol to treat brain metastatic melanoma using our 10B-p-boronophenylalanine (BPA) boron neutron capture therapy (BNCT), we initiated the following studies (i), Comparative analyses of boron biodistribution between melanoma proliferating in the brain and skin among melanotic and amelanotic types, and (ii) Therapeutic evaluation of BPA-BNCT for brain melanoma models of both types, using survival times. Our present data have revealed that boron concentration in melanoma proliferating in the brain, the major prerequisite for successful BNCT, showed a positive correlation to melanin synthesizing activity in the same way as melanoma proliferating in skin. Further, the boron concentration ratio of melanoma to normal surrounding tissue for brain melanoma models was considerably higher than that for subcutaneous (s.c.) ones because of the existence of the blood-brain barrier (BBB). Additionally, from analyses of median and mean survival times following BNCT using low, middle, and high neutron doses, the therapeutic effect of BNCT for the amelanotic A1059 melanoma appeared at first glance to be higher than that for the highly BPA attracting and highly relative biological effect equivalent dose obtaining B15b melanoma. As the survival time was dependent on both regression and regrowth curves, and because the brain melanoma model in small animals made it difficult to evaluate these curves separately, we further examined the in vivo growth curve of both types of melanomas following implantation in s.c. tissue. The melanotic B15b melanoma was indeed found to possess much higher growth rate as compared with that of the amelanotic A1059 melanoma. The significance of boron biodistribution studies and BNCT survival curve analyses in forming an effective clinical protocol for individual human cases of melanoma brain metastasis is discussed.

  13. Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer

    SciTech Connect

    Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc.; Longhino, Juan; Perona, Marina; Calzetta, Osvaldo; Blaumann, Herman; Rebagliati, Raul Jimenez; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2007-11-15

    Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60 mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.

  14. Boron neutron capture therapy as new treatment for clear cell sarcoma: trial on different animal model.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Sudo, Tamotsu; Suzuki, Minoru; Sakurai, Yoshinori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Takeuchi, Tamotsu; Sonobe, Hiroshi; Epstein, Alan L; Fukumori, Yoshinobu; Ono, Koji; Ichikawa, Hideki

    2014-06-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS.

  15. Case numbers for a randomized clinical trial of boron neutron capture therapy for Glioblastoma multiforme.

    PubMed

    Sander, Anja; Wosniok, Werner; Gabel, Detlef

    2014-06-01

    Boron neutron capture therapy (BNCT) with Na2B12H11SH (BSH) or p-dihydroxyborylphenylalanine (BPA), and with a combination of both, was compared to radiotherapy with temozolomide, and the number of patients required to show statistically significant differences between the treatments was calculated. Whereas arms using BPA require excessive number of patients in each arm, a two-armed clinical trial with BSH and radiotherapy plus temozolomide is feasible. PMID:24373823

  16. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  17. Power Burst Facility/Boron Neutron Capture Therapy program for cancer treatment, Volume 4, No. 7

    SciTech Connect

    Ackermann, A.L.

    1990-07-01

    This report discusses the monthly progress of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNLT) program for cancer treatment. Highlights of the PBF/BNCT Program during July 1990 include progress within the areas of: Gross boron analysis in tissue, blood, and urine; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support and PBF operations.

  18. Studying infrared light therapy for treating Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2016-03-01

    Alzheimer's disease (AD) is an extensive neurodegenerative disease. It is generally believed that there are some connections between AD and amyloid protein plaques in the brain. AD is a chronic disease that usually starts slowly and gets worse over time. The typical symptoms are memory loss, language disorders, mood swings and behavioral issues. Gradual losses of somatic functions eventually lead patients to death. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. No current treatment can reverse AD's deterioration. Infrared (IR) light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research, we have verified the effect of infrared light on AD through Alzheimer's disease mouse model. This transgenic mouse model is made by co-injecting two vectors encoding mutant amyloid precursor protein (APP) and mutant presenilin-1 (PSEN1). We designed an experimental apparatus for treating mice, which primarily includes a therapeutic box and a LED array, which emits infrared light. After the treatment, we assessed the effects of infrared light by testing cognitive performance of the mice in Morris water maze. Our results show that infra-red therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  19. Treating hearing disorders with cell and gene therapy

    NASA Astrophysics Data System (ADS)

    Gillespie, Lisa N.; Richardson, Rachael T.; Nayagam, Bryony A.; Wise, Andrew K.

    2014-12-01

    Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.

  20. Neutron capture autoradiographic determination of 10B distributions and concentrations in biological samples for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Yanagie, Hironobu; Ogura, Koichi; Matsumoto, Toshio; Eriguchi, Masazumi; Kobayashi, Hisao

    1999-11-01

    It is necessary for effective boron neutron capture therapy (BNCT) to accumulate 10B atoms in the tumor cells. We prepared a cationic liposome entrapped 10B compound for the delivery system and examined the delivery capacity of 10B atoms to pancreatic cancer cell, AsPC-1, in vivo. It is required to achieve an accurate measurement of 10B distributions and concentrations in biological samples with a sensitivity in the ppm range for BNCT. We applied CR-39 (polyallyldiglycol carbonate) plastic track detectors to α-autoradiographic measurements of the 10B biodistribution in sliced whole-body samples of mice. To selectively desensitize undesirable proton tracks, we applied PEW (KOH+C 2H 5OH+H 2O) solution to the etching of CR-39 detector. The subsequent use of an alpha-track radiographic image analysis system enabled a discrimination between alpha tracks and recoiled proton tracks by the track size selection method. This enabled us to estimate quantitatively the distributions of 10B concentrations within the tissue sections by comparing with suitable standards.

  1. Carcinoma of the nasal vestibule treated with radiation therapy

    SciTech Connect

    Mendenhall, N.P.; Parsons, J.T.; Cassisi, N.J.; Million, R.R.

    1987-05-01

    Twenty-two patients with squamous carcinoma of the nasal vestibule were treated at the University of Florida Division of Radiation Therapy with curative intent. Fifteen lesions were de novo and seven recurrent after surgery. By AJCC classification, 7 lesions were Tx or T1, 2 were T2, 2 were T3, and 11 were T4. Management of the primary tumor and regional lymphatic drainage was highly individualized. Local control was achieved in 19 out of 22 lesions. The ultimate regional lymph node control rate was 22 out of 22, although two patients required radical neck dissection after development of lymph node disease in untreated regional lymphatics. Two patients have died of cancer and three of intercurrent disease. Cosmetic results are generally excellent but may be compromised by previous surgery in recurrent lesions or tumor destruction of normal tissues in advanced lesions. Complications of treatment are minimal.

  2. Treating the untreatable: a single case study of a psychopathic inpatient treated with schema therapy.

    PubMed

    Chakhssi, Farid; Kersten, Truus; de Ruiter, Corine; Bernstein, David P

    2014-09-01

    From its first conceptualization in modern psychiatry, psychopathy has been considered difficult if not impossible to treat. Schema Therapy (ST) is a psychotherapeutic approach that has shown efficacy in patients with borderline personality disorder. ST has recently been adapted for personality disordered forensic patients, including patients with high levels of psychopathy. The present case study examined the process of individual ST, combined with movement therapy and milieu therapy by the nursing staff, with a forensic inpatient with psychopathic features (Psychopathy Checklist-Revised total score = 28.4). The patient had been sentenced to a mandatory treatment order in relation to a sexual assault. We assessed change using independent assessments of psychopathic traits, cognitive schemas, and risk-related behaviors over the 4-year treatment period and a 3-year follow-up. We also assessed the quality of the working alliance. Reliable change analyses showed significant improvements in psychopathic traits, cognitive schemas, and risk-related outcomes. At 3 years posttreatment, the patient was living independently outside of the forensic institution without judicial supervision and he had not reoffended. While many questions remain about the effectiveness of psychotherapeutic treatment for psychopathic patients, our study challenges the view that they are untreatable.

  3. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  4. Pancreatic adenocarcinoma: treating a systemic disease with systemic therapy.

    PubMed

    Sohal, Davendra P S; Walsh, R Matthew; Ramanathan, Ramesh K; Khorana, Alok A

    2014-03-01

    Pancreatic adenocarcinoma, even when resectable, remains highly lethal. Although surgical outcomes have improved considerably, median overall survival after surgery and adjuvant therapy such as single-agent gemcitabine remains less than 2 years. We discuss preclinical and clinical data supporting the contention that even early-stage pancreatic cancer is a systemic disease. Autopsy series reveal that 70% to 85% of patients die of systemic recurrence, rather than local disease, after pancreatic cancer resection. Preclinical studies using genomics and mouse models reveal evidence of metastatic spread even before histopathologic evidence of a pancreatic tumor. Analogous to breast cancer, we propose that the Halstedian approach of treating pancreatic cancer as a local, surgical problem should be replaced by Fisher's alternative hypothesis of cancer as a systemic disease. Newer multiagent chemotherapy regimens have shown meaningful response rates and improvement in overall survival in the metastatic setting and, for the first time, offer investigators an opportunity to use effective systemic therapy. We emphasize that a surgery-first approach is not resonant with our current understanding of pancreatic adenocarcinoma biology and that an upfront systemic approach for even resectable pancreatic cancer warrants testing in clinical trials.

  5. Design of a boron neutron capture enhanced fast neutron therapy assembly

    SciTech Connect

    Wang, Zhonglu

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured

  6. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    SciTech Connect

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  7. Apoptosis-based therapy to treat pulmonary arterial hypertension

    PubMed Central

    Suzuki, Yuichiro J.; Ibrahim, Yasmine F.; Shults, Nataliia V.

    2016-01-01

    Pulmonary arterial hypertension (PAH) is rare, but patients who are diagnosed with this disease still suffer from a lack of satisfactory treatment strategies to prolong survival. While currently approved drugs for PAH have some benefits, these vasodilators only have limited efficacy for eliminating pulmonary vascular remodeling and reducing mortality. Thus, our laboratory has been exploring the use of aggressive drugs, which are capable of causing apoptotic cell death, to treat PAH. We have so far found that three classes of anti-tumor agents, including anthracyclines, taxanes, and proteasome inhibitors, are capable of reducing pulmonary vascular thickness in rats with PAH. These drugs kill cells in remodeled pulmonary vessels without affecting the normal, healthy pulmonary vasculature, revealing that proliferating vascular cells in PAH patients are more sensitive to drug-induced apoptosis compared to the differentiated phenotype that is physiologically important for smooth muscle contraction. Since many apoptosis-inducing drugs cause cardiotoxicity in cancer patients, and because PAH patients already have a weakened heart, we focus on finding biological mechanisms that may reverse pulmonary vascular remodeling without promoting cardiotoxicity. We found two agents, dexrazoxane and pifithrin-α, that selectively inhibit cardiac muscle apoptosis without affecting the drug-induced apoptosis of the proliferating pulmonary vascular cells. Thus, we propose that the addition of apoptosis-inducing drugs and cardioprotectants to PAH therapies may be effective in treating patients and preventing right heart failure.

  8. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    SciTech Connect

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  9. {sup 33}S for Neutron Capture Therapy: Nuclear Data for Monte Carlo Calculations

    SciTech Connect

    Porras, I.; Sabaté-Gilarte, M.; Praena, J.; Quesada, J.M.; Esquinas, P.L.

    2014-06-15

    A study of the nuclear data required for the Monte Carlo simulation of boron neutron capture therapy including the {sup 33}S isotope as an enhancer of the dose at small depths has been performed. In particular, the controversy on the available data for the {sup 33}S(n, α) cross section will be shown, which motivates new measurements. In addition to this, kerma factors for the main components of tissue are calculated with the use of fitting functions. Finally, we have applied these data to a potential neutron capture treatment with boron and sulfur addition to tissue in which part of the hydrogen atoms are replaced by deuterium, which improves the procedure.

  10. LaBr3(Ce) gamma-ray detector for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Smirnova, M.; Shmanin, E.; Galavanov, A.; Shustov, A.; Ulin, S.; Vlasik, K.; Dmitrenko, V.; Novikov, A.; Orlov, A.; Petrenko, D.; Shmurak, S.; Uteshev, Z.

    2016-02-01

    Results of developing of a gamma-ray detector based on LaBr3(Ce) scintillation crystal for neutron capture therapy are presented. An energy resolution of the detector measured by photomultiplier tube Hamamatsu R6233-100 is showed. It was 2.93% for gamma line 662 keV from a source 137Cs. For radiative capture gamma line of isotope 10B (478 keV) and annihilation line (511 keV) the values were 3.33 and 3.24% respectively. Data analysis of gamma spectra for an estimation of energy resolution threshold required for visual identification gamma lines 478 and 511 keV was made.

  11. Technical aspects of boron neutron capture therapy at the BNL Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Rorer, D.C.; Patti, F.J.; Liu, H.B.; Reciniello, R.; Chanana, A.D.

    1997-07-01

    The Brookhaven Medical Research Reactor, BMRR, is a 3 MW heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies. Early BNL work in Boron Neutron Capture Therapy (BNCT) used a beam of thermal neutrons for experimental treatment of brain tumors. Research elsewhere and at BNL indicated that higher energy neutrons would be required to treat deep seated brain tumors. Epithermal neutrons would be thermalized as they penetrated the brain and peak thermal neutron flux densities would occur at the depth of brain tumors. One of the two BMRR thermal port shutters was modified in 1988 to include plates of aluminum and aluminum oxide to provide an epithermal port. Lithium carbonate in polyethylene was added in 1991 around the bismuth port to reduce the neutron flux density coming from outside the port. To enhance the epithermal neutron flux density, the two vertical thimbles A-3 (core edge) and E-3 (in core) were replaced with fuel elements. There are now four fuel elements of 190 grams each and 28 fuel elements of 140 grams each for a total of 4.68 kg of {sup 235}U in the core. The authors have proposed replacing the epithermal shutter with a fission converter plate shutter. It is estimated that the new shutter would increase the epithermal neutron flux density by a factor of seven and the epithermal/fast neutron ratio by a factor of two. The modifications made to the BMRR in the past few years permit BNCT for brain tumors without the need to reflect scalp and bone flaps. Radiation workers are monitored via a TLD badge and a self-reading dosimeter during each experiment. An early concern was raised about whether workers would be subject to a significant dose rate from working with patients who have been irradiated. The gamma ray doses for the representative key personnel involved in the care of the first 12 patients receiving BNCT are listed. These workers did not receive unusually high exposures.

  12. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST).

    PubMed

    Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru

    2015-12-01

    Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT.

  13. Boron neutron capture therapy for glioblastoma: improvement of boron biodistribution by hyaluronidase.

    PubMed

    Haselsberger, K; Radner, H; Pendl, G

    1998-09-11

    Boron neutron capture therapy (BNCT) represents a highly promising therapeutic alternative for the treatment of the most common malignant brain tumor, glioblastoma multiforme. Both the efficacy and safety of BNCT are greatly dependent on the pattern of 10B biodistribution. The present study investigates the influence of systemic hyaluronidase applied in combination with Na2B12H11SH (BSH), a boron carrier used in current clinical trials. The application of hyaluronidase was associated with a statistically significant improvement in the tumor/blood boron concentration ratio which suggests that hyaluronidase is capable of enhancing the therapeutic potential of BSH.

  14. Drug delivery system design and development for boron neutron capture therapy on cancer treatment.

    PubMed

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-06-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,l-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. PMID:24447933

  15. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key

    2014-02-24

    Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.

  16. Feasibility study on pinhole camera system for online dosimetry in boron neutron capture therapy.

    PubMed

    Katabuchi, Tatsuya; Hales, Brian; Hayashizaki, Noriyosu; Igashira, Masayuki; Khan, Zareen; Kobayashi, Tooru; Matsuhashi, Taihei; Miyazaki, Koichi; Ogawa, Koichi; Terada, Kazushi

    2014-06-01

    The feasibility of a pinhole camera system for online dosimetry in boron neutron capture therapy (BNCT) was studied. A prototype system was designed and built. Prompt γ-rays from the (10)B(n,α)(7)Li reaction from a phantom irradiated with neutrons were detected with the prototype system. An image was reconstructed from the experimental data. The reconstructed image showed a good separation of the two borated regions in the phantom. The counting rates and signal-to-noise ratio when using the system in actual BNCT applications are also discussed.

  17. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  18. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  19. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.

    PubMed

    Zamenhof, R G; Clement, S D; Harling, O K; Brenner, J F; Wazer, D E; Madoc-Jones, H; Yanch, J C

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces (with RBE weighting) a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction. With parallel-opposed lateral irradiation, the planar advantage depth contour for this beam

  20. A rationale for treating leg length discrepancy using photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Johnson, Crystal; Diab, Mohammed; Wilson, Brian C.; Burch, Shane

    2005-09-01

    This study investigates the use of photodynamic therapy (PDT) in regulating bone development with a view to its potential role in treating Juvenile leg length discrepancy (LLD). Transgenic mice expressing the luciferase firefly gene upon activation of a promoter sequence specific to the vascular endothelial growth factor (VEGF) gene were subject to benzoporphyrin derivative monoacid (BPD-MA)-mediated PDT in the right, tibial epiphyseal growth plate at the age of 3 weeks. BPD-MA was administered intracardially (2mg/kg) followed 10 mins later by a laser light (690 +/- 5 nm) at a range of doses (5-27J, 50 mW output) delivered either as a single or repeat regimen (x2-3). Contra-lateral legs served as no-light controls. Further controls included animals that received light treatment in the absence of photosensitizer or no treatment. Mice were imaged for VEGF related bioluminescence (photons/sec/steradian) at t= 0, 24, 48, 72 h and 1-4 weeks post PDT. FaxitronTM x-ray images provided accurate assessment of bone morphometry. Upon sacrifice, the tibia and femur of the treated and untreated limbs were harvested, imaged and measured again and prepared for histology. A number of animals were sacrificed at 24 h post PDT to allow immunohistochemical staining for CD31, VEGF and hypoxia-inducible factor (HIF-1 alpha) within the bone. PDT-treated (10 J, x2) mice displayed enhanced bioluminescence at the treatment site (and ear nick) for up to 4 weeks post treatment while control mice were bioluminescent at the ear-nick site only. Repeat regimens provided greater shortening of the limb than the corresponding single treatment. PDT-treated limbs were shorter by 3-4 mm on average as compared to the contra lateral and light only controls (10 J, x2). Immunohistochemistry confirmed the enhanced expression VEGF and CD31 at 4 weeks post-treatment although no increase in HIF-1α was evident at either 24 h or 4 weeks post PDT treatment. Results confirm the utility of PDT to provide localized

  1. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  2. Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor

    SciTech Connect

    Zamenhof, R.G.; Nwanguma, C.I.; Wazer, D.E.; Saris, S.; Madoc-Jones, H. ); Sledge, C.B.; Shortkroff, S. )

    1992-04-01

    In this paper, current research in boron neutron capture therapy (BNCT) and radiation synovectomy at the Massachusetts Institute of Technology Research Reactor is reviewed. In the last few years, major emphasis has been placed on the development of BNCT primarily for treatment of brain tumors. This has required a concerted effort in epithermal beam design and construction as well as the development of analytical capabilities for {sup 10}B analysis and patient treatment planning. Prompt gamma analysis and high-resolution track-etch autoradiography have been developed to meet the needs, respectively, for accurate bulk analysis and for quantitative imaging of {sup 10}B in tissue at subcellular resolutions. Monte Carlo-based treatment planning codes have been developed to ensure optimized and individualized patient treatments. In addition, the development of radiation synovectomy as an alternative therapy to surgical intervention is joints that are affected by rheumatoid arthritis is described.

  3. a New Method for Neutron Capture Therapy (nct) and Related Simulation by MCNP4C Code

    NASA Astrophysics Data System (ADS)

    Shirazi, Mousavi; Alireza, Seyed; Ali, Taheri

    2010-01-01

    Neutron capture therapy (NCT) is enumerated as one of the most important methods for treatment of some strong maladies among cancers in medical science thus is unavoidable controlling and protecting instances in use of this science. Among of treatment instances of this maladies with use of nuclear medical science is use of neutron therapy that is one of the most important and effective methods in treatment of cancers. But whereas fast neutrons have too destroyer effects and also sake of protection against additional absorbed energy (absorbed dose) by tissue during neutron therapy and also naught damaging to rest of healthy tissues, should be measured absorbed energy by tissue accurately, because destroyer effects of fast neutrons is almost quintuple more than gamma photons. In this article for neutron therapy act of male's liver has been simulated a system by the Monte Carlo method (MCNP4C code) and also with use of analytical method, thus absorbed dose by this tissue has been obtained for sources with different energies accurately and has been compared results of this two methods together.

  4. Homogeneous immunoconjugates for boron neutron-capture therapy: design, synthesis, and preliminary characterization.

    PubMed

    Guan, L; Wims, L A; Kane, R R; Smuckler, M B; Morrison, S L; Hawthorne, M F

    1998-10-27

    The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 10(3) boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here.

  5. Homogeneous immunoconjugates for boron neutron-capture therapy: Design, synthesis, and preliminary characterization

    PubMed Central

    Guan, Lufeng; Wims, Letitia A.; Kane, Robert R.; Smuckler, Mark B.; Morrison, Sherie L.; Hawthorne, M. Frederick

    1998-01-01

    The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 103 boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here. PMID:9789066

  6. Deformity incidence in leprosy patients treated with multidrug therapy.

    PubMed

    Rao, P S; Subramanian, M; Subramanian, G

    1994-01-01

    The records of 2,285 (2,007 paucibacillary (PB) and 278 multibacillary (MB)) cases of leprosy which were declared as released from treatment (RFT) after multidrug therapy (MDT) and under surveillance as per the National Leprosy Eradication Programme (NLEP) guidelines in the rural field practice area of Central Leprosy Teaching & Research Institute (CLTRI), Chengalpattu, between September 1986 and September 1993 were analyzed for collecting data on the incidence of deformity. Of the 2,285 cases 2,053 (1,947 PB and 106 MB) did not have deformity at the commencement of treatment. Three MB cases and one PB case out of the 2,053 developed deformity (all grade II) during the course of treatment. No patient developed deformity during surveillance. Thus the deformity incidence in the population of patients was 0.681 per 1000 person-years of observation. Age, sex, type of disease, prior dapsone monotherapy and nerve involvement at the commencement of treatment appear to influence the deformity incidence. The risk of development of deformity in patients treated with MDT appear to be very low and analysis of larger data sets is suggested to corroborate the above findings as the information would be useful for planning prevention and management of deformity services. PMID:7714354

  7. Carcinoma of the cervical esophagus treated with radiation therapy

    SciTech Connect

    Mendenhall, W.M.; Parsons, J.T.; Vogel, S.B.; Cassisi, N.J.; Million, R.R.

    1988-07-01

    This is an analysis of 34 patients with carcinoma of the cervical esophagus treated with radiation therapy with curative intent at the University of Florida between September 1966 and May 1985. All patients have a minimum 2-year follow-up and 28 (82%) have at least 5 years of follow-up. Patients were staged according to the recommendations of the AJCC. Patients who died within 2 years of treatment with the primary site continuously disease-free were excluded from the local control analysis; all patients were included in the analysis of complications and survival. Irradiation resulted in control of the primary lesion in 1 of 2 patients who presented with T1 lesions, in 4 of the 12 patients with T2 lesions, and 3 of 17 patients who presented with T3 lesions. One patient with a T3 lesion that recurred locally was successfully salvaged by an operation. The 5-year absolute survival rates by stage were as follows: no patients with stage I lesions survived; of 11 stage II patients, one survived; and of 16 stage III patients, three survived. Interestingly, all four of the 5-year survivors were women.

  8. A Framework for Treating Cumulative Trauma with Art Therapy

    ERIC Educational Resources Information Center

    Naff, Kristina

    2014-01-01

    Cumulative trauma is relatively undocumented in art therapy practice, although there is growing evidence that art therapy provides distinct benefits for resolving various traumas. This qualitative study proposes an art therapy treatment framework for cumulative trauma derived from semi-structured interviews with three art therapists and artistic…

  9. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  10. Fission reactor neutron sources for neutron capture therapy--a critical review.

    PubMed

    Harling, Otto K; Riley, Kent J

    2003-01-01

    The status of fission reactor-based neutron beams for neutron capture therapy (NCT) is reviewed critically. Epithermal neutron beams, which are favored for treatment of deep-seated tumors, have been constructed or are under construction at a number of reactors worldwide. Some of the most recently constructed epithermal neutron beams approach the theoretical optimum for beam purity. Of these higher quality beams, at least one is suitable for use in high through-put routine therapy. It is concluded that reactor-based epithermal neutron beams with near optimum characteristics are currently available and more can be constructed at existing reactors. Suitable reactors include relatively low power reactors using the core directly as a source of neutrons or a fission converter if core neutrons are difficult to access. Thermal neutron beams for NCT studies with small animals or for shallow tumor treatments, with near optimum properties have been available at reactors for many years. Additional high quality thermal beams can also be constructed at existing reactors or at new, small reactors. Furthermore, it should be possible to design and construct new low power reactors specifically for NCT, which meet all requirements for routine therapy and which are based on proven and highly safe reactor technology.

  11. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  12. Using Acceptance and Commitment Therapy to Treat Distressed Couples: A Case Study With Two Couples

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Eifert, Georg H.; Feingold, Tal; Davidson, Sarah

    2009-01-01

    Although the field of couple therapy has made significant strides in recent years, there continues to be a need for theoretically sound and empirically supported treatments. The current case study examines whether Acceptance and Commitment Therapy (ACT), an experiential acceptance-based behavior therapy, can be effective in treating distressed…

  13. Long-term follow-up of cancer patients treated with gene therapy medicinal products.

    PubMed

    Galli, Maria Cristina

    2012-06-01

    European Union requirements are discussed for the long-term follow-up of advanced therapy medicinal products, as well as how they can be applied to cancer patients treated with gene therapy medicinal products in the context of clinical trials, as described in a specific guideline issued by Gene Therapy Working Party at the European Medicine Agency.

  14. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  15. New concepts for compact accelerator/target for Boron Neutron Capture Therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-12-31

    Two new target concepts, NIFTI and DISCOS, that enable a large reduction in the proton beam current needed to produce epithermal neutrons for BNCT (Boron Neutron Capture Therapy) are described. In the NIFTI concept, high energy neutrons produced by (p, n) reactions of 2.5 MeV protons on Li are down scattered to treatment energies ({approximately} 20 keV) by relatively thin layers of PbF{sub 2} and iron. In the DISCOS concept, treatment energy neutrons are produced directly in a succession of thin ({approximately} 1 micron) liquid Li films on rotating Be foils. These foils interact with a proton beam that operates just above threshold for the (p, n) reaction, with an applied DC field to re-accelerate the proton beam between the target foils.

  16. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  17. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    SciTech Connect

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay; Kumar, Manjeet; Thakur, Anup

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  18. Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

    SciTech Connect

    Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S. ); Packer, S. . Div. of Ophthalmology)

    1990-01-01

    During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of {sup 10}B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab.

  19. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm.

  20. Accelerator based epithermal neutron source for neutron capture therapy. Annual report, [October 1990--April 1991

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  1. Hybrid data capture for monitoring patients on highly active antiretroviral therapy (HAART) in urban Botswana.

    PubMed Central

    Bussmann, Hermann; Wester, C. William; Ndwapi, Ndwapi; Vanderwarker, Chris; Gaolathe, Tendani; Tirelo, Geoffrey; Avalos, Ava; Moffat, Howard; Marlink, Richard G.

    2006-01-01

    Individual patient care and programme evaluation are pivotal for the success of antiretroviral treatment programmes in resource-limited countries. While computer-aided documentation and data storage are indispensable for any large programme, several important issues need to be addressed including which data are to be collected, who collects it and how it is entered into an electronic database. We describe a patient-monitoring approach, which uses patient encounter forms (in hybrid paper + electronic format) based on optical character recognition, piloted at Princess Marina Hospital in Gaborone, Botswana's first public highly active antiretroviral therapy (HAART) outpatient clinic. Our novel data capture approach collects "key" data for tracking patient and programme outcomes. It saves physician time and does not detract from clinical care. PMID:16501730

  2. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    SciTech Connect

    Wang, C.K.C.; Sutton, M.; Evans, T.M.; Laster, B.H.

    1996-12-31

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions is very effective in cell killing. The death of a cell treated with GD-BOPP were attributed to either the {sup 10}B(n,{alpha}) {sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and the cell survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in Gadolinium neutron capture therapy (GDNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.

  3. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    SciTech Connect

    Wang, C.K.C.; Sutton, M.; Evans, T.M.; Laster, B.H.

    1999-01-01

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell-survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions are very effective in cell killing. The death of a cell treated with Gd-BOPP was attributed to either the {sup 10}B(n,{alpha}){sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and the cell-survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in gadolinium neutron capture therapy (GdNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.

  4. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases.

  5. Neutron-induced gamma dose from a reactor beam filter for boron neutron capture therapy.

    PubMed

    Harrington, B V

    1989-01-01

    For the boron neutron capture therapy (NCT) of deep-seated metastatic melanoma, an epithermal (up to a few keV energy) neutron beam from a reactor horizontal facility could be useful if the inherent contamination from fast neutrons and gamma rays could be minimised. Calculations for ANSTO's 10 MW research reactor HIFAR have shown that, even though a filter material such as AlF3 attenuates the fast neutron dose, the beam quality improvement is counteracted by a relative increase in the gamma dose because of the gammas arising from neutron captures in the filter material, particularly the aluminium. The aluminium gammas, most of which arise from thermal neutron capture, are hard and cannot be attenuated by lead or bismuth without comparable attenuation of the epithermal neutron flux. Addition of an absorber such as 6Li to the AlF3 filter was investigated as a means of reducing the hard gamma dose, but the improvement in beam quality was small and at considerable cost to dose intensity. Dose characteristics calculations confirmed the superiority of a tangential beam over a radial beam with better results from an unfiltered tangential beam than from an AlF3 filter in a radial beam. This study showed conclusively that assessments of filter assemblies based on the effect of individual components on either the neutron or gamma dose in isolation are inadequate. In assessing any epithermal neutron filter, thermal neutron shield, and gamma shield combination, the total effect of each on the neutron, gamma, and boron-10 dose must be considered.

  6. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy.

    PubMed

    Oyewumi, Moses O; Mumper, Russell J

    2002-01-01

    Microemulsions (oil-in-water) have been employed as templates to engineer nanoparticles containing high concentrations of gadolinium for potential application in neutron capture therapy of tumors. Gadolinium hexanedione (GdH), synthesized by complexation of Gd(3+) with 2,4-hexanedione, was used as the nanoparticle matrix alone or in combination with either emulsifying wax or PEG-400 monostearate. Solid nanoparticles (<125 nm size) were obtained by simple cooling of the microemulsions prepared at 60 degrees C to room temperature in one vessel. The feasibility of tumor targeting via folate receptors was studied. A folate ligand was synthesized by chemically linking folic acid to distearoylphosphatidylethanolamine (DSPE) via a poly(ethylene glycol) (PEG; MW 3350) spacer. To obtain folate-coated nanoparticles, the folate ligand (0.75% w/w to 15% w/w) was added to either the microemulsion templates at 60 degrees C or nanoparticle suspensions at 25 degrees C. Efficiencies of folate ligand attachment/adsorption to nanoparticle formulations were monitored by gel permeation chromatography. Cell uptake studies were carried out in KB cells (human nasopharyngeal epidermal carcinoma cell line), known to overexpress folate receptors. The uptake of folate-coated nanoparticles was about 10-fold higher than uncoated nanoparticles after 30 min at 37 degrees C. The uptake of folate-coated nanoparticles at 4 degrees C was 20-fold lower than the uptake at 37 degrees C and comparable to the uptake of uncoated nanoparticles at 37 degrees C. Folate-mediated endocytosis was further verified by the inhibition of folate-coated nanoparticles uptake by free folic acid. It was observed that folate-coated nanoparticles uptake decreased to approximately 2% of its initial value with the coincubation of 0.001 mM of free folic acid. The results suggested that these tumor-targeted nanoparticles containing high concentrations of Gd may have potential for neutron capture therapy. PMID:12440870

  7. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy.

    PubMed

    Oyewumi, Moses O; Mumper, Russell J

    2002-01-01

    Microemulsions (oil-in-water) have been employed as templates to engineer nanoparticles containing high concentrations of gadolinium for potential application in neutron capture therapy of tumors. Gadolinium hexanedione (GdH), synthesized by complexation of Gd(3+) with 2,4-hexanedione, was used as the nanoparticle matrix alone or in combination with either emulsifying wax or PEG-400 monostearate. Solid nanoparticles (<125 nm size) were obtained by simple cooling of the microemulsions prepared at 60 degrees C to room temperature in one vessel. The feasibility of tumor targeting via folate receptors was studied. A folate ligand was synthesized by chemically linking folic acid to distearoylphosphatidylethanolamine (DSPE) via a poly(ethylene glycol) (PEG; MW 3350) spacer. To obtain folate-coated nanoparticles, the folate ligand (0.75% w/w to 15% w/w) was added to either the microemulsion templates at 60 degrees C or nanoparticle suspensions at 25 degrees C. Efficiencies of folate ligand attachment/adsorption to nanoparticle formulations were monitored by gel permeation chromatography. Cell uptake studies were carried out in KB cells (human nasopharyngeal epidermal carcinoma cell line), known to overexpress folate receptors. The uptake of folate-coated nanoparticles was about 10-fold higher than uncoated nanoparticles after 30 min at 37 degrees C. The uptake of folate-coated nanoparticles at 4 degrees C was 20-fold lower than the uptake at 37 degrees C and comparable to the uptake of uncoated nanoparticles at 37 degrees C. Folate-mediated endocytosis was further verified by the inhibition of folate-coated nanoparticles uptake by free folic acid. It was observed that folate-coated nanoparticles uptake decreased to approximately 2% of its initial value with the coincubation of 0.001 mM of free folic acid. The results suggested that these tumor-targeted nanoparticles containing high concentrations of Gd may have potential for neutron capture therapy.

  8. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams.

    PubMed

    Riley, K J; Binns, P J; Ali, S J; Harling, O K

    2004-05-21

    A patient collimator for the fission converter based epithermal neutron beam (FCB) at the Massachusetts Institute of Technology Research Reactor (MITR-II) was built for clinical trials of boron neutron capture therapy (BNCT). A design was optimized by Monte Carlo simulations of the entire beam line and incorporates a modular construction for easy modifications in the future. The device was formed in-house by casting a mixture of lead spheres (7.6 mm diameter) in epoxy resin loaded with either 140 mg cm(-3) of boron carbide or 210 mg cm(-3) of lithium fluoride (95% enriched in 6Li). The cone shaped collimator allows easy field placement anywhere on the patient and is equipped with a laser indicator of central axis, beam's eye view optics and circular apertures of 80, 100, 120 and 160 mm diameter. Beam profiles and the collateral dose in a half-body phantom were measured for the 160 mm field using fission counters, activation foils as well as tissue equivalent (A-150) and graphite walled ionization chambers. Leakage radiation through the collimator contributes less than 10% to the total collateral dose up to 0.15 m beyond the edge of the aperture and becomes relatively more prominent with lateral displacement. The measured whole body dose equivalent of 24 +/- 2 mSv per Gy of therapeutic dose is comparable to doses received during conventional therapy and is due principally (60-80%) to thermal neutron capture reactions with boron. These findings, together with the dose distributions for the primary beam, demonstrate the suitability of this patient collimator for BNCT.

  9. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT. PMID:27548011

  10. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT.

  11. Boron neutron capture therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines.

    PubMed

    Trivillin, Verónica A; Heber, Elisa M; Rao, Monica; Cantarelli, María A; Itoiz, Maria E; Nigg, David W; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E

    2008-02-01

    Recently, Boron neutron capture therapy (BNCT) was successfully applied to treat experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa, with no damage to normal tissue. It was also shown that treating spontaneous nasal planum SCC in terminal feline patients with low dose BNCT is safe and feasible. In an extension of this work, the present study aimed at evaluation of the response of tumor and dose-limiting normal tissues to potentially therapeutic BNCT doses. Biodistribution studies with (10)B-boronophenylalanine (BPA enriched in (10)B) as a (10)B carrier were performed on three felines that showed advanced nasal planum SCC without any standard therapeutic option. Following the biodistribution studies, BNCT mediated by (10)BPA was done using the thermalized epithermal neutron beam at the RA-6 Nuclear Reactor. Follow-up included clinical evaluation, assessment of macroscopic tumor and normal tissue response and biopsies for histopathological analysis. The treated animals did not show any apparent radiation-induced toxicity. All three animals exhibited partial tumor control and an improvement in clinical condition. Enhanced therapeutic efficacy was associated with a high (10)B content of the tumor and a small tumor size. BNCT is therefore believed to be potentially effective in the treatment of spontaneous SCC. However, improvement in targeting (10)B into all tumor cells and delivering a sufficient dose at a greater depth are still required for the treatment of deep-seated, large tumors. Future studies are needed to evaluate the potential efficacy of the dual mode cellular (e.g. BPA-BNCT) and vascular (e.g. GB-10-BNCT) targeting protocol in a preclinical scenario, employing combinations of (10)B compounds with different properties and complementary uptake mechanisms. PMID:17955256

  12. Using Music Therapy Techniques To Treat Teacher Burnout.

    ERIC Educational Resources Information Center

    Cheek, James R.; Bradley, Loretta J.; Parr, Gerald; Lan, William

    2003-01-01

    This study was conducted to determine the effectiveness of music therapy techniques as an intervention for teacher burnout. Results of the study indicated that teachers who participated in school-based counseling groups, using music therapy techniques in conjunction with cognitive behavioral interventions, reported lower levels of burnout symptoms…

  13. Exercise in Treating Hypertension: Tailoring Therapies for Active Patients.

    ERIC Educational Resources Information Center

    Chintanadilok, Jirayos

    2002-01-01

    Exercise can be definitive therapy for some, and adjunctive therapy for many, people with hypertension, though people with secondary hypertension may not derive as much benefit. Low-to- moderate-intensity aerobic exercise can help with mild hypertension and reduce drug dosages in more severe cases. For active patients requiring medication,…

  14. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  15. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy.

    PubMed

    Le, Uyen M; Cui, Zhengrong

    2006-04-01

    Gadolinium neutron capture therapy (Gd-NCT) is a promising cancer therapy modality. One of the key factors for a successful Gd-NCT is to deliver and maintain a sufficient amount of Gd in tumor tissues during neutron irradiation. We proposed to prepare a Gd delivery system by complexing a Gd-containing compound, diethylenetriaminepentaacetic acid (Gd-DTPA), with a polycationic peptide, poly-L-lysine (pLL), and then encapsulate the complexed Gd-DTPA into PEGylated liposomes. Complexation of Gd-DTPA with pLL not only enhanced the encapsulation efficiency of Gd-DTPA in liposomes, but also significantly limited the release of Gd-DTPA from the liposomes. A Gd-DTPA-encapsulated liposome formulation that contained 6.8+/-0.3 mg/mL of pure encapsulated Gd was prepared. The blood half-life of the Gd encapsulated into the liposome formulation was estimated to be about 24 h in healthy tumor-free mice. About 12 h after the Gd-encapsulated liposomes were intravenously injected into mice with pre-established model tumors, the Gd content in the tumors reached an average of 159 microg/g of wet tumor tissue. This Gd-DTPA encapsulated liposome may be used to deliver Gd into solid tumors for NCT and tumor imaging. PMID:16457973

  16. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  17. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma.

    PubMed

    Hsu, C F; Lin, S Y; Peir, J J; Liao, J W; Lin, Y C; Chou, F I

    2011-12-01

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg (10)B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg (10)B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  18. Design of a californium-based epithermal neutron beam for neutron capture therapy.

    PubMed

    Yanch, J C; Kim, J K; Wilson, M J

    1993-08-01

    The potential of the spontaneously fissioning isotope, 252Cf, to provide epithermal neutrons for use in boron neutron capture therapy (BNCT) has been investigated using Monte Carlo simulation. The Monte Carlo code MCNP was used to design an assembly composed of a 26 cm long, 11 cm radius cylindrical D2O moderator followed by a 64 cm long Al filter. Lithium filters are placed between the moderator and the filter and between the Al and the patient. A reflector surrounding the moderator/filter assembly is required in order to maintain adequate therapy flux at the patient position. An ellipsoidal phantom composed of skull- and brain-equivalent material was used to determine the dosimetric effect of this beam. It was found that both advantage depths and advantage ratios compare very favourably with reactor and accelerator epithermal neutron sources. The dose rate obtainable, on the other hand, is 4.1 RBE cGy min-1, based on a very large (1.0 g) source of 252Cf. This dose rate is two to five times lower than those provided by existing reactor beams and can be viewed as a drawback of using 252Cf as a neutron source. Radioisotope sources, however, do offer the advantage of in-hospital installation.

  19. Unorthodox Alternative Therapies Marketed to Treat Lyme Disease

    PubMed Central

    Lantos, Paul M.; Shapiro, Eugene D.; Auwaerter, Paul G.; Baker, Phillip J.; Halperin, John J.; McSweegan, Edward; Wormser, Gary P.

    2015-01-01

    Background. Some patients with medically unexplained symptoms or alternative medical diagnoses suspect that they chronically suffer from the tick-borne infection Lyme disease. These patients are commonly targeted by providers of alternative therapies. This study was designed to identify and characterize the range of unorthodox alternative therapies advertised to patients with a diagnosis of Lyme disease. Methods. Internet searches using the Google search engine were performed to identify the websites of clinics and services that marketed nonantimicrobial therapies for Lyme disease. We subsequently used the PubMed search engine to identify any scientific studies evaluating such treatments for Lyme disease. Websites were included in our review so long as they advertised a commercial, nonantimicrobial product or service that specifically mentioned utility for Lyme disease. Websites with patient testimonials (such as discussion groups) were excluded unless the testimonial appeared as marketing on a commercial site. Results. More than 30 alternative treatments were identified, which fell into several broad categories: these included oxygen and reactive oxygen therapy; energy and radiation-based therapies; nutritional therapy; chelation and heavy metal therapy; and biological and pharmacological therapies ranging from certain medications without recognized therapeutic effects on Borrelia burgdorgeri to stem cell transplantation. Review of the medical literature did not substantiate efficacy or, in most cases, any rationale for the advertised treatments. Conclusions. Providers of alternative therapies commonly target patients who believe they have Lyme disease. The efficacy of these unconventional treatments for Lyme disease is not supported by scientific evidence, and in many cases they are potentially harmful. PMID:25852124

  20. Combination Therapy Shows Promise for Treating Advanced Breast Cancer

    Cancer.gov

    Adding the drug everolimus (Afinitor®) to exemestane helped postmenopausal women whose advanced breast cancer had stopped responding to hormonal therapy live about 4 months longer without the disease progressing than women who received exemestane alone.

  1. Synthesis, characterization and biological evaluation of carboranylmethylbenzo[b]acridones as novel agents for boron neutron capture therapy.

    PubMed

    da Silva, A Filipa F; Seixas, Raquel S G R; Silva, Artur M S; Coimbra, Joana; Fernandes, Ana C; Santos, Joana P; Matos, António; Rino, José; Santos, Isabel; Marques, Fernanda

    2014-07-28

    Herein we present the synthesis and characterization of benzo[b]acridin-12(7H)-ones bearing carboranyl moieties and test their biological effectiveness as boron neutron capture therapy (BNCT) agents in cancer treatment. The cellular uptake of these novel compounds into the U87 human glioblastoma cells was evaluated by boron analysis (ICP-MS) and by fluorescence imaging (confocal microscopy). The compounds enter the U87 cells exhibiting a similar profile, i.e., preferential accumulation in the cytoskeleton and membranes and a low cytotoxic activity (IC50 values higher than 200 μM). The cytotoxic activity and cellular morphological alterations after neutron irradiation in the Portuguese Research Reactor (6.6 × 10(7) neutrons cm(-2) s(-1), 1 MW) were evaluated by the MTT assay and by electron microscopy (TEM). Post-neutron irradiation revealed that BNCT has a higher cytotoxic effect on the cells. Accumulation of membranous whorls in the cytoplasm of cells treated with one of the compounds correlates well with the cytotoxic effect induced by radiation. Results provide a strong rationale for considering one of these compounds as a lead candidate for a new generation of BNCT agents.

  2. Polyvinylidene fluoride/silane-treated hydroxyapatite mixed matrix membrane for enzyme capturing.

    PubMed

    Sun, Junfen; Cao, Zhenzhen; Wu, Lishun

    2015-02-01

    The silane coupling agent, N-(β-aminoethyl)-γ-aminopropyltrimethoxy silane (KH792), was employed to modify the surfaces of nano-hydroxyapatite (HAP) particles. The mixed matrix membranes (MMMs) were prepared by embedding pure HAP and HAP modified with KH792 (KH792-HAP) inside polyvinylidene fluoride (PVDF) matrix respectively. The MMMs were further characterized concerning permeability and adsorption capacity. Langmuir adsorption isotherm provides better fit for HAP and KH792-HAP than Freundlich isotherm. KH792-HAP has better distribution in the polymeric matrix compared to HAP in the polymeric matrix. The MMMs showed purification of enzyme via static adsorption and dynamic adsorption, and showed the potential of using MMMs for enzyme capturing in enzyme purification techniques. The lysozyme (LZ) was used as a model enzyme. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, LZ adsorption and scanning electron microscopy (SEM). PMID:25575349

  3. Polyvinylidene fluoride/silane-treated hydroxyapatite mixed matrix membrane for enzyme capturing.

    PubMed

    Sun, Junfen; Cao, Zhenzhen; Wu, Lishun

    2015-02-01

    The silane coupling agent, N-(β-aminoethyl)-γ-aminopropyltrimethoxy silane (KH792), was employed to modify the surfaces of nano-hydroxyapatite (HAP) particles. The mixed matrix membranes (MMMs) were prepared by embedding pure HAP and HAP modified with KH792 (KH792-HAP) inside polyvinylidene fluoride (PVDF) matrix respectively. The MMMs were further characterized concerning permeability and adsorption capacity. Langmuir adsorption isotherm provides better fit for HAP and KH792-HAP than Freundlich isotherm. KH792-HAP has better distribution in the polymeric matrix compared to HAP in the polymeric matrix. The MMMs showed purification of enzyme via static adsorption and dynamic adsorption, and showed the potential of using MMMs for enzyme capturing in enzyme purification techniques. The lysozyme (LZ) was used as a model enzyme. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, LZ adsorption and scanning electron microscopy (SEM).

  4. The role of metabolic therapy in treating glioblastoma multiforme

    PubMed Central

    Maroon, Joseph C.; Seyfried, Thomas N.; Donohue, Joseph P.; Bost, Jeffrey

    2015-01-01

    Glioblastoma multiforme (GBM) is an aggressive and nearly uniformly fatal malignancy of the central nervous system. Despite extensive research and clinical trials over the past 50 years, very little progress has been made to significantly alter its lethal prognosis. The current standard of care (SOC) includes maximal surgical resection, radiation therapy and chemotherapy and temozolomide (TMZ), including the selective use of glucocorticoids for symptom control. These same treatments, however, have the potential to create an environment that may actually facilitate tumor growth and survival. Research investigating the unique metabolic needs of tumor cells has led to the proposal of a new metabolic treatment for various cancers including GBMs that may enhance the effectiveness of the SOC. The goal of metabolic cancer therapy is to restrict GBM cells of glucose, their main energy substrate. By recognizing the underlying energy production requirements of cancer cells, newly proposed metabolic therapy is being used as an adjunct to standard GBM therapies. This review will discuss the calorie restricted ketogenic diet (CR-KD) as a promising potential adjunctive metabolic therapy for patients with GBMs. The effectiveness of the CR-KD is based on the “Warburg Effect” of cancer metabolism and the microenvironment of GBM tumors. We will review recent case reports, clinical studies, review articles, and animal model research using the CR-KD and explain the principles of the Warburg Effect as it relates to CR-KD and GBMs. PMID:25949849

  5. The role of metabolic therapy in treating glioblastoma multiforme.

    PubMed

    Maroon, Joseph C; Seyfried, Thomas N; Donohue, Joseph P; Bost, Jeffrey

    2015-01-01

    Glioblastoma multiforme (GBM) is an aggressive and nearly uniformly fatal malignancy of the central nervous system. Despite extensive research and clinical trials over the past 50 years, very little progress has been made to significantly alter its lethal prognosis. The current standard of care (SOC) includes maximal surgical resection, radiation therapy and chemotherapy and temozolomide (TMZ), including the selective use of glucocorticoids for symptom control. These same treatments, however, have the potential to create an environment that may actually facilitate tumor growth and survival. Research investigating the unique metabolic needs of tumor cells has led to the proposal of a new metabolic treatment for various cancers including GBMs that may enhance the effectiveness of the SOC. The goal of metabolic cancer therapy is to restrict GBM cells of glucose, their main energy substrate. By recognizing the underlying energy production requirements of cancer cells, newly proposed metabolic therapy is being used as an adjunct to standard GBM therapies. This review will discuss the calorie restricted ketogenic diet (CR-KD) as a promising potential adjunctive metabolic therapy for patients with GBMs. The effectiveness of the CR-KD is based on the "Warburg Effect" of cancer metabolism and the microenvironment of GBM tumors. We will review recent case reports, clinical studies, review articles, and animal model research using the CR-KD and explain the principles of the Warburg Effect as it relates to CR-KD and GBMs. PMID:25949849

  6. A review of maggot debridement therapy to treat chronic wounds.

    PubMed

    Hall, Sarah

    This literature review aims to clarify whether using maggot debridement therapy (MDT) for the removal of devitalized and infected tissue in chronic wounds is a valuable tool for healing. To undertake a literature review, the British Nursing Index, Ovid-Medline and the CINAHL databases were searched from January 1960 to June 2010 using the following terms: maggot debridement therapy, chronic wounds, granulation, infection, and cost-effective. The evidence suggests that MDT is more effective than other methods of debridement for wound bed preparation, although it has not been proven to eliminate problems associated with recurrent infections. This therapy has also not been proven to accelerate the healing process; however, more research needs to be undertaken into this and the cost-effectiveness of treatment.

  7. Treating Inhibited Sexual Desire: A Marital Therapy Approach.

    ERIC Educational Resources Information Center

    Fish, Linda Stone; And Others

    1984-01-01

    Defines inhibited sexual desire (ISD) as a relational phenomenon best treated in the marital context. Discusses ISD as it relates to the central marital issues of power, intimacy, and boundaries. (JAC)

  8. Gene therapy: a promising approach to treating spinal muscular atrophy.

    PubMed

    Mulcahy, Pádraig J; Iremonger, Kayleigh; Karyka, Evangelia; Herranz-Martín, Saúl; Shum, Ka-To; Tam, Janice Kal Van; Azzouz, Mimoun

    2014-07-01

    Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations. PMID:24845847

  9. Treating cancer with infection: a review on bacterial cancer therapy.

    PubMed

    Wong, S; Slavcev, R A

    2015-08-01

    There is an increasing need for new cancer therapies. The antitumour effect of bacterial infection has been well observed and practiced throughout history. Bacteria are well-suited to serve as anticancer agents due to their intrinsic mobility, cell toxicity, immunogenicity, and preferential accumulation within the anoxic tumour environment. Furthermore, advances in biotechnology and molecular techniques have made it easier than ever to engineer bacteria as both therapeutic agents themselves and as therapeutic vectors. Here, we review bacteriolytic therapy and immunotherapy strategies, and examine the development of bacteria as vehicles for cell- and tissue-targeted delivery of genetic cancer therapeutics.

  10. Photodynamic Therapy: The Imminent Milieu For Treating Oral Lesions

    PubMed Central

    Mohanty, Neeta; Jalaluddin, MD; Kotina, Sreekanth; Routray, Samapika; Ingale, Yashwant

    2013-01-01

    Photodynamic therapy (PDT) is used in curative and palliative treatment of head and neck squamous cell carcinoma (HNSCC) and other oral lesions. Oral infections (such as mucosal and endodontic infections, periodontal diseases, caries, and peri-implantitis) are among the specific targets where PDT can be applied Photodynamic therapy (PDT) efficacy depends on the local dose deposited in the lesion as well as oxygen availability in the lesion. Further long-term clinical studies are necessary in establishing a more specific place of the technique in the field of dentistry. PMID:23905154

  11. Treating women drug abusers: action therapy and trauma assessment.

    PubMed

    Uhler, Ann S; Parker, Olga V

    2002-07-01

    The authors suggest that action therapy, a group of techniques including psychodrama, drama therapy, and role training, warrants research attention to determine whether it is well suited to the special characteristics and needs of women clients. In addition, the authors call on researchers to develop a new standardized tool for counselors to use during initial interviews to determine whether women presenting for drug abuse treatment also have significant issues related to trauma. The authors believe the use of unassisted clinical judgment for trauma assessment in first interviews may drive patients away by probing for painful information that clients are not yet ready to confront or divulge.

  12. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors. Technical progress report No. 1, May 1, 1990--January 31, 1991

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-12-31

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  13. Treating Social Anxiety in Adolescents: Ten Group Therapy Lesson Plans

    ERIC Educational Resources Information Center

    Mazur-Elmer, Alison; McBride, Dawn

    2009-01-01

    This project provides a comprehensive overview of the research literature on social anxiety disorder (SAD) in adolescents and concludes by offering a set of 10 group therapy lesson plans for SAD that therapists can use in their practice. The overview includes a description of social anxiety disorder and highlights various theories of anxiety. The…

  14. Chronic PTSD Treated with Metacognitive Therapy: An Open Trial

    ERIC Educational Resources Information Center

    Wells, Adrian; Welford, Mary; Fraser, Janelle; King, Paul; Mendel, Elizabeth; Wisely, Julie; Knight, Alice; Rees, David

    2008-01-01

    This paper reports on an open trial of metacognitive therapy (MCT) for chronic PTSD. MCT does not require imaginal reliving, prolonged exposure, or challenging of thoughts about trauma. It is based on an information-processing model of factors that impede normal and in-built recovery processes. It is targeted at modifying maladaptive styles of…

  15. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  16. Radiation effects of boron neutron capture therapy on brain, skin, and eye of rats

    SciTech Connect

    Matalka, K.Z.; Barth, R.F.; Bailey, M.Q.; Wilkie, D.A.; Koestner, A. ); Hopewell, J.W. )

    1994-03-30

    The present study was carried out to evaluate the radiation effects of boron neutron capture therapy (BNCT) on the brain, skin, and eyes of nude rats following systemic administration of boronophenylalanine (BPA) and neutron irradiation to the head. A solution containing 120 mg of [sup 10]B-enriched-L-BPA complexed with fructose was administered IP to nude rats. Boron concentrations were [approximately] 8.4, 9.4, 10.0, and 11.0 [mu]g/g in the brain, blood, skin, and eyes, respectively, at 6 h when the animals were irradiated at the Brookhaven Medical Research Reactor to cause tumor regression in nude rats carrying intracerebral implants of the human melanoma cell line MRA 27. Mild to moderate increases in loose fibrous tissue were observed in the choroid plexus at estimated physical doses to the brain and blood that ranged from 4.3-7.1 Gy and 4.6-7.7 Gy, respectively, and these appeared to be dose and time dependent. Other changes in the choroid plexus included occasional infiltrates of macrophages and polymorphonuclear leukocytes and vacuolation of epithelial cells. Dose-dependent moist desquamation of the skin was observed in all rats, but this had healed by 28 days following irradiation. Cataracts and keratitis developed in the eyes of most animals, and these were dose dependent. The minimal histopathological changes seen in the brain at doses that were sufficient to eradicate intracerebral melanoma indicates that BNCT has the potential to cure a tumor-bearing host without producing the normal brain injury usually associated with conventional external beam radiation therapy. Studies in canines, which currently are in progress, should further define the dose-effect relationships of BNCT on critical neuroanatomic structures within the brain. 42 refs., 4 figs., 3 tabs.

  17. Physical Therapy to Treat Torn Meniscus Comparable to Surgery for Many Patients

    MedlinePlus

    ... 2013 August 2013 (historical) Physical Therapy to Treat Torn Meniscus Comparable to Surgery for Many Patients Many ... arthroscopic partial meniscectomy that involves surgically removing the torn part of the meniscus and stabilizing it, or ...

  18. A Novel Method of Boron Delivery Using Sodium Iodide Symporter for Boron Neutron Capture Therapy

    PubMed Central

    KUMAR, Sanath; FREYTAG, Svend O.; BARTON, Kenneth N.; BURMEISTER, Jay; JOINER, Michael C.; SEDGHI, Bijan; MOVSAS, Benjamin; BINNS, Peter J.; KIM, Jae Ho; BROWN, Stephen L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) effectiveness depends on the preferential sequestration of boron in cancer cells relative to normal tissue cells. We present a novel strategy for sequestering boron using an adenovirus expressing the sodium iodide symporter (NIS). Human glioma grown subcutaneously in athymic mice and orthotopic rat brain tumors were transfected with NIS using a direct tumor injection of adenovirus. Boron bound as sodium tetrafluoroborate (NaBF4) was administered systemically several days after transfection. Tumors were excised hours later and assessed for boron concentration using inductively coupled plasma atomic emission spectroscopy. In the human glioma transfected with NIS, boron concentration was more than 10 fold higher with 100 mg/kg of NaBF4, compared to tumor not transfected. In the orthotopic tumor model, the presence of NIS conferred almost 4 times the boron concentration in rat tumors transfected with human virus compared with contralateral normal brain not transfected. We conclude that adenovirus expressing NIS has the potential to be used as a novel boron delivery agent and should be explored for future clinical applications. PMID:20921830

  19. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ishitama, Shintaro; Baba, Yuji; Fujii, Ryo; Nakamura, Masaru; Imahori, Yoshio

    Li3N synthesis on Li deposition layer was conducted without H2O and O2 by in situ lithium deposition in high vacuum chamber of 10-6 Pa and ion implantation techniques and the thermo-chemical stability of the Li3N/Li/Cu tri-layered target for Boron Neutron Capture Therapy (BNCT) under laser heating and air exposure was characterized by X-ray photoelectron spectroscopy (XPS). Following conclusions were derived; (1) Li3N/Li/Cu tri-layered target with very low oxide and carbon contamination was synthesized by in situ lithium vacuum deposition and N2+ ion implantation without H2O and O2 additions, (2) The starting temperature of evaporation of Li3N/Li/Cu tri-layered target increased by 120K compared to that of the Li/Cu target and (3) Remarkable oxidation and carbon contamination were observed on the surface of Li3N/Li/Cu after air exposure and these contaminated compositions was not removed by Ar+ heavy sputtering.

  20. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    PubMed Central

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-01-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052

  1. Neutron Tube Design Study for Boron Neutron Capture TherapyApplication

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-01-04

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  2. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    SciTech Connect

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  3. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy

    SciTech Connect

    Bleuel, D.L. |; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    1998-09-01

    The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}

  4. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy

    PubMed Central

    Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-01-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood 24Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood 24Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood 24Na was determined using a germanium counter. The activity of 24Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood 24Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible. PMID:23392825

  5. Monte Carlo simulation of depth dose distribution in several organic models for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2007-09-01

    Monte Carlo simulations are performed to evaluate depth-dose distributions for possible treatment of cancers by boron neutron capture therapy (BNCT). The ICRU computational model of ADAM & EVA was used as a phantom to simulate tumors at a depth of 5 cm in central regions of the lungs, liver and pancreas. Tumors of the prostate and osteosarcoma were also centered at the depth of 4.5 and 2.5 cm in the phantom models. The epithermal neutron beam from a research reactor was the primary neutron source for the MCNP calculation of the depth-dose distributions in those cancer models. For brain tumor irradiations, the whole-body dose was also evaluated. The MCNP simulations suggested that a lethal dose of 50 Gy to the tumors can be achieved without reaching the tolerance dose of 25 Gy to normal tissue. The whole-body phantom calculations also showed that the BNCT could be applied for brain tumors without significant damage to whole-body organs.

  6. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection. PMID:17045253

  7. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  8. Sublethal and potentially lethal damage repair on thermal neutron capture therapy

    SciTech Connect

    Utsumi, H.; Ichihashi, M.; Kobayashi, T.; Elkind, M.M. )

    1989-07-01

    Tonicity shock or caffeine postirradiation treatment makes evident fast-type potentially lethal damage (PLD). Caffeine expresses fast-type PLD more efficiently than tonicity shock in X-irradiated B-16 mouse melanoma cells, compared with V79 Chinese hamster cells. The survival curves of thermal neutrons for either V79 or B-16 cells exhibit no shoulder. Neither V79 nor B-16 cells show the sublethal damage (SLD) repair of thermal neutrons. Caffeine-sensitive fast-type PLD repairs exist in X-irradiated B-16 cells, as well as V79 cells. The fast-type PLD repair of B-16 cells exposed to thermal neutrons alone is rather less than that of X-irradiated cells. Furthermore, an extremely low level of fast-type PLD repair of B-16 cells with 10B1-paraboronophenylalanine (BPA) preincubation (20 hours) followed by thermal neutron irradiation indicated that 10B(n,alpha)7Li reaction effectively eradicates actively growing melanoma cells. The plateau-phase B-16 cells are well able to repair the slow-type PLD of X-rays. However, cells can not repair the slow-type PLD induced by thermal neutron irradiation with or without 10B1-BPA preincubation. These results suggest that thermal neutron capture therapy can effectively kill radioresistant melanoma cells in both proliferating and quiescent phases.

  9. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Riley, K. J.; Binns, P. J.; Harling, O. K.

    2004-08-01

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  10. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  11. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  12. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    SciTech Connect

    David W. Nigg

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  13. Manual vs. automatic capture management in implantable cardioverter defibrillators and cardiac resynchronization therapy defibrillators

    PubMed Central

    Murgatroyd, Francis D.; Helmling, Erhard; Lemke, Bernd; Eber, Bernd; Mewis, Christian; van der Meer-Hensgens, Judith; Chang, Yanping; Khalameizer, Vladimir; Katz, Amos

    2010-01-01

    Aims The Secura™ ICD and Consulta™ CRT-D are the first defibrillators to have automatic right atrial (RA), right ventricular (RV), and left ventricular (LV) capture management (CM). Complete CM was evaluated in an implantable cardioverter defibrillator (ICD) population. Methods and results Two prospective clinical studies were conducted in 28 centres in Europe and Israel. Automatic CM data were compared with manual threshold measurements, the CM applicability was determined, and adjustments to pacing outputs were analysed. In total, 160 patients [age 64.6 ± 10.4 years, 77% male, 80 ICD and 80 cardiac resynchronization therapy defibrillator (CRT-D)] were included. The differences between automatic and manual measurements were ≤0.25 V in 97% (RA CM) and 96% (RV CM) and were all within the safety margin. Fully automatic CM measurements were available within 1 week prior to the 3-month visit in 90% (RA), 99% (RV), and 97% (LV) of the patients. Results indicated increased output (threshold >2.5 V) due to raised RA threshold in seven (4.4%), high RV threshold in nine (5.6%), and high LV threshold in three patients (3.8%). All high threshold detections and all automatic modulations of pacing output were adjudicated appropriate. Conclusion Complete CM adjusts pacing output appropriately, permitting a reduction in office visits while it may maximize device longevity. The study was registered at ClinicalTrials.gov identifiers: NCT00526227 and NCT00526162. PMID:20231152

  14. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  15. Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel

    2011-05-01

    Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.

  16. Selective ablation of rat brain tumors by boron neutron capture therapy

    SciTech Connect

    Coderre, J.; Joel, D. ); Rubin, P.; Freedman, A.; Hansen, J.; Wooding, T.S. Jr.; Gash, D. )

    1994-03-30

    Damage to the surrounding normal brain tissue limits the amount of radiation that can be delivered to intracranial tumors. Boron neutron capture therapy (BNCT) is a binary treatment that allows selective tumor irradiation. This study evaluates the damage imparted to the normal brain during BNCT or x-irradiation. The brains of rats with implanted 9L gliosarcomas were examined 1 year after tumor-curative doses of either 250 kV X-rays or BNCT. Histopathologic techniques included hematoxylin and eosin staining, horseradish peroxidase perfusion, and electron microscopy. Longterm X-ray survivors showed extensive cortical atrophy, loss of neurons, and widespread leakage of the blood-brain barrier (BBB), particularly around the tumor scar. In contrast, the brains and the BBB of longterm BNCT survivors appeared relatively normal under both light- and electron-microscopic examination. Intact blood vessels were observed running directly through the avascular, collagenous tumor scar. The selective therapeutic effect of BNCT is evident in comparison to x-irradiation. Both groups of animals showed no evidence of residual tumor at 1 year. However, with x-irradiation there is no therapeutic ratio and tumor eradication severely injuries the remaining brain parenchyma. These observations indicate a substantial therapeutic gain for BNCT. 50 refs., 8 figs., 1 tab.

  17. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy.

    PubMed

    Riley, K J; Binns, P J; Harling, O K

    2004-08-21

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  18. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  19. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  20. Boronated monoclonal antibody 225. 28S for potential use in neutron capture therapy of malignant melanoma

    SciTech Connect

    Tamat, S.R.; Moore, D.E.; Patwardhan, A.; Hersey, P. )

    1989-07-01

    The concept of conjugating boron cluster compounds to monoclonal antibodies has been examined by several groups of research workers in boron neutron capture therapy (BNCT). The procedures reported to date for boronation of monoclonal antibodies resulted in either an inadequate level of boron incorporation, the precipitation of the conjugates, or a loss of immunological activity. The present report describes the conjugation of dicesium-mercapto-undecahydrododecaborate (Cs2B12H11SH) to 225.28S monoclonal antibody directed against high molecular weight melanoma-associated antigens (HMW-MAA), using poly-L-ornithine as a bridge to increase the carrying capacity of the antibody and to minimize change in the conformational structure of antibody. The method produces a boron content of 1,300 to 1,700 B atoms per molecule 225.28S while retaining the immunoreactivity. Characterization in terms of the homogeneity of the conjugation of the boron-monoclonal antibody conjugates has been studied by gel electrophoresis and ion-exchange HPLC.

  1. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  2. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    PubMed

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  3. Transurethral electrolaser complex therapy to treat chronic prostatitis

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.

    2000-05-01

    According to the world statistics, from 30 to 60 percent of elderly male population suffer from chronic prostatitis in different countries. This disease has a number of consequences such as urino-genital inflammation, dysuria, perineal pain, reduction in the physiological activity of smooth muscles, blockage of the anus passages with micro-organism vital activity products, appearance of stagnant zones and low blood circulation complicated by disorders of the sexual function. Most of these features make it difficult to use standard drug therapies with antibiotics or immunocorrectors. For that reason, the objective of this study is to develop and to investigate a novel combined electrolaser therapy which improves drug delivery in the prostate gland and simultaneously provides an independent physiotherapeutic effect. The main feature of this therapy is the utilization of two diode lasers emitting in the red (0.67 micrometer, 10 mW) and in the infrared (0.85 micrometer, 1 W) spectrum ranges in combination with transurethral electrostimulation. An electrolaser catheter containing both hollow cylindrical electrodes and an axial optical fiber to deliver laser radiation was brought along the urethra to the seminal vesicles. The red laser in combination with a photosensitizer ('Photosens,' Russia) was used to realize the antibacterial treatment of the urethra. The infrared laser was employed to heat the prostate gland and to stimulate the blood perfusion without thermal damage of tissues. The laser heating of the prostate at a local tissue temperature of 41 degrees Celsius in combination with the electrostimulation provided approximately a 4.5-fold increase in the blood flow. The realization of an additional mode of photovacuum therapy inside the urethra together with the electrostimulation made it possible to 'clean' the anus passages and to improve the DNA diagnosis reliability in respect of the urogenital infectious remainder. The clinical data obtained in 980 patients

  4. [Schema Therapy: An Approach for Treating Narcissistic Personality Disorder].

    PubMed

    Dieckmann, E; Behary, W

    2015-08-01

    In this article, we review the history of the construct of narcissism and the diagnostic criteria for narcissistic personality disorder. We then discuss some etiological models of narcissism and introduce the model of Jeffrey Young, who developed Schema Therapy (ST) as an alternative to standard cognitive therapy for patients with personality disorders. ST differs from standard cognitive therapies in important respects, including limited reparenting, a focus on the patient's basic needs, and emotional activating techniques in addition to cognitive and behavioral ones. We then discuss Young's theory of basic needs, early maladaptive schemas, and schema modes. According to ST theory, narcissists are traumatized in the schema domain having to do with attachment needs. They are prone to vulnerable emotions in response to narcissistic injuries, although they often do not show these emotions directly. Instead, they use maladaptive coping strategies, resulting in emotional states, known as "schema modes". This includes the Self-Aggrandizer mode and Detached Self-Soother mode, in which a superior, arrogant self-presentation and addictive or compulsive behavior serve a self-regulatory function. These concepts are illustrated by case examples of patients with Narcissistic Personality Disorder.

  5. Early history of development of boron neutron capture therapy of tumors.

    PubMed

    Sweet, W H

    1997-05-01

    The stable isotope 10B has a peculiarly marked avidity to capture slow neutrons whereupon it disintegrates into a lithium and a helium atom. These give up the 2.4 MeV of disintegration energy which they share within 5 and 9 microns of the 10B atom respectively. This means that the cell closest to the 10B atom bears the brunt of its atomic explosion. The objective of the tumor therapist is to find a carrier molecule for the boron atom which will concentrate in the tumor. Although a number of investigators saw the peculiar advantage of this selective tactic to achieve destruction of a species of unwanted cells, no success in animal studies was achieved until 1950. Sweet and colleagues found that the capillary blood-brain barrier keeps many substances out of the normal brain but that the gliomas had much less of such a barrier. He, Brownell, Soloway and Hatanaka in Boston together with Farr. Godwin, Robertson, Stickley. Konikowski and others at the Brookhaven. National Laboratory worked partially in collaboration and partly independently. We irradiated at 3 nuclear reactors several series of glioma patients with no long-term remission, much less a cure being achieved. Hatanaka on his return to Japan kept BNCT alive by treating a total of 140 patients with various brain tumors. Beginning in 1972, Mishima and colleagues have achieved useful concentrations of 10B-borono-phenylalanine, an analogue of the melanin precursor tyrosine, for BNCT of melanomas.

  6. Relational trauma: using play therapy to treat a disrupted attachment.

    PubMed

    Anderson, Sarah M; Gedo, Paul M

    2013-01-01

    Caregiver-child attachment results in a cognitive-emotional schema of self, other, and self-other relationships. Significantly disrupted attachments may lead to pathogenic internal working models, which may have deleterious consequences; this indicates the need for early attachment intervention. The authors consider the therapy of a 3-year-old boy with aggressive behaviors who had lacked consistent caregiving. Attachment theory can account for the child's psychotherapeutic gains, despite his insecure attachment style. The authors discuss discrepancies between treatment and current research trends. PMID:24020610

  7. [How I treat....Recommendations for stopping a pharmacological therapy].

    PubMed

    Scheen, A J

    2014-12-01

    To interrupt a pharmacological treatment is sometimes warranted in clinical practice. It may appear as an easy task, simpler to undertake than the initiation of a new therapy, and, yet, it requires that some conditions be fulfilled and some precautions be taken: (1) the reasons why the medication is interrupted should be clearly explained; (2) the physician should make sure that the interruption, even if transient, is without danger; (3) the modalities of interruption should be clearly determined (immediate cessation vs progressive dose reduction), and, finally, (4) an appropriate follow-up of the duly informed patient should be scheduled.

  8. A Case Study Using Child-Centered Play Therapy Approach to Treat Enuresis and Encopresis.

    ERIC Educational Resources Information Center

    Cuddy-Casey, Maria

    1997-01-01

    Demonstrates an alternative method (nondirective child-centered therapy) in treating enuresis and encopresis resulting from emotional disturbances. Examines various etiologies and approaches to treating these conditions. Provides a case study example. Claims that professionals must differentiate between primary and secondary occurrences of these…

  9. Treating Verbs in Aphasia: Exploring the Impact of Therapy at the Single Word and Sentence Levels

    ERIC Educational Resources Information Center

    Webster, Janet; Whitworth, Anne

    2012-01-01

    Background: In recent years there has been significant interest in the differential processing of nouns and verbs in people with aphasia, but more limited consideration about whether the differences have implications for therapy. It remains unclear whether verbs can be treated in a similar way to nouns or should be treated using approaches that…

  10. A nude rat model for neutron capture therapy of human intracerebral melanoma

    SciTech Connect

    Barth, R.F.; Matalka, K.Z.; Bailey, M.Q.; Staubus, A.E.; Soloway, A.H.; Moeschberger, M.L. ); Coderre, J.A. ); Rofstad, E.K. )

    1994-03-30

    The present study was carried out to determine the efficacy of Boron Neutron Capture Therapy (BNCT) for intracerebral melanoma using nude rats, the human melanoma cell line MRA 27, and boronophenylalanine as the capture agent. MRA 27 cells (2 [times] 10[sup 5]) were implanted intracerebrally, and 30 days later, 120 mg of [sup 10]B-L-BPA were injected intraperitoneally into nude rats. Thirty days following implantation, tumor bearing rats were irradiated at the Brookhaven Medical Research Reactor. Six hours following administration of BPA, tumor, blood, and normal brain boron-10 levels were 23.7, 9.4, and 8.4 [mu]g/g respectively. Median survival time of untreated rats was 44 days compared to 76 days and 93 days for those receiving physical doses of 2.73 Gy and 3.64 Gy, respectively. Rats that have received both [sup 10]B-BPA and physical doses of 1.82, 2.73, or 3.64 Gy had median survival times of 170, 182, and 262 days, respectively. Forty percent of rats that had received the highest tumor dose (10.1 Gy) survived for > 300 days and in a replicate experiment 21% of the rats were longterm survivors (>220 days). Animals that received 12 Gy in a single dose or 18 Gy fractionated (2 Gy [times] 9) of gamma photons from a [sup 137]Cs source had median survival times of 86 and 79 days, respectively, compared to 47 days for untreated animals. Histopathologic examination of the brains of longterm surviving rats, euthanized at 8 or 16 months following BNCT, showed no residual tumor, but dense accumulations of melanin laden macrophages and minimal gliosis were observed. Significant prolongations in median survival time were noted in nude rats with intracerebral human melanoma that had received BNCT, thereby suggesting therapeutic efficacy. Large animal studies should be carried out to further assess BNCT of intracerebral melanoma before any human trials are contemplated. 49 refs., 7 figs., 2 tabs.

  11. Achalasia Combined with Esophageal Cancer Treated by Concurrent Chemoradiation Therapy

    PubMed Central

    Park, Jun Chul; Kim, Sang Kyum; Kim, Yu Jin; Shin, Sung Kwan; Lee, Sang Kil; Kim, Hoguen; Kim, Choong Bai

    2009-01-01

    Achalasia is a rare neurological deficit of the esophagus that produces an impaired relaxation of the lower esophageal sphincter and decreased motility of the esophageal body. Achalasia is generally accepted to be a pre-malignant disorder, since, particularly in the mega-esophagus, chronic irritation by foods and bacterial overgrowth may contribute to the development of dysplasia and carcinoma. We present a case of a 51-year-old man with achalasia combined with esophageal cancer who has had dysphagia symptoms for more than 20 years. Since there was a clinically high possibility of supraclavicular lymph node metastasis, concurrent chemoradiation therapy was scheduled. After the third cycle of chemoradiation therapy, transthoracic esophageolymphadenectomy was performed. Histopathological examination of the main esophagus specimen revealed no residual carcinoma. And the entire regional lymph node areas were free of carcinoma except for one azygos metastatic lymph node. In summary, achalasia is a predisposing factor for esophageal squamous cell carcinoma. Although surveillance endoscopy in achalasia patients is still controversial, periodic screening for cancer development in long-standing achalasia patients might be advisable. PMID:20431771

  12. Epidermodysplasia verruciformis treated using topical 5-aminolaevulinic acid photodynamic therapy.

    PubMed

    Karrer, S; Szeimies, R M; Abels, C; Wlotzke, U; Stolz, W; Landthaler, M

    1999-05-01

    We describe a 65-year-old woman who had had wart-like lesions on the hands, lower arms and forehead for about 45 years. She had already had several basal cell carcinomas excised. Histological study, electron microscopy and in situ hybridization [human papilloma virus (HPV)-types 5/8/12/14/19-23/25/36] of skin biopsies confirmed a diagnosis of epidermodysplasia verruciformis (EV). Photodynamic therapy (PDT) was performed using a 20% 5-aminolaevulinic acid ointment applied for 6 h to the lesions and irradiating using an incoherent light source (lambda = 580-740 nm, 160 mW/cm2, 160 J/cm2). Following PDT, blistering and crusting of the lesions occurred, but these healed completely within 2-3 weeks without scarring, and the cosmetic result was excellent. Six months after PDT a skin biopsy was taken. In situ hybridization was positive for HPV type 8 in skin which was clinically and histologically normal. Twelve months after PDT a few lesions had recurred on the hands. Although permanent cure of EV cannot be achieved by any therapy at present and single lesions continue to appear in this patient, topical PDT might result in better control of HPV-induced lesions.

  13. Epidermodysplasia verruciformis treated using topical 5-aminolaevulinic acid photodynamic therapy.

    PubMed

    Karrer, S; Szeimies, R M; Abels, C; Wlotzke, U; Stolz, W; Landthaler, M

    1999-05-01

    We describe a 65-year-old woman who had had wart-like lesions on the hands, lower arms and forehead for about 45 years. She had already had several basal cell carcinomas excised. Histological study, electron microscopy and in situ hybridization [human papilloma virus (HPV)-types 5/8/12/14/19-23/25/36] of skin biopsies confirmed a diagnosis of epidermodysplasia verruciformis (EV). Photodynamic therapy (PDT) was performed using a 20% 5-aminolaevulinic acid ointment applied for 6 h to the lesions and irradiating using an incoherent light source (lambda = 580-740 nm, 160 mW/cm2, 160 J/cm2). Following PDT, blistering and crusting of the lesions occurred, but these healed completely within 2-3 weeks without scarring, and the cosmetic result was excellent. Six months after PDT a skin biopsy was taken. In situ hybridization was positive for HPV type 8 in skin which was clinically and histologically normal. Twelve months after PDT a few lesions had recurred on the hands. Although permanent cure of EV cannot be achieved by any therapy at present and single lesions continue to appear in this patient, topical PDT might result in better control of HPV-induced lesions. PMID:10354037

  14. Effects of a laser acupuncture therapy on treating pain

    NASA Astrophysics Data System (ADS)

    Wong, Wai-on; Xiao, Shaojun; Ip, Wing-Yuk; Guo, Xia

    2001-10-01

    Laser acupuncture (LA) has been utilized as a combined approach of Chinese traditional acupuncture and low-level laser therapy since its emergence in 1973. Its mechanisms are not well understood and the standardization of clinical protocols has not been established. In this study, we used a diode laser to irradiate on four acupuncture points for normal subjects to investigate the effect of LA. For each point, the irradiation lasted for three minutes. The median nerve conduction velocity was measured within a 30 minutes interval at day 1, day 5, and day 10 respectively. Patients with chronic carpal tunnel syndrome (CTS) were given LA therapy for three stages at most with a one-week interval between two stages. Treatment outcome measurements included patients' subjective feedback (McGill pain questionnaire, VAS) and objective measurements (physical examination, kinesiological properties and NCSs). It was a randomized single-blind controlled trial. For normal subjects, motor nerve fiber was sensitive to LA and the motor conduction velocity was decreased very significantly (p < 0.001). Besides, it was found that LA resulted that sensory nerve conduction velocity was decreased significantly when it was measured 30 minutes after the subject had received LA application. For CTS patients, the outcomes except pinch test indicated that LA could improve patient's conduction. These results suggested that LA could cause the change of nerve conduction.

  15. Intramedullary spinal neurocysticercosis treated successfully with medical therapy.

    PubMed

    Ahmed, Shameem; Paul, Siba Prosad

    2014-12-01

    Neurocysticercosis caused by Taenia solium and is a common parasitic disease of the cental nervous system. It usually presents with seizures, headaches, progressively worsening focal neurologic symptoms, visual disturbances, loss of bladder control, etc. However, acute onset symptoms may also be seen. MRI scans can accurately diagnose spinal or cerebral lesions and is also helpful in monitoring progress while on treatment. Albendazole is currently the drug of choice along with steroids for medical management of neurocysticercosis. The case of intramedullary spinal neurocysticercosis was treated with praziquantel.

  16. Pediatric Frostbite Treated by Negative Pressure Wound Therapy.

    PubMed

    Poulakidas, Stathis J; Kowal-Vern, Areta; Atty, Corinne

    2016-01-01

    Frostbite injury in children can lead to abnormal growth and premature fusion of the epiphyseal cartilage with long-term sequela including, but not limited to, arthroses, deformity, and amputation of the phalanges. This was a retrospective chart review of pediatric frostbite identified in an in-house burn center registry from March 1999 to March 2014. Therapeutic management included negative pressure wound therapy (NPWT). Three patients (age 16-31 months) had frostbitten hands because they were outside in cold weather without gloves. They presented within 24 hours after injury, underwent 5-6 days of NPWT after excision of blisters, and did not lose the distal portion of their digits, or require amputations. On follow-up, all hands were healed well with only minimal or no effect on the growth plate of these pediatric patients. In the early period after frostbite, NPWT may be beneficial in preserving the epiphyseal cartilage in children and preventing long-term complications. PMID:26284629

  17. A man with urethral polyembolokoilamania successfully treated with electroconvulsive therapy.

    PubMed

    Ingves, Matthew V; Lau, Timothy; Fedoroff, J Paul; Levine, Sharon

    2014-08-01

    Polyembolokoilamania is the act of inserting foreign objects into bodily orifices and can be classified as a paraphilia if done for sexual pleasure. Although problematic sexual behaviors are common in dementia, the majority of case reports of urethral polyembolokoilamania in the elderly have occurred in the absence of dementia or cognitive impairment. Little empirical evidence exists for managing problematic sexual behaviors in the elderly and in dementia. Most evidence in the form of case reports demonstrates that behavioral, environmental, and pharmacological interventions can be effective. In this case report, we describe the management of sexually disinhibited behavior in the form of polyembolokoilamania in a 67-year-old man suffering from treatment-resistant depression, obsessive compulsive disorder, and early signs of frontotemporal dementia. The successful treatment included a course of electroconvulsive therapy.

  18. Pharmacokinetics of core-polymerized, boron-conjugated micelles designed for boron neutron capture therapy for cancer.

    PubMed

    Sumitani, Shogo; Oishi, Motoi; Yaguchi, Tatsuya; Murotani, Hiroki; Horiguchi, Yukichi; Suzuki, Minoru; Ono, Koji; Yanagie, Hironobu; Nagasaki, Yukio

    2012-05-01

    Core-polymerized and boron-conjugated micelles (PM micelles) were prepared by free radical copolymerization of a PEG-b-PLA block copolymer bearing an acetal group and a methacryloyl group (acetal-PEG-b-PLA-MA), with 1-(4-vinylbenzyl)-closo-carborane (VB-carborane), and the utility of these micelles as a tumor-targeted boron delivery system was investigated for boron neutron capture therapy (BNCT). Non-polymerized micelles (NPM micelles) that incorporated VB-carborane physically showed significant leakage of VB-carborane (ca. 50%) after 12 h incubation with 10% fetal bovine serum (FBS) at 37 °C. On the other hand, no leakage from the PM micelles was observed even after 48 h of incubation. To clarify the pharmacokinetics of the micelles, (125)I (radioisotope)-labeled PM and NPM micelles were administered to colon-26 tumor-bearing BALB/c mice. The (125)I-labeled PM micelles showed prolonged blood circulation (area under the concentration curve (AUC): 943.4) than the (125)I-labeled NPM micelles (AUC: 495.1), whereas tumor accumulation was similar for both types of micelles (AUC(PM micelle): 249.6, AUC(NPM micelle): 201.1). In contrast, the tumor accumulation of boron species in the PM micelles (AUC: 268.6) was 7-fold higher than the NPM micelles (AUC: 37.1), determined by ICP-AES. Thermal neutron irradiation yielded tumor growth suppression in the tumor-bearing mice treated with the PM micelles without reduction in body weight. On the basis of these data, the PM micelles represent a promising approach to the creation of boron carrier for BNCT.

  19. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    PubMed Central

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  20. First application of dynamic infrared imaging in boron neutron capture therapy for cutaneous malignant melanoma

    SciTech Connect

    Santa Cruz, G. A.; Gonzalez, S. J.; Bertotti, J.; Marin, J.

    2009-10-15

    Purpose: The purpose of this study is to assess the potential of dynamic infrared imaging (DIRI) as a functional, noninvasive technique for evaluating the skin acute toxicity and tumor control within the framework of the Argentine boron neutron capture therapy (BNCT) program for cutaneous malignant melanoma. Methods: Two patients enrolled in the Argentine phase I/II BNCT clinical trial for cutaneous malignant melanoma were studied with DIRI. An uncooled infrared camera, providing a video output signal, was employed to register the temperature evolution of the normal skin and tumor regions in patients subjected to a mild local cooling (cold stimulus). In order to study the spatial correlation between dose and acute skin reactions, three-dimensional representations of the superficial dose delivered to skin were constructed and cameralike projections of the dose distribution were coregistered with visible and infrared images. Results: The main erythematous reaction was observed clinically between the second and fifth week post-BNCT. Concurrently, with its clinical onset, a reactive increase above the basal skin temperature was observed with DIRI in the third week post-BNCT within regions that received therapeutic doses. Melanoma nodules appeared as highly localized hyperthermic regions. 2 min after stimulus, these regions reached a temperature plateau and increased in size. Temperature differences with respect to normal skin up to 10 deg. C were observed in the larger nodules. Conclusions: Preliminary results suggest that DIRI, enhanced by the application of cold stimuli, may provide useful functional information associated with the metabolism and vasculature of tumors and inflammatory processes related to radiation-induced changes in the skin as well. These capabilities are aimed at complementing the clinical observations and standard imaging techniques, such as CT and Doppler ultrasound.

  1. Melanogenesis investigation leading to selective melanoma neutron capture therapy and diagnosis.

    PubMed

    Mishima, Y

    1994-11-01

    Basic investigation into the nature of melanin monomer and polymer synthesis in pigment cells has revealed many of the new underlying factors involved in its regulation and control by three melanogenesis-related genes, tyrosinase, TRP-1 and TRP-2, and other non-tyrosinase glycoproteins. Pigment cells can undergo clinically and biologically recognizable progressive multi-step carcinogenesis. Generally parallel to this progressive cancerization is accentuated melanogenesis. Using this accentuated melanogenesis to develop a specific diagnosis and cure for melanoma (Mm) has long been a challenge. However, until recently, no success was achieved. As an example, attempting to utilize the fact that dopa accumulates as a melanin substrate within Mm cells, hybrid compounds of dopa and cytotoxic drugs were developed. However, these compounds were found to have severe systemic side effects and were therefore unusable. Another newer Mm treatment involves high energy radiation such as fast neutrons. But this is quite non-selective, killing both the target cancer and the normal surrounding tissue. Since 1972, I have developed the idea of coupling the high energy releasing system of thermal neutron irradiation with the non-toxic 10B-dopa analogue, 10B1-L-p-boronophenylalanine (10B1-L-BPA). Thermal neutrons are essentially harmless, but, after specific absorption by 10B, release high LET alpha-particles and 7Li-atoms with an energy of 2.33 MeV up to a distance of 14 mu, the diameter of Mm cells, thus selectively killing them without damaging surrounding normal tissue. After the synthesis of 10B1-L-BPA, exhaustive in vitro and in vivo radiological studies on its enhanced killing effect were done to develop optimal Mm Boron Neutron Capture Therapy (NCT).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors.

    PubMed

    Ono, K; Kinashi, Y; Suzuki, M; Takagaki, M; Masunaga, S I

    2000-08-01

    10 B-Enriched borocaptate (BSH) was administered intraperitoneally to SCCVII tumor-bearing C3H / He mice. Electroporation (EP) was conducted by using a tweezers-type electrode. The (10) B contents in tumors were measured by prompt gamma-ray spectrometry. The colony formation assay was applied to investigate the antitumor effects of boron neutron capture therapy (BNCT) and thereby to estimate the intratumor localization of BSH. The (10) B concentrations in tumors decreased with time following BSH administration, falling to 5.4(0. 1) ppm at 3 h, whereas EP treatment (3 repetitions) 15 min after BSH injection delayed the clearance of BSH from tumors, and the (10) B level remained at 19.4(0.9) ppm at 3 h. The effect of BNCT increased with the (10) B concentration in tumors, and the combination with EP showed a remarkably large cell killing effect even at 3 h after BSH injection. The effect of BNCT, i.e., slope coefficient of the cell survival curve of tumors, without EP was proportional to tumor (10) B level (r = 0.982), and that of BSH-BNCT combined with EP lay close to the same correlation line. However, tumors subjected to EP after BSH injection did not show high radiosensitivity when irradiated after conversion to a single cell suspension by enzymatic digestion. This indicates that the increase of the BNCT effect by EP was a consequence of enclosure of BSH in the interstitial space of tumor tissue and not within tumor cells. This is different from a previous in vitro study. The combination of EP and BNCT may be clinically useful, if a procedure to limit EP to the tumor region becomes available or if an alternative similar method is employed. PMID:10965028

  3. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  4. Radiobiology of boron neutron capture therapy: Problems with the concept of relative biological effectiveness

    SciTech Connect

    Coderre, J.A.; Makar, M.S.

    1990-01-01

    The radiation dose delivered to cells in vitro or vivo during boron neutron capture therapy (BNCT) is a mixture of photons, fast neutrons and heavy charged particles from the interaction of neutrons with nitrogen and born. The concept of relative biological effectiveness (RBE) had been developed to allow comparison of the effects of these radiations with the effects of standard photon treatments such as 250 kVp x-rays or {sup 60}Co gamma rays. The RBE value for all of these high linear energy transfer radiations can vary considerably depending upon the experimental conditions and endpoint utilized. The short range of the particles from the {sup 10}B(n,{alpha}) {sup 7}Li reaction make the precise subcellular location of the {sup 10}B atom of critical importance. The microscopic distribution of the {sup 10}B has a decided effect on the dosimetry. Monte Carlo simulations have shown that, at the cellular level, there is a profound difference in the probability of cell kill depending on the location of the {sup 10}B relative to the nucleus. Different boron-delivery agents will almost certainly have different distribution patterns at the subcellular level. The effect of BNCT with the amino acid p-boronophenylalanine (BPA) was compared with the effect of 250 kVp x-rays on a pigmented B16 melanoma subclone, both in vitro and in vivo. Generally accepted RBE values were applied to the relevant components of the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam, however, there were still discrepancies when the resulting dose response curves were compared with the response to 250 kVp x-rays.

  5. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  6. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    PubMed

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  7. Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy

    SciTech Connect

    Moran, J.M.; Nigg, D.W.; Wheeler, F.J.; Bauer, W.F. )

    1992-05-01

    Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%--20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  8. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment.

    PubMed

    Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio

    2015-04-01

    This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation.

  9. Clinical trials of boron neutron capture therapy [in humans] [at Beth Israel Deaconess Medical Center][at Brookhaven National Laboratory

    SciTech Connect

    Wallace, Christine

    2001-05-29

    Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected from subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports.

  10. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    NASA Astrophysics Data System (ADS)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  11. Long-term results in 144 localized Ewing's sarcoma patients treated with combined therapy

    SciTech Connect

    Bacci, G.; Toni, A.; Avella, M.; Manfrini, M.; Sudanese, A.; Ciaroni, D.; Boriani, S.; Emiliani, E.; Campanacci, M.

    1989-04-15

    The results of 144 previously untreated cases of primary Ewing's sarcoma of bone are reported with a minimum follow-up of 5 years. This series was treated between 1972 and 1982 at Istituto Ortopedico Rizzoli with a combined therapy. The local control of the disease consisted of amputation (ten cases), resection followed by radiation therapy (35-45 Gy) (48 cases) and radiation therapy alone (40-60 Gy) (86 cases). Adjuvant chemotherapy, rigorously standardized, was performed according two different protocols: the first (85 cases treated in the period 1972-1978) consisted of vincristine (VCR) Adriamycin (doxorubicin) (ADM), and cyclophosphamide (EDX); the second (59 cases treated in the period 1979-1982) of VCR, ADM, EDX and dactinomycin (DACT). At a follow-up of 5 to 16 years (median, 9), 59 patients (41%) are continuously disease-free (CDF), 81 (56%) developed metastatic disease and/or local recurrence, and four (3%) had a second malignancy. Three factors seem to be correlated to prognosis: the site of the initial lesion (only 23% of the pelvic lesions are represented in the CDF group versus 46% of the other locations); the chemotherapy protocol (32% of the cases in the first protocol are CDF versus 54% in the second); the type of local treatment (60% of the patients treated with amputation or resection plus radiotherapy versus 28% of those treated with radiation therapy alone are CDF). A local recurrence was observed in 24% of the patients (8% in the group locally treated with surgery or surgery plus radiation therapy versus 36% in the group treated with radiation therapy alone). These data suggest that even though adjuvant chemotherapy can improve the long-term results in localized Ewing's sarcoma patients, this disease still represents, in a high percentage of cases, a lethal process whose final prognosis widely depends on the local control of the lesion.

  12. Repurposing tromethamine as inhaled therapy to treat CF airway disease

    PubMed Central

    Abou Alaiwa, Mahmoud H.; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.; Zabner, Joseph

    2016-01-01

    In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3− and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3− increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3−-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778

  13. Repurposing tromethamine as inhaled therapy to treat CF airway disease

    PubMed Central

    Alaiwa, Mahmoud H. Abou; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.

    2016-01-01

    In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3– and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3– increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3–-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778

  14. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    PubMed

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. PMID:27467416

  15. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    PubMed

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance.

  16. Tension - Type - Headache treated by Positional Release Therapy: a case report.

    PubMed

    Mohamadi, Marzieh; Ghanbari, Ali; Rahimi Jaberi, Abbas

    2012-10-01

    Tension Type Headache (T.T.H) is the most prevalent headache. Myofascial abnormalities & trigger points are important in this type of headache which can be managed by Positional Release Therapy (PRT). This is a report of a 47 years old female patient with Tension Type Headache treated by Positional Release Therapy for her trigger points. She had a constant dull headache, which continued all the day for 9 months. A physiotherapist evaluated the patient and found active trigger points in her cervical muscles. Then, she received Positional Release Therapy for her trigger points. After 3 treatment sessions, the patient's headache stopped completely. During the 8 months following the treatment she was without pain, and did not use any medication. Positional Release Therapy was effective in treating Tension Type Headache. This suggests that PRT could be an alternative treatment to medication in patients with T.T.H if the effectiveness of that can be confirmed by further studies.

  17. Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics

    PubMed Central

    Zou, Lili; Wang, Hong; He, Bin; Zeng, Lijuan; Tan, Tao; Cao, Haiqiang; He, Xinyu; Zhang, Zhiwen; Guo, Shengrong; Li, Yaping

    2016-01-01

    Cancer metastasis accounts for the high mortality of many types of cancer. Owing to the unique advantages of high specificity and minimal invasiveness, photothermal therapy (PTT) has been evidenced with great potential in treating cancer metastasis. In this review, we outline the current approaches of PTT with respect to its application in treating metastatic cancer. PTT can be used alone, guided with multimodal imaging, or combined with the current available therapies for effective treatment of cancer metastasis. Numerous types of photothermal nanotherapeutics (PTN) have been developed with encouraging therapeutic efficacy on metastatic cancer in many preclinical animal experiments. We summarize the design and performance of various PTN in PTT alone and their combinational therapy. We also point out the lacking area and the most promising approaches in this challenging field. In conclusion, PTT or their combinational therapy can provide an essential promising therapeutic modality against cancer metastasis. PMID:27162548

  18. Tension - Type - Headache treated by Positional Release Therapy: a case report.

    PubMed

    Mohamadi, Marzieh; Ghanbari, Ali; Rahimi Jaberi, Abbas

    2012-10-01

    Tension Type Headache (T.T.H) is the most prevalent headache. Myofascial abnormalities & trigger points are important in this type of headache which can be managed by Positional Release Therapy (PRT). This is a report of a 47 years old female patient with Tension Type Headache treated by Positional Release Therapy for her trigger points. She had a constant dull headache, which continued all the day for 9 months. A physiotherapist evaluated the patient and found active trigger points in her cervical muscles. Then, she received Positional Release Therapy for her trigger points. After 3 treatment sessions, the patient's headache stopped completely. During the 8 months following the treatment she was without pain, and did not use any medication. Positional Release Therapy was effective in treating Tension Type Headache. This suggests that PRT could be an alternative treatment to medication in patients with T.T.H if the effectiveness of that can be confirmed by further studies. PMID:22561484

  19. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  20. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  1. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.

    PubMed

    Goorley, J T; Kiger, W S; Zamenhof, R G

    2002-02-01

    As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of <1% (1 std. dev.) in the center of the head model. In addition, a "generic" epithermal neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data

  2. [Complete remission of brain metastasis of bladder cancer treated by M-VAC therapy].

    PubMed

    Nakagawa, S; Nakao, M; Toyoda, K; Nukui, M; Takada, H; Ebisui, K

    1989-02-01

    A case of brain metastasis from transitional cell carcinoma of the bladder that attained complete remission by methotrexate-vinblastine-adriamycin-cisplatin (M-VAC) therapy was reported. The patient was a 53-year-old male, already treated with total cystectomy and CAP therapy against pulmonary metastasis, which disappeared completely. At 8 months after complete remission of pulmonary metastasis, brain metastasis was found. One course of M-VAC therapy brought a complete remission persisting for 7 months. He is alive with no relapse.

  3. Treating wounds in small animals with maggot debridement therapy: a survey of practitioners.

    PubMed

    Sherman, Ronald A; Stevens, Howard; Ng, David; Iversen, Eve

    2007-01-01

    Many small animals succumb to complications of serious wounds. Sometimes infection and sepsis overwhelm the animal; sometimes the costs of intensive care overwhelm the owner. Maggot therapy, a method of wound debridement using live fly larvae, could provide effective, simple, low cost wound care. All eight US veterinarians who had been provided with medicinal maggots were surveyed to determine if this treatment was being used for small animals, and for what indications. At least two dogs, four cats and one rabbit were treated with maggot therapy between 1997 and 2003. The most common indications for using maggot therapy were to effect debridement and control infection, especially if the wound failed to respond to conventional medical and/or surgical therapy. Practitioners reported the treatments as safe and often beneficial. Amputation and euthanasia may have been avoided. It is concluded that maggot therapy may have utility for small animals, and should be evaluated further. PMID:16386439

  4. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    PubMed

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT.

  5. Combination of the vascular targeting agent ZD6126 with boron neutron capture therapy

    SciTech Connect

    Masunaga, Shin-ichiro . E-mail: smasuna@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Suzuki, Minoru; Nagata, Kenji; Maruhashi, Akira; Kinash, Yuko; Ono, Koji

    2004-11-01

    Purpose: The aim of this study was to evaluate the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) in the rodent squamous cell carcinoma (SCC) VII carcinoma model, in combination with boron neutron capture therapy (BNCT). Methods and materials: Sodium borocaptate-{sup 10}B (BSH, 125 mg/kg, i.p.) or l-p-boronophenylalanine-{sup 10}B (BPA, 250 mg/kg, i.p.) was injected into SCC VII tumor-bearing mice, and 15 min later, ZD6126 (100 mg/kg, i.p.) was administered. Then, the {sup 10}B concentrations in tumors and normal tissues were measured by prompt {gamma}-ray spectrometry. On the other hand, for the thermal neutron beam exposure experiment, SCC VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, followed by treatment with a {sup 10}B-carrier and ZD6126 in the same manner as the above-mentioned {sup 10}B pharmacokinetics analyses. To obtain almost similar intratumor {sup 10}B concentrations during neutron exposure, thermal neutron beam irradiation was started from the time point of 30 min after injection of BSH only, 90 min after BSH injection for combination with ZD6126, 120 min after the injection of BPA only, and 180 min after BPA injection for combination with ZD6126. Right after irradiation, the tumors were excised, minced, and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the micronucleus (MN) frequency in cells without BrdU labeling (quiescent [Q] cells) was determined using immunofluorescence staining for BrdU. Meanwhile, the MN frequency in total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU. The clonogenic cell survival assay was also performed in mice given no BrdU. Results: Pharmacokinetics analyses showed that combination with ZD6126 greatly increased the {sup 10}B concentrations in tumors after 60 min after BSH injection and

  6. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    SciTech Connect

    Hawthorne, M. Frederick

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  7. Phlyctenular keratoconjunctivitis – an atypically severe case treated with systemic biologic immunosuppressive therapy

    PubMed Central

    Valério Sequeira Valadares, Joana; Bastos-Carvalho, Ana; Pedroso Franco, José Manuel; Mourão, Ana Filipa; Monteiro-Grillo, Manuel

    2014-01-01

    Purpose: To report an atypically severe and refractory phlyctenular keratoconjunctivitis case treated successfully with systemic biologic immunosuppressive therapy. Methods: A 10-year-old female was followed in the ophthalmology clinic for three years for a severe form of bilateral PKC. The patient was treated for blepharitis and intestinal parasitosis, and underwent topical corticosteroid therapy, followed by subconjunctival injections and systemic corticosteroids with no clinical improvement. An association of topical cyclosporine A and oral methotrexate had no clinical response either. Phlyctenae of the cornea remained evident with neovascularization, progressive peripheral corneal thinning and occasional anterior chamber reaction. Results: The patient was treated with a combination of infliximab and methotrexate and corticosteroid therapy was tapered, with a fast and sustained resolution of the symptoms and corneal signs. Eleven months past initiation of the treatment, the patient remains asymptomatic and without any recurrence of the disease. Conclusion: Phlyctenular keratoconjunctivitis may present with a broad spectrum of symptoms and signs, and its severity varies significantly. In cases of severe PKC, which are refractory to conventional therapy, systemic biologic immunosuppressive therapy may be a valuable alternative.

  8. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    PubMed

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226.

  9. A rat model for the treatment of melanoma metastatic to the brain by means of neutron capture therapy

    SciTech Connect

    Matalka, K.Z.; Bailey, M.Q.; Barth, R.F.; Staubus, A.E.; Adams, D.M.; Soloway, A.H.; James, S.M.; Goodman, J.H. ); Coderre, J.A.; Fairchild, R.G. ); Rofstad, E.K. )

    1991-01-01

    Melanoma metastatic to the brain is a serious clinical problem for which there currently is no satisfactory treatment. Boron neutron capture therapy (BNCT) has been shown by Mishima et al. to be clinically effective in the treatment of cutaneous melanoma using {sup 10}B-enriched boronophenylalaine (BPA) as the capture agent. In the present pilot study we have observed a significant prolongation in survival time of nude rats bearing intracerebral implants of the human melanoma cell line MRA 27 following administration of BPA and neutron irradiation. These findings suggest therapeutic efficacy, but unequivocal proof depends upon confirmation in a more definitive experiment using large numbers of animals with both solitary and multiple implants of melanoma. If our preliminary results are confirmed, then this will lay the groundwork for a clinical study of BNCT for the treatment of melanoma metastatic to the brain. 7 refs., 2 figs., 2 tabs.

  10. Treating Internet Addiction with Cognitive-Behavioral Therapy: A Thematic Analysis of the Experiences of Therapists

    ERIC Educational Resources Information Center

    van Rooij, Antonius J.; Zinn, Mieke F.; Schoenmakers, Tim M.; van de Mheen, Dike

    2012-01-01

    In 2009, one of the major Dutch addiction care organizations initiated a pilot program to explore the possibility of using an existing Cognitive Behavioral Therapy and Motivational Interviewing based treatment program ("Lifestyle Training") to treat internet addiction. The current study evaluates this pilot treatment program by providing a…

  11. Current genome editing tools in gene therapy: new approaches to treat cancer.

    PubMed

    Shuvalov, Oleg; Petukhov, Alexey; Daks, Alexandra; Fedorova, Olga; Ermakov, Alexander; Melino, Gerry; Barlev, Nickolai A

    2015-01-01

    Gene therapy suggests a promising approach to treat genetic diseases by applying genes as pharmaceuticals. Cancer is a complex disease, which strongly depends on a particular genetic make-up and hence can be treated with gene therapy. From about 2,000 clinical trials carried out so far, more than 60% were cancer targeted. Development of precise and effective gene therapy approaches is intimately connected with achievements in the molecular biology techniques. The field of gene therapy was recently revolutionized by the introduction of "programmable" nucleases, including ZFNs, TALENs, and CRISPR, which target specific genomic loci with high efficacy and precision. Furthermore, when combined with DNA transposons for the delivery purposes into cells, these programmable nucleases represent a promising alternative to the conventional viral-mediated gene delivery. In addition to "programmable" nucleases, a new class of TALE- and CRISPR-based "artificial transcription effectors" has been developed to mediate precise regulation of specific genes. In sum, these new molecular tools may be used in a wide plethora of gene therapy strategies. This review highlights the current status of novel genome editing tools and discusses their suitability and perspectives in respect to cancer gene therapy studies.

  12. Reducing the Burden of Difficult-to-Treat Major Depressive Disorder: Revisiting Monoamine Oxidase Inhibitor Therapy

    PubMed Central

    2013-01-01

    Objective: Difficult-to-treat depression (eg, depression with atypical or anxious symptoms, treatment-resistant depression, or depression with frequent recurrence) is a challenging real-world health issue. This critical review of the literature focuses on monoamine oxidase inhibitor (MAOI) therapy and difficult-to-treat forms of depression. Data Sources: A PubMed literature search was performed in November 2012 and refreshed through January 2013 with no date restrictions using key search terms including MAO inhibitor therapy or MAOI and depression and anxiety, atypical, treatment-resistant, recurrent, relapse, or refractory. Study Selection: Articles were selected to summarize the current needs in difficult-to-treat depression as well as the use of MAOI therapies in this area. Results: Two strategies have fallen out of favor in the care of patients with major depressive disorder. The first is the use of MAOI therapy and the second is the proactive recognition of difficult-to-treat depression that may not respond as well to more frequently used antidepressants. The infrequent use of MAOIs stems from the perception that other oral therapies for depression are safer and easier to use than oral MAOIs; however, transdermal delivery is one potential strategy to improve the safety of this class of agents. Although food-related interactions with transdermal delivery of MAOI therapy can be lessened, clinicians still need to be vigilant for drug-drug interactions and serotonin syndrome. Conclusions: Clinicians should consider MAOIs for patients who have had several unsuccessful trials of antidepressants. Guidelines generally reserve MAOIs as third- and fourth-line treatments due to concerns over safety and tolerability; however, transdermal delivery of an MAOI may allay some of the safety and tolerability concerns. Patients should be provided education about MAOIs and their risks. PMID:24511450

  13. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    SciTech Connect

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  14. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  15. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  16. A NEW SINGLE-CRYSTAL FILTERED THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne

    2008-09-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron flux produced at the irradiation location is on the order of 9.5x108 neutrons/cm2-s, with a measured cadmium ratio (Au foils) of 105, indicating a well-thermalized spectrum.

  17. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.

    PubMed

    Saha, Arindom; Abram, David N; Kuhl, Kendra P; Paradis, Jennifer; Crawford, Jenni L; Sasmaz, Erdem; Chang, Ramsay; Jaramillo, Thomas F; Wilcox, Jennifer

    2013-12-01

    This work explores surface changes and the Hg capture performance of brominated activated carbon (AC) pellets, sulfur-treated AC pellets, and sulfur-treated AC fibers upon exposure to simulated Powder River Basin-fired flue gas. Hg breakthrough curves yielded specific Hg capture amounts by means of the breakthrough shapes and times for the three samples. The brominated AC pellets showed a sharp breakthrough after 170-180 h and a capacity of 585 μg of Hg/g, the sulfur-treated AC pellets exhibited a gradual breakthrough after 80-90 h and a capacity of 661 μg of Hg/g, and the sulfur-treated AC fibers showed no breakthrough even after 1400 h, exhibiting a capacity of >9700 μg of Hg/g. X-ray photoelectron spectroscopy was used to analyze sorbent surfaces before and after testing to show important changes in quantification and oxidation states of surface Br, N, and S after exposure to the simulated flue gas. For the brominated and sulfur-treated AC pellet samples, the amount of surface-bound Br and reduced sulfur groups decreased upon Hg capture testing, while the level of weaker Hg-binding surface S(VI) and N species (perhaps as NH4(+)) increased significantly. A high initial concentration of strong Hg-binding reduced sulfur groups on the surface of the sulfur-treated AC fiber is likely responsible for this sorbent's minimal accumulation of S(VI) species during exposure to the simulated flue gas and is linked to its superior Hg capture performance compared to that of the brominated and sulfur-treated AC pellet samples.

  18. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  19. Clinical efficiency of applying low-intensity laser therapy in treating dyscirculatory encephalopathy

    NASA Astrophysics Data System (ADS)

    Putilina, M. V.; Kozlov, V. I.; Vakhtin, V. I.

    2001-04-01

    An investigation was made of applying laser therapy combined with drug preparations in treating 300 patients affected by dyscirculatory encephalopathy. Neurological and neuropsychological examinations together with electroencephalography, rheoencephalography, computerized tomography, and magnetic resonance imaging were used to assess the patients' states prior to and after the treatment. It was found that the combined application of laser therapy and drug preparations produced a more pronounced therapeutic effect as compared with that produced by the separate application of laser therapy and drug preparations. The results obtained allowed us to conclude that the 0.89 micrometers laser infrared radiation increased patients' susceptibility to drugs. Moreover, the combined laser therapy improved the cerebral bloodflow and activated the metabolic and plastic functions of neurons. This decreased or eliminated late complications provoked by the cerebral blood circulation insufficiency.

  20. Exophiala dermatitidis pneumonia successfully treated with long-term itraconazole therapy.

    PubMed

    Mukai, Yutaka; Nureki, Shin-ichi; Hata, Masahiro; Shigenaga, Takehiko; Tokimatsu, Issei; Miyazaki, Eishi; Kadota, Jun-ichi; Yarita, Kyoko; Kamei, Katsuhiko

    2014-07-01

    Exophiala dermatitidis pneumonia is extremely rare. Here we report a case of E. dermatitidis pneumonia successfully treated with long-term itraconazole therapy. A 63-year-old woman without a remarkable medical history developed a dry and chest pain. Chest radiographs revealed consolidation in the middle lobe of the lung. Cytologic examination by bronchoscopy showed filamentous fungi and E. dermatitidis was detected in the bronchoalveolar lavage fluid. After 5 months of itraconazole therapy, her symptoms improved and the area of consolidation diminished. Two weeks after discontinuing the itraconazole therapy, the area of consolidation reappeared. Itraconazole therapy was restarted and continued for 7 months. The abnormal shadow observed on the chest X-ray gradually diminished. Over a 27-month follow-up with periodic examination, there was no relapse and the patient had a favorable clinical course. PMID:24767462

  1. Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus.

    PubMed

    Vanikar, Aruna V; Trivedi, Hargovind L; Thakkar, Umang G

    2016-09-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease causing progressive destruction of pancreatic β cells, ultimately resulting in loss of insulin secretion producing hyperglycemia usually affecting children. Replacement of damaged β cells by cell therapy can treat it. Currently available strategies are insulin replacement and islet/pancreas transplantation. Unfortunately these offer rescue for variable duration due to development of autoantibodies. For pancreas/islet transplantation a deceased donor is required and various shortfalls of treatment include quantum, cumbersome technique, immune rejection and limited availability of donors. Stem cell therapy with assistance of cellular reprogramming and β-cell regeneration can open up new therapeutic modalities. The present review describes the history and current knowledge of T1DM, evolution of cell therapies and different cellular therapies to cure this condition. PMID:27424148

  2. Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus.

    PubMed

    Vanikar, Aruna V; Trivedi, Hargovind L; Thakkar, Umang G

    2016-09-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease causing progressive destruction of pancreatic β cells, ultimately resulting in loss of insulin secretion producing hyperglycemia usually affecting children. Replacement of damaged β cells by cell therapy can treat it. Currently available strategies are insulin replacement and islet/pancreas transplantation. Unfortunately these offer rescue for variable duration due to development of autoantibodies. For pancreas/islet transplantation a deceased donor is required and various shortfalls of treatment include quantum, cumbersome technique, immune rejection and limited availability of donors. Stem cell therapy with assistance of cellular reprogramming and β-cell regeneration can open up new therapeutic modalities. The present review describes the history and current knowledge of T1DM, evolution of cell therapies and different cellular therapies to cure this condition.

  3. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  4. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system.

  5. Clinical results evaluation of dentinary hypersensitivity patients treated with laser therapy

    NASA Astrophysics Data System (ADS)

    Brugnera, Aldo, Jr.; Cruz, Fabio M.; Zanin, Fatima A. A.; Pecora, Jesus D.

    1999-05-01

    The purpose of this investigation was to show the percentage of cured patients treated with low level laser therapy clinically diagnosed dentinary hypersensitivity. The authors report on this investigation more than 300 human teeth treated at the Laser Center of Camilo Castelo Branco University during the years of 1995, 1996 and 1997. Pulpal vitality was verified using thermal tests, and only reversible process was treated. The teeth were dried with cotton pellets and laser beam was applied, using He-Ne (632.8 nm)laser, and ArGaAl Lasers(780 nm and 830 nm). All teeth received 4 joules/session, and were treated until 5 sessions. 79.13% of our patients were treated in 3 sessions with success; 8.58% were cure in 4 sessions; and 4.29% were successfully treated in 5 sessions, obtaining a 92% of success. The authors concluded that low level laser therapy is an effective and useful treatment to dentinary hypersensibility.

  6. Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer.

    PubMed

    Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro

    2014-03-01

    New boron-containing chlorin derivatives 9 and 13 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized from photoprotoporphyrin IX dimethyl ester (2) and L-4-boronophenylalanine-related compounds. The in vivo biodistribution and clearance of 9 and 13 were investigated in tumor-bearing mice. The time to maximum accumulation of compound 13 in tumor tissue was one-fourth of that of compound 9, and compound 13 showed rapid clearance from normal tissues within 24h after injection. The in vivo therapeutic efficacy of PDT using 13 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3h after injection of 13. Tumor growth was significantly inhibited by PDT using 13. These results suggested that 13 might be a good candidate for both PDT and BNCT of cancer.

  7. Direct health care costs of treating seasonal affective disorder: a comparison of light therapy and fluoxetine.

    PubMed

    Cheung, Amy; Dewa, Carolyn; Michalak, Erin E; Browne, Gina; Levitt, Anthony; Levitan, Robert D; Enns, Murray W; Morehouse, Rachel L; Lam, Raymond W

    2012-01-01

    Objective. To compare the direct mental health care costs between individuals with Seasonal Affective Disorder randomized to either fluoxetine or light therapy. Methods. Data from the CANSAD study was used. CANSAD was an 8-week multicentre double-blind study that randomized participants to receive either light therapy plus placebo capsules or placebo light therapy plus fluoxetine. Participants were aged 18-65 who met criteria for major depressive episodes with a seasonal (winter) pattern. Mental health care service use was collected for each subject for 4 weeks prior to the start of treatment and for 4 weeks prior to the end of treatment. All direct mental health care services costs were analysed, including inpatient and outpatient services, investigations, and medications. Results. The difference in mental health costs was significantly higher after treatment for the light therapy group compared to the medication group-a difference of $111.25 (z = -3.77, P = 0.000). However, when the amortized cost of the light box was taken into the account, the groups were switched with the fluoxetine group incurring greater direct care costs-a difference of $75.41 (z = -2.635, P = 0.008). Conclusion. The results suggest that individuals treated with medication had significantly less mental health care cost after-treatment compared to those treated with light therapy.

  8. Are patients with inflammatory eye disease treated with systemic immunosuppressive therapy at increased risk of malignancy?

    PubMed Central

    2013-01-01

    The purpose of this study is to review the literature on the risk of malignancy in patients with inflammatory eye disease (IED) treated with systemic immunosuppressive (IS) therapy. Relevant databases in transplant medicine, autoimmune diseases and literature regarding uveitis and scleritis were reviewed. Literature with regards systemic IS therapy in transplant recipients and patients with autoimmune diseases revealed a significant increase in malignancies, especially non-melanocytic skin cancers and lymphomas. Studies of patients with IED were limited in number and scope, with no studies adequately evaluating the incidence of malignancy in these patients. Difficulties associated with the evaluation of the risk of malignancy associated with IS therapy in patients with IED include the heterogeneity of the disease and treatment regimens as well as the low frequency of IED, its variable severity and the lack of adequate long-term follow-up studies. Systemic IS therapy is an important therapeutic option in the treatment of patients with severe IED. A well-designed, comprehensive, multi-centre long-term follow-up study is required to evaluate the risk of malignancy in patients with specific IED diseases treated with defined systemic IS therapy. Until such evidence is available, we recommend the adoption of preventative strategies to help minimise the risk of malignancy in such patients. PMID:23724805

  9. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  10. Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers.

    PubMed

    Koganei, Hayato; Ueno, Manabu; Tachikawa, Shoji; Tasaki, Lisa; Ban, Hyun Seung; Suzuki, Minoru; Shiraishi, Kouichi; Kawano, Kumi; Yokoyama, Masayuki; Maitani, Yoshie; Ono, Koji; Nakamura, Hiroyuki

    2013-01-16

    Mercaptoundecahydrododecaborate (BSH)-encapsulating 10% distearoyl boron lipid (DSBL) liposomes were developed as a boron delivery vehicle for neutron capture therapy. The current approach is unique because the liposome shell itself possesses cytocidal potential in addition to its encapsulated agents. BSH-encapsulating 10% DSBL liposomes have high boron content (B/P ratio: 2.6) that enables us to prepare liposome solution with 5000 ppm boron concentration. BSH-encapsulating 10% DSBL liposomes displayed excellent boron delivery efficacy to tumor: boron concentrations reached 174, 93, and 32 ppm at doses of 50, 30, and 15 mg B/kg, respectively. Magnescope was also encapsulated in the 10% DSBL liposomes and the real-time biodistribution of the Magnescope-encapsulating DSBL liposomes was measured in a living body using MRI. Significant antitumor effect was observed in mice injected with BSH-encapsulating 10% DSBL liposomes even at the dose of 15 mg B/kg; the tumor completely disappeared three weeks after thermal neutron irradiation ((1.5-1.8) × 10(12) neutrons/cm(2)). The current results enabled us to reduce the total dose of liposomes to less than one-fifth compared with that of the BSH-encapsulating liposomes without reducing the efficacy of boron neutron capture therapy (BNCT).

  11. The radiobiological principles of boron neutron capture therapy: a critical review.

    PubMed

    Hopewell, J W; Morris, G M; Schwint, A; Coderre, J A

    2011-12-01

    The radiobiology of the dose components in a BNCT exposure is examined. The effect of exposure time in determining the biological effectiveness of γ-rays, due to the repair of sublethal damage, has been largely overlooked in the application of BNCT. Recoil protons from fast neutrons vary in their relative biological effectiveness (RBE) as a function of energy and tissue endpoint. Thus the energy spectrum of a beam will influence the RBE of this dose component. Protons from the neutron capture reaction in nitrogen have not been studied but in practice protons from nitrogen capture have been combined with the recoil proton contribution into a total proton dose. The relative biological effectiveness of the products of the neutron capture reaction in boron is derived from two factors, the RBE of the short range particles and the bio-distribution of boron, referred to collectively as the compound biological effectiveness factor. Caution is needed in the application of these factors for different normal tissues and tumors. PMID:21543233

  12. Treating Dyspnea: Is Oxygen Therapy the Best Option for All Patients?

    PubMed

    Baldwin, Jennifer; Cox, Jaclyn

    2016-09-01

    The high prevalence of dyspnea at the end of life carries with it significant health and economic burden. Given the complex mechanism of dyspnea, management should be tailored to the individual patient experience and the underlying disease process. No clear role for supplemental oxygen has been established in the treatment of dyspnea in patients without no hypoxemia, and providers should consider the negative effects of oxygen supplementation. Symptom control with medications, exercise, behavioral therapy, treatment of associated anxiety, and the use of fans may be more effective and less costly than oxygen therapy. Further research is needed in the assessment and treatment of this symptom to more effectively treat patients. PMID:27542431

  13. Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy

    SciTech Connect

    Lingos, T.I.; Recht, A.; Vicini, F.; Abner, A.; Silver, B.; Harris, J.R. )

    1991-07-01

    The likelihood of radiation pneumonitis and factors associated with its development in breast cancer patients treated with conservative surgery and radiation therapy have not been well established. To assess these, the authors retrospectively reviewed 1624 patients treated between 1968 and 1985. Median follow-up for patients without local or distant failure was 77 months. Patients were treated with either tangential fields alone (n = 508) or tangents with a third field to the supraclavicular (SC) or SC-axillary (AX) region (n = 1116). Lung volume treated in the tangential fields was generally limited by keeping the perpendicular distance (demagnified) at the isocenter from the deep field edges to the posterior chest wall (CLD) to 3 cm or less. Seventeen patients with radiation pneumonitis were identified (1.0%). Radiation pneumonitis was diagnosed when patients presented with cough (15/17, 88%), fever (9/17, 53%), and/or dyspnea (6/17, 35%) and radiographic changes (17/17) following completion of RT. Radiographic infiltrates corresponded to treatment portals in all patients, and in 12 of the 17 patients, returned to baseline within 1-12 months. Five patients had permanent scarring on chest X ray. No patient had late or persistent pulmonary symptoms. The incidence of radiation pneumonitis was correlated with the combined use of chemotherapy (CT) and a third field. Three percent (11/328) of patients treated with a 3-field technique who received chemotherapy developed radiation pneumonitis compared to 0.5% (6 of 1296) for all other patients (p = 0.0001). When patients treated with a 3-field technique received chemotherapy concurrently with radiation therapy, the incidence of radiation pneumonitis was 8.8% (8/92) compared with 1.3% (3/236) for those who received sequential chemotherapy and radiation therapy (p = 0.002).

  14. Acupuncture in Treating Dry Mouth Caused By Radiation Therapy in Patients With Head and Neck Cancer | Division of Cancer Prevention

    Cancer.gov

    RATIONALE: Acupuncture may help relieve dry mouth caused by radiation therapy. PURPOSE: This randomized phase III trial is studying to see how well one set of acupuncture points work in comparison to a different set of acupuncture points or standard therapy in treating dry mouth caused by radiation therapy in patients with head and neck cancer. |

  15. “Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    SciTech Connect

    Ana J. Molinari; Emiliano C. C. Pozzi; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Silvia I. Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz; Veronica A. Trivillin; Amanda E. Schwint

    2011-04-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel “Tandem” Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with “Tandem BNCT”, i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly [(BPA + GB-10)-BNCT] was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. “Tandem” BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  16. The Role of Hypofractionated Radiation Therapy with Photons, Protons, and Heavy Ions for Treating Extracranial Lesions

    PubMed Central

    Laine, Aaron Michael; Pompos, Arnold; Timmerman, Robert; Jiang, Steve; Story, Michael D.; Pistenmaa, David; Choy, Hak

    2016-01-01

    Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation-induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal, and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently, there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and, in addition, there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward. PMID:26793619

  17. Maggot debridement therapy as primary tool to treat chronic wound of animals

    PubMed Central

    Choudhary, Vijayata; Choudhary, Mukesh; Pandey, Sunanda; Chauhan, Vandip D.; Hasnani, J. J.

    2016-01-01

    Maggot debridement therapy (MDT) is a safe, effective, and controlled method ofhealing of chronic wounds by debridement and disinfection. In this therapy live, sterile maggots of green bottle fly, Lucilia (Phaenicia) sericata are used, as they prefernecrotic tissues over healthy for feeding. Since centuries, MDT is used in humanbeings to treat chronic wounds. Lately, MDT came out as a potent medical aid in animals. In animals, although, this therapy is still limited and clinical studies are few. However, with the increasing antibiotic resistance and chronic wound infections in veterinary medicine, maggot therapy may even become the first line of treatment for some infections. This paper will present a brief discussion of MDT and its role in veterinary medicine that may add one more treatment method to utilize in non-healing wounds of animals and overcome the use of amputation and euthanasia. The objective of this review paper is to assemble relevant literature on maggot therapy to form a theoretical foundation from which further steps toward clinical use of maggot therapy in animals for chronic wounds can be taken. PMID:27182137

  18. Maggot debridement therapy as primary tool to treat chronic wound of animals.

    PubMed

    Choudhary, Vijayata; Choudhary, Mukesh; Pandey, Sunanda; Chauhan, Vandip D; Hasnani, J J

    2016-04-01

    Maggot debridement therapy (MDT) is a safe, effective, and controlled method ofhealing of chronic wounds by debridement and disinfection. In this therapy live, sterile maggots of green bottle fly, Lucilia (Phaenicia) sericata are used, as they prefernecrotic tissues over healthy for feeding. Since centuries, MDT is used in humanbeings to treat chronic wounds. Lately, MDT came out as a potent medical aid in animals. In animals, although, this therapy is still limited and clinical studies are few. However, with the increasing antibiotic resistance and chronic wound infections in veterinary medicine, maggot therapy may even become the first line of treatment for some infections. This paper will present a brief discussion of MDT and its role in veterinary medicine that may add one more treatment method to utilize in non-healing wounds of animals and overcome the use of amputation and euthanasia. The objective of this review paper is to assemble relevant literature on maggot therapy to form a theoretical foundation from which further steps toward clinical use of maggot therapy in animals for chronic wounds can be taken.

  19. Estrogen therapy increases BDNF expression and improves post-stroke depression in ovariectomy-treated rats

    PubMed Central

    Su, Qiaoer; Cheng, Yifan; Jin, Kunlin; Cheng, Jianhua; Lin, Yuanshao; Lin, Zhenzhen; Wang, Liuqing; Shao, Bei

    2016-01-01

    The present study investigated the effect of exogenous estrogen on post-stroke depression. Rats were exposed to chronic mild stress following middle cerebral artery occlusion. The occurrence of post-stroke depression was evaluated according to the changes in preference for sucrose and performance in a forced swimming test. Estrogen therapy significantly improved these neurological symptoms, indicating that estrogen is effective in treating post-stroke depression. Increased brain-derived neurotrophic factor (BDNF) expression was reported in the hippocampus of rats that had been treated with estrogen for two weeks, suggesting that BDNF expression may be an important contributor to the improvement of post-stroke depression that is observed following estrogen therapy.

  20. Estrogen therapy increases BDNF expression and improves post-stroke depression in ovariectomy-treated rats

    PubMed Central

    Su, Qiaoer; Cheng, Yifan; Jin, Kunlin; Cheng, Jianhua; Lin, Yuanshao; Lin, Zhenzhen; Wang, Liuqing; Shao, Bei

    2016-01-01

    The present study investigated the effect of exogenous estrogen on post-stroke depression. Rats were exposed to chronic mild stress following middle cerebral artery occlusion. The occurrence of post-stroke depression was evaluated according to the changes in preference for sucrose and performance in a forced swimming test. Estrogen therapy significantly improved these neurological symptoms, indicating that estrogen is effective in treating post-stroke depression. Increased brain-derived neurotrophic factor (BDNF) expression was reported in the hippocampus of rats that had been treated with estrogen for two weeks, suggesting that BDNF expression may be an important contributor to the improvement of post-stroke depression that is observed following estrogen therapy. PMID:27602095

  1. Defining the Role of Cognitive Behavioral Therapy in Treating Chronic Low Back Pain: An Overview.

    PubMed

    Hanscom, David A; Brox, Jens Ivar; Bunnage, Ray

    2015-12-01

    Study Design Narrative review of the literature. Objectives Determine if the term cognitive behavioral therapy (CBT) is useful in clinical care and research. What literature supports these variables being relevant to the experience of chronic pain? What effects of CBT in treating these factors have been documented? What methods and platforms are available to administer CBT? Methods Chronic low back pain (CLBP) is a complex neurologic disorder with many components. CBT refers to a broad family of therapies that address both maladaptive thoughts and behaviors. There are several ways to deliver it. CLBP was broken into five categories that affect the perception of pain, and the literature was reviewed to see the effects of CBT on these variables. Results The term cognitive behavioral therapy has little use in future research because it covers such a wide range of therapies. CBT should always be defined by the problem it is intended to solve. The format and method of delivery should be defined because they have implications for outcomes. They are readily available even at the primary care level. The effectiveness of CBT is unquestioned regarding its effectiveness in treating each of the variables that affect CLBP. It is unclear why it is not more widely implemented. Conclusions CBT represents a family of therapies that are effective for a wide range of problems, many of which coexist with and influence CLBP. Each of the variables can be improved with focused CBT. Early, widespread adoption of CBT in treating and preventing CLBP is recommended. Future research and clinical care should focus on strategies to operationalize these well-documented treatments utilizing a public health approach. PMID:26682100

  2. Defining the Role of Cognitive Behavioral Therapy in Treating Chronic Low Back Pain: An Overview

    PubMed Central

    Hanscom, David A.; Brox, Jens Ivar; Bunnage, Ray

    2015-01-01

    Study Design Narrative review of the literature. Objectives Determine if the term cognitive behavioral therapy (CBT) is useful in clinical care and research. What literature supports these variables being relevant to the experience of chronic pain? What effects of CBT in treating these factors have been documented? What methods and platforms are available to administer CBT? Methods Chronic low back pain (CLBP) is a complex neurologic disorder with many components. CBT refers to a broad family of therapies that address both maladaptive thoughts and behaviors. There are several ways to deliver it. CLBP was broken into five categories that affect the perception of pain, and the literature was reviewed to see the effects of CBT on these variables. Results The term cognitive behavioral therapy has little use in future research because it covers such a wide range of therapies. CBT should always be defined by the problem it is intended to solve. The format and method of delivery should be defined because they have implications for outcomes. They are readily available even at the primary care level. The effectiveness of CBT is unquestioned regarding its effectiveness in treating each of the variables that affect CLBP. It is unclear why it is not more widely implemented. Conclusions CBT represents a family of therapies that are effective for a wide range of problems, many of which coexist with and influence CLBP. Each of the variables can be improved with focused CBT. Early, widespread adoption of CBT in treating and preventing CLBP is recommended. Future research and clinical care should focus on strategies to operationalize these well-documented treatments utilizing a public health approach. PMID:26682100

  3. Combination of internal radiation therapy and hyperthermia to treat liver cancer

    SciTech Connect

    Grady, E.D.; McLaren, J.; Auda, S.P.; McGinley, P.H.

    1983-09-01

    Sixteen patients were treated for liver cancer (primary and metastatic) by a combination of internal radiation therapy with intra-arterial yttrium 90 microspheres and regional hyperthermia with electromagnetic radiation. Four patients have their liver disease apparently controlled; two had a partial regression of more than 50%; and two had a partial regression of less than 50%. The complications consisted of one case of radiation hepatitis and one of peptic ulcer.

  4. Use of Differentiated Pluripotent Stem Cells in Replacement Therapy for Treating Disease

    PubMed Central

    Fox, Ira J.; Daley, George Q.; Goldman, Steven A.; Huard, Johnny; Kamp, Timothy J.; Trucco, Massimo

    2015-01-01

    Patient-derived pluripotent stem cells (PSC) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically impact blood component and hematopoietic stem cell therapies, and should facilitate treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types are needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful cell transplantation will require optimizing the best cell type and site for engraftment, overcoming limitations to cell migration and tissue integration, and occasionally needing to control immunologic reactivity. Collaboration among scientists, clinicians, and industry is critical for generating new stem cell-based therapies. PMID:25146295

  5. Can Sex Partner Therapy Treat Sexual Distress and Dysfunction in Transgender Patients After Gender Confirmation Surgery?

    PubMed

    Tarsha, Amir Adam; Xantus, Aruditi; Arana, Rebecca

    2016-10-01

    Sex surrogacy, or sex partner therapy (SPT), is a form of therapy that aims to increase patients' comfort and confidence in sexual activity through a supportive, often sexually (though not necessarily) intimate connection with a trained surrogate partner/sex therapist. The therapy has been used to treat various disabilities, sexual dysfunctions, and anxieties related to sexual activity. Recently, there has been discussion about using SPT as a treatment for sexual distress and dysfunction in transgender patients who have undergone gender confirmation surgery (GCS). The use of SPT in this patient population has not been studied. The purpose of this letter to the editor is to call attention to and encourage discussion about the potential benefits and risks of using SPT as a treatment modality for sexual distress and dysfunction in post-GCS patients. PMID:27028584

  6. A case of metastatic bladder cancer in both lungs treated with korean medicine therapy alone.

    PubMed

    Lee, Dong-Hyun; Kim, Sung-Su; Seong, Shin; Woo, Chang-Ryoul; Han, Jae-Bok

    2014-05-01

    This case report is aimed to investigate the effects of Korean medicine therapy (KMT) including oral herbal medicine and herb nebulizer therapy in treating metastatic bladder cancer in the lungs. A 74-year-old man was diagnosed with metastatic bladder cancer in both lungs in August 2013. He refused any chemotherapy and was admitted to our hospital in a much progressed state on January 11, 2014. Since then, he was treated with KMT until May 17, 2014. The main oral herbal medicines were Hyunamdan made of heat-processed ginseng, Hangamdan S made of Cordyceps militaris, Panax ginseng radix, Commiphora myrrha, calculus bovis, margarita, Boswellia carteri, Panax notoginseng radix and Cremastra appendiculata tuber, and nebulizer therapy with Soram nebulizer solution made of wild ginseng and Cordyceps sinensis distillate. Their effect was evaluated considering the change of the main symptoms and using serial chest X-ray. The size and number of multiple metastatic nodules in both lungs were markedly decreased and the symptoms had disappeared. These results suggest that KMT can be an effective method to treat metastatic bladder cancer in the lungs. PMID:25232323

  7. Bone health in adults treated with endocrine therapy for early breast or prostate cancer.

    PubMed

    Van Poznak, Catherine H

    2015-01-01

    Bone is a hormonally responsive organ. Sex hormones and calcium regulating hormones, including parathyroid hormone, 1-25 dihydroxy vitamin D, and calcitonin, have effects on bone resorption and bone deposition. These hormones affect both bone quality and bone quantity. The sex hormone estrogen inhibits bone resorption, and estrogen therapy has been developed to prevent and treat osteoporosis. Androgens are an important source of estrogen through the action of the enzyme aromatase and may themselves stimulate bone formation. Hence, the sex steroids play a role in bone metabolism. Breast cancer and prostate cancer are frequently hormonally responsive and may be treated with antiestrogens or antiandrogens respectfully. In addition, chemotherapy and supportive medications may alter the patient's endocrine system. In general, the suppression of sex hormones has a predictable affect on bone health, as seen by loss of bone mineral density and increased risk of fragility fractures. The bone toxicity of cancer-directed endocrine therapy can be mitigated through screening, counseling on optimization of calcium and vitamin D intake, exercise, and other lifestyle/behavioral actions, as well as the use of medications when the fracture risk is high. Maintaining bone health in patients who are treated with endocrine therapy for breast and prostate cancer is the focus of this review.

  8. Bone health in adults treated with endocrine therapy for early breast or prostate cancer.

    PubMed

    Van Poznak, Catherine H

    2015-01-01

    Bone is a hormonally responsive organ. Sex hormones and calcium regulating hormones, including parathyroid hormone, 1-25 dihydroxy vitamin D, and calcitonin, have effects on bone resorption and bone deposition. These hormones affect both bone quality and bone quantity. The sex hormone estrogen inhibits bone resorption, and estrogen therapy has been developed to prevent and treat osteoporosis. Androgens are an important source of estrogen through the action of the enzyme aromatase and may themselves stimulate bone formation. Hence, the sex steroids play a role in bone metabolism. Breast cancer and prostate cancer are frequently hormonally responsive and may be treated with antiestrogens or antiandrogens respectfully. In addition, chemotherapy and supportive medications may alter the patient's endocrine system. In general, the suppression of sex hormones has a predictable affect on bone health, as seen by loss of bone mineral density and increased risk of fragility fractures. The bone toxicity of cancer-directed endocrine therapy can be mitigated through screening, counseling on optimization of calcium and vitamin D intake, exercise, and other lifestyle/behavioral actions, as well as the use of medications when the fracture risk is high. Maintaining bone health in patients who are treated with endocrine therapy for breast and prostate cancer is the focus of this review. PMID:25993224

  9. A Case of Metastatic Bladder Cancer in Both Lungs Treated with Korean Medicine Therapy Alone

    PubMed Central

    Lee, Dong-Hyun; Kim, Sung-Su; Seong, Shin; Woo, Chang-Ryoul; Han, Jae-Bok

    2014-01-01

    Abstract This case report is aimed to investigate the effects of Korean medicine therapy (KMT) including oral herbal medicine and herb nebulizer therapy in treating metastatic bladder cancer in the lungs. A 74-year-old man was diagnosed with metastatic bladder cancer in both lungs in August 2013. He refused any chemotherapy and was admitted to our hospital in a much progressed state on January 11, 2014. Since then, he was treated with KMT until May 17, 2014. The main oral herbal medicines were Hyunamdan made of heat-processed ginseng, Hangamdan S made of Cordyceps militaris, Panax ginseng radix, Commiphora myrrha, calculus bovis, margarita, Boswellia carteri, Panax notoginseng radix and Cremastra appendiculata tuber, and nebulizer therapy with Soram nebulizer solution made of wild ginseng and Cordyceps sinensis distillate. Their effect was evaluated considering the change of the main symptoms and using serial chest X-ray. The size and number of multiple metastatic nodules in both lungs were markedly decreased and the symptoms had disappeared. These results suggest that KMT can be an effective method to treat metastatic bladder cancer in the lungs. PMID:25232323

  10. A case of metastatic bladder cancer in both lungs treated with korean medicine therapy alone.

    PubMed

    Lee, Dong-Hyun; Kim, Sung-Su; Seong, Shin; Woo, Chang-Ryoul; Han, Jae-Bok

    2014-05-01

    This case report is aimed to investigate the effects of Korean medicine therapy (KMT) including oral herbal medicine and herb nebulizer therapy in treating metastatic bladder cancer in the lungs. A 74-year-old man was diagnosed with metastatic bladder cancer in both lungs in August 2013. He refused any chemotherapy and was admitted to our hospital in a much progressed state on January 11, 2014. Since then, he was treated with KMT until May 17, 2014. The main oral herbal medicines were Hyunamdan made of heat-processed ginseng, Hangamdan S made of Cordyceps militaris, Panax ginseng radix, Commiphora myrrha, calculus bovis, margarita, Boswellia carteri, Panax notoginseng radix and Cremastra appendiculata tuber, and nebulizer therapy with Soram nebulizer solution made of wild ginseng and Cordyceps sinensis distillate. Their effect was evaluated considering the change of the main symptoms and using serial chest X-ray. The size and number of multiple metastatic nodules in both lungs were markedly decreased and the symptoms had disappeared. These results suggest that KMT can be an effective method to treat metastatic bladder cancer in the lungs.

  11. Brainstem Infarction and Panuveitis due to Sarcoidosis Successfully Treated with Steroid Pulse Therapy

    PubMed Central

    Yoshida-Hata, Natsuyo; Yashiro, Shigeko; Arai, Noritoshi; Takeuchi, Sousuke

    2012-01-01

    A 36-year-old man visited our hospital because of blurred vision and redness of the conjunctiva. Slit-lamp examination showed panuveitis. Two days later, he suddenly experienced dizziness, speech disturbance, paralysis of his right extremities, and gait disturbances. Neurological examinations suggested that his symptoms were caused by a left lateral medullary lesion. He also had erythema mainly on his trunk. Magnetic resonance imaging (MRI) of his brain demonstrated a small infarct on the left side of the medulla oblongata. Clinical presentation and MRI findings were consistent with the diagnosis of a Wallenberg's syndrome. He also had bilateral hilar lymphadenopathy. A skin biopsy showed granulomatous nodular dermatitis compatible with sarcoidosis. He was treated with steroid pulse therapy and his neurological and ocular symptoms immediately improved. Only seven similar cases of intracranical sarcoidosis have been reported, but none had been treated with steroid pulse therapy. We recommend that steroid pulse therapy be considered to treat patients with sarcoidosis with signs of lesions in the central nervous system. PMID:22431930

  12. Use of nude mice in experimental neutron capture therapy with 10B-BPA

    SciTech Connect

    Tamaoki, N.; Ueda, M.; Tamauchi, S.; Yamamoto, K.; Mishima, Y. )

    1989-07-01

    Mouse B16 melanoma allografts in nude mice were successfully treated by thermal neutron irradiation after IP injection of 10B-paraboronophenylalanine hydrochloride. The tumor growth was significantly suppressed for 4 weeks after irradiation, compared with animals given neutron irradiation alone. Tumor-bearing nude mice were shown to be useful for evaluating the treatment for melanoma.

  13. Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium.

    PubMed

    Morris, G M; Coderre, J A; Hopewell, J W; Micca, P L; Rezvani, M

    1994-08-01

    The effects of boron neutron capture irradiation employing either BPA or BSH as neutron capture agents has been assessed using the dorsal skin of Fischer 344 rats. Pharmacokinetic studies, using prompt gamma spectrometry, revealed comparable levels of boron-10 (10B) in blood and skin after the intravenous infusion of BSH (100 mg/kg body wt.). The 10B content of blood (12.0 +/- 0.5 micrograms/g) was slightly higher than that of skin (10.0 +/- 0.5 micrograms/g) after oral dosing with BPA. Biphasic skin reactions were observed after irradiation with the thermal neutron beam alone or in combination with BPA or BSH. The time of onset of the first phase of the skin reaction, moist desquamation, was approximately 2 weeks. The time at which the second-wave skin reaction, dermal necrosis, became evident was dose-related and occurred after a latent interval of > or = 24 weeks, well after the acute epithelial reaction had healed. The incidence of both phases of skin damage was also dose-related. The radiation doses required to produce skin damage in 50% of skin sites (ED50 values) were calculated from dose-effect curves and these values were used to determine relative biological effectiveness (RBE) and compound biological effectiveness (CBE) factors for both moist desquamation and dermal necrosis. It was concluded on the basis of these calculations that the microdistribution of the two neutron capture agents had a critical bearing on the overall biological effect after thermal neutron activation. BSH, which was possibly excluded from the cytoplasm of epidermal cells, had a low CBE factor value (0.56 +/- 0.06) while BPA, which may be selectively accumulated in epidermal cells had a very high CBE factor (3.74 +/- 0.7). For the dermal reaction, where vascular endothelial cells represent the likely target cell population, the CBE factor values were comparable, at 0.73 +/- 0.42 and 0.86 +/- 0.08 for BPA ad BSH, respectively.

  14. Successful therapy with tonsillectomy plus pulse therapy for the relapse of pediatric IgA nephropathy treated with multi-drugs combination therapy.

    PubMed

    Sakai, Nobuko; Kawasaki, Yukihiko; Waragai, Tomoko; Oikawa, Tomoko; Kaneko, Masatoshi; Sato, Tomoko; Suyama, Kazuhide; Hosoya, Mitsuaki

    2016-06-01

    Immunoglobulin A nephropathy (IgAN) is the most common form of chronic glomerulonephritis worldwide. In Japan, the treatment for use as an initial therapy was established in Guidelines for the Treatment of Childhood IgA nephropathy; however, no rescue therapy for recurrent or steroid-resistant pediatric IgAN was established. We report here a 15-year-old boy with severe IgAN, who was treated with combination therapy involving prednisolone, mizoribine, warfarin, and dilazep dihydrochloride for 2 years. The response to the combination therapy was good and both proteinuria and hematuria disappeared. The pathological findings at the second renal biopsy were improved and PSL was discontinued. However, due to nonadherence to the treatment regimen and tonsillitis, macrohematuria and an increase of proteinuria were again observed and the pathological findings at the third renal biopsy showed clear deterioration. The patient was, therefore, diagnosed with recurrent IgAN. Tonsillectomy plus methylprednisolone pulse therapy (TMP) was performed as a rescue therapy for the recurrence of severe IgAN. Both the proteinuria or hematuria subsequently disappeared, and no proteinuria or hematuria has been observed and kidney function has remained normal during a 5-year follow-up. The patient experienced no severe side effects associated with the drug regimens. In conclusion, our case suggests that TMP may be an effective and useful rescue therapy for recurrent IgAN after multi-drug combination therapy. PMID:27210310

  15. Overbite and overjet correction in a Class II, division 1 sample treated with Edgewise therapy.

    PubMed

    Hellekant, M; Lagerström, L; Gleerup, A

    1989-05-01

    The purpose of this study was to compare the effect of overjet and overbite correction in non-extraction and extraction therapy in a sample of Class II malocclusions treated with the Edgewise appliance. The subjects were 20 children treated without extraction and 20 children treated with extraction of the four first premolars. During the post-treatment period a relapse of overjet and overbite occurred in both groups. However, there was a beneficial net effect of overjet and overbite correction in both groups with no significant difference between the two groups. The study showed that mandibular intercanine width, space conditions in the lower jaw and mandibular incisor position were important factors in treatment planning.

  16. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    SciTech Connect

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  17. Improved monitoring system of neutron flux during boron-neutron capture therapy

    SciTech Connect

    Harasawa, S.; Nakamoto, A.; Hayakawa, Y.; Egawa, J.

    1981-10-01

    Continuous and simultaneous monitoring of neutron flux in the course of a boron-neutron capture operation on a brain tumor has been achieved using a new monitoring system. A silicon surface barrier diode mounted with /sup 6/LiF instead of the previously reported borax is used to sense neutrons. The pulse heights of /sup 3/H and ..cap alpha.. particles from /sup 6/Li(n, ..cap alpha..)/sup 2/H reaction are sufficiently high and well separated from noises due to ..gamma.. rays. The effect of pulse-height reduction due to the radiation damage of the diode thus becomes smaller, permitting continuous monitoring. The relative error of the monitoring is within 2% over 5 hr for a neutron-flux density of 2 x 10/sup 9/ n/cm/sup 2/ sec.

  18. Stereotactic Body Radiation Therapy for Patients With Lung Cancer Previously Treated With Thoracic Radiation

    SciTech Connect

    Kelly, Patrick; Balter, Peter A.; Rebueno, Neal; Sharp, Hadley J.; Liao Zhongxing; Komaki, Ritsuko; Chang, Joe Y.

    2010-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) provides excellent local control with acceptable toxicity for patients with early-stage non-small cell lung cancer. However, the efficacy and safety of SBRT for patients previously given thoracic radiation therapy is not known. In this study, we retrospectively reviewed outcomes after SBRT for recurrent disease among patients previously given radiation therapy to the chest. Materials and Methods: A search of medical records for patients treated with SBRT to the thorax after prior fractionated radiation therapy to the chest at The University of Texas M. D. Anderson Cancer Center revealed 36 such cases. The median follow-up time after SBRT was 15 months. The endpoints analyzed were overall survival, local control, and the incidence and severity of treatment-related toxicity. Results: SBRT provided in-field local control for 92% of patients; at 2 years, the actuarial overall survival rate was 59%, and the actuarial progression-free survival rate was 26%, with the primary site of failure being intrathoracic relapse. Fifty percent of patients experienced worsening of dyspnea after SBRT, with 19% requiring oxygen supplementation; 30% of patients experienced chest wall pain and 8% Grade 3 esophagitis. No Grade 4 or 5 toxic effects were noted. Conclusions: SBRT can provide excellent in-field tumor control in patients who have received prior radiation therapy. Toxicity was significant but manageable. The high rate of intrathoracic failure indicates the need for further study to identify patients who would derive the most benefit from SBRT for this purpose.

  19. Treating cancer patients. Practical monitoring and management of therapy-related complications.

    PubMed Central

    Brigden, M.; McKenzie, M.

    2000-01-01

    OBJECTIVE: To review investigation and management of some common long-term complications associated with cancer chemotherapy and radiation therapy. QUALITY OF EVIDENCE: Databases searched using MeSH key words "cancer chemotherapy," "cancer chemotherapy complications," "radiation therapy," and "radiation therapy complications" included Ovid and CANCERLIT. Overall the literature in this area is not strong; treatment guidelines and consensus conferences generally are lacking. Recommendations in this paper are mainly based on the results of individual studies and case reports, as few randomized controlled trials have been performed. Where appropriate, recommendations incorporate results of published treatment guidelines and consensus conferences. MAIN MESSAGE: For most solid tumours, patients should be most frequently monitored during the first 3 years after completing initial treatment for cure. Follow-up monitoring usually incorporates physical examination as well as radiologic and laboratory investigations. Patients should not be lost to follow up once treatment is completed, but monitored regularly, especially while they are at highest risk for disease recurrence. Long-term complications associated with cancer therapy include postsplenectomy sepsis syndrome; central and peripheral nervous system toxicities; ocular complications; thyroid, pituitary, testicular, or ovarian dysfunction; pulmonary toxicity; vascular or lymphatic, gastrointestinal, or osseous complications; genitourinary problems; and possible secondary malignancy. CONCLUSION: Primary care physicians are key to facilitating appropriate follow up of treated cancer patients. To do this, they must be aware of practical aspects of monitoring and management of therapy-related complications. Images Figure 1 Figure 2 PMID:11143585

  20. Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri

    SciTech Connect

    Broekman, J. D.; Nigg, D. W.; Hawthorne, M. F.

    2013-07-01

    Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

  1. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    SciTech Connect

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  2. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    PubMed

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  3. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    PubMed

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  4. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  5. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  6. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  7. Boron neutron capture therapy for recurrent oral cancer and metastasis of cervical lymph node.

    PubMed

    Kimura, Y; Ariyoshi, Y; Shimahara, M; Miyatake, S; Kawabata, S; Ono, K; Suzuki, M; Maruhashi, A

    2009-07-01

    We treated 6 patients with recurrent oral cancer and metastasis to the cervical lymph nodes after conventional treatments in 5 and non-conventional in 1 using BNCT, and herein report our results. The clinical response in our patients ranged from CR to PD. In 5 cases, spontaneous pain decreased immediately after BNCT. Three of the 6 are alive at the time of writing and we found that BNCT contributed to QOL improvement in all.

  8. A Bystander Effect Observed in Boron Neutron Capture Therapy: A Study of the Induction of Mutations in the HPRT Locus

    SciTech Connect

    Kinashi, Yuko . E-mail: kinashi@rri.kyoto-u.ac.jp; Masunaga, Shinichiro; Nagata, Kenji; Suzuki, Minoru; Takahashi, Sentaro; Ono, Koji

    2007-06-01

    Purpose: To investigate bystander mutagenic effects induced by {alpha}-particles during boron neutron capture therapy, we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, and cells that did not contain the boron compound. The BSH-containing cells were irradiated with {alpha}-particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were affected only by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. Methods and Materials: The lethality and mutagenicity measured by the frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase locus were examined in Chinese hamster ovary cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the resulting cell population. The molecular structures of the mutations were determined using multiplex polymerase chain reactions. Results: Because of the bystander effect, the frequency of mutations increased in the cells located nearby the BSH-containing cells compared with control cells. Molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were less than those induced by the original neutron irradiation. Conclusion: These results suggested that in boron neutron capture therapy, the mutations caused by the bystander effect and those caused by the original neutron irradiation are induced by different mechanisms.

  9. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor.

    PubMed

    Rogus, R D; Harling, O K; Yanch, J C

    1994-10-01

    During the past several years, there has been growing interest in Boron Neutron Capture Therapy (BNCT) using epithermal neutron beams. The dosimetry of these beams is challenging. The incident beam is comprised mostly of epithermal neutrons, but there is some contamination from photons and fast neutrons. Within the patient, the neutron spectrum changes rapidly as the incident epithermal neutrons scatter and thermalize, and a photon field is generated from neutron capture in hydrogen. In this paper, a method to determine the doses from thermal and fast neutrons, photons, and the B-10(n, alpha)Li-7 reaction is presented. The photon and fast neutron doses are measured with ionization chambers, in realistic phantoms, using the dual chamber technique. The thermal neutron flux is measured with gold foils using the cadmium difference technique, the thermal neutron and B-10 doses are determined by the kerma factor method. Representative results are presented for a unilateral irradiation of the head. Sources of error in the method as applied to BNCT dosimetry, and the uncertainties in the calculated doses are discussed.

  10. Dosimetry and stability studies of the boron neutron capture therapy agent F-BPA-Fr using PET and MRI

    NASA Astrophysics Data System (ADS)

    Dyke, Jonathan Paul

    The treatment of deep seated brain tumors such as glioblastoma Multiforme has been unsuccessful for many patients. Surgical debulking, chemotherapy and standard radiotherapy have met with limited success. Boron neutron capture therapy offers a binary mode brachytherapy based on the following capture reaction that may provide an innovative alternative to standard forms of treatment:10B + n /to/ 11B /to 7Li + 4He + 2.31 MeVBoron is chemically attached to a tumor binding compound creating a non-toxic neutron absorber. A dose of epithermal neutrons provides the catalyst to produce the lithium and alpha particles which destroy any tissue within a length of one cell diameter from the boron compound. This dissertation uses 19F-MRI and 18F-PET to provide answers to the localization and biodistribution questions that arise in such a treatment modality. Practical patient dosimetry and actual treatment planning using the PET data is also examined. Finally, theoretical work done in the areas of compartmental modelling dealing with pharmacokinetic uptake of the PET radiotracer and dose analysis in microdosimetry is also presented.

  11. Gene therapy strategies using engineered stem cells for treating gynecologic and breast cancer patients (Review).

    PubMed

    Kim, Ye-Seul; Hwang, Kyung-A; Go, Ryeo-Eun; Kim, Cho-Won; Choi, Kyung-Chul

    2015-05-01

    There are three types of stem cells: embryonic stem (ES) cells, adult stem (AS) cells and induced pluripotent stem (iPS) cells. These stem cells have many benefits including the potential ability to differentiate into various organs. In addition, engineered stem cells (GESTECs) designed for delivering therapeutic genes may be capable of treating human diseases including malignant cancers. Stem cells have been found to possess the potential for serving as novel delivery vehicles for therapeutic or suicide genes to primary or metastatic cancer formation sites as a part of gene-directed enzyme/prodrug combination therapy (GEPT). Given the advantageous properties of stem cells, tissue-derived stem cells are emerging as a new tool for anticancer therapy combined with prodrugs. In this review, the effects of GESTECs with different origins, i.e., neural, amniotic membrane and amniotic fluid, introduced to treat patients with diverse types of gynecologic and breast cancers are discussed. Data from the literature indicate the therapeutic potential of these cells as a part of gene therapy strategies to selectively target malignancies in women at clinically terminal stages.

  12. Adjunct Antimicrobial Therapy and Periodontal Surgery to Treat Generalized Aggressive Periodontitis: A Case Report.

    PubMed

    Irokawa, Daisuke; Makino-Oi, Asako; Fujita, Takahisa; Yamamoto, Shigeki; Tomita, Sachiyo; Saito, Atsushi

    2016-01-01

    Here we report a case of generalized aggressive periodontitis treated with periodontal therapy including adjunct antimicrobial therapy and periodontal surgery. The patient was a 22-year-old woman who presented with the chief complaint of gingival recession. Baseline examination revealed generalized plaque deposition and gingival inflammation. Thirty-nine percent of the sites had a probing depth (PD) of 4-6 mm and 2% a PD of ≥7 mm; 63% exhibited bleeding on probing (BOP). Radiographic examination revealed vertical bone loss in the molars and horizontal bone loss in other teeth. Microbiological examination of subgingival plaque revealed the presence of Aggregatibacter actinomycetemcomitans and Tannerella forsythia. Oral health-related quality of life was assessed as a measure of patient-reported outcome. Based on a clinical diagnosis of generalized aggressive periodontitis, initial periodontal therapy and adjunct antimicrobial therapy were implemented. After reducing inflammation and subgingival bacteria, open flap debridement was performed for teeth with a PD of ≥4 mm. Reevaluation showed no sites with a PD of ≥5 mm, a minimal level of BOP, and a marked reduction in the level of the targeted periodontal pathogens. The patient's oral health-related quality of life was slightly worsened during supportive periodontal therapy (SPT). Implementation of adjunct antimicrobial therapy targeting periodontal pathogens and subsequent periodontal surgery resulted in improvement in periodontal and microbiological parameters. This improvement has been adequately maintained over a 2-year period. However, additional care is necessary to further improve the patient's oral health-related quality of life during SPT. PMID:27320300

  13. Invasive aspergillosis successfully treated by combined antifungal therapy and immunosuppressive monotherapy two months following heart transplantation

    PubMed Central

    Żabicki, Bartłomiej; Baszyńska-Wachowiak, Hanna; Straburzyńska-Migaj, Ewa; Juszkat, Robert; Grajek, Stefan; Jemielity, Marek

    2016-01-01

    Invasive aspergillosis is becoming increasingly prevalent, especially following transplantation. Invasive aspergillosis is associated with mortality. Successful therapy is related to early diagnosis and proper therapy. We present the case of a 61-year-old man suffering from invasive aspergillosis 2 months following heart transplantation. He was suffering from hypertrophic cardiomyopathy and he underwent orthotropic heart transplantation. He was readmitted to the Department of Cardiology 69 days following transplantation due to symptoms of productive cough for 5 days. It was accompanied by chest pain, shortness of breath, and fever up to 39°C. He was slightly cyanotic and confused on physical examination. The patient's status deteriorated within the following 2 days. On bronchoscopic specimen examinations Aspergillus mould filaments were detected and the serum galactomannan index was 12.162. His blood saturation decreased to 85%. C-reactive protein serum level increased to 273 mg/l. The patient was admitted to the intensive care unit and intubated due to severe respiratory insufficiency. Computed tomography revealed massive, mostly homogeneous consolidation. The patient was treated with 200 mg of voriconazole and 50 mg of caspofungin daily. Caspofungin therapy was continued for 23 days and voriconazole was administered parenterally for 62 days. Voriconazole therapy was continued orally for 9 months. During combined antifungal therapy, the galactomannan serum index constantly decreased from 12.1 to 0.33 (end-point of caspofungin therapy) and to 0.23 (end-point of voriconazole parenteral administration). His immunosuppressive therapy was limited to calcineurin inhibitor (tacrolimus) monotherapy. Post-treatment imaging 9 months after diagnosis confirmed the efficacy of therapy as a lack of pulmonary infiltration associated with left apical peribronchial scarring as a result of treatment. The present case proved the efficiency of combined (voriconazole and caspofungin

  14. Invasive aspergillosis successfully treated by combined antifungal therapy and immunosuppressive monotherapy two months following heart transplantation.

    PubMed

    Urbanowicz, Tomasz; Żabicki, Bartłomiej; Baszyńska-Wachowiak, Hanna; Straburzyńska-Migaj, Ewa; Juszkat, Robert; Grajek, Stefan; Jemielity, Marek

    2016-06-01

    Invasive aspergillosis is becoming increasingly prevalent, especially following transplantation. Invasive aspergillosis is associated with mortality. Successful therapy is related to early diagnosis and proper therapy. We present the case of a 61-year-old man suffering from invasive aspergillosis 2 months following heart transplantation. He was suffering from hypertrophic cardiomyopathy and he underwent orthotropic heart transplantation. He was readmitted to the Department of Cardiology 69 days following transplantation due to symptoms of productive cough for 5 days. It was accompanied by chest pain, shortness of breath, and fever up to 39°C. He was slightly cyanotic and confused on physical examination. The patient's status deteriorated within the following 2 days. On bronchoscopic specimen examinations Aspergillus mould filaments were detected and the serum galactomannan index was 12.162. His blood saturation decreased to 85%. C-reactive protein serum level increased to 273 mg/l. The patient was admitted to the intensive care unit and intubated due to severe respiratory insufficiency. Computed tomography revealed massive, mostly homogeneous consolidation. The patient was treated with 200 mg of voriconazole and 50 mg of caspofungin daily. Caspofungin therapy was continued for 23 days and voriconazole was administered parenterally for 62 days. Voriconazole therapy was continued orally for 9 months. During combined antifungal therapy, the galactomannan serum index constantly decreased from 12.1 to 0.33 (end-point of caspofungin therapy) and to 0.23 (end-point of voriconazole parenteral administration). His immunosuppressive therapy was limited to calcineurin inhibitor (tacrolimus) monotherapy. Post-treatment imaging 9 months after diagnosis confirmed the efficacy of therapy as a lack of pulmonary infiltration associated with left apical peribronchial scarring as a result of treatment. The present case proved the efficiency of combined (voriconazole and caspofungin

  15. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  16. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.

    PubMed

    Ballarini, F; Bortolussi, S; Clerici, A M; Ferrari, C; Protti, N; Altieri, S

    2011-02-01

    Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy. PMID:21159746

  17. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    PubMed

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma. PMID:27080224

  18. A Feedback Control Model of Comprehensive Therapy for Treating Immunogenic Tumours

    NASA Astrophysics Data System (ADS)

    Tang, Biao; Xiao, Yanni; Tang, Sanyi; Cheke, Robert A.

    Surgery is the traditional method for treating cancers, but it often fails to cure patients for complex reasons so new therapeutic approaches that include both surgery and immunotherapy have recently been proposed. These have been shown to be effective, clinically, in inhibiting cancer cells while allowing retention of immunologic memory. This comprehensive strategy is guided by whether a population of tumour cells has or has not exceeded a threshold density. Conditions for successful control of tumours in an immune tumour system were modeled and the related dynamics were addressed. A mathematical model with state-dependent impulsive interventions is formulated to describe combinations of surgery with immunotherapy. By analyzing the properties of the Poincaré map, we examine the global dynamics of the immune tumour system with state-dependent feedback control, including the existence and stability of the semi-trivial order-1 periodic solution and the positive order-k periodic solution. The main results showed that surgery alone can only control the tumour size below a certain level while there is no immunologic memory. If comprehensive therapy involving combining surgery with immunotherapy is considered, then not only can the cancers be controlled below a certain level, but the immune system can also retain its activity. The existence of positive order-k periodic solutions implies that periodical therapy is needed to control the cancers. However, choosing the treatment frequency and the strength of the therapy remains challenging, and hence a strategy of individual-based therapy is suggested.

  19. Experimental evaluation of boron neutron capture therapy of human breast carcinoma implanted on nude mice

    NASA Astrophysics Data System (ADS)

    Bose, Satya Ranjan

    2000-06-01

    An in-pool small animal irradiation neutron tube (SAINT) facility was designed, constructed and installed at the University of Virginia Nuclear Research Reactor (UVAR). Thermal neutron flux profiles were measured by foil activation analysis (gold) and verified with DORT and MCNP computer code models. The gamma-ray absorbed dose in the neutron-gamma mixed field was determined from TLD measurements. The SAINT thermal neutron flux was used to investigate the well characterized human breast cancer cell line MCF-7B on both in-vitro samples and in- vivo animal subjects. Boronophenylalanine (BPA enriched in 95% 10B) was used as a neutron capturing agent. The in-vitro response of MCF-7B human breast carcinoma cells to BPA in a mixed field of neutron-gamma radiation or pure 60Co gamma radiation was investigated. The best result (lowest surviving fraction) was observed in cell cultures pre-incubated with BPA and given the neutron irradiation. The least effective treatment consisted of 60Co irradiation only. Immunologically deficient nude mice were inoculated subcutaneously with human breast cancer MCF-7B cells and estradiol pellets (to support tumor growth). The tumor volume in the mouse control group increased over time, as expected. The group of mice exposed only to neutron treatment exhibited initial tumor volume reduction lasting until 35 days following the treatment, followed by renewed tumor growth. Both groups given BPA plus neutron treatment showed continuous reduction in tumor volume over the 55-day observation period. The group given the higher BPA concentration showed the best tumor reduction response. The results on both in-vitro and in-vivo studies showed increased cell killing with BPA, substantiating the incorporation of BPA into the tumor or cell line. Therefore, BNCT may be a possible choice for the treatment of human breast carcinoma. However, prior to the initiation of any clinical studies, it is necessary to determine the therapeutic efficacy in a large

  20. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    SciTech Connect

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells

  1. Treating enuresis in a patient with ADHD: application of a novel behavioural modification therapy.

    PubMed

    Tajima-Pozo, Kazuhiro; Ruiz-Manrique, Gonzalo; Montañes, Francisco

    2014-06-10

    We report the case of a 6-year-old patient diagnosed with attention-deficit hyperactivity disorder (ADHD) and comorbid enuresis disorder, who was treated with methylphenidate for the past 3 months and a novel behavioural modification therapy by using an application called 'Enuresis Trainer'. This therapeutic application is basically an interactive 'Bedwetting Calendar', based on traditional cognitive behavioural modification therapies and positive reinforcement systems. Enuresis is defined as the failure of voluntary control of the urethral sphincter. The prevalence of enuresis is 15-20% in the child population; however, children with ADHD had a 2.7 times higher incidence of nocturnal enuresis. Bedwetting is a common cause of isolation in children as well as loss of self-esteem and other psychological distress for the child and the family.

  2. Solitary fibrous tumor of the sellar region treated with adjuvant radiation therapy

    PubMed Central

    Sahai, Puja; Singh, Geetika; Mondal, Dodul; Suri, Vaishali; Julka, Pramod Kumar

    2016-01-01

    The solitary fibrous tumor of central nervous system is rare. Herein, a case of solitary fibrous tumor arising from sellar region is described. A 60-year-old man underwent subtotal excision of the tumor because of extensive infiltration of optical and vascular structures. In view of the presence of residual tumor, he was treated with adjuvant radiation therapy. After a follow-up period of 1 year, there was no progression of the lesion evident on magnetic resonance imaging of the brain. Solitary fibrous tumor should be considered as one of the differential diagnosis of a mass lesion arising in sellar region. Immunohistochemistry with CD34 is valuable for discerning the diagnosis. Complete surgery should be the goal of treatment and adjuvant radiation therapy may be considered for residual or recurrent disease.

  3. Application of laser therapy in treating inherited forms of psychoverbal retardation in children

    NASA Astrophysics Data System (ADS)

    Ulas, V. Y.; Voinova, V. M.; Il'in, L. B.; Troitskaya, L. A.; Dobrynina, E. V.; Kazantseva, L. Z.

    2001-04-01

    An investigation was made of applying combined laser therapy in the treatment of 619 children (422 children constituted the experimental group and 197 children composed the control group) affected by inherited forms of psychoverbal retardation. It was found that low-intensity He-Ne laser radiation with the wavelength of 632.8 nm and the output power of 2 mW made it possible to improve the children's mental development. Moreover, it effectively increased their mental activities, such as speech, communication, arbitrary behavior regulation, and locomotory functions. Laser therapy applied in treating children affected by the arrested mental development aggravated by obesity additionally decreased their body weight, increased their field of vision, and eliminated dyslipidemia. It was also found that contraindications to He-Ne laser acupuncture included phenylketonuria-related noncorrected metabolic defects, convulsive syndromes, epileptic activities, convulsive readiness, and cerebrolysine intramuscular injections.

  4. Solitary fibrous tumor of the sellar region treated with adjuvant radiation therapy

    PubMed Central

    Sahai, Puja; Singh, Geetika; Mondal, Dodul; Suri, Vaishali; Julka, Pramod Kumar

    2016-01-01

    The solitary fibrous tumor of central nervous system is rare. Herein, a case of solitary fibrous tumor arising from sellar region is described. A 60-year-old man underwent subtotal excision of the tumor because of extensive infiltration of optical and vascular structures. In view of the presence of residual tumor, he was treated with adjuvant radiation therapy. After a follow-up period of 1 year, there was no progression of the lesion evident on magnetic resonance imaging of the brain. Solitary fibrous tumor should be considered as one of the differential diagnosis of a mass lesion arising in sellar region. Immunohistochemistry with CD34 is valuable for discerning the diagnosis. Complete surgery should be the goal of treatment and adjuvant radiation therapy may be considered for residual or recurrent disease. PMID:27695561

  5. Chronic depression treated successfully with novel taping therapy: a new approach to the treatment of depression

    PubMed Central

    Han, Chang Hyun; Hwang, Hwa Soo; Lee, Young Joon; Lee, Sang Nam; Abanes, Jane J; Lee, Bong Hyo

    2016-01-01

    Introduction Despite improved research in the treatment, depression remains difficult to treat. Till date, successful treatment of depression using taping therapy has not been known yet. We report cases where patients with severe depressive symptoms were successfully treated by taping therapy, a new approach. Methods In case 1, a patient was taking several psychiatric medications for 10 years and admitted often to the psychiatric hospital with a leaning head, flexible legs, and nearly closed eyes; in case 2, a patient after a hysterectomy complained with heart palpitations, depressive- and anxiety-like behaviors, insomnia, and gastrointestinal problems; and in case 3, a patient with complaints of adverse effects from antidepressant medications had suicidal thoughts frequently. The medical tapes were placed on acupoints, trigger points, and pain points found by finger pressing examination in the chest, sides, and upper back of the patients. Results In case 1, the patient started weeping immediately after the first treatment. He discontinued psychiatric drugs and returned to baseline functioning after 2 months. In case 2, the patient felt at ease showing decreased palpitation immediately after the first treatment, and after 1 week, she quit medications. In case 3, the patient experienced a sense of calmness following the first treatment and recovered from her symptoms after 2 weeks. Conclusion These results suggest the following key points: examination of acupoints and trigger points of chest, sides, and upper back is useful in the assessment of depression; regulating bioelectric currents on these points is helpful in the treatment of depression; and depression can be treated successfully with taping therapy. PMID:27330295

  6. Long-Term Fosfomycin-Tromethamine Oral Therapy for Difficult-To-Treat Chronic Bacterial Prostatitis

    PubMed Central

    Pigrau, Carles; Rodríguez-Pardo, Dolors; Fernández-Hidalgo, Nuria; Andreu, Antonia; Larrosa, Nieves; Almirante, Benito

    2015-01-01

    This is a retrospective study of 15 difficult-to-treat (i.e., exhibiting previous failure, patient side effects, or resistance to ciprofloxacin and co-trimoxazole) chronic bacterial prostatitis infections (5 patients with multidrug-resistant Enterobacteriaceae [MDRE]) receiving fosfomycin-tromethamine at a dose of 3 g per 48 to 72 h for 6 weeks. After a median follow-up of 20 months, 7 patients (47%) had a clinical response, and 8 patients (53%) had persistent microbiological eradication; 4/5 patients with MDRE isolates achieved eradication. There were no side effects. Fosfomycin-tromethamine is a possible alternative therapy for chronic bacterial prostatitis. PMID:26666924

  7. Warfarin-induced skin necrosis diagnosed on clinical grounds and treated with maggot debridement therapy.

    PubMed

    Biscoe, Anna Louise; Bedlow, Alison

    2013-01-01

    A patient with a history of deep vein thrombosis presented with painful bruising and blistering on his left leg 7-10 days after warfarin treatment. A complicated 2-month treatment followed, where vasculitis was originally diagnosed from histological findings before the final diagnosis of warfarin-induced skin necrosis (WISN) was made on clinical grounds. Warfarin was stopped, reversed and low molecular weight heparin started but, the lesions had progressed to full thickness necrosis. This was originally treated with conventional surgical debridement before introducing maggot debridement therapy (MDT) in an effort to try to salvage the limb.

  8. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    SciTech Connect

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  9. Therapies for Musculoskeletal Disease: Can we Treat Two Birds with One Stone?

    PubMed Central

    Girgis, Christian M.; Mokbel, Nancy; DiGirolamo, Douglas J.

    2014-01-01

    Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)— both in normal aging and pathologic states—can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease. Targeting pathways that centrally regulate both bone and muscle (eg, GH/IGF-1, sex steroids, etc.) and newly emerging pathways that might facilitate communication between these 2 tissues (eg, activin/myostatin) might allow a greater therapeutic benefit and/or previously unanticipated means by which to treat these frail patients and prevent fracture. In this review, we will discuss a number of therapies currently under development that aim to treat musculoskeletal disease in precisely such a holistic fashion. PMID:24633910

  10. Therapies for musculoskeletal disease: can we treat two birds with one stone?

    PubMed

    Girgis, Christian M; Mokbel, Nancy; Digirolamo, Douglas J

    2014-06-01

    Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)-both in normal aging and pathologic states-can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease. Targeting pathways that centrally regulate both bone and muscle (eg, GH/IGF-1, sex steroids, etc.) and newly emerging pathways that might facilitate communication between these 2 tissues (eg, activin/myostatin) might allow a greater therapeutic benefit and/or previously unanticipated means by which to treat these frail patients and prevent fracture. In this review, we will discuss a number of therapies currently under development that aim to treat musculoskeletal disease in precisely such a holistic fashion.

  11. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Saarilahti, Kauko; Atula, Timo; Collan, Juhani; Salli, Eero; Kortesniemi, Mika; Uusi-Simola, Jouni; Vaelimaeki, Petteri; Maekitie, Antti; Seppaenen, Marko; Minn, Heikki; Revitzer, Hannu; Kouri, Mauri; Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro; Savolainen, Sauli; Joensuu, Heikki

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was

  12. Treating gastro-oesophageal reflux disease during pregnancy and lactation: what are the safest therapy options?

    PubMed

    Broussard, C N; Richter, J E

    1998-10-01

    Gastro-oesophageal reflux and heartburn are reported by 45 to 85% of women during pregnancy. Typically, the heartburn of pregnancy is new onset and is precipitated by the hormonal effects of estrogen and progesterone on lower oesophageal sphincter function. In mild cases, the patient should be reassured that reflux is commonly encountered during a normal pregnancy: lifestyle and dietary modifications may be all that are required. In a pregnant woman with moderate to severe reflux symptoms, the physician must discuss with the patient the benefits versus the risks of using drug therapy. Medications used for treating gastro-oesophageal reflux are not routinely or vigorously tested in randomised, controlled trials in women who are pregnant because of ethical and medico-legal concerns. Safety data are based on animal studies, human case reports and cohort studies as offered by physicians, pharmaceutical companies and regulatory authorities. If drug therapy is required, first-line therapy should consist of nonsystemically absorbed medications, including antacids or sucralfate, which offer little, if any, risk to the fetus. Systemic therapy with histamine H2 receptor antagonists (avoiding nizatidine) or prokinetic drugs (metoclopramide, cisapride) should be reserved for patients with more severe symptoms. Proton pump inhibitors are not recommended during pregnancy except for severe intractable cases of gastrooesophageal reflux or possibly prior to anaesthesia during labour and delivery. In these rare situations, animal teratogenicity studies suggests that lansoprazole may be the best choice. Use of the least possible amount of systemic drug needed to ameliorate the patient's symptoms is clearly the best for therapy. If reflux symptoms are intractable or atypical, endoscopy can safely be performed with conscious sedation and careful monitoring the mother and fetus.

  13. Quality of Life in Men Treated With Carbon Ion Therapy for Prostate Cancer

    SciTech Connect

    Wakatsuki, Masaru; Tsuji, Hiroshi; Ishikawa, Hitoshi; Yanagi, Takeshi; Kamada, Tadashi; Nakano, Takashi; Suzuki, Hiroyoshi; Akakura, Koichiro; Shimazaki, Jun; Tsujii, Hirohiko

    2008-11-15

    Purpose: To prospectively assess patient quality of life (QOL) after carbon ion radiotherapy (C-ion RT) for prostate cancer, using established questionnaires. Methods and Material: The subjects were 150 patients who underwent C-ion RT. Of these, 25 patients with low-risk prostate cancer received C-ion RT alone, whereas the remaining 125 patients with a high-risk tumor also received androgen deprivation therapy. Quality of life was assessed using the self-administered Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaire in all patients three times. In addition, University of California-Los Angeles Prostate Cancer Index (UCLA-PCI) was conducted in the low-risk patients. Results: The FACT-General (FACT-G) and FACT-P scores at 12 months after treatment averaged over all 150 patients showed no significant change compared with those before C-ion RT. In FACT-P subscales, emotional well-being increased significantly just after and 12 months after treatment. In contrast, physical well-being (PWB) and social/family well-being (S/FWB) decreased significantly at 12 months, whereas the prostate cancer subscale (PCS) decreased significantly just after treatment. Average scores for FACT-G, FACT-P, PWB, S/FWB, and PCS for the 125 patients receiving hormone therapy showed substantial detrimental changes at 12 months. In contrast, those of the 25 low-risk patients who had no hormone therapy showed no significant change. Similarly no significant change in the average of the UCLA-PCI scores in the low-risk patients was seen at 12 months. Conclusions: Average QOL parameters reported by patients with localized prostate cancer treated with C-ion RT, in the absence of hormone therapy, showed no significant decrease 12 months after C-ion RT.

  14. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    PubMed

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated. PMID:19380233

  15. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    PubMed

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  16. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  17. Conformal Bulk Ablation And Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Makin, I. R.; Faidi, W.; Mast, T. D.; Runk, M.; Slayton, M.; Barthe, P.

    2005-03-01

    For thermal treatment of soft tissue, an alternative to HIFU is bulk ablation using unfocused or weakly focused intense ultrasound fields. This approach offers faster ablation of large tissue volumes and can be performed in minimally invasive (e.g., laparoscopic or percutaneous) procedures. Here, methods for image-guided ablation of large tissue volumes using compact dual-modality (image and treat) ultrasound arrays are reported including tissue modification caused by the thermal therapy. The dual-modality arrays developed have 16-64 elements spanning apertures of 2-8 mm in elevation and 24-48 mm in azimuth. These devices can provide both therapeutically significant power (e.g. source intensity > 80 W/cm2 at 3.1 MHz) and broad bandwidth (e.g. 50% with a center frequency of 3.5 MHz) for imaging. Imaging challenges associated with limited probe dimensions and channel count are met using signal processing techniques that improve definition and contrast, allowing high-quality B-scan images and useful monitoring information to be obtained during therapy planning and treatment. Using linear and rotational scanning methods, large tissue volumes (20-60 cc) can be treated. The approach can be applied for ablation of other soft tissue pathologies, e.g., kidney, heart, uterus, brain, GI tract, etc.

  18. Combination therapy with iron chelation and vancomycin in treating murine staphylococcemia.

    PubMed

    Luo, G; Spellberg, B; Gebremariam, T; Lee, H; Xiong, Y Q; French, S W; Bayer, A; Ibrahim, A S

    2014-05-01

    Iron acquisition is a virulence factor for Staphylococcus aureus. We assessed the efficacy of the iron chelator, deferasirox (Def), alone or in combination with vancomycin (Van) against two methicillin-resistant S. aureus (MRSA) strains in vitro and in a murine bacteremia model. In vitro time-kill assays were carried out against MRSA or vancomycin-intermediate S. aureus (VISA) strains. The impact of Def on Van binding to the surface of S. aureus was measured by flow cytometry. Furthermore, we compared the efficacy of Def, Van, or both drugs in treating S. aureus bacteremia in a murine model. Combination therapy reduced MRSA and VISA viability in vitro versus either drug alone or untreated controls (p < 0.005); this outcome was correlated with enhanced Van surface binding to S. aureus cells. In vivo, Def + Van combination therapy significantly reduced the bacterial burden in mice kidneys (p = 0.005) and spleen (p < 0.001), and reduced the severity of infection with MRSA or VISA strains compared to placebo-treated mice. Our results show that Def enhances the in vitro and in vivo capacity of Van-mediated MRSA killing via a mechanism that appears to involve increased binding of Van to the staphylococcal surface. Iron chelation is a promising, novel adjunctive therapeutic strategy for MRSA and VISA infections.

  19. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.

    PubMed

    Nigg, D W; Wemple, C A; Risler, R; Hartwell, J K; Harker, Y D; Laramore, G E

    2000-02-01

    A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently

  20. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy

    SciTech Connect

    Nigg, David W.; Wemple, Charles A.; Risler, Ruedi; Hartwell, John K.; Harker, Yale D.; Laramore, George E.

    2000-02-01

    A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently

  1. Pruritus in Patients Treated with Targeted Cancer Therapies: Systematic Review and Meta-Analysis

    PubMed Central

    Ensslin, Courtney J; Rosen, Alyx C; Wu, Shenhong; Lacouture, Mario E

    2014-01-01

    Background Pruritus has been anecdotally described in association with targeted cancer therapies. The risk of pruritus has not been systematically ascertained. Objective A systematic review and meta-analysis of the literature was conducted for axitinib, cetuximab, dasatinib, erlotinib, everolimus, gefitinib, imatinib, ipilimumab, lapatinib, nilotinib, panitumumab, pazopanib, rituximab, sorafenib, temsirolimus, tositumomab, vandetanib, and vemurafenib. Methods Databases from PubMed, Web of Science (01/1998–07/2012), and American Society of Clinical Oncology abstracts (2004–2012) were searched. Incidence and risk (RR) of pruritus were calculated using random or fixed effects model. Results The incidences of all-grade and high-grade pruritus were 17.4% (95% confidence interval (CI): 16.0%−19.0%) and 1.4% (95% CI: 1.2%−1.6%), respectively. There was an increased risk of all-grade pruritus (RR=2.90 (95% CI: 1.76–4.77, p<0.001)); and variation among different drugs (P<0.001). Limitations The reporting of pruritus may vary, resulting from concomitant medications, comorbidities, and underlying malignancies. We found a higher incidence of pruritus in patients with solid tumors, concordant with those targeted therapies with the highest pruritus incidences. Conclusion There is a significant risk of developing pruritus in patients receiving targeted therapies. In order to prevent suboptimal dosing and decreased quality of life, patients should be counseled and treated against this untoward symptom. PMID:23981682

  2. Supervised physical therapy in women treated with radiotherapy for breast cancer 1

    PubMed Central

    Leal, Nara Fernanda Braz da Silva; de Oliveira, Harley Francisco; Carrara, Hélio Humberto Angotti

    2016-01-01

    ABSTRACT Objective: to evaluate the effect of physical therapy on the range of motion of the shoulders and perimetry of the upper limbs in women treated with radiotherapy for breast cancer. Methods: a total of 35 participants were randomized into two groups, with 18 in the control group (CG) and 17 in the study group (SG). Both of the groups underwent three evaluations to assess the range of motion of the shoulders and perimetry of the upper limbs, and the study group underwent supervised physical therapy for the upper limbs. Results: the CG had deficits in external rotation in evaluations 1, 2, and 3, whereas the SG had deficits in flexion, abduction, and external rotation in evaluation 1. The deficit in abduction was recovered in evaluation 2, whereas the deficits in all movements were recovered in evaluation 3. No significant differences in perimetry were observed between the groups. Conclusion: the applied supervised physical therapy was effective in recovering the deficit in abduction after radiotherapy, and the deficits in flexion and external rotation were recovered within two months after the end of radiotherapy. Registration number of the clinical trial: NCT02198118. PMID:27533265

  3. [Morita Therapy to Treat Depression: When and How to Encourage Patients to Join Activities].

    PubMed

    Nakamura, Kei

    2015-01-01

    The author discusses how Morita therapy is used to treat depression, illustrated with a clinical case, and makes comparisons between Morita therapy and behavioral activation (BA). The author further examines the issue of when and how to encourage patients to join activities in clinical practice in Japan. Both Morita therapy and BA share at least a common view that it is effective to activate patients' constructive behavior at a certain point in depression treatment. However, BA therapists, compared to Morita therapists, seem to pay less attention to the necessity of resting and the appropriate timing for introducing behavioral activation. There may be some contextual differences between depressive patients in Japan and those in North America. In the case of Japanese patients, exhaustion from overwork is often considered a factor triggering the development of depression. At the same time, the Morita-based pathogenic model of depression seems different from BA's model of the same disorder. BA's approach to understanding depression may be considered a psychological (behavioristic) model. In this model, the cause of depression lies in: (a) a lack of positive reinforcement, and (b) negative reinforcement resulting from avoidance of the experience of discomfort. Therefore, the basic strategy of BA is to release depressive patients from an avoidant lifestyle, which serves as a basis for negative reinforcement, and to redirect the patients toward activities which offer the experience of positive reinforcement BA is primarily practiced by clinical psychologists in the U. S. while psychiatrists prescribe medication as a medical service. On the other hand, the clinical practice of treating depression in Japan is based primarily on medical models of depression. This is also true of Morita therapy, but in a broad sense. While those who follow medical models in a narrow sense try to identify the cause of illness and then remove it, Morita therapists pay more attention to the

  4. Early Toxicity in Patients Treated With Postoperative Proton Therapy for Locally Advanced Breast Cancer

    PubMed Central

    Cuaron, John J.; Chon, Brian; Tsai, Henry; Goenka, Anuj; DeBlois, David; Ho, Alice; Powell, Simon; Hug, Eugen; Cahlon, Oren

    2016-01-01

    Purpose To report dosimetry and early toxicity data in breast cancer patients treated with postoperative proton radiation therapy. Methods and Materials From March 2013 to April 2014, 30 patients with nonmetastatic breast cancer and no history of prior radiation were treated with proton therapy at a single proton center. Patient characteristics and dosimetry were obtained through chart review. Patients were seen weekly while on treatment, at 1 month after radiation therapy completion, and at 3- to 6-month intervals thereafter. Toxicity was scored using Common Terminology Criteria for Adverse Events version 4.0. Frequencies of toxicities were tabulated. Results Median dose delivered was 50.4 Gy (relative biological equivalent [RBE]) in 5 weeks. Target volumes included the breast/chest wall and regional lymph nodes including the internal mammary lymph nodes (in 93%). No patients required a treatment break. Among patients with >3 months of follow-up (n = 28), grade 2 dermatitis occurred in 20 patients (71.4%), with 8 (28.6%) experiencing moist desquamation. Grade 2 esophagitis occurred in 8 patients (28.6%). Grade 3 reconstructive complications occurred in 1 patient. The median planning target volume V95 was 96.43% (range, 79.39%-99.60%). The median mean heart dose was 0.88 Gy (RBE) [range, 0.01–3.20 Gy (RBE)] for all patients, and 1.00 Gy (RBE) among patients with left-sided tumors. The median V20 of the ipsilateral lung was 16.50% (range, 6.1%–30.3%). The median contralateral lung V5 was 0.34% (range, 0%–5.30%). The median maximal point dose to the esophagus was 45.65 Gy (RBE) [range, 0–65.4 Gy (RBE)]. The median contralateral breast mean dose was 0.29 Gy (RBE) [range, 0.03–3.50 Gy (RBE)]. Conclusions Postoperative proton therapy is well tolerated, with acceptable rates of skin toxicity. Proton therapy favorably spares normal tissue without compromising target coverage. Further follow-up is necessary to assess for clinical outcomes and cardiopulmonary

  5. [Morita Therapy to Treat Depression: When and How to Encourage Patients to Join Activities].

    PubMed

    Nakamura, Kei

    2015-01-01

    The author discusses how Morita therapy is used to treat depression, illustrated with a clinical case, and makes comparisons between Morita therapy and behavioral activation (BA). The author further examines the issue of when and how to encourage patients to join activities in clinical practice in Japan. Both Morita therapy and BA share at least a common view that it is effective to activate patients' constructive behavior at a certain point in depression treatment. However, BA therapists, compared to Morita therapists, seem to pay less attention to the necessity of resting and the appropriate timing for introducing behavioral activation. There may be some contextual differences between depressive patients in Japan and those in North America. In the case of Japanese patients, exhaustion from overwork is often considered a factor triggering the development of depression. At the same time, the Morita-based pathogenic model of depression seems different from BA's model of the same disorder. BA's approach to understanding depression may be considered a psychological (behavioristic) model. In this model, the cause of depression lies in: (a) a lack of positive reinforcement, and (b) negative reinforcement resulting from avoidance of the experience of discomfort. Therefore, the basic strategy of BA is to release depressive patients from an avoidant lifestyle, which serves as a basis for negative reinforcement, and to redirect the patients toward activities which offer the experience of positive reinforcement BA is primarily practiced by clinical psychologists in the U. S. while psychiatrists prescribe medication as a medical service. On the other hand, the clinical practice of treating depression in Japan is based primarily on medical models of depression. This is also true of Morita therapy, but in a broad sense. While those who follow medical models in a narrow sense try to identify the cause of illness and then remove it, Morita therapists pay more attention to the

  6. Early Toxicity in Patients Treated With Postoperative Proton Therapy for Locally Advanced Breast Cancer

    SciTech Connect

    Cuaron, John J.; Chon, Brian; Tsai, Henry; Goenka, Anuj; DeBlois, David; Ho, Alice; Powell, Simon; Hug, Eugen; Cahlon, Oren

    2015-06-01

    Purpose: To report dosimetry and early toxicity data in breast cancer patients treated with postoperative proton radiation therapy. Methods and Materials: From March 2013 to April 2014, 30 patients with nonmetastatic breast cancer and no history of prior radiation were treated with proton therapy at a single proton center. Patient characteristics and dosimetry were obtained through chart review. Patients were seen weekly while on treatment, at 1 month after radiation therapy completion, and at 3- to 6-month intervals thereafter. Toxicity was scored using Common Terminology Criteria for Adverse Events version 4.0. Frequencies of toxicities were tabulated. Results: Median dose delivered was 50.4 Gy (relative biological equivalent [RBE]) in 5 weeks. Target volumes included the breast/chest wall and regional lymph nodes including the internal mammary lymph nodes (in 93%). No patients required a treatment break. Among patients with >3 months of follow-up (n=28), grade 2 dermatitis occurred in 20 patients (71.4%), with 8 (28.6%) experiencing moist desquamation. Grade 2 esophagitis occurred in 8 patients (28.6%). Grade 3 reconstructive complications occurred in 1 patient. The median planning target volume V95 was 96.43% (range, 79.39%-99.60%). The median mean heart dose was 0.88 Gy (RBE) [range, 0.01-3.20 Gy (RBE)] for all patients, and 1.00 Gy (RBE) among patients with left-sided tumors. The median V20 of the ipsilateral lung was 16.50% (range, 6.1%-30.3%). The median contralateral lung V5 was 0.34% (range, 0%-5.30%). The median maximal point dose to the esophagus was 45.65 Gy (RBE) [range, 0-65.4 Gy (RBE)]. The median contralateral breast mean dose was 0.29 Gy (RBE) [range, 0.03-3.50 Gy (RBE)]. Conclusions: Postoperative proton therapy is well tolerated, with acceptable rates of skin toxicity. Proton therapy favorably spares normal tissue without compromising target coverage. Further follow-up is necessary to assess for clinical outcomes and cardiopulmonary

  7. Tumor Treating Field Therapy in Combination with Bevacizumab for the Treatment of Recurrent Glioblastoma

    PubMed Central

    Omar, Ayman I.

    2014-01-01

    A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill1. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone2. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting3-5. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab6. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis7. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients8,9. Bevacizumab however failed to prolong overall survival in a recent phase III trial26. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians’ choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm10. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy11,12, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the

  8. Dermatofibrosarcoma Protuberans: Long-term Outcomes of 53 Patients Treated With Conservative Surgery and Radiation Therapy

    SciTech Connect

    Castle, Katherine O.; Guadagnolo, B. Ashleigh; Tsai, C. Jillian; Feig, Barry W.; Zagars, Gunar K.

    2013-07-01

    Purpose: To evaluate outcomes of conservative surgery and radiation therapy (RT) treatment in patients with dermatofibrosarcoma protuberans. Methods and Materials: We retrospectively reviewed the medical records of 53 consecutive dermatofibrosarcoma protuberans patients treated with surgery and preoperative or postoperative radiation therapy between 1972 and 2010. Median tumor size was 4 cm (range, 1-25 cm). Seven patients (13%) were treated with preoperative RT (50-50.4 Gy) and 46 patients (87%) with postoperative RT (60-66 Gy). Of the 46 patients receiving postoperative radiation, 3 (7%) had gross disease, 14 (30%) positive margins, 26 (57%) negative margins, and 3 (7%) uncertain margin status. Radiation dose ranged from 50 to 66 Gy (median dose, 60 Gy). Results: At a median follow-up time of 6.5 years (range, 0.5 months-23.5 years), 2 patients (4%) had disease recurrence, and 3 patients (6%) had died. Actuarial overall survival was 98% at both 5 and 10 years. Local control was 98% and 93% at 5 and 10 years, respectively. Disease-free survival was 98% and 93% at 5 and 10 years, respectively. The presence of fibrosarcomatous change was not associated with increased risk of local or distant relapse (P=.43). One of the patients with a local recurrence had gross residual disease at the time of RT and despite RT to 65 Gy developed both an in-field recurrence and a nodal and distant recurrence 3 months after RT. The other patient with local recurrence was found to have in-field recurrence 10 years after initial treatment. Thirteen percent of patients had an RT complication at 5 and 10 years, and 9% had a moderate or severe complication at 5 and 10 years. Conclusions: Dermatofibrosarcoma protuberans is a radioresponsive disease with excellent local control after conservative surgery and radiation therapy. Adjuvant RT should be considered for patients with large or recurrent tumors or when attempts at wide surgical margins would result in significant morbidity.

  9. Tumor treating field therapy in combination with bevacizumab for the treatment of recurrent glioblastoma.

    PubMed

    Omar, Ayman I

    2014-10-27

    A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients. Bevacizumab however failed to prolong overall survival in a recent phase III trial. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians' choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the treated patients.

  10. Alcoholics Anonymous and behavior therapy: can habits be treated as diseases? Can diseases be treated as habits?

    PubMed

    McCrady, B S

    1994-12-01

    Alcoholics Anonymous (AA) and behavior therapy have often been characterized as having opposing views of the nature and treatment of alcohol problems. This article describes the theoretical foundations, view of the change process, and treatment practices of AA and behavior therapy. Theoretical and practice perspectives on integration of the two models are examined, and advantages and disadvantages of integration are discussed. PMID:7860813

  11. Is primary endocrine therapy effective in treating the elderly, unfit patient with breast cancer?

    PubMed Central

    Osborn, G; Jones, M; Champ, C; Gower-Thomas, K; Vaughan-Williams, E

    2011-01-01

    INTRODUCTION Elderly patients with oestrogen receptor (ER)-positive breast cancer wishing to avoid surgery or those who are considered unsuitable for a general anaesthetic may be treated with primary endocrine therapy. We have reviewed all patients with ER-positive breast cancer who were initially treated with primary hormone therapy (PHT) at a district general hospital in south Wales and investigated their outcome in order to evaluate the appropriateness of this method of managing breast cancer. MATERIALS AND METHODS All patients with breast cancer who were initially treated with PHT between January 2002 and December 2008 were identified from a single consultant's prospectively maintained database. For each patient the Charlson co-morbidity index was calculated to give an estimate of ten-year survival. Patients who had died during the study period were identified from hospital and cancer registries. RESULTS A total of 83 cancers in 82 patients with a median age of 81 years (range: 62–93 years) were included. All cancers were ER-positive. Six patients (7%) had a greater than 50% chance of surviving ten years, calculated using the Charlson index. The median follow-up period was 24 months (range: 6–72 months). Twelve patients (15%) had disease progression while taking PHT. Twenty-three patients (28%) have died (median time from diagnosis to death of 10.5 months, range: 1–77 months). Two patients (2%) experienced disease progression within six months of starting PHT and the number of patients whose cancer progressed increased with increasing length of follow up. Fourteen patients (17%) eventually underwent a wide local excision under local anaesthetic. CONCLUSIONS PHT can be considered an effective treatment in this elderly, unfit population with the aim of stopping disease progression so that these patients die with their breast cancer, not of it. PMID:21944793

  12. Delivery of (10)boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy.

    PubMed

    Obayashi, Shigeki; Kato, Itsuro; Ono, Koji; Masunaga, Shin-Ichiro; Suzuki, Minoru; Nagata, Kenji; Sakurai, Yoshinori; Yura, Yoshiaki

    2004-05-01

    Boron neutron capture therapy (BNCT) is a unique radiation therapy in which boron compounds are trapped into tumor cells. To determine the biodistribution of boronophenylalanine (BPA) in nude mice carrying oral squamous cell carcinoma (SCC), BPA was administered at a dose of 250 mg/kg body weight intraperitoneally. Two hours later, (10)B concentration in the tumor was 15.96 ppm and tumor/blood, tumor/tongue, tumor/skin and tumor/bone (10)B concentration ratios were 6.44, 4.19, 4.68 and 4.56, respectively. Two hours after the administration of borocaptate sodium (BSH) at a dose of 75 mg/kg body weight, (10)B concentration in the tumor was 3.61 ppm, and tumor/blood, tumor/tongue, tumor/skin and tumor/bone (10)B concentration ratios were 0.77, 1.05, 0.60 and 0.59, respectively. When cultured oral SCC cells were incubated with BPA or BSH for 2 h and then exposed to thermal neutrons, the proportion of survival cells that were capable of forming cell colonies decreased exponentially, depending on (10)B concentration. BPA-mediated BNCT was more efficient than BSH-mediated BNCT. Addition of boron compounds in the cell suspension during neutron irradiation enhanced the cell-killing effect of the neutrons. These results indicate that BPA is more selectively incorporated into human oral SCC as compared with normal oral tissues, and that both extra- and intra-cellular BPA contribute to the cell-killing effect of BNCT. BPA may be a useful boron carrier for BNCT in the treatment of advanced oral SCC.

  13. Chemoprevention gene therapy (CGT): novel combinatorial approach for preventing and treating pancreatic cancer.

    PubMed

    Sarkar, S; Azab, B M; Das, S K; Quinn, B A; Shen, X; Dash, R; Emdad, L; Thomas, S; Dasgupta, S; Su, Z-Z; Wang, X-Y; Sarkar, D; Fisher, P B

    2013-08-01

    Pancreatic cancer remains one of the deadliest of all cancers despite aggressive surgical treatment combined with adjuvant radiotherapy and chemotherapy. Chemoresistance and radioresistance are the principal causes of failure of pancreatic cancer patients to respond to therapy. Conditionally replication competent adenovirus (CRCA)-based cancer gene therapy is an innovative strategy for treating cancers displaying inherent resistance to treatment. Limitations of current adenovirus (Ad)-based gene therapies for malignant tumors include lack of cancer-specificity, and effective and targeted delivery. To remedy this situation, CRCAs have been designed that express E1A, necessary for Ad replication, under the control of a cancer-specific progression elevated gene-3 promoter (PEG-Prom) with concomitant expression of an immunomodulatory cytokine, such as mda-7/IL-24 or interferon-γ (IFN-γ), under the control of a ubiquitous and strong cytomegalovirus promoter (CMV-Prom) from the E3 region. These bipartite CRCAs, when armed with a transgene, are called cancer terminator viruses (CTVs), i.e., Ad.PEG-E1A-CMV-mda-7 (CTV-M7) and Ad.PEG-E1A-CMV-IFN-γ (CTV-γ), because of their universal effectiveness in cancer treatment irrespective of p53/pRb/p16 or other genetic alterations in tumor cells. In addition to their selective oncolytic effects in tumor cells, the potent 'bystander antitumor' properties of MDA-7/IL-24 and IFN-γ embody the CTVs with expanded treatment properties for both primary and distant cancers. Pancreatic cancer cells display a "translational block" of mda-7/IL-24 mRNA, limiting production of MDA-7/IL-24 protein and cancer-specific apoptosis. Specific chemopreventive agents abrogate this "translational block" resulting in pancreatic cancer-specific killing. This novel chemoprevention gene therapy (CGT) strategy holds promise for both prevention and treatment of pancreatic cancers where all other strategies have proven ineffective.

  14. Biomarkers of evasive resistance predict disease progression in cancer patients treated with antiangiogenic therapies.

    PubMed

    Pircher, Andreas; Jöhrer, Karin; Kocher, Florian; Steiner, Normann; Graziadei, Ivo; Heidegger, Isabel; Pichler, Renate; Leonhartsberger, Nicolai; Kremser, Christian; Kern, Johann; Untergasser, Gerold; Gunsilius, Eberhard; Hilbe, Wolfgang

    2016-04-12

    Numerous antiangiogenic agents are approved for the treatment of oncological diseases. However, almost all patients develop evasive resistance mechanisms against antiangiogenic therapies. Currently no predictive biomarker for therapy resistance or response has been established. Therefore, the aim of our study was to identify biomarkers predicting the development of therapy resistance in patients with hepatocellular cancer (n = 11), renal cell cancer (n = 7) and non-small cell lung cancer (n = 2). Thereby we measured levels of angiogenic growth factors, tumor perfusion, circulating endothelial cells (CEC), circulating endothelial progenitor cells (CEP) and tumor endothelial markers (TEM) in patients during the course of therapy with antiangiogenic agents, and correlated them with the time to antiangiogenic progression (aTTP). Importantly, at disease progression, we observed an increase of proangiogenic factors, upregulation of CEC/CEP levels and downregulation of TEMs, such as Robo4 and endothelial cell-specific chemotaxis regulator (ECSCR), reflecting the formation of torturous tumor vessels. Increased TEM expression levels tended to correlate with prolonged aTTP (ECSCR high = 275 days vs. ECSCR low = 92.5 days; p = 0.07 and for Robo4 high = 387 days vs. Robo4 low = 90.0 days; p = 0.08). This indicates that loss of vascular stabilization factors aggravates the development of antiangiogenic resistance. Thus, our observations confirm that CEP/CEC populations, proangiogenic cytokines and TEMs contribute to evasive resistance in antiangiogenic treated patients. Higher TEM expression during disease progression may have clinical and pathophysiological implications, however, validation of our results is warranted for further biomarker development.

  15. Biomarkers of evasive resistance predict disease progression in cancer patients treated with antiangiogenic therapies

    PubMed Central

    Pircher, Andreas; Jöhrer, Karin; Kocher, Florian; Steiner, Normann; Graziadei, Ivo; Heidegger, Isabel; Pichler, Renate; Leonhartsberger, Nicolai; Kremser, Christian; Kern, Johann; Untergasser, Gerold; Gunsilius, Eberhard; Hilbe, Wolfgang

    2016-01-01

    Numerous antiangiogenic agents are approved for the treatment of oncological diseases. However, almost all patients develop evasive resistance mechanisms against antiangiogenic therapies. Currently no predictive biomarker for therapy resistance or response has been established. Therefore, the aim of our study was to identify biomarkers predicting the development of therapy resistance in patients with hepatocellular cancer (n = 11), renal cell cancer (n = 7) and non-small cell lung cancer (n = 2). Thereby we measured levels of angiogenic growth factors, tumor perfusion, circulating endothelial cells (CEC), circulating endothelial progenitor cells (CEP) and tumor endothelial markers (TEM) in patients during the course of therapy with antiangiogenic agents, and correlated them with the time to antiangiogenic progression (aTTP). Importantly, at disease progression, we observed an increase of proangiogenic factors, upregulation of CEC/CEP levels and downregulation of TEMs, such as Robo4 and endothelial cell-specific chemotaxis regulator (ECSCR), reflecting the formation of torturous tumor vessels. Increased TEM expression levels tended to correlate with prolonged aTTP (ECSCR high = 275 days vs. ECSCR low = 92.5 days; p = 0.07 and for Robo4 high = 387 days vs. Robo4 low = 90.0 days; p = 0.08). This indicates that loss of vascular stabilization factors aggravates the development of antiangiogenic resistance. Thus, our observations confirm that CEP/CEC populations, proangiogenic cytokines and TEMs contribute to evasive resistance in antiangiogenic treated patients. Higher TEM expression during disease progression may have clinical and pathophysiological implications, however, validation of our results is warranted for further biomarker development. PMID:26956051

  16. Photodynamic Therapy with Ablative Carbon Dioxide Fractional Laser for Treating Bowen Disease

    PubMed Central

    Kim, Sue Kyung; Park, Ji-Youn; Song, Hyo Sang; Kim, You-Sun

    2013-01-01

    Background Topical photodynamic therapy (PDT) has been increasingly used to treat malignant skin tumors including the Bowen disease. However, patients could be displeased with the long incubation time required for conventional PDT. Objective We evaluated the efficacy and safety of PDT with a short incubation time of ablative CO2 fractional laser pretreatment for treating Bowen disease. Methods Ten patients were included. Just before applying the topical photosensitizer, all lesions were treated with ablative CO2 fractional laser, following the application of methyl aminolevulinate and irradiation with red light (Aktilite CL 128). Histological confirmation, rebiopsy, and clinical assessments were performed. Adverse events were also recorded. Results Five of the ten (50%) lesions showed a complete response (CR) within three PDT sessions. After four treatment sessions, all lesions except one penile shaft lesion (90%) achieved clinical and histological CR or clinical CR only. The average number of treatments to CR was 3.70±1.70. The treatments showed favorable cosmetic outcomes and no serious adverse events. Conclusion The results suggest that pretreatment with an ablative fractional CO2 laser before PDT has similar treatment efficacy and requires a shorter photosensitizer incubation time compared with the conventional PDT method. PMID:24003277

  17. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  18. Designing power supplies for 2.5 MV, 100 mADC for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Reginato, L. L.; Ayers, J.; Johnson, R.; Peters, C.; Stevenson, R.

    1997-02-01

    Renewed interest by several major university medical centers (UCSF, Stanford, U. of Washington, Loma Linda) in conducting Boron Neutron Capture Therapy (BNCT) led to the investigation of generating a continuous proton beam with 2.5 MeV of energy and up to 100 mA of current. The power supply for the Heavy Ion Injector (Adam) at LBNL operated at lower currents from its completion in 1970 until it was shut down in 1993. This power supply consisted of 64 stages of shunt-fed multipliers (Dynamitron) and seemed to offer an attractive first step for BNCT experiments. The Adam power supply was reactivated in June of 1995 and extensive tests were performed to establish its maximum capability. After the tests were completed, it became clear that 100 mA was well beyond the capability of this power source and that even 10-20 mA would require extensive modifications. After some initial conceptual design studies, it was decided that the air-coupled transformer with multiple secondaries warranted some serious investigations and could offer the best chance for achieving 100 mA.

  19. Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II.

    PubMed

    Imahori, Y; Ueda, S; Ohmori, Y; Sakae, K; Kusuki, T; Kobayashi, T; Takagaki, M; Ono, K; Ido, T; Fujii, R

    1998-08-01

    Based on pharmacokinetic findings of fluorine-18-labeled L-fluoroboronophenylalanine by positron emission tomography (PET), methods for estimating tumor 10B concentration were devised. In clinical practice of boron neutron capture therapy (BNCT) for high-grade gliomas, a large amount of L-boronophenylalanine (L-10B-BPA)-fructose solution is used. Under these conditions, a slow i.v. infusion of L-10B-BPA-fructose solution should be performed for BNCT; therefore, the changes over time in 10B concentration in the target tissue were estimated by convoluting the actual time course of changes in plasma 10B concentration with a PET-based weight function including the proper rate constants [K1 (ml/g/min), k2 (min(-1)), k3 (min(-1)), and k4 (min(-1))]. With this method, the estimated values of 10B concentration in gliomas were very close to the 10B levels in surgical specimens. This demonstrated the similarity in pharmacokinetics between fluorine-18-labeled L-fluoroboronophenylalanine and L-10B-BPA. This method, using the appropriate rate constant, permits the determination of tumor 10B concentration and is widely suitable for clinical BNCT, because the averaged PET data are enough to use in future patients without individual PET study.

  20. In vitro and in vivo studies of boron neutron capture therapy: boron uptake/washout and cell death.

    PubMed

    Ferrari, C; Bakeine, J; Ballarini, F; Boninella, A; Bortolussi, S; Bruschi, P; Cansolino, L; Clerici, A M; Coppola, A; Di Liberto, R; Dionigi, P; Protti, N; Stella, S; Zonta, A; Zonta, C; Altieri, S

    2011-04-01

    Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained.

  1. Improved treatment planning for boron neutron capture therapy for glioblastoma multiforme using fluorine-18 labeled boronophenylalanine and positron emission tomography.

    PubMed

    Nichols, Trent L; Kabalka, George W; Miller, Laurence F; Khan, Mohammad K; Smith, Gary T

    2002-10-01

    Boron neutron capture therapy (BNCT) is a cancer brachytherapy based upon the thermal neutron reaction: 10B(n,alpha)7Li. The efficacy of the treatment depends primarily upon two conditions being met: (a) the preferential concentration of a boronated compound in the neoplasm and (b) an adequate fluence of thermal neutrons delivered to the neoplasm. The boronated amino acid, para-boronophenylalanine (BPA), is the agent widely used in clinical trials to deliver 10B to the malignancy. Positron emission tomography (PET) can be used to generate in vivo boron distribution maps by labeling BPA with the positron emitting nuclide fluorine-18. The incorporation of the PET-derived boron distribution maps into current treatment planning protocols is shown to provide improved treatment plans. Using previously established protocols, six patients with glioblastoma had 18BPA PET scans. The PET distribution maps obtained were used in the conventional BNCT treatment codes. The isodose curves derived from the PET data are shown to differ both qualitatively and quantitatively from the conventional isodose curves that were derived from calculations based upon the assumption of uniform uptake of the pharmaceutical in tumor and normal brain regions. The clinical course of each of the patients who eventually received BNCT (five of the six patients) was compared using both sets of isodose calculations. The isodose contours based upon PET derived distribution data appear to be more consistent with the patients' clinical course. PMID:12408309

  2. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  3. Spectrum evaluation at the filter-modified neutron irradiation field for neutron capture therapy in Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2004-10-01

    The Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor (KUR-HWNIF) was updated in March 1996, mainly to improve the facility for neutron capture therapy (NCT). In this facility, neutron beams with various energy spectra, from almost pure thermal to epithermal, are available. The evaluation of the neutron energy spectra by multi-activation-foil method was performed as a series of the facility characterization. The spectra at the normal irradiation position were evaluated for the combinations of heavy-water thickness of the spectrum shifter and the open-close condition of the cadmium and boral filters. The initial spectra were made mainly using a two-dimensional transport code, and the final spectra were obtained using an adjusting code. For the verification of the evaluated spectra, simulation calculations using a phantom were performed on the assumption of NCT-clinical-irradiation conditions. It resulted that the calculated data for the depth neutron-flux distributions were in good agreement with the experimental ones.

  4. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2001-01-01

    We have proposed the utilization of `hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  5. In vitro and in vivo studies of boron neutron capture therapy: boron uptake/washout and cell death.

    PubMed

    Ferrari, C; Bakeine, J; Ballarini, F; Boninella, A; Bortolussi, S; Bruschi, P; Cansolino, L; Clerici, A M; Coppola, A; Di Liberto, R; Dionigi, P; Protti, N; Stella, S; Zonta, A; Zonta, C; Altieri, S

    2011-04-01

    Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained. PMID:21133762

  6. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model

    PubMed Central

    Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji

    2015-01-01

    The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and 7Li particles from the 10B(n, α)7Li reaction, 0.54-MeV protons from the 14N(n, p)14C reaction, the recoiled protons from the 1H(n, n) 1H reaction, and photons from the neutron beam and 1H(n, γ)2H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. PMID:25428243

  7. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogues for boron neutron capture therapy of cancer

    PubMed Central

    Agarwal, Hitesh K.; Khalil, Ahmed; Ishita, Keisuke; Yang, Weilian; Nakkula, Robin J.; Wu, Lai-Chu; Ali, Tehane; Tiwari, Rohit; Byun, Youngjoo; Barth, Rolf F.; Tjarks, Werner

    2015-01-01

    A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogues, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogues (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3–4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analogue. Both 2 and 3 appeared to be 5′-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogues and will profoundly impact future design strategies for these agents. PMID:26087030

  8. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T

    2001-01-01

    We have proposed the utilization of 'hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  9. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    SciTech Connect

    Zhou, X.L.; McMichael, G.E.

    1994-10-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 {times} 10{sup 9} n/cm{sup 2}s epithermal flux with 7 {times} 10{sup 5} {gamma}/cm{sup 2}s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 {times} 10{sup 7} n/cm{sup 2}s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E{sub p} = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL.

  10. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    SciTech Connect

    Liu Hui; Zhang Xu; Vinogradskiy, Yevgeniy Y.; Swisher, Stephen G.; Komaki, Ritsuko; Chang, Joe Y.

    2012-11-15

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T <4 cm, N0, M0, or Mx). Severe (grade {>=}3) RP and potential predictive factors were analyzed by univariate and multivariate logistic regression analyses. A scoring system was established to predict the risk of RP. Results: At a median follow-up time of 16 months after SABR (range, 4-56 months), 15 patients had severe RP (14 [18.9%] grade 3 and 1 [1.4%] grade 5) and 1 patient (1.4%) had a local recurrence. In univariate analyses, Eastern Cooperative Oncology Group performance status (ECOG PS) before SABR, forced expiratory volume in 1 second (FEV1), and previous planning target volume (PTV) location were associated with the incidence of severe RP. The V{sub 10} and mean lung dose (MLD) of the previous plan and the V{sub 10}-V{sub 40} and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 {<=}65% before SABR (P=.012), V{sub 20} {>=}30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 {<=}65%, a previous PTV spanning the bilateral mediastinum, and V{sub 20} {>=}30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  11. Advantage and limitations of weighting factors and weighted dose quantities and their units in boron neutron capture therapy.

    PubMed

    Rassow, J; Sauerwein, W; Wittig, A; Bourhis-Martin, E; Hideghéty, K; Moss, R

    2004-05-01

    Defining the parameters influencing the biological reaction due to absorbed dose is a continuous topic of research. The main goal of radiobiological research is to translate the measurable dose of ionizing radiation to a quantitative expression of biological effect. Mathematical models based on different biological approaches (e.g., skin reaction, cell culture) provide some estimations that are often misleading and, to some extent, dangerous. Conventional radiotherapy is the simplest case because the primary radiation and secondary radiation are both low linear energy transfer (LET) radiation and have about the same relative biological effectiveness (RBE). Nevertheless, for this one-dose-component case, the dose-effect curves are not linear. In fact, the total absorbed dose and the absorbed dose per fraction as well as the time schedule of the fractionation scheme influence the biological effects. Mathematical models such as the linear-quadratic model can only approximate biological effects. With regard to biological effects, fast neutron therapy is more complex than conventional radiotherapy. Fast neutron beams are always contaminated by gamma rays. As a consequence, biological effects are due to two components, a high-LET component (neutrons) and a low-LET component (photons). A straight transfer of knowledge from conventional radiotherapy to fast neutron therapy is, therefore, not possible: RBE depends on the delivered dose and several other parameters. For dose reporting, the European protocol for fast neutron dosimetry recommends that the total absorbed dose with gamma-ray absorbed dose in brackets is stated. However, boron neutron capture therapy (BNCT) is an even more complex case, because the total absorbed dose is due to four dose components with different LET and RBE. In addition, the terminology and units used by the different BNCT groups is confusing: absorbed dose and weighted dose are both to be stated in grays and are never "photon equivalent." The

  12. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    ClinicalTrials.gov

    2016-07-26

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  13. Localized Ocular Adnexal Mucosa-Associated Lymphoid Tissue Lymphoma Treated With Radiation Therapy: A Long-Term Outcome in 86 Patients With 104 Treated Eyes

    SciTech Connect

    Harada, Ken; Murakami, Naoya; Kitaguchi, Mayuka; Sekii, Shuhei; Takahashi, Kana; Yoshio, Kotaro; Inaba, Koji; Morota, Madoka; Ito, Yoshinori; Sumi, Minako; Suzuki, Shigenobu; Tobinai, Kensei; Uno, Takashi; Itami, Jun

    2014-03-01

    Purpose: To evaluate the natural history, behavior of progression, prognostic factors, and treatment-related adverse effects of primary ocular adnexal mucosa-associated lymphoid tissue (MALT) lymphoma (POAML). Methods and Materials: Eighty-six patients with histologically proven stage I POAML treated with radiation therapy at National Cancer Center Hospital, Tokyo between 1990 and 2010 were retrospectively reviewed. The median age was 56 years (range, 18-85 years). The median dose administered was 30 Gy (range, 30-46 Gy). Seventy-seven patients (90%) were treated by radiation therapy alone. Results: The median follow-up duration was 9 years (range, 0.9-22 years). The 5- and 10-year overall survival (OS) rates were 97.6% and 93.5%, respectively, and no patients died of lymphoma. Patients with tumor sizes ≥4 cm showed a greater risk of contralateral relapse (P=.012). Six patients with contralateral relapse were seen and treated by radiation therapy alone, and all the lesions were controlled well, with follow-up times of 3 to 12 years. There was 1 case of local relapse after radiation therapy alone, and 3 cases of relapse occurred in a distant site. Cataracts developed in 36 of the 65 eyes treated without lens shielding and in 12 of the 39 patients with lens shielding (P=.037). Conclusions: The majority of patients with POAML showed behavior consistent with that of localized, indolent diseases. Thirty gray of local irradiation seems to be quite effective. The initial bilateral involvement and contralateral orbital relapses can be also controlled with radiation therapy alone. Lens shielding reduces the risk of cataract.

  14. How I treat patients with inherited bleeding disorders who need anticoagulant therapy

    PubMed Central

    Martin, Karlyn

    2016-01-01

    Situations that ordinarily necessitate consideration of anticoagulation, such as arterial and venous thrombotic events and prevention of stroke in atrial fibrillation, become challenging in patients with inherited bleeding disorders such as hemophilia A, hemophilia B, and von Willebrand disease. There are no evidence-based guidelines to direct therapy in these patients, and management strategies that incorporate anticoagulation must weigh a treatment that carries a risk of hemorrhage in a patient who is already at heightened risk against the potential consequences of not treating the thrombotic event. In this paper, we review atherothrombotic disease, venous thrombotic disease, and atrial fibrillation in patients with inherited bleeding disorders, and discuss strategies for using anticoagulants in this population using cases to illustrate these considerations. PMID:27106121

  15. Cutaneous Sporotrichosis Treated with Photodynamic Therapy: An in Vitro and in Vivo Study

    PubMed Central

    Aspiroz, Carmen; Alejandre, M. Carmen; Andres-Ciriano, Elena; Fortuño, Blanca; Charlez, Luis; Revillo, Maria Jose; Hamblin, Michael R.; Rezusta, Antonio

    2014-01-01

    Abstract Background: Sporotrichosis is a fungal infection caused by Sporothrix schenckii complex, usually restricted to the skin, subcutaneous cellular tissue, and adjacent lymphatic vessels. Antimicrobial photodynamic therapy (aPDT) could be a good alternative to manage localized, superficial infections. Case report: A 65-year-old African woman was diagnosed with a fixed cutaneous sporotrichosis on her left arm, treated with itraconazol and oral terbinafine with partial improvement. Topical 16% methyl aminolevulinate (MAL, Metvix®)-PDT was used without success. Methods: An in vitro photoinactivation test with the isolated microorganism revealed phenothiazinium salts to be more effective than MAL. Conclusions: PDT with intralesional 1% methylene blue (MB) in combination with intermittent low doses of itraconazole obtained complete microbiological and clinical response. PMID:24328608

  16. Chromosome aberrations induced in patients treated with telecobalt therapy for mammary carcinoma

    SciTech Connect

    Antoine, J.L.; Gerber, G.B.; Leonard, A.; Richard, F.; Wambersie, A.

    1981-04-01

    The yields of dicentric and ring chromosomes were recorded during telecobalt therapy for mammary carcinoma. The data were fitted to a power or a quadratic function and were compared with those obtained in patients treated for ankylosing spondylitis and nuclear dockyard workers as well as with the results of an in vitro blood irradiation. As expected, the aberration yield for the same absorbed dose level is much greater after irradiation of ankylosing spondylitis than after irradiation for mammary carcinoma; lymphocytes exposed in vitro display the highest rate of aberration. A deviation of the aberrations observed in cells of the mammary carcinoma patients from the theoretical Poisson distribution also indicates that not all lymphocytes in the body has been exposed under these conditions.

  17. Treating bulimia with hypnosis and low-level light therapy: a case report

    NASA Astrophysics Data System (ADS)

    Laser, Eleanor; Sassack, Michael

    2012-03-01

    This case report describes an effort to control bulimia nervosa by combining low-level laser therapy (LLLT)-the application of red and near-infrared light to specific body points-and hypnosis. A 29-year old female with a 14-year history of bulimia received one session of LLLT combined with hypnosis. Two weeks later, following a measurable decrease in bulimic episodes (purging), a session of psychotherapy and hypnosis was administered. Six months post-treatment, the patient has experienced a complete cessation of purging activities without recurrence. LLLT, when used in conjunction with hypnosis and psychotherapy, was effective in managing bulimia and may prove useful in treating other eating disorders.

  18. "Treating" prejudice: an exposure-therapy approach to reducing negative reactions toward stigmatized groups.

    PubMed

    Birtel, Michèle D; Crisp, Richard J

    2012-01-01

    One of the ways in which therapists treat anxiety disorders is to expose patients to a fear-evoking stimulus within a safe environment before encouraging more positive stimulus-related thoughts. In the study reported here, we adapted these psychotherapeutic principles of exposure therapy to test the hypothesis that imagining a positive encounter with a member of a stigmatized group would be more likely to promote positive perceptions when it was preceded by an imagined negative encounter. The results of three experiments targeting a range of stigmatized groups (adults with schizophrenia, gay men, and British Muslims) supported this hypothesis. Compared with purely positive interventions, interventions in which a single negative encounter was imagined just prior to imagining a positive encounter resulted in significantly reduced prejudice. Furthermore, reduced anxiety uniquely derived from the mixed-valence imagery task statistically explained enhanced intentions to engage positively with the previously stigmatized group in the future.

  19. Relative biological effectiveness (RBE) of thermal neutron capture therapy of cultured B-16 melanoma cells preincubated with 10B-paraboronophenylalanine.

    PubMed

    Ichihashi, M; Sasase, A; Hiramoto, T; Funasaka, Y; Hatta, S; Mishima, Y; Kobayashi, T; Fukuda, H; Yoshino, K

    1989-01-01

    An experimental study of the relative biological effectiveness (RBE) of thermal neutron capture therapy (TNCT) for melanoma cell inactivation using 10B1-paraboronophenylalanine (10B1-BPA) was carried out to demonstrate a high therapeutic effect of TNCT, compared with that of fast neutron. Cells preincubated with or without 10B1-BPA at a concentration of 50 micrograms/ml for 20 h were irradiated with 60Co gamma-ray, fast neutron or thermal neutron. The absorbed dose of the cells from thermal neutron was calculated by Kobayashi's model. The D0 value of fast neutron was 1.07 Gy, and the D0S of thermal neutron radiation with or without preincubation of the cells with 10B1-BPA were 0.46 Gy or 0.67 Gy, respectively. The RBEs of fast neutron, thermal neutron beams, and neutron capture therapy relative to 60Co gamma-ray were calculated as 2.78, 4.18, and 6.15 at 0.1 surviving fraction, respectively. These results indicate radiologically that thermal neutron capture therapy using 10B1-BPA is an excellent radiation therapy for malignant melanoma.

  20. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    PubMed Central

    2012-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized

  1. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer.

    PubMed

    Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji

    2012-08-29

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials

  2. Treating Individuals With Intellectual Disabilities and Challenging Behaviors With Adapted Dialectical Behavior Therapy

    PubMed Central

    Brown, Julie F.; Brown, Milton Z.; Dibiasio, Paige

    2013-01-01

    Approximately one third of adults with intellectual and developmental disabilities have emotion dysregulation and challenging behaviors (CBs). Although research has not yet confirmed that existing treatments adequately reduce CBs in this population, dialectical behavior therapy (DBT) holds promise, as it has been shown to effectively reduce CBs in other emotionally dysregulated populations. This longitudinal single-group pilot study examined whether individuals with impaired intellectual functioning would show reductions in CBs while receiving standard DBT individual therapy used in conjunction with the Skills System (DBT-SS), a DBT emotion regulation skills curriculum adapted for individuals with cognitive impairment. Forty adults with developmental disabilities (most of whom also had intellectual disabilities) and CBs, including histories of aggression, self-injury, sexual offending, or other CBs, participated in this study. Changes in their behaviors were monitored over 4 years while in DBT-SS. Large reductions in CBs were observed during the 4 years. These findings suggest that modified DBT holds promise for effectively treating individuals with intellectual and developmental disabilities. PMID:23914278

  3. The effect of locoregional therapies in patients with advanced hepatocellular carcinoma treated with sorafenib

    PubMed Central

    Sarpel, Umut; Spivack, John H.; Berger, Yaniv; Heskel, Marina; Aycart, Samantha N.; Sweeney, Robert; Edwards, Martin P.; Labow, Daniel M.; Kim, Edward

    2016-01-01

    Background & aims It is unknown whether the addition of locoregional therapies (LRTx) to sorafenib improves prognosis over sorafenib alone in patients with advanced hepatocellular carcinoma (HCC). The aim of this study was to assess the effect of LRTx in this population. Methods A retrospective analysis was performed of patients with advanced HCC as defined by extrahepatic metastasis, lymphadenopathy >2 cm, or gross vascular invasion. Sorafenib therapy was required for inclusion. Survival of patients who received LRTx after progression to advanced stage was compared to those who did not receive LRTx. Results Using an intention to treat analysis of 312 eligible patients, a propensity weighted proportional hazards model demonstrated LRTx as a predictor of survival (HR = 0.505, 95% CI: 0.407–0.628; P < 0.001). The greatest benefit was seen in patients with the largest tumor burden (HR = 0.305, 95% CI: 0.236–0.393; P < 0.01). Median survival in the sorafenib arm was 143 days (95% CI: 118–161) vs. 247 days (95% CI: 220–289) in the sorafenib plus LRTx arm (P < 0.001). Conclusions These results demonstrate a survival benefit with the addition of LRTx to sorafenib for patients with advanced HCC. These findings should prompt a prospective clinical trial to further assess the role of LRTx in patients with advanced HCC. PMID:27154804

  4. Psorinum therapy in treating stomach, gall bladder, pancreatic, and liver cancers: a prospective clinical study.

    PubMed

    Chatterjee, Aradeep; Biswas, Jaydip; Chatterjee, Ashim; Bhattacharya, Sudin; Mukhopadhyay, Bishnu; Mandal, Syamsundar

    2011-01-01

    We prospectively studied the clinical efficacy of an alternative cancer treatment "Psorinum Therapy" in treating stomach, gall bladder, pancreatic and liver cancers. Our study was observational, open level and single arm. The participants' eligibility criteria included histopathology/cytopathology confirmation of malignancy, inoperable tumor, and no prior chemotherapy or radiation therapy. The primary outcome measures of the study were (i) to assess the radiological tumor response (ii) to find out how many participants survived at least 1 year, 2 years, 3 years, 4 years and finally 5 years after the beginning of the study considering each type of cancer. Psorinum-6x was administered orally to all the participants up to 0.02 ml/Kg body weight as a single dose in empty stomach per day for 2 years along with allopathic and homeopathic supportive cares. 158 participants (42 of stomach, 40 of gall bladder, 44 of pancreatic, 32 of liver) were included in the final analysis of the study. Complete tumor response occurred in 28 (17.72%) cases and partial tumor response occurred in 56 (35.44%) cases. Double-blind randomized controlled clinical trial should be conducted for further scientific exploration of this alternative cancer treatment.

  5. Targeted therapies to treat Non-AIDS Defining Cancers in patients with HIV on HAART therapy – treatment considerations and research outlook

    PubMed Central

    Deeken, John F.; Pantanowitz, Liron; Dezube, Bruce J.

    2012-01-01

    Purpose of review Highly active antiretroviral therapy (HAART) has led to a dramatic improvement in the prognosis of patients diagnosed with HIV and AIDS. This includes a significant decline in the rates of AIDS-related cancers, including Kaposi Sarcoma and Non-Hodgkin's Lymphoma. Unfortunately, rates of Non-AIDS Defining Cancers (NADCs) are on the rise, and now exceed the rates of AIDS-related cancers in patients with HIV. Treating NADCs in patients who are on HAART therapy is an open and complicated clinical question. Recent findings Newer targeted therapies are now available to treat cancers which were historically refractory to traditional cytotoxic chemotherapy. HAART agents are notorious for causing drug-drug interactions. The co-administration of targeted chemotherapies with HAART could well impede the efficacy or increase the toxicity of these targeted therapies. Unfortunately little is known about possible drug-drug interactions because HIV patients are typically excluded from clinical trials. Summary We highlight what is known about how and why HAART agents can affect drug metabolism. We then present the clinical and pharmacological data for nine recently approved targeted therapies – imatinib, dasatinib, nilotinib, erlotinib, sunitinib, lapatinib, bortezomib, sorafenib, and temsirolimus. We conclude with considerations on how to use these new agents to treat NADCs, and discuss a future research agenda to better understand and predict potential HAART-targeted therapy interactions. PMID:19606034

  6. Pseudoepitheliomatous Hyperplasia Treated by Photodynamic Therapy with Variable Irradiation Dose and Concentration of Photosensitizer

    PubMed Central

    Jiao, Bin; Long, Heather Ann

    2011-01-01

    Abstract Objective: The aim of this study was to test the effectiveness of photodynamic therapy (PDT) in treating pseudoepitheliomatous hyperplasia (PEH) after skin wounding. Background Data: PEH is a difficult-to-treat extreme-degree acanthosis characterized by proliferation of the epithelium. Topical PDT offers an effective and non-invasive treatment for intraepithelial neoplasia and inflammatory dermatosis. These disorders and PEH show the same histological features: epidermal hyperplasia. To our knowledge, there have been no clinical trials published about therapeutic responses of PDT for PEH. Materials and Methods: After application of 10–30% methyl aminolaevulinate (MAL) emulsion, each lesion was irradiated with 633-nm red light at a total dose of 113–339 J/cm2. Therapeutic response was assessed by clinical examination at 3 months. Results: Only 4 of 16 lesions clinically showed a minimal response. No response was observed in 12 of the 16 lesions, either with different cumulative doses or different concentrations of MAL. Conclusion: PEH after skin wounding responds poorly to the topical MAL-PDT. Besides removal of underlying diseases, surgical excision is still the recommended first option. PMID:20969441

  7. Low-intensity laser therapy to treat dentin hypersensitivity: comparative clinical study using different light doses

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane F. Z.; Mazzetto, Marcello O.; Bagnato, Vanderlei S.

    2001-04-01

    Dentin hypersensitivity is the most common patient's complain related to pain. In fact, this is a challenge to treat specially if conventional techniques are used. The possibility to treat pain through a low intensity laser gives us an opportunity to solve this important clinical problem without promote a discomfort to patient. The main point here is not if this kind of treatment is anti- inflammatory to pulp and/or biostimulatory to production of irregular secondary dentin. The most important point here is to understand how much energy is necessary to reach conditions where to tooth become insensible to external stimulus. Our double-blinded study compared a group without laser (Placebo) with five other groups where different doses at 660 nm low intensity laser were employed. The final conclusion is that for 660 nm laser therapy, the doses from 0.13 to 2.0 J/cm2 were more efficiency than the others. The follow up care in this study was of 45 days.

  8. Long-term outcome of patients treated by radiation therapy alone for salivary gland carcinomas

    SciTech Connect

    Chen, Allen M. . E-mail: achen@radonc17.ucsf.edu; Bucci, M. Kara; Quivey, Jeanne M.; Garcia, Joaquin; Eisele, David W.; Fu, Karen K.

    2006-11-15

    Purpose: To review a single-institution experience with the management of salivary gland cancers treated by radiation alone. Methods and Materials: Between 1960 and 2004, 45 patients with newly diagnosed salivary gland carcinomas were treated with definitive radiation to a median dose of 66 Gy (range, 57-74 Gy). Distribution of T-stage was: 24% T1, 18% T2, 31% T3, and 27% T4. Histology was: 14 mucoepidermoid (31%), 10 adenocarcinoma (22%), 8 adenoid cystic (18%), 4 undifferentiated (9%), 4 acinic (9%), 2 malignant mixed (4%), 2 squamous (4%), and 1 salivary duct carcinoma (2%). No patient had clinical or pathologic evidence of lymph node disease. Median follow-up was 101 months (range, 3-285 months). Results: The 5-year and 10-year rate estimates of local control were 70% and 57%, respectively. A Cox proportional hazard model identified T3-4 disease (p = 0.004) and radiation dose lower than 66 Gy (p = 0.001) as independent predictors of local recurrence. The 10-year overall survival and distant metastasis-free rates were 46% and 67%, respectively. Conclusion: Radiation therapy alone is a reasonable alternative to surgery in the definitive management of salivary gland cancers and results in long-term survival in a significant proportion of patients. Radiation dose in excess of 66 Gy is recommended.

  9. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Nagata, Kenji; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira; Kato, Ituro; Fuwa, Nobukazu; Hiratsuka, Junichi; Imahori, Yoshio

    2006-12-01

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT.

  10. Risk Factors for Pericardial Effusion in Inoperable Esophageal Cancer Patients Treated With Definitive Chemoradiation Therapy

    SciTech Connect

    Wei Xiong; Liu, H. Helen Tucker, Susan L.; Wang Shulian; Mohan, Radhe; Cox, James D.; Komaki, Ritsuko; Liao Zhongxing

    2008-03-01

    Purpose: To identify clinical and dosimetric factors influencing the risk of pericardial effusion (PCE) in patients with inoperable esophageal cancer treated with definitive concurrent chemotherapy and radiation therapy (RT). Methods and Materials: Data for 101 patients with inoperable esophageal cancer treated with concurrent chemotherapy and RT from 2000 to 2003 at our institution were analyzed. The PCE was confirmed from follow-up chest computed tomography scans and radiologic reports, with freedom from PCE computed from the end of RT. Log-rank tests were used to identify clinical and dosimetric factors influencing freedom from PCE. Dosimetric factors were calculated from the dose-volume histogram for the whole heart and pericardium. Results: The crude rate of PCE was 27.7% (28 of 101). Median time to onset of PCE was 5.3 months (range, 1.0-16.7 months) after RT. None of the clinical factors investigated was found to significantly influence the risk of PCE. In univariate analysis, a wide range of dose-volume histogram parameters of the pericardium and heart were associated with risk of PCE, including mean dose to the pericardium, volume of pericardium receiving a dose greater than 3 Gy (V3) to greater than 50 Gy (V50), and heart volume treated to greater than 32-38 Gy. Multivariate analysis selected V30 as the only parameter significantly associated with risk of PCE. Conclusions: High-dose radiation to the pericardium may strongly increase the risk of PCE. Such a risk may be reduced by minimizing the dose-volume of the irradiated pericardium and heart.

  11. Prognosis for Mammographically Occult, Early-Stage Breast Cancer Patients Treated With Breast-Conservation Therapy

    SciTech Connect

    Yang, Tzu-I. J.; Yang Qifeng; Haffty, Bruce G.; Moran, Meena S.

    2010-01-15

    Purpose: To compare mammographically occult (MamOcc) and mammographically positive (MamPos) early-stage breast cancer patients treated with breast-conservation therapy (BCT), to analyze differences between the two cohorts. Methods and Materials: Our two cohorts consisted of 214 MamOcc and 2168 MamPos patients treated with BCT. Chart reviews were conducted to assess mammogram reports and method of detection. All clinical-pathologic and outcome parameters were analyzed to detect differences between the two cohorts. Results: Median follow-up was 7 years. There were no differences in final margins, T stage, nodal status, estrogen/progesterone receptor status, or 'triple-negative' status. Significant differences included younger age at diagnosis (p < 0.0001), more positive family history (p = 0.0033), less HER-2+ disease (p = 0.0294), and 1{sup o} histology (p < 0.0001). At 10 years, the differences in overall survival, cause-specific survival, and distant relapse between the two groups did not differ significantly. The MamOcc cohort had more breast relapses (15% vs. 8%; p = 0.0357), but on multivariate analysis this difference was not significant (hazard ratio 1.0, 95% confidence interval 0.993-1.007, p = 0.9296). Breast relapses were mammographically occult in 32% of the MamOcc and 12% of the MamPos cohorts (p = 0.0136). Conclusions: Although our study suggests that there are clinical-pathologic variations for the MamOcc cohort vs. MamPos patients that may ultimately affect management, breast relapse after BCT was not significantly different. Breast recurrences were more often mammographically occult in the MamOcc cohort; consideration should be given to closer follow-up and alternative imaging strategies (ultrasound, breast MRI) for routine posttreatment examination. To our knowledge, this represents the largest series addressing the prognostic significance of MamOcc cancers treated with BCT.

  12. Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine.

    PubMed

    Ye, S J

    1999-11-01

    Previous dosimetry studies for boron neutron capture therapy have often neglected the thermal neutron self-shielding effects caused by the 10B accumulation in the brain and the tumor. The neglect of thermal neutron flux depression, therefore, results in an overestimation of the actual dose delivery. The relevant errors are expected to be more pronounced when boronophenylalanine is used in conjunction with an epithermal neutron beam. In this paper, the boron self-shielding effects are calculated in terms of the thermal neutron flux depression across the brain and the dose delivered to the tumors. The degree of boron self-shielding is indicated by the difference between the thermal neutron fluxes calculated with and without considering a 10B concentration as part of the head phantom composition. The boron self-shielding effect is found to increase with increasing 10B concentrations and penetration depths from the skin. The calculated differences for 10B concentrations of 7.5-30 ppm are 2.3%-8.3% at 2.3 cm depth (depth of the maximum brain dose) and 4.6%-17% at 7.3 cm depth (the center of the brain). The additional self-shielding effects by the 10B concentration in a bulky tumor are investigated for a 3-cm-diam spherical tumor located either near the surface (3.3 cm depth) or at the center of the brain (7.3 cm depth) along the beam centerline. For 45 ppm of 10B in the tumor and 15 ppm of 10B in the brain, the dose delivered to the tumors is approximately 10% lower at 3.3 cm depth and 20% lower at the center of the brain, compared to the dose neglecting the boron self-shielding in transport calculations.

  13. Pharamacokinetic modeling for boronophenylalanine-fructose mediated neutron capture therapy: 10B concentration predictions and dosimetric consequences.

    PubMed

    Kiger, W S; Palmer, M R; Riley, K J; Zamenhof, R G; Busse, P M

    2003-01-01

    A two-compartment open model has been developed for predicting 10B concentrations in blood following intravenous infusion of the L-p-boronophenylalanine-fructose complex in humans and derived from pharmacokinetic studies of 24 patients in Phase I clinical trials of boron neutron capture therapy. The 10B concentration profile in blood exhibits a characteristic rise during the infusion to a peak of approximately 32 microg/g (for infusion of 350 mg/kg over 90 min) followed by a biexponential disposition profile with harmonic mean half-lives of 0.32 +/- 0.08 and 8.2 +/- 2.7 h, most likely due to redistribution and primarily renal elimination, respectively. The mean model rate constants k12, k21, and k10 are (mean +/- SD) 0.0227 +/- 0.0064 min(-1), 0.0099 +/- 0.0027 min(-1), 0.0052 +/- 0.0016 min(-1), respectively, and the central compartment volume of distribution V1 is 0.235 +/- 0.042 L/kg. In anticipation of the initiation of clinical trials using an intense neutron beam with concomitantly short irradiations, the ability of this model to predict, in advance, the average blood 10B concentration during brief irradiations was simulated in a retrospective analysis of the pharmacokinetic data from these patients. The prediction error for blood boron concentration and its effect on simulated dose delivered for each irradiation field are reported for three different prediction strategies. In this simulation, error in delivered dose (or, equivalently, neutron fluence) for a given single irradiation field resulting from error in predicted blood 10B concentration was limited to less than 10%. In practice, lower dose errors can be achieved by delivering each field in two fractions (on two separate days) and by adjusting the second fraction's dose to offset error in the first.

  14. Synthesis of copper octabromotetracarboranylphenylporphyrin for boron neutron capture therapy and its toxicity and biodistribution in tumour-bearing mice.

    PubMed

    Miura, M; Morris, G M; Micca, P L; Nawrocky, M M; Makar, M S; Cook, S P; Slatkin, D N

    2004-07-01

    Copper tetracarboranyltetraphenylporphyrin (CuTCPH) is a minimally toxic carborane-containing porphyrin that has safely delivered high concentrations of boron for experimental boron neutron capture therapy (BNCT). Copper octabromotetracarboranylphenylporphyrin (CuTCPBr), synthesized by bromination of CuTCPH, is one of several new minimally toxic analogues of CuTCPH being studied in our laboratory, which could possess comparable or better tumour-targeting properties with enhanced tumour cytotoxicity. Its biodistribution, biokinetics and toxicity in mice with subcutaneous EMT-6 (mammary) or SCCVII (squamous cell) carcinomas were compared with those of CuTCPH. The administration of approximately 200 mg kg(-1) of either porphyrin in six intraperitoneal injections over 2 days had no apparent effect, but administration of approximately 400 mg kg(-1) slightly lowered body weights, elevated alanine and aspartate transaminase activities in blood plasma, and depressed blood platelet counts for several days. Enzymes and platelets returned to normal within 5 days after those injections and body weights returned to normal within 2 weeks. High average concentrations of boron from either porphyrin were achieved in the two tumour models from a total dose of approximately 200 mg kg(-1). The high tumour boron concentration decreased slowly while concentrations in blood decreased rapidly. Boron concentrations in brain and skin were consistently lower than in tumour by a factor of 10 or more. Although either CuTCPH or CuTCPBr can be labelled with (64)Cu for imaging by positron emission tomography (PET), CuTCPBr can also be labelled by (76)Br, another PET-imageable nuclide.

  15. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  16. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  17. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2.

    PubMed

    Wongthai, Printip; Hagiwara, Kohei; Miyoshi, Yurika; Wiriyasermkul, Pattama; Wei, Ling; Ohgaki, Ryuichi; Kato, Itsuro; Hamase, Kenji; Nagamori, Shushi; Kanai, Yoshikatsu

    2015-03-01

    The efficacy of boron neutron capture therapy relies on the selective delivery of boron carriers to malignant cells. p-Boronophenylalanine (BPA), a boron delivery agent, has been proposed to be localized to cells through transporter-mediated mechanisms. In this study, we screened aromatic amino acid transporters to identify BPA transporters. Human aromatic amino acid transporters were functionally expressed in Xenopus oocytes and examined for BPA uptake and kinetic parameters. The roles of the transporters in BPA uptake were characterized in cancer cell lines. For the quantitative assessment of BPA uptake, HPLC was used throughout the study. Among aromatic amino acid transporters, ATB(0,+), LAT1 and LAT2 were found to transport BPA with Km values of 137.4 ± 11.7, 20.3 ± 0.8 and 88.3 ± 5.6 μM, respectively. Uptake experiments in cancer cell lines revealed that the LAT1 protein amount was the major determinant of BPA uptake at 100 μM, whereas the contribution of ATB(0,+) became significant at 1000 μM, accounting for 20-25% of the total BPA uptake in MCF-7 breast cancer cells. ATB(0,+), LAT1 and LAT2 transport BPA at affinities comparable with their endogenous substrates, suggesting that they could mediate effective BPA uptake in vivo. The high and low affinities of LAT1 and ATB(0,+), respectively, differentiate their roles in BPA uptake. ATB(0,+), as well as LAT1, could contribute significantly to the tumor accumulation of BPA at clinical dose.

  18. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    SciTech Connect

    Powell, J.; Ludewig, H.; Todosow, M.; Reich, M.

    1995-06-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.

  19. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Masunaga, Shinichiro; Kinashi, Yuko; Nagata, Kenji; Maruhashi, Akira; Ono, Koji

    2006-12-01

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.

  20. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  1. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes

    PubMed Central

    Kueffer, Peter J.; Maitz, Charles A.; Khan, Aslam A.; Schuster, Seth A.; Shlyakhtina, Natalia I.; Jalisatgi, Satish S.; Brockman, John D.; Nigg, David W.; Hawthorne, M. Frederick

    2013-01-01

    The application of boron neutron capture therapy (BNCT) following liposomal delivery of a 10B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2′-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h—with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)—following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 1012 neutrons per cm2 (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study. PMID:23536304

  2. Safe and Efficacious Use of Automated Bolus Advisors in Individuals Treated With Multiple Daily Insulin Injection (MDI) Therapy

    PubMed Central

    Parkin, Christopher G.; Barnard, Katharine; Hinnen, Deborah A.

    2015-01-01

    Numerous studies have shown that use of integrated automated bolus advisors (BAs) provides significant benefits to individuals using insulin pump devices, including improved glycemic control and greater treatment satisfaction. Within the past few years, BA devices have been developed specifically for individuals treated with multiple daily insulin injection (MDI) therapy; however, many clinicians who treat these individuals may be unfamiliar with insulin pump therapy and, thus, BA use. Findings from the Automated Bolus Advisor Control and Usability Study (ABACUS) revealed that BA use can be efficacious and clinically meaningful in MDI therapy, and that most patients are willing and able to use this technology appropriately when adequate clinical support is provided. The purpose of this article is to review key learnings from ABACUS and provide practical advice for initiating BA use and monitoring therapy. PMID:25795641

  3. Myofunctional Therapy to Treat Obstructive Sleep Apnea: A Systematic Review and Meta-analysis

    PubMed Central

    Camacho, Macario; Certal, Victor; Abdullatif, Jose; Zaghi, Soroush; Ruoff, Chad M.; Capasso, Robson; Kushida, Clete A.

    2015-01-01

    , Capasso R, Kushida CA. Myofunctional therapy to treat obstructive sleep apnea: a systematic review and meta-analysis. SLEEP 2015;38(5):669–675. PMID:25348130

  4. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    PubMed

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production.

  5. Eyes open to stem cells: safety trial may pave the way for cell therapy to treat retinal disease in patients

    PubMed Central

    2011-01-01

    A clinical trial using human embryonic stem cell (hESC) therapy for an inherited retinal degenerative disease is about to commence. The Advanced Cell Technology (ACT) trial will treat patients with Stargardt's macular dystrophy using transplanted retinal pigment epithelium derived from hESCs. Currently, no effective treatment is available for Stargardt's disease so a stem cell-based therapy that can slow progression of this blinding condition could represent a significant breakthrough. While there are some hurdles to clear, the ACT trial is a fine example of translational research that could eventually pave the way for a range of stem cell therapies for the retina and other tissues. PMID:22152341

  6. Thrombotic Microangiopathy In Metastatic Melanoma Patients Treated with Adoptive Cell Therapy and Total Body Irradiation

    PubMed Central

    Tseng, Jennifer; Citrin, Deborah E.; Waldman, Meryl; White, Donald E.; Rosenberg, Steven A.; Yang, James C.

    2014-01-01

    Background Thrombotic microangioapathy (TMA) is a complication that developed in some patients receiving 12 Gy total body irradiation in addition to lymphodepleting preparative chemotherapy prior to infusion of autologous tumor infiltrating lymphocytes (TIL) with high-dose aldesleukin (IL-2). This paper describes the incidence, presentation and course of radiation-associated TMA. Methods The data for patients with metastatic melanoma who received ACT with TIL plus aldesleukin following myeloablative chemotherapy and 12 Gy total body irradiation was examined, looking at patient characteristics and the natural history of TMA. Results The median time to presentation was approximately 8 months after completing TBI. The estimated cumulative incidence of TMA was 31.2% (median follow-up of 24 months). Noninvasive criteria for diagnosis included newly elevated creatinine levels, new-onset hypertension, new-onset anemia, microscopic hematuria, thrombocytopenia, low haptoglobin and elevated lactate dehydrogenase values. Once diagnosed, patients were managed with control of their hypertension with multiple agents and supportive red blood cell transfusions. TMA typically stabilized or improved and no patient progressed to dialysis. TMA was associated with a higher probability of an anti-tumor response. Conclusions Thrombotic microangiopathy occurs in approximately a third of patients treated with a lymphodepleting preparative chemotherapy regimen with total body irradiation prior to autologous T-cell therapy. The disease has a variable natural history, however no patient developed end-stage renal failure. Successful management with supportive care and aggressive hypertension control is vital to the safe application of a systemic therapy that has shown curative potential for patients with disseminated melanoma. PMID:24474396

  7. Treating Traumatized Offenders and Veterans by Means of Narrative Exposure Therapy

    PubMed Central

    Hecker, Tobias; Hermenau, Katharin; Crombach, Anselm; Elbert, Thomas

    2015-01-01

    Violent offenders and soldiers are at high risk of developing appetitive aggression and trauma-related disorders, which reduce successful integration into societies. Narrative exposure therapy (NET) for forensic offender rehabilitation (FORNET) aims at reducing symptoms of traumatic stress (e.g., posttraumatic stress disorder) and controlling readiness for aggressive behavior. It follows the logic of the evidence-based trauma-focused NET with special emphasis on violent acts in past and future behavior. In NET, the therapist guides the client by means of exposure through his traumatic experiences in chronological order linking the negative emotions, such as fear, shame, and disgust, to the past context and integrating the traumatic experiences into the autobiographical memory. During FORNET, we also encourage verbalization of any positive emotions and experiences linked to past violent and aggressive behaviors. This recall of positive emotions (linked to the there and then) is contrasted with feelings that emerge during the narration process (here and now). In this way, the therapist helps the client to anchor the whole range of sensory and bodily experiences, cognitions, and emotions to the contextual cues. Over the process of the therapy, we support the client to begin the role change from a violent offender to a citizen, who is capable of living a non-violent and socially adjusted life. Finally, the client develops visions and wishes for the future to support a successful integration into society. Several studies with veterans and violent youths have proven the feasibility of FORNET, found evidence of a positive outcome (recovered mental health, fewer offenses committed, less drug intake, and improved integration into civil society), and highlighted the importance of addressing the whole range of experiences while treating violent offenders or veterans. PMID:26157395

  8. The TOPSHOCK study: Effectiveness of radial shockwave therapy compared to focused shockwave therapy for treating patellar tendinopath - design of a randomised controlled trial

    PubMed Central

    2011-01-01

    Background Patellar tendinopathy is a chronic overuse injury of the patellar tendon that is especially prevalent in people who are involved in jumping activities. Extracorporeal Shockwave Therapy is a relatively new treatment modality for tendinopathies. It seems to be a safe and promising part of the rehabilitation program for patellar tendinopathy. Extracorporeal Shockwave Therapy originally used focused shockwaves. Several years ago a new kind of shockwave therapy was introduced: radial shockwave therapy. Studies that investigate the effectiveness of radial shockwave therapy as treatment for patellar tendinopathy are scarce. Therefore the aim of this study is to compare the effectiveness of focussed shockwave therapy and radial shockwave therapy as treatments for patellar tendinopathy. Methods/design The TOPSHOCK study (Tendinopathy Of Patella SHOCKwave) is a two-armed randomised controlled trial in which the effectiveness of focussed shockwave therapy and radial shockwave therapy are directly compared. Outcome assessors and patients are blinded as to which treatment is given. Patients undergo three sessions of either focused shockwave therapy or radial shockwave therapy at 1-week intervals, both in combination with eccentric decline squat training. Follow-up measurements are scheduled just before treatments 2 and 3, and 1, 4, 7 and 12 weeks after the final treatment. The main outcome measure is the Dutch VISA-P questionnaire, which asks for pain, function and sports participation in subjects with patellar tendinopathy. Secondary outcome measures are pain determined with a VAS during ADL, sports and decline squats, rating of subjective improvement and overall satisfaction with the treatment. Patients will also record their sports activities, pain during and after these activities, and concurrent medical treatment on a weekly basis in a web-based diary. Results will be analysed according to the intention-to-treat principle. Discussion The TOPSHOCK study is the

  9. Constitutive STAT5 Activation Correlates With Better Survival in Cervical Cancer Patients Treated With Radiation Therapy

    SciTech Connect

    Chen, Helen H.W.; Chou, Cheng-Yang; Wu, Yuan-Hua; Hsueh, Wei-Ting; Hsu, Chiung-Hui; Guo, How-Ran; Lee, Wen-Ying; Su, Wu-Chou

    2012-02-01

    Purpose: Constitutively activated signal transducers and activators of transcription (STAT) factors, in particular STAT1, STAT3, and STAT5, have been detected in a wide variety of human primary tumors and have been demonstrated to directly contribute to oncogenesis. However, the expression pattern of these STATs in cervical carcinoma is still unknown, as is whether or not they have prognostic significance. This study investigated the expression patterns of STAT1, STAT3, and STAT5 in cervical cancer and their associations with clinical outcomes in patients treated with radical radiation therapy. Methods and Materials: A total of 165 consecutive patients with International Federation of Gynecology and Obstetrics (FIGO) Stages IB to IVA cervical cancer underwent radical radiation therapy, including external beam and/or high-dose-rate brachytherapy between 1989 and 2002. Immunohistochemical studies of their formalin-fixed, paraffin-embedded tissues were performed. Univariate and multivariate analyses were performed to identify and to evaluate the effects of these factors affecting patient survival. Results: Constitutive activations of STAT1, STAT3, and STAT5 were observed in 11%, 22%, and 61% of the participants, respectively. While STAT5 activation was associated with significantly better metastasis-free survival (p < 0.01) and overall survival (p = 0.04), STAT1 and STAT3 activation were not. Multivariate analyses showed that STAT5 activation, bulky tumor ({>=}4 cm), advanced stage (FIGO Stages III and IV), and brachytherapy (yes vs. no) were independent prognostic factors for cause-specific overall survival. None of the STATs was associated with local relapse. STAT5 activation (odds ratio = 0.29, 95% confidence interval = 0.13-0.63) and advanced stage (odds ratio = 2.54; 95% confidence interval = 1.03-6.26) were independent predictors of distant metastasis. Conclusions: This is the first report to provide the overall expression patterns and prognostic significance of

  10. A Systematic Review of the Effectiveness of Manipulative Therapy in Treating Lateral Epicondylalgia

    PubMed Central

    Herd, Christopher R.; Meserve, Brent B.

    2008-01-01

    Lateral epicondylalgia is a commonly encountered musculoskeletal complaint. Currently, there is no agreement regarding the exact underlying pathoanatomical cause or the most effective management strategy. Various forms of joint manipulation have been recommended as treatment. The purpose of this study was to systematically review available literature regarding the effectiveness of manipulation in treating lateral epicondylalgia. A comprehensive search of Medline, CINAHL, Health Source, SPORTDiscus, and the Physiotherapy Evidence Database ending in November 2007 was conducted. Thirteen studies, both randomized and non-randomized clinical trials, met inclusion criteria. Articles were assessed for quality by one reviewer using the 10-point PEDro scale. Quality scores ranged from 1–8 with a mean score of 5.15 ± 1.85. This score represented fair quality overall; however, trends indicated the presence of consistent methodological flaws. Specifically, no study achieved successful blinding of the patient or treating therapist, and less than 50% used a blinded outcome assessor. Additionally, studies varied significantly in terms of outcome measures, follow-up, and comparison treatments, thus making comparing results across studies difficult. Results of this review support the use of Mulligan's mobilization with movement in providing immediate, short-, and long-term benefits. In addition, positive results were demonstrated with manipulative therapy directed at the cervical spine, although data regarding long-term effects were limited. Currently, limited evidence exists to support a synthesis of any particular technique whether directed at the elbow or cervical spine. Overall, this review identified the need for further high-quality studies using larger sample sizes, valid functional outcome measures, and longer follow-up periods. PMID:19771195

  11. The use of restricted environmental stimulation therapy in treating addictive behaviors.

    PubMed

    Borrie, R A

    Successful treatment of addictive behaviors is difficult because of the complexity of relevant contributing variables. Restricted environmental stimulation therapy (REST) is offered as a useful, flexible tool that can facilitate change in addictive variables at each level of complexity, from habitual acts through attitudes to self-concept and spirituality. The nature of REST is discussed in terms of processes and effects. Basically two processes, refocusing and rebalancing, contribute to the various physical and mental effects of restricted environmental stimulation. These effects include profound relaxation, relief from pain, and a shift in consciousness to a state that is more introspective, less defensive, and more receptive. Research in treating addictive behaviors with REST is reviewed with smoking, overeating, alcohol consumption, and drug misuse. There is a substantial body of literature demonstrating the effectiveness of REST in modifying smoking behavior. Very little research has been done on REST and drug misuse. Each of the other areas has a small number of preliminary studies that suggest REST as a promising treatment. In general, chamber REST proves to be effective in facilitating attitudinal and behavioral change, and maintaining those changes. The scant research with flotation REST show it to be less effective in modifying behavior but more relaxing and pain alleviating than chamber REST. The characteristics of the REST experience that make it effective in treating addictions are discussed as follows: (1) the induction of a general relaxation response, (2) substance misusers find serenity and relief by nonchemical means, (3) internal refocusing to concentrate on personal problems, (4) disruption of habits through removal of trigger cues and response possibilities, (5) increased feelings of control over addictive behaviors, and (6) enhanced learning processes. REST is a versatile, cost-effective treatment modality with demonstrated effectiveness in

  12. Elements of lentiviral vector design toward gene therapy for treating mucopolysaccharidosis I.

    PubMed

    Ou, Li; Przybilla, Michael J; Koniar, Brenda L; Whitley, Chester B

    2016-09-01

    Mucopolysaccharidosis type I (MPS I) is a lysosomal disease caused by α-l-iduronidase (IDUA) deficiency and accumulation of glycosaminoglycans (GAG). Lentiviral vector encoding correct IDUA cDNA could be used for treating MPS I. To optimize the lentiviral vector design, 9 constructs were designed by combinations of various promoters, enhancers, and codon optimization. After in vitro transfection into 293FT cells, 5 constructs achieved the highest IDUA activities (5613 to 7358 nmol/h/mg protein). These 5 candidate vectors were then tested by injection (1 × 10(7) TU/g) into neonatal MPS I mice. After 30 days, one vector, CCEoIDW, achieved the highest IDUA levels: 2.6% of wildtype levels in the brain, 9.9% in the heart, 200% in the liver and 257% in the spleen. CCEoIDW achieved the most significant GAG reduction: down 49% in the brain, 98% in the heart, 100% in the liver and 95% in the spleen. Further, CCEoIDW had the lowest transgene frequency, especially in the gonads (0.03 ± 0.01 copies/100 cells), reducing the risk of insertional mutagenesis and germ-line transmission. Therefore, CCEoIDW is selected as the optimal lentiviral vector for treating MPS I disease and will be applied in large animal preclinical studies. Further, taken both in vitro and in vivo comparisons together, codon optimization, use of EF-1α promoter and woodchuck hepatitis virus posttranscriptional response element (WPRE) could enhance transgene expression. These results provided a better understanding of factors contributing efficient transgene expression in lentiviral gene therapies. PMID:27556013

  13. Morphological study of rat skin flaps treated with subcutaneous dimethyl sulfoxide combined with hyperbaric oxygen therapy.

    PubMed

    Almeida, K G; Oliveira, R J; Dourado, D M; Filho, E A; Fernandes, W S; Souza, A S; Araújo, F H S

    2015-01-01

    This study investigated the effects of hyperbaric oxygen therapy (HBOT) and dimethyl sulfoxide (DMSO) in tissue necrosis, genotoxicity, and cell apoptosis. Random skin flaps were made in 50 male Wistar rats, randomly divided into the following groups. Control group (CT), wherein a rectangular skin section (2 x 8 cm) was dissected from the dorsal muscle layer, preserving the cranial vessels, lifted, and refixed to the bed; distilled water (DW) group, in which DW was injected into the distal half of the skin flap; DMSO group, wherein 5% DMSO was injected; HBOT group, comprising animals treated only with HBOT; and HBOT + DMSO group, comprising animals treated with 100% oxygen at 2.5 atmospheres absolute for 1 h, 2 h after the experiment, daily for 10 consecutive days. A skinflap specimen investigated by microscopy. The percentage of necrosis was not significantly different between groups. The cell viability index was significantly different between groups (P < 0.001): 87.40% (CT), 86.20% (DW), 84.60% (DMSO), 86.60% (DMSO + HBO), and 91% (HBO) (P < 0.001), as was the cell apoptosis index of 12.60 (CT), 12.00 (DW), 15.40 (DMSO), 9.00 (HBO), and 12.00 (DMSO + HBO) (P < 0.001). The genotoxicity test revealed the percentage of cells with DNA damage to be 22.80 (CT), 22.60 (DW), 26.00 (DMSO), 8.80 (DMSO + HBO), and 7.20 (HBO) (P < 0.001). Although the necrotic area was not different between groups, there was a significant reduction in the cellular DNA damage and apoptosis index in the HBOT group. PMID:26782463

  14. Beneficial effects of combined resveratrol and metformin therapy in treating diet-induced insulin resistance.

    PubMed

    Frendo-Cumbo, Scott; MacPherson, Rebecca E K; Wright, David C

    2016-08-01

    The polyphenol compound resveratrol (RSV) has attracted attention due to its reputed beneficial effects on insulin sensitivity. Our lab has previously identified protective effects of RSV against the development of type 2 diabetes in rats. These effects occurred in a manner similar to thiazolidinedione's (TZDs), a class of insulin sensitizing drugs. TZDs are commonly prescribed in combination with metformin (MET) and thus we sought to examine the combined effects of RSV and MET in treating insulin resistance. Male C57BL6 mice were fed a low- (LFD; 10% Kcal from fat) or high-fat diet (HFD; 60% Kcal from fat) for 9 weeks to induce glucose and insulin intolerance. HFD mice were then assigned to control (HFD), MET (231.28 ± 12.24 mg/kg/day), RSV (93.68 ± 3.51 mg/kg/day), or combined (COM; MET 232.01 ± 17.12 mg/kg/day and RSV 92.77 ± 6.92 mg/kg/day) treatment groups. Changes in glucose and insulin tolerance and tissue-specific insulin signaling were measured 4 weeks post-treatment. RSV or MET alone did not have beneficial effects on glucose tolerance, although MET significantly improved insulin tolerance compared to HFD Glucose and insulin tolerance were significantly improved in COM compared to HFD and this was mirrored by enhanced insulin-stimulated AKT phosphorylation in triceps muscle and inguinal subcutaneous adipose tissue in COM compared to HFD mice. Improvements with COM treatment were not explained by differences in body weight, adiposity, or markers of adipose tissue inflammation. In summary, this study provides evidence of beneficial effects of combined RSV and MET therapy in treating impairments in glucose homeostasis. PMID:27482073

  15. Morphological study of rat skin flaps treated with subcutaneous dimethyl sulfoxide combined with hyperbaric oxygen therapy.

    PubMed

    Almeida, K G; Oliveira, R J; Dourado, D M; Filho, E A; Fernandes, W S; Souza, A S; Araújo, F H S

    2015-12-28

    This study investigated the effects of hyperbaric oxygen therapy (HBOT) and dimethyl sulfoxide (DMSO) in tissue necrosis, genotoxicity, and cell apoptosis. Random skin flaps were made in 50 male Wistar rats, randomly divided into the following groups. Control group (CT), wherein a rectangular skin section (2 x 8 cm) was dissected from the dorsal muscle layer, preserving the cranial vessels, lifted, and refixed to the bed; distilled water (DW) group, in which DW was injected into the distal half of the skin flap; DMSO group, wherein 5% DMSO was injected; HBOT group, comprising animals treated only with HBOT; and HBOT + DMSO group, comprising animals treated with 100% oxygen at 2.5 atmospheres absolute for 1 h, 2 h after the experiment, daily for 10 consecutive days. A skinflap specimen investigated by microscopy. The percentage of necrosis was not significantly different between groups. The cell viability index was significantly different between groups (P < 0.001): 87.40% (CT), 86.20% (DW), 84.60% (DMSO), 86.60% (DMSO + HBO), and 91% (HBO) (P < 0.001), as was the cell apoptosis index of 12.60 (CT), 12.00 (DW), 15.40 (DMSO), 9.00 (HBO), and 12.00 (DMSO + HBO) (P < 0.001). The genotoxicity test revealed the percentage of cells with DNA damage to be 22.80 (CT), 22.60 (DW), 26.00 (DMSO), 8.80 (DMSO + HBO), and 7.20 (HBO) (P < 0.001). Although the necrotic area was not different between groups, there was a significant reduction in the cellular DNA damage and apoptosis index in the HBOT group.

  16. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma.

    PubMed

    Kageji, T; Nagahiro, S; Mizobuchi, Y; Toi, H; Nakagawa, Y; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n = 8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n = 4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n = 6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4+/-4.2 Gy, 15.7+/-1.2 and 13.9+/-3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8+/-1.3 Gy in positive and was 12.6+/-4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8+/-3.8 Gy in positive and was 13.6+/-4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  17. First Evaluation of the Biologic Effectiveness Factors of Boron Neutron Capture Therapy (BNCT) in a Human Colon Carcinoma Cell Line

    SciTech Connect

    Dagrosa, Maria Alejandra; Crivello, Martin; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    Purpose: DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ({sup 10}BPA) and for 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX ({sup 10}BOPP). Methods and Materials: Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm {sup 10}B) + neutrons, (2) BOPP (10 ppm {sup 10}B) + neutrons, (3) neutrons alone, and (4) gamma rays ({sup 60}Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy ({+-}10%) (thermal neutrons flux = 7.5 10{sup 9} n/cm{sup 2} sec). Results: The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 {+-} 1.1 and 2.4 {+-} 0.6; CBE for BOPP: 8.0 {+-} 2.2 and 2.0 {+-} 1; CBE for BPA: 19.6 {+-} 3.7 and 3.5 {+-} 1.3. Conclusions: BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a

  18. [Procedure for daylight methyl aminolevulinate photodynamic therapy to treat actinic keratoses].

    PubMed

    Girard, C; Adamski, H; Basset-Séguin, N; Beaulieu, P; Dreno, B; Riboulet, J-L; Lacour, J-P

    2016-04-01

    Actinic keratosis (AK), also known as solar keratosis or pre-cancerous keratosis, is frequently observed in areas of skin exposed to sunlight, particularly in light-skinned patients. In France, photodynamic therapy using red light (conventional PDT) and methylamino 5-levulinate (MAL) is indicated in the treatment of thin or non-hyperkeratotic and non-pigmented multiple AK lesions or large zones covered with AK lesions. It is well-known for its efficacy but also for its side effects, especially pain during illumination, which can limit its use. An alternative to PDT using natural daylight has recently been proposed to treat actinic keratosis lesions, and results in greater flexibility as well as significant reduction in pain. The lesions are prepared as for conventional PDT, with MAL cream being applied by the physician or the patient, after which they are exposed to natural daylight for 2hours. The lesions are then gently cleansed and protected from natural light for 24hours. This paper seeks to provide a precise description of the daylight PDT procedure for the treatment of AK. PMID:27016200

  19. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses.

    PubMed

    Kirkegaard, Thomas; Gray, James; Priestman, David A; Wallom, Kerri-Lee; Atkins, Jennifer; Olsen, Ole Dines; Klein, Alexander; Drndarski, Svetlana; Petersen, Nikolaj H T; Ingemann, Linda; Smith, David A; Morris, Lauren; Bornæs, Claus; Jørgensen, Signe Humle; Williams, Ian; Hinsby, Anders; Arenz, Christoph; Begley, David; Jäättelä, Marja; Platt, Frances M

    2016-09-01

    Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs. PMID:27605553

  20. Antimicrobial photodynamic therapy on Candida albicans pre-treated by fluconazole delayed yeast inactivation.

    PubMed

    Ferreira, Luis Rodolfo; Sousa, Aline Silva; Alvarenga, Letícia Heineck; Deana, Alessandro Melo; de Santi, Maria Eugênia Onofre Simões; Kato, Ilka Tiemy; Leal, Cintia Raquel Lima; Ribeiro, Martha Simões; Prates, Renato Araujo

    2016-09-01

    Antimicrobial photodynamic therapy (APDI) has been used to treat localized infection and the aim of this study was to evaluate the effect of APDI combined with fluconazole in suspension of Candida albicans. C. albicans ATCC90028 was subcultured onto Sabouraud agar and inocula were prepared at yeast density of 1×10(6)CFU/mL. Methylene blue (MB) was used with concentration of 100mM. Yeast cells were incubated for 30min in 24-well plate and then irradiated by LED (660nm; 690mW; A=2.7cm(2); I=250mW/cm(2)) with radiant exposure of 30, 60, and 120J/cm(2). The same APDI setup was used with 2h fluconazole (0.5μg/mL) incubation. A UV-vis optical absorption spectroscopy was achieved following fractionated irradiation up to 960s. There were substantial differences in the killing effect following MB-mediated APDI and C. albicans was eradicated in the both APDI groups. The fluconazole combined to APDI delayed the complete inactivation of the yeast (p<0.05). Spectroscopy showed a decrease in absorption following irradiation for all absorption peaks. APDI presented an antagonist effect in the presence of fluconazole. PMID:27179711

  1. Myelodysplastic syndrome evolving from aplastic anemia treated with immunosuppressive therapy: efficacy of hematopoietic stem cell transplantation

    PubMed Central

    Kim, Sung-Yong; Le Rademacher, Jennifer; Antin, Joseph H.; Anderlini, Paolo; Ayas, Mouhab; Battiwalla, Minoo; Carreras, Jeanette; Kurtzberg, Joanne; Nakamura, Ryotaro; Eapen, Mary; Deeg, H. Joachim

    2014-01-01

    A proportion of patients with aplastic anemia who are treated with immunosuppressive therapy develop clonal hematologic disorders, including post-aplastic anemia myelodysplastic syndrome. Many will proceed to allogeneic hematopoietic stem cell transplantation. We identified 123 patients with post-aplastic anemia myelodysplastic syndrome who from 1991 through 2011 underwent allogeneic hematopoietic stem cell transplantation, and in a matched-pair analysis compared outcome to that in 393 patients with de novo myelodysplastic syndrome. There was no difference in overall survival. There were no significant differences with regard to 5-year probabilities of relapse, non-relapse mortality, relapse-free survival and overall survival; these were 14%, 40%, 46% and 49% for post-aplastic anemia myelodysplastic syndrome, and 20%, 33%, 47% and 49% for de novo myelodysplastic syndrome, respectively. In multivariate analysis, relapse (hazard ratio 0.71; P=0.18), non-relapse mortality (hazard ratio 1.28; P=0.18), relapse-free survival (hazard ratio 0.97; P=0.80) and overall survival (hazard ratio 1.02; P=0.88) of post-aplastic anemia myelodysplastic syndrome were similar to those of patients with de novo myelodysplastic syndrome. Cytogenetic risk was independently associated with overall survival in both groups. Thus, transplant success in patients with post-aplastic anemia myelodysplastic syndrome was similar to that in patients with de novo myelodysplastic syndrome, and cytogenetics was the only significant prognostic factor for post-aplastic anemia myelodysplastic syndrome patients. PMID:25107891

  2. [Neuropathic Gaucher disease treated with long enzyme replacement therapy. Two clinical cases].

    PubMed

    Correa, Cecilia

    2013-01-01

    Gaucher disease (GD) is the most common of all inherited lipid storage diseases. It is an autosomal recessive disorder portraying catabolism and cerebroside deposit in the lysosomes, which is due to a lack of glucocerebrosidase enzyme. Though GD shows a panethnic pattern of presentation, it particularly affects the Ashkenazi Jewish population. Several mutations have been defined among GD patients, and some genotypes related to neurologic affection have been described (L444P--most common mutation for neuropathic GD--188S, V394L and G377S). Lipid material storage or deposit exerts multiorganic affection. Enzyme replacement therapy (ERT) has demonstrable efficacy in reversing organic damage related to GD, though its capability to stop neurologic affection is currently under controversy and particular research. This paper portrays two GD cases of Mexican children treated with ERT at general zone hospitals of the Instituto Mexicano del Seguro Social in recent years, both of them depicting characteristic type 3 GD mutations, and comparing their clinical evolution with and without neurological features.

  3. Will symptom-based therapy be effective for treating asthma in children?

    PubMed

    Nuijsink, Marianne; De Jongste, Johan C; Pijnenburg, Mariëlle W

    2013-10-01

    Traditionally, symptoms are important patient-oriented outcomes in asthma treatment, and assessment of symptoms is an essential component of assessing asthma control. However, variable airways obstruction, airways hyperresponsiveness and chronic inflammation are key components of the asthma syndrome, and correlations among these hallmarks and symptoms are weak or even absent. Therefore, it might be questioned if symptom-based therapy is effective for treating asthma in (all) children. To date, there is no firm indication that monitoring asthma based on repetitive lung function measurement or markers of airway inflammation is superior to monitoring based on symptoms only. In the majority of patients, symptom-based asthma management may well be sufficient, and in preschool children, symptoms are presently the only feasible outcome. Nevertheless, there is some evidence that selected groups might benefit from an approach that takes into account individual phenotypic characteristics. In patients with poor perception, those with a discordant phenotype and those with persistent severe asthma, considering lung function, airways hyperresponsiveness and inflammatory markers in treatment decisions might improve outcomes.

  4. Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies.

    PubMed

    Cavalli, Giulio; Dinarello, Charles A

    2015-12-01

    The inflammatory cytokines IL-1α and IL-1β orchestrate local and systemic inflammatory responses underlying a broad spectrum of diseases. Three agents for reducing IL-1 activities are currently available. Anakinra is a recombinant form of the naturally occurring IL-1 receptor antagonist. Anakinra binds to the IL-1 receptor and prevents the activity of IL-1α and IL-1β. The soluble decoy receptor rilonacept and the neutralizing mAb canakinumab block IL-1β. A mAb directed against the IL-1 receptor and a neutralizing anti-human IL-1α are in clinical trials. The availability of therapies specifically targeting IL-1 unveiled the pathological role of IL-1-mediated inflammation in a broadening list of diseases. Conditions effectively treated with agents blocking IL-1 range from classic rheumatic diseases, such as RA and gout, to autoinflammatory syndromes, such as systemic JIA and FMF. However, IL-1 antagonism is also effective against highly prevalent inflammatory diseases, namely cardiovascular diseases and type 2 diabetes, conditions that are frequently encountered as co-morbidities in patients with rheumatic diseases. Thereby, IL-1 inhibition has the potential to lift the burden of disease for patients with rheumatic conditions, but also to provide clinical benefits beyond the efficacy on osteoarticular manifestations. PMID:26209330

  5. Iatrogenic perforation of esophagus successfully treated with Endoscopic Vacuum Therapy (EVT)

    PubMed Central

    Loske, Gunnar; Schorsch, Tobias; Dahm, Christian; Martens, Eckhard; Müller, Christian

    2015-01-01

    Background and study aims: Endoscopic Vacuum Therapy (EVT) has been reported as a novel treatment option for esophageal leakage. We present our results in the treatment of iatrogenic perforation with EVT in a case series of 10 patients. Patients and methods: An open pore polyurethane drainage was placed either intracavitary through the perforation defect or intraluminal covering the defect zone. Application of vacuum suction with an electronic device (continuous negative pressure, –125 mmHg) resulted in defect closure and internal drainage. Results: Esophageal perforations were located from the cricopharyngeus (4/10) to the esophagogastric junction (2/10). EVT was feasible in all patients. Eight patients were treated with intraluminal EVT, one with intracavitary EVT, and one with both types of treatments. All perforations (100 %) were healed in within a median of (3 – 7) days. No stenosis occurred, no complications were observed, and no additional operative treatment was necessary. Conclusions: Our study suggests that intraluminal EVT will play an important role in endoscopic management of esophageal perforation. PMID:26716109

  6. Photodynamic therapy (PDT) to treat a chronic skin wound in a dog

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Plapler, Hélio; Bitar, Renata A.

    2008-02-01

    Photodynamic Therapy (PDT) is an emerging and promising therapeutic modality for treatment of a wide variety of malignant and nononcologic tumors, as well as in the treatment of infected skin ulcers. This study evaluated the effectiveness of the PDT to treat a chronic skin wound that had been already subjected to several clinical and surgical type treatments in a dog. The animal with an infected chronic skin wound with 8 cm diameter in the left leg received an injection of an aqueous solution of 1% methylene blue (MB) with 2% lidocaine into the lesion. After MB injection the wound was irradiated using a LED (LED-VET MMOptics(r)) with a wavelength between 600 and 700 nm, 2 cm diameter circular light beam, of 150 mW of power, light dose of 50 J/cm2. After 3 and 6 weeks PDT was repeated and the wound was re-evaluated. Complete healing was achieved 10 weeks after the first procedure.

  7. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses.

    PubMed

    Kirkegaard, Thomas; Gray, James; Priestman, David A; Wallom, Kerri-Lee; Atkins, Jennifer; Olsen, Ole Dines; Klein, Alexander; Drndarski, Svetlana; Petersen, Nikolaj H T; Ingemann, Linda; Smith, David A; Morris, Lauren; Bornæs, Claus; Jørgensen, Signe Humle; Williams, Ian; Hinsby, Anders; Arenz, Christoph; Begley, David; Jäättelä, Marja; Platt, Frances M

    2016-09-01

    Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.

  8. Psorinum Therapy in Treating Stomach, Gall Bladder, Pancreatic, and Liver Cancers: A Prospective Clinical Study

    PubMed Central

    Chatterjee, Aradeep; Biswas, Jaydip; Chatterjee, Ashim; Bhattacharya, Sudin; Mukhopadhyay, Bishnu; Mandal, Syamsundar

    2011-01-01

    We prospectively studied the clinical efficacy of an alternative cancer treatment “Psorinum Therapy” in treating stomach, gall bladder, pancreatic and liver cancers. Our study was observational, open level and single arm. The participants' eligibility criteria included histopathology/cytopathology confirmation of malignancy, inoperable tumor, and no prior chemotherapy or radiation therapy. The primary outcome measures of the study were (i) to assess the radiological tumor response (ii) to find out how many participants survived at least 1 year, 2 years, 3 years, 4 years and finally 5 years after the beginning of the study considering each type of cancer. Psorinum-6x was administered orally to all the participants up to 0.02 ml/Kg body weight as a single dose in empty stomach per day for 2 years along with allopathic and homeopathic supportive cares. 158 participants (42 of stomach, 40 of gall bladder, 44 of pancreatic, 32 of liver) were included in the final analysis of the study. Complete tumor response occurred in 28 (17.72%) cases and partial tumor response occurred in 56 (35.44%) cases. Double-blind randomized controlled clinical trial should be conducted for further scientific exploration of this alternative cancer treatment. PMID:21197093

  9. Severity of Hematuria Effects Resolution in Patients Treated with Hyperbaric Oxygen Therapy for Radiation-Induced Hematuria

    PubMed Central

    Liss, Michael A.; Osann, Kathryn; Cho, Jane; Chua, Walter C.; Dash, Atreya

    2014-01-01

    Introduction We investigated the differences between prostate cancer patients with radiation-induced hematuria treated with hyperbaric oxygen (HBO) therapy that did or did not have a resolution of hematuria. Materials and Methods We performed a retrospective review of prostate cancer patients with radiation-induced hematuria who underwent HBO from April 2000 to March 2010. We performed an analysis of demographic data and severity of hematuria in those who had resolution of or persistent hematuria. Additionally, prostate-specific antigen (PSA) data were also obtained during the study period. Results Overall, 11/22 men had resolution of hematuria after HBO therapy with a median follow-up of 2.2 (0.35–13.6) years. The Radiation Therapy Oncology Group (RTOG) grade of hematuria is predictive of final hematuria outcome (resolution vs. persistent) after HBO (p = 0.026). No significant PSA changes were noted before and after HBO therapy. Conclusions The RTOG hematuria grade is associated with the resolution of hematuria after HBO therapy for radiation-induced hematuria in men treated for prostate cancer. This information may be helpful during shared medical decision-making regarding utility of HBO therapy in the context of severity of hematuria. PMID:23919985

  10. Hyperbaric Oxygen Therapy in Treating Long-Term Gastrointestinal Adverse Effects Caused by Radiation Therapy in Patients With Pelvic Cancer

    ClinicalTrials.gov

    2011-07-14

    Bladder Cancer; Cervical Cancer; Colorectal Cancer; Endometrial Cancer; Gastrointestinal Complications; Long-term Effects Secondary to Cancer Therapy in Adults; Ovarian Cancer; Prostate Cancer; Radiation Toxicity; Sarcoma; Testicular Germ Cell Tumor; Vaginal Cancer

  11. Neuroplastic Sensorimotor Resting State Network Reorganization in Children With Hemiplegic Cerebral Palsy Treated With Constraint-Induced Movement Therapy.

    PubMed

    Manning, Kathryn Y; Menon, Ravi S; Gorter, Jan Willem; Mesterman, Ronit; Campbell, Craig; Switzer, Lauren; Fehlings, Darcy

    2016-02-01

    Using resting state functional magnetic resonance imaging (MRI), we aim to understand the neurologic basis of improved function in children with hemiplegic cerebral palsy treated with constraint-induced movement therapy. Eleven children including 4 untreated comparison subjects diagnosed with hemiplegic cerebral palsy were recruited from 3 clinical centers. MRI and clinical data were gathered at baseline and 1 month for both groups, and 6 months later for the case group only. After constraint therapy, the sensorimotor resting state network became more bilateral, with balanced contributions from each hemisphere, which was sustained 6 months later. Sensorimotor resting state network reorganization after therapy was correlated with a change in the Quality of Upper Extremity Skills Test score at 1 month (r = 0.79, P = .06), and Canadian Occupational Performance Measure scores at 6 months (r = 0.82, P = .05). This clinically correlated resting state network reorganization provides further evidence of the neuroplastic mechanisms underlying constraint-induced movement therapy.

  12. Use of maggot therapy for treating a diabetic foot ulcer colonized by multidrug resistant bacteria in Brazil

    PubMed Central

    Pinheiro, Marilia A.R.Q.; Ferraz, Julianny B.; Junior, Miguel A.A.; Moura, Andrew D.; da Costa, Maria E.S.M.; Costa, Fagner J.M.D.; Neto, Valter F.A.; Neto, Renato M.; Gama, Renata A.

    2015-01-01

    This study reports the efficacy of maggot therapy in the treatment of diabetic foot ulcer infected with multidrug resistant microorganisms. A 74 year old female patient with diabetes for over 30 years, was treated with maggot therapy using larvae of Chrysomya megacephala. The microbiological samples were collected to evaluate aetiology of the infection. The therapy done for 43 days resulted in a reduction of necrosis and the ulcer's retraction of 0.7 cm2 in area. Analysis of the bacteriological swabs revealed the presence of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Further studies need to be done to confirm the role of maggot therapy in wound healing using a large sample and a proper study design. PMID:25963495

  13. Use of maggot therapy for treating a diabetic foot ulcer colonized by multidrug resistant bacteria in Brazil.

    PubMed

    Pinheiro, Marilia A R Q; Ferraz, Julianny B; Junior, Miguel A A; Moura, Andrew D; da Costa, Maria E S M; Costa, Fagner J M D; Neto, Valter F A; Neto, Renato M; Gama, Renata A

    2015-03-01

    This study reports the efficacy of maggot therapy in the treatment of diabetic foot ulcer infected with multidrug resistant microorganisms. A 74 year old female patient with diabetes for over 30 years, was treated with maggot therapy using larvae of Chrysomya megacephala. The microbiological samples were collected to evaluate aetiology of the infection. The therapy done for 43 days resulted in a reduction of necrosis and the ulcer's retraction of 0.7 cm [2] in area. Analysis of the bacteriological swabs revealed the presence of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Further studies need to be done to confirm the role of maggot therapy in wound healing using a large sample and a proper study design.

  14. Neuroplastic Sensorimotor Resting State Network Reorganization in Children With Hemiplegic Cerebral Palsy Treated With Constraint-Induced Movement Therapy.

    PubMed

    Manning, Kathryn Y; Menon, Ravi S; Gorter, Jan Willem; Mesterman, Ronit; Campbell, Craig; Switzer, Lauren; Fehlings, Darcy

    2016-02-01

    Using resting state functional magnetic resonance imaging (MRI), we aim to understand the neurologic basis of improved function in children with hemiplegic cerebral palsy treated with constraint-induced movement therapy. Eleven children including 4 untreated comparison subjects diagnosed with hemiplegic cerebral palsy were recruited from 3 clinical centers. MRI and clinical data were gathered at baseline and 1 month for both groups, and 6 months later for the case group only. After constraint therapy, the sensorimotor resting state network became more bilateral, with balanced contributions from each hemisphere, which was sustained 6 months later. Sensorimotor resting state network reorganization after therapy was correlated with a change in the Quality of Upper Extremity Skills Test score at 1 month (r = 0.79, P = .06), and Canadian Occupational Performance Measure scores at 6 months (r = 0.82, P = .05). This clinically correlated resting state network reorganization provides further evidence of the neuroplastic mechanisms underlying constraint-induced movement therapy. PMID:26078420

  15. The effects of combined spa therapy and rehabilitation on patients with ankylosing spondylitis being treated with TNF inhibitors.

    PubMed

    Ciprian, Luca; Lo Nigro, Alessandro; Rizzo, Michela; Gava, Alessandra; Ramonda, Roberta; Punzi, Leonardo; Cozzi, Franco

    2013-01-01

    Despite advances in pharmacological therapy, physical treatment continues to be important in the management of ankylosing spondylitis (AS). The objective of the present study was to evaluate the effects and tolerability of combined spa therapy and rehabilitation in a group of AS patients being treated with TNF inhibitors. Thirty AS patients attending the Rheumatology Unit of the University of Padova being treated with TNF inhibitors for at least 3 months were randomized and assessed by an investigator independent from the spa staff: 15 were prescribed 10 sessions of spa therapy (mud packs and thermal baths) and rehabilitation (exercises in a thermal pool) and the other 15 were considered controls. The patients in both groups had been receiving anti-TNF agents for at least three months. The outcome measures utilized were BASFI, BASDAI, BASMI, VAS for back pain and HAQ. The evaluations were performed in all patients at the entry to the study, at the end of the spa treatment, and after 3 and 6 months. Most of the evaluation indices were significantly improved at the end of the spa treatment, as well as at the 3 and 6 months follow-up assessments. No significant alterations in the evaluation indices were found in the control group. Combined spa therapy and rehabilitation caused a clear, long-term clinical improvement in AS patients being treated with TNF inhibitors. Thermal treatment was found to be well tolerated and none of the patients had disease relapse.

  16. The prostamide-related glaucoma therapy, bimatoprost, offers a novel approach for treating scalp alopecias

    PubMed Central

    Khidhir, Karzan G.; Woodward, David F.; Farjo, Nilofer P.; Farjo, Bessam K.; Tang, Elaine S.; Wang, Jenny W.; Picksley, Steven M.; Randall, Valerie A.

    2013-01-01

    Balding causes widespread psychological distress but is poorly controlled. The commonest treatment, minoxidil, was originally an antihypertensive drug that promoted unwanted hair. We hypothesized that another serendipitous discovery, increased eyelash growth side-effects of prostamide F2α-related eyedrops for glaucoma, may be relevant for scalp alopecias. Eyelash hairs and follicles are highly specialized and remain unaffected by androgens that inhibit scalp follicles and stimulate many others. Therefore, we investigated whether non-eyelash follicles could respond to bimatoprost, a prostamide F2α analog recently licensed for eyelash hypotrichosis. Bimatoprost, at pharmacologically selective concentrations, increased hair synthesis in scalp follicle organ culture and advanced mouse pelage hair regrowth in vivo compared to vehicle alone. A prostamide receptor antagonist blocked isolated follicle growth, confirming a direct, receptor-mediated mechanism within follicles; RT-PCR analysis identified 3 relevant receptor genes in scalp follicles in vivo. Receptors were located in the key follicle regulator, the dermal papilla, by analyzing individual follicular structures and immunohistochemistry. Thus, bimatoprost stimulates human scalp follicles in culture and rodent pelage follicles in vivo, mirroring eyelash behavior, and scalp follicles contain bimatoprost-sensitive prostamide receptors in vivo. This highlights a new follicular signaling system and confirms that bimatoprost offers a novel, low-risk therapeutic approach for scalp alopecias.—Khidhir, K. G., Woodward, D. F., Farjo, N. P., Farjo, B. K., Tang, E. S., Wang, J. W., Picksley, S. M., and Randall, V. A. The prostamide-related glaucoma therapy, bimatoprost, offers a novel approach for treating scalp alopecias. PMID:23104985

  17. Regulation of aromatase expression in breast cancer treated with anastrozole neoadjuvant therapy.

    PubMed

    Ghimenti, Chiara; Mello-Grand, Maurizia; Grosso, Enrico; Scatolini, Maria; Regolo, Lea; Zambelli, Alberto; Chiorino, Giovanna

    2013-03-01

    Aromatase inhibitors (AIs), such as anastrozole, are established in the treatment of hormone-dependent breast cancer. However, ∼20% of patients with hormone receptor-positive breast tumors treated with anastrozole do not respond and it remains impossible to accurately predict sensitivity. Since polymorphisms in the aromatase gene may influence the response to inhibitory drugs, we evaluated the presence of rs6493497 and rs7176005 polymorphisms (mapping in the 5'-flanking region of the CYP19A1 gene coding for the aromatase protein) in a cohort of 37 patients with postmenopausal breast cancer who received three-month neoadjuvant treatment with anastrozole. We then investigated any association of the polymorphisms with changes in aromatase mRNA expression change and/or response to treatment. We also analyzed five miRNAs computationally predicted to target aromatase, to observe any association between their expression and sensitivity to anastrozole. Three samples carried the two polymorphisms and the remaining samples were wild-type for both, however, no association with response or with aromatase mRNA basal expression level or expression difference after therapy was observed. Polymorphic samples that were resistant to anastrozole showed no change or decrease in aromatase expression following AI treatment, whereas an increase in expression was observed for the polymorphic responsive samples. No statistically significant correlation was observed between miRNA and aromatase mRNA expression, or with response to anastrozole neoadjuvant treatment. These data indicate that the polymorphisms analyzed are not involved in aromatase activity and that other epigenetic mechanisms may regulate aromatase protein expression.

  18. Outcomes in Black Patients With Early Breast Cancer Treated With Breast Conservation Therapy

    SciTech Connect

    Nichols, Michael A.; Mell, Loren K.; Hasselle, Michael D.; Karrison, Theodore G.; MacDermed, Dhara; Meriwether, Amber; Witt, Mary Ellyn; Weichselbaum, Ralph R.; Chmura, Steven J.

    2011-02-01

    Background: The race-specific impact of prognostic variables for early breast cancer is unknown for black patients undergoing breast conservation. Methods and Materials: This was a retrospective study of 1,231 consecutive patients {>=}40 years of age with Stage I-II invasive breast cancer treated with lumpectomy and radiation therapy at the University of Chicago Hospitals and affiliates between 1986 and 2004. Patients were classified as either black or nonblack. Cox proportional hazards regression was used to model the effects of known prognostic factors and interactions with race. Results: Median follow-up for surviving patients was 82 months. Thirty-four percent of patients were black, and 66% were nonblack (Caucasian, Hispanic, and Asian). Black patients had a poorer 10-year overall survival (64.6% vs. 80.8%; adjusted hazard ratio [HR], 1.59; 95% confidence interval [CI], 1.23-2.06) and 10-year disease-free survival (58.1% vs. 75.4%; HR 1.49; 95% CI, 1.18-1.89) compared with nonblack patients. Tumor sizes were similar between nonblack and black patients with mammographically detected tumors (1.29 cm vs. 1.20 cm, p = 0.20, respectively). Tumor size was significantly associated with overall survival (HR 1.48; 95% CI, 1.12-1.96) in black patients with mammographically detected tumors but not in nonblack patients (HR 1.09; 95% CI, 0.78-1.53), suggesting that survival in black patients depends more strongly on tumor size in this subgroup. Tests for race-size method of detection interactions were statistically significant for overall survival (p = 0.049), locoregional control (p = 0.036), and distant control (p = 0.032) and borderline significant for disease-free survival (p = 0.067). Conclusion: Despite detection at comparable sizes, the prognostic effect of tumor size in patients with mammographically detected tumors is greater for black than in nonblack patients.

  19. Viral Decay Kinetics in the Highly Active Antiretroviral Therapy-Treated Rhesus Macaque Model of AIDS

    PubMed Central

    Deere, Jesse D.; Higgins, Joanne; Cannavo, Elda; Villalobos, Andradi; Adamson, Lourdes; Fromentin, Emilie; Schinazi, Raymond F.; Luciw, Paul A.; North, Thomas W.

    2010-01-01

    To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group, viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL. Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2–58 RNA copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a HAART regimen commonly used in humans. PMID:20668516

  20. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    PubMed Central

    2009-01-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors. PMID:20596476

  1. Comparison of Endoscopic Vacuum Therapy and Endoscopic Stent Implantation With Self-Expandable Metal Stent in Treating Postsurgical Gastroesophageal Leakage.

    PubMed

    Hwang, Jae J; Jeong, Yeon S; Park, Young S; Yoon, Hyuk; Shin, Cheol M; Kim, Nayoung; Lee, Dong H

    2016-04-01

    The aim of the present study was to evaluate the more effective therapy for the postsurgical gastroesophageal leakage by a head-to-head comparison of endoscopic vacuum therapy (EVT) and endoscopic stent implantation with self-expandable metal stent (E-SEMS). In this hospital-based, retrospective, observative study, the patients were classified into 2 groups. Those treated with EVT were assigned to the EVT group (n = 7), and those treated with E-SMS were assigned to the E-SEMS group (n = 11). We evaluated the clinical characteristics and treatment outcomes between the 2 groups. All 7 patients (100%) were treated with EVT, but only 7 of 11 patients (63.6%) in the stenting group were treated successfully. The median time to clinical success was 19.5 (5-21) days in the EVT group and 27.0 (3-84) days in the E-SEMS group. The median hospital stay was 37.1 (13-128) days in the EVT group and 87.3 (17-366) days in the E-SEMS group. The complicaion rate was lower in the EVT group (0/7, 0.0%) than that in the E-SEMS group (6/11, 54.5%) with statistically significant difference (P = 0.042). EVT is more effective and has fewer adverse effects than E-SMS therapy as a treatment for postsurgical gastroesophageal leakage.

  2. Comparison of Endoscopic Vacuum Therapy and Endoscopic Stent Implantation With Self-Expandable Metal Stent in Treating Postsurgical Gastroesophageal Leakage

    PubMed Central

    Hwang, Jae J.; Jeong, Yeon S.; Park, Young S.; Yoon, Hyuk; Shin, Cheol M.; Kim, Nayoung; Lee, Dong H.

    2016-01-01

    Abstract The aim of the present study was to evaluate the more effective therapy for the postsurgical gastroesophageal leakage by a head-to-head comparison of endoscopic vacuum therapy (EVT) and endoscopic stent implantation with self-expandable metal stent (E-SEMS). In this hospital-based, retrospective, observative study, the patients were classified into 2 groups. Those treated with EVT were assigned to the EVT group (n = 7), and those treated with E-SMS were assigned to the E-SEMS group (n = 11). We evaluated the clinical characteristics and treatment outcomes between the 2 groups. All 7 patients (100%) were treated with EVT, but only 7 of 11 patients (63.6%) in the stenting group were treated successfully. The median time to clinical success was 19.5 (5–21) days in the EVT group and 27.0 (3–84) days in the E-SEMS group. The median hospital stay was 37.1 (13–128) days in the EVT group and 87.3 (17–366) days in the E-SEMS group. The complicaion rate was lower in the EVT group (0/7, 0.0%) than that in the E-SEMS group (6/11, 54.5%) with statistically significant difference (P = 0.042). EVT is more effective and has fewer adverse effects than E-SMS therapy as a treatment for postsurgical gastroesophageal leakage. PMID:27100431

  3. Comparison of Endoscopic Vacuum Therapy and Endoscopic Stent Implantation With Self-Expandable Metal Stent in Treating Postsurgical Gastroesophageal Leakage.

    PubMed

    Hwang, Jae J; Jeong, Yeon S; Park, Young S; Yoon, Hyuk; Shin, Cheol M; Kim, Nayoung; Lee, Dong H

    2016-04-01

    The aim of the present study was to evaluate the more effective therapy for the postsurgical gastroesophageal leakage by a head-to-head comparison of endoscopic vacuum therapy (EVT) and endoscopic stent implantation with self-expandable metal stent (E-SEMS). In this hospital-based, retrospective, observative study, the patients were classified into 2 groups. Those treated with EVT were assigned to the EVT group (n = 7), and those treated with E-SMS were assigned to the E-SEMS group (n = 11). We evaluated the clinical characteristics and treatment outcomes between the 2 groups. All 7 patients (100%) were treated with EVT, but only 7 of 11 patients (63.6%) in the stenting group were treated successfully. The median time to clinical success was 19.5 (5-21) days in the EVT group and 27.0 (3-84) days in the E-SEMS group. The median hospital stay was 37.1 (13-128) days in the EVT group and 87.3 (17-366) days in the E-SEMS group. The complicaion rate was lower in the EVT group (0/7, 0.0%) than that in the E-SEMS group (6/11, 54.5%) with statistically significant difference (P = 0.042). EVT is more effective and has fewer adverse effects than E-SMS therapy as a treatment for postsurgical gastroesophageal leakage. PMID:27100431

  4. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    SciTech Connect

    Sakurai, Yoshinori Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  5. Assessment of Early Toxicity and Response in Patients Treated With Proton and Carbon Ion Therapy at the Heidelberg Ion Therapy Center Using the Raster Scanning Technique

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra; Haberer, Thomas; Jaekel, Oliver; Muenter, Marc W.; Welzel, Thomas; Debus, Juergen; Combs, Stephanie E.

    2011-12-01

    Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.

  6. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    SciTech Connect

    Carpano, Marina; Perona, Marina; Rodriguez, Carla; Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A.; Brandizzi, Daniel; Cabrini, Romulo; Pisarev, Mario; Juvenal, Guillermo Juan; Dagrosa, Maria Alejandra

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  7. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    SciTech Connect

    Yoon, D; Jung, J; Suh, T

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  8. Primary Ewing's sarcoma of the squamous part of temporal bone in a young girl treated with adjuvant volumetric arc therapy.

    PubMed

    Nandi, Moujhuri; Bhattacharya, Jibak; Goswami, Suchanda; Goswami, Chanchal

    2015-01-01

    Ewing's sarcoma (ES)/peripheral primitive neuroectodermal tumors usually arise in the long bones of children and young adults. Primary ES of the cranium is unusual. Treatment involves multi-modality therapy incorporating surgery, radiotherapy and chemotherapy; outcomes are similar to those arising from long bones. We report a case of Primary ES of the squamous part of temporal bone with intracranial extension in a 9-year-old girl who was treated with surgery, chemotherapy followed by adjuvant radiotherapy by volumetric arc therapy. Post 1-year of treatment the girl is performing well in her classes.

  9. Primary Ewing's sarcoma of the squamous part of temporal bone in a young girl treated with adjuvant volumetric arc therapy.

    PubMed

    Nandi, Moujhuri; Bhattacharya, Jibak; Goswami, Suchanda; Goswami, Chanchal

    2015-01-01

    Ewing's sarcoma (ES)/peripheral primitive neuroectodermal tumors usually arise in the long bones of children and young adults. Primary ES of the cranium is unusual. Treatment involves multi-modality therapy incorporating surgery, radiotherapy and chemotherapy; outcomes are similar to those arising from long bones. We report a case of Primary ES of the squamous part of temporal bone with intracranial extension in a 9-year-old girl who was treated with surgery, chemotherapy followed by adjuvant radiotherapy by volumetric arc therapy. Post 1-year of treatment the girl is performing well in her classes. PMID:26881573

  10. Boron neutron capture therapy for clear cell sarcoma (CCS): biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models.

    PubMed

    Andoh, T; Fujimoto, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Kawabata, S; Kirihata, M; Akisue, T; Yayama, K; Kurosaka, M; Miyatake, S; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake l-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of (10)B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  11. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-D,L-phenylalanine: a target compound for PET and boron neutron capture therapy.

    PubMed

    Ishiwata, K; Ido, T; Mejia, A A; Ichihashi, M; Mishima, Y

    1991-01-01

    The 18F-labeling of 4-borono-D-L-phenylalanine (BPA), a potential target compound for cancer treatment with boron neutron capture therapy, is described. By direct fluorination of BPA with [18F]AcOF or [18F]F2 followed by HPLC separation, 4-borono-2-[18F]fluoro-D,L-phenylalanine was prepared with radiochemical yields of 25-35% and with a radiochemical purity of over 99%. The tissue distribution study showed that the compound has potential as a tracer for pancreas imaging with positron emission tomography. Radiation dosimetry is also described.

  12. Combined use of sodium borocaptate and buthionine sulfoximine in boron neutron capture therapy enhanced tissue boron uptake and delayed tumor growth in a rat subcutaneous tumor model.

    PubMed

    Yoshida, Fumiyo; Yamamoto, Tetsuya; Nakai, Kei; Kumada, Hiroaki; Shibata, Yasushi; Tsuruta, Wataro; Endo, Kiyoshi; Tsurubuchi, Takao; Matsumura, Akira

    2008-05-18

    We have previously reported that buthionine sulfoximine (BSO) enhances sodium borocaptate (BSH) uptake by down regulating glutathione (GSH) synthesis in cultured cells. This study investigated the influence of BSO on tissue BSH uptake in vivo and the efficacy of BSH-BSO-mediated boron neutron capture therapy (BNCT) on tumor growth using a Fisher-344 rat subcutaneous tumor model. With BSO supplementation, boron uptake in subcutaneous tumor, blood, skin, muscle, liver, and kidney was significantly enhanced and maintained for 12h. Tumor growth was significantly delayed by using BSO. With further improvement in experimental conditions, radiation exposure time, together with radiation damage to normal tissues, could be reduced. PMID:18272285

  13. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    PubMed

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  14. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  15. Boron neutron capture therapy of brain tumors: Enhanced survival following intracarotid injection of sodium borocaptate with or without blood-brain barrier disruption

    SciTech Connect

    Yang, W.; Barth, R.F.; Rotaru, J.H.

    1997-02-01

    Sodium borocaptate (Na{sub 2}B{sub 12}H{sub 11}SH or BSH) has been used clinically for boron neutron capture therapy (BNCT) of patients with primary brain tumors. The purpose of the present study was to determine if tumor uptake of BSH and efficacy of BNCT could be enhanced in F98 glioma-bearing rats by intracarotid (i.c.) injection of the compound with or without blood-brain barrier disruption (BBB-D). 56 refs., 4 figs., 3 tabs.

  16. A Chaperone Enhances Blood α-Glucosidase Activity in Pompe Disease Patients Treated With Enzyme Replacement Therapy

    PubMed Central

    Parenti, Giancarlo; Fecarotta, Simona; la Marca, Giancarlo; Rossi, Barbara; Ascione, Serena; Donati, Maria Alice; Morandi, Lucia Ovidia; Ravaglia, Sabrina; Pichiecchio, Anna; Ombrone, Daniela; Sacchini, Michele; Pasanisi, Maria Barbara; De Filippi, Paola; Danesino, Cesare; Della Casa, Roberto; Romano, Alfonso; Mollica, Carmine; Rosa, Margherita; Agovino, Teresa; Nusco, Edoardo; Porto, Caterina; Andria, Generoso

    2014-01-01

    Enzyme replacement therapy is currently the only approved treatment for Pompe disease, due to acid α-glucosidase deficiency. Clinical efficacy of this approach is variable, and more effective therapies are needed. We showed in preclinical studies that chaperones stabilize the recombinant enzyme used for enzyme replacement therapy. Here, we evaluated the effects of a combination of enzyme therapy and a chaperone on α-glucosidase activity in Pompe disease patients. α-Glucosidase activity was analyzed by tandem-mass spectrometry in dried blood spots from patients treated with enzyme replacement therapy, either alone or in combination with the chaperone N-butyldeoxynojirimycin given at the time of the enzyme infusion. Thirteen patients with different presentations (3 infantile-onset, 10 late-onset) were enrolled. In 11 patients, the combination treatment resulted in α-glucosidase activities greater than 1.85-fold the activities with enzyme replacement therapy alone. In the whole patient population, α-glucosidase activity was significantly increased at 12 hours (2.19-fold, P = 0.002), 24 hours (6.07-fold, P = 0.001), and 36 hours (3.95-fold, P = 0.003). The areas under the curve were also significantly increased (6.78-fold, P = 0.002). These results suggest improved stability of recombinant α-glucosidase in blood in the presence of the chaperone. PMID:25052852

  17. A Case of Stage IV Non-Small Cell Lung Cancer Treated with Korean Medicine Therapy Alone

    PubMed Central

    Lee, Dong-hyun; Seong, Shin; Kim, Sung-su; Han, Jae-bok

    2013-01-01

    This report presents a case that shows a significant anticancer effect of Korean medicine therapy (KMT). A 79-year-old man, who was diagnosed as stage IV non-small cell lung cancer (NSCLC) in December 2012, was treated with KMT including intravenous pharmacopunctures and oral herbal medicine from February 22, 2013, until September 2013 without any surgical intervention, chemotherapy or radiotherapy. The intravenous pharmacopunctures were the wild ginseng pharmacopuncture, Cordyceps sinensis pharmacopuncture and Trichosanthes kirilowii pharmacopuncture. The oral herbal medicine used was soramdan, made of cultivated wild ginseng. The effectiveness of this therapy was evaluated with computed tomography and the Eastern Cooperative Oncology Group (ECOG) performance scale. The size of the tumor mass was markedly decreased and the ECOG performance scale was also improved. These results suggest that KMT alone can be an effective method to treat NSCLC. PMID:24348396

  18. Socio-Psychological Aspects of Animal Therapy in Treating Children Suffering from Forms of Dysontogenesis

    ERIC Educational Resources Information Center

    Nikolskaya, Anastasia V.

    2012-01-01

    Positive and negative aspects of animal therapy using are discussed. Research of 30 case studies is displayed that pet therapy is a good therapeutic tool in approximately 60% of cases. To diagnose possible problems in families which have got a dog as a "therapist" for the child suffering from some or other form of dysontogenesis, the author…

  19. Irinotecan and Whole-Brain Radiation Therapy in Treating Patients With Brain Metastases From Solid Tumors

    ClinicalTrials.gov

    2010-03-15

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Adults; Long-term Effects Secondary to Cancer Therapy in Children; Poor Performance Status; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  20. Initial Study Using Fixed Role and Rational Emotive Therapy in Treating Public Speaking Anxiety

    ERIC Educational Resources Information Center

    Karst, Thomas O.; Trexler, Larry D.

    1970-01-01

    College students reporting high levels of public speaking anxiety received fixed role, or rational emotive group therapy, or no therapy. Support for the hypothesis that treatment would reduce anxiety more than no treatment was secured. Results lend support to the assumption that psychotherapy is effective in reducing emotional disorders, and that…

  1. Treating Children with Expressive Phonological Disorders: Does Phonological Awareness Therapy Work in the Clinic?

    ERIC Educational Resources Information Center

    Denne, M.; Langdown, N.; Pring, T.; Roy, P.

    2005-01-01

    Background: Recent research has shown that phonological awareness therapy can improve speech production in children with expressive phonological disorders. This approach may be appealing to clinicians as the therapy may also benefit the children's general phonological abilities and lead to gains in their literacy skills. Aims: To examine the…

  2. Misdiagnosed zoophile tinea faciei and tinea corporis effectively treated with isoconazole nitrate and diflucortolone valerate combination therapy.

    PubMed

    Czaika, Viktor A

    2013-05-01

    There have been few published reports on the human transmission of Trichophyton mentagrophytes, a zoophilic fungus frequently occurring in pets. Here we report on 2 girls, living with a pet dwarf rabbit, who presented with inflammatory skin lesions positive for T. mentagrophytes and subsequently diagnosed as zoophile tinea faciei and tinea corporis. The patients were successfully treated with systemic terbinafine and 2-week therapy with Travocort cream containing isoconazole nitrate 1% and diflucortolone valerate 0.1%.

  3. Misdiagnosed zoophile tinea faciei and tinea corporis effectively treated with isoconazole nitrate and diflucortolone valerate combination therapy.

    PubMed

    Czaika, Viktor A

    2013-05-01

    There have been few published reports on the human transmission of Trichophyton mentagrophytes, a zoophilic fungus frequently occurring in pets. Here we report on 2 girls, living with a pet dwarf rabbit, who presented with inflammatory skin lesions positive for T. mentagrophytes and subsequently diagnosed as zoophile tinea faciei and tinea corporis. The patients were successfully treated with systemic terbinafine and 2-week therapy with Travocort cream containing isoconazole nitrate 1% and diflucortolone valerate 0.1%. PMID:23574022

  4. Radiation transport requirements for clinical applications of neutron capture therapy: The rtt-MC Monte Carlo module

    SciTech Connect

    Wheeler, F.J.; Wessol, D.E.

    1995-12-31

    The rtt-MC dose calculation module of the BNCT-Rtpe treatment planning system has been developed specifically for boron neutron cancer therapy. Due to the complicated nature of combined gamma, fast-, epithermal- and thermal-energy neutron transport in tissue, all approaches to treatment planning to date for this treatment modality rely on Monte Carlo or three-dimensional discrete ordinates methods. Simple, fast and accurate methods for this modality have simply not been developed. In this paper the authors discuss some of the unique attributes of this therapy and the approaches they have used to begin to merge into clinical applications. As this paper is under draft, the modern implementation of boron neutron cancer therapy in the US is being realized. Research of skin and tumor effect for superficial melanoma of the extremities has been initiated at the Massachusetts Institute of Technology and brain cancer therapy (using this planning system) has begun at Brookhaven National Laboratory.

  5. Prognostic Utility of Apoptosis Index, Ki-67 and Survivin Expression in Dogs with Nasal Carcinoma Treated with Orthovoltage Radiation Therapy

    PubMed Central

    FU, Dah-Renn; KATO, Daiki; WATABE, Ai; ENDO, Yoshifumi; KADOSAWA, Tsuyoshi

    2014-01-01

    ABSTRACT Apoptosis, Ki-67 and survivin expression have been reported as prognostic values in human cancer treated with radiation therapy. The aim of this study was to evaluate the correlation between the outcome of canine nasal carcinomas treated with radiation therapy and these cancer markers. The apoptotic index (AI) was evaluated with TUNEL assays, and an immunohistochemical evaluation was performed on Ki-67 and survivin in 33 biopsy samples taken before treatment. Median survival times were estimated using Kaplan-Meier curves and the log-rank method. The AI ranged from 0 to 0.7%, and the percentage of Ki-67-positive cells defined as the proliferative index (PI) ranged from 0.8 to 77% in all samples. Neither the AI nor the PI had a significant relationship with survival time (P=0.056 and 0.211). Survivin expression was detected in 84.9% of samples of canine nasal carcinoma. Dogs with high survivin expression were associated with poorer response to treatment and had shorter survival times (P=0.017 and 0.031). Advanced-stage tumors were also significantly associated with a high level of survivin (P=0.026). Overexpression of survivin was shown to be an unfavorable prognostic factor in dogs with nasal carcinomas treated with radiation therapy. PMID:25452259

  6. Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus

    PubMed Central

    Xia, Feifei; Li, Xin; Wang, Bin; Gong, Pengjuan; Xiao, Feng; Yang, Mei; Zhang, Lei; Song, Jun; Hu, Liyuan; Cheng, Mengjun; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Ouyang, Songying; Liu, Zhi-Jie; Li, Xinwei

    2015-01-01

    Pneumonia is one of the most prevalent Staphylococcus aureus-mediated diseases, and the treatment of this infection is becoming challenging due to the emergence of multidrug-resistant S. aureus, especially methicillin-resistant S. aureus (MRSA) strains. It has been reported that LysGH15, the lysin derived from phage GH15, displays high efficiency and a broad lytic spectrum against MRSA and that apigenin can markedly diminish the alpha-hemolysin of S. aureus. In this study, the combination therapy of LysGH15 and apigenin was evaluated in vitro and in a mouse S. aureus pneumonia model. No mutual adverse influence was detected between LysGH15 and apigenin in vitro. In animal experiments, the combination therapy showed a more effective treatment effect than LysGH15 or apigenin monotherapy (P < 0.05). The bacterial load in the lungs of mice administered the combination therapy was 1.5 log units within 24 h after challenge, whereas the loads in unprotected mice or mice treated with apigenin or LysGH15 alone were 10.2, 4.7, and 2.6 log units, respectively. The combination therapy group showed the best health status, the lowest ratio of wet tissue to dry tissue of the lungs, the smallest amount of total protein and cells in the lung, the fewest pathological manifestations, and the lowest cytokine level compared with the other groups (P < 0.05). With regard to its better protective efficacy, the combination therapy of LysGH15 and apigenin exhibits therapeutic potential for treating pneumonia caused by MRSA. This paper reports the combination therapy of lysin and natural products derived from traditional Chinese medicine. PMID:26475103

  7. Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus.

    PubMed

    Xia, Feifei; Li, Xin; Wang, Bin; Gong, Pengjuan; Xiao, Feng; Yang, Mei; Zhang, Lei; Song, Jun; Hu, Liyuan; Cheng, Mengjun; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Ouyang, Songying; Liu, Zhi-Jie; Li, Xinwei; Gu, Jingmin; Han, Wenyu

    2015-10-16

    Pneumonia is one of the most prevalent Staphylococcus aureus-mediated diseases, and the treatment of this infection is becoming challenging due to the emergence of multidrug-resistant S. aureus, especially methicillin-resistant S. aureus (MRSA) strains. It has been reported that LysGH15, the lysin derived from phage GH15, displays high efficiency and a broad lytic spectrum against MRSA and that apigenin can markedly diminish the alpha-hemolysin of S. aureus. In this study, the combination therapy of LysGH15 and apigenin was evaluated in vitro and in a mouse S. aureus pneumonia model. No mutual adverse influence was detected between LysGH15 and apigenin in vitro. In animal experiments, the combination therapy showed a more effective treatment effect than LysGH15 or apigenin monotherapy (P < 0.05). The bacterial load in the lungs of mice administered the combination therapy was 1.5 log units within 24 h after challenge, whereas the loads in unprotected mice or mice treated with apigenin or LysGH15 alone were 10.2, 4.7, and 2.6 log units, respectively. The combination therapy group showed the best health status, the lowest ratio of wet tissue to dry tissue of the lungs, the smallest amount of total protein and cells in the lung, the fewest pathological manifestations, and the lowest cytokine level compared with the other groups (P < 0.05). With regard to its better protective efficacy, the combination therapy of LysGH15 and apigenin exhibits therapeutic potential for treating pneumonia caused by MRSA. This paper reports the combination therapy of lysin and natural products derived from traditional Chinese medicine.

  8. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    SciTech Connect

    Carozzo, Simone; Schardt, Dieter; Narici, Livio; Combs, Stephanie E.; Debus, Jürgen; Sannita, Walter G.

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  9. Boronated metalloporphyrins: a novel approach to the diagnosis and treatment of cancer using contrast-enhanced MR imaging and neutron capture therapy.

    PubMed

    Huang, L R; Straubinger, R M; Kahl, S B; Koo, M S; Alletto, J J; Mazurchuk, R; Chau, R I; Thamer, S L; Fiel, R J

    1993-01-01

    Porphyrins are a unique class of metal chelating agents that have shown specific affinity for neoplasms. The water-soluble free-base derivative, tetrakiscarborane carboxylate ester of 2,4-(alpha,beta-dihydroxyethyl) deuteroporphyrin IX (BOPP), an agent designed for neutron capture therapy, has previously demonstrated selective localization and retention in a C6 murine glioma. In the present work, the authors demonstrate that the manganese chelate of BOPP also selectively localizes in a rat 9L gliosarcoma and preferentially enhances the tumor-normal brain contrast of T1-weighted images for at least 92 hours. The data indicate a maximal enhancement of contrast between tumor and normal brain at 24 hours after injection, compared with 5 minutes for manganese (III) tetraphenylporphine sulfonate (TPPS4). The results also indicate that Mn-BOPP may have a slower uptake in the 9L glioma than Mn-TPPS4 but a longer retention in the tumor. Mn-BOPP is unique in that it represents, to the authors' knowledge, the first example of a single agent that can enhance contrast between tumor and normal tissue and be potentially effective as an agent for boron neutron capture therapy.

  10. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy.

    PubMed

    Del Prete, Gregory Q; Oswald, Kelli; Lara, Abigail; Shoemaker, Rebecca; Smedley, Jeremy; Macallister, Rhonda; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Li, Yuan; Fast, Randy; Kiser, Rebecca; Lu, Bing; Zheng, Jim; Alvord, W Gregory; Trubey, Charles M; Piatak, Michael; Deleage, Claire; Keele, Brandon F; Estes, Jacob D; Hesselgesser, Joseph; Geleziunas, Romas; Lifson, Jeffrey D

    2016-03-01

    Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy. PMID:26711758

  11. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Del Prete, Gregory Q.; Oswald, Kelli; Lara, Abigail; Shoemaker, Rebecca; Smedley, Jeremy; Macallister, Rhonda; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Li, Yuan; Fast, Randy; Kiser, Rebecca; Lu, Bing; Zheng, Jim; Alvord, W. Gregory; Trubey, Charles M.; Piatak, Michael; Deleage, Claire; Keele, Brandon F.; Estes, Jacob D.; Hesselgesser, Joseph; Geleziunas, Romas

    2015-01-01

    Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4+ T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy. PMID:26711758

  12. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy.

    PubMed

    Del Prete, Gregory Q; Oswald, Kelli; Lara, Abigail; Shoemaker, Rebecca; Smedley, Jeremy; Macallister, Rhonda; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Li, Yuan; Fast, Randy; Kiser, Rebecca; Lu, Bing; Zheng, Jim; Alvord, W Gregory; Trubey, Charles M; Piatak, Michael; Deleage, Claire; Keele, Brandon F; Estes, Jacob D; Hesselgesser, Joseph; Geleziunas, Romas; Lifson, Jeffrey D

    2015-12-28

    Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.

  13. [Hepatitis B virus reactivation after cessation of prophylactic lamivudine therapy in B-cell lymphoma patients treated with rituximab combined CHOP therapy].

    PubMed

    Mimura, Naoya; Tsujimura, Hideki; Ise, Mikiko; Sakai, Chikara; Kojima, Hiroshige; Fukai, Kenichi; Yokosuka, Osamu; Takagi, Toshiyuki; Kumagai, Kyoya

    2009-12-01

    Here we report three cases of hepatitis B virus (HBV) reactivation after cessation of preemptive lamivudine therapy in B-cell lymphoma patients treated with rituximab plus CHOP (R-CHOP). Two patients received eight cycles of R-CHOP, and one received two cycles of R-CHOP followed by two courses of rituximab. As all the patients were HBV surface antigen (HBsAg) positive, lamivudine was administered simultaneously with R-CHOP to prevent virus reactivation. All the patients developed hepatitis due to HBV reactivation 6, 8 and 13 months after completion of chemotherapy, and 4, 2 and 2 months after cessation of lamivudine, respectively. They were treated with either lamivudine or entecavir and all achieved full recovery. When HBV carriers undergo immunosuppressive anticancer treatment, prophylactic antiviral therapy is well recognized as effective. However, the optimal method of prophylaxis has not yet been established. Since the introduction of rituximab, new problems such as delayed HBV reactivation from HBsAg positive patients and de novo hepatitis B from HBsAg negative patients have emerged. Guidelines for prophylactic antiviral therapy in the era of rituximab need to be established. PMID:20068280

  14. Is Androgen Deprivation Therapy Necessary in All Intermediate-Risk Prostate Cancer Patients Treated in the Dose Escalation Era?

    SciTech Connect

    Castle, Katherine O.; Hoffman, Karen E.; Levy, Lawrence B.; Lee, Andrew K.; Choi, Seungtaek; Nguyen, Quynh N.; Frank, Steven J.; Pugh, Thomas J.; McGuire, Sean E.; Kuban, Deborah A.

    2013-03-01

    Purpose: The benefit of adding androgen deprivation therapy (ADT) to dose-escalated radiation therapy (RT) for men with intermediate-risk prostate cancer is unclear; therefore, we assessed the impact of adding ADT to dose-escalated RT on freedom from failure (FFF). Methods: Three groups of men treated with intensity modulated RT or 3-dimensional conformal RT (75.6-78 Gy) from 1993-2008 for prostate cancer were categorized as (1) 326 intermediate-risk patients treated with RT alone, (2) 218 intermediate-risk patients treated with RT and ≤6 months of ADT, and (3) 274 low-risk patients treated with definitive RT. Median follow-up was 58 months. Recursive partitioning analysis based on FFF using Gleason score (GS), T stage, and pretreatment PSA concentration was applied to the intermediate-risk patients treated with RT alone. The Kaplan-Meier method was used to estimate 5-year FFF. Results: Based on recursive partitioning analysis, intermediate-risk patients treated with RT alone were divided into 3 prognostic groups: (1) 188 favorable patients: GS 6, ≤T2b or GS 3+4, ≤T1c; (2) 71 marginal patients: GS 3+4, T2a-b; and (3) 68 unfavorable patients: GS 4+3 or T2c disease. Hazard ratios (HR) for recurrence in each group were 1.0, 2.1, and 4.6, respectively. When intermediate-risk patients treated with RT alone were compared to intermediate-risk patients treated with RT and ADT, the greatest benefit from ADT was seen for the unfavorable intermediate-risk patients (FFF, 74% vs 94%, respectively; P=.005). Favorable intermediate-risk patients had no significant benefit from the addition of ADT to RT (FFF, 94% vs 95%, respectively; P=.85), and FFF for favorable intermediate-risk patients treated with RT alone approached that of low-risk patients treated with RT alone (98%). Conclusions: Patients with favorable intermediate-risk prostate cancer did not benefit from the addition of ADT to dose-escalated RT, and their FFF was nearly as good as patients with low-risk disease

  15. Fractionated Grid Therapy in Treating Cervical Cancers: Conventional Fractionation or Hypofractionation?

    SciTech Connect

    Zhang Hualin Wang, Jian Z.; Mayr, Nina; Kong Xiang; Yuan Jiankui; Gupta, Nilendu; Lo, Simon; Grecula, John; Montebello, Joseph; Martin, Douglas; Yuh, William

    2008-01-01

    Purpose: To evaluate the conventionally fractionated and hypofractionated grid therapy in debulking cervical cancers using the linear quadratic (LQ) model. Methods and Materials: A Monte Carlo technique was used to calculate the dose distribution of a commercially available grid in a 6-MV photon beam. The LQ model was used to evaluate the therapeutic outcome of both the conventionally fractionated (2 Gy/fraction) and hypofractionated (15 Gy/fraction) grid therapy regimens to debulk cervical cancers with different LQ parameters. The equivalent open-field dose (EOD) to the cancer cells and therapeutic ratio (TR) were defined by comparing grid therapy with the open debulking field. The clinical outcomes from 114 patients were used to verify our theoretical model. Results: The cervical cancer and normal tissue cell survival statistics for grid therapy in two regimens were calculated. The EODs and TRs were derived. The EOD was only a fraction of the prescribed dose. The TR was dependent on the prescribed dose and the LQ parameters of both the tumor and normal tissue cells. The grid therapy favors the acutely responding tumors inside radiosensitive normal tissues. Theoretical model predictions were consistent with the clinical outcomes. Conclusions: Grid therapy provided a pronounced therapeutic advantage in both the hypofractionated and conventionally fractionated regimens compared with that seen with single fraction, open debulking field regimens, but the true therapeutic advantage exists only in the hypofractionated grid therapy. The clinical outcomes and our study indicated that a course of open-field radiotherapy is necessary to control tumor growth fully after a grid therapy.

  16. Statin therapy and thromboxane generation in patients with coronary artery disease treated with high-dose aspirin.

    PubMed

    Bliden, K P; Singla, A; Gesheff, M G; Toth, P P; Tabrizchi, A; Ens, G; Guyer, K; Singh, M; Franzese, C J; Stapleton, D; Tantry, U S; Gurbel, P A

    2014-08-01

    Aspirin and statin therapy are mainstay treatments in patients with coronary artery disease (CAD). The relation between statin therapy, in vivo thromboxane (Tx) generation; a marker of inflammation, and blood thrombogenicity has never been explored. Urinary 11-dehydro (dh) TxB2 was determined in patients with suspected CAD on 325 mg daily aspirin therapy prior to undergoing cardiac catheterisation (n=281). Thrombogenicity was estimated by thrombelastographic measurement of thrombin-induced platelet-fibrin clot strength (TIP-FCS) and lipids/lipoproteins were determined by vertical density gradient ultracentrifugation/ELISA. The influence of statin therapy and dose was analysed by the atorvastatin equivalent dose (5-10 mg, 20-40 mg, or 80 mg daily). Statin therapy (n=186) was associated with a dose-dependent reduction in urinary 11-dh TxB2 (p=0.046) that was independent of LDL and apo B100 levels but was strongly related to TIP-FCS (p=0.006). By multivariate analysis, no statin therapy (n=95) and female gender were independently associated with high urinary 11-dh TxB2 [OR=2.95 (0.1.57-5.50, p=0.0007); OR=2.25 (1.24-4.05, p=0.007)], respectively. In aspirin-treated patients, statin therapy was independently and inversely associated with inflammation in a dose-dependent manner. Elevated 11-dh TxB2 was associated with a prothrombotic state indicated by high TIP-FCS. Our data suggest that measurement of urinary 11-dTxB2 may be a useful method to optimise statin dosing in order to reduce thrombotic risk. PMID:24763965

  17. Effect of long-term music therapy intervention on autonomic function in anthracycline-treated breast cancer patients.

    PubMed

    Chuang, Chih-Yuan; Han, Wei-Ru; Li, Pei-Chun; Song, Mi-Yun; Young, Shuenn-Tsong

    2011-12-01

    Anthracyclines are potent antineoplastic agents associated with cardiotoxicity, which may lead to congestive heart failure, causing impairment of autonomic cardiovascular function as assessed by heart rate variability (HRV). This decreases survival rates. This study aimed to determine whether music therapy intervention improves autonomic function in anthracycline-treated breast cancer patients, and if so, whether such improvements persist after cessation of the intervention. Participants were 12 women with breast cancer who had undergone mastectomy or breast-conserving treatment and adjuvant chemotherapy; they attended 8 weekly music therapy sessions, each lasting 2 hours. Electrocardiogram traces (5 minutes) for HRV analysis were recorded 4 times: prior to the first music session, T1; after the fourth music session, T2; after the eighth music session, T3; and 4 weeks after the completion of music therapy, T4. HRV parameters were subjected to a nonparametric Friedman test on the differences between T1 and T2, T3, and T4. The standard deviation of normal intervals and the total power of HRV parameters, related to global autonomic function, were significantly higher at T3 than at T1. The root-mean-square differences of successive normal R-R intervals and high-frequency (HF) HRV parameters, related to parasympathetic activity, were significantly increased, but no change was seen in the LF/HF ratio of HRV parameters (which is related to sympathetic activity) during the music therapy. Global autonomic function and parasympathetic activity had not changed significantly at T4 relative to T1. The authors provide preliminary evidence of the benefits of music therapy for anthracycline-treated breast cancer survivors.

  18. Biolite: A Patented Ultra-Low-Level Laser-Therapy Device for Treating Musculoskeletal Pain and Associated Impairments.

    PubMed

    Gallamini, Michele; D'Angelo, Giovanni; Belloni, Gabriele

    2015-08-01

    After an excursus on state-of-the-art knowledge for low-level laser therapy (LLLT), Biolite, a patented ultra-low-level laser therapy device used to treat musculoskeletal pain and associated impairments, is presented. The application protocols include short stimulation of sequences of acupuncture points. The observed effects seem, however, to be far from those that might be expected after acupuncture. The primary effect seems more likely to be an extracellular soft-tissue matrix reaction. The development of the technique, the studies performed, and the evidence collected over > 10 years suggest that specifically modulated laser light can interact with human tissues at light fluences well under those previously considered as being capable of having any effect. Musculoskeletal pain very often becomes an autonomous dysfunction that is independent of the original injury and that can be effectively treated using specific peripheral acupuncture-like stimulation. Because such acupuncture is capable of reducing motor control "interferences" from noxious stimuli, it can improve motor control performance, thereby reducing the risk of falls in the elderly individuals. The proposal of acupuncture-derived protocols to be applied by Western physiotherapists using an ultra-low-level laser therapy device is a further "bridge" between two different, and sometimes very different, clinical worlds to better serve our patients.

  19. Evaluation of Gene Therapy as an Intervention Strategy to Treat Brain Injury from Stroke

    PubMed Central

    Craig, Amanda J.; Housley, Gary D.

    2016-01-01

    Stroke is a leading cause of death and disability, with a lack of treatments available to prevent cell death, regenerate damaged cells and pathways, or promote neurogenesis. The extended period of hours to weeks over which tissue damage continues to occur makes this disorder a candidate for gene therapy. This review highlights the development of gene therapy in the area of stroke, with the evolution of viral administration, in experimental stroke models, from pre-injury to clinically relevant timeframes of hours to days post-stroke. The putative therapeutic proteins being examined include anti-apoptotic, pro-survival, anti-inflammatory, and guidance proteins, targeting multiple pathways within the complex pathology, with promising results. The balance of findings from animal models suggests that gene therapy provides a viable translational platform for treatment of ischemic brain injury arising from stroke. PMID:27252622

  20. [Retrospective analysis for 104 cases of early-stage Hodgkin's Lymphoma treated with different modality therapies].

    PubMed

    Du, Ting-Ting; Xiao, Xiu-Bin; Su, Hang; Da, Yong; Chen, Xin-Lin; Zhong, Kai-Li; Zhao, Shi-Hua; Lu, Yun; Wang, Shuang; Zhang, Wei-Jing

    2012-04-01

    This paper explored the curative effect of combined modality therapy and extended field radiotherapy for early-stage Hodgkin's Lymphoma. 104 cases of early-stage Hodgkin's Lymphoma from Jan 1987 to Dec 2010 in PLA Hospital 307 were retrospectively analyzed, including 76 cases in combined modality therapy group and 28 cases in extended field radiotherapy group, and the long-term efficacy and toxicity of two therapy modalities were evaluated. The results showed that the median survival time of 104 cases was 85.42 months, the complete remission rates of combined modality therapy and extended field radiotherapy groups were 72.4 and 71.4 respectively (P = 0.924); the overall response rates of combined modality therapy and extended field radiotherapy groups were 97.4 and 96.4 respectively (P = 0.779); the 5-year overall survival (OS) rates in the 2 groups were 89.5 and 89.1 respectively, and the 8-year OS rates of the 2 groups were 81.3 and 70.6. No statistical difference was found in above-mentioned 2 groups. Moreover, the 5-year progression free survival (PFS) rates of these 2 groups were 84.2 and 69.0 (P = 0.04), and 8-year PFS rates of these 2 groups were 80.0 and 55.5 (P = 0.04) respectively, the 5-year relapse rates of these 2 groups were 28.1 and 45.6 (P = 0.023) respectively. It is concluded that the combined modality therapy can raise the PFS rate and reduce the relapse rate as compared with extended field radiotherapy for early-stage Hodgkin's Lymphoma, but there is no difference in the overall survival rate between the 2 groups.