Network community-based model reduction for vortical flows
NASA Astrophysics Data System (ADS)
Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko
2018-06-01
A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.
NASA Astrophysics Data System (ADS)
Yang, Y.; Sciacchitano, A.; Veldhuis, L. L. M.; Eitelberg, G.
2016-10-01
During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these studies cannot well capture the properties of ground vortices induced by propellers, e.g., the flow phenomena due to intermittent characteristics of blade passing and the presence of slipstream of the propeller. Therefore, the investigation of ground vortices induced by a propeller is performed to improve understanding of these phenomena. The distributions of velocities in two different planes containing the vortices were measured by high frequency Particle Image Velocimetry. These planes are a wall-parallel plane in close proximity to the ground and a wall-normal plane upstream of the propeller. The instantaneous flow fields feature highly unsteady flow in both of these two planes. The spectral analysis is conducted in these two flow fields and the energetic frequencies are quantified. The flow fields are further evaluated by applying the Proper Orthogonal Decomposition analysis to capture the coherent flow structures. Consistent flow structures with strong contributions to the turbulent kinetic energy are noticed in the two planes.
Multi-dimensional upwinding-based implicit LES for the vorticity transport equations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Duraisamy, Karthik
2017-11-01
Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2001-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
NASA Astrophysics Data System (ADS)
Rahbarimanesh, Saeed; Brinkerhoff, Joshua
2017-11-01
The mutual interaction of shear layer instabilities and phase change in a two-dimensional cryogenic cavitating mixing layer is investigated using a numerical model. The developed model employs the homogeneous equilibrium mixture (HEM) approach in a density-based framework to compute the temperature-dependent cavitation field for liquefied natural gas (LNG). Thermal and baroclinic effects are captured via iterative coupled solution of the governing equations with dynamic thermophysical models that accurately capture the properties of LNG. The mixing layer is simulated for vorticity-thickness Reynolds numbers of 44 to 215 and cavitation numbers of 0.1 to 1.1. Attached cavity structures develop on the splitter plate followed by roll-up of the separated shear layer via the well-known Kelvin-Helmholtz mode, leading to streamwise accumulation of vorticity and eventual shedding of discrete vortices. Cavitation occurs as vapor cavities nucleate and grow from the low-pressure cores in the rolled-up vortices. Thermal effects and baroclinic vorticity production are found to have significant impacts on the mixing layer instability and cavitation processes.
Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.
Liao, Xiangyun; Si, Weixin; Yuan, Zhiyong; Sun, Hanqiu; Qin, Jing; Wang, Qiong; Heng, Pheng-Ann; Xiangyun Liao; Weixin Si; Zhiyong Yuan; Hanqiu Sun; Jing Qin; Qiong Wang; Pheng-Ann Heng
2018-03-01
Turbulent vortices in smoke flows are crucial for a visually interesting appearance. Unfortunately, it is challenging to efficiently simulate these appealing effects in the framework of vortex filament methods. The vortex filaments in grids scheme allows to efficiently generate turbulent smoke with macroscopic vortical structures, but suffers from the projection-related dissipation, and thus the small-scale vortical structures under grid resolution are hard to capture. In addition, this scheme cannot be applied in wall-bounded turbulent smoke simulation, which requires efficiently handling smoke-obstacle interaction and creating vorticity at the obstacle boundary. To tackle above issues, we propose an effective filament-mesh particle-particle (FMPP) method for fast wall-bounded turbulent smoke simulation with ample details. The Filament-Mesh component approximates the smooth long-range interactions by splatting vortex filaments on grid, solving the Poisson problem with a fast solver, and then interpolating back to smoke particles. The Particle-Particle component introduces smoothed particle hydrodynamics (SPH) turbulence model for particles in the same grid, where interactions between particles cannot be properly captured under grid resolution. Then, we sample the surface of obstacles with boundary particles, allowing the interaction between smoke and obstacle being treated as pressure forces in SPH. Besides, the vortex formation region is defined at the back of obstacles, providing smoke particles flowing by the separation particles with a vorticity force to simulate the subsequent vortex shedding phenomenon. The proposed approach can synthesize the lost small-scale vortical structures and also achieve the smoke-obstacle interaction with vortex shedding at obstacle boundaries in a lightweight manner. The experimental results demonstrate that our FMPP method can achieve more appealing visual effects than vortex filaments in grids scheme by efficiently simulating more vivid thin turbulent features.
How hairpin vortices emerge from exact invariant solutions
NASA Astrophysics Data System (ADS)
Schneider, Tobias M.; Farano, Mirko; de Palma, Pietro; Robinet, Jean-Christoph; Cherubini, Stefania
2017-11-01
Hairpin vortices are among the most commonly observed flow structures in wall-bounded shear flows. However, within the dynamical system approach to turbulence, those structures have not yet been described. They are not captured by known exact invariant solutions of the Navier-Stokes equations nor have other state-space structures supporting hairpins been identified. We show that hairpin structures are observed along an optimally growing trajectory leaving a well known exact traveling wave solution of plane Poiseuille flow. The perturbation triggering hairpins does not correspond to an unstable mode of the exact traveling wave but lies in the stable manifold where non-normality causes strong transient amplification.
Numerical Capture of Wing-tip Vortex Using Vorticity Confinement
NASA Astrophysics Data System (ADS)
Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard
2012-11-01
Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.
Minimum-domain impulse theory for unsteady aerodynamic force
NASA Astrophysics Data System (ADS)
Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.
2018-01-01
We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.
Observation of Polarization Vortices in Momentum Space
NASA Astrophysics Data System (ADS)
Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian
2018-05-01
The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.
Observation of Polarization Vortices in Momentum Space.
Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian
2018-05-04
The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.
NASA Astrophysics Data System (ADS)
Wu, Songhua; Zhai, Xiaochun; Liu, Bingyi; Liu, Jintao
2018-04-01
Field observations for the wake vortices by Coherent Doppler Lidar (CDL) have been carried out at the Beijing Capital International Airport (BCIA) and Tianjin Binhai International Airport (TBIA) to investigate the wake vortices evolution characteristics and the near-ground effect. This paper introduces the dynamic wake vortices and atmospheric turbulence monitoring technique, successfully demonstrating that the CDL can capture the key characteristics of wake vortices in real-time, including wake vortices intensity, spatial-temporal evolution and so forth.
Experimental investigation of supersonic flow over elliptic surface
NASA Astrophysics Data System (ADS)
Zhang, Qinghu; Yi, Shihe; He, Lin; Zhu, Yangzhu; Chen, Zhi
2013-11-01
The coherent structures of flow over a compression elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach Number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spacial resolution images and the average velocity profiles of both laminar inflow and turbulent inflow over the testing model were captured. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and orientation of large structures. The results indicate that the mean structure is elliptical in shape and structure angles in separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structure angle of both cases increases with its distance away from from the wall. POD analysis of velocity and vorticity fields is performed for both cases. The energy portion of the first mode for the velocity data is much larger than that for the vorticity field. For vorticity decompositions, the contribution from the first mode for the laminar inflow is slightly larger than that for the turbulent inflow and the cumulative contributions for laminar inflow converges slightly faster than that for turbulent inflow
Velocity-Vorticity Correlation Structure in Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Chen, J.; Pei, J.; She, Z. S.; Hussain, F.
2011-09-01
We present a new definition of statistical structure — velocity-vorticity correlation structure (VVCS) — based on amplitude distributions of the tensor field of normalized velocity-vorticity correlation (uiωj), and show that it displays the geometry of the statistical structure relevant to a given reference point, and it effectively captures coherent motions in inhomogeneous shear flows. The variation of the extracted objects moving with the reference point yr+ then presents a full picture of statistical structures for the flow, which goes beyond the traditional view of searching for reference-independent structures. Application to turbulent channel flow simulation data at Reτ = 180 demonstrates that the VVCS successfully captures, qualitatively and quantitatively, the near-wall streaks, the streamwise vortices [1,2], and their extensions up to yr+ = 110 with variations of their length and inclination angle. More interestingly, the VVCS associated with the streamwise velocity component (particularly (uωx ( and (uωz) displays topological change at four distances from the wall (with transitions at yr+≈20,40,60,110), giving rise to a geometrical interpretation of the multi-layer structure of wall-bounded turbulence. Specifically, we find that the VVCS of (uωz( bifurcates at yr+ = 40 with one attached to the wall and the other near the reference location. The VVCS of (uωx) is blob-like in the center region, quite different from a pair of elongated and inclined objects near the wall. The propagation speeds of the velocity components in the near-wall region, y+ ≤ 10, is found to be characterized by the same stream-wise correlation structures of (uωx) and (uωz), whose core is located at y+≈20. As a result, the convection of the velocity fluctuations always reveal the constant propagation speeds in the near-wall region. The coherent motions parallel to the wall plays an important role in determining the propagation of the velocity fluctuations. This study suggests that a variable set of geometrical structures should be invoked for the study of turbulence structures and for modeling mean flow properties in terms of structures. The method and the concept presented here are general for the study of other flow systems (like boundary or mixing layer), as long as ensemble averaging is well-defined.
NASA Astrophysics Data System (ADS)
Li, Shi-Yao; She, Zhen-Su; Chen, Jun
2017-11-01
A velocity-vorticity correlation structure (VVCS) analysis is applied to the direct numerical simulation (DNS) of compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2.25 , 4.50 and 6.0 . It is shown that the VVCS analysis captures the geometry variation in the streamwise direction during the transition and in the wall-normal direction in the fully developed regime. Specifically, before transition, the VVCS captures the instability wave number, while in the transition region it displays a distinct scaling change of the dimensions. The fully developed turbulence regime is characterized by a nearly constant spatial extension of the VVCS. Particularly, after turbulence is well developed, a multi-layer structure in the wall normal direction is observed in the maximum correlation coefficient and in the length scales of the VVCS, as expected from a recent symmetry-based theory, the ensemble structure dynamics (SED). The most interesting outcome is an observed linear dependence of the length scale of the VVCS from y+ 50 to 200, which is a direct support to Townsend's attached-eddy theory. In conclusion, the VVCS analysis quantifies the geometrical characteristics of the coherent structures in turbulent compressible shear flows throughout the whole domain. Supported by NSFC (11172006, 11221062, 11452002) and by MOST (China) 973 project (2009CB724100).
A bulk viscosity approach for shock capturing on unstructured grids
NASA Astrophysics Data System (ADS)
Shoeybi, Mohammad; Larsson, Nils Johan; Ham, Frank; Moin, Parviz
2008-11-01
The bulk viscosity approach for shock capturing (Cook and Cabot, JCP, 2005) augments the bulk part of the viscous stress tensor. The intention is to capture shock waves without dissipating turbulent structures. The present work extends and modifies this method for unstructured grids. We propose a method that properly scales the bulk viscosity with the grid spacing normal to the shock for unstructured grid for which the shock is not necessarily aligned with the grid. The magnitude of the strain rate tensor used in the original formulation is replaced with the dilatation, which appears to be more appropriate in the vortical turbulent flow regions (Mani et al., 2008). The original form of the model is found to have an impact on dilatational motions away form the shock wave, which is eliminated by a proposed localization of the bulk viscosity. Finally, to allow for grid adaptation around shock waves, an explicit/implicit time advancement scheme has been developed that adaptively identifies the stiff regions. The full method has been verified with several test cases, including 2D shock-vorticity entropy interaction, homogenous isotropic turbulence, and turbulent flow over a cylinder.
Discovering Coherent Structures Using Local Causal States
NASA Astrophysics Data System (ADS)
Rupe, Adam; Crutchfield, James P.; Kashinath, Karthik; Prabhat, Mr.
2017-11-01
Coherent structures were introduced in the study of fluid dynamics and were initially defined as regions characterized by high levels of coherent vorticity, i.e. regions where instantaneously space and phase correlated vorticity are high. In a more general spatiotemporal setting, coherent structures can be seen as localized broken symmetries which persist in time. Building off the computational mechanics framework, which integrates tools from computation and information theory to capture pattern and structure in nonlinear dynamical systems, we introduce a theory of coherent structures, in the more general sense. Central to computational mechanics is the causal equivalence relation, and a local spatiotemporal generalization of it is used to construct the local causal states, which are utilized to uncover a system's spatiotemporal symmetries. Coherent structures are then identified as persistent, localized deviations from these symmetries. We illustrate how novel patterns and structures can be discovered in cellular automata and outline the path from them to laminar, transitional and turbulent flows. Funded by Intel through the Big Data Center at LBNL and the IPCC at UC Davis.
Schlieren photography on freely flying hawkmoth.
Liu, Yun; Roll, Jesse; Van Kooten, Stephen; Deng, Xinyan
2018-05-01
The aerodynamic force on flying insects results from the vortical flow structures that vary both spatially and temporally throughout flight. Due to these complexities and the inherent difficulties in studying flying insects in a natural setting, a complete picture of the vortical flow has been difficult to obtain experimentally. In this paper, Schlieren , a widely used technique for highspeed flow visualization, was adapted to capture the vortex structures around freely flying hawkmoth ( Manduca ). Flow features such as leading-edge vortex, trailing-edge vortex, as well as the full vortex system in the wake were visualized directly. Quantification of the flow from the Schlieren images was then obtained by applying a physics-based optical flow method, extending the potential applications of the method to further studies of flying insects. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Maines, Brant H.; Arndt, Roger E. A.
2000-11-01
Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research
DUST CAPTURE AND LONG-LIVED DENSITY ENHANCEMENTS TRIGGERED BY VORTICES IN 2D PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surville, Clément; Mayer, Lucio; Lin, Douglas N. C., E-mail: clement.surville@physik.uzh.ch
We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ϵ varies in the range of 10{sup −4}–10{sup −2}. Irrespective of the value of ϵ , we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside themore » vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity; they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.« less
Dust Capture and Long-lived Density Enhancements Triggered by Vortices in 2D Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Surville, Clément; Mayer, Lucio; Lin, Douglas N. C.
2016-11-01
We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ɛ varies in the range of 10-4-10-2. Irrespective of the value of ɛ, we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside the vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.
CFD simulations of a wind turbine for analysis of tip vortex breakdown
NASA Astrophysics Data System (ADS)
Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.
2016-09-01
This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.
Feeding currents of the upside down jellyfish in the presence of background flow.
Hamlet, Christina L; Miller, Laura A
2012-11-01
The upside-down jellyfish (Cassiopea spp.) is an ideal organism for examining feeding and exchange currents generated by bell pulsations due to its relatively sessile nature. Previous experiments and numerical simulations have shown that the oral arms play an important role in directing new fluid into the bell from along the substrate. All of this work, however, has considered the jellyfish in the absence of background flow, but the natural environments of Cassiopea and other cnidarians are dynamic. Flow velocities and directions fluctuate on multiple time scales, and mechanisms of particle capture may be fundamentally different in moving fluids. In this paper, the immersed boundary method is used to simulate a simplified jellyfish in flow. The elaborate oral arm structure is modeled as a homogenous porous layer. The results show that the oral arms trap vortices as they form during contraction and expansion of the bell. For constant flow conditions, the vortices are directed gently across the oral arms where particle capture occurs. For variable direction flows, the secondary structures change the overall pattern of the flow around the bell and appear to stabilize regions of mixing around the secondary mouths.
Investigations of formation of quasi-static vortex-structures in granular bodies using DEM
NASA Astrophysics Data System (ADS)
Kozicki, Jan; Tejchman, Jacek
2017-06-01
The paper presents some two-dimensional simulation results of vortex-structures in cohesionless initially dense sand during quasi-static passive wall translation. The sand behaviour was simulated using the discrete element method (DEM). Sand grains were modelled by spheres with contact moments to approximately capture the irregular grain shape. In order to detect vortex-structures, the Helmholtz-Hodge decomposition of a flow displacement field from DEM calculations was used. This approach enabled us to distinguish both incompressibility and vorticity in the granular displacement field.
Experimental study on wake structure of single rising clean bubble
NASA Astrophysics Data System (ADS)
Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao
2007-11-01
Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezryadin, A.; Pannetier, B.
1996-01-01
The Bitter decoration technique is used to study the trapping of single and multiple quanta vortices by a lattice of circular microholes. By keeping a thin superconducting layer (the bottom) inside each hole the authors are able to visualise the trapped vortices. From this they determine, for the first time, the filling factor FF, i.e. the number of vortices captured inside a hole. In all cases the sample is cooled at a constant field before making the decoration. Two qualitatively different states of the vortex crystal are observed: (1) In case when the interhole distance is much larger than themore » coherence length, the filling factor averaged over many identical holes () is a stepwise function of the magnetic flux (of the external field) through the hole, because each hole captures the same number of vortices. The density of fluxoids inside the openings is higher than in the uniform film, but much lower than it should be in the state of equilibrium. The authors claim that the number of trapped vortices is determined by the edge superconducting states which appear around each hole at the modified third critical field H{sub c3}* > H{sub c2}. Below H{sub c2} such states produce a surface barrier of a new type. This barrier for the vortex entrance and exit is due to the strong increase of the order parameter near the hole edge. It keeps constant the number of captured vortices during the cooling at a fixed field. (2) An increase of the hole density or of the hole radius initiates a sharp redistribution of fluxoids: all of them drop inside holes. This first order transition leads to a localization of all vortices and consequently to a qualitative change of the transport properties (TAFF in this case). In the resulting new state the filling factor is not any more the same for neighboring holes and its averaged value is equal to the frustration of the hole network.« less
Cassini ISS Observation of Saturn from Grand Finale Orbits
NASA Astrophysics Data System (ADS)
Blalock, J. J.; Sayanagi, K. M.; Ingersoll, A. P.; Dyudina, U.; Ewald, S. P.; McCabe, R. M.; Garland, J.; Gunnarson, J.; Gallego, A.
2017-12-01
We present images captured during Cassini's Grand Finale orbits, and their preliminary analyses. During the final 22 orbits of the mission, the spacecraft is in orbits that have 6.5 day period at an inclination of 62 degrees, apoapsis altitude of about 1,272,000 km, and periapsis altitudes of about 2,500 km. Images captured during periapsis passes show Saturn's atmosphere at unprecedented spatial resolution. We present preliminary analyses of these images, including the final images captured before the end of the mission when the spacecraft enters Saturn's atmosphere on September 15th, 2017. Prominent features captured during the final orbits include the north polar vortex and other vortices as well as very detailed views of the "popcorn clouds" that reside between the Hexagon and the north pole. In the cloud field between zonal jets, clouds either resemble linear streaks suggestive of cirrus-like clouds or round shapes suggestive of vortices or cumulus anvil. The presence of linear streaks that follow lines of constant latitudes suggests that meridional mixing is inhibited at those latitudes. The size of vortices may reflect latitudinal variation in the atmospheric deformation radius. We also compare the new images to those captured earlier in the Cassini mission to characterize the temporal evolution such as changes in the zonal jet speeds, and prevalence and colors of vortices. A particular focus of our interest is the long-term change in the color of the hexagon, the evolution of the wind speeds in the jetstream that blows eastward at the boundary of the hexagon, and the morphology of the north polar vortex. Our work has been supported by NASA PATM NNX14AK07G, NSF AAG 1212216, and NASA NESSF NNX15AQ70H.
2015-11-02
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.
2001-01-01
The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.
NASA Astrophysics Data System (ADS)
Methven, John; Guiying, Yang; Hodges, Kevin; Woolnough, Steve
2017-04-01
There is strong intraseasonal and interannual variability in African easterly waves (AEWs). AEWs are crucial to precipitation across West Africa, but also generate positive vorticity centres that sometimes develop into tropical storms which can in turn spin-up into hurricanes in the easterlies across the North Atlantic. In this paper we show that there are connections between African easterly waves (AEWs), equatorial Rossby (R1 and R2) waves and westward-moving mixed Rossby gravity (WMRG) waves and that the conditions for propagation of equatorial waves may have a major influence on AEW and hence tropical cyclone variability. Two analysis approaches are taken using ERA-Interim data from 1979-2010: i) positive vorticity centres within AEWs are tracked at 600 hPa over West Africa to the Atlantic region and ii) the re-analysis data is filtered using a broad frequency and zonal wavenumber band and the filtered meridional wind is projected onto the horizontal structure functions derived from equatorial wave theory. The tracked vorticity centres are part of AEWs and are found to move along with features in the meridional wind projecting onto R1 and R2 waves. In contrast, the structures projecting onto WMRG waves move westwards at a faster rate. The projection is calculated independently on each pressure level to create composite cross-sections of each wave mode in the zonal-height plane, shown relative to the 600 hPa vorticity centres. The R2 waves tilt in the sense necessary for baroclinic growth and amplify from east to west, indicating that R2 horizontal structure captures the baroclinic wave component of AEWs. The composites show that the R2 structures have a wavelength matching the spacing between vorticity centres, while R1 and WMRG waves are longer. Intriguingly, the WMRG component has very strong cross-equatorial flow immediately to the east of positive vorticity centres developing on the AEJ. Although the WMRG propagates faster to the west and gets ahead of the original vorticity centre, the next AEW vorticity centre to the east develops with cross-equatorial flow in the same phase. This flow brings moist air from the southern hemisphere at low levels on the eastern flank of the vorticity centre, while there is an upper tropospheric "return flow" into the southern hemisphere above. Thus, there is a strong cross-equatorial component to the developing tropical storm outflow. WMRG waves may aid the initiation and development of AEW vorticity centres. Over West Africa, regressions show that the eastward group propagation of a WMRG packet precedes the genesis of vorticity centres on the AEJ. In years with stronger AEW activity, the upper tropospheric easterlies are stronger at the equator and extend further into the southern hemisphere. It is shown that stronger easterlies provide a waveguide for SH westward-moving Rossby waves in the upper troposphere to penetrate into the tropics, exciting equatorial WMRG waves and hence stronger AEW activity via the lower tropospheric cross-equatorial flow associated with WMRG waves.
A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows
NASA Astrophysics Data System (ADS)
Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.
2015-11-01
The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.
High-order numerical simulations of pulsatile flow in a curved artery model
NASA Astrophysics Data System (ADS)
Cox, Christopher; Liang, Chunlei; Plesniak, Michael W.
2016-11-01
Cardiovascular flows are pulsatile, incompressible and occur in complex geometries with compliant walls. Together, these factors can produce an environment that can affect the progression of cardiovascular disease by altering wall shear stresses. Unstructured high-order CFD methods are well suited for capturing unsteady vortex-dominated viscous flows, and these methods provide high accuracy for similar cost as low-order methods. We use an in-house three-dimensional flux reconstruction Navier-Stokes solver to simulate secondary flows and vortical structures within a rigid 180-degree curved artery model under pulsatile flow of a Newtonian blood-analog fluid. Our simulations use a physiological flowrate waveform taken from the carotid artery. We are particularly interested in the dynamics during the deceleration phase of the waveform, where we observe the deformed-Dean, Dean, Lyne and Wall vortices. Our numerical results reveal the complex nature of these vortices both in space and time and their effect on overall wall shear stress. Numerical results agree with and complement experimental results obtained in our laboratory using particle image velocimetry. Supported by the GW Center for Biomimetics and Bioinspired Engineering.
An experimental and numerical investigation on the formation of stall-cells on airfoils
NASA Astrophysics Data System (ADS)
Manolesos, M.; Papadakis, G.; Voutsinas, S.
2014-12-01
Stall Cells (SCs) are large scale three-dimensional structures of separated flow that have been observed on the suction side of airfoils designed for or used on wind turbine blades. SCs are unstable in nature but can be stabilised by means of a localized disturbance; here in the form of a zigzag tape covering 10% of the wing span. Based on extensive tuft flow visualisations, the resulting flow was found macroscopically similar to the undisturbed flow. Next a combined investigation was carried out including pressure recordings, Stereo-PIV measurements and CFD simulations. The investigation parameters were the aspect ratio, the angle of attack and the Re number. Tuft and pressure data were found in good agreement. The 3D CFD simulations reproduced the structure of the SCs in qualitative agreement with the experimental data but had a delay of ~3deg in capturing the first appearance of a SC. The error in Cl max prediction was 7% compared to 19% for the 2D cases. Tests show that SCs grow with Re number and angle of attack. Also analysis of the time averaged computational results indicated the presence of three types of vortices: (a) the trailing edge line vortex (TELV) in the wake, (b) the separation line vortex (SLV) over the wing and (c) the SC vortices. The TELV and SLV run parallel to the trailing edge and are of opposite sign, while the SC vortices start normal to the wing suction surface, then bend towards the SC centre and later extend downstream, with their vorticity parallel to the free stream.
The Kinematics of Turbulent Boundary Layer Structure
NASA Technical Reports Server (NTRS)
Robinson, Stephen Kern
1991-01-01
The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.
Hairpin exact coherent states in channel flow
NASA Astrophysics Data System (ADS)
Graham, Michael; Shekar, Ashwin
2017-11-01
Questions remain over the role of hairpin vortices in fully developed turbulent flows. Studies have shown that hairpins play a role in the dynamics away from the wall but the question still persists if they play any part in (near wall) fully developed turbulent dynamics. In addition, the robustness of the hairpin vortex regeneration mechanism is still under investigation. Recent studies have shown the existence of nonlinear traveling wave solutions to the Navier-Stokes equations, also known as exact coherent states (ECS), that capture many aspects of near-wall turbulent structures. Previously discovered ECS in channel flow have a quasi-streamwise vortex structure, with no indication of hairpin formation. Here we present a family of traveling wave solutions for channel flow that displays hairpin vortices. They have a streamwise vortex-streak structure near the wall with a spatially localized hairpin head near the channel centerline, attached to and sustained by the near wall structures. This family of solutions emerges through a transcritical bifurcation from a branch of traveling wave solutions with y and z reflectional symmetry. We also look into the instabilities that lead to the development of hairpins also explore its connection to turbulent dynamics.
Analysis of vortical structures in turbulent natural convection
NASA Astrophysics Data System (ADS)
Park, Sangro; Lee, Changhoon
2014-11-01
Natural convection of fluid within two parallel walls, Rayleigh-Bénard convection, is studied by direct numerical simulation using a spectral method. The flow is in soft turbulence regime with Rayleigh number 106, 107, 108, Prandtl number 0 . 7 and aspect ratio 4. We investigate the relations between thermal plumes and vortical structures through manipulating the evolution equations of vorticity and velocity gradient tensor. According to simulation results, horizontal vorticity occurs near the wall and changes into vertical vorticity by vertical stretching of fluid element which is caused by vertical movement of the thermal plume. Additionally, eigenvalues, eigenvectors and invariants of velocity gradient tensor show the topologies of vortical structures, including how vortical structures are tilted or stretched. Difference of velocity gradient tensor between inside thermal plumes and background region is also investigated, and the result indicates that thermal plumes play an important role in changing the distribution of vortical structures. The results of this study are consistent with other researches which suggest that vertical vorticity is stronger in high Rayleigh number flows. Details will be presented in the meeting.
NASA Astrophysics Data System (ADS)
Westervelt, Andrea; Erath, Byron
2013-11-01
Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
Balance in non-hydrostatic rotating stratified turbulence
NASA Astrophysics Data System (ADS)
McKiver, William J.; Dritschel, David G.
It is now well established that two distinct types of motion occur in geophysical turbulence: slow motions associated with potential vorticity advection and fast oscillations due to inertiamaster variable this is known as balance. In real geophysical flows, deviations from balance in the form of inertiaimbalance|N/f) where optimal potential vorticity balancenonlinear quasi-geostrophic balance’ procedure expands the equations of motion to second order in Rossby number but retains the exact (unexpanded) definition of potential vorticity. This proves crucial for obtaining an accurate estimate of balanced motions. In the analysis of rotating stratified turbulence at Ro1 and N/f1, this procedure captures a significantly greater fraction of the underlying balance than standard (linear) quasi-geostrophic balance (which is based on the linearized equations about a state of rest). Nonlinear quasi-geostrophic balance also compares well with optimal potential vorticity balance, which captures the greatest fraction of the underlying balance overall.More fundamentally, the results of these analyses indicate that balance dominates in carefully initialized simulations of freely decaying rotating stratified turbulence up to O(1) Rossby numbers when N/f1. The fluid motion exhibits important quasi-geostrophic features with, in particular, typical height-to-width scale ratios remaining comparable to f/N.
Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaolei; Hong, Jiarong; Barone, Matthew
Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less
Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines
Yang, Xiaolei; Hong, Jiarong; Barone, Matthew; ...
2016-09-08
Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.; ...
2016-02-01
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
Simultaneous mapping of the unsteady flow fields by Particle Displacement Velocimetry (PDV)
NASA Technical Reports Server (NTRS)
Huang, Thomas T.; Fry, David J.; Liu, Han-Lieh; Katz, Joseph; Fu, Thomas C.
1992-01-01
Current experimental and computational techniques must be improved in order to advance the prediction capability of the longitudinal vortical flows shed by underwater vehicles. The generation, development, and breakdown mechanisms of the shed vortices at high Reynolds numbers are not fully understood. The ability to measure hull separated vortices associated with vehicle maneuvering does not exist at present. The existing point-by-point measurement techniques can only capture approximately the large 'mean' eddies but fail to meet the dynamics of small vortices during the initial stage of generation. A new technique, which offers a previously unavailable capability to measure the unsteady cross-flow distribution in the plane of the laser light sheet, is called Particle Displacement Velocimetry (PDV). PDV consists of illuminating a thin section of the flowfield with a pulsed laser. The water is seeded with microscopic, neutrally buoyant particles containing imbedded fluorescing dye which responds with intense spontaneous fluorescence with the illuminated section. The seeded particles in the vortical flow structure shed by the underwater vehicle are illuminated by the pulse laser and the corresponding particle traces are recorded in a single photographic frame. Two distinct approaches were utilized for determining the velocity distribution from the particle traces. The first method is based on matching the traces of the same particle and measuring the distance between them. The direction of the flow can be identified by keeping one of the pulses longer than the other. The second method is based on selecting a small window within the image and finding the mean shift of all the particles within that region. The computation of the auto-correlation of the intensity distribution within the selected sample window is used to determine the mean displacement of particles. The direction of the flow is identified by varying the intensity of the laser light between pulses. Considerable computational resources are required to compute the auto-correction of the intensity distribution. Parallel processing will be employed to speed up the data reduction. A few examples of measured unsteady vortical flow structures shed by the underwater vehicles will be presented.
NASA Astrophysics Data System (ADS)
Gan, Jiaye
The purpose of this research is to develop high fidelity numerical methods to investigate the complex aeroelasticity fluid-structural problems of aircraft and aircraft engine turbomachinery. Unsteady 3D compressible Navier-Stokes equations in generalized coordinates are solved to simulate the complex fluid dynamic problems in aeroelasticity. An efficient and low diffusion E-CUSP (LDE) scheme designed to minimize numerical dissipation is used as a Riemann solver to capture shock waves in transonic and supersonic flows. An improved hybrid turbulence modeling, delayed detached eddy simulation (DDES), is implemented to simulate shock induced separation and rotating stall flows. High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. To resolve the nonlinear interaction between flow and vibrating blade structures, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. A rotor/stator sliding interpolation technique is developed to accurately capture the blade rows interaction at the interface with general grid distribution. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are applied to consider the effect of phase difference for a sector of annulus simulation. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI methodology. The accuracy and robustness of RANS, URANS and DDES turbulence models with high order schemes for predicting the lift and drag of the DLR-F6 configuration are verified. The DDES predicts the drag very well whereas the URANS model significantly over predicts the drag. DDES of a finned projectile base flows is conducted to further validate the high fidelity methods with vortical flow. The DDES is demonstrated to be superior to the URANS for the projectile flow prediction. DDES of a 3D transonic wing flutter is validated with AGARD Wing 445.6 aeroelasticity experiment at free stream Mach number varied from subsonic to supersonic. The predicted flutter boundary at different free stream Mach number including the sonic dip achieves very good agreement with the experiment. In particular, the predicted flutter boundaries at the supersonic conditions match the experiment accurately. The mechanism of sonic dip is investigated. Simulation of supersonic fluid-structural interaction of a flat panel is performed by using DDES with high order shock capturing scheme. The panel vibration induced by the shock boundary layer interaction is well resolved by the high fidelity method. The dominant panel response agrees well with the experiment in terms of the mean panel displacement and frequency. The DDES methodology is used to investigate the stall inception of NASA Stage 35 compressor. The process of rotating stall is compared between the results using both URANS and DDES with full annulus. The stall process begins with spike inception and develops to full stall. The numbers of stall cell, and the size and propagating speed of the stall cells are well captured by both URANS and DDES. Two stall cells with 42% rotor rotating speed are resolved by DDES and one stall cell with 90% rotor rotating speed by URANS. It is not conclusive which method is more accurate since there is no experimental data, but the DDES does show more realistic vortical turbulence with more small scale structures. The non-synchronous vibration (NSV) of a high speed 1-1/2 stage axial compressor is investigated by using rigid blade and vibrating blade with fluid-structural interaction. An interpolation sliding boundary condition is used for the rotor-stator interaction. The URANS simulation with rigid blades shows that the leading edge(LE) circumferentially traveling vortices, roughly above 80% rotor span, travel backwards relative to the rotor rotation and cause an excitation with the frequency agreeing with the measured NSV frequency. The predicted excitation frequency of the traveling vortices in the rigid blade simulation is a non-engine order frequency of 2603 Hz, which agrees very well with the rig measured frequency of 2600 Hz. For the FSI simulation, the results show that there exist two dominant frequencies in the spectrum of the blade vibration. The lower dominant frequency is close to the first bending mode. The higher dominant frequency close to the first torsional mode agrees very well with the measured NSV frequency. To investigate whether the NSV is caused by flow excitation or by flow-structure locked-in phenomenon, the rotating speed is varied within a small RPM range, in which the rig test detected the NSV. The unsteady flows with rigid blades are simulated first at several RPMs. A dominant excitation NSV frequency caused by the circumferentially traveling tip vortices are captured. The simulation then switches to fluid structure interaction that allows the blades to vibrate freely. (Abstract shortened by ProQuest.).
Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics.
Holm, Darryl D; Jacobs, Henry O
2017-01-01
Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.
The effect of morphologically representative corrugation on hovering insect flight
NASA Astrophysics Data System (ADS)
Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid
2017-11-01
The present work explores the influence of morphologically representative wing corrugation in three-dimensional symmetric hovering. The kinematics are applied to a processed μCT scan of a Bombus pensylvanicus and compared with a wing utilizing the same planform but a flat, rectangular cross-section. The Bombus pensylvanicus wing used in the present study was captured in Virginia, killed with Ethyl acetate dying with wings extended with the fore and hind wings connected by the wing humuli. The aerodynamics resulting from geometric differences between the true wing and flat plate are quantified using CL and CD, and qualified using slices of vorticity and pressure. Three-dimensional flow structures are visualized using vorticity magnitude and streamlines. The present analysis is to begin to determine and understand the effects of insect wing venation on aerodynamic performance and further, to better understand the effects of assuming a simplified cross-sectional geometry.
Vortices revealed: Swimming faster
NASA Astrophysics Data System (ADS)
van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman
2016-11-01
Understanding and optimizing the propulsion in human swimming requires insight into the hydrodynamics of the flow around the swimmer. Experiments and simulations addressing the hydrodynamics of swimming have been conducted in studies before, including the visualization of the flow using particle image velocimetry (PIV). The main objective in this study is to develop a system to visualize the flow around a swimmer in practice inspired by this technique. The setup is placed in a regular swimming pool. The use of tracer particles and lasers to illuminate the particles is not allowed. Therefore, we choose to work with air bubbles with a diameter of 4 mm, illuminated by ambient light. Homogeneous bubble curtains are produced by tubes implemented in the bottom of the pool. The bubble motion is captured by six cameras placed in underwater casings. A first test with the setup has been conducted by pulling a cylinder through the bubbles and performing a PIV analysis. The vorticity plots of the resulting data show the expected vortex street behind the cylinder. The shedding frequency of the vortices resembles the expected frequency. Thus, it is possible to identify and follow the coherent structures. We will discuss these results and the first flow measurements around swimmers.
Spanwise Spacing Effects on the Initial Structure and Decay of Axial Vortices
NASA Technical Reports Server (NTRS)
Wendt, B. J.; Reichert, B. A.
1996-01-01
The initial structure and axial decay of an array of streamwise vortices embedded in a turbulent pipe boundary layer is experimentally investigated. The vortices are shed in counter-rotating fashion from an array of equally-spaced symmetric airfoil vortex generators. Vortex structure is quantified in terms of crossplane circulation and peak streamwise vorticity. Flow conditions are subsonic and incompressible. The focus of this study is on the effect of the initial spacing between the parent vortex generators. Arrays with vortex generators spaced at 15 and 30 degrees apart are considered. When the spacing between vortex generators is decreased the circulation and peak vorticity of the shed vortices increases. Analysis indicates this strengthening results from regions of fluid acceleration in the vicinity of the vortex generator array. Decreased spacing between the constituent vortices also produces increased rates of circulation and peak vorticity decay.
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2018-01-01
Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.
NASA Technical Reports Server (NTRS)
Hall, Philip
1989-01-01
Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.
NASA Astrophysics Data System (ADS)
Garland, Justin; Sayanagi, Kunio M.; Blalock, John J.; Gunnarson, Jacob; McCabe, Ryan M.; Gallego, Angelina; Hansen, Candice; Orton, Glenn S.
2017-10-01
We present an analysis of the spatial-scales contained in the cloud morphology of Jupiter’s southern high latitudes using images captured by JunoCam in 2016 and 2017, and compare them to those on Saturn using images captured using the Imaging Science Subsystem (ISS) on board the Cassini orbiter. For Jupiter, the characteristic spatial scale of cloud morphology as a function of latitude is calculated from images taken in three visual (600-800, 500-600, 420-520 nm) bands and a near-infrared (880- 900 nm) band. In particular, we analyze the transition from the banded structure characteristic of Jupiter’s mid-latitudes to the chaotic structure of the polar region. We apply similar analysis to Saturn using images captured using Cassini ISS. In contrast to Jupiter, Saturn maintains its zonally organized cloud morphology from low latitudes up to the poles, culminating in the cyclonic polar vortices centered at each of the poles. By quantifying the differences in the spatial scales contained in the cloud morphology, our analysis will shed light on the processes that control the banded structures on Jupiter and Saturn. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, and NSF AAG 1212216.
Plane mixing layer vortical structure kinematics
NASA Technical Reports Server (NTRS)
Leboeuf, Richard L.
1993-01-01
The objective of the current project was to experimentally investigate the structure and dynamics of the streamwise vorticity in a plane mixing layer. The first part of this research program was intended to clarify whether the observed decrease in mean streamwise vorticity in the far-field of mixing layers is due primarily to the 'smearing' caused by vortex meander or to diffusion. Two-point velocity correlation measurements have been used to show that there is little spanwise meander of the large-scale streamwise vortical structure. The correlation measurements also indicate a large degree of transverse meander of the streamwise vorticity which is not surprising since the streamwise vorticity exists in the inclined braid region between the spanwise vortex core regions. The streamwise convection of the braid region thereby introduces an apparent transverse meander into measurements using stationary probes. These results corroborated with estimated secondary velocity profiles in which the streamwise vorticity produces a signature which was tracked in time.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.
2016-11-01
Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.
Modification of inertial oscillations by the mesoscale eddy field
NASA Astrophysics Data System (ADS)
Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.
2010-09-01
The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.
Topological Structures in Multiferroics - Domain Walls, Skyrmions and Vortices
Seidel, Jan; Vasudevan, Rama K.; Valanoor, Nagarajan
2015-12-15
Topological structures in multiferroic materials have recently received considerable attention because of their potential use as nanoscale functional elements. Their reduced size in conjunction with exotic arrangement of the ferroic order parameter and potential order parameter coupling allows for emergent and unexplored phenomena in condensed matter and functional materials systems. This will lead to exciting new fundamental discoveries as well as application concepts that exploit their response to external stimuli such as mechanical strain, electric and magnetic fields. In this review we capture the current development of this rapidly moving field with specific emphasis on key achievements that have castmore » light on how such topological structures in multiferroic materials systems can be exploited for use in complex oxide nanoelectronics and spintronics.« less
Static and dynamic properties of heavily doped quantum vortices
NASA Astrophysics Data System (ADS)
Pshenichnyuk, I. A.
2017-10-01
Quantum vortices in superfluids may capture matter and deposit it inside their core. By doping vortices with foreign particles one can effectively visualize them and study them experimentally. To acquire a better understanding of the interaction between quantum vortices and matter, and clarify the details of recent experiments, the properties of doped vortices are investigated here theoretically in the regimes where the doping mass becomes close to the total mass of superfluid particles forming a vortex. Such formations are dynamically stable and, possessing both vorticity and enhanced inertia, demonstrate properties that are different from the pure vortex case. The goal of this paper is to define and investigate the universal aspects of heavily doped vortex behavior, which can be realized in different types of quantum mixtures. The proposed 3D model is based on a system of coupled semiclassical matter wave equations that are solved numerically in a wide range of physical parameters. The size, geometry and binding energy of dopants in different regimes are discussed. The coupled motion of a vortex-dopant complex and decoupling conditions are studied. The reconnection of vortices, taken as an example of a fundamental process responsible for the evolution of a quantum turbulent state, is modeled to illustrate the difference between the light and heavy doping cases.
NASA Technical Reports Server (NTRS)
Ukeiley, L.; Varghese, M.; Glauser, M.; Valentine, D.
1991-01-01
A 'lobed mixer' device that enhances mixing through secondary flows and streamwise vorticity is presently studied within the framework of multifractal-measures theory, in order to deepen understanding of velocity time trace data gathered on its operation. Proper orthogonal decomposition-based knowledge of coherent structures has been applied to obtain the generalized fractal dimensions and multifractal spectrum of several proper eigenmodes for data samples of the velocity time traces; this constitutes a marked departure from previous multifractal theory applications to self-similar cascades. In certain cases, a single dimension may suffice to capture the entire spectrum of scaling exponents for the velocity time trace.
Plasma flow disturbances in the magnetospheric plasma sheet during substorm activations
NASA Astrophysics Data System (ADS)
Kozelova, T. V.; Kozelov, B. V.; Turyanskii, V. A.
2017-11-01
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at 8.5 R E and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of 10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of 90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the B z component of the magnetic field on the satellite. Approximately 30-50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.
Faults Get Colder Through Transient Granular Vortices
NASA Astrophysics Data System (ADS)
Einav, I.; Rognon, P.; Miller, T.; Sulem, J.
2018-03-01
Fault temperatures govern their weakening and control the dynamics of earthquakes during slip. Despite predictions of significant temperature rise within fault gouges during earthquake events, observations of frictional melting zones along exhumed faults are relatively rare. Could there be a heat transfer mechanism, previously not considered, that results in ubiquitously colder faults during earthquakes? We demonstrate that the remarkable, previously neglected mechanism of heat transfer through transient granular vortices may be at the core of this. We present and analyze results from perpetual simple shear experiments on a system of granular disks with which we are able to quantify the sizes and lifetimes of granular vortices within fault gouges during earthquakes. We then develop a formula that captures the contribution these vortices have on heat transfer. Using this formula, we show that crustal faults such as those in the San Andreas system may experience a maximum temperature rise 5 to 10 times lower than previously thought.
An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows
NASA Technical Reports Server (NTRS)
Felici, Helene M.; Drela, Mark
1993-01-01
A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.
The flow separation delay in the boundary layer by induced vortices.
Chaudhry, Ishtiaq A; Sultan, Tipu; Siddiqui, Farrukh A; Farhan, M; Asim, M
2017-01-01
A series of experiments involving the particle image velocimetry technique are carried out to analyse the quantitative effectiveness of the synthesized vortical structures towards actual flow separation control. The streamwise vortices are synthesized from the synthetic jet actuator and introduced into the attached and separating boundary layer developed on the flat plate surface. Two types of actuators with different geometrical set-ups are used to analyse the evolution of vortical structures in the near wall region and their impact towards achieving separation delay in the boundary layer. First, a single circular jet is synthesized by varying actuator operating parameters and issued into the boundary layer to evaluate the dynamics of the interaction between the vortical structures and the near wall low momentum fluid in the separated region. Second, an array of jets has been issued into the artificially separated region to assess the effectiveness of various vortical structures towards achieving the reattachment of the separated flow in the streamwise direction.
Vorticity and Λ polarization in baryon rich matter
NASA Astrophysics Data System (ADS)
Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin
2018-02-01
The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of
Polarization in heavy-ion collisions: magnetic field and vorticity
NASA Astrophysics Data System (ADS)
Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.
2017-12-01
The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.
1991-01-01
An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.
Generalized Lagrangian coherent structures
NASA Astrophysics Data System (ADS)
Balasuriya, Sanjeeva; Ouellette, Nicholas T.; Rypina, Irina I.
2018-06-01
The notion of a Lagrangian Coherent Structure (LCS) is by now well established as a way to capture transient coherent transport dynamics in unsteady and aperiodic fluid flows that are known over finite time. We show that the concept of an LCS can be generalized to capture coherence in other quantities of interest that are transported by, but not fully locked to, the fluid. Such quantities include those with dynamic, biological, chemical, or thermodynamic relevance, such as temperature, pollutant concentration, vorticity, kinetic energy, plankton density, and so on. We provide a conceptual framework for identifying the Generalized Lagrangian Coherent Structures (GLCSs) associated with such evolving quantities. We show how LCSs can be seen as a special case within this framework, and provide an overarching discussion of various methods for identifying LCSs. The utility of this more general viewpoint is highlighted through a variety of examples. We also show that although LCSs approximate GLCSs in certain limiting situations under restrictive assumptions on how the velocity field affects the additional quantities of interest, LCSs are not in general sufficient to describe their coherent transport.
Mars' Annular Polar Vortices and their Response to Atmospheric Dust Opacity
NASA Astrophysics Data System (ADS)
Guzewich, S.; Waugh, D.; Toigo, A. D.
2016-12-01
The potential vorticity structure of the martian polar vortices is distinct from Earth's stratospheric or tropospheric vortices. Rather than exhibiting monotonically increasing potential vorticity toward the geographic pole, as on Earth, the martian fall and winter polar vortices are annular with the potential vorticity maximum situated off the pole and a local minimum in potential vorticity at the pole. Using the MarsWRF general circulation model (GCM), we perform a series of simulations to examine the source of this annular structure. We find that latent heat exchange from the formation of CO2 ice aerosols within the vortex, in a region very near the geographic pole, destroys potential vorticity and creates the annular structure. Furthermore, we describe Mars Climate Sounder and Thermal Emission Spectrometer observations of "transient vortex warming" events, where the air inside the northern hemisphere winter polar vortex is briefly warmed. During the Mars Year 28 (2007) global dust storm, the temperature inside the vortex increased by 70 K and dust directly entered the vortex. Using additional GCM simulations, we diagnose the dynamical changes associated with these transient vortex warming events and find that poleward expansion of the descending branch of the meridional overturning circulation during periods of increased dust opacity disrupts the northern hemisphere winter polar vortex. These increased temperatures also suppress CO2 condensation at the pole, creating a more Earth-like polar vortex where potential vorticity is maximized near the geographic pole.
Many-body quantum dynamics in the decay of bent dark solitons of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Katsimiga, G. C.; Mistakidis, S. I.; Koutentakis, G. M.; Kevrekidis, P. G.; Schmelcher, P.
2017-12-01
The beyond mean-field (MF) dynamics of a bent dark soliton (BDS) embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single BDS comparing the MF dynamics to a correlated approach, the multi-configuration time-dependent Hartree method for bosons. Dynamical snaking of this bent structure is observed, signaling the onset of fragmentation which becomes significant during the vortex nucleation. In contrast to the MF approximation ‘filling’ of the vortex core is observed, leading in turn to the formation of filled-core vortices, instead of the MF vortex-antivortex pairs. The resulting smearing effect in the density is a rather generic feature, occurring when solitonic structures are exposed to quantum fluctuations. Here, we show that this filling owes its existence to the dynamical building of an antidark structure developed in the next-to-leading order orbital. We further demonstrate that the aforementioned beyond MF dynamics can be experimentally detected using the variance of single shot measurements. Additionally, a variety of excitations including vortices, oblique dark solitons, and open ring dark soliton-like structures building upon higher-lying orbitals is observed. We demonstrate that signatures of the higher-lying orbital excitations emerge in the total density, and can be clearly captured by inspecting the one-body coherence. In the latter context, the localization of one-body correlations exposes the existence of the multi-orbital vortex-antidark structure.
NASA Astrophysics Data System (ADS)
Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu
2018-04-01
Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.
Monopolar vortices as relative equilibria and their dissipative decay
NASA Astrophysics Data System (ADS)
Vandefliert, B. W.; Vangroesen, E. W. C.
1991-11-01
Families of confined rotating monopolar vortices are characterized using a variational formulation with the angular momentum as the driving force for confinement. The characterization for positive monopolar vortices given, can be extended to negative vortices or to vortices within a rotating frame of reference. Besides the uniform Kirchhoff paths, new branches of vorticity solutions are found restricting the dynamics to levelsets of both the angular momentum and the quadratic anisotropy. The rotation rate of the smooth vorticity structures depends on the vorticity profile. This is made perceptible by considering both minimum energy vortices and minimizing vortices, rotating counterclockwise and clockwise respectively. An approximation for the decay of the vortices due to dissipation is given in terms of the dissipation of the integrals in the inviscid system. This description enables us to consider dissipation of vortices without loss of confinement. The elliptical Kirchhoff patches are found to symmetrize into circular patches. The minimum energy vortices gradually diminish while expending their support, while the maximum energy vortices are unstable for the dissipative evolution.
Quantized vortices and superflow in arbitrary dimensions: structure, energetics and dynamics
NASA Astrophysics Data System (ADS)
Goldbart, Paul M.; Bora, Florin
2009-05-01
The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of codimension 2, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between the vortical superflow and Ampère-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension 4 and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three-dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors.
Coupled Control of Flow Separation and Streamwise Vortical Structures
NASA Astrophysics Data System (ADS)
Burrows, Travis; Vukasinovic, Bojan; Glezer, Ari
2017-11-01
The flow in offset diffusers of modern propulsion systems are dominated by streamwise vorticity concentrations that advect of low-momentum fluid from the flow boundaries into the core flow and give rise to flow distortion and losses at the engine inlet. Because the formation of these vortices is strongly coupled to trapped vorticity concentrations within locally-separated flow domains over concave surfaces of the diffuser bends, this coupling is exploited for controlling the streamwise evolution of the vortices and thereby significantly reduce the flow distortion and losses. The scale and topology of the trapped vorticity are manipulated at an operating throat Mach number of 0.64 by using a spanwise array of fluidic oscillating jets that are placed upstream of the separation domain. The present investigations demonstrate that the actuation alters the structure of both the trapped and streamwise vortices. In particular, the distribution of the streamwise vortices is altered and their strength is diminished by actuation-induced streamwise vorticity concentrations of opposite sense. As a result, the actuation leads to significant suppression of pressure distortion at the engine inlet (by as much as 60%) at an actuation level that utilizes less than 0.4% of the diffuser's mass flow rate. Supported by ONR.
NASA Astrophysics Data System (ADS)
Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Stephen G.; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek
2008-12-01
Modelling of non-stationary cardiac structures is complicated by the complexity of their intrinsic and extrinsic motion. The first known study of haemodynamics due to the beating of heart was made by Leonardo Da Vinci, giving the idea of fluid-solid interaction by describing how vortices develop during cardiac structural interaction with the blood. Heart morphology affects in changes of cardio dynamics during the systolic and diastolic phrases. In a chamber of the heart, vortices are discovered to exist as the result of the unique morphological changes of the cardiac chamber wall by using flow-imaging techniques such as phase contrast magnetic resonance imaging. The first part of this paper attempts to quantify vortex characteristics by means of calculating vorticity numerically and devising two dimensional vortical flow maps. The technique relies on determining the properties of vorticity using a statistical quantification of the flow maps and comparison of these quantities based on different scenarios. As the characteristics of our vorticity maps vary depending on the phase of a cardiac cycle, there is a need for robust quantification method to analyse vorticity. In the second part of the paper, the approach is then utilised for examining vortices within the human right atrium. Our study has shown that a proper quantification of vorticity for the flow field can indicate the strength and number of vortices within a heart chamber.
Hairpin vortices in the outer and near wall regions of the canonical turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wallace, James; Wu, Xiaohua; Moin, Parviz
2016-11-01
While the dominance of hairpin vortices and their significance for transport processes in the transitional and early turbulent regions of the canonical turbulent boundary layer has been widely accepted, opinion is divided about the developed flow downstream. Here we investigate the representative vortical structures in the outer and near wall regions for the momentum thickness Reynolds number, Reθ , of up to 3000 using the DNS database described in. This boundary layer grows spatially from a laminar state at Reθ = 80 beneath a freestream of continuous and nearly isotropic turbulence decaying from an intensity of 3 to 0.8%. The vortical structures are visualized with the swirling strength, λci. In the outer region hairpin vortices appear and are advected over distances corresponding to about 300 - 400 in Reθ within the fully turbulent region, demonstrating that they are not remnants of transitional structures. The near wall vortical structures are more difficult to visualize and require careful tuning of the swirling strength and making invisible the flow above the near wall region of the flow. The hairpins in this region occur in intermittent clusters that have features remarkably similar to transitional turbulent spots.
NASA Astrophysics Data System (ADS)
Taamallah, Soufien; Chakroun, Nadim; Shanbhogue, Santosh; Kewlani, Gaurav; Ghoniem, Ahmed
2015-11-01
A combined experimental and LES investigation is performed to identify the origin of major flow dynamics and vortical structures in a model gas turbine's swirl-stabilized turbulent combustor. Swirling flows in combustion lead to the formation of complex flow dynamics and vortical structures that can interact with flames and influence its stabilization. Our experimental results for non-reacting flow show the existence of large scale precession motion. The precessing vortex core (PVC) dynamics disappears with combustion but only above a threshold of equivalence ratio. In addition, large scale vortices along the inner shear layer (ISL) are observed. These structures interact with the ISL stabilized flame and contribute to its wrinkling. Next, the LES setup is validated against the flow field's low-order statistics and point temperature measurement in relevant areas of the chamber. Finally, we show that LES is capable of predicting the precession motion as well as the ISL vortices in the reacting case: we find that ISL vortices originate from a vortex core that is formed right downstream of the swirler's centerbody. The vortex core has a conical spiral shape resembling a corkscrew that interacts - as it winds out - with the flame when it reaches the ISL.
Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Ahmad, Jasim U.
2012-01-01
Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.
Level set formulation of two-dimensional Lagrangian vortex detection methods
NASA Astrophysics Data System (ADS)
Hadjighasem, Alireza; Haller, George
2016-10-01
We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.
Slat Cove Unsteadiness Effect of 3D Flow Structures
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Khorrami, Mehdi R.
2006-01-01
Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.
Dimer geometry, amoebae and a vortex dimer model
NASA Astrophysics Data System (ADS)
Nash, Charles; O'Connor, Denjoe
2017-09-01
We present a geometrical approach and introduce a connection for dimer problems on bipartite and non-bipartite graphs. In the bipartite case the connection is flat but has non-trivial {Z}2 holonomy round certain curves. This holonomy has the universality property that it does not change as the number of vertices in the fundamental domain of the graph is increased. It is argued that the K-theory of the torus, with or without punctures, is the appropriate underlying invariant. In the non-bipartite case the connection has non-zero curvature as well as non-zero Chern number. The curvature does not require the introduction of a magnetic field. The phase diagram of these models is captured by what is known as an amoeba. We introduce a dimer model with negative edge weights which correspond to vortices. The amoebae for various models are studied with particular emphasis on the case of negative edge weights. Vortices give rise to new kinds of amoebae with certain singular structures which we investigate. On the amoeba of the vortex full hexagonal lattice we find the partition function corresponds to that of a massless Dirac doublet.
Mitchell, D M; Montabone, L; Thomson, S; Read, P L
2015-01-01
Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.
Mitchell, D M; Montabone, L; Thomson, S; Read, P L
2015-01-01
Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth. PMID:26300564
Spanwise effects on instabilities of compressible flow over a long rectangular cavity
NASA Astrophysics Data System (ADS)
Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.
2017-12-01
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.
Zheng, Yue; Chen, W J
2017-08-01
Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects-vortices-have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.
NASA Astrophysics Data System (ADS)
Lewis, Q. W.; Rhoads, B. L.
2017-12-01
The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.
The structure of intense vorticity in homogeneous isotropic turbulence
NASA Technical Reports Server (NTRS)
Jimenez, J.; Wray, A. A.; Saffman, P. G.; Rogallo, R. S.
1992-01-01
The structure of the intense vorticity regions is studied in numerically simulated homogeneous, isotropic, equilibrium turbulent flow fields at four different Reynolds numbers in the range Re(sub lambda) = 36-171. In accordance with previous investigators, this vorticity is found to be organized in coherent, cylindrical or ribbon-like, vortices ('worms'). A statistical study suggests that they are just especially intense features of the background, O(omega'), vorticity. Their radii scale with the Kolmogorov microscale and their lengths with the integral scale of the flow. An interesting observation is that the Reynolds number based on the circulation of the intense vortices, gamma/nu, increases monotonically with Re(sub lambda), raising the question of the stability of the structures in the limit of Re(sub lambda) approaching infinity. One and two-dimensional statistics of vorticity and strain are presented; they are non-gaussian, and the behavior of their tails depends strongly on the Reynolds number. There is no evidence of convergence to a limiting distribution in our range of Re(sub lambda), even though the energy spectra and the energy dissipation rate show good asymptotic properties in the higher Reynolds number cases. Evidence is presented to show that worms are natural features of the flow and that they do not depend on the particular forcing scheme.
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2017-11-01
Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.
NASA Astrophysics Data System (ADS)
Ligrani, P. M.
2018-03-01
A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.
Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energymore » Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.« less
A factor involved in efficient breakdown of supersonic streamwise vortices
NASA Astrophysics Data System (ADS)
Hiejima, Toshihiko
2015-03-01
Spatially developing processes in supersonic streamwise vortices were numerically simulated at Mach number 5.0. The vortex evolution largely depended on the azimuthal vorticity thickness of the vortices, which governs the negative helicity profile. Large vorticity thickness greatly enhanced the centrifugal instability, with consequent development of perturbations with competing wavenumbers outside the vortex core. During the transition process, supersonic streamwise vortices could generate large-scale spiral structures and a number of hairpin like vortices. Remarkably, the transition caused a dramatic increase in the total fluctuation energy of hypersonic flows, because the negative helicity profile destabilizes the flows due to helicity instability. Unstable growth might also relate to the correlation length between the axial and azimuthal vorticities of the streamwise vortices. The knowledge gained in this study is important for realizing effective fuel-oxidizer mixing in supersonic combustion engines.
Investigation of the Dynamics of Magnetic Vortices and Antivortices Using Micromagnetic Simulations
NASA Astrophysics Data System (ADS)
Asmat-Uceda, Martin Antonio
This thesis is focused on investigating the dynamic properties of spin textures in patterned magnetic structures by using micromagnetic simulations. These textures become particularly relevant at sub-micron length scales where the interplay between magnetostatic and exchange energy leads to unique properties that are of great interest both from a fundamental perspective and for the development of new technologies. Two different systems, a magnetic antivortex (AV) stabilized in the intersection of perpendicular microwires, and three interacting vortices in an equilateral arrangement, were considered for this study. For the first system, the AV, the formation process and the excitation spectra were investigated. Since the AV is a metastable state, the design of a host structure capable of stabilizing it requires careful consideration and it is desirable to have general guidelines that could help to optimize the AV formation rate. The role of the shape anisotropy and the field dependence of the AV formation process is discussed in detail. Micromagnetic simulations along with magneto-optical Kerr effect and magnetic force microscopy measurements demonstrated that the asymmetry in the structure can be used to promote the formation of such AV's and that regions with lower shape anisotropy lead the reversal process, while simulations of the dynamic response show that when the system is excited with in-plane and out-of-plane external magnetic fields, normal modes with azimuthal and radial characteristics are found, respectively, in addition to the low frequency gyrotropic mode. The modes are influenced by the spin texture in the intersection, which offers additional possibilities for manipulating spin waves (SW). For the second system, three interacting vortices are simulated and compared with a simple analytical model that considers only dipolar interactions. It was found that when a fitting parameter is introduced to the model, the main features of the simulations are captured better than more complex models, which suggest that this simple framework can be used to accurately model more complex vortex networks.
2017-12-08
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
What can vortices tell us about vocal fold vibration and voice production.
Khosla, Sid; Murugappan, Shanmugam; Gutmark, Ephraim
2008-06-01
Much clinical research on laryngeal airflow has assumed that airflow is unidirectional. This review will summarize what additional knowledge can be obtained about vocal fold vibration and voice production by studying rotational motion, or vortices, in laryngeal airflow. Recent work suggests two types of vortices that may strongly contribute to voice quality. The first kind forms just above the vocal folds during glottal closing, and is formed by flow separation in the glottis; these flow separation vortices significantly contribute to rapid closing of the glottis, and hence, to producing loudness and high frequency harmonics in the acoustic spectrum. The second is a group of highly three-dimensional and coherent supraglottal vortices, which can produce sound by interaction with structures in the vocal tract. Present work is also described that suggests that certain laryngeal pathologies, such as asymmetric vocal fold tension, will significantly modify both types of vortices, with adverse impact on sound production: decreased rate of glottal closure, increased broadband noise, and a decreased signal to noise ratio. Recent research supports the hypothesis that glottal airflow contains certain vortical structures that significantly contribute to voice quality.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory
NASA Astrophysics Data System (ADS)
Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory.
Tzemos, Athanasios C; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Stability and nonlinear adjustment of vortices in Keplerian flows
NASA Astrophysics Data System (ADS)
Bodo, G.; Tevzadze, A.; Chagelishvili, G.; Mignone, A.; Rossi, P.; Ferrari, A.
2007-11-01
Aims:We investigate the stability, nonlinear development and equilibrium structure of vortices in a background shearing Keplerian flow Methods: We make use of high-resolution global two-dimensional compressible hydrodynamic simulations. We introduce the concept of nonlinear adjustment to describe the transition of unbalanced vortical fields to a long-lived configuration. Results: We discuss the conditions under which vortical perturbations evolve into long-lived persistent structures and we describe the properties of these equilibrium vortices. The properties of equilibrium vortices appear to be independent from the initial conditions and depend only on the local disk parameters. In particular we find that the ratio of the vortex size to the local disk scale height increases with the decrease of the sound speed, reaching values well above the unity. The process of spiral density wave generation by the vortex, discussed in our previous work, appear to maintain its efficiency also at nonlinear amplitudes and we observe the formation of spiral shocks attached to the vortex. The shocks may have important consequences on the long term vortex evolution and possibly on the global disk dynamics. Conclusions: Our study strengthens the arguments in favor of anticyclonic vortices as the candidates for the promotion of planetary formation. Hydrodynamic shocks that are an intrinsic property of persistent vortices in compressible Keplerian flows are an important contributor to the overall balance. These shocks support vortices against viscous dissipation by generating local potential vorticity and should be responsible for the eventual fate of the persistent anticyclonic vortices. Numerical codes have be able to resolve shock waves to describe the vortex dynamics correctly.
NASA Astrophysics Data System (ADS)
Ting, F. C. K.; LeClaire, P.
2016-02-01
Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was very high. These results suggest that vertical velocity or turbulent shear stress may be a better parameter for predicting sediment pick-up rate than turbulent kinetic energy. It was also found that splash-up vortices enhanced onshore transport relative to the condition when no vortex impinged on the bottom.
A perspective on coherent structures and conceptual models for turbulent boundary layer physics
NASA Technical Reports Server (NTRS)
Robinson, Stephen K.
1990-01-01
Direct numerical simulations of turbulent boundary layers have been analyzed to develop a unified conceptual model for the kinematics of coherent motions in low Reynolds number canonical turbulent boundary layers. All classes of coherent motions are considered in the model, including low-speed streaks, ejections and sweeps, vortical structures, near-wall and outer-region shear layers, sublayer pockets, and large-scale outer-region eddies. The model reflects the conclusions from the study of the simulated boundary layer that vortical structures are directly associated with the production of turbulent shear stresses, entrainment, dissipation of turbulence kinetic energy, and the fluctuating pressure field. These results, when viewed from the perspective of the large body of published work on the subject of coherent motions, confirm that vortical structures may be considered the central dynamic element in the maintenance of turbulence in the canonical boundary layer. Vortical structures serve as a framework on which to construct a unified picture of boundary layer structure, providing a means to relate the many known structural elements in a consistent way.
NASA Astrophysics Data System (ADS)
Olson, David Arthur
Many natural flyers and swimmers need to exploit unsteady mechanisms in order to generate sufficient aerodynamic forces for sustained flight and propulsion. This is, in part, due to the low speed and length scales at which they typically operate. In this low Reynolds number regime, there are many unanswered questions on how existing aerodynamic theory for both steady and unsteady flows can be applied. Additionally, most of these natural flyers and swimmers have deformable wing/fin structures, three dimensional wing planforms, and exhibit complex kinematics during motion. While some biologically-inspired studies seek to replicate these complex structures and kinematics in the laboratory or in numerical simulations, it becomes difficult to draw explicit connections to the existing knowledge base of classical unsteady aerodynamic theory due to the complexity of the problems. In this experimental study, wing kinematics, structure, and planform are greatly simplified to investigate the effect of chordwise flexibility on the streamwise force (thrust) and wake behavior of a sinusoidally pitching airfoil. The study of flexibility in the literature has typically utilized flat plates with varying thicknesses or lengths to change their chordwise flexibility. This choice introduces additional complexities when comparing to the wealth of knowledge originally developed on streamlined aerodynamic shapes. The current study capitalizes on the recent developments in 3D printer technology to create accurate shapes out of materials with varying degrees of flexibility by creating two standard NACA 0009 airfoils: one rigid and one flexible. Each of the two airfoils are sinusoidally pitched about the quarter chord over a range of oscillation amplitudes and frequencies while monitoring the deformation of the airfoil. The oscillation amplitude is selected to be small enough such that leading edge vortices do not form, and the vortical structures in the wake are formed from the trailing edge. Two-component Molecular Tagging Velocimetry (MTV) is employed to measure the vortical flowfield over the first chord length behind the airfoil. A control volume method is used to estimate the mean thrust of the airfoil based on the mean and fluctuating velocity profiles from the MTV results. The mean thrust results show chordwise flexibility increases the thrust produced by the airfoil over the range of motion parameters and the flexibility considered in this study. The flexible airfoil is also seen to experience the drag-to-thrust crossover at a lower oscillation frequency than its rigid counterpart. The relative change in thrust due to flexibility decreases with increasing amplitude. The increase in thrust can, however, be captured as an amplitude effect when the Strouhal number based on the actual trailing edge displacement, Stte, is used for scaling. Scaling based strictly on the prescribed motion, typically employed in the literature, is not sufficient for the data to collapse. Motion trajectories which produced a classical von Karman vortex street or a reverse von Karman vortex street (depending on the arrangement of the vortices), are considered for further study. The vortices in the wake are characterized in terms of their strength, size, and spacing using phase-averaged MTV results. The circulation of the vortices are shown to collapse for both rigid and flexible airfoils when plotted against Stte. The actual trailing edge displacement is used as a length scale to normalize the transverse and streamwise spacing, and the vortex core size. These measurements also now collapse when plotted against Stte across oscillation amplitude for both the rigid and flexible airfoils.
Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R
2016-12-01
This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the CH^{*} chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.
Interaction of viscous and inviscid instability modes in separation-bubble transition
NASA Astrophysics Data System (ADS)
Brinkerhoff, Joshua R.; Yaras, Metin I.
2011-12-01
This paper describes numerical simulations that are used to examine the interaction of viscous and inviscid instability modes in laminar-to-turbulent transition in a separation bubble. The results of a direct numerical simulation are presented in which separation of a laminar boundary-layer occurs in the presence of an adverse streamwise pressure gradient. The simulation is performed at low freestream-turbulence levels and at a flow Reynolds number and pressure distribution approximating those typically encountered on the suction side of low-pressure turbine blades in a gas-turbine engine. The simulation results reveal the development of a viscous instability upstream of the point of separation which produces streamwise-oriented vortices in the attached laminar boundary layer. These vortices remain embedded in the flow downstream of separation and are carried into the separated shear layer, where they are amplified by the local adverse pressure-gradient and contribute to the formation of coherent hairpin-like vortices. A strong interaction is observed between these vortices and the inviscid instability that typically dominates the shear layer in the separated zone. The interaction is noted to determine the spanwise extent of the vortical flow structures that periodically shed from the downstream end of the separated shear layer. The structure of the shed vortical flow structures is examined and compared with the coherent structures typically observed within turbulent boundary layers.
Coherent structures: Comments on mechanisms
NASA Technical Reports Server (NTRS)
Hunt, J. C. R.
1987-01-01
There is now overwhelming evidence that in most turbulent flows there exist regions moving with the flow where the velocity and vorticity have a characteristic structure. These regions are called coherent structures because within them the large-scale distributions of velocity and/or vorticity remain coherent even as these structures move through the flow and interact with other structures. Since the flow enters and leaves the bounding surfaces of these structures, a useful definition for coherent structures is that they are open volumes with distinctive large-scale vorticity distributions. Possible fruitful directions for the study of the dynamics of coherent structures are suggested. Most coherent structures research to data was concentrated on measurement and kinematical analysis; there is now a welcome move to examine the dynamics of coherent structures, by a variety of different methods. A few of them will be described.
NASA Astrophysics Data System (ADS)
Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.
2016-09-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.
Modeling Thermally Driven Flow Problems with a Grid-Free Vortex Filament Scheme: Part 1
2018-02-01
provision has been made to include grid-free energy particles and thus a capability of capturing 2-way coupling between momentum and energy via barotropic...vorticity generation associated with thermal gradients. The validation studies have focused on natural convection following a release of energy into...a stagnant field and show that this new method is capable of capturing the correct physics of 3-D natural convection problems. vortex filament, energy
Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics
NASA Astrophysics Data System (ADS)
Zheng, Yue; Chen, W. J.
2017-08-01
Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects—vortices—have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.
Efficient collective swimming by harnessing vortices through deep reinforcement learning.
Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros
2018-06-05
Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.
Interaction of a shock with a longitudinal vortex
NASA Technical Reports Server (NTRS)
Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang
1996-01-01
In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.
A Laboratory Study of Vortical Structures in Rotating Convection Plumes
NASA Astrophysics Data System (ADS)
Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team
2015-11-01
A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).
Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices.
Mehmood, M Q; Mei, Shengtao; Hussain, Sajid; Huang, Kun; Siew, S Y; Zhang, Lei; Zhang, Tianhang; Ling, Xiaohui; Liu, Hong; Teng, Jinghua; Danner, Aaron; Zhang, Shuang; Qiu, Cheng-Wei
2016-04-06
A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes. The design largely extends the flexibility of tuning the number of vortices and their focal positions for circularly polarized light in a compact device, which provides the convenience for the nanomanipulation of optical vortices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design.
NASA Astrophysics Data System (ADS)
Wu, Jie-Zhi; Yang, Yan-Tao; Wu, Hong; Li, Qiu-Shi; Mao, Feng; Zhou, Sheng
2007-11-01
It is well recognized that vorticity and vortical structures appear inevitably in viscous compressor flows and have strong influence on the compressor performance. But conventional analysis and design procedure cannot pinpoint the quantitative contribution of each individual vortical structure to the integrated performance of a compressor, such as the stagnation-pressure ratio and efficiency. We fill this gap by using the so-called derivative-moment transformation which has been successfully applied to external aerodynamics. We show that the compressor performance is mainly controlled by the radial distribution of azimuthal vorticity, of which an optimization in the through-flow design stage leads to a simple Abel equation of the second kind. Solving the equation yields desired circulation distribution that optimizes the blade geometry. The advantage of this new procedure is demonstrated by numerical examples, including the posterior performance check by 3-D Navier-Stokes simulation.
Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.
Kevrekidis, P G; Wang, Wenlong; Carretero-González, R; Frantzeskakis, D J
2017-06-16
Consider a lower-dimensional solitonic structure embedded in a higher-dimensional space, e.g., a 1D dark soliton embedded in 2D space, a ring dark soliton in 2D space, a spherical shell soliton in 3D space, etc. By extending the Landau dynamics approach [Phys. Rev. Lett. 93, 240403 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.240403], we show that it is possible to capture the transverse dynamical modes (the "Kelvin modes") of the undulation of this "soliton filament" within the higher-dimensional space. These are the transverse stability or instability modes and are the ones potentially responsible for the breakup of the soliton into structures such as vortices, vortex rings, etc. We present the theory and case examples in 2D and 3D, corroborating the results by numerical stability and dynamical computations.
Instability and turbulent mixing of shocked `V' shaped interface
NASA Astrophysics Data System (ADS)
Li, Long; Sun, Yutao
Based on the mass fraction model of multicomponent mixture, the interaction between weak shock wave and `V' shaped air/ interface with different vertex angles are numerical simulated using high resolution finite volume method with minimized dispersion and controllable dissipation (MDCD) scheme. It is observed that the baroclinic vorticity is deposited near the interface due to the misalignment of the density and pressure gradient, leading to the formation of vortical structures along the interface. The predicted leftmost interface displacement and interface width growth rate in the early stage of interface evolution agree well with experimental results. The numerical results indicate that with the evolution of the interfacial vortical structures, the array of vortices begins to merge. As the result, the vortices accumulate at several distinct regions. It is in these regions, the multi-scale structures are generated because of the interaction between vortices. It is observed that due to the different scaling with Reynolds number of upper bound and lower bound, an uncoupled inertial range appears, and the mixing transition occurs with the appearance of an inertial range of scales. The classical Kolmogorov -5/3 power laws are shown in the energy fluctuation spectrum, which means the inertial range is just beginning to form and the flow field near the material interface will develop to turbulence.
Numerical study of vorticity-enhanced heat transfer
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Alben, Silas
2013-11-01
Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1991-01-01
The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3 D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.
Development of Hairpin Vortices in Turbulent Spots and End-Wall Transition
NASA Technical Reports Server (NTRS)
Smith, Charles R.
2007-01-01
The end-stage phase of boundary layer transition is characterized by the development of hairpin-like vortices which evolve rapidly into patches of turbulent behavior. In general, the characteristics of the evolution form this hairpin stage to the turbulent stage is poorly understood, which has prompted the present experimental examination of hairpin vortex development and growth processes. Two topics of particular relevance to the workshop focus will be covered: 1) the growth of turbulent spots through the generatio and amalgamation of hairpin-like vortices, and 2) the development of hairpin vortices during transition in an end-wall junction flow. Brief summaries of these studies are described below. Using controlled generation of hairpin vortices by surface injection in a critical laminar boundary layer, detailed flow visualization studies have been done of the phases of growth of single hairpin vortices, from the initial hairgin generation, through the systematic generation of secondary hairpin-like flow structures, culminating in the evolution to a turbulent spot. The key to the growth process is strong vortex-surface interactions, which give rise to strong eruptive events adjacent to the surface, which results in the generation of subsequent hairpin vortex structures due to inviscid-viscuous interactions between the eruptive events and the free steam fluid. The general process of vortex-surface fluid interaction, coupled with subsequent interactions and amalgamation of the generated multiple hairpin-type vortices, is demonstrated as a physical mechanism for the growth and development of turbulent spots. When a boundary layer flow along a surface encounters a bluff body obstruction extending from the surface (such as cylinder or wing), the strong adverse pressure gradients generated by these types of flows result in the concentration of the impinging vorticity into a system of discrete vortices near the end-wall juncture of the obstruction, with the extensions of the vortices engirdling the obstruction to form "necklace" or "horseshoe" vortices. Recent hydrogen bubble and particle image visualization have shown that as Reynolds number is increased for a laminar approach flow, the flow will become critical, and a destabilization of the necklace vortices results in the development of an azimuthal waviness, or "kinks", in the vortices. These vortex kinks are accentuated by Biot-Savart effects, causing portions of a distorted necklace vortex to make a rapid approach to the surface, precipitating processes of localized, three-dimensional surface interactions. These interactions result in the rapid generation, focussing, and ejection of thin tongues of surface fluid, which rapidly roll-over and appear as hairpin vortices in the junction region. Subsequent amalgamation of these hairpin vortices with the necklace vortices produces a complex transitional-type flow. A presentation of key results from both these studies will be done, emphasizing both the ubiquity of such hairpin-type flow structures in manifold transitional-type flows, and the importance of vortex-surface interactions n the development of hairpin vortices.
Coherent flow structures and heat transfer in a duct with electromagnetic forcing
NASA Astrophysics Data System (ADS)
Himo, Rawad; Habchi, Charbel
2018-04-01
Coherent vortices are generated electromagnetically in a square duct flow. The vortices are induced by a Lorentz force applied in a small section near the entrance of the duct. The flow structure complexity increases with the electromagnetic forcing since the primary vortices propagating along the duct detach to generate secondary smaller streamwise vortices and hairpin-like structures. The Reynolds number based on the mean flow velocity and hydraulic diameter is 500, and five cases were studied by varying the electromagnetic forcing. Even though this Reynolds number is relatively low, a periodic sequence of hairpin-like structure flow was observed for the high forcing cases. This mechanism enhances the mixing process between the different flow regions resulting in an increase in the thermal performances which reaches 66% relative to the duct flow without forcing. In addition to the flow complexity, lower forcing cases remained steady, unlike high Lorentz forces that induced periodic instabilities with a Strouhal number around 0.59 for the transient eddies. The effect of the flow structure on the heat transfer is analyzed qualitatively and quantitatively using numerical simulations based on the finite volume method. Moreover, proper orthogonal decomposition (POD) analysis was performed on the flow structures to evaluate the most energetic modes contributing in the flow. It is found from the POD analysis that the primary streamwise vortices and hairpin legs are the flow structures that are the most contributing to the heat transfer process.
A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation
NASA Astrophysics Data System (ADS)
Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.
2014-11-01
In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).
Near wall effects on flexible splitter plate behind a cylinder
NASA Astrophysics Data System (ADS)
Venkat Narayanan, K.; Vengadesan, S.; Murali, K.
2017-11-01
Vortex induced vibrations(VIV) of a rigid circular cylinder with a flexible plate attached to its rear end, close to the plane wall is numerically studied for Re = 200. Amplitude modulations were observed in the response of the flexible plate at the ground distance of G/D=0.5. Numerical simulations were conducted for a range of reduced velocities Ur(3,4,5 and 6), which appropriately captures the synchronization range of VIV of the structure. At Ur=3 there is no significant amplitude modulation. As Ur is increased further, the modulation appears. The modulation appears symmetric about the peak amplitude for successive cycles at Ur=4. The phase plots of lift coefficient CL and plate tip displacement revealed the change in sign of energy transfer between the plate and the wake. Amplitude modulation is reflected in the interaction of shed vortices and the plane wall. Shed vortices are convected parallel to the wall when the amplitude of the plate rises to its local maximum during modulation. During the growth and damping phase of the amplitudes in each modulation cycle, the vortex shedding is observed to be oblique towards the wall.
Mathematical model of mass transfer at electron beam treatment
NASA Astrophysics Data System (ADS)
Konovalov, Sergey V.; Sarychev, Vladimir D.; Nevskii, Sergey A.; Kobzareva, Tatyana Yu.; Gromov, Victor E.; Semin, Alexander P.
2017-01-01
The paper proposes a model of convective mass transfer at electron beam treatment with beams in titanium alloys subjected to electro-explosion alloying by titanium diboride powder. The proposed model is based on the concept that treatment with concentrated flows of energy results in the initiation of vortices in the melted layer. The formation mechanism of these vortices rooted in the idea that the availability of temperature drop leads to the initiation of the thermo-capillary convection. For the melted layer of metal the equations of the convective heat transfer and boundary conditions in terms of the evaporated material are written. The finite element solution of these equations showed that electron-beam treatment results in the formation of multi-vortex structure that in developing captures all new areas of material. It leads to the fact that the strengthening particles are observed at the depth increasing many times the depth of their penetration according to the diffusion mechanism. The distribution of micro-hardness at depth and the thickness of strengthening zone determined from these data supported the view that proposed model of the convective mass transfer describes adequately the processes going on in the treatment with low-energy high-current electron beam.
Investigation of Body-involved Lift Enhancement in Bio-inspired Flapping Flight
NASA Astrophysics Data System (ADS)
Wang, Junshi; Liu, Geng; Ren, Yan; Dong, Haibo
2016-11-01
Previous studies found that insects and birds are capable of using many unsteady aerodynamic mechanisms to augment the lift production. These include leading edge vortices, delayed stall, wake capture, clap-and-fling, etc. Yet the body-involved lift augmentation has not been paid enough attention. In this work, the aerodynamic effects of the wing-body interaction on the lift production in cicada and hummingbird forward flight are computationally investigated. 3D wing-body systems and wing flapping kinematics are reconstructed from the high-speed videos or literatures to keep their complexity. Vortex structures and associated aerodynamic performance are numerically studied by an in-house immersed-boundary-method-based flow solver. The results show that the wing-body interaction enhances the overall lift production by about 20% in the cicada flight and about 28% in the hummingbird flight, respectively. Further investigation on the vortex dynamics has shown that this enhancement is attributed to the interactions between the body-generated vortices and the flapping wings. The output from this work has revealed a new lift enhancement mechanism in the flapping flight. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.
Three-dimensional boundary layer stability and transition
NASA Technical Reports Server (NTRS)
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
NASA Astrophysics Data System (ADS)
Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.
2015-11-01
Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.
Coherent structures in bypass transition induced by a cylinder wake
NASA Astrophysics Data System (ADS)
Pan, Chong; Wang, Jin Jun; Zhang, Pan Feng; Feng, Li Hao
Flat-plate boundary layer transition induced by the wake vortex of a two-dimensional circular cylinder is experimentally investigated. Combined visualization and velocity measurements show a different transition route from the Klebanoff mode in free-stream turbulence-induced transition. This transition scenario is mainly characterized as: (i) generation of secondary transverse vortical structures near the flat plate surface in response to the von Kn vortex street of the cylinder; (ii) formation of hairpin vortices due to the secondary instability of secondary vortical structures; (iii) growth of hairpins which is accelerated by wake-vortex induction; (iv) formation of hairpin packets and the associated streaky structures. Detailed investigation shows that during transition the evolution dynamics and self-sustaining mechanisms of hairpins, hairpin packets and streaks are consistent with those in a turbulent boundary layer. The wake vortex mainly plays the role of generating and destabilizing secondary transverse vortices. After that, the internal mechanisms become dominant and lead to the setting up of a self-sustained turbulent boundary layer.
Structure in the Near Field of the Transverse Jet
1990-04-13
73 7.1.2 Rate of strain vs. vorticity ...... .................. 74 7.1.3 Total pressure gradients ...... .................... 75 7.1.4...vorticity from within the nozzle evolves into the CVP vorticity. 7.1.2 Rate of strain vs. vorticity Although there is no mechanism in the present flow...by which to generate new vor- ticity within the flow, such is not the case for the rate of strain (Morton 1984). The 2-D equation governing the rate
Catching the Drift: Simulating Dark Spots and Bright Companions on the Ice Giants
NASA Astrophysics Data System (ADS)
LeBeau, R. P., Jr.; Koutas, N.; Palotai, C. J.; Bhure, S.; Hadland, N.; Sankar, R.
2017-12-01
Starting with the original Great Dark Spot (GDS-89) observed by Voyager 2, roughly a half-dozen large geophysical vortices have been observed on the Ice Giants, the most recent in 2015 on Neptune (Wong et al., 2016). While the presumption is that these Dark Spots are similar in structure to the large vortices on Jupiter, in some cases the Dark Spots exhibit dynamical motions such as the shape oscillations and latitudinal drift of GDS-89 (Smith et al., 1989) or the possible vortex drift underlying the "Berg" cloud feature on Uranus (de Pater et al., 2011). Others, like NGDS-1998, have remained largely stable across years of observation (Sromovsky et al., 2002). In addition, several of the vortices are linked with Bright Companion clouds which are presumed to be orographic features formed as the atmosphere rises over the vortex. The numerical simulation of these features has evolved with each new observation. Prior simulations have captured the forms if not all the specifics of observed Dark Spot dynamics (LeBeau and Dowling, 1998; LeBeau and Deng, 2006); likewise, numerical models have demonstrated the potential for orographic companion clouds (Stratman et al., 2001). However, as more knowledge of the Ice Giant atmospheres has been obtained, it has proven challenging to generate consistent dynamical models that capture the details of the Dark Spot variations and are physically consistent with known observations. In particular, current simulations indicate that the addition of a companion cloud can alter the vortex dynamics, both in terms of drift and oscillations. Given the impact of these clouds, a new parametric simulation study uses an updated microphysics model, implemented in the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al., 1998, 2006), to account for the condensation of methane and hydrogen sulfide (Palotai et al., 2016). Simulations of dark spots with varying sizes, strengths, and locations are conducted with different microphysical parameters such as the deep abundance and ambient supersaturation. Simulations are evaluated in terms of vortex stability and drift rate along with companion cloud formation with the goal of improving our understanding of the underlying physics driving the varying behaviors of the observed Dark Spots.
Direct Numerical Simulation of a Plane Transitional Wall Jet
NASA Astrophysics Data System (ADS)
Ramesh, O.; Varghese, Joel
2017-11-01
A transitional plane wall jet is studied using direct numerical simulation. The presence of an inflectional point leads to the outer layer rolling up into vortices that interacts with the inner region resulting in a double array of counter rotating vortices before breakdown into turbulence. Past studies have focused on forced wall jet which results in shorter transition region and prominent vortical structures. In the present work, natural transition will be discussed by analysing the coherent structures and scaled frequency spectra. Clear hairpin like structures leaning downstream in the inner region(as in a boundary layer) and leaning upstream in the outerstream (as in a jet) are evident.
NASA Astrophysics Data System (ADS)
Reinink, Shawn K.; Yaras, Metin I.
2015-06-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca
2015-06-15
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.« less
Numerical studies of the margin of vortices with decaying cores
NASA Technical Reports Server (NTRS)
Liu, G. C.; Ting, L.
1986-01-01
The merging of vortices to a single one is a canonical incompressible viscous flow problem. The merging process begins when the core sizes or the vortices are comparable to their distances and ends when the contour lines of constant vorticity lines are circularized around one center. Approximate solutions to this problem are constructed by adapting the asymptotic solutions for distinct vortices. For the early stage of merging, the next-order terms in the asymptotic solutions are added to the leading term. For the later stage of merging, the vorticity distribution is reinitialized by vortices with overlapping core structures guided by the 'rule of merging' and the velocity of the 'vortex centers' are then defined by a minimum principle. To show the accuracy of the approximate solution, it is compared with the finite-difference solution.
Coherent Structures in Magnetic Confinement Systems
NASA Astrophysics Data System (ADS)
Horton, W.
2006-04-01
Coherent structures are long-lived, nonlinear localized solutions of the selfconsistient plasma-electromagnetic field equations. They contain appreciable energy density and control various transport and magnetic reconnection processes in plasmas. These structures are self-binding from the nonlinearity balancing, or overcoming, the wave dispersion of energy in smaller amplitude structures. The structures evolve out of the nonlinear interactions in various instabilities or external driving fields. The theoretical basis for these structures are reviewed giving examples from various plasma instabilities and their reduced descriptions from the appropriate partial differential equations. A classic example from drift waves is the formation of monopole, dipole and tripolar vortex structures which have been created in both laboratory and simulation experiments. For vortices, the long life-time and nonlinear interactions of the structures can be understood with conservation laws of angular momentum given by the vorticity field associated with dynamics. Other morphologies include mushrooms, Kelvin-Helmholtz vorticity roll-up, streamers and blobs. We show simulation movies of various examples drawn from ETG modes in NSTX, H-mode like shear flow layers in LAPD and the vortices measured with soft x-ray tomography in the GAMMA 10 tandem mirror. Coherent current-sheet structures form in driven magnetic reconnection layers and control the rate of transformation of magnetic energy to flow and thermal energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamimura, A.; Hirata, K.; Mochiku, T.
1999-12-01
Distribution of vortices has been analyzed to study on the pinning effects of the vortices in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals, observed with a Bitter decoration technique. On the cleaved surfaces of the samples, vortices are pinned in the disordered configurations at lower magnetic fields, which change to a hexagonal lattice structure with increasing a magnetic field. Furthermore, a dense concentration of vortices has been observed in the voids and on the lower terrace of the steps. These distributions of the vortices are found to be very stable from the estimation of the pinning energy.
Mars Global Surveyor MOC Images
NASA Technical Reports Server (NTRS)
1999-01-01
Images of several dust devils were captured by the Mars Orbiter Camera (MOC) during its global geodesy campaign. The images shown were taken two days apart, May 13, 1999 and May 15, 1999. Dust devils are columnar vortices of wind that move across the landscape and pick up dust. They look like mini tornadoes.
Topological vortices in gauge models of graphene
NASA Astrophysics Data System (ADS)
Zhang, Xin-Hui; Li, Xueqin; Hao, Jin-Bo
2018-06-01
Graphene-like structure possessing the topological vortices and knots, and the magnetic flux of the vortices configuration quantized, are proposed in this paper. The topological charges of the vortices are characterized by Hopf indices and Brower degrees. The Abelian background field action (BF action) is a topological invariant for the knot family, which is just the total sum of all the self-linking numbers and all the linking numbers. Flux quantization opens the possibility of having Aharonov-Bohm-type effects in graphene without external electromagnetic field.
Ejection mechanisms in the sublayer of a turbulent channel
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Moin, P.; Moser, R.; Keefe, L.
1988-01-01
The structure of the vorticity field in the viscous wall layer of a turbulent channel is studied by examining the results of a fully resolved direct numerical simulation. It is shown that this region is dominated by intense three-dimensional shear layers in which the dominant vorticity component is spanwise. The advection and reproduction processes of these structures are examined and shown to be consistent with the classical generation mechanism for two-dimensional Tollmien-Schlichting waves. This process is fundamentally different from the usually accepted mechanism involving hairpin vortices.
Cheng, Shaobo; Li, Jun; Han, Myung-Geun; ...
2017-04-05
Here, we report structural transformation of sixfold vortex domains into two-, four-, and eightfold vortices via a different type of topological defect in hexagonal manganites. Combining high-resolution electron microscopy and Landau-theory-based numerical simulations, we also investigate the remarkable atomic arrangement and the intertwined relationship between the vortex structures and the topological defects. The roles of their displacement field, formation temperature, and nucleation sites are revealed. All conceivable vortices in the system are topologically classified using homotopy group theory, and their origins are identified.
The turblent mixing layer - Geometry of large vortices
NASA Astrophysics Data System (ADS)
Browand, F. K.; Troutt, T. R.
1985-09-01
Large spanwide vortices in a mixing layer have been studied in numerous investigations. The present study represents an attempt to define the geometry of the large vortices. In the conducted experiments, the flow develops from a laminar boundary layer, or from an intentionally tripped turbulent boundary layer. However, no other forcing is provided. It is pointed out that in both cases the downstream structure becomes indistinguishable. The experimental apparatus and the employed techniques are discussed, taking into account details regarding the wind tunnel, the detection of the structure, and aspects of digitization. Attention is given to the mean growth of the mixing layer, the mean vortex spacing, the spanwise correlation of vortex structure, velocity-field visualizations, the transition criterion, and the permanence of structure.
Martian Polar Vortices: Comparison of Reanalyses
NASA Technical Reports Server (NTRS)
Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.
2016-01-01
The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.
Martian polar vortices: Comparison of reanalyses
NASA Astrophysics Data System (ADS)
Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.
2016-09-01
The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.
NASA Astrophysics Data System (ADS)
King, David, Jr.; Manson, Russell; Trout, Joseph; Decicco, Nicholas; Rios, Manny
2015-04-01
Wake vortices are generated by airplanes in flight. These vortices decay slowly and may persist for several minutes after their creation. These vortices and associated smaller scale turbulent structures present a hazard to incoming flights. It is for this reason that incoming flights are timed to arrive after these vortices have dissipated. Local weather conditions, mainly prevailing winds, can affect the transport and evolution of these vortices; therefore, there is a need to fully understand localized wind patterns at the airport-sized mircoscale. Here we have undertaken a computational investigation into the impacts of localized wind flows and physical structures on the velocity field at Atlantic City International Airport. The simulations are undertaken in OpenFOAM, an open source computational fluid dynamics software package, using an optimized geometric mesh of the airport. Initial conditions for the simulations are based on historical data with the option to run simulations based on projected weather conditions imported from the Weather Research & Forcasting (WRF) Model. Sub-grid scale turbulence is modeled using a Large Eddy Simulation (LES) approach. The initial results gathered from the WRF Model simulations and historical weather data analysis are presented elsewhere.
GCM studies on Jovian polar dynamics
NASA Astrophysics Data System (ADS)
Tabataba-Vakili, F.; Orton, G.; Li, C.; Young, R. M.; Read, P. L.; Ingersoll, A. P.
2017-12-01
The Juno spacecraft has produced unparalleled measurements of the polar regions of Jupiter. Observations from JunoCAM and JIRAM (Jupiter Infrared Auroral Mapper) have revealed a structure of cyclonic vortices near the poles. We report simulations of the observed polar dynamics using a hierarchy of models from shallow-water to general circulation models with increasing detail. An initialized, unforced shallow-water model of the polar region results in merging cyclones, producing a Saturn-like polar vortex. Further investigations with more detailed models aim to recreate the observed polar structures on Jupiter and investigate the difference between vortical structures on Saturn and Jupiter. Identifying this difference may shed light on the formation and maintenance mechanisms of the observed vortices.
Advanced Transportation Systems, Alternate Propulsion Subsystem Concepts
NASA Technical Reports Server (NTRS)
1997-01-01
An understanding of the basic flow of of the subject hybrid model has been gained through this series of testing. Changing injectors (axial vs. radial) and inhibiting the flow between the upstream plenum and the CP section changes the basic flow structure, as evidenced by streamline and velocity contour plots. Numerous shear layer structures were identified in the test configurations; these structures include both standing and traveling vortices which may affect combustion ion stability. Standing vortices may play a role in the heat addition process as the oxidizer enters the motor, while traveling vortices may be instability mechanisms in themselves. Finally, the flow visualization and LVD measurements give insight into determining the effects of flow induced shear layers.
NASA Astrophysics Data System (ADS)
Sokolovskiy, Mikhail A.; Verron, Jacques; Carton, Xavier J.
2018-06-01
Within the framework of the quasi-geostrophic approximation, the interactions of two identical initially circular vortex patches are studied using the contour dynamics/surgery method. The cases of barotropic vortices and of vortices in the upper layer of a two-layer fluid are considered. Diagrams showing the end states of vortex interactions and, in particular, the new regime of vortex triplet formation are constructed for a wide range of external parameters. This paper shows that, in the nonlinear evolution of two such (like-signed) vortices, the filaments and vorticity fragments surrounding the merged vortex often collapse into satellite vortices. Therefore, the conditions for the formation and the quasi-steady motions of a new type of triplet-shaped vortex structure are obtained.
Free-wake computation of helicopter rotor flowfields in forward flight
NASA Technical Reports Server (NTRS)
Ramachandran, K.; Schlechtriem, S.; Caradonna, F. X.; Steinhoff, John
1993-01-01
A new method has been developed for computing advancing rotor flows. This method uses the Vorticity Embedding technique, which has been developed and validated over the last several years for hovering rotor problems. In this work, the unsteady full potential equation is solved on an Eulerian grid with an embedded vortical velocity field. This vortical velocity accounts for the influence of the wake. Dynamic grid changes that are required to accommodate prescribed blade motion and deformation are included using a novel grid blending method. Free wake computations have been performed on a two-bladed AH-1G rotor at low advance ratios including blade motion. Computed results are compared with experimental data. The sudden variations in airloads due to blade-vortex interactions on the advancing and retreating sides are well captured. The sensitivity of the computed solution to various factors like core size, time step and grids has been investigated. Computed wake geometries and their influence on the aerodynamic loads at these advance ratios are also discussed.
NASA Astrophysics Data System (ADS)
Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire
2017-11-01
A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.
Second-order dissipative hydrodynamics for plasma with chiral asymmetry and vorticity
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Rybalka, D. O.; Shovkovy, I. A.
2017-05-01
By making use of the chiral kinetic theory in the relaxation-time approximation, we derive an Israel-Stewart type formulation of the hydrodynamic equations for a chiral relativistic plasma made of neutral particles (e.g., neutrinos). The effects of chiral asymmetry are captured by including an additional continuity equation for the axial charge, as well as the leading-order quantum corrections due to the spin of particles. In a formulation of the chiral kinetic theory used, we introduce a symmetric form of the energy-momentum tensor that is suitable for the description of a weakly nonuniform chiral plasma. By construction, the energy and momentum are conserved to the same leading order in the Planck constant as the kinetic equation itself. By making use of such a chiral kinetic theory and the Chapman-Enskog approach, we obtain a set of second-order dissipative hydrodynamic equations. The effects of the fluid vorticity and velocity fluctuations on the dispersion relations of chiral vortical waves are analyzed.
Hoffmann, Ch; Lücke, M; Pinter, A
2004-05-01
We present numerical simulations of vortices that appear via primary bifurcations out of the unstructured circular Couette flow in the Taylor-Couette system with counter rotating as well as with corotating cylinders. The full, time dependent Navier Stokes equations are solved with a combination of a finite difference and a Galerkin method for a fixed axial periodicity length of the vortex patterns and for a finite system of aspect ratio 12 with rigid nonrotating ends in a setup with radius ratio eta=0.5. Differences in structure, dynamics, symmetry properties, bifurcation, and stability behavior between spiral vortices with azimuthal wave numbers M=+/-1 and M=0 Taylor vortices are elucidated and compared in quantitative detail. Simulations in axially periodic systems and in finite systems with stationary rigid ends are compared with experimental spiral data. In a second part of the paper we determine how the above listed properties of the M=-1, 0, and 1 vortex structures are changed by an externally imposed axial through flow with Reynolds numbers in the range -40< or =Re< or =40. Among other things we investigate when left handed or right handed spirals or toroidally closed vortices are preferred.
A new procedure for dynamic adaption of three-dimensional unstructured grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.
Three-dimensional vortex wake structure of flapping wings in hovering flight.
Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan
2014-02-06
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
NASA Astrophysics Data System (ADS)
Yoshikawa, Joe; Nishio, Yu; Izawa, Seiichiro; Fukunishi, Yu
2018-01-01
Numerical simulations are carried out to discover the flow structure that plays an important role in the laminar-turbulent transition process of a boundary layer on a flat plate. The boundary layer is destabilized by ejecting a short-duration jet from a hole in the surface. When the jet velocity is set to 20% of the uniform-flow velocity, a laminar-turbulent transition takes place, whereas in the 18% case, the disturbances created by the jet decay downstream. It is found that in both cases, hairpin vortices are generated; however, these first-generation hairpins do not directly cause the transition. Only in the 20% case does a new hairpin vortex of a different shape with wider distance between the legs appear. The new hairpin grows with time and evokes the generation of vortical structures one after another around it, turning the flow turbulent. It is found that the difference between the two cases is whether or not one of the first-generation hairpin vortices gets connected with the nearby longitudinal vortices. Only when the connection is successful is the new hairpin vortex with wider distance between the legs created. For each of several cases tested with changing jet-ejecting conditions, no difference is found in the importance of the role of the hairpin structure. Therefore, we conclude that the hairpin vortex with widespread legs is a key structure in the transition to turbulence.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
2011-01-01
As part of an ongoing effort to find ways to make vortex flow fields decompose more quickly, photographs and observations are presented of vortex flow fields that indicate the presence of multiple layers of fluid rotating about a common axis. A survey of the literature indicates that multiple-layered vortices form in waterspouts, tornadoes and lift-generated vortices of aircraft. An explanation for the appearance of multiple-layered structures in vortices is suggested. The observations and data presented are intended to improve the understanding of the formation and persistence of vortex flow fields.
Internal structure of vortices in a dipolar spinor Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne
2017-04-01
We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.
Three-dimensional simulations of void collapse in energetic materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
NASA Astrophysics Data System (ADS)
Jain, Akash; Mehdi, Faraz; Sheng, Jian
2014-11-01
The near-wake field, a short region characterized by the physical specifications of a turbine, is of particular interest for flow-structure interactions responsible for asymmetric loadings, premature structural breakdown, noise generation etc. Helical tip vortices constitute a distinctive feature of this region and are dependent not only on the turbine geometry but also on the incoming flow profile. High-spatial resolution PIV measurements are made in the wake of a horizontal-axis model wind turbine embedded in a neutrally stratified turbulent boundary layer. The data is acquired over consecutive locations up to 10 diameters downstream of the turbine but the focus here is on the tip vortices identified in the instantaneous fields. Contrary to previous studies, both top and bottom tip vortices are clearly distinguishable in either ensemble fields or instantaneous realizations. The streamwise extent of these vortices stretches from the turbine till they merge into the expanding mid-span wake. The similarities and differences in the top and bottom tip vortices are explored through the evolution of their statistics. In particular, the distributions of the loci of vortex cores and their circulations are compared. The information will improve our understanding of near wake vortical dynamics, provide data for model validation, and aid in the devise of flow control strategies.
Organized motions in a jet in crossflow
NASA Astrophysics Data System (ADS)
Rivero, A.; Ferré, J. A.; Giralt, Francesc
2001-10-01
An experimental study to identify the structures present in a jet in crossflow has been carried out at a jet-to-crossflow velocity ratio U/Ucf = 3.8 and Reynolds number Re = UcfD/v = 6600. The hot-wire velocity data measured with a rake of eight X-wires at x/D = 5 and 15 and flow visualizations using planar laser-induced fluorescence (PLIF) confirm that the well-established pair of counter-rotating vortices is a feature of the mean field and that the upright, tornado-like or Fric's vortices that are shed to the leeward side of the jet are connected to the jet flow at the core. The counter-rotating vortex pair is strongly modulated by a coherent velocity field that, in fact, is as important as the mean velocity field. Three different structures folded vortex rings, horseshoe vortices and handle-type structures contribute to this coherent field. The new handle-like structures identified in the current study link the boundary layer vorticity with the counter-rotating vortex pair through the upright tornado-like vortices. They are responsible for the modulation and meandering of the counter-rotating vortex pair observed both in video recordings of visualizations and in the instantaneous velocity field. These results corroborate that the genesis of the dominant counter-rotating vortex pair strongly depends on the high pressure gradients that develop in the region near the jet exit, both inside and outside the nozzle.
Global Λ hyperon polarization in nuclear collisions
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.
2017-08-01
The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the strong force.
Global Λ hyperon polarization in nuclear collisions
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2017-08-02
The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. But, no experimental indications of fluid vorticity in heavy ion collisionsmore » have yet been found. Since vorticity represents a local rotational structure of the fluid, spin–orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark–gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. Furthermore, these data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the strong force.« less
Global Λ hyperon polarization in nuclear collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.
The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. But, no experimental indications of fluid vorticity in heavy ion collisionsmore » have yet been found. Since vorticity represents a local rotational structure of the fluid, spin–orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark–gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. Furthermore, these data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the strong force.« less
Structure of turbulent flow over regular arrays of cubical roughness
NASA Astrophysics Data System (ADS)
Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E.
The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.
Numerical Study of Interaction of a Vortical Density Inhomogeneity with Shock and Expansion Waves
NASA Technical Reports Server (NTRS)
Povitsky, A.; Ofengeim, D.
1998-01-01
We studied the interaction of a vortical density inhomogeneity (VDI) with shock and expansion waves. We call the VDI the region of concentrated vorticity (vortex) with a density different from that of ambiance. Non-parallel directions of the density gradient normal to the VDI surface and the pressure gradient across a shock wave results in an additional vorticity. The roll-up of the initial round VDI towards a non-symmetrical shape is studied numerically. Numerical modeling of this interaction is performed by a 2-D Euler code. The use of an adaptive unstructured numerical grid makes it possible to obtain high accuracy and capture regions of induced vorticity with a moderate overall number of mesh points. For the validation of the code, the computational results are compared with available experimental results and good agreement is obtained. The interaction of the VDI with a propagating shock wave is studied for a range of initial and induced circulations and obtained flow patterns are presented. The splitting of the VDI develops into the formation of a non-symmetrical vortex pair and not in a set of vortices. A method for the analytical computation of an overall induced circulation Gamma(sub 1) as a result of the interaction of a moving VDI with a number of waves is proposed. Simplified, approximated, expressions for Gamma(sub 1) are derived and their accuracy is discussed. The splitting of the VDI passing through the Prandtl-Meyer expansion wave is studied numerically. The obtained VDI patterns are compared to those for the interaction of the VDI with a propagating shock wave for the same values of initial and induced circulations. These patterns have similar shapes for corresponding time moments.
Analysis of Dust Devils on Mars using CFD
NASA Astrophysics Data System (ADS)
Lange, C. F.; Chen, K.; Davis, J. A.; Gheynani, B. T.
2009-05-01
Recent Mars missions have reported evidence of the existence of dust devils. A detailed study of vortex dynamics will provide a better understanding of this swirling flow of the Martian atmosphere. Further, it is believed that there is a relationship between dust devils and water transport. Recently, the Phoenix Mars mission, designed to investigate ice water and natural events on Mars, has successfully finished. The Phoenix Surface Stereo Imager (SSI) camera captured images of the passage of dust devils over or close to the lander. Additionally, dustless devils, which have similar vortex characteristics but insufficient strength to raise dust from the surface, have been detected in the lander's pressure measurements. It was found that dust devils occur mainly in the early afternoon. Because of this, numerical models of a vortex generator are used to study the physics of this complex swirling flow and the effect of dust devils on the transport of water vapour from the regolith. Characteristic parameters such as core radius and swirl ratio are being explored for scaling factors. Scaling factors will be studied and tested, comparing the small and large scales of numerically generated vortices and laboratory generated vortices. Small scale of numerical models of atmospheric vortices are studied using a commercial software package, ANSYS/CFX11.0 with finite volume method (FVM). Large eddy simulations (LES) of planetary boundary layers are based on NCAR LES code to simulate convective vertical vortices that naturally form in quiescent convective boundary layers (CBL) over homogeneous flat surfaces. This will help to find the approximate location and physical characteristics of the vortices on the surface. The numerical models of atmospheric vortices and the experimental vortex generator validations will help to define the water vapour cycle on Mars.
NASA Astrophysics Data System (ADS)
Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit
2018-01-01
Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.
Dynamics of circular arrangements of vorticity in two dimensions
NASA Astrophysics Data System (ADS)
Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama
2016-07-01
The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.
Vorticity dynamics in an intracranial aneurysm
NASA Astrophysics Data System (ADS)
Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis
2008-11-01
Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.
Hybrid Manipulation of Streamwise Vorticity in a Diffuser Boundary Layer
NASA Astrophysics Data System (ADS)
Gissen, Abraham; Vukasinovic, Bojan; Culp, John; Glezer, Ari
2010-11-01
The formation of streamwise vorticity concentrations by exploiting the interaction of surface-mounted passive (micro-vanes) and active (synthetic jets) flow control elements with the cross flow is investigated experimentally in a small-scale serpentine duct at high subsonic speeds (up to M = 0.6). Streamwise vortices can be a key element in the mitigation of the adverse effects on pressure recovery and distortion caused by the naturally occurring secondary flows in embedded propulsion systems with complex inlet geometries. Counter rotating and single-sense vortices are formed using conventional passive micro-vanes and active high-power synthetic jet actuators. Interaction of the flow control elements is examined through a hybrid actuation scheme whereby synthetic jet actuation augments the primary vanes' vortices resulting in dynamic enhancement of their strength. It is shown that such sub-boundary layer individual vortices can merge and evolve into duct-scale vortical structures that counteract the inherent secondary flow and mitigates global flow distortion.
Experimental study of shock-accelerated inclined heavy gas cylinder
Olmstead, Dell; Wayne, Patrick; Yoo, Jae-Hwun; ...
2017-05-23
An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are thus parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by differentmore » rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. We present highly repeatable experimental data for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0, 20, and 30 degrees for about 50 nominal cylinder diameters (30 cm) of downstream travel.« less
NASA Astrophysics Data System (ADS)
Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth
2017-11-01
We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.
Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity
NASA Astrophysics Data System (ADS)
Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.
2011-07-01
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.
Flow and coherent structures around circular cylinders in shallow water
NASA Astrophysics Data System (ADS)
Zeng, Jie; Constantinescu, George
2017-06-01
Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid situated at the wake edges (e.g., by transporting the near-bed, lower-velocity fluid toward the free surface and vice versa). The largest amplification of the bed shear stress in the near-wake region is observed beneath these horizontal vortices, which means that they would play an important role in promoting bed erosion behind the cylinder in the case of a loose bed. Simulation results suggest that these co-rotating vortices form as a result of the interactions between the legs of the main necklace vortices and the vortical eddies contained into the newly forming roller at the back of the cylinder. The paper also analyzes how D/H affects the separation angle on the cylinder, the size of the recirculation bubble, the bed friction velocity distributions, and turbulence statistics.
NASA Astrophysics Data System (ADS)
Nezlin, Michael V.; Sutyrin, Georgi G.
1994-01-01
Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude. We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary “waves”, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among the long-lived vortices in the atmospheres of the giant planets and also among the intrathermocline oceanic eddies. The effects of shear flows and differences between the properties of monopolar vortices in planetary flows and various laboratory experiments are discussed. General geostrophic (GG) theory of Rossby vortices is presented. It differs essentially from the traditional quasi-geostrophic (QG) and intermediate-geostrophic (IG) approximations by the account of (i) all scales between the deformation radius and the planetary scale and (ii) the arbitrary amplitudes of vortices. It is shown that, unlike QG- and IG-models, the GG-model allows for explaining the mentioned cyclonic-anticyclonic asymmetry not only in planetary flows, but also in laboratory modeling with vessels of near paraboloidal form.
Numerical model-based diagnostic study of the rapid development phase of the Presidents' Day cyclone
NASA Technical Reports Server (NTRS)
Whitaker, Jeffrey S.; Uccellini, Louis W.; Brill, Keith F.
1988-01-01
A mesoscale model simulation of the Presidents' Day cyclone at 1200 GMT 18 February 1979 is presented which captures the upper-tropospheric intrusion of stratospheric air upstream of the East Coast and subsequent development of the surface cyclone. The model simulation is then used to examine the descent of the stratospheric air mass and the interaction of this air mass with a lower-tropospheric potential vorticity maximum associated with an inverted trough and coastal front along the East Coast. The model is also used to examine the processes that contribute to the rapid decrease of sea-level pressure and increase in lower-tropospheric cyclonic vorticity during the explosive development phase of the cyclone.
NASA Astrophysics Data System (ADS)
Momtaz, Ali Ajilian; Abdollahian, Mohamadreza Akhavan; Farshidianfar, Anooshiravan
2017-12-01
In recent years, construction of tall buildings has been of great interest. Use of lightweight materials in such structures reduces stiffness and damping, making the building more influenced by wind loads. Moreover, tall buildings of more than 30 to 40 stories, depending on the geographical location, the wind effects are more influential than earthquakes. In addition, the complexity of the effects of wind flow on the structure due to the interaction of the fluid flow and solid body results in serious damages to the structure by eliminating them. Considering the importance of the issue, the present study investigates the phenomenon of wind-induced vibration on high-rise buildings, taking into account the effects of vortices created by the fluid flow and the control of this phenomenon. To this end, the governing equations of the structure, the fluid flow and the tuned mass damper (TMD) are first introduced, and their coefficient values are extracted according to the characteristics of ACT skyscraper in Japan. Then, these three coupled equations are solved using a program coded in MATLAB. After validation of the results, the effects of wind loads are analyzed and considered with regard to the effects of vortices and the use of TMD, and are compared with the results of the state where no vortices are considered. Generally, the results of this study point out the significance of vibrations caused by vortices in construction of engineering structures as well as the appropriate performance of a TMD in reducing oscillations in tall buildings.
What causes Mars' annular polar vortices?
NASA Astrophysics Data System (ADS)
Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.
2017-01-01
A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.
A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows
NASA Technical Reports Server (NTRS)
Felici, Helene Marie
1992-01-01
A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Ruostekoski, Janne
2016-05-01
We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.
VORTICAL MOTIONS OF BARYONIC GAS IN THE COSMIC WEB: GROWTH HISTORY AND SCALING RELATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Weishan; Feng, Long-long
The vortical motions of the baryonic gas residing in large-scale structures are investigated by cosmological hydrodynamic simulations. Proceeding in the formation of the cosmic web, the vortical motions of baryonic matter are pumped up by baroclinity in two stages, i.e., the formation of sheets and filaments. The mean curl velocities are about <1, 1–10, 10–150, and 5–50 km s{sup −1} in voids, sheets, filaments, and knots at z = 0, respectively. The scaling of the vortical velocity of gas can be well described by the She–Leveque hierarchical turbulence model in the range of l < 0.65(1.50) h{sup −1} Mpc inmore » a simulation with a box of size 25(100) h{sup −1} Mpc. The fractal Hausdorff dimension of vortical motions, d, revealed by velocity structure functions, is ∼2.1–2.3(∼1.8–2.1). It is slightly larger than the fractal dimension of mass distribution in filaments, D{sup f} ∼ 1.9–2.2, and smaller than the fractal dimension of sheets, D{sup s} ∼ 2.4–2.7. The vortical kinetic energy of baryonic gas is mainly transported by filaments. Both scalings of mass distribution and vortical velocity increments show distinctive transitions at the turning scale of ∼0.65(1.50) h{sup −1} Mpc, which may be closely related to the characteristic radius of density filaments.« less
1988-10-01
Generalized Kirchhoff Vortices 176 B. The 2-Level Rankine Vortex: Critical Points & Stability 181 C. Tripolar Coherent Euler Vortices 186 7...spontaneously in spectral simulations. One such example is provided by the tripolar vortex structureE which will be examined in detail in Chapter 6. It...of the tripolar coherent vortex structures that have recently been observed in very high resolution numerical simulations of two- dimensional
Forced free-shear layer measurements
NASA Technical Reports Server (NTRS)
Leboeuf, Richard L.
1994-01-01
Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.
A link between nonlinear self-organization and dissipation in drift-wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, P.; Birkenmeier, G.; Stroth, U.
Structure formation and self-organization in two-dimensional drift-wave turbulence show up in many different faces. Fluctuation data from a magnetized plasma are analyzed and three mechanisms transferring kinetic energy to large-scale structures are identified. Beside the common vortex merger, clustering of vortices constituting a large-scale strain field and vortex thinning, where due to the interactions of vortices of different scales larger vortices are amplified by the smaller ones, are observed. The vortex thinning mechanism appears to be the most efficient one to generate large scale structures in drift-wave turbulence. Vortex merging as well as vortex clustering are accompanied by strong energymore » transfer to small-scale noncoherent fluctuations (dissipation) balancing the negative entropy generation due to the self-organization process.« less
Axis switching and spreading of an asymmetric jet: Role of vorticity dynamics
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1994-01-01
The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450,000 and a Mach number of 0.31. The vortex generators are in the form of 'delta tabs', triangular shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers and referred to here as the omega(sub theta)-induced dynamics, is due to difference in induced velocities for different segments of a rolled up azimuthal vortical structure. The other, omega(sub x)-induced dynamics, is due to the induced velocities of streamwise vortex pairs in the flow. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the omega(sub theta)-induced dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the omega(sub x)-induced dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase averaged flow field data for a periodically forced case, over a volume of the flow field, are presented and discussed in an effort to gain insight into the dynamics of these vortical structures.
Helicity statistics in homogeneous and isotropic turbulence and turbulence models
NASA Astrophysics Data System (ADS)
Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca
2017-02-01
We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.
Analysis of coherent dynamical processes through computer vision
NASA Astrophysics Data System (ADS)
Hack, M. J. Philipp
2016-11-01
Visualizations of turbulent boundary layers show an abundance of characteristic arc-shaped structures whose apparent similarity suggests a common origin in a coherent dynamical process. While the structures have been likened to the hairpin vortices observed in the late stages of transitional flow, a consistent description of the underlying mechanism has remained elusive. Detailed studies are complicated by the chaotic nature of turbulence which modulates each manifestation of the process and which renders the isolation of individual structures a challenging task. The present study applies methods from the field of computer vision to capture the time evolution of turbulent flow features and explore the associated physical mechanisms. The algorithm uses morphological operations to condense the structure of the turbulent flow field into a graph described by nodes and links. The low-dimensional geometric information is stored in a database and allows the identification and analysis of equivalent dynamical processes across multiple scales. The framework is not limited to turbulent boundary layers and can also be applied to different types of flows as well as problems from other fields of science.
Phillips, Carolyn L.; Peterka, Tom; Karpeyev, Dmitry; ...
2015-02-20
In type II superconductors, the dynamics of superconducting vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter. Extracting their precise positions and motion from discretized numerical simulation data is an important, but challenging, task. In the past, vortices have mostly been detected by analyzing the magnitude of the complex scalar field representing the order parameter and visualized by corresponding contour plots and isosurfaces. However, these methods, primarily used for small-scale simulations, blur the fine details of the vortices, scale poorly to large-scale simulations, and do not easily enable isolating andmore » tracking individual vortices. In this paper, we present a method for exactly finding the vortex core lines from a complex order parameter field. With this method, vortices can be easily described at a resolution even finer than the mesh itself. The precise determination of the vortex cores allows the interplay of the vortices inside a model superconductor to be visualized in higher resolution than has previously been possible. Finally, by representing the field as the set of vortices, this method also massively reduces the data footprint of the simulations and provides the data structures for further analysis and feature tracking.« less
Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks
NASA Astrophysics Data System (ADS)
Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.
2018-01-01
This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.
How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, P. H.
2016-11-01
This Rapid Communication sets forth the mechanism by which mesoscale staircase structures condense to form macroscopic states of enhanced confinement. Density, vorticity, and turbulent potential enstrophy are the variables for this model. Formation of the staircase structures is due to inhomogeneous mixing of (generalized) potential vorticity (PV). Such mixing results in the local sharpening of density and vorticity gradients. When PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps" and "steps," which are, respectively, regions of local gradient steepening and flattening. The jumps then merge and migrate in radius, leading to the emergence of a new macroscale profile structure, so indicating that profile self-organization is a global process, which may be described by a local, but nonlinear model. This work predicts and demonstrates how mesoscale condensation of staircases leads to global states of enhanced confinement.
NASA Astrophysics Data System (ADS)
Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin
2007-03-01
We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.
Vortical structures for nanomagnetic memory induced by dipole-dipole interaction in monolayer disks
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ciftja, Orion; Zhang, Xichao; Zhou, Yan; Ian, Hou
2018-05-01
It is well known that magnetic domains in nanodisks can be used as storage units for computer memory. Using two quantum simulation approaches, we show here that spin vortices on magnetic monolayer nanodisks, which are chirality-free, can be induced by dipole-dipole interaction (DDI) on the disk-plane. When DDI is sufficiently strong, vortical and anti-vortical multi-domain textures can be generated simultaneously. Especially, a spin vortex can be easily created and deleted through either external magnetic or electrical signals, making them ideal to be used in nanomagnetic memory and logical devices. We demonstrate these properties in our simulations.
Study of compressible turbulent flows in supersonic environment by large-eddy simulation
NASA Astrophysics Data System (ADS)
Genin, Franklin
The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
Influence of backflow on skin friction in turbulent pipe flow
NASA Astrophysics Data System (ADS)
Jalalabadi, Razieh; Sung, Hyung Jin
2018-06-01
A direct numerical simulation of a turbulent pipe flow (Reτ = 544) is used to investigate the influence of the backflow on the vortical structures that contribute to the local skin friction. The backflow is a rare event with a probability density function (PDF) of less than 10-3. The backflow is found to extend up to y+ ≈ 4 and is induced by the presence of a vortex in the buffer layer. The flow statistics are conditionally sampled under the condition of a negative streamwise velocity (u < 0) at y+ = 3. The conditionally averaged u <0 reaches its maximum at y+ ≈ 27. The intensified conditionally averaged velocity fluctuations contribute to vertical and spanwise momentum transport around the backflow. The ensemble averaged + and + reveal layered structures in the Q2 and Q4 events. A strong Q4 event appears above the backflow, flanked by two regions of Q2. The strong downwash of the flow along with the spanwise vortex induces the backflow. The upwash at upstream and downstream of the backflow enhances the movement of the low-speed flow in the streamwise and spanwise directions. The velocity-vorticity correlation reveals that the main contributions to Cf are the vorticity advection and vorticity stretching. The main contribution to the conditionally averaged Cf is the wall-normal gradient of the mean spanwise vorticity at the wall. The spanwise vorticity is positive above the backflow flanked by two regions of negative spanwise vorticity. The conditional PDF of the backflow under negative ul+ at y+ = 100 is more frequent than that under positive ul+.
How well do Reanalysis represent polar lows?
NASA Astrophysics Data System (ADS)
Zappa, G.; Shaffrey, L.; Hodges, K.
2013-12-01
Polar lows are intense maritime mesocyclones forming at high latitudes during polar air outbreaks. The associated high surface winds can be an important cause of coastal damage.They also seem to play a relevant role in the climate system by modulating the oceanic surface heat fluxes. This creates strong interest in understanding whether modern reanalysis datasets are able to represent polar lows, as well as how their representation may be sensitive to the model resolution. In this talk we investigate how ERA-Interim reanalysis represents the polar lows identified by the Norwegian meteorological services and listed in the STARS (Combination of Sea Surface Temperature and AltimeteR Synergy) dataset for the period 2002-2011. The sensitivity to resolution is explored by comparing ERA-Interim to the ECMWF operational analyses (2008-2011), which have three times higher horizontal resolution compared to ERA-Interim. We show that ERAI-Interim has excellent ability to capture the observed polar lows events with up to 90% of the observed events being found in the reanalysis. However, ERA-Interim tends to have polar lows of weaker dynamical intensity, in terms of both winds and vorticity, and with less spatial structure than in the ECMWF operational analyses (See Fig 1). Furthermore, we apply an objective feature tracking algorithm to the 3 hourly vorticity at 850 hPa with constraints on vorticity intensity and atmospheric static stability to objectively identify polar lows in the ERA-Interim reanalysis. We show that for the stronger polar lows the objective climatology shows good agreement with the STARS dataset over the 2002-2011 period. This allows us to extend the polar lows climatology over the whole ERA Interim period. Differences with another reanalysis product (NCEP-CFSR) will be also discussed. Fig 1: Composite of the tangential wind speed at 925 hPa for 34 polar lows observed in the Norwegian sea between 2008-2010 as represented by the ERA-Interim reanalysis (left) and by the ECMWF Operational analysis (right). Positive values indicate cyclonic circulation. The composite is centered on the polar low vorticity maxima and it is presented for a radial cap of 5 degrees of radius on the sphere (~550Km).
Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.
NASA Astrophysics Data System (ADS)
Ranjan, R.; Menon, S.
2018-04-01
The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.
Interaction of vortex rings with multiple permeable screens
NASA Astrophysics Data System (ADS)
Musta, Mustafa N.; Krueger, Paul S.
2014-11-01
Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical structures inside the screen array using digital particle image velocimetry in a refractive index matched environment. The permeable screens had porosities (open area ratios) of 83.8%, 69.0%, and 55.7% and were held by a transparent frame that allowed the screen spacing to be changed. Vortex rings were generated using a piston-cylinder mechanism at nominal jet Reynolds numbers of 1000, 2000, and 3000 with piston stroke length-to-diameter ratios of 2 and 3. The interaction of vortex rings with the porous medium showed a strong dependence of the overall flow evolution on the screen porosity, with a central flow being preserved and vortex ring-like structures (with smaller diameter than the primary vortex ring) being generated near the centerline. Due to the large rod size used in the screens, immediate reformation of the transmitted vortex ring with size comparable to the primary ring (as has been observed with thin screens) was not observed in most cases. Since the screens have lower complexity and high open area ratios, centerline vortex ring-like flow structures formed with comparable size to the screen pore size and penetrated through the screens. In the case of low porosity screens (55.7%) with large screen spacing, re-emergence of large scale (large separation), weak vortical structures/pairs (analogous to a transmitted vortex ring) was observed downstream of the first screen. Additional smaller scale vortical structures were generated by the interaction of the vortex ring with subsequent screens. The size distribution of the generated vortical structures were shown to be strongly affected by porosity, with smaller vortical structures playing a stronger role as porosity decreased. Finally, porosity significantly affected the decay of total energy, but the effect of screen spacing decreased as porosity decreased.
Creation and Manipulation of Stable Dark Solitons and Vortices in Microcavity Polariton Condensates.
Ma, Xuekai; Egorov, Oleg A; Schumacher, Stefan
2017-04-14
Solitons and vortices obtain widespread attention in different physical systems as they offer potential use in information storage, processing, and communication. In exciton-polariton condensates in semiconductor microcavities, solitons and vortices can be created optically. However, dark solitons are unstable and vortices cannot be spatially controlled. In the present work we demonstrate the existence of stable dark solitons and vortices under nonresonant incoherent excitation of a polariton condensate with a simple spatially periodic pump. In one dimension, we show that an additional coherent light pulse can be used to create or destroy a dark soliton in a controlled manner. In two dimensions we demonstrate that a coherent light beam can be used to move a vortex to a specific position on the lattice or be set into motion by simply switching the periodic pump structure from two-dimensional (lattice) to one-dimensional (stripes). Our theoretical results open up exciting possibilities for optical on-demand generation and control of dark solitons and vortices in polariton condensates.
Structure measurements in a synthetic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Arakeri, Jaywant H.
1987-09-01
Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer flow. A stretching mechanism is important in matching spanwise vorticity close to the wall to variations in turbulent shearing stress. Regions where the stretching term is large coincide with regions of large wall shearing stress and large turbulence production.
Rotational flow in tapered slab rocket motors
NASA Astrophysics Data System (ADS)
Saad, Tony; Sams, Oliver C.; Majdalani, Joseph
2006-10-01
Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.
Experimental investigation of large-scale vortices in a freely spreading gravity current
NASA Astrophysics Data System (ADS)
Yuan, Yeping; Horner-Devine, Alexander R.
2017-10-01
A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.
Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel
NASA Astrophysics Data System (ADS)
Dai, Yijun; Huang, Weixi; Xu, Chunxiao
2016-11-01
Fully developed turbulent channel flow with spanwise rotation has been studied by direct numerical simulation at Rem = 2800, 7000 and 20000 with rotation number 0 <= Rom <= 0.5. The width of the computational box is adjusted for each case to contain two pairs of Taylor-Görtler (TG) vortices. Under a low rotation rate, the turbulent vortical structures are strongly affected by the TG vortices. A conditional average method is employed to investigate the effects. In the upwash region where the fluid is pumped away from the pressure wall by the TG vortices, turbulence is enhanced, while the reverse is the case in the downwash region. Through budget analysis of the transport equation of vorticity fluctuation, it is revealed that the stretching along the wall-normal direction caused by the TG vortices plays an important role in initiating the difference of turbulence intensity between the two regions, which is further augmented by the Coriolis force in the streamwise direction. The effects of TG vortices is weakened at higher Reynolds number. Meanwhile, the shear stress on the suction wall is observed to fluctuate in a quasi-periodic manner at Rem = 7000 and Rom = 0.3, which is induced by the TG vortices. The work is supported by National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).
Computational Simulations of Convergent Nozzles for the AIAA 1st Propulsion Aerodynamics Workshop
NASA Technical Reports Server (NTRS)
Dippold, Vance F., III
2014-01-01
Computational Fluid Dynamics (CFD) simulations were completed for a series of convergent nozzles in participation of the American Institute of Aeronautics and Astronautics (AIAA) 1st Propulsion Aerodynamics Workshop. The simulations were performed using the Wind-US flow solver. Discharge and thrust coefficients were computed for four axisymmetric nozzles with nozzle pressure ratios (NPR) ranging from 1.4 to 7.0. The computed discharge coefficients showed excellent agreement with available experimental data; the computed thrust coefficients captured trends observed in the experimental data, but over-predicted the thrust coefficient by 0.25 to 1.0 percent. Sonic lines were computed for cases with NPR >= 2.0 and agreed well with experimental data for NPR >= 2.5. Simulations were also performed for a 25 deg. conic nozzle bifurcated by a flat plate at NPR = 4.0. The jet plume shock structure was compared with and without the splitter plate to the experimental data. The Wind-US simulations predicted the shock structure well, though lack of grid resolution in the plume reduced the sharpness of the shock waves. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations and Detached Eddy Simulations (DES) were performed at NPR = 1.6 for the 25 deg conic nozzle with splitter plate. The simulations predicted vortex shedding from the trailing edge of the splitter plate. However, the vortices of URANS and DES solutions appeared to dissipate earlier than observed experimentally. It is believed that a lack of grid resolution in the region of the vortex shedding may have caused the vortices to break down too soon
Twist of generalized skyrmions and spin vortices in a polariton superfluid
Donati, Stefano; Dominici, Lorenzo; Dagvadorj, Galbadrakh; Ballarini, Dario; De Giorgi, Milena; Bramati, Alberto; Gigli, Giuseppe; Rubo, Yuri G.; Szymańska, Marzena Hanna; Sanvitto, Daniele
2016-01-01
We study the spin vortices and skyrmions coherently imprinted into an exciton–polariton condensate on a planar semiconductor microcavity. We demonstrate that the presence of a polarization anisotropy can induce a complex dynamics of these structured topologies, leading to the twist of their circuitation on the Poincaré sphere of polarizations. The theoretical description of the results carries the concept of generalized quantum vortices in two-component superfluids, which are conformal with polarization loops around an arbitrary axis in the pseudospin space. PMID:27965393
Twist of generalized skyrmions and spin vortices in a polariton superfluid.
Donati, Stefano; Dominici, Lorenzo; Dagvadorj, Galbadrakh; Ballarini, Dario; De Giorgi, Milena; Bramati, Alberto; Gigli, Giuseppe; Rubo, Yuri G; Szymańska, Marzena Hanna; Sanvitto, Daniele
2016-12-27
We study the spin vortices and skyrmions coherently imprinted into an exciton-polariton condensate on a planar semiconductor microcavity. We demonstrate that the presence of a polarization anisotropy can induce a complex dynamics of these structured topologies, leading to the twist of their circuitation on the Poincaré sphere of polarizations. The theoretical description of the results carries the concept of generalized quantum vortices in two-component superfluids, which are conformal with polarization loops around an arbitrary axis in the pseudospin space.
NASA Astrophysics Data System (ADS)
Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang
2015-02-01
The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.
Point vortex interactions on a toroidal surface.
Sakajo, Takashi; Shimizu, Yuuki
2016-07-01
Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N -point vortices from Green's function associated with the Laplace-Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance.
Point vortex interactions on a toroidal surface
Shimizu, Yuuki
2016-01-01
Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N-point vortices from Green's function associated with the Laplace–Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance. PMID:27493577
Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.
Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore
2018-05-01
We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.
Vorticity Transfer in Shock Wave Interactions with Turbulence and Vortices
NASA Astrophysics Data System (ADS)
Agui, J. H.; Andreopoulos, J.
1998-11-01
Time-dependent, three-dimensional vorticity measurements of shock waves interacting with grid generated turbulence and concentrated tip vortices were conducted in a large diameter shock tube facility. Two different mesh size grids and a NACA-0012 semi-span wing acting as a tip vortex generator were used to carry out different relative Mach number interactions. The turbulence interactions produced a clear amplification of the lateral and spanwise vorticity rms, while the longitudinal component remained mostly unaffected. By comparison, the tip vortex/shock wave interactions produced a two fold increase in the rms of longitudinal vorticity. Considerable attention was given to the vorticity source terms. The mean and rms of the vorticity stretching terms dominated by 5 to 7 orders of magnitude over the dilitational compression terms in all the interactions. All three signals of the stretching terms manifested very intermittent, large amplitude peak events which indicated the bursting character of the stretching process. Distributions of these signals were characterized by extremely large levels of flatness with varying degrees of skewness. These distribution patterns were found to change only slightly through the turbulence interactions. However, the tip vortex/shock wave interactions brought about significant changes in these distributions which were associated with the abrupt structural changes of the vortex after the interaction.
Fine-scale features in the far-field of a turbulent jet
NASA Astrophysics Data System (ADS)
Buxton, Oliver; Ganapathisubramani, Bharathram
2008-11-01
The structure of a fully turbulent axisymmetric jet, at Reynolds number based on jet exit conditions of 5000, is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis. Taylor's hypothesis is employed to calculate all three velocity gradients in the axial direction. The technique's resolution allows all terms of the velocity gradient tensor, hence strain rate tensor and kinetic energy dissipation, to be computed at each point within the plane. The data reveals that the vorticity field is dominated by high enstrophy tube-like structures. Conversely, the dissipation field appears to consist of sheet-like structures. Several criteria for isolating these strongly swirling vortical structures from the background turbulence were employed. One such technique involves isolating points in which the velocity gradient tensor has a real and a pair of complex conjugate eigenvectors. Once identified, the alignment of the various structures with relation to the vorticity vector and the real velocity gradient tensor eigenvector is investigated. The effect of the strain field on the geometry of the structures is also examined.
The control effect in a detached laminar boundary layer of an array of normal synthetic jets
NASA Astrophysics Data System (ADS)
Valenzuela Calva, Fernando; Avila Rodriguez, Ruben
2016-11-01
In this work, 3D numerical simulations of an array of three normal circular synthetic jets embedded in an attached laminar boundary layer that separates under the influence of an inclined flap are performed for flow separation control. At the beginning of the present study, three cases are used to validate the numerical simulation with data obtained from experiments. The experimental data is chosen based on the cases which presented higher repeatability and reliability. Simulations showed reasonable agreement when compared with experiments. The simulations are undertaken at three synthetic jet operating conditions, i.e. Case A: L = 2, VR = 0.32; Case B: L = 4, VR = 0.64 and Case C: L = 6, VR = 0.96. The vortical structures produced for each synthetic jet operating condition are hairpin vortices for Case A and tilted vortices for Case B and C, respectively. By examining the spatial wall shear stress variations, the effect on the boundary layer prior to separation of the middle synthetic jet is evaluated. For effective flow control, produced at a relatively low the finding from this study suggests that hairpin vortical structures are more desirable structures. Universidad Nacional Autonoma de Mexico.
Electroosmotic flow in a microcavity with nonuniform surface charges.
Halpern, David; Wei, Hsien-Hung
2007-08-28
In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.
Influences of the Darrieus-Landau instability on premixed turbulent flames
NASA Astrophysics Data System (ADS)
Patyal, Advitya; Matalon, Moshe
2017-11-01
The propagation of turbulent flames in three-dimensional turbulent flows is studied within the context of the hydrodynamic theory. The flame is treated as a surface of density discontinuity with the flow modified by gas expansion resulting from heat released during combustion. The flame is tracked using a level-set method with a propagation speed that depends on the local flame stretch, modulated by a Markstein length. Impact of the Darrieus-Landau instability on the topology of the flame surface is studied. It is shown that similar to passive interfaces, flames under the influence of the hydrodynamic instability resort to cylindrical structures with increasing turbulence intensity, even in 3D. The mechanism of modification of vortical structures in the burned gas is identified in terms of the alignments between the vorticity vector, flame surface normal and eigenvectors of the strain rate tensor. The results indicate that the strain rate tensor is intricately coupled with the normal to the flame surface and creates anisotropy in the orientation of vortical structures, which begins to weaken as the turbulent intensity increases. Furthermore, vorticity budgets are used to highlight the relative importance of baroclinic torque due to Darrieus-Landau instability.
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung; ...
2017-02-10
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
Quantized vortices in arbitrary dimensions and the normal-to-superfluid phase transition
NASA Astrophysics Data System (ADS)
Bora, Florin
The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of co-dimension two, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between vortical superflow and Ampere-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension four and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors. Extending these results to systems containing multiple vortices is elementary due to the linearity of the theory. The energy for multiple vortices is thus a sum of self-energies and power-law interaction terms. The statistical mechanics of a system containing vortices is addressed via the grand canonical partition function. A renormalization-group analysis in which the low energy excitations are integrated approximately, is used to compute certain critical coefficients. The exponents obtained via this approximate procedure are compared with values obtained previously by other means. For dimensions higher than three the superfluid density is found to vanish as the critical temperature is approached from below.
On the physical basis of succussion.
Torres, J L
2002-10-01
It is argued that succussion drives the homeopathic tincture undergoing potentisation to a turbulent regime, where vortices continually form and disappear, ranging in size from the linear extent of the container to a minimum scale determined by viscosity and the rate of energy dissipation. Input mechanical energy cascades down this population of eddies and becomes available at the microscopic level to perform work (chemical, electrical, etc). A structure generated in the tincture would be rupted by vortices smaller than it, and this sets definite limits on the strength of succussion, so the power input leads to larger vortices than the structures one is trying to create and preserve through potentisation. An experimental procedure to test this proposal is suggested, based on Rayleigh scattering.
Criterion for Identifying Vortices in High-Pressure Flows
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2007-01-01
A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.
Structure scalars and super-Poynting vector of tilted Szekeres geometry
NASA Astrophysics Data System (ADS)
Sharif, M.; Zaeem Ul Haq Bhatti, M.
2015-12-01
In this paper, we study a version of Szekeres spacetime which is radially moving with respect to the congruence of observers and is endowed with vorticity as pointed out by Herrera et al. [L. Herrera, A. Di Prisco and J. Ibáñez, Phys. Rev. D 86 (2012) 044003]. The dynamical variables as well as structure scalars associated with tilted and nontilted frames are explored. Moreover, an explicit expression for the super-Poynting vector has been investigated in this scenario. We confirm the fact that the vorticity in the tilted Szekeres spacetime is not linked with the circular flow of superenergy on the planes perpendicular to the vorticity vector indicating its kinematical nature [L. Herrera, A. Di Prisco and J. Ibáñez, Phys. Rev. D 87 (2011) 087503]. Finally, we explore the effect of cosmological constant on the structure scalars for nontilted geometry.
Vortical structures of supersonic flow over a delta-wing on a flat plate
NASA Astrophysics Data System (ADS)
Wang, D. P.; Xia, Z. X.; Zhao, Y. X.; Wang, Q. H.; Liu, B.
2013-02-01
Employing the nanoparticle-based planar laser scattering (NPLS), supersonic flow over a delta-winged vortex generator on a flat plate was experimentally investigated in a supersonic quiet wind tunnel at Ma = 2.68. The fine structures of the flow field, shock waves, separation vortices, wake, and boundary layer transition were observed in the NPLS images. According to the time-correlation of the NPLS images and the measurement results of particle image velocimetry, the structural model of the flow field was improved further, and coherent wake structures were observed, which is of significance theoretically and in engineering application.
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
Comparing the dynamics of skyrmions and superconducting vortices
NASA Astrophysics Data System (ADS)
Olson Reichhardt, C. J.; Lin, S. Z.; Ray, D.; Reichhardt, C.
2014-08-01
Vortices in type-II superconductors have attracted enormous attention as ideal systems in which to study nonequilibrium collective phenomena, since the self-ordering of the vortices competes with quenched disorder and thermal effects. Dynamic effects found in vortex systems include depinning, nonequilibrium phase transitions, creep, structural order-disorder transitions, and melting. Understanding vortex dynamics is also important for applications of superconductors which require the vortices either to remain pinned or to move in a controlled fashion. Recently, topological defects called skyrmions have been realized experimentally in chiral magnets. Here we highlight similarities and differences between skyrmion dynamics and vortex dynamics. Many of the previous ideas and experimental setups that have been applied to superconducting vortices can also be used to study skyrmions. We also discuss some of the differences between the two systems, such as the potentially large contribution of the Magnus force in the skyrmion system that can dramatically alter the dynamics and transport properties.
On the application of a hairpin vortex model of wall turbulence to trailing edge noise prediction
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.
1985-01-01
The goal is to develop a technique via a hairpin vortex model of the turbulent boundary layer, which would lead to the estimation of the aerodynamic input for use in trailing edge noise prediction theories. The work described represents an initial step in reaching this goal. The hairpin vortex is considered as the underlying structure of the wall turbulence and the turbulent boundary layer is viewed as an ensemble of typical hairpin vortices of different sizes. A synthesis technique is examined which links the mean flow and various turbulence quantities via these typical vortices. The distribution of turbulence quantities among vortices of different scales follows directly from the probability distribution needed to give the measured mean flow vorticity. The main features of individual representative hairpin vortices are discussed in detail and a preliminary assessment of the synthesis approach is made.
Dynamics and Instabilities of Vortex Pairs
NASA Astrophysics Data System (ADS)
Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.
2016-01-01
This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.
Cosmic Vorticity and the Origin Halo Spins
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Steinmetz, Matthias; Gottlöber, Stefan; Knebe, Alexander; Hess, Steffen
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e 1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e 1, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.
Hairpin vortices in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Eitel-Amor, G.; Örlü, R.; Schlatter, P.; Flores, O.
2015-02-01
The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Reτ ≲ 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of νt) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Reθ > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical simulation studies is reminiscent of the transitional boundary layer and may not be connected to some aspects of the dynamics of the fully developed wall-bounded turbulence.
NASA Astrophysics Data System (ADS)
Tan, Jianguo; Zhang, Dongdong; Li, Hao; Hou, Juwei
2018-03-01
The flow behaviors and mixing characteristics of a supersonic mixing layer with a convective Mach number of 0.2 have been experimentally investigated utilizing nanoparticle-based planar laser scattering and particle image velocimetry techniques. The full development and evolution process, including the formation of Kelvin-Helmholtz vortices, breakdown of large-scale structures and establishment of self-similar turbulence, is exhibited clearly in the experiments, which can give a qualitative graphically comparing for the DNS and LES results. The shocklets are first captured at this low convective Mach number, and their generation mechanisms are elaborated and analyzed. The convective velocity derived from two images with space-time correlations is well consistent with the theoretical result. The pairing and merging process of large-scale vortices in transition region is clearly revealed in the velocity vector field. The analysis of turbulent statistics indicates that in weakly compressible mixing layers, with the increase of convective Mach number, the peak values of streamwise turbulence intensity and Reynolds shear stress experience a sharp decrease, while the anisotropy ratio seems to keep quasi unchanged. The normalized growth rate of the present experiments shows a well agreement with former experimental and DNS data. The validation of present experimental results is important for that in the future the present work can be a reference for assessing the accuracy of numerical data.
Measurement Of Crossflow Vortex Structure
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Agarwal, Navel K.
1994-01-01
Method developed for measuring wavelengths of crossflow vortices by using surface-mounted, microthin, multielement hot-film sensors. Provides direct and true value of wavelength of crossflow vortices at various spanwise locations without localized flow disturbances. Attainment of laminar airflow on aircraft wings has significant potential for reducing drag and increasing fuel efficiency.
Polar Vortices Observed in Ferroelectric | Berkeley Lab
vortices" that appear to be the electrical cousins of magnetic skyrmions holds intriguing structures are confined to magnetic systems and aren't possible in ferroelectric materials, but through the . Ferroic materials display unique electrical or magnetic properties - or both in the case of multiferroics
Starting Vortex Identified as Key to Unsteady Ejector Performance
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2004-01-01
Unsteady ejectors are currently under investigation for use in some pulse-detonation-engine-based propulsion systems. Experimental measurements made in the past, and recently at the NASA Glenn Research Center, have demonstrated that thrust augmentation can be enhanced considerably when the driver is unsteady. In ejector systems, thrust augmentation is defined as = T(sup Total)/T(sup j), where T(sup Total) is the total thrust of the combined ejector and driving jet and T(sup j) is the thrust due to the driving jet alone. There are three images in this figure, one for each of the named thrust sources. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left, and the shape and location of each driver is shown on the far right of each image. The emitted vortex is a clearly defined "doughnut" of highly vortical (spinning) flow. In these planar images, the vortex appears as two distorted circles, one above, and one below the axis of symmetry. Because they are spinning in the opposite direction, the two circles have vorticity of opposite sign and thus are different colors. There is also a rectangle shown in each image. Its width represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. The exact mechanism behind the enhanced performance is unclear; however, it is believed to be related to the powerful vortex emitted with each pulse of the unsteady driver. As such, particle imaging velocimetry (PIV) measurements were obtained for three unsteady drivers: a pulsejet, a resonance tube, and a speaker-driven jet. All the drivers were tested with ejectors, and all exhibited performance enhancement over similarly sized steady drivers. The characteristic starting vortices of each driver are shown in these images. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left. The shape and location of each driver is shown on the far right of each image. The rectangle shown in each image represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. Although not shown, it was observed that the emitted vortex spread as it traveled downstream. The spreading rate for the pulsejet is shown as the dashed lines in the top image. A tapered ejector was fabricated that matched this shape. When tested, the ejector demonstrated superior performance to all those previously tested at Glenn (which were essentially of straight, cylindrical form), achieving a remarkable thrust augmentation of 2. The measured thrust augmentation is shown as a function of ejector length. Also shown are the thrust augmentation values achieved with the straight, cylindrical ejectors of varying diameters. Here, thrust augmentation is plotted as a function of ejector length for several families of ejector diameters. It can be seen that large thrust augmentation values are indeed obtained and that they are sensitive to both ejector length and diameter, particularly the latter. Five curves are shown. Four correspond to straight ejector diameters of 2.2, 3.0, 4.0, and 6.0 in. The fifth curve corresponds to the tapered ejector contoured to bound the emitted vortex. For each curve, there are several data points corresponding to different lengths. The largest value of thrust augmentation is 2.0 for the tapered ejector and 1.81 for the straight ejectors. Regardless of their diameters, all the ejectors trend toward peak performance at a particular leng. That the cross-sectional dimensions of optimal ejectors scaled precisely with the vortex dimensions on three separate pulsed thrust sources demonstrates that the action of the vortex is responsible for the enhanced ejector performance. The result also suggests that, in the absence of a complete understanding of the entrainment and augmentation mechanisms, methods of characterizing starting vortices may be useful for correlating and predicting unsteady ejector performance.
Scalings of intermittent structures in magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdankin, Vladimir, E-mail: zhdankin@jila.colorado.edu; Boldyrev, Stanislav; Space Science Institute, Boulder, Colorado 80301
Turbulence is ubiquitous in plasmas, leading to rich dynamics characterized by irregularity, irreversibility, energy fluctuations across many scales, and energy transfer across many scales. Another fundamental and generic feature of turbulence, although sometimes overlooked, is the inhomogeneous dissipation of energy in space and in time. This is a consequence of intermittency, the scale-dependent inhomogeneity of dynamics caused by fluctuations in the turbulent cascade. Intermittency causes turbulent plasmas to self-organize into coherent dissipative structures, which may govern heating, diffusion, particle acceleration, and radiation emissions. In this paper, we present recent progress on understanding intermittency in incompressible magnetohydrodynamic turbulence with a strongmore » guide field. We focus on the statistical analysis of intermittent dissipative structures, which occupy a small fraction of the volume but arguably account for the majority of energy dissipation. We show that, in our numerical simulations, intermittent structures in the current density, vorticity, and Elsässer vorticities all have nearly identical statistical properties. We propose phenomenological explanations for the scalings based on general considerations of Elsässer vorticity structures. Finally, we examine the broader implications of intermittency for astrophysical systems.« less
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
2000-12-01
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
On the question of instabilities upstream of cylindrical bodies
NASA Technical Reports Server (NTRS)
Morkovin, M. V.
1979-01-01
In an attempt to understand the unsteady vortical phenomena in perturbed stagnation regions of cylindrical bodies, a critical review of the theoretical and experimental evidence was made. Current theory is revealed to be incomplete, incorrect, or inapplicable to the phenomena observed experimentally. The formalistic approach via the principle of exchange of instabilities should most likely be replaced by a forced-disturbance approach. Also, many false conclusions were reached by ignoring that treatment of the base and perturbed flows in Hiemenz coordinate eta is asymptotic in nature. Almost surely the techniques of matched asymptotic expansions are expected to be used to capture correctly the diffusive and vorticity amplifying processes of the disturbances regarding the mean-flow boundary layer and outer potential field as eta and y/diameter approach infinity. The serious uncertainties in the experiments are discussed in detail.
Formation of complex bacterial colonies via self-generated vortices
NASA Astrophysics Data System (ADS)
Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás
1996-08-01
Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''
Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
Lu, Yuan; Shen, Gong Xin
2008-04-01
Following the identification and confirmation of the substructures of the leading-edge vortex (LEV) system on flapping wings, it is apparent that the actual LEV structures could be more complex than had been estimated in previous investigations. In this experimental study, we reveal for the first time the detailed three-dimensional (3-D) flow structures and evolution of the LEVs on a flapping wing in the hovering condition at high Reynolds number (Re=1624). This was accomplished by utilizing an electromechanical model dragonfly wing flapping in a water tank (mid-stroke angle of attack=60 degrees) and applying phase-lock based multi-slice digital stereoscopic particle image velocimetry (DSPIV) to measure the target flow fields at three typical stroke phases: at 0.125 T (T=stroke period), when the wing was accelerating; at 0.25 T, when the wing had maximum speed; and at 0.375 T, when the wing was decelerating. The result shows that the LEV system is a collection of four vortical elements: one primary vortex and three minor vortices, instead of a single conical or tube-like vortex as reported or hypothesized in previous studies. These vortical elements are highly time-dependent in structure and show distinct ;stay properties' at different spanwise sections. The spanwise flows are also time-dependent, not only in the velocity magnitude but also in direction.
Interaction of N-vortex structures in a continuum, including atmosphere, hydrosphere and plasma
NASA Astrophysics Data System (ADS)
Belashov, Vasily Yu.
2017-10-01
The results of analysis and numerical simulation of evolution and interaction of the N-vortex structures of various configuration and different vorticities in the continuum including atmosphere, hydrosphere and plasma are presented. It is found that in dependence on initial conditions the regimes of weak interaction with quasi-stationary evolution and active interaction with the "phase intermixing", when the evolution can lead to formation of complex forms of vorticity regions, are realized in the N-vortex systems. For the 2-vortex interaction the generalized critical parameter determining qualitative character of interaction of vortices is introduced. It is shown that for given initial conditions its value divides modes of active interaction and quasi-stationary evolution. The results of simulation of evolution and interaction of the two-dimensional and three-dimensional vortex structures, including such phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a type of "hydrodynamic vortex - dust particles" are presented. The applications of undertaken approach to the problems of such plasma systems as streams of charged particles in a uniform magnetic field B and plasma clouds in the ionosphere are considered. It is shown that the results obtained have obvious applications in studies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere and plasma.
Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow
NASA Astrophysics Data System (ADS)
Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua
2017-06-01
Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.
Universal Profile of the Vortex Condensate in Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Laurie, Jason; Boffetta, Guido; Falkovich, Gregory; Kolokolov, Igor; Lebedev, Vladimir
2014-12-01
An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.
Broadband and stable acoustic vortex emitter with multi-arm coiling slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xue; Liang, Bin, E-mail: liangbin@nju.edu.cn, E-mail: eleqc@nus.edu.sg, E-mail: jccheng@nju.edu.cn; Zou, Xin-ye
2016-05-16
We present the analytical design and experimental realization of a scheme based on multi-arm coiling slits to generate the stable acoustic vortices in a broadband. The proposed structure is able to spiral the acoustic wave spatially and generate the twisted acoustic vortices with invariant topological charge for a long propagation distance. Compared with conventional methods which require the electronic control of a bulky loudspeaker, this scheme provides an effective and compact solution to generate acoustic vortices with controllable topological charge in the broadband, which offers more initiatives in the demanding applications.
Emergent vortices in populations of colloidal rollers
Bricard, Antoine; Caussin, Jean-Baptiste; Das, Debasish; Savoie, Charles; Chikkadi, Vijayakumar; Shitara, Kyohei; Chepizhko, Oleksandr; Peruani, Fernando; Saintillan, David; Bartolo, Denis
2015-01-01
Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries. PMID:26088835
Vortex filament method as a tool for computational visualization of quantum turbulence
Hänninen, Risto; Baggaley, Andrew W.
2014-01-01
The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear. PMID:24704873
Control of secondary instability of the crossflow and Görtler-like vortices (Success and problems)
NASA Astrophysics Data System (ADS)
Kozlov, Viktor V.; Grek, Genrich R.
The secondary instability on a group of crossflow vortices developing in a swept wing boundary layer is described. It is shown that, for travelling waves, there is a region of linear development, and the growth rate of disturbances appreciably depends on the separation between the vortices. Methods of controlling the secondary instability of the vortices by a controlled wave and local suction are proposed and substantiated. The stability of a flat plate boundary layer modulated by G&ou ml;rtler-like stationary vortices is described. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z) direction. Transition is not caused directly by these structures, but by the growth of small amplitude travelling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are gener ated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited "naturally" by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, , and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequency well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulation showed that TS-type waves may a lso develop. Study of the transition control in that flow by means of riblets shows that the effect of the riblets is to suppress longitudinal vortex structures in a boundary layer. The boundary layer becomes stable with respect to high-frequency travelling waves, which cause the transition in the absence of the riblets.
Tomographic PIV Study of Hairpin Vortices
NASA Astrophysics Data System (ADS)
Sabatino, Daniel; Rossmann, Tobias
2014-11-01
Tomographic PIV is used in a free surface water channel to quantify the flow behavior of hairpin vortices that are artificially generated in a laminar boundary layer. Direct injection from a 32:1 aspect ratio slot at low blowing ratios (0 . 1 < BR < 0 . 2) is used to generate an isolated hairpin vortex in a thick laminar boundary layer (485 < Reδ* < 600). Due to the large dynamic range of length and velocity scales (the resulting vortices have advection velocities 5X greater than their tangential velocities), a tailored optical arrangement and specialized post processing techniques are required to fully capture the small-scale behavior and long-time development of the flow field. Hairpin generation and evolution are presented using the λ2 criterion derived from the instantaneous, three-dimensional velocity field. The insight provided by the tomographic data is also compared to the conclusions drawn from 2D PIV and passive scalar visualizations. Finally, the three-dimensional behavior of the measured velocity field is correlated with that of a simultaneously imaged, passive scalar dye that marks the boundary of the injected fluid, allowing the examination of the entrainment behavior of the hairpin. Supported by the National Science Foundation under Grant CBET-1040236.
Transitions in the vortex wake behind the plunging profile
NASA Astrophysics Data System (ADS)
Kozłowski, Tomasz; Kudela, Henryk
2014-12-01
In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.
The Effect of Micro-ramps on Supersonic Flow over a Forward-Facing Step
NASA Astrophysics Data System (ADS)
Zhang, Qing-Hu; Yi, Shi-He; Zhu, Yang-Zhu; Chen, Zhi; Wu, Yu
2013-04-01
The effect of micro-ramp control on fully developed turbulent flow over a forward-facing step (FFS) is investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and supersonic particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and the average velocity profiles of supersonic flow over the FFS with and without the control of the micro-ramps are captured. The fine structures of both cases, including the coherent structures of fully developed boundary layer and the large-scale hairpin-like vortices originated from the micro-ramps as well as the interaction of shock waves with the large-scale structures, are revealed and compared. Based on the time-correlation images, the temporal and spatial evolutionary characteristics of the coherent structures are investigated. It is beneficial to understand the dynamic mechanisms of the separated flow and the control mechanisms of the micro-ramps. The size of the separation region is determined by the NPLS and PIV. The results indicate that the control of the micro-ramps is capable of delaying the separation and diminishing the extent of recirculation zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less
Coherent Structures and Evolution of Vorticity in Short-Crested Breaking Surface Waves
NASA Astrophysics Data System (ADS)
Kirby, James; Derakhti, Morteza
2017-11-01
We employ a multi-phase LES/VOF code to study turbulence and coherent structures generated during breaking of short-crested surface water waves. We examine the evolution of coherent vortex structures evolving at the scale of the width of the breaking event, and their long-time interaction with smaller vortex loops formed by the local instability of the breaking crest. Long-time results are often characterized by the detachment of the larger scale vortex loop from the surface and formation of a closed vortex ring. The evolution of circulation for the vortical flow field is examined. The initial concentration of forcing close to the free surface leads to spatial distributions of both span-wise and vertical vorticity distributions which are concentrated close to the surface. This result, which persists into shallow water, is at odds with the basic simplicity of the Peregrine mechanism, suggesting that even shallow flows such as the surf zone should be regarded as being forced (in dissipative situations) by a wave-induced surface stress rather than a uniform-over-depth body force. The localized forcing leads to the development of a complex pattern of stream-wise vorticity, comparable in strength to the vertical and span-wise components, and also persist into shallow water. NSF OCE-1435147.
NASA Astrophysics Data System (ADS)
Cuevas Bautista, Juan Carlos; Morrill-Winter, Caleb; White, Christopher; Chini, Gregory; Klewicki, Joseph
2017-11-01
The Reynolds shear stress gradient is a leading order mechanism on the inertial domain of turbulent wall-flows. This quantity can be described relative to the sum of two velocity-vorticity correlations, vωz and wωy . Recent studies suggest that the first of these correlates with the step-like structure of the instantaneous streamwise velocity profile on the inertial layer. This structure is comprised of large zones of uniform momentum segregated by slender regions of concentrated vorticity. In this talk we study the contributions of the v and ωz motions to the vorticity transport (vωz) mechanism through the use of experimental data at large friction Reynolds numbers, δ+. The primary contributions to v and ωz were estimated by identifying the peak wavelengths of their streamwise spectra. The magnitudes of these peaks are of the same order, and are shown to exhibit a weak δ+ dependence. The peak wavelengths of v, however, exhibit a strong wall-distance (y) dependence, while the peak wavelengths of ωz show only a weak y dependence, and remain almost O (√{δ+}) in size throughout the inertial domain. This research was partially supported by the National Science Foundation and partially supported by the Australian Research Council.
Reconstruction of Propagating Kelvin-Helmholtz Vortices at Mercury's Magnetopause
NASA Technical Reports Server (NTRS)
Sundberg, Torbjoern; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje
2011-01-01
A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER s rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft s magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan; Constantinescu, George
2014-11-01
Large Eddy Simulation is used to investigate the structure of the laminar horseshoe vortex (HV) system and the dynamics of the necklace vortices as they fold around the base of a circular cylinder mounted on the flat bed of an open channel for Reynolds numbers defined with the cylinder diameter, D, smaller than 4,460. The study concentrates on the analysis of the structure of the HV system in the periodic breakaway sub-regime which is characterized by the formation of three main necklace vortices. For the relatively shallow flow conditions considered in this study (H/D 1, H is the channel depth), at times, the disturbances induced by the legs of the necklace vortices do not allow the SSLs on the two sides of the cylinder to interact in a way that allows the vorticity redistribution mechanism to lead to the formation of a new wake roller. As a result, the shedding of large scale rollers in the turbulent wake is suppressed for relatively large periods of time. Simulation results show that the wake structure changes randomly between time intervals when large-scale rollers are forming and are convected in the wake (von Karman regime), and time intervals when the rollers do not form.
NASA Astrophysics Data System (ADS)
Long, J.; New, T. H.
2016-07-01
Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.
COSMIC VORTICITY AND THE ORIGIN HALO SPINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libeskind, Noam I.; Steinmetz, Matthias; Gottloeber, Stefan
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field.more » Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e{sub 1}). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e{sub 1}, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.« less
Intermittent nature of acceleration in near wall turbulence.
Lee, Changhoon; Yeo, Kyongmin; Choi, Jung-Il
2004-04-09
Using direct numerical simulation of a fully developed turbulent channel flow, we investigate the behavior of acceleration near a solid wall. We find that acceleration near the wall is highly intermittent and the intermittency is in large part associated with the near wall organized coherent turbulence structures. We also find that acceleration of large magnitude is mostly directed towards the rotation axis of the coherent vortical structures, indicating that the source of the intermittent acceleration is the rotational motion associated with the vortices that causes centripetal acceleration.
Maxwell-Higgs vortices with internal structure
NASA Astrophysics Data System (ADS)
Bazeia, D.; Marques, M. A.; Menezes, R.
2018-05-01
Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.
Estimation of Time Dependent Properties from Surface Pressure in Open Cavities
2008-02-01
static pressure of the cavity. The stagnation and static pressures are measured separately with Druck Model DPI 145 pressure transducers (with a quoted...interacting with the ZNMF actuator jets, the 2D shape of the vortical structures transform to a 3D shape with spanwise vortical structures. These...Therefore, the pressure gradient in the d direction is dd ° 3d Substituting Equation (5.3) into Equation (5.5) results in ^l = PJk(e^-Re^)/c^ (5.6
Spindles and active vortices in a model of confined filament-motor mixtures.
Head, David A; Briels, Wj; Gompper, Gerhard
2011-11-16
Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic activities underpinning macroscopic self-organization in active gels and urge further experiments to help bridge these lengths.
Kamalakshakurup, Gopakumar; Lee, Abraham P
2017-12-05
Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.
A predictor-corrector technique for visualizing unsteady flow
NASA Technical Reports Server (NTRS)
Banks, David C.; Singer, Bart A.
1995-01-01
We present a method for visualizing unsteady flow by displaying its vortices. The vortices are identified by using a vorticity-predictor pressure-corrector scheme that follows vortex cores. The cross-sections of a vortex at each point along the core can be represented by a Fourier series. A vortex can be faithfully reconstructed from the series as a simple quadrilateral mesh, or its reconstruction can be enhanced to indicate helical motion. The mesh can reduce the representation of the flow features by a factor of one thousand or more compared with the volumetric dataset. With this amount of reduction it is possible to implement an interactive system on a graphics workstation to permit a viewer to examine, in three dimensions, the evolution of the vortical structures in a complex, unsteady flow.
Vorticity field measurement using digital inline holography
NASA Astrophysics Data System (ADS)
Mallery, Kevin; Hong, Jiarong
2017-11-01
We demonstrate the direct measurement of a 3D vorticity field using digital inline holographic microscopy. Microfiber tracer particles are illuminated with a 532 nm continuous diode laser and imaged using a single CCD camera. The recorded holographic images are processed using a GPU-accelerated inverse problem approach to reconstruct the 3D structure of each microfiber in the imaged volume. The translation and rotation of each microfiber are measured using a time-resolved image sequence - yielding velocity and vorticity point measurements. The accuracy and limitations of this method are investigated using synthetic holograms. Measurements of solid body rotational flow are used to validate the accuracy of the technique under known flow conditions. The technique is further applied to a practical turbulent flow case for investigating its 3D velocity field and vorticity distribution.
On hairpin vortex generation from near-wall streamwise vortices
NASA Astrophysics Data System (ADS)
Wang, Yinshan; Huang, Weixi; Xu, Chunxiao
2015-04-01
The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation (DNS) of the streak transient growth in the minimal channel flow at . The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number. The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity. It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker, opposite-signed streamwise vortex in their overlap region, forming a complete individual hairpin structure. The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector, respectively. The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.
Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.
Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik
2014-03-01
For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.
Energy flow of electric dipole radiation in between parallel mirrors
NASA Astrophysics Data System (ADS)
Xu, Zhangjin; Arnoldus, Henk F.
2017-11-01
We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.
Experimental Study of Lift-Generated Vortices
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Nixon, David (Technical Monitor)
1998-01-01
The flow fields of vortices, whether bouyancy-driven or lift-generated, are fascinating fluid-dynamic phenomena which often possess intense swirl velocities and complex time-dependent behavior. As part of the on-going study of vortex behavior, this paper presents a historical overview of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. It is pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The primary purpose of the research to be described is to find a way to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from aerospace journals that are available publicly.
Evolution of the shock front and turbulence structures in the shock/turbulence interaction
NASA Technical Reports Server (NTRS)
Kevlahan, N.; Mahesh, K.; Lee, S.
1992-01-01
The interaction of a weak shock front with isotropic turbulence has been investigated using Direct Numerical Simulation (DNS). Two problems were considered: the ability of the field equation (the equation for a propagating surface) to model the shock; and a quantitative study of the evolution of turbulence structure using the database generated by Lee et al. Field equation model predictions for front shape have been compared with DNS results; good agreement is found for shock wave interaction with 2D turbulence and for a single steady vorticity wave. In the interaction of 3D isotropic turbulence with a normal shock, strong alignment of vorticity with the intermediate eigenvector of the rate of strain tensor (S(sup *)(sub ij) = S(sub ij) - (1/3)(delta(sub ij))(S(sub kk))) is seen to develop upstream of the shock and to be further amplified on passage through the shock. Vorticity tends to align at 90 deg to the largest eigenvector, but there is no preferred alignment with the smallest eigenvector. Upstream of the shock, the alignments continue to develop even after the velocity derivative skewness saturates. There is a significant tendency, which increases with time throughout the computational domain, for velocity to align with vorticity. The alignment between velocity and vorticity is strongest in eddy regions and weakest in convergence regions.
Identifying Turbulent Structures through Topological Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremer, Peer-Timo; Gruber, Andrea; Bennett, Janine C.
2016-01-01
A new method of extracting vortical structures from a turbulent flow is proposed whereby topological segmentation of an indicator function scalar field is used to identify the regions of influence of the individual vortices. This addresses a long-standing challenge in vector field topological analysis: indicator functions commonly used produce a scalar field based on the local velocity vector field; reconstructing regions of influence for a particular structure requires selecting a threshold to define vortex extent. In practice, the same threshold is rarely meaningful throughout a given flow. By also considering the topology of the indicator field function, the characteristics ofmore » vortex strength and extent can be separated and the ambiguity in the choice of the threshold reduced. The proposed approach is able to identify several types of vortices observed in a jet in cross-flow configuration simultaneously where no single threshold value for a selection of common indicator functions appears able to identify all of these vortex types.« less
The Role of “Vortical” Hot Towers in the Formation of Tropical Cyclone Diana (1984).
NASA Astrophysics Data System (ADS)
Hendricks, Eric A.; Montgomery, Michael T.; Davis, Christopher A.
2004-06-01
A high-resolution (3-km horizontal grid spacing) near-cloud-resolving numerical simulation of the formation of Hurricane Diana (1984) is used to examine the contribution of deep convective processes to tropical cyclone formation. This study is focused on the 3-km horizontal grid spacing simulation because this simulation was previously found to furnish an accurate forecast of the later stages of the observed storm life cycle. The numerical simulation reveals the presence of vortical hot towers, or cores of deep cumulonimbus convection possessing strong vertical vorticity, that arise from buoyancy-induced stretching of local absolute vertical vorticity in a vorticity-rich prehurricane environment.At near-cloud-resolving scales, these vortical hot towers are the preferred mode of convection. They are demonstrated to be the most important influence to the formation of the tropical storm via a two-stage evolutionary process: (i) preconditioning of the local environment via diabatic production of multiple small-scale lower-tropospheric cyclonic potential vorticity (PV) anomalies, and (ii) multiple mergers and axisymmetrization of these low-level PV anomalies. The local warm-core formation and tangential momentum spinup are shown to be dominated by the organizational process of the diabatically generated PV anomalies; the former process being accomplished by the strong vertical vorticity in the hot tower cores, which effectively traps the latent heat from moist convection. In addition to the organizational process of the PV anomalies, the cyclogenesis is enhanced by the aggregate diabatic heating associated with the vortical hot towers, which produces a net influx of low-level mean angular momentum throughout the genesis.Simpler models are examined to elucidate the underlying dynamics of tropical cyclogenesis in this case study. Using the Sawyer Eliassen balanced vortex model to diagnose the macroscale evolution, the cyclogenesis of Diana is demonstrated to proceed in approximate gradient and hydrostatic balance at many instances, where local radial and vertical accelerations are small. Using a shallow water primitive equation model, a characteristic “moist” (diabatic) vortex merger in the cloud-resolving numerical simulation is captured in a large part by the barotropic model. Since a moist merger results in a stronger vortex and occurs twice as fast as a dry merger, it is inferred (consistent with related work) that a net low-level convergence can accelerate and intensify the merger process in the real atmosphere.Although the findings reported herein are based on a sole case study and thus cannot yet be generalized, it is believed the results are sufficiently interesting to warrant further idealized simulations of this nature.
Large-scale Vortex Generation and Evolution in Short-crested Isolated Wave Breaking
NASA Astrophysics Data System (ADS)
Derakhti, M.; Kirby, J. T., Jr.
2016-12-01
Peregrine (1999), in discussing the effect of localization of wave energy dissipation as a generation mechanism for vorticity at the scale of individual waves, spurred a wave of study of vorticity dynamics and mixing processes in the wave-driven ocean. In deep water, the limited depth of penetration of breaking effects leads to the conceptual forcing of a "smoke-ring" resulting from the localized cross-section of impulsive forcing (Pizzo and Melville, 2013). In shallow water, depth limitations favor the generation of a quasi-two-dimensional field of vertical vortex structures, with a resulting inverse cascade of energy to low wavenumbers and the evolution of flows such as transient rip currents (Johnson and Pattiaratchi, 2006). In this study, we are examining a more detailed picture of the vorticity field evolving during a localized breaking event, with particular interest in the span from deep water to shallow water, with special attention to the transition from weak to strong bottom control. Using an LES/VOF model (Derakhti and Kirby, 2014), we examine the evolution of coherent vortex structures whose initial scales are determined by the width of the breaking region, and are much larger than the locally-controlled reverse horseshoe structures seen in typical studies of along-crest uniform breaking. We study the persistence of three-dimensionality of these structures and their contribution to the development of depth-integrated vertical vorticity, and comment on the suitability of 2D or quasi-3D models to represent nearshore flow fields.
A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies
NASA Astrophysics Data System (ADS)
Sutyrin, G.
2016-02-01
In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.
Reynolds number scaling of straining motions in turbulence
NASA Astrophysics Data System (ADS)
Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.
2017-11-01
Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.
Numerical simulation of vortical ideal fluid flow through curved channel
NASA Astrophysics Data System (ADS)
Moshkin, N. P.; Mounnamprang, P.
2003-04-01
A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.
On the interaction between turbulence and a planar rarefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Bryan M.
2014-04-01
The modeling of turbulence, whether it be numerical or analytical, is a difficult challenge. Turbulence is amenable to analysis with linear theory if it is subject to rapid distortions, i.e., motions occurring on a timescale that is short compared to the timescale for nonlinear interactions. Such an approach (referred to as rapid distortion theory) could prove useful for understanding aspects of astrophysical turbulence, which is often subject to rapid distortions, such as supernova explosions or the free-fall associated with gravitational instability. As a proof of principle, a particularly simple problem is considered here: the evolution of vorticity due to amore » planar rarefaction in an ideal gas. Analytical solutions are obtained for incompressive modes having a wave vector perpendicular to the distortion; as in the case of gradient-driven instabilities, these are the modes that couple most strongly to the mean flow. Vorticity can either grow or decay in the wake of a rarefaction front, and there are two competing effects that determine which outcome occurs: entropy fluctuations couple to the mean pressure gradient to produce vorticity via baroclinic effects, whereas vorticity is damped due to the conservation of angular momentum as the fluid expands. Whether vorticity grows or decays depends upon the ratio of entropic to vortical fluctuations at the location of the front; growth occurs if this ratio is of order unity or larger. In the limit of purely entropic fluctuations in the ambient fluid, a strong rarefaction generates vorticity with a turbulent Mach number on the order of the rms of the ambient entropy fluctuations. The analytical results are shown to compare well with results from two- and three-dimensional numerical simulations. Analytical solutions are also derived in the linear regime of Reynolds-averaged turbulence models. This highlights an inconsistency in standard turbulence models that prevents them from accurately capturing the physics of rarefaction-turbulence interaction. In addition to providing physical insight, the solutions derived here can be used to verify algorithms of both the Reynolds-averaged and direct numerical simulation variety. Finally, dimensional analysis of the equations indicates that rapid distortion of turbulence can give rise to two distinct regimes in the turbulent spectrum: a distortion range at large scales where linear distortion effects dominate, and an inertial range at small scales where nonlinear effects dominate.« less
Propagation and scattering of acoustic-vorticity waves in annular swirling flows
NASA Astrophysics Data System (ADS)
Golubev, Vladimir Viktorovich
1997-08-01
The dissertation presents a fundamental extension of unsteady aerodynamic theory developed to predict fluctuating forces on aircraft structural components. These excitations may result from a variety of upstream flow non-uniformities such as atmospheric turbulence, airframe tip vortices and wakes, engine inlet distortions and secondary flows. In the frame of reference of a downstream aircraft component, an upstream flow non- uniformity appears as a propagating vorticity wave (a gust). Classical treatment of gust interaction problems developed for uniform, potential upstream mean flows is based on the fact that it is possible to consider separately incident or scattered acoustic, entropic and vortical modes of unsteady flow motion. A purely vortical gust remains 'frozen' as it convects with the flow. The coupling between different unsteady components may occur only at the surface of a solid structure, or in the close vicinity of a lifting body. The classical approach, however, is not justified for an aircraft engine system where the internal turbomachinery flow is non-uniform and non-potential as it exhibits a strong swirling motion. In such a flow, acting centrifugal and Coriolis forces couple the various unsteady modes which thus can no longer be determined independently of each other. The new developed theory follows the decomposition of unsteady velocity field into vortical and potential components. In spite of the modal coupling, this decomposition elucidates the physical phenomena associated with unsteady swirling motion by indicating the degree of interaction between the various modes. It paves the way for generalizing the classical definition of a gust for vortical swirling flows. The concept of a generalized gust is developed based on the eigenmode pseudospectral analysis of the coupled equations of unsteady swirling motion. This analysis reveals two distinct regions of eigenvalues corresponding to pressure-dominated nearly-sonic and vorticity- dominated nearly-convected eigenmodes. A compact discrete spectrum of nearly-convected eigenvalues clusters with infinitely increasing density approaching an accumulation convected critical layer. The generalized gust is then identified with the nearly-convected eigenspectrum and formulated in terms of a non-amplifying nearly-convected wave and an instability wave growing in the critical layer. Based on the generalized gust model, a boundary-value problem of unsteady three-dimensional acoustic-vorticity waves propagating in a vortical swirling flow and impinging on a turbomachinery blading is formulated and solved numerically. A set of benchmark results reveals a significant effect of swirling flow motion on aerodynamic and acoustic response of the annular cascade.
Aerodynamics and vortical structures in hovering fruitflies
NASA Astrophysics Data System (ADS)
Meng, Xue Guang; Sun, Mao
2015-03-01
We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.
Radial-vertical profiles of tropical cyclone derived from dropsondes
NASA Astrophysics Data System (ADS)
Ren, Yifang
The scopes of this thesis research are two folds: the first one is to the construct the intensity-based composite radial-vertical profiles of tropical cyclones (TC) using GPS-based dropsonde observations and the second one is to identify the major deficiencies of Mathur vortices against the dropsonde composites of TCs. The intensity-based dropsonde composites of TCs advances our understanding of the dynamic and thermal structure of TCs of different intensity along the radial direction in and above the boundary layer where lies the devastating high wind that causes property damages and storm surges. The identification of the major deficiencies of Mathur vortices in representing the radial-vertical profiles of TC of different intensity helps to improve numerical predictions of TCs since most operational TC forecast models need to utilize bogus vortices, such as Mathur vortices, to initialize TC forecasts and simulations. We first screen all available GPS dropsonde data within and round 35 named TCs over the tropical Atlantic basin from 1996 to 2010 and pair them with TC parameters derived from the best-track data provided by the National Hurricane Center (NHC) and select 1149 dropsondes that have continuous coverage in the lower troposphere. The composite radial-vertical profiles of tangential wind speed, temperature, mixing ratio and humidity are based for each TC category ranging from "Tropical Storm" (TS) to "Hurricane Category 1" (H1) through "Hurricane Category 5" (H5). The key findings of the dropsonde composites are: (i) all TCs have the maximum tangential wind within 1 km above the ground and a distance of 1-2 times of the radius of maximum wind (RMW) at the surface; (ii) all TCs have a cold ring surrounding the warm core near the boundary layer at a distance of 1-3 times of the RMW and the cold ring structure gradually diminishes at a higher elevation where the warm core structure prevails along the radial direction; (iii) the existence of such shallow cold ring outside the RMW explains why the maximum tangential wind is within 1 km above the ground and is outside the RMW, as required by the hydrostatic and gradient wind balance relations; (iv) one of the main differences among TCs of different intensity, besides the speed of the maximum tangential wind, is the vertical extent of near-saturated moisture air layer inside the core. A weaker TC tends to have a deep layer of the near-saturated moisture air layer whereas a stronger TC has a shallow one; (v) another main difference in the thermal structure among TCs of different intensity is the intensity and vertical extent of the warm core extending from the upper layer to the lower layer. In general, a stronger TC has a stronger warm core extending downward further into lower layer and vice versa. The features (iv) and (v) are consistent with the fact that a stronger TC tends to have stronger descending motion inside the core. The main deficiencies of Mathur vortices in representing the radial-vertical profiles of TC of different intensity are (i) Mathur vortices of all categories have the maximum wind at the surface; (ii) none of Mathur vortices have a cold ring outside the warm core near the boundary layer; (iii) Mathur vortices tend to overestimate warm core structure in reference to the horizontal mean temperature profile; (iv) Mathur vortices tend to overestimate the vertical depth of the near-saturated air layer near the boundary layer.
Kinematics and depth-integrated terms in surf zone waves from laboratory measurement
NASA Astrophysics Data System (ADS)
Stansby, Peter K.; Feng, Tong
2005-04-01
Kinematics of nominally periodic surf zone waves have been measured in the laboratory using LDA (laser Doppler anemometry), above trough level as well as below, for weakly plunging breakers transforming into bores in shallower water. The aim was to determine, through phase- or ensemble-averaging, periodic flow structures in a two-dimensional vertical plane, from large-scale down to small-scale vortical structures. Coherent multiple vortical structures were evident at the initiation of breaking, becoming elongated along the surface during bore propagation. The initial region is likely to become more extensive as waves become more strongly plunging and could explain the difference in turbulence characteristics between plunging and spilling breakers observed elsewhere. Comparison of vorticity magnitudes with hydraulic-jump measurements showed some similarities during the initial stages of breaking, but these quickly grew less as breaking progressed into shallower water. Period-averaged kinematics and vorticity were also obtained showing shoreward mass transport above trough level and undertow below, with a thick layer of vorticity at trough level and a thin layer of vorticity of opposite rotation at the bed. There were also concentrated regions of mean vorticity near the end of the plunging region. Residual turbulence of relatively high frequency was presented as Reynolds stresses, showing marked anisotrophy. Dynamic pressure (pressure minus its hydrostatic component) was determined from the kinematics. The magnitudes of different effects were evaluated through the depth-integrated Reynolds-averaged Navier-Stokes (RANS) equations, which may be reduced to nine terms (the standard inviscid terms of the shallow-water equations conserving mass and momentum with hydrostatic pressure, and six additional terms), assuming that the complex, often aerated, free surface is treated as a simple interface. All terms were evaluated, assuming that a space/time transformation was justified with a slowly varying phase speed, and the net balance was always small in relation to the maxima of the larger terms. Terms due to dynamic pressure and vertical dispersion (due to the vertical variation of velocity) were as significant as the three terms in the inviscid shallow-water equations; terms involving residual turbulence were insignificant. The r.m.s. (root mean square) variation of each along the slope is highly irregular, with the inertia term due to (Eulerian) acceleration always greatest. This is consistent with complex, though repetitive, coherent structures. Modelling the flow with the shallow-water equations, using the surface elevation variation at the break point as input, nevertheless gave a good prediction of the wave height variation up the slope.
Visualization of vortex structures and analysis of frequency of PVC
NASA Astrophysics Data System (ADS)
Gesheva, E. S.; Shtork, S. I.; Alekseenko, S. V.
2018-03-01
The paper presents the results of the study of large-scale vortex structures in a model chamber. Methods of forming quasi-stationary vortices of various shapes by changing the geometric parameters of the chamber have been proposed. In the model chamber with a tangential swirl of the flow, a rectilinear vortex, single helical and double helical vortices were obtained. The double helical structure of the vortex is unique due to its immovability around the axis of the chamber. The resulting structures slowly oscillate around their own axes, which is called the vortex core precession; while the oscillation frequency depends linearly on the liquid flow rate. The use of stationary vortex structures in power plants will increase the efficiency of combustion chambers and reduce slagging.
Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer
NASA Astrophysics Data System (ADS)
Wen, Xin; Tang, Hui; Duan, Fei
2015-08-01
An experimental investigation is conducted on the vortices induced by twin synthetic jets (SJs) in line with a laminar boundary layer flow over a flat plate. The twin SJs operating at four different phase differences, i.e., Δϕ = 0°, 90°, 180°, and 270°, are visualized using a stereoscopic color dye visualization system and measured using a two-dimensional particle image velocimetry (PIV) system. It is found that depending on the phase difference of twin SJs, three types of vortex structures are produced. At Δϕ = 90°, the two hairpin vortices interact in a very constructive way in terms of the vortex size, strength, and celerity, forming one combined vortex. At Δϕ = 270°, the two individual hairpin vortices do not have much interaction, forming two completely separated hairpin vortices that behave like doubling the frequency of the single SJ case. At Δϕ = 0° and 180°, the two hairpin vortices produced by the twin SJ actuators are close enough, with the head of one hairpin vortex coupled with the legs of the other, forming partially interacting vortex structures. Quantitative analysis of the twin SJs is conducted, including the time histories of vortex circulation in the mid-span plane as well as a selected spanwise-wall-normal plane, and the influence of the twin SJs on the boundary layer flow filed. In addition, dynamic mode decomposition analysis of the PIV data is conducted to extract representative coherent structures. Through this study, a better understanding in the vortex dynamics associated with the interaction of in-line twin SJs in laminar boundary layers is achieved, which provides useful information for future SJ-array applications.
Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays
Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; ...
2016-05-31
A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction ofmore » the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.« less
An efficient and general numerical method to compute steady uniform vortices
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.
2011-07-01
Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.
Control of a three-dimensional turbulent shear layer by means of oblique vortices
NASA Astrophysics Data System (ADS)
Jürgens, Werner; Kaltenbach, Hans-Jakob
2018-04-01
The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.
Polaron-like vortices, dissociation transition, and self-induced pinning in magnetic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulaevskii, L. N., E-mail: lnb@lanl.gov; Lin, S.-Z.
2013-09-15
Vortices in magnetic superconductors polarize spins nonuniformly and repolarize them when moving. At a low spin relaxation rate and at low bias currents, vortices carrying magnetic polarization clouds become polaron-like and their velocities are determined by the effective drag coefficient that is significantly bigger than the Bardeen-Stephen (BS) one. As the current increases, vortices release polarization clouds and the velocity as well as the voltage in the I-V characteristics jump to values corresponding to the BS drag coefficient at a critical current J{sub c}. The nonuniform components of the magnetic field and magnetization drop as the velocity increases, resulting inmore » weaker polarization and a discontinuous dynamic dissociation depinning transition. Experimentally, the jump shows up as a depinning transition and the corresponding current at the jump is the depinning current. As the current decreases, on the way back, vortices are retrapped by polarization clouds at the current J{sub r} < J{sub c}. As a result, the polaronic effect suppresses dissipation and enhances the critical current. Borocarbides (RE)Ni{sub 2}B{sub 2}C with a short penetration length and highly polarizable rare earth spins seem to be optimal systems for a detailed study of vortex polaron formation by measuring I-V characteristics. We also propose to use a superconductor-magnet multilayer structure to study polaronic mechanism of pinning with the goal to achieve high critical currents. The magnetic layers should have large magnetic susceptibility to enhance the coupling between vortices and magnetization in magnetic layers while the relaxation of the magnetization should be slow. For Nb and a proper magnet multilayer structure, we estimate the critical current density J{sub c} {approx} 10{sup 9} A/m{sup 2} at the magnetic field B Almost-Equal-To 1 T.« less
Vorticity filaments in two-dimensional turbulence: creation, stability and effect
NASA Astrophysics Data System (ADS)
Kevlahan, N. K.-R.; Farge, M.
1997-09-01
Vorticity filaments are characteristic structures of two-dimensional turbulence. The formation, persistence and effect of vorticity filaments are examined using a high-resolution direct numerical simulation (DNS) of the merging of two positive Gaussian vortices pushed together by a weaker negative vortex. Many intense spiral vorticity filaments are created during this interaction and it is shown using a wavelet packet decomposition that, as has been suggested, the coherent vortex stabilizes the filaments. This result is confirmed by a linear stability analysis at the edge of the vortex and by a calculation of the straining induced by the spiral structure of the filament in the vortex core. The time-averaged energy spectra for simulations using hyper-viscosity and Newtonian viscosity have slopes of [minus sign]3 and [minus sign]4 respectively. Apart from a much higher effective Reynolds number (which accounts for the difference in energy spectra), the hyper-viscous simulation has the same dynamics as the Newtonian viscosity simulation. A wavelet packet decomposition of the hyper-viscous simulation reveals that after the merger the energy spectra of the filamentary and coherent parts of the vorticity field have slopes of [minus sign]2 and [minus sign]6 respectively. An asymptotic analysis and DNS for weak external strain shows that a circular filament at a distance R from the vortex centre always reduces the deformation of a Lamb's (Gaussian) vortex in the region r[gt-or-equal, slanted]R. In the region r
Dynamics of hairpin vortices and polymer-induced turbulent drag reduction.
Kim, Kyoungyoun; Adrian, Ronald J; Balachandar, S; Sureshkumar, R
2008-04-04
It has been known for over six decades that the dissolution of minute amounts of high molecular weight polymers in wall-bounded turbulent flows results in a dramatic reduction in turbulent skin friction by up to 70%. First principles simulations of turbulent flow of model polymer solutions can predict the drag reduction (DR) phenomenon. However, the essential dynamical interactions between the coherent structures present in turbulent flows and polymer conformation field that lead to DR are poorly understood. We examine this connection via dynamical simulations that track the evolution of hairpin vortices, i.e., counter-rotating pairs of quasistreamwise vortices whose nonlinear autogeneration and growth, decay and breakup are centrally important to turbulence stress production. The results show that the autogeneration of new vortices is suppressed by the polymer stresses, thereby decreasing the turbulent drag.
Subduction at upper ocean fronts by baroclinic instability
NASA Astrophysics Data System (ADS)
Verma, Vicky; Pham, Hieu T.; Radhakrishnan, Anand; Sarkar, Sutanu
2017-11-01
Large eddy simulations of upper ocean fronts that are initially in geostrophic balance show that the linear and subsequent nonlinear evolution of baroclinic intability are effective in restratifying the front. During the growth of baroclinic instability, the front develops thin regions with enhanced vertical vorticity, i.e., vorticity filaments. Moreover, the vorticity filaments organize into submesoscale eddies. The subsequent frontal dynamics is dominated by the vorticity filaments and the submesoscale eddies. Diagnosis of the horizontal force balance reveals that the regions occupied by these coherent structures have significantly large imbalance, and are characterized by large vertical velocity. High density fluid from the heavier side of the front is subducted by the vertical velocity to the bottom of the mixed layer. The process of subduction is illustrated by Lagrangian tracking of fluid particles released at a fixed depth.
NASA Astrophysics Data System (ADS)
Kasamatsu, Kenichi; Sakashita, Kouhei
2018-05-01
We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Turbulence: does vorticity affect the structure and shape of body and fin propulsors?
Webb, P W; Cotel, A J
2010-12-01
Over the past century, many ideas have been developed on the relationships between water flow and the structure and shape of the body and fins of fishes, largely during swimming in relatively steady flows. However, both swimming by fishes and the habitats they occupy are associated with vorticity, typically concentrated as eddies characteristic of turbulent flow. Deployment of methods to examine flow in detail suggests that vorticity impacts the lives of fishes. First, vorticity near the body and fins can increase thrust and smooth variations in thrust that are a consequence of using oscillating and undulating propulsors to swim. Second, substantial mechanical energy is dissipated in eddies in the wake and adaptations that minimize these losses would be anticipated. We suggest that such mechanisms may be found in varying the length of the propulsive wave, stiffening propulsive surfaces, and shifting to using median and paired fins when swimming at low speeds. Eddies in the flow encountered by fishes may be beneficial, but when eddy radii are of the order of 0.25 of the fish's total length, negative impacts occur due to greater difficulties in controlling stability. The archetypal streamlined "fish" shape reduces destabilizing forces for fishes swimming into eddies.
NASA Technical Reports Server (NTRS)
Kerr, R. A.
1983-01-01
In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.
Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly
Waltmann, Curt; Horst, Nathan; Travesset, Alex
2017-10-27
In this work, we present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation.more » We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Daisuke; Center for Optical Research and Education; Juman, Guzhaliayi
It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum andmore » a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.« less
Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.
Waltmann, Curt; Horst, Nathan; Travesset, Alex
2017-11-28
We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.
Fish mouths as engineering structures for vortical cross-step filtration
NASA Astrophysics Data System (ADS)
Sanderson, S. Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah
2016-03-01
Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.
Flagellum synchronization inhibits large-scale hydrodynamic instabilities in sperm suspensions
NASA Astrophysics Data System (ADS)
Schöller, Simon F.; Keaveny, Eric E.
2016-11-01
Sperm in suspension can exhibit large-scale collective motion and form coherent structures. Our picture of such coherent motion is largely based on reduced models that treat the swimmers as self-locomoting rigid bodies that interact via steady dipolar flow fields. Swimming sperm, however, have many more degrees of freedom due to elasticity, have a more exotic shape, and generate spatially-complex, time-dependent flow fields. While these complexities are known to lead to phenomena such as flagellum synchronization and attraction, how these effects impact the overall suspension behaviour and coherent structure formation is largely unknown. Using a computational model that captures both flagellum beating and elasticity, we simulate suspensions on the order of 103 individual swimming sperm cells whose motion is coupled through the surrounding Stokesian fluid. We find that the tendency for flagella to synchronize and sperm to aggregate inhibits the emergence of the large-scale hydrodynamic instabilities often associated with active suspensions. However, when synchronization is repressed by adding noise in the flagellum actuation mechanism, the picture changes and the structures that resemble large-scale vortices appear to re-emerge. Supported by an Imperial College PhD scholarship.
NASA Astrophysics Data System (ADS)
Majumdar, Sayantan; Sood, A. K.
2014-06-01
The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I3/I1 shows a power-law behavior with strain amplitude. In addition, I3/I1 and the elastic component of stress amplitude σ0E show a very prominent maximum at the strain value where the number density (nv) of the Taylor vortices is maximum. A subsequent increase in applied strain (γ) results in the distortions of the vortices and a concomitant decrease in nv, accompanied by a sharp drop in I3 and σ0E. The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of γ corresponding to the peak of I3, similar to that observed for hard-sphere glasses.
NASA Astrophysics Data System (ADS)
Anderson, William; Yang, Jianzhi
2017-11-01
Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.
A PIV Study of Drop-interface Coalescence with Surfactants
NASA Astrophysics Data System (ADS)
Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota
2017-11-01
In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).
Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.
Nowakowski, A F; Ballil, A; Nicolleau, F C G A
2015-08-01
The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.
Visualization and analysis of vortex-turbine intersections in wind farms.
Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I
2013-09-01
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance.
Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos
NASA Astrophysics Data System (ADS)
Liu, Li-li
2017-04-01
Based on the cosmological hydrodynamic simulations, we investigate the correlations between the spin, velocity shear and vorticity in dark matter halos, as well as the relationship between the baryonic matter and the dark matter. We find that (1) the difference between the vorticity of baryonic matter and that of dark matter is evident on the scales of < 0.2 h-1 Mpc; (2) the vorticity of baryonic matter exhibits a stronger correlation with the tensor of velocity shear than the vorticity of dark matter does; and (3) the spinning direction of small-mass dark matter halos tends to be parallel to the direction of their host filaments, while the spinning direction of massive dark matter halos tends to be perpendicular to the direction of their host filaments, and the intensity of this kind correlation depends on the size of simulation box, and the simulation accuracy. These factors may cause the relationship between the the spins of dark matter halos and those of galaxies to be complicated, and affect the correlation between the galaxy spins and the nearby large-scale structures.
NASA Astrophysics Data System (ADS)
Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey
2017-11-01
In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.
NASA Astrophysics Data System (ADS)
Sokolov, Andrey; Nishiguchi, Daiki; Aronson, Igor
Living systems represented by ensembles of motile organisms demonstrate a transition from a chaotic motion to a highly ordered state. Examples of such living systems include suspensions of bacteria, schools of fish, flocks of birds and even crowds of people. In spite of significant differences in interacting mechanisms and motion scales, ordered living systems have many similarities: short-range alignment of organism, turbulent-like motion, emergence of large-scale flows and dynamic vortices. In this work, we rectify a turbulent dynamics in suspensions of swimming bacteria Bacillus subtilis by imposing periodical constraints on bacterial motion. Bacteria, swimming between periodically placed microscopic vertical pillars, may self-organize in a stable lattice of vortices. We demonstrate the emergence of a strong anti-ferromagnetic order of bacterial vortices in a rectangular lattice of pillars. Hydrodynamic interaction between vortices increases the stability of an emerged pattern. The highest stability of vortices in the anti-ferromagnetic lattice and the fastest vortices speed were observed in structures with the periods comparable with a correlation length of bacterial unconstrained motion. A.S and I.A were supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under contract No. DE AC02-06CH11357 and D.N was supported by ALPS and JSPS Grant No. 26-9915.
NASA Astrophysics Data System (ADS)
Hamimi, Z.; Kassem, O. M. K.; El-Sabrouty, M. N.
2015-09-01
The rotation of rigid objects within a flowing viscous medium is a function of several factors including the degree of non-coaxiality. The relationship between the orientation of such objects and their aspect ratio can be used in vorticity analyses in a variety of geological settings. Method for estimation of vorticity analysis to quantitative of kinematic vorticity number (Wm) has been applied using rotated rigid objects, such as quartz and feldspar objects. The kinematic vorticity number determined for high temperature mylonitic Abt schist in Al Amar area, extreme eastern Arabian Shield, ranges from ˜0.8 to 0.9. Obtained results from vorticity and strain analyses indicate that deformation in the area deviated from simple shear. It is concluded that nappe stacking occurred early during an earlier thrusting event, probably by brittle imbrications. Ductile strain was superimposed on the nappe structure at high-pressure as revealed by a penetrative subhorizontal foliation that is developed subparallel to tectonic contacts versus the underlying and overlying nappes. Accumulation of ductile strain during underplating was not by simple shear but involved a component of vertical shortening, which caused the subhorizontal foliation in the Al Amar area. In most cases, this foliation was formed concurrently with thrust sheets imbrications, indicating that nappe stacking was associated with vertical shortening.
Calculation of wake vortex structures in the near-field wake behind cruising aircraft
NASA Astrophysics Data System (ADS)
Ehret, T.; Oertel, H.
Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.
Rapid expulsion of microswimmers by a vortical flow
Sokolov, Andrey; Aranson, Igor S.
2016-03-23
Interactions of microswimmers with their fluid environment are exceptionally complex. Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. Here we report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a vortical flow created by a rotating microparticle. We observe a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a vortical structure of the flow rather than intrinsic random fluctuationsmore » of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model reveals that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed light on bacteria-flow interactions.« less
Chaotic vortex filaments in a Bose–Einstein condensate and in superfluid helium
NASA Astrophysics Data System (ADS)
Nemirovskii, S. K.
2018-05-01
A statement of the quantum turbulence problem in both a Bose–Einstein condensate (BEC) and superfluid helium is formulated. In superfluid helium use is made of a so-called vortex filament method, in which quantum vortices are represented by stringlike objects, i.e. vortex lines. The dynamics of the vortex lines is determined by deterministic equations of motion, supplemented by random reconnections. Unlike He II, the laws of the dynamics of quantum vortices in BEC are based on the nonlinear Schrödinger equation. This makes it possible to obtain a microscopic description of the collision of vortices, the structure of a vortex filament, etc. A comparative analysis of these complementary approaches is carried out. It is shown that there are some features that do not automatically transfer the results obtained for BEC to vortices in He II and vice versa.
On the inlet vortex system. [preventing jet engine damage caused by debris pick-up
NASA Technical Reports Server (NTRS)
Bissinger, N. C.; Braun, G. W.
1974-01-01
The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
1991-01-01
Computations from two Navier-Stokes codes, NSS and F3D, are presented for a tangent-ogive-cylinder body at high angle of attack. Features of this steady flow include a pair of primary vortices on the leeward side of the body as well as secondary vortices. The topological and physical plausibility of this vortical structure is discussed. The accuracy of these codes are assessed by comparison of the numerical solutions with experimental data. The effects of turbulence model, numerical dissipation, and grid refinement are presented. The overall efficiency of these codes are also assessed by examining their convergence rates, computational time per time step, and maximum allowable time step for time-accurate computations. Overall, the numerical results from both codes compared equally well with experimental data, however, the NSS code was found to be significantly more efficient than the F3D code.
Vorticity scaling and intermittency in drift-interchange plasma turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dura, P. D.; Hnat, B.; Robinson, J.
2012-09-15
The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result ismore » of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.« less
Vorticity equation for MHD fast waves in geospace environment
NASA Technical Reports Server (NTRS)
Yamauchi, M.; Lundin, R.; Lui, A. T. Y.
1993-01-01
The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.
Behavior of streamwise rib vortices in a three-dimensional mixing layer
NASA Technical Reports Server (NTRS)
Lopez, J. M.; Bulbeck, C. J.
1992-01-01
The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuramitsu, Y.; Moritaka, T.; Mizuta, A.
2016-09-10
We report experimental results on Kelvin–Helmholtz (KH) instability and resultant vortices in laser-produced plasmas. By irradiating a double plane target with a laser beam, asymmetric counterstreaming plasmas are created. The interaction of the plasmas with different velocities and densities results in the formation of asymmetric shocks, where the shear flow exists along the contact surface and the KH instability is excited. We observe the spatial and temporal evolution of plasmas and shocks with time-resolved diagnostics over several shots. Our results clearly show the evolution of transverse fluctuations, wavelike structures, and circular features, which are interpreted as the KH instability andmore » resultant vortices. The relevant numerical simulations demonstrate the time evolution of KH vortices and show qualitative agreement with experimental results. Shocks, and thus the contact surfaces, are ubiquitous in the universe; our experimental results show general consequences where two plasmas interact.« less
Dynamics and Morphology of Saturn’s North Polar Region During Cassini’s Final Year
NASA Astrophysics Data System (ADS)
Blalock, John J.; Sayanagi, Kunio M.; Ingersoll, Andrew P.; Dyudina, Ulyana A.; Ewald, Shawn; McCabe, Ryan M.; Gunnarson, Jacob; Garland, Justin; Gallego, Angelina
2017-10-01
We present an analysis of Saturn’s north polar region utilizing Cassini ISS images captured in visible and near-infrared wavelengths during late 2016 and 2017, including images captured during Cassini’s Grand Finale orbits. To measure the wind field in the region, we utilize the two-dimensional correlation imaging velocimetry (CIV) technique. We also calculate the relative vorticity and divergence from the wind field. To detect changes in the dynamics, we compare measurements of the wind, relative vorticity, and divergence in 2012 and 2013 with those from 2016/2017. We also compare cloud reflectivity between 2012/2013 and 2016/2017 in images that show the north pole under similar illumination conditions. To detect changes in cloud reflectivity, we utilize a Minnaert correction to calculate the zonal mean reflectivity as a function of latitude. Furthermore, we compare the winds and cloud reflectivity at several wavelengths in order to look for changes occurring at different altitudes. Our results indicate that while the dynamics of the north polar region have remained relatively stable, there have been significant morphology changes that have resulted in dramatic color changes. We hypothesize that these changes are a result of the seasonal cycle and linked to the increased production of photochemical hazes in the atmosphere. Our work has been supported by NASA PATM NNX14AK07G, NSF AAG 1212216, and NASA NESSF NNX15AQ70H.
Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices
NASA Astrophysics Data System (ADS)
Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration
2016-11-01
Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.
NASA Astrophysics Data System (ADS)
Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen
2018-04-01
Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.
Unsteady numerical simulation of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Javadi, Ardalan; Nilsson, Håkan
2014-03-01
The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.
Long-lived planetary vortices and their evolution: Conservative intermediate geostrophic model.
Sutyrin, Georgi G.
1994-06-01
Large, long-lived vortices, surviving during many turnaround times and far longer than the dispersive linear Rossby wave packets, are abundant in planetary atmospheres and oceans. Nonlinear effects which prevent dispersive decay of intense cyclones and anticyclones and provide their self-propelling propagation are revised here using shallow water equations and their balanced approximations. The main physical mechanism allowing vortical structures to be long-lived in planetary fluid is the quick fluid rotation inside their cores which prevents growth in the amplitude of asymmetric circulation arising due to the beta-effect. Intense vortices of both signs survive essentially longer than the linear Rossby wave packet if their azimuthal velocity is much larger than the Rossby wave speed. However, in the long-time evolution, cyclonic and anticyclonic vortices behave essentially differently that is illustrated by the conservative intermediate geostrophic model. Asymmetric circulation governing vortex propagation is described by the azimuthal mode m=1 for the initial value problem as well as for steadily propagating solutions. Cyclonic vortices move west-poleward decaying gradually due to Rossby wave radiation while anticyclonic ones adjust to non-radiating solitary vortices. Slow weakening of an intense cyclone with decreasing of its size and shrinking of the core is described assuming zero azimuthal velocity outside the core while drifting poleward. The poleward tendency of the cyclone motion relative to the stirring flow corresponds to characteristic trajectories of tropical cyclones in the Earth's atmosphere. The asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among long-lived vortices in the atmospheres of the giant planets and also among intrathermoclinic eddies in the ocean.
Spatial and Time Dynamics of Non-Linear Vortices in Plasma Lens for High-Current Ion Beam Focusing
NASA Astrophysics Data System (ADS)
Goncharov, Alexei A.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Tretyakov, Vitalij N.
2002-11-01
It is known from numerical simulation (see, for example, [1]) and from experiments (see, for example, [2]), that an electron density bunches as discrete vortices are long - living structures in vacuum. However, in laboratory experiments [2] it has been shown that the vortices are changed faster, when they are submersed in electrons, distributed around them. The charged plasma lens intended for a focussing of high-current ion beams, has the same crossed configuration of a radial electrical and longitudinal magnetic field [3], as only electron plasma. In this lens the vortical turbulence is excited [3]. The vortex - bunch and vortex - hole are rotated in the inverse directions in system of their rest. The instability development in initially homogeneous plasma causes that the vortices are excited by pairs. Namely, if the vortex - bunch of electrons is generated, near the vortex - hole of electrons is also generated. It is shown, that in nonuniform plasma the vortices behave is various in time. Namely, the vortex - bunch goes to area of larger electron density, and the vortex - hole goes to area of smaller electron density. The speed of the vortex - hole is less than speed of the vortex - bunch. It is shown, that the electron vortices, generated in the plasma lens, can result in to formation of spiral distribution of electron density. The physical mechanism of coalescence of electron vortices - bunches is proposed. 1.Driscoll C.F. et al. Plasma Phys. Contr. Fus. Res. 3 (1989) 507. 2.Kiwamoto Y. et al. Non-neutral plasma physics. Princeton. 1999. P. 99-105. 3.Goncharov A. et al. Plasma Phys. Rep. 20 (1994) 499.
NASA Astrophysics Data System (ADS)
Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.
2011-12-01
Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single turbine. The tip vortices entrain the high speed free-stream fluids and subsequently replenish the loss of momentum into the wake. Such a mechanism is greatly mitigated in the multiple-turbine scenarios. On-going analysis is to elucidate the generation, evolution and dissipation of the tip vortices in the various configurations.
Vortex-based spatiotemporal characterization of nonlinear flows
NASA Astrophysics Data System (ADS)
Byrne, Gregory A.
Although the ubiquity of vortices in nature has been recognized by artists for over seven centuries, it was the work of artist and scientist Leonardo da Vinci that provided the monumental transition from an aesthetic form to a scientific tool. DaVinci used vortices to describe the motions he observed in air currents, flowing water and blood flow in the human heart. Five centuries later, the Navier-Stokes equations allow us to recreate the swirling motions of fluid observed in nature. Computational fluid dynamic (CFD) simulations have provided a lens through which to study the role of vortices in a wide variety of modern day applications. The research summarized below represents an effort to look through this lens and bring into focus the practical use of vortices in describing nonlinear flows. Vortex-based spatiotemporal characterizations are obtained using two specific mathematical tools: vortex core lines (VCL) and proper orthogonal decomposition (POD). By applying these tools, we find that vortices continue to provide new insights in the realm of biofluids, urban flows and the phase space of dynamical systems. The insights we have gained are described in this thesis. Our primary focus is on biofluids. Specifically, we seek to gain new insights into the connection between vortices and vascular diseases in order to provide more effective methods for clinical diagnosis and treatment. We highlight several applications in which VCL and POD are used to characterize the flow conditions in a heart pump, identify stenosis in carotid arteries and validate numerical models against PIV-based experimental data. Next, we quantify the spatial complexity and temporal stability of hemodynamics generated by a database of 210 patient-specific aneurysm geometries. Visual classifications of the hemodynamics are compared to the automated, quantitative classifications. The quantities characterizing the hemodynamics are then compared to clinical data to determine conditions that are most conducive to rupture. Flows that form multiple vortices and undergo large-scale structural changes over the cardiac cycle are found to pose the most significant risk to patients. Concepts from dynamical systems are then applied to explain the formation of large-scale vortical flow structures in cerebral aneurysms. This is done by investigating the role of critical points along vortex core lines. We provide evidence that critical points are created and destroyed in saddle-node bifurcations during the cardiac cycle and that these bifurcations are responsible for changing the large-scale flow structure inside the aneurysm. Uncovering and understanding these mechanisms is the first step towards individualized treatments designed to suppress the creation of specific blood flow patterns that are known to present a risk of rupture. A simple differential dynamical system is used to illustrate the dynamical systems related concepts. Two examples illustrating the use of vortex-based methods in other domains are highlighted at the end of this work. The first example uses realistic CFD modeling of air flow through subway tunnels and stations to study the spread of accidental or planned release of airborne chemical or biological contaminants. Quantities from the vortex-based characterizations are shown to provide clear signatures that correlate to the dispersion and transport of pollutants though the stations. The second example examines swirling flow structures in the phase space of dynamical systems. Descriptions of vortices and their properties are extended to higher dimensions within the special class of differential dynamical systems.
Physical modeling of vortical cross-step flow in the American paddlefish, Polyodon spathula
Brooks, Hannah; Haines, Grant E.; Lin, M. Carly
2018-01-01
Vortical cross-step filtration in suspension-feeding fish has been reported recently as a novel mechanism, distinct from other biological and industrial filtration processes. Although crossflow passing over backward-facing steps generates vortices that can suspend, concentrate, and transport particles, the morphological factors affecting this vortical flow have not been identified previously. In our 3D-printed models of the oral cavity for ram suspension-feeding fish, the angle of the backward-facing step with respect to the model’s dorsal midline affected vortex parameters significantly, including rotational, tangential, and axial speed. These vortices were comparable to those quantified downstream of the backward-facing steps that were formed by the branchial arches of preserved American paddlefish in a recirculating flow tank. Our data indicate that vortices in cross-step filtration have the characteristics of forced vortices, as the flow of water inside the oral cavity provides the external torque required to sustain forced vortices. Additionally, we quantified a new variable for ram suspension feeding termed the fluid exit ratio. This is defined as the ratio of the total open pore area for water leaving the oral cavity via spaces between branchial arches that are not blocked by gill rakers, divided by the total area for water entering through the gape during ram suspension feeding. Our experiments demonstrated that the fluid exit ratio in preserved paddlefish was a significant predictor of the flow speeds that were quantified anterior of the rostrum, at the gape, directly dorsal of the first ceratobranchial, and in the forced vortex generated by the first ceratobranchial. Physical modeling of vortical cross-step filtration offers future opportunities to explore the complex interactions between structural features of the oral cavity, vortex parameters, motile particle behavior, and particle morphology that determine the suspension, concentration, and transport of particles within the oral cavity of ram suspension-feeding fish. PMID:29561890
Analysis of 3D vortex motion in a dusty plasma
NASA Astrophysics Data System (ADS)
Mulsow, M.; Himpel, M.; Melzer, A.
2017-12-01
Dust clusters of about 50-1000 particles have been confined near the sheath region of a gaseous radio-frequency plasma discharge. These compact clusters exhibit a vortex motion which has been reconstructed in full three dimensions from stereoscopy. Smaller clusters are found to show a competition between solid-like cluster structure and vortex motion, whereas larger clusters feature very pronounced vortices. From the three-dimensional analysis, the dust flow field has been found to be nearly incompressible. The vortices in all observed clusters are essentially poloidal. The dependence of the vorticity on the cluster size is discussed. Finally, the vortex motion has been quantitatively attributed to radial gradients of the ion drag force.
NASA Astrophysics Data System (ADS)
Childress, Stephen; Gilbert, Andrew D.
2018-02-01
A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as realized in the eroding hairpin excludes a finite time blowup for the corresponding Navier-Stokes model.
NASA Technical Reports Server (NTRS)
Deland, R. J.
1974-01-01
The selection process for sector structure boundary crossings used in vorticity correlation studies is examined and the possible influence of ascending planetary scale waves is assessed. It is proposed that some of the observed correlations between geomagnetic and meteorological variations may be due to meteorological effects on the geometric variables, rather than due to common solar origin.
Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amerstorfer, U. V.; Erkaev, N. V.; Institute of Computational Modelling, 660036 Krasnoyarsk
2010-07-15
Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices aremore » about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus.« less
Transient interaction between a reaction control jet and a hypersonic crossflow
NASA Astrophysics Data System (ADS)
Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan
2018-04-01
This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.
Vortices in rotating superfluid 3He.
Lounasmaa, O V; Thuneberg, E
1999-07-06
In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe.
Vortices in rotating superfluid 3He
Lounasmaa, Olli V.; Thuneberg, Erkki
1999-01-01
In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895
NASA Astrophysics Data System (ADS)
Hence, Deanna A.; Houze, Robert A.
2008-08-01
Airborne Doppler radar data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) show the convective-scale air motions embedded in the principal rainbands of hurricanes Katrina and Rita. These embedded convective cells have overturning updrafts and low-level downdrafts (originating at 2-4 km) that enter the rainband on its radially outward side and cross over each other within the rainband as well as a strong downdraft emanating from upper levels (6+ km) on the radially inward side. These vertical motion structures repeat from one convective cell to another along each rainband. The resulting net vertical mass transport is upward in the upwind portion of the band and greatest in the middle sector of the principal rainband, where the updraft motions contribute generally to an increase of potential vorticity below the 3-4 km level. Because the convective cells in the middle sector are systematically located radially just inside the secondary horizontal wind maximum (SHWM), the local increase in vorticity implied by the convective mass transport is manifest locally as an increase in the strength of the SHWM at midlevels (˜4 km). The overturning updrafts of the convective cells tilt, stretch, and vertically transport vorticity such that the convergence of the vertical flux of vorticity strengthens the vorticity anomaly associated with the SHWM. This process could strengthen the SHWM by several meters per second per hour, and may explain how high wave number convective-scale features can influence a low wave number feature such as the principal rainband, and subsequently influence the primary vortex.
NASA Astrophysics Data System (ADS)
Grass, A. J.; Stuart, R. J.; Mansour-Tehrani, M.
1991-01-01
The current status of knowledge regarding coherent vortical structures in turbulent boundary layers and their role in turbulence generation are reviewed. The investigations reported in the study concentrate attention on rough-wall flows prevailing in the geophysical environment and include an experiment determining the three-dimensional form of the turbulence structures linked to the ejection and inrush events observed over rough walls and an experiment concerned with measuring the actual spanwise scale of the near-wall structures for boundary conditions ranging from hydrodynamically smooth to fully rough. It is demonstrated that horseshoe vortical structures are present and play an important role in rough-wall flows and they increase in scale with increasing wall distance, while a dominant spanwise wavelength occurs in the instantaneous cross-flow distribution of streamwise velocity close to the rough wall.
A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation
NASA Astrophysics Data System (ADS)
Chapelier, J.-B.; Wasistho, B.; Scalo, C.
2018-04-01
This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ < 1 which corresponds to a small-scale spectral broadening. The SGS dissipation is then fully activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.
TURNS - A free-wake Euler/Navier-Stokes numerical method for helicopter rotors
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Baeder, J. D.
1993-01-01
Computational capabilities of a numerical procedure, called TURNS (transonic unsteady rotor Navier-Stokes), to calculate the aerodynamics and acoustics (high-speed impulsive noise) out to several rotor diameters are summarized. The procedure makes it possible to obtain the aerodynamics and acoustics information in one single calculation. The vortical wave and its influence, as well as the acoustics, are captured as part of the overall flowfield solution. The accuracy and suitability of the TURNS method is demonstrated through comparisons with experimental data.
Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices
NASA Technical Reports Server (NTRS)
Bassom, Andrew; Hall, Philip
1990-01-01
The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.
NASA Astrophysics Data System (ADS)
Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.
2014-10-01
Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.
Interaction of a vortex ring and a bubble
NASA Astrophysics Data System (ADS)
Jha, Narsing K.; Govardhan, Raghuraman N.
2014-11-01
Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.
Elliptical Instability of Rotating Von Karman Street
NASA Astrophysics Data System (ADS)
Stegner, A.; Pichon, T.; Beunier, M.
Clouds often reveal a meso-scale vortex shedding in the wake of mountainous islands. Unlike the classical bi-dimensional Von-Karman street, these observed vortex street are affected by the earth rot ation and vertical stratification. Theses effects could induce a selective destabilization of anticyclonic vortices. It is well known that inertial instability (also called centrifugal instability) induce a three- dimensional destabilization of anticyclonic structures when the absolute vorticity is larger than the local Coriolis parameter. However, we have shown, by the mean of laboratory experiments, that it is a different type of instability which is mainly responsible for asymmetric rotating Von-Karman street. A serie of experiments were performed to study the wake of a cylinder in a rotating fluid, at medium Reynolds number and order one Rossby number. We have shown that the vertical structure of unstable anticyclonic vortices is characteristic of an elliptical instability. Besides, unlike the inertial instability, the vertical unstable wavelength depends on the Rossby number.
Identification and tracking of hairpin vortex auto-generation in turbulent wall-bounded flow
NASA Astrophysics Data System (ADS)
Huang, Yangzi; Green, Melissa
2016-11-01
Hairpin vortices have been widely accepted as component structures of turbulent boundary layers. Their properties (size, vorticity, energy) and dynamic phenomena (origin, growth, breakdown) have been shown to correlate to the complex, multi-scaled turbulent motions observed in both experiments and simulations. As established in the literature, the passage of a hairpin vortex creates a wall-normal ejection of fluid, which encounters the high-speed freestream resulting in near-wall shear and increased drag. A previously generated simulation of an isolated hairpin vortex is used to study the auto-generation of a secondary vortex structure. Eulerian methods such as the Q criterion and Γ2 function, as well as Lagrangian methods are used to visualize the three-dimensional hairpin vortices and the auto-generation process. The circulation development and wall-normal location of both primary and secondary hairpin heads are studied to determine if there is a correlation between the strength and height of the primary hairpin vortex with the secondary hairpin vortex auto-generation.
Evolution of finite-amplitude localized vortices in planar homogeneous shear flows
NASA Astrophysics Data System (ADS)
Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob
2017-02-01
An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.
A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere
NASA Astrophysics Data System (ADS)
del Río-Gaztelurrutia, T.; Sánchez-Lavega, A.; Antuñano, A.; Legarreta, J.; García-Melendo, E.; Sayanagi, K. M.; Hueso, R.; Wong, M. H.; Pérez-Hoyos, S.; Rojas, J. F.; Simon, A. A.; de Pater, I.; Blalock, J.; Barry, T.
2018-03-01
The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms-1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms-1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2-3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.
Motion of a cylinder adjacent to a free-surface: flow patterns and loading
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, J.-C.; Unal, M. F.; Rockwell, D.
The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence.
Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.
Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth
2013-02-13
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance.
A new diagnostic of stratospheric polar vortices
NASA Astrophysics Data System (ADS)
Gimeno, Luis; de La Torre, Laura; Nieto, Raquel; Gallego, David; Ribera, Pedro; García-Herrera, Ricardo
2007-11-01
We studied the main climatological features of the Arctic and Antarctic stratospheric vortices, using a new approach based on defining the vortex edge as the 50 hPa geostrophic streamline of maximum average velocity at each hemisphere. Given the use of NCAR-NCEP reanalysis data, it was thought advisable to limit the study to the periods 1958 2004 for the Northern Hemisphere (NH) and 1979 2004 for the Southern Hemisphere (SH). After describing the method and testing sample results with those from other approaches, we analysed the climatological means and trends of the four most distinctive characteristics of the vortices: average latitude, strength, area, and temperature. In general terms, our results confirm most of what is already known about the stratospheric vortices from previous studies that used different data and approaches. In addition, the new methodology provides some interesting new quantifications of the dominant wavenumber and its interannual variability, as well as the principal variability modes through an empirical orthogonal function analysis that was performed directly over the vortex trajectories. The main drawbacks of the methodology, such as noticeable problems characterising highly disturbed stratospheric structures as multiple or off-pole vortices, are also identified.
Interaction of monopoles, dipoles, and turbulence with a shear flow
NASA Astrophysics Data System (ADS)
Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.
2016-09-01
Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.
Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.
Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P
2015-08-01
Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.
Correlation between vortex structures and unsteady loads for flapping motion in hover
NASA Astrophysics Data System (ADS)
Jardin, Thierry; Chatellier, Ludovic; Farcy, Alain; David, Laurent
2009-10-01
During the past decade, efforts were made to develop a new generation of unmanned aircrafts, qualified as Micro-Air Vehicles. The particularity of these systems resides in their maximum dimension limited to 15 cm, which, in terms of aerodynamics, corresponds to low Reynolds number flows ( Re ≈ 102 to 104). At low Reynolds number, the concept of flapping wings seems to be an interesting alternative to the conventional fixed and rotary wings. Despite the fact that this concept may lead to enhanced lift forces and efficiency ratios, it allows hovering coupled with a low-noise generation. Previous studies (Dickinson et al. in Science 284:1954-1960, 1999) revealed that the flow engendered by flapping wings is highly vortical and unsteady, inducing significant temporal variations of the loads experienced by the airfoil. In order to enhance the aerodynamic performance of such flapping wings, it is essential to give further insight into the loads generating mechanisms by correlating the spatial and temporal evolution of the vortical structures together with the time-dependent lift and drag. In this paper, Time Resolved Particle Image Velocimetry is used as a basis to evaluate both unsteady forces and vortical structures generated by an airfoil undergoing complex motion (i.e. asymmetric flapping flight), through the momentum equation approach and a multidimensional wavelet-like vortex parameterization method, respectively. The momentum equation approach relies on the integration of flow variables inside and around a control volume surrounding the airfoil (Noca et al. in J Fluids Struct 11:345-350, 1997; Unal et al. in J Fluids Struct 11:965-971, 1997). Besides the direct link performed between the flow behavior and the force mechanisms, the load characterization is here non-intrusive and specifically convenient for flapping flight studies thanks to its low Reynolds flows’ sensitivity and adaptability to moving bodies. Results are supported by a vortex parameterization which evaluates the circulation of the multiple vortices generated in such complex flows. The temporal evolution of the loads matches the flow behavior and hence reveals the preponderant inertial force component and that due to vortical structures.
NASA Technical Reports Server (NTRS)
Lessard, Victor R.
1993-01-01
Computations of three dimensional vortical flows over a generic High Speed Civil Transport (HSCT) configuration with an aspect ratio of 3.04 are performed using a thin-layer Navier-Stokes solver. The HSCT cruise configuration is modeled without leading or trailing edge flap deflections and without engine nacelles. The flow conditions, which correspond to tests done in the NASA Langley 8-Foot Transonic Pressure Tunnel (TPT), are a subsonic Mach number of 0.3 and Reynolds number of 4.4 million for a range-of-attack (-.23 deg to 17.78 deg). The effects of the farfield boundary location with respect to the body are investigated. The boundary layer is assumed turbulent and simulated using an algebraic turbulence model. The key features of the vortices and their interactions are captured. Grid distribution in the vortex regions is critical for predicting the correct induced lift. Computed forces and surface pressures compare reasonably well with the experimental TPT data.
Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.
2015-01-01
Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598
Investigation of coherent structures in a superheated jet using decomposition methods
NASA Astrophysics Data System (ADS)
Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar
2016-11-01
A superheated turbulent jet, commonly encountered in many engineering flows, is complex two phase mixture of liquid and vapor. The superposition of temporally and spatially evolving coherent vortical motions, known as coherent structures (CS), govern the dynamics of such a jet. Both POD and DMD are employed to analyze such vortical motions. PIV data is used in conjunction with the decomposition methods to analyze the CS in the flow. The experiments were conducted using water emanating into a tank containing homogeneous fluid at ambient condition. Three inlet pressure were employed in the study, all at a fixed inlet temperature. 90% of the total kinetic energy in the mean flow is contained within the first five modes. The scatterplot for any two POD coefficients predominantly showed a circular distribution, representing a strong connection between the two modes. We speculate that the velocity and vorticity contours of spatial POD basis functions show presence of K-H instability in the flow. From DMD, eigenvalues away from the origin is observed for all the cases indicating the presence of a non-oscillatory structure. Spatial structures are also obtained from DMD. The authors are grateful to Confederation of Indian Industry and General Electric India Pvt. Ltd. for partial funding of this project.
The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael
2015-11-01
Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.
Shedding of dual structures in the wake of a surface-mounted low aspect ratio cone
NASA Astrophysics Data System (ADS)
Chen, Zixiang; Martinuzzi, Robert J.
2018-04-01
The periodic shedding of vortex pairs in the turbulent wake of a surface-mounted right cone of aspect ratio 0.867 protruding a thin turbulent boundary layer is investigated experimentally. A phase-averaged volumetric velocity field is reconstructed from planar stereoscopic particle image velocimetry. During a typical (phase-averaged) shedding cycle, counter-rotating base vortices alternately form. These are tilted and stretched to merge with stream-wise tip vortices. The merged structure sheds and is convected downstream. A synthesis of earlier observations suggests that a similar shedding process exists for other low aspect ratio tapered geometries and is more complex than the shedding patterns observed for cantilevered cylinders, despite similarities of the mean flow field structure.
Infrared Imaging Of Flows Seeded With SF6
NASA Technical Reports Server (NTRS)
Manuel, Gregory S.; Daryabeigi, Kamran; Alderfer, David W.; Obara, Clifford J.
1993-01-01
Novel technique enables repeated measurements of flow patterns during flight. Wing-tip vorticity studied in flight by observing infrared emissions from SF6 gas entrained in wing-tip flow. System makes vortical flows visible throughout all altitude and speed ranges of all subsonic aircraft. Also useful for transonic and supersonic speeds. Primary application is testing of aircraft in flight, also proves useful in testing fast land vehicles and structures or devices subject to strong winds.
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-01-01
Summary Mosquitoes exhibit unique wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz) and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report wing kinematics and solve the full Navier-Stokes equations using computational fluid dynamics with overset grids and validate our results with in vivo flow measurements. We show that, while familiar separated flow patterns are used by mosquitoes, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described flying animal. In total, there are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a novel form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half stroke, and are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well-suited to high-aspect ratio mosquito wings. PMID:28355184
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
NASA Astrophysics Data System (ADS)
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-03-01
Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.
A pair of new moisture-dynamic diagnostic parameters for heavy rain location
NASA Astrophysics Data System (ADS)
Yuan, Kai; Zhu, Zhiwei; Li, Ming
2018-06-01
In this study, the regional persistent heavy rain process occurred in the middle and lower reaches of the Yangtze River valley from 30 June 2016 to 7 July 2016 is analyzed. We find that the pure dynamic parameters [e.g., vorticity ( V) and divergence ( D)] and two-dimensional moisture-dynamic parameters [e.g., moist vorticity ( MV), moist divergence ( MD)] have difficulty in capturing the rainfall location during such a critical process. Given the poor performance of these traditional parameters, a pair of new parameters [namely, one-dimensional moist vorticity ( ODMV) and one-dimensional moist divergence ( ODMD)] based on low-level jet is proposed for diagnosing heavy rain location. The results show that (1) ODMV and ODMD have better relations with rain belt in terms of spatial distribution. Precipitation occurs in positive (negative) region of ODMV ( ODMD), and heavy rainfall accurately locates in the positive (negative) center of ODMV ( ODMD); (2) ODMV and ODMD also have good correlation with the precipitation in terms of temporal variation (significant at the 99% confidence level). When ODMV ( ODMD) is in strong positive (negative) phase, precipitation is large, and vice versa; (3) the threat score of ODMV and ODMD for the areal-mean rainfall is improved by 119% and 16%, respectively, compared to V/ D and MV/ MD. It is anticipated that the proposed new parameters would facilitate the skills of diagnosing and forecasting the heavy rainfall.
NASA Astrophysics Data System (ADS)
Wong, Jaime G.; Rosi, Giuseppe A.; Rouhi, Amirreza; Rival, David E.
2017-10-01
Particle tracking velocimetry (PTV) produces high-quality temporal information that is often neglected when computing spatial gradients. A method is presented here to utilize this temporal information in order to improve the estimation of spatial gradients for spatially unstructured Lagrangian data sets. Starting with an initial guess, this method penalizes any gradient estimate where the substantial derivative of vorticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore, given an initial guess, this method can proceed on an individual pathline without any further reference to neighbouring pathlines. The equivalence of the substantial derivative and vortex stretching/tilting is based on the vorticity transport equation, where viscous diffusion is neglected. By minimizing the residual of the vorticity-transport equation, the proposed method is first tested to reduce error and noise on a synthetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed method is applied to high-density experimental data collected with `Shake-the-Box' PTV, noise within the spatial gradients is significantly reduced. In the particular test case investigated here of an accelerating circular plate captured during a single run, the method acts to delineate the shear layer and vortex core, as well as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable without the use of ensemble averaging. The proposed method shows promise for improving PTV measurements that require robust spatial gradients while retaining the unstructured Lagrangian perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, P.; De Moortel, I.; Van Doorsselaere, T.
2016-10-20
In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfvén waves. Due to its localized nature, direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction are recent observations that indicate that in the low-amplitude regime such transverse MHD waves can also appear decay-less, a still unsolved phenomenon. Recent numerical work has shown that Kelvin–Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work,more » we combine 3D MHD simulations and forward modeling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant absorption. Such an effect is especially clear in emission lines forming at temperatures that capture the boundary dynamics rather than the core, and reflects the low damping character of the local azimuthal Alfvén waves resonantly coupled to the kink mode. Due to phase mixing, the detected period can vary depending on the emission line, with those sensitive to the boundary having shorter periods than those sensitive to the loop core. This allows us to estimate the density contrast at the boundary.« less
Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auslaender, M.
2010-05-25
Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less
Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyriakopoulos, Nikos; Koukouloyannis, Vassilis; Skokos, Charalampos
2014-06-01
Motivated by recent experimental works, we investigate a system of vortex dynamics in an atomic Bose-Einstein condensate (BEC), consisting of three vortices, two of which have the same charge. These vortices are modeled as a system of point particles which possesses a Hamiltonian structure. This tripole system constitutes a prototypical model of vortices in BECs exhibiting chaos. By using the angular momentum integral of motion, we reduce the study of the system to the investigation of a two degree of freedom Hamiltonian model and acquire quantitative results about its chaotic behavior. Our investigation tool is the construction of scan mapsmore » by using the Smaller ALignment Index as a chaos indicator. Applying this approach to a large number of initial conditions, we manage to accurately and efficiently measure the extent of chaos in the model and its dependence on physically important parameters like the energy and the angular momentum of the system.« less
Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sandham, N. D.; Djomehri, M. J.
1998-01-01
An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Oisson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.
Low Dissipative High Order Shock-Capturing Methods using Characteristic-Based Filters
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sandham, N. D.; Djomehri, M. J.
1998-01-01
An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Olsson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.
Mechanism of polymer drag reduction using a low-dimensional model.
Roy, Anshuman; Morozov, Alexander; van Saarloos, Wim; Larson, Ronald G
2006-12-08
Using a retarded-motion expansion to describe the polymer stress, we derive a low-dimensional model to understand the effects of polymer elasticity on the self-sustaining process that maintains the coherent wavy streamwise vortical structures underlying wall-bounded turbulence. Our analysis shows that at small Weissenberg numbers, Wi, elasticity enhances the coherent structures. At higher Wi, however, polymer stresses suppress the streamwise vortices (rolls) by calming down the instability of the streaks that regenerates the rolls. We show that this behavior can be attributed to the nonmonotonic dependence of the biaxial extensional viscosity on Wi, and identify it as the key rheological property controlling drag reduction.
1979-07-03
Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.
NASA Astrophysics Data System (ADS)
Onishchenko, O. G.; Pokhotelov, O. A.; Astafieva, N. M.
2008-06-01
The review deals with a theoretical description of the generation of zonal winds and vortices in a turbulent barotropic atmosphere. These large-scale structures largely determine the dynamics and transport processes in planetary atmospheres. The role of nonlinear effects on the formation of mesoscale vortical structures (cyclones and anticyclones) is examined. A new mechanism for zonal wind generation in planetary atmospheres is discussed. It is based on the parametric generation of convective cells by finite-amplitude Rossby waves. Weakly turbulent spectra of Rossby waves are considered. The theoretical results are compared to the results of satellite microwave monitoring of the Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Belkin, Maxim; Snezhko, Alexey; Aranson, Igor
2007-03-01
Nontrivially ordered dynamic self-assembled snake-like structures are formed in an ensemble of magnetic microparticles suspended over a fluid surface and energized by an external alternating magnetic field. Formation and existence of such structures is always accompanied by flows which form vortices. These large-scale vortices can be very fast and are crucial for snake formation/destruction. We introduce theoretical model based on Ginzburg-Landau equation for parametrically excited surface waves coupled to conservation law for particle density and Navier-Stokes equation for water flows. The developed model successfully describes snake generation, accounts for flows and reproduces most experimental results observed.
Transitional and turbulent flat-plate boundary layers with heat transfer
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz
2010-11-01
We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.
NASA Astrophysics Data System (ADS)
Tallarita, Gianni; Peterson, Adam
2018-04-01
We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.
Numerical simulation of intense multi-scale vortices generated by supercell thunderstorms
NASA Astrophysics Data System (ADS)
Finley, Catherine Ann
1998-11-01
A nested grid primitive equation model (RAMS version 3b) is used to study various aspects of tornadoes and the thunderstorms that produce them. A unique aspect of these simulations is that the model was initialized with synoptic data, and telescoping grids allow atmospheric flows ranging from the synoptic-scale down to sub- tornado-scale vortices to be represented in the model. Two different case studies were simulated in this study: June 30, 1993, and May 15, 1991. The June 30, 1993, simulation produced a classical supercell storm which developed at the intersection between a stationary front and an outflow boundary generated by previous convection. As the simulation progressed, additional storms developed west of the main storm along the stationary front. One of these storms interacted with the main storm to produce a single supercell storm. This storm had many characteristics of a high-precipitation (HP) supercell, and eventually evolved into a bow-echo. The transition of the storm into a bow-echo is discussed and possible physical processes responsible for the transition are presented. The June 30, 1993, simulated supercell produced two weak tornadoes. The first tornado developed along the flanking line of the storm to the southeast of the mesocyclone. The second tornado developed along a strong horizontal shear zone beneath the rotating comma-head structure of the HP supercell. Neither tornado was clearly linked to the mesocyclone in the parent storm, and both tornadoes formed first near the surface and then developed upward with time. Circulation and vorticity analyses were used to investigate the tornadogenesis process in this case. Results from these analyses indicated that the circulation associated with both tornadoes was already present at low-levels in the storm environment 15-20 minutes before the tornadoes developed. Although the baroclinic term associated with the downdraft air made a negligible contribution to the circulation in this case, the downdraft played an important role in tilting horizontal vorticity into the vertical just above the surface in the near tornado environment where horizontal convergence could then act to amplify it. A comparison with the proposed tornadogenesis process(es) in classical supercells is also presented. The May 15, 1991, simulation produced a classical supercell which developed along the dryline in the Texas panhandle. This supercell in turn produced a tornado which lasted for 50 minutes in the simulation. During a ten minute period toward the end of the simulation, six secondary vortices developed within the main tornado vortex. The simulated secondary vortices had many features in common with multiple-vortex tornadoes and secondary vortices produced in laboratory vortices. The evolution and structure of the simulated secondary vortices is presented, and physical mechanisms responsible for their development and dissipation are discussed.
NASA Astrophysics Data System (ADS)
Wong, Michael
2015-10-01
A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.
NASA Astrophysics Data System (ADS)
Zhang, Di; Cheng, Liang; An, Hongwei; Zhao, Ming
2017-04-01
With the aid of direct numerical simulation, this paper presents a detailed investigation on the flow around a finite square cylinder at a fixed aspect ratio (AR) of 4 and six Reynolds numbers (Re = 50, 100, 150, 250, 500, and 1000). It is found that the mean streamwise vortex structure is also affected by Re, apart from the AR value. Three types of mean streamwise vortices have been identified and analyzed in detail, namely, "Quadrupole Type" at Re = 50 and Re = 100, "Six-Vortices Type" at Re = 150 and Re = 250, and "Dipole Type" at Re = 500 and Re = 1000. It is the first time that the "Six-Vortices Type" mean streamwise vortices are reported, which is considered as a transitional structure between the other two types. Besides, three kinds of spanwise vortex-shedding models have been observed in this study, namely, "Hairpin Vortex Model" at Re = 150, "C and Reverse-C and Hairpin Vortex Model (Symmetric Shedding)" at Re = 250, and "C and Reverse-C and Hairpin Vortex Model (Symmetric/Antisymmetric Shedding)" at Re = 500 and Re = 1000. The newly proposed "C and Reverse-C and Hairpin Vortex Model" shares some similarities with "Wang's Model" [H. F. Wang and Y. Zhou, "The finite-length square cylinder near wake," J. Fluid Mech. 638, 453-490 (2009)] but differs in aspects such as the absence of the connection line near the free-end and the "C-Shape" vortex structure in the early stage of the formation of the spanwise vortex.
Mathematical modeling and simulation of aquatic and aerial animal locomotion
NASA Astrophysics Data System (ADS)
Hou, T. Y.; Stredie, V. G.; Wu, T. Y.
2007-08-01
In this paper, we investigate the locomotion of fish and birds by applying a new unsteady, flexible wing theory that takes into account the strong nonlinear dynamics semi-analytically. We also make extensive comparative study between the new approach and the modified vortex blob method inspired from Chorin's and Krasny's work. We first implement the modified vortex blob method for two examples and then discuss the numerical implementation of the nonlinear analytical mathematical model of Wu. We will demonstrate that Wu's method can capture the nonlinear effects very well by applying it to some specific cases and by comparing with the experiments available. In particular, we apply Wu's method to analyze Wagner's result for a wing abruptly undergoing an increase in incidence angle. Moreover, we study the vorticity generated by a wing in heaving, pitching and bending motion. In both cases, we show that the new method can accurately represent the vortex structure behind a flying wing and its influence on the bound vortex sheet on the wing.
NASA Technical Reports Server (NTRS)
Treiber, David A.; Muilenburg, Dennis A.
1995-01-01
The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.
Numerical Simulations of Blood Flows in the Left Atrium
NASA Astrophysics Data System (ADS)
Zhang, Lucy
2008-11-01
A novel numerical technique of solving complex fluid-structure interactions for biomedical applications is introduced. The method is validated through rigorous convergence and accuracy tests. In this study, the technique is specifically used to study blood flows in the left atrium, one of the four chambers in the heart. Stable solutions are obtained at physiologic Reynolds numbers by applying pulmonary venous inflow, mitral valve outflow and appropriate constitutive equations to closely mimic the behaviors of biomaterials. Atrial contraction is also implemented as a time-dependent boundary condition to realistically describe the atrial wall muscle movements, thus producing accurate interactions with the surrounding blood. From our study, the transmitral velocity, filling/emptying velocity ratio, durations and strengths of vortices are captured numerically for sinus rhythms (healthy heart beat) and they compare quite well with reported clinical studies. The solution technique can be further used to study heart diseases such as the atrial fibrillation, thrombus formation in the chamber and their corresponding effects in blood flows.
Flow field interactions between two tandem cyclists
NASA Astrophysics Data System (ADS)
Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.
2016-12-01
Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.
Hyperviscosity for unstructured ALE meshes
NASA Astrophysics Data System (ADS)
Cook, Andrew W.; Ulitsky, Mark S.; Miller, Douglas S.
2013-01-01
An artificial viscosity, originally designed for Eulerian schemes, is adapted for use in arbitrary Lagrangian-Eulerian simulations. Changes to the Eulerian model (dubbed 'hyperviscosity') are discussed, which enable it to work within a Lagrangian framework. New features include a velocity-weighted grid scale and a generalised filtering procedure, applicable to either structured or unstructured grids. The model employs an artificial shear viscosity for treating small-scale vorticity and an artificial bulk viscosity for shock capturing. The model is based on the Navier-Stokes form of the viscous stress tensor, including the diagonal rate-of-expansion tensor. A second-order version of the model is presented, in which Laplacian operators act on the velocity divergence and the grid-weighted strain-rate magnitude to ensure that the velocity field remains smooth at the grid scale. Unlike sound-speed-based artificial viscosities, the hyperviscosity model is compatible with the low Mach number limit. The new model outperforms a commonly used Lagrangian artificial viscosity on a variety of test problems.
Coherent structure diffusivity in the edge region of Reversed Field Pinch experiments
NASA Astrophysics Data System (ADS)
Spolaore, M.; Antoni, V.; Spada, E.; Bergsåker, H.; Cavazzana, R.; Drake, J. R.; Martines, E.; Regnoli, G.; Serianni, G.; Vianello, N.
2005-01-01
Coherent structures emerging from the background turbulence have been detected by electrostatic measurements in the edge region of two Reversed Field Pinch experiments, RFX (Padua) and Extrap-T2R (Stockholm). Measurements have been performed by arrays of Langmuir probes which allowed simultaneous measurements of temperature, potential and density to be carried out. These structures have been interpreted as a dynamic balance of dipolar and monopolar vortices, whose relative population are found to depend on the local mean E × B flow shear. The contribution to the anomalous transport of these structures has been investigated and it has been found that the corresponding diffusion coeffcient accounts up to 50% of the total diffusivity. The experimental findings indicate that the diffusion coeffcient associated to the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal. An interpretative model is proposed to explain this feature.
Matter in the form of toroidal electromagnetic vortices
NASA Astrophysics Data System (ADS)
Hagen, Wilhelm F.
2015-09-01
The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact symmetric cuboid that provides a unique building block to assemble the isotopic chart. Exotic neutron- 4 appears viable which may explain dark matter. The recognition that all heavy particles, including the protons, are related to electrons via muons and pions explains the identity of all charges to within 10-36. Greater deviations would overpower gravitation. Gravitation can be traced to EM vacuum fluctuations generated by standing EM waves between interacting particles. On that basis, gravity can be correlated via microscopic quantities to the age of the universe of 13.5 billion years. All forces and particles and potentially dark matter and dark energy are different manifestations of EM energy.
Influence of deep vortices on the ocean surface
NASA Astrophysics Data System (ADS)
Ciani, Daniele; Carton, Xavier; Bashmachnikov, Igor; Chapron, Bertrand
2015-04-01
The oceanic motion at mesoscale (20-200 km) and submesoscale (0.5-20 km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origination areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea-surface and at intrathermocline depths (0-1500 m), and are presently investigated by means of model outputs and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011). Using analytical models in the frame of the quasi-geostrophic (QG) theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both QG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddies' characteristics (radius, depth, thickness, velocity) were varied in order to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), represents a contribution for systematic and synoptic detection of subsurface vortices.
Phoenix Mars Lander: Vortices and Dust Devils at the Landing Site
NASA Astrophysics Data System (ADS)
Ellehoj, M. D.; Taylor, P. A.; Gunnlaugsson, H. P.; Gheynani, B. T.; Drube, L.; von Holstein-Rathlou, C.; Whiteway, J.; Lemmon, M.; Madsen, M. B.; Fisher, D.; Volpe, R.; Smith, P.
2008-12-01
Near continuous measurements of temperatures and pressure on the Phoenix Mars Lander are used to identify the passage of vertically oriented vortex structures at the Phoenix landing site (126W, 68N) on Mars. Observations: During the Phoenix mission the pressure and temperature sensors frequently detected features passing over or close to the lander. Short duration (order 20 s) pressure drops of order 1-2 Pa, and often less, were observed relatively frequently, accompanied by increases in temperature. Similar features were observed from the Pathfinder mission, although in that case the reported pressure drops were often larger [1]. Statistics of the pressure drop features over the first 102 sols of the Phoenix mission shows that most of the events occur between noon and 15:00 LMST - the hottest part of the sol. Dust Raising: By assuming the concept of a vortex in cyclostrophic flow as well as various assumptions about the atmosphere, we obtain a pressure drop of 1.9 - 3.2 Pa if dust is to be raised. We only saw few pressure drops this large in Sols 0-102. However, the features do not need to pass directly over the lander and the pressures could be lower than the minima we measure. Furthermore, the response time of the pressure sensor is of order 3-5 s so it may not capture peak pressure perturbations. Thus, more dust devils may have occurred near the Phoenix site, but most of our detected vortices would be ghostly, dustless devils. Modelling: Using a Large Eddy Simulation model, we can simulate highly convective boundary layers on Mars [2]. The typical vortex has a diameter of 150 m, and extends up to 1 km. Further calculations give an incidence of 11 vortex events per day that could be compatible with the LES simulations. Deeper investigation of this is planned -but the numbers are roughly compatible. If the significant pressure signatures are limited to the center of the vortex then 5 per sol might be appropriate. The Phoenix mission has collected a unique set of in situ meteorological data from the Arctic regions on Mars. Modelling work shows that vertically oriented vortices with low pressure, warm cores, can develop on internal boundaries, such as those associated with cellular convection, and this is supported by observations. Simple cyclostrophic estimates of vortex wind speeds suggest that dust devils will form, but that most vortices will not be capable of lifting dust from the surface. So, at least in the first 102 sols, most of the Phoenix devils are dustless. References [1] F Ferri, PH Smith, M Lemmon, NO Renno; (2003) Dust devils as observed by Mars Pathfinder. JGR,108, NO. E12, 5133, doi:10.1029/2000JE001421. [2] Gheynani, B.T. and Taylor, P.A., (2008), Large Eddy Simulation of vertical vortices in highly convective Martian boundary layer, Paper 10 B.6, 18th Symposium on Boundary Layers and Turbulence, June 2008, Stockholm, Sweden
Transverse vorticity measurements using an array of four hot-wire probes
NASA Technical Reports Server (NTRS)
Foss, J. F.; Klewickc, C. L.; Disimile, P. J.
1986-01-01
A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.
The Production of Turbulence in Boundary Layers -- The Role of Microscale Coherent Motions.
1987-06-01
unstable and it breaks up as it moves away from the wall. The wall layer must be thin and vortex stretching, due to inviscid image effects, dominate...how a Typical eddy ultimately creates the long streaks is not clear. It is entirely possible that the viscous image of the rolled up vorticity forms...clarified, especially the formation of the long streaky structure, and secondary hairpin vorticity. It appears that the outer region microscale coherent
Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall
NASA Astrophysics Data System (ADS)
Jabbar, Hussam; Naguib, Ahmed
2017-11-01
Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).
Experiments on tip vortices interacting with downstream wings
NASA Astrophysics Data System (ADS)
Chen, C.; Wang, Z.; Gursul, I.
2018-05-01
The interaction of meandering tip vortices shed from a leading wing with a downstream wing was investigated experimentally in a water tunnel using flow visualization, particle image velocimetry measurements, and volumetric velocity measurements. Counter-rotating upstream vortices may exhibit sudden variations of the vortex core location when the wing-tip separation is within approximately twice the vortex core radius. This is caused by the formation of vortex dipoles near the wing tip. In contrast, co-rotating upstream vortices do not exhibit such sensitivity. Large spanwise displacement of the trajectory due to the image vortex is possible when the incident vortex is further inboard. For both co-rotating and counter-rotating vortices, as long as there is no direct impingement upon the wing, there is a little change in the structure of the time-averaged vortex past the wing, even though the tip vortex shed from the downstream wing may be substantially weakened or strengthened. In the absence of the downstream wing, as well as for weak interactions, the most energetic unsteady modes represent the first helical mode | m| = 1, which is estimated from the three-dimensional Proper Orthogonal Decomposition modes and has a very large wavelength, on the order of 102 times the vortex core radius, λ/ a = O(102). Instantaneous vorticity measurements as well as flow visualization suggest the existence of a smaller wavelength, λ/ a = 5-6, which is not among the most energetic modes. These two-orders of magnitude different wavelengths are in agreement with the previous measurements of tip vortices and also exhibit qualitative agreement with the transient energy growth analysis. The very long wavelength mode in the upstream vortex may persist during the interaction, and reveal coupling with the trailing vortex as well as increased meandering.
Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikhzada, Ahmad
As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less
Relaxation and self-organization in two-dimensional plasma and neutral fluid flow systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Amita
Extensive numerical studies in the framework of a simplified two-dimensional model for neutral and plasma fluid for a variety of initial configurations and for both decaying and driven cases are carried out to illustrate relaxation toward a self-organized state. The dynamical model equation constitutes a simple choice for this purpose, e.g., the vorticity equation of the Navier-Stokes dynamics for the incompressible neutral fluids and the Hasegawa-Mima equation for plasma fluid flow system. Scatter plots are employed to observe a development of functional relationship, if any, amidst the generalized vorticity and its Laplacian. It is seen that they do not satisfymore » a linear relationship as the well known variational approach of enstrophy minimization subject to constancy of the energy integral for the two-dimensional (2D) system suggests. The observed nonlinear functional relationship is understood by separating the contribution to the scatter plot from spatial regions with intense vorticity patches and those of the background flow region where the background vorticity is weak or absent altogether. It is shown that such a separation has close connection with the known exact analytical solutions of the system. The analytical solutions are typically obtained by assuming a finite source of vorticity for the inner core of the localized structure, which is then matched with the solution in the outer region where vorticity is chosen to be zero. The work also demonstrates that the seemingly ad hoc choice of the linear vorticity source function for the inner region is in fact consistent with the self-organization paradigm of the 2D systems.« less
Flow structure and vorticity transport on a plunging wing
NASA Astrophysics Data System (ADS)
Eslam Panah, Azar
The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed. The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the circulation, in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke. Preliminary measurements of the structure and dynamics of the leading-edge vortex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics and interactions with the plate in multiple chordwise planes. The relationship between the vorticity field and the spanwise flow field over the wing, and the influence of root boundary conditions on these quantities has been investigated. The viscous symmetry plane is found to influence this flow field, in comparison to other studies YiRo:2010,Vi:2011b,CaWaGuVi:2012, by influencing tilting of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the symmetry plane. Modifications in the root boundary conditions are found to significantly affect this. LEV circulations for the different aspect ratio plates are also compared. At the bottom of the downstroke, the maximum circulation is found at the middle of the semi-span in each case. The circulation of the sAR=2 wing is found to significantly exceed that of the sAR=1 wing and, surprisingly, the maximum circulation value is found to be independent of root boundary conditions for thesAR=2 case and also closely matched that of the quasi-2D case. Furthermore, the 3-D flow field of a finite wing ofsAR=2 was characterized using three-dimensional reconstructions of planar PIV data after minimizing the gap between the plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into an arch structure centered at approximately the 50% spanwise position, similar to previous observations by Calderon et al., and Yilmaz and Rockwell. At that location, the circulation contribution due to spanwise flow was approximately half that of the shear layer flux because of the significantly greater three-dimensionality in the flow. Increased tilting at the 25% and 75% spanwise locations suggests increasing three-dimensionality at those locations compared to the symmetry plane of the arch (50% spanwise location). The deviation between the LEV circulation and integrated convective vorticity fluxes at the 50% spanwise location suggests that entrainment of secondary vorticity plays a similar role in regulating LEV circulation as in the 2D case. While the wing surface flux of vorticity could not be measured in that case, the significant difference between LEV circulation and the known integrated fluxes is comparable to that for the 2D plate, suggesting that a significant boundary flux of secondary vorticity may exist.
On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings
NASA Astrophysics Data System (ADS)
Qin, Suyang; Liu, Hong; Xiang, Yang
2018-01-01
Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*
Simulation of Venus polar vortices with the non-hydrostatic general circulation model
NASA Astrophysics Data System (ADS)
Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin
2012-07-01
The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending from low latitude to the circumpolar vortex. Qualitatively this pattern suggest that the dynamics of the polar Venus atmosphere resembles that of terrestrial hurricanes, but is characterized with preferentially poleward and downwelling motions.
Deformation structure analysis of material at fatigue on the basis of the vector field
NASA Astrophysics Data System (ADS)
Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.
2017-12-01
In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.
Reynolds number influence on the formation of vortical structures on a pitching flat plate.
Widmann, Alexander; Tropea, Cameron
2017-02-06
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.
Reynolds number influence on the formation of vortical structures on a pitching flat plate
Tropea, Cameron
2017-01-01
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex–wall interaction. PMID:28163871
Ejection mechanisms in the sublayer of a turbulent channel
NASA Technical Reports Server (NTRS)
Jimenez, J.; Moin, P.; Moser, R. D.; Keefe, L. R.
1987-01-01
A possible model for the inception of vorticity ejections in the viscous sublayer of a turbulent rectangular channel is presented. It was shown that this part of the flow is dominated by protruding strong shear layers of z-vorticity, and it was proposed as a mechanism for their maintenance and reproduction which is essentially equivalent to that responsible for the instability of 2-D Tollmien-Schlichting waves. The efforts to isolate computationally a single structure for its study have failed up to now, since it appears that single structures decay in the absence of external forcing, but a convenient computation model was identified in the form of a long and narrow periodic computational box containing at each moment only a few structures. Further work in the identification of better reduced systems is in progress.
Momentum transport process in the quasi self-similar region of free shear mixing layer
NASA Astrophysics Data System (ADS)
Takamure, K.; Ito, Y.; Sakai, Y.; Iwano, K.; Hayase, T.
2018-01-01
In this study, we performed a direct numerical simulation (DNS) of a spatially developing shear mixing layer covering both developing and developed regions. The aim of this study is to clarify the driving mechanism and the vortical structure of the partial counter-gradient momentum transport (CGMT) appearing in the quasi self-similar region. In the present DNS, the self-similarity is confirmed in x/L ≥ 0.67 (x/δU0 ≥ 137), where L and δU0 are the vertical length of the computational domain and the initial momentum thickness, respectively. However, the trend of CGMT is observed at around kδU = 0.075 and 0.15, where k is the wavenumber, δU is the normalized momentum thickness at x/L = 0.78 (x/δU0 = 160), and kδU = 0.075 corresponds to the distance between the vortical/stretching regions of the coherent structure. The budget analysis for the Reynolds shear stress reveals that it is caused by the pressure diffusion term at the off-central region and by -p (∂ u /∂ y ) ¯ in the pressure-strain correlation term at the central region. As the flow moves toward the downstream direction, the appearance of those terms becomes random and the unique trend of CGMT at the specific wavenumber bands disappears. Furthermore, we investigated the relationship between the CGMT and vorticity distribution in the vortex region of the mixing layer, in association with the spatial development. In the upstream location, the high-vorticity region appears in the boundary between the areas of gradient momentum transport and CGMT, although the high-vorticity region is not actively producing turbulence. The negative production area gradually spreads by flowing toward the downstream direction, and subsequently, the fluid mass with high-vorticity is transported from the forehead stretching region toward the counter-gradient direction. In this location, the velocity fluctuation in the high-vorticity region is large and turbulence is actively produced. In view of this, the trend of negative production appears in the flow where the turbulence production and non-turbulent regions mix. Then, the non-turbulent region and CGMT almost simultaneously disappear in the fully developed region.
Boundary layer streaming in viscoelastic fluids
NASA Astrophysics Data System (ADS)
Bahrani, Seyed Amir; Costalanga, Maxime; Royon, Laurent; Brunet, Philippe; DSHE Team; Energy Team
2017-11-01
Oscillations of bodies immersed in fluids are known to generate secondary steady flows (streaming). These flows have strong similarities with acoustic streaming induced by sound and ultrasound waves. A typical situation, investigated here, is that of a cylinder oscillating perpendicular to its axis, generating two pairs of counter-rotating steady vortices due to the transfer of vorticity from an inner boundary layer. While most studies so far investigated the situation of newtonian fluids, here, we consider the situation of a viscoelastic fluid. By using Particle Image Velocimetry, we carry out an experimental study of the flow structure and magnitude over a range of amplitude (A up to 2.5 mm, nearly half the cylinder diameter) and frequency (f between 5 and 100 Hz). We observe unprecedented behaviors at higher frequency (f >50 Hz) : at high enough amplitude, the usual flow with 2 pairs of vortices is replaced by a more complex flow where 4 pairs of vortices are observed. At smaller frequency, we observe reversal large scale vortices that replace the usual inner and outer ones in Newtonian fluids. The main intention of this work is to understand the influence of the complex and nonlinear rheology on the mechanism of streaming flow. In this way, another source of purely rheological nonlinearity is expected, competing with hydrodynamic nonlinearity. We evidence the effect of elasticity in streaming.
NASA Astrophysics Data System (ADS)
El-Rabii, Hazem; Kazakov, Kirill A.
2015-12-01
Premixed flames propagating in horizontal tubes are observed to take on a convex shape towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report experimental realization of this regime. Our experiments on ethane and n -butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with that theoretically predicted.
NASA Astrophysics Data System (ADS)
Bolle, C. A.; Gammel, P. L.; Grier, D. G.; Murray, C. A.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.
1991-01-01
We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields.
Flow Structure and Surface Topology on a UCAV Planform
NASA Astrophysics Data System (ADS)
Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald
2003-11-01
Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.
Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.
NASA Astrophysics Data System (ADS)
Nosov, V. V.; Lukin, V. P.; Nosov, E. V.; Torgaev, A. V.
2017-11-01
The structure of air turbulent motion inside the closed dome room of Big Telescope Alt-azimuth at Special Astrophysical Observatory of the Russian Academy of Sciences (RAS) has been experimentally and theoretically studied. Theoretical results have been reached by numerical solving of boundary value problem for Navier-Stokes equations. Solitary large vortices (coherent structures, topological solitons) are observed indoors. Coherent breakdown of these vortices leads to the coherent turbulence. In the case of identical boundary conditions the pattern of air motions as a result of the simulation and the pattern, registered experimentally using the compact portable ultrasonic weather station, are practically the same.
Characteristics of mesoscale vortices over China in 2015
NASA Astrophysics Data System (ADS)
Shu, Yu; Sun, Jisong; Pan, Yinong
2017-12-01
Mesoscale vortices, which appear at middle and lower levels of rainstorms, are cyclonic circulations with a size ranging from tens of kilometers to several hundred kilometers. Mesoscale vortices often have close relationships with convective activities. The ERA-Interim dataset and an automatic vortex-searching method were used to identify the mesoscale vortices occurring over China in 2015 and their basic characteristics were analyzed. The mesoscale vortices are divided into three categories: mesoscale convective vortices, mesoscale stratiform vortices, and mesoscale dry vortices. The mesoscale convective vortices have the largest intensity, size, and duration, whereas the mesoscale dry vortices have the smallest. Mesoscale convective vortices are able to form in any direction of the parent mesoscale convective system, although the secondary convection tends to appear to the southeast of the parent vortices. The mesoscale vortices tend to generate in the transition area between high and low altitudes. The leeward side of the Tibetan Plateau is the main source region of mesoscale vortices in China. Most of vortices are generated at midday and midnight. The activities of mesoscale convective vortices and mesoscale stratiform vortices peak in summer, whereas those of the mesoscale dry vortices peak in winter.
On the emergence of macroscopic transport barriers from staircase structures
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, P. H.
2017-01-01
This paper presents a theory for the formation and evolution of coupled density staircases and zonal shear profiles in a simple model of drift-wave turbulence. Density, vorticity, and fluctuation potential enstrophy are the fields evolved in this system. Formation of staircase structures is due to inhomogeneous mixing of generalized potential vorticity (PV), resulting in the sharpening of density and vorticity gradients in some regions, and weakening them in others. When the PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps," and "steps," which are, respectively, the regions of local gradient steepening and flattening. The jumps merge and migrate in radius, leading to the development of macroscale profile structures from mesoscale elements. The positive feedback process, which drives the staircase formation occurs via a Rhines scale dependent mixing length. We present extensive studies of bifurcation physics of the global state, including results on the global flux-gradient relations (flux landscapes) predicted by the model. Furthermore, we demonstrate that, depending on the sources and boundary conditions, either a region of enhanced confinement, or a region with strong turbulence can form at the edge. This suggests that the profile self-organization is a global process, though one which can be described by a local, but nonlinear model. This model is the first to demonstrate how the mesoscale condensation of staircases leads to global states of enhanced confinement.
2014-01-01
equatorial waves, and extratropical intrusions. When convection is phase-locked to the underlying dynamic structure to such an extent that this...classification evidently guarantees (in all but a few instances) subsequent growth to a named tropical storm . It is not only the statistical narrowness of the...representing numerical simulations that moist vortical updrafts are the essential building blocks of the tropical storm within the rotating proto-vortex. These
Internal energy flows in composite optical vortices
NASA Astrophysics Data System (ADS)
Ferrer-Garcia, Manuel F.; Lopez-Mago, Dorilian; Hernandez-Aranda, Raul I.
2016-09-01
We study the energy ow pattern in the superposition of two off-axis optical vortices with orthogonal polarization states. This system presents a rich structure of polarization singularities, which allows us to study the transverse spin and orbital angular momentum of different polarization morphologies, which includes C points (stars, lemons and monstars) and L lines. We perform numerical simulations of the optical forces acting on submicron particles and show interesting configurations. We provide the set of control parameters to unambiguously distinguish between the spin and orbital ow contributions.
Making sound vortices by metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang
Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.
Making sound vortices by metasurfaces
NASA Astrophysics Data System (ADS)
Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Tang, Kun; Jia, Han; Ke, Manzhu; Peng, Shasha; Liu, Zhengyou
2016-08-01
Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.
Chiral vortical effect generated by chiral anomaly in vortex-skyrmions
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2017-03-01
We discuss the type of the general macroscopic parity-violating effects, when there is the current along the vortex, which is concentrated in the vortex core. We consider vortices in chiral superfluids with Weyl points. In the vortex core, the positions of the Weyl points form the skyrmion structure. We show that the mass current concentrated in such a core is provided by the spectral flow through the Weyl points according to the Adler-Bell-Jackiw equation for chiral anomaly.
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Farge, Marie; Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Lehmann, Fritz; Sesterhenn, Jörn
2016-11-01
We analyze high resolution numerical simulation data of a bumblebee with fixed body and prescribed wing motion, flying in a numerical wind tunnel, presented in. The inflow condition of the tunnel varies from unperturbed laminar to strongly turbulent. The flow generated by the flapping wings indicates the important role of the leading edge vortex (LEV), responsible for elevated lift production and which is not significantly altered by the inflow turbulence. The LEV has a conical structure due to the three-dimensional motion of the wings. This flow configuration produces strong vorticity on the sharp leading edge and the outwards velocity (from the root to the tip of the wing) in the spanwise direction. Flow visualizations show that the generated vortical structures are characterized by a strong helicity. We study the evolution of the mean helicity for each wing and analyze the impact of turbulent inflow. We thankfully acknowledge financial support from the French-German AIFIT project funded by DFG and ANR (Grant 15-CE40-0019). DK gratefully acknowledges financial support from the JSPS postdoctoral fellowship.
A qualitative study of vortex trapping capability for lift enhancement on unconventional wing
NASA Astrophysics Data System (ADS)
Salleh, M. B.; Kamaruddin, N. M.; Mohamed-Kassim, Z.
2018-05-01
Lift enhancement by using passive vortex trapping technique offers great advantage in small aircraft design as it can improve aerodynamics performance and reduce weight of the wing. To achieve this aim, a qualitative study on the flow structures across wing models with cavities has been performed using smoke wire visualisation technique. An experiment has been conducted at low Reynolds number of 26,000 with angle of attack (α) = 0°, 5°, 10° and 15° to investigate the vortex trapping capability of semi-circular leading edge (SCLE) flat-plate wing model and elliptical leading edge (ELE) flat-plate wing model with cavities, respectively. Results from the qualitative study indicated unique characteristics in the flow structures between the tested wing models. The SCLE wing models were able to trap stable rotating vortices for α ≤ 10° whereas the ability of ELE wing models to suppress flow separation allowed stable clockwise vortices to be trapped inside the cavities even at α > 10°. The trapped vortices found to have the potential to increase lift on the unconventional wing models.
Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator
NASA Technical Reports Server (NTRS)
Wendt, B. J.; Hingst, W. R.
1994-01-01
The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.
Nonlinear effects in the bounded dust-vortex flow in plasma
NASA Astrophysics Data System (ADS)
Laishram, Modhuchandra; Sharma, Devendra; Chattopdhyay, Prabal K.; Kaw, Predhiman K.
2017-03-01
The vortex structures in a cloud of electrically suspended dust in a streaming plasma constitutes a driven system with a rich nonlinear flow regime. Experimentally recovered toroidal formations of this system have motivated study of its volumetrically driven-dissipative vortex flow dynamics using two-dimensional hydrodynamics in the incompressible Navier-Stokes regime. Nonlinear equilibrium solutions are obtained for this system where a nonuniformly driven two-dimensional dust flow exhibits distinct regions of localized accelerations and strong friction caused by stationary fluids at the confining boundaries resisting the dust flow. In agreement with observations in experiments, it is demonstrated that the nonlinear effects appear in the limit of small viscosity, where the primary vortices form scaling with the most dominant spatial scales of the domain topology and develop separated virtual boundaries along their periphery. This separation is triggered beyond a critical dust viscosity that signifies a structural bifurcation. Emergence of uniform vorticity core and secondary vortices with a newer level of identical dynamics highlights the applicability of the studied dynamics to gigantic vortex flows, such as the Jovian great red spot, to microscopic biophysical intracellular activity.
Concentration Measurements in Self-Excited, Momentum-Dominated Helium Jets
NASA Technical Reports Server (NTRS)
Yildirim, Bekir Sedat
2004-01-01
Flow structure of momentum-dominated pure helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry (RSD) technique. Effects of the operating parameters, i.e., Reynolds number (Re) and Richardson number (Ri), on the oscillatory behavior of the flow were examined over a range of experimental conditions. To seek the individual effect of these parameters, one of them was fixed and the other was varied with certain constraints. Measurements revealed highly periodic oscillations in the laminar region as well as high regularity in transition and turbulent regions. Maximum spectral power profiles at different axial locations indicated the oscillation amplitude increasing until the breakdown of the jet in the turbulent regime. The transition from the laminar to turbulent flow was also investigated. Fast Fourier transform analysis performed in the transition regime showed that the flow oscillates at a unique frequency, which was the same in the upstream laminar flow region. Measured deflection angle data were used in Abel inversion algorithm to construct the helium concentration fields. Instantaneous helium concentration contours revealed changes in the flow structure and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial location showed repeatable oscillations at all axial and radial locations up to the turbulent regime. A cross-correlation technique, applied to find the spatial displacements of the vortical structures, provided correlation coefficient peaks between consecutive schlieren images. Results show that the vortical structure convected and accelerated only in the axial direction.
Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows
NASA Astrophysics Data System (ADS)
Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.
2016-10-01
By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.
The effect of crossflow on Taylor vortices: A model problem
NASA Technical Reports Server (NTRS)
Otto, S. R.; Bassom, Andrew P.
1993-01-01
A number of practically relevant problems involving the impulsive motion or the rapid rotation of bodies immersed in fluid are susceptible to vortex-like instability modes. Depending upon the configuration of any particular problem the stability properties of any high-wavenumber vortices can take on one of two distinct forms. One of these is akin to the structure of Gortler vortices in boundary layer flows while the other is similar to the situation for classical Taylor vortices. Both the Gortler and Taylor problems have been extensively studied when crossflow effects are excluded from the underlying base flows. Recently, studies were made concerning the influence of crossflow on Gortler modes and a linearized stability analysis is used to examine crossflow properties for the Taylor mode. This work allows us to identify the most unstable vortex as the crossflow component increases and it is shown how, like the Gortler case, only a very small crossflow component is required in order to completely stabilize the flow. Our investigation forms the basis for an extension to the nonlinear problem and is of potential applicability to a range of pertinent flows.
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1988-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1986-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
Effects of Passive Fuel-Air Mixing Control on Burner Emissions Via Lobed Fuel Injectors
NASA Technical Reports Server (NTRS)
Mitchell, M. G.; Smith, O. I.; Karagozian, A. R.
1999-01-01
The present experimental study examines the effects of differing levels of passive fuel-air premixing on flame structures and their associated NO(x) and CO emissions. Four alternative fuel injector geometries were explored, three of which have lobed shapes. These lobed injectors mix fuel and air and strain species inter-faces to differing extents due to streamwise vorticity generation, thus creating different local or core equivalence ratios within flow regions upstream of flame ignition and stabilization. Prior experimental studies of two of these lobed injector flowfields focused on non-reactive mixing characteristics and emissions measurements for the case where air speeds were matched above and below the fuel injector, effectively generating stronger streamwise vorticity than spanwise vorticity. The present studies examine the effects of airstream mismatch (and hence additional spanwise vorticity generation), effects of confinement of the crossflow to reduce the local equivalence ratio, and the effects of altering the geometry and position of the flameholders. NO(x) and CO emissions as well as planar laser-induced fluorescence imaging (PLIF) of seeded acetone are used to characterize injector performance and reactive flow evolution.
NASA Astrophysics Data System (ADS)
Brun, Christophe
2017-05-01
This paper is the second part of a study of katabatic jet along a convexly curved slope with a maximum angle of about 35.5°. Large-Eddy Simulation (LES) is performed with a special focus on the outer-layer shear of the katabatic jet. In the first part, a basic statistical quantitative analysis of the flow was performed. Here a qualitative and quantitative description of vortical structures is used to gain insight in the present 3-D turbulent flow. It is shown that Görtler vortices oriented in the streamwise downslope direction develop in the shear layer. They spread with a specific mushroom shape in the vertical direction up to about 100 m height. They play a main role with respect to local turbulent mixing in the ground surface boundary layer. The present curved slope configuration constitutes a realistic model for alpine orography. This paper provides a procedure based on local turbulence anisotropy to track Görtler vortices for in situ measurements, which has never been proposed in the literature.
Universal statistics of vortex tangles in three-dimensional random waves
NASA Astrophysics Data System (ADS)
Taylor, Alexander J.
2018-02-01
The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.
Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2015-11-01
In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.
Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2016-11-01
Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.
Reynolds number effect on airfoil wake structures under pitching and heaving motion
NASA Astrophysics Data System (ADS)
Kim, Kyung Chun; Karbasian, Hamidreza; ExpTENsys Team
2017-11-01
Detached Eddy Simulation (DES) and particle image velocimetry (PIV) measurements were performed to investigate the wake flow characteristics of an airfoil under pitching and heaving motion. A NACA0012 airfoil was selected for the numerical simulation and experiments were carried out in a wind tunnel and a water tunnel at Reynolds number of 15,000 and 90,000, respectively. The airfoil oscillated around an axis located 1/4 distance from the leading edge chord. Two different angles of attack, 20° and 30°, were selected with +/-10° maximum amplitude of oscillation. In order to extract the coherent flow structures from time-resolved PIV data, proper orthogonal decomposition (POD) analysis was performed on 1,000 instantaneous realisations for each condition using the method of snapshots. Vorticity contour and velocity profiles for both PIV and DES results are in good agreement for pitching and heaving motion. At high Reynolds number, 3D stream-wise vortices appeared after generating span-wise vortices. The higher maximum angle of attack allows the leading edge vortex to grow stronger and that the angle of attack appears to be more important in influencing the growth of the leading edge vortex structure than the reduced frequency. National Research Foundation of Korea (No. 2011-0030013).
NASA Astrophysics Data System (ADS)
Wu, Huixuan; Miorini, Rinaldo L.; Katz, Joseph
2011-04-01
Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.
Magnetic dipolar ordering and hysteresis of geometrically defined nanoparticle clusters
NASA Astrophysics Data System (ADS)
Kure, Mathias; Beleggia, Marco; Frandsen, Cathrine
2017-10-01
Magnetic nanoparticle clusters have several biomedical and engineering applications, and revealing the basic interplay between particle configuration and magnetic properties is important for tuning the clusters for specific uses. Here, we consider the nanoparticles as macrospins and use computer simulations to determine their magnetic configuration when placed at the vertices of various polyhedra. We find that magnetic dipoles of equal magnitude arrange in flux-closed vortices on a layer basis, giving the structures a null remanent magnetic moment. Assigning a toroidal moment to each layer, we find that the geometrical arrangement, i.e., "triangular packing" vs. "square packing," of the moments in the adjacent layer determines whether the flux-closed layers are ferrotoroidal (co-rotating vortices) or antiferrotoroidal (counter-rotating vortices). Interestingly, upon adding a single magnetic moment at the center of the polyhedra, the central moment relaxes along one of the principal axes and induces partial alignment of the surrounding moments. The resulting net moment is up to nearly four times that of the single moment added. Furthermore, we model quasi-static hysteresis loops for structures with and without a central moment. We find that a central moment ensures an opening of the hysteresis loop, and the resultant loop areas are typically many-fold larger compared to the same structure without a central moment.
Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Amitay, Michael
2017-11-01
Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.
Reversal in Spreading of a Tabbed Circular Jet Under Controlled Excitation
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Raman, G.
1997-01-01
Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametricall opposite y locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. ne excitation, on the other hand, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.
NASA Astrophysics Data System (ADS)
Miller, Gregory Dennis
1997-06-01
In the first part of this work, we study the instabilities and turbulent structures in the wake of a delta wing, using extensive flow visualization, hot wire anemometry, and DPIV. We employ a novel free-flight technique in water, coupled with an image processing technique, to study the evolution of the long-wavelength instability of the primary vortex pair. Although secondary vortical structures have received little attention to date, we find that the 'braid wake' vorticity between the vortex pair imposes small lengthscale turbulence around the principal vortices, as well as influence the development of a 'curtain' of vorticity left far above the descending vortex pair. We study the long-wavelength instability of the trailing vortex pair by measuring growth rate and wavelength of the instability directly, and we also measure all of the critical parameters of the vortices (i.e. vortex core radius, vorticity distribution, axial velocity distribution, spacing and circulation), which provide what appears to be the first complete comparison to the theory describing the instability. We find excellent agreement between measured and theoretical growth rates and wavelengths. In the second part of the work, we have devised a method to control the spanwise end conditions and patterns in the wake of a cylinder using 'end suction', which is both continuously-variable and admits transient control. Classical steady-state patterns, such as parallel or oblique shedding, or the 'chevron' patterns, are simply induced. The wake, at a given Reynolds number (Re), is receptive to a continuous range of oblique shedding angles (θ), rather than to discrete angles, and there is excellent agreement with the 'cos θ' formula for oblique-shedding frequencies. We show that the laminar shedding regime exists up to Re of 194, and that the immense disparity among reported critical Re for wake transition (Re = 140-190) can be explained in terms of spanwise end contamination. Our transient experiments have resulted in the discovery of new phenomena such as 'phase shocks' and 'phase expansions', which have excellent agreement with predictions from a Ginzburg- Landau wake model (collaboration with Peter Monkewitz, Lausanne).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2009-12-15
The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configurationmore » were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)« less
On the evolution of vortices in massive protoplanetary discs
NASA Astrophysics Data System (ADS)
Pierens, Arnaud; Lin, Min-Kai
2018-05-01
It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.
Fourier imaging of non-linear structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk
We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important,more » and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.« less
Soap film flows: Statistics of two-dimensional turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobieff, P.; Rivera, M.; Ecke, R.E.
1999-08-01
Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity,more » vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}« less
Reversible ratchet effects for vortices in conformal pinning arrays
Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson
2015-05-04
A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
NASA Astrophysics Data System (ADS)
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
Aircraft High-Lift Aerodynamic Analysis Using a Surface-Vorticity Solver
NASA Technical Reports Server (NTRS)
Olson, Erik D.; Albertson, Cindy W.
2016-01-01
This study extends an existing semi-empirical approach to high-lift analysis by examining its effectiveness for use with a three-dimensional aerodynamic analysis method. The aircraft high-lift geometry is modeled in Vehicle Sketch Pad (OpenVSP) using a newly-developed set of techniques for building a three-dimensional model of the high-lift geometry, and for controlling flap deflections using scripted parameter linking. Analysis of the low-speed aerodynamics is performed in FlightStream, a novel surface-vorticity solver that is expected to be substantially more robust and stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations. The calculated lift curve and drag polar are modified by an empirical lift-effectiveness factor that takes into account the effects of viscosity that are not captured in the potential-flow solution. Analysis results are validated against wind-tunnel data for The Energy-Efficient Transport AR12 low-speed wind-tunnel model, a 12-foot, full-span aircraft configuration with a supercritical wing, full-span slats, and part-span double-slotted flaps.
Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas
2016-01-01
We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.
NASA Astrophysics Data System (ADS)
VerHulst, Claire; Meneveau, Charles
2014-02-01
In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative arrangement of the wind turbines in the domain.
NASA Astrophysics Data System (ADS)
Olsson, Peter Q.; Cotton, William R.
1997-02-01
A midlatitude mesoscale convective complex (MCC), which occurred over the central United States on 23-24 June 1985, was simulated using the Regional Atmospheric Modeling System (RAMS). The multiply nested-grid simulation agreed reasonably well with surface, upper-air, and satellite observations and ground-based radar plots. The simulated MCC had a typical structure consisting of a leading line of vigorous convection and a trailing region of less intense stratiform rainfall. Several other characteristic MCC circulations were also simulated: a divergent cold pool in the lower troposphere, midlevel convergence coupled with a relatively cool descending rear-inflow jet, and relatively warm updraft structure, and a cold divergent anticyclone in the tropopause region. Early in the MCC simulation, a mesoscale convectively induced vortex (MCV) formed on the eastern edge of the convective line. While frequently associated with MCCs and other mesoscale convective systems (MCSs), MCVs are more typically reported in the mature and decaying stages of the life cycle. Several hours later, a second MCV formed near the opposite end of the convective line, and by the mature phase of the MCC, these MCVs were embedded within a more complex system-wide vortical flow in the lower troposphere.Analysis of the first MCV during its incipient phase indicates that the vortex initially formed near the surface by convergence/stretching of the large low-level ambient vertical vorticity in this region. Vertical advection appeared largely responsible for the upward extension of this MCV to about 3.5 km above the surface, with tilting of horizontal vorticity playing a secondary role. This mechanism of MCV formation is in contrast to recent idealized high-resolution squall line simulations, where MCVs were found to result from the tilting into the vertical of storm-induced horizontal vorticity formed near the top of the cold pool.Another interesting aspect of the simulation was the development of a banded vorticity structure at midtropospheric levels. These bands were found to be due to the apparent vertical transport of zonal momentum by the descending rear-to-front circulation, or rear-inflow jet. An equivalent alternative viewpoint of this process, deformation of horizontal vorticity filaments by the convective updrafts and rear-inflow jet, is discussed.Part II of this work presents a complementary approach to the analysis presented here, demonstrating that the circulations seen in this MCC simulation are, to a large degree, contained within the nonlinear balance approximation, the related balanced omega equation, and the PV as analyzed from the PE model results.
A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect
NASA Technical Reports Server (NTRS)
Sarpkaya, T.
2004-01-01
This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.
NASA Astrophysics Data System (ADS)
Jha, Sourabh; Crittenden, Thomas; Glezer, Ari
2017-11-01
The limits of low Reynolds number forced convection heat transport within rectangular, mm-scale channels that model segments of air-cooled heat sinks are overcome by the deliberate formation of unsteady small-scale vortical motions that are induced by autonomous aero-elastic fluttering of cantilevered planar thin-film reeds. The coupled flow-structure interactions between the fluttering reeds and the embedding channel flow and the formation and evolution of the induced unsteady small-scale vortical motions are explored using video imaging and PIV. Concave/convex undulations of the reed's surface that are bounded by the channel's walls lead to the formation and advection of cells of vorticity concentration and ultimately to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the channel height, and result in increased turbulent kinetic energy and enhanced dissipation that persist far downstream from the reed and are reminiscent of a turbulent flow at significantly higher Reynolds numbers (e.g., at Re = 800, TKE increases by 86% ,40 channel widths downstream of reed tip). These small-scale motions lead to strong enhancement in heat transfer that increases with Re (e.g., at Re = 1,000 and 14,000, Nu increases by 36% and 91%, respectively). The utility of this approach is demonstrated in improving the thermal performance of low-Re heat sinks in air-cooled condensers of thermoelectric power plants. NSF-EPRI.
Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow
NASA Astrophysics Data System (ADS)
Pumir, Alain; Bodenschatz, Eberhard; Xu, Haitao
2013-03-01
We describe the structure and dynamics of turbulence by the scale-dependent perceived velocity gradient tensor as supported by following four tracers, i.e., fluid particles, that initially form a regular tetrahedron. We report results from experiments in a von Kármán swirling water flow and from numerical simulations of the incompressible Navier-Stokes equation. We analyze the statistics and the dynamics of the perceived rate of strain tensor and vorticity for initially regular tetrahedron of size r0 from the dissipative to the integral scale. Just as for the true velocity gradient, at any instant, the perceived vorticity is also preferentially aligned with the intermediate eigenvector of the perceived rate of strain. However, in the perceived rate of strain eigenframe fixed at a given time t = 0, the perceived vorticity evolves in time such as to align with the strongest eigendirection at t = 0. This also applies to the true velocity gradient. The experimental data at the higher Reynolds number suggests the existence of a self-similar regime in the inertial range. In particular, the dynamics of alignment of the perceived vorticity and strain can be rescaled by t0, the turbulence time scale of the flow when the scale r0 is in the inertial range. For smaller Reynolds numbers we found the dynamics to be scale dependent.
NASA Astrophysics Data System (ADS)
Agarwal, Karuna; Gao, Jian; Katz, Joseph
2017-11-01
The shape, size, and spacing between roughness elements in turbulent boundary layers affect the associated drag and noise. Understanding them require data on the flow structure around these elements. Dual-view tomographic holography is used to study the 3D 3-component velocity field around a pair of cubic roughness elements immersed in a turbulent boundary layer at Reτ = 2500 . These a = 1 mm high cubes correspond to 4% of the half channel height and 90 wall units (δν = 11 μ m). Tests are performed for spanwise spacings of a, 1.5 a and 2.5 a. The sample volume is 385δν × 250δν × 190δν and the vector spacing is 5.4δν. Conversed statistics is obtained by recording 1500 realizations in volumes centered upstream, downstream and around a cube. The boundary layer separating upstream of the cube does not reattach until the wake region, resulting in formation of a vortical ``canopy'' that engulfs each cube. It is dominated by spanwise vorticity above the cube and separated region, bounded by vertical vorticity on the sides. Flow channeling in the space between cubes causes asymmetry in the vorticity distributions along the inner and outer walls. The legs of horseshoe vortices remain near the wall between cubes, but grow and expand in the wake region. Funded by NSF and ONR.
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.
1992-01-01
An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.
Inviscid to turbulent transition of trailing vortices
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1974-01-01
The characteristics of the plateau region in the vortex system which trails from a lifting wing are discussed. The decay of the vortex due to viscous or turbulent shear is very slow in the plateau so that the maximum tangential speed in the vortices remains nearly constant for some distance downstream of roll-up and then begins to decrease, becoming inversely proportional to the square root of the distance downstream. Mathematical models are developed to analyze the structure of the plateau area. Solutions are obtained for both constant and variable eddy viscosity models.
NASA Technical Reports Server (NTRS)
Whitelaw, J. H.
2001-01-01
Partial Contents: The Effect of Aircraft Wake Vortex Separation on Air Transportation Capacity; The Pilots View of Wake Vortices - Capacity vs. Safety; Runway Capacity Constraints at Heathrow Airport; FAA's Research Strategy; Increasing Capacity by Wake Turbulence Avoidance Systems at Frankfurt/Main Airport; Improving Airport Capacity Using Vertical Flight; Recent Developments in Industrial Wake Vortex Research; Vortex Evolution and Characterization; PIV -Survey of the Vortex Wake Structure behind an Airbus A340 in a Towing Tank.
Surveying unsteady flows by means of movie sequences - A case study
NASA Astrophysics Data System (ADS)
Freymuth, P.; Bank, W.; Finaish, F.
Photographic surveying techniques and their results are presented for vortical pattern development in unsteady two-dimensional flows, which depends on a multitude of parameters that have heretofore hampered broad investigation, in order to delineate the more important parametric dependencies. Samples are given from 100 films representing over 2000 sequences consisting of 400,000 photographic frames. Attention is given to the problems posed by resolution of time and lateral dimensions, spanwise vortical structure, and the dependence of angle of attack on Reynolds number and flow geometry.
Coriton, Bruno; Frank, Jonathan H.
2016-02-16
In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s 2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s 2 tangential to the shear layer. The extensive and compressive principal strain rates, s 1 and s 3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s 1¯-s 2¯ plane and orthogonal to s 3¯.« less
Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid
NASA Astrophysics Data System (ADS)
Yu, Xiaoquan; Billam, Thomas P.; Nian, Jun; Reeves, Matthew T.; Bradley, Ashton S.
2016-08-01
Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. The choice of ensemble is essential for identifying the correct thermodynamic limit of the system, enabling a rigorous description of clustering in the language of critical phenomena. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO (2 ) symmetry due to the disk geometry. The dipole structure emerges characterized by the continuous growth of the macroscopic dipole moment which serves as a global order parameter, resembling a continuous phase transition. The critical temperature of the transition, and the critical exponent associated with the dipole moment, are obtained exactly within mean-field theory. The clustering transition is shown to be distinct from the final state reached at high energy, known as supercondensation. The dipole moment develops via two macroscopic vortex clusters and the cluster locations are found analytically, both near the clustering transition and in the supercondensation limit. The microcanonical theory shows excellent agreement with Monte Carlo simulations, and signatures of the transition are apparent even for a modest system of 100 vortices, accessible in current Bose-Einstein condensate experiments.
Kim, Kyoungyoun; Sureshkumar, Radhakrishna
2013-06-01
To study the influence of dynamic interactions between turbulent vortical structures and polymer stress on turbulent friction drag reduction, a series of simulations of channel flow is performed. We obtain self-consistent evolution of an initial eddy in the presence of polymer stresses by utilizing the finitely extensible nonlinear elastic-Peterlin (FENE-P) model. The initial eddy is extracted by the conditional averages for the second quadrant event from fully turbulent Newtonian flow, and the initial polymer conformation fields are given by the solutions of the FENE-P model equations corresponding to the mean shear flow in the Newtonian case. At a relatively low Weissenberg number We(τ) (=50), defined as the ratio of the polymer relaxation time to the wall time scale, the generation of new vortices is inhibited by polymer-induced countertorques. Thus fewer vortices are generated in the buffer layer. However, the head of the primary hairpin is unaffected by the polymer stress. At larger We(τ) values (≥100), the hairpin head becomes weaker and vortex autogeneration and Reynolds stress growth are almost entirely suppressed. The temporal evolution of the vortex strength and polymer torque magnitude reveals that polymer extension by the vortical motion results in a polymer torque that increases in magnitude with time until a maximum value is reached over a time scale comparable to the polymer relaxation time. The polymer torque retards the vortical motion and Reynolds stress production, which in turn weakens flow-induced chain extension and torque itself. An analysis of the vortex time scales reveals that with increasing We(τ), vortical motions associated with a broader range of time scales are affected by the polymer stress. This is qualitatively consistent with Lumley's time criterion for the onset of drag reduction.
Internal and vorticity waves in decaying stratified flows
NASA Astrophysics Data System (ADS)
Matulka, A.; Cano, D.
2009-04-01
Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.
Visualization and analysis of flow structures in an open cavity
NASA Astrophysics Data System (ADS)
Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng
2018-05-01
A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.
Large-scale transport across narrow gaps in rod bundles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guellouz, M.S.; Tavoularis, S.
1995-09-01
Flow visualization and how-wire anemometry were used to investigate the velocity field in a rectangular channel containing a single cylindrical rod, which could be traversed on the centreplane to form gaps of different widths with the plane wall. The presence of large-scale, quasi-periodic structures in the vicinity of the gap has been demonstrated through flow visualization, spectral analysis and space-time correlation measurements. These structures are seen to exist even for relatively large gaps, at least up to W/D=1.350 (W is the sum of the rod diameter, D, and the gap width). The above measurements appear to compatible with the fieldmore » of a street of three-dimensional, counter-rotating vortices, whose detailed structure, however, remains to be determined. The convection speed and the streamwise spacing of these vortices have been determined as functions of the gap size.« less
NASA Astrophysics Data System (ADS)
Naka, Yoshitsugu; Tsuboi, Ken-Ichiro; Kametani, Yukinori; Fukagata, Koji; Obi, Shinnosuke
We have performed experiments in a turbulent mixing layer with periodic forcing introduced by a Piezo Film Actuator (PFA). Three different lengths of PFAs have been used, and the effects of various combinations of forcing amplitudes and frequencies are investigated. The forcing at the first and second sub-harmonic frequencies against the natural frequency enhances the development of the thickness of the mixing layer: the mixing layer spreads due to the forcing. On the other hand, the forcing near the natural frequency suppresses the development: the mean velocity gradient becomes steeper than the no control case. The vector pattern of the periodic velocity components indicated the formation of the vortical structure. By forcing at the natural and its first sub-harmonic frequencies, two counter-rotating vortices are clearly observed in one period of forcing. By forcing at second sub-harmonic frequency, the vortical structure is found only in the downstream region. The distribution of the periodic Reynolds shear stress significantly varies with the forcing frequency and it takes a positive value when forcing occurs near the natural frequency. However, the total value of the Reynolds shear stress remains negative due to the contribution of the turbulent components.
Nanostructure of vortex during explosion welding.
Rybin, V V; Greenberg, B A; Ivanov, M A; Patselov, A M; Antonova, O V; Elkina, O A; Inozemtsev, A V; Salishchev, G A
2011-10-01
The microstructure of a bimetallic joint made by explosion welding of orthorhombic titanium aluminide (Ti-30Al-16Nb-1Zr-1Mo) with commercially pure titanium is studied. It is found that the welded joint has a multilayered structure including a severely deformed zone observed in both materials, a recrystallized zone of titanium, and a transition zone near the interface. Typical elements of the transition zone-a wavy interface, macrorotations of the lattice, vortices and tracks of fragments of the initial materials-are determined. It is shown that the observed vortices are formed most probably due to local melting of the material near the contact surface. Evidence for this assumption is deduced from the presence of dipoles, which consist of two vortices of different helicity and an ultrafine duplex structure of the vortex. Also, high mixing of the material near the vortex is only possible by the turbulent transport whose coefficient is several orders of magnitude larger than the coefficient of atomic diffusion in liquids. The role played by fragmentation in both the formation of lattice macrorotations and the passage of coarse particles of one material through the bulk of the other is determined.
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; King, Justin; Green, Melissa
2017-11-01
Three-dimensional Lagrangian analysis using the finite-time Lyapunov exponent (FTLE) field has been carried out on experimentally captured wake downstream of an oscillating trapezoidal panel. The trapezoidal geometry of the panel served as a simple model of a fish caudal fin. Three-dimensional FTLE isosurface appears as a shell wrapped around the wake vortex structures. A slice through the isosurfaces results in the familiar two-dimensional FTLE ridges. The attracting ridges (nFTLE) and the repelling ridges (pFTLE) are near-material lines and their intersections are analogous to topological saddle points in the flow field. A vortex-ring-based wake structure induces a streamwise momentum jet, evolution of which appears to be related to the timing of saddle point generation and behavior at the trailing edge. The time of release of these saddles at the trailing edge inside a pitching period appears to coincide with thrust extrema in similar experimental and numerical studies on foils and fins published in the literature. The merger of a pair of saddles from two consecutively shed vortices at a downstream location coincides with the occurrence of wake breakdown and precedes the formation of interconnected vortex loops and beginning of momentum-deficit zone in the time-averaged sense. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.
Knotted optical vortices in exact solutions to Maxwell's equations
NASA Astrophysics Data System (ADS)
de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk
2017-05-01
We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.
Helical vortices: viscous dynamics and instability
NASA Astrophysics Data System (ADS)
Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team
2014-11-01
Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.
NASA Astrophysics Data System (ADS)
Wang, Wen-Lin; Zhang, Yi-Min; Lv, Yan-Feng; Ding, Hao; Wang, Lili; Li, Wei; He, Ke; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun
2018-04-01
We report low-temperature scanning tunneling microscopy and spectroscopy studies of Ni-Bi films grown by molecular beam epitaxy. Highly anisotropic and twofold symmetric superconducting gaps are revealed in two distinct composites, Bi-rich NiBi3 and near-equimolar NixBi , both sharing quasi-one-dimensional crystal structure. We further reveal axially elongated vortices in both phases, but Caroli-de Gennes-Matricon states solely within the vortex cores of NiBi3. Intriguingly, although the localized bound state splits energetically off at a finite distance ˜10 nm away from a vortex center along the minor axis of elliptic vortex, no splitting is found along the major axis. We attribute the elongated vortices and unusual vortex behaviors to the combined effects of twofold superconducting gap and Fermi velocity. The findings provide a comprehensive understanding of the electron pairing and vortex matter in quasi-one-dimensional superconductors.
Hydrodynamic effects on phase transition in active matter
NASA Astrophysics Data System (ADS)
Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team
2017-11-01
Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.
Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.
1995-01-01
The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.
The logarithmic and power law behaviors of the accelerating, turbulent thermal boundary layer
NASA Astrophysics Data System (ADS)
Castillo, Luciano; Hussain, Fazle
2017-02-01
Direct numerical simulation of spatially evolving thermal turbulent boundary layers with strong favorable pressure gradient (FPG) shows that the thermal fluctuation intensity, θ' + and the Reynolds shear stress, u'v'¯+ exhibit a logarithmic behavior spanning the meso-layer (e.g., 50 ≤y+≤170 ). However, the mean thermal profile is not logarithmic even in the zero pressure gradient (ZPG) region; instead, it follows a power law. The maxima of u' 2 ¯+ and v'θ'¯+ change little with the strength of acceleration, while v'+, w'+, and u'v'¯+ continue to decay in the flow direction. Furthermore, θ'+ and u'θ'¯+ surprisingly experience changes from constants in ZPG to sharp rises in the FPG region. Such behavior appears to be due to squashing of the streaks which decreases the streak flank angle below the critical value for "transient growth" generation of streamwise vortices, shutting down production [W. Schoppa and F. Hussain, "Coherent structure generation near-wall turbulence," J. Fluid Mech. 453, 57-108 (2002)]. The streamwise vortices near the wall, although shrink because of stretching, simultaneously, also become weaker as the structures are progressively pushed farther down to the more viscous region near the wall. While the vortical structures decay rapidly in accelerating flows, the thermal field does not—nullifying the myth that both the thermal and velocity fields are similar.
Periodicity of the density wake past a vortex ring in a stratified liquid
NASA Astrophysics Data System (ADS)
Prokhorov, V.
2009-04-01
Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed
Effects of energetic coherent motions on the power and wake of an axial-flow turbine
NASA Astrophysics Data System (ADS)
Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.
2015-05-01
A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.
Intrinsic and extrinsic pinning in NdFeAs(O,F): vortex trapping and lock-in by the layered structure
NASA Astrophysics Data System (ADS)
Tarantini, C.; Iida, K.; Hänisch, J.; Kurth, F.; Jaroszynski, J.; Sumiya, N.; Chihara, M.; Hatano, T.; Ikuta, H.; Schmidt, S.; Seidel, P.; Holzapfel, B.; Larbalestier, D. C.
2016-10-01
Fe-based superconductors (FBS) present a large variety of compounds whose properties are affected to different extents by their crystal structures. Amongst them, the REFeAs(O,F) (RE1111, RE being a rare-earth element) is the family with the highest critical temperature Tc but also with a large anisotropy and Josephson vortices as demonstrated in the flux-flow regime in Sm1111 (Tc ∼ 55 K). Here we focus on the pinning properties of the lower-Tc Nd1111 in the flux-creep regime. We demonstrate that for H//c critical current density Jc at high temperatures is dominated by point-defect pinning centres, whereas at low temperatures surface pinning by planar defects parallel to the c-axis and vortex shearing prevail. When the field approaches the ab-planes, two different regimes are observed at low temperatures as a consequence of the transition between 3D Abrikosov and 2D Josephson vortices: one is determined by the formation of a vortex-staircase structure and one by lock-in of vortices parallel to the layers. This is the first study on FBS showing this behaviour in the full temperature, field, and angular range and demonstrating that, despite the lower Tc and anisotropy of Nd1111 with respect to Sm1111, this compound is substantially affected by intrinsic pinning generating a strong ab-peak in Jc.
Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan
2004-01-01
A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.
Modeling Postconvective Submesoscale Coherent Vortices in the Northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Damien, P.; Bosse, A.; Testor, P.; Marsaleix, P.; Estournel, C.
2017-12-01
For the first time, the formation of submesoscale coherent vortices (SCVs) during intermediate and deep convection events is documented in a realistic high-resolution (1 km) numerical simulation of the oceanic circulation in the northwestern Mediterranean Sea. Winter intermediate and deep convection leads to the formation of anticyclonic and cyclonic eddies with lifetimes exceeding 1 year. By focusing on three typical eddies, the main characteristics of such vortices are discussed. The anticyclonic eddies are typical of SCVs observed in deep convection areas so far. They are characterized by a small radius (˜6.5 km) and orbital peak velocities of about 7 cm/s located at great depth (˜1500 m) or intermediate depth (˜500 m). The cyclonic vortices show very similar characteristics, such as a high Rossby number (˜0.4), but with surface-intensified structures. The long lifetimes of both anticyclonic and cyclonic eddies reflect very slow diffusive processes between their core and their surroundings and a strong resistance to external perturbations. These long-lived eddies are found to participate in the spreading of a significant portion (from 15 to 35%) of the convected waters in the Gulf of Lions and contribute to the ventilation of the deep basin.
Streamwise Vorticity Generation in Laminar and Turbulent Jets
NASA Technical Reports Server (NTRS)
Demuren, Aodeji O.; Wilson, Robert V.
1999-01-01
Complex streamwise vorticity fields are observed in the evolution of non-circular jets. Generation mechanisms are investigated via Reynolds-averaged (RANS), large-eddy (LES) and direct numerical (DNS) simulations of laminar and turbulent rectangular jets. Complex vortex interactions are found in DNS of laminar jets, but axis-switching is observed only when a single instability mode is present in the incoming mixing layer. With several modes present, the structures are not coherent and no axis-switching occurs, RANS computations also produce no axis-switching. On the other hand, LES of high Reynolds number turbulent jets produce axis-switching even for cases with several instability modes in the mixing layer. Analysis of the source terms of the mean streamwise vorticity equation through post-processing of the instantaneous results shows that, complex interactions of gradients of the normal and shear Reynolds stresses are responsible for the generation of streamwise vorticity which leads to axis-switching. RANS computations confirm these results. k - epsilon turbulence model computations fail to reproduce the phenomenon, whereas algebraic Reynolds stress model (ASM) computations, in which the secondary normal and shear stresses are computed explicitly, succeeded in reproducing the phenomenon accurately.
Analysis of the radar cross-section (RCS) of aircraft vortices
NASA Astrophysics Data System (ADS)
Shariff, Karim; Wray, Alan
1999-11-01
Radar has been proposed as one way to track wake vortices to reduce aircraft spacing. Radar echoes from aircraft wakes are usually interpreted qualitatively using Tatarski's theory of scattering by isotropic atmospheric turbulence. The present work predicts RCS by (1) Keeping the weak scattering approximation but dropping the assumptions of a far-field and a uniform incident wave, neither of which is generally valid for a coherent wake (2) Considering three simple mechanisms for the structure and magnitude of refractive index variations: (i) Radial density gradient in each vortex (ii) Adiabatic transport of atmospheric fluid in the oval surrounding the vortices (iii) 3D fluctuations in the vortex cores. For mechanism (ii) the predictions agree with available data. However, the predictions have a cut-off away from normal incidence which is not present in the measurements due possibly to 3D fluctuations in the oval. The reflectivity of mechanism (i) is comparable but cuts-off at frequencies lower than those considered in the experiment. Finally, we suggest that hot engine exhaust could increase RCS by 40 db and reveal vortex circulation, provided its mixing is prevented in the laminar vortices.
NASA Technical Reports Server (NTRS)
McAlister, K. W.; Huang, S. S.; Abrego, A. I.
2001-01-01
A model rotor was mounted horizontally in the settling chamber of a wind tunnel to obtain performance and wake structure data under low climb conditions. The immediate wake of the rotor was carefully surveyed using 3-component particle image velocimetry to define the velocity and vortical content of the flow, and used in a subsequent study to validate a theory for the separate determination of induced and profile drag. Measurements were obtained for two collective pitch angles intended to render a predominately induced drag state and another with a marked increase in profile drag. A majority of the azimuthally directed vorticity in the wake was found to be concentrated in the tip vortices. However, adjacent layers of inboard vorticity with opposite sense were clearly present. At low collective, the close proximity of the tip vortex from the previous blade caused the wake from the most recent blade passage to be distorted. The deficit velocity component that was directed along the azimuth of the rotor blade was never more that 15 percent of the rotor tip speed, and except for the region of the tip vortex, appeared to have totally disappeared form the wake left by the previous blade.
Helical circulations in the typhoon boundary layer
NASA Astrophysics Data System (ADS)
Ellis, Ryan; Businger, Steven
2010-03-01
Low-level wind data from the WSR-88D in Guam obtained in Typhoon Dale (1996) and Typhoon Keith (1997) are analyzed for coherent structures. Consistent with the results of previous studies of Atlantic hurricanes, velocity anomalies associated with coherent structures were found in the boundary layer of both storms. A total of 99 cases of coherent structures, also known as roll vortices, were documented during a 6 h evaluation period for each storm. Storm-relative roll location, roll vorticity, asymmetries in the upward and downward momentum fluxes, and signatures of circulations transverse to the mean flow associated with roll circulations were explored. The effects of terrain and convective precipitation systems, such as rainbands, on the occurrence of rolls were investigated. The results support and extend prior findings of roll observations, and can be used to help validate theoretical and numerical models of coherent structures within tropical cyclones. Moreover, the wind variations documented in this study may have application for wave runup and wind damage potential in tropical cyclones.
A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.
NASA Astrophysics Data System (ADS)
Kleusberg, E.; Sarmast, S.; Schlatter, P.; Ivanell, S.; Henningson, D. S.
2016-09-01
The wake structure behind a wind turbine, generated by the spectral element code Nek5000, is compared with that from the finite volume code EllipSys3D. The wind turbine blades are modeled using the actuator line method. We conduct the comparison on two different setups. One is based on an idealized rotor approximation with constant circulation imposed along the blades corresponding to Glauert's optimal operating condition, and the other is the Tjffireborg wind turbine. The focus lies on analyzing the differences in the wake structures entailed by the different codes and corresponding setups. The comparisons show good agreement for the defining parameters of the wake such as the wake expansion, helix pitch and circulation of the helical vortices. Differences can be related to the lower numerical dissipation in Nek5000 and to the domain differences at the rotor center. At comparable resolution Nek5000 yields more accurate results. It is observed that in the spectral element method the helical vortices, both at the tip and root of the actuator lines, retain their initial swirl velocity distribution for a longer distance in the near wake. This results in a lower vortex core growth and larger maximum vorticity along the wake. Additionally, it is observed that the break down process of the spiral tip vortices is significantly different between the two methods, with vortex merging occurring immediately after the onset of instability in the finite volume code, while Nek5000 simulations exhibit a 2-3 radii period of vortex pairing before merging.
Rubin, David M.; McDonald, Richard R.
1995-01-01
Recirculating flow in lateral separation eddies is typically weaker than main stem flow and provides an effective environment for trapping sediment. Observations of recirculating flow and sedimentary structures demonstrate that eddies pulsate in size and in flow velocity even when main stem flow is steady. Time series measurements of flow velocity and location of the reattachment point indicate that these pulsations are nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is sufficient to cause the leeside flow to change from a periodic sequence of vortices to a nonperiodically pulsating lateral separation eddy, even if flow conditions are otherwise unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is added. First, vortices that are shed from the cylinder deform and become irregular as they impact the plate or interfere with remnants of other vortices near the reattachment point. Second, these deformed vortices and other flow structures are recirculated in the lateral separation eddy, thereby influencing the future state (pressure and momentum distribution) of the recirculating flow. The vortex deformation process was confirmed experimentally by documenting spatial differences in leeside flow; vortex shedding that is evident near the separation point is undetectable near the reattachment point. Nonlinear forecasting techniques were used in an attempt to distinguish among several possible kinds of nonperiodic flows. The computational techniques were unable to demonstrate that any of the nonperiodic flows result from low-dimensional nonlinear processes.
Low Speed Aerodynamics of the X-38 CRV
NASA Technical Reports Server (NTRS)
Komerath, N. M.; Funk, R.; Ames, R. G.; Mahalingam, R.; Matos, C.
1998-01-01
This project was performed in support of the engineering development of the NASA X-38 Crew Return Vehicle (CRV)system. Wind tunnel experiments were used to visualize various aerodynamic phenomena encountered by the CRV during the final stages of descent and landing. Scale models of the CRV were used to visualize vortex structures above and below the vehicle, and in its wake, and to quantify their trajectories. The effect of flaperon deflection on these structures was studied. The structure and dynamics of the CRV's wake during the drag parachute deployment stage were measured. Regions of high vorticity were identified using surveys conducted in several planes using a vortex meter. Periodic shedding of the vortex sheets from the sides of the CRV was observed using laser sheet videography as the CRV reached high angles of attack during the quasi-steady pitch-up prior to parafoil deployment. Using spectral analysis of hot-film anemometer data, the Strouhal number of these wake fluctuations was found to be 0.14 based on the model span. Phenomena encountered in flight test during parafoil operation were captured in scale-model tests, and a video photogrammetry technique was implemented to obtain parafoil surface shapes during flight in the tunnel. Forces on the parafoil were resolved using tension gages on individual lines. The temporal evolution of the phenomenon of leading edge collapse was captured. Laser velocimetry was used to demonstrate measurement of the porosity of the parafoil surface. From these measurements, several physical explanations have been developed for phenomena observed at various stages of the X-38 development program. Quantitative measurement capabilities have also been demonstrated for continued refinement of the aerodynamic technologies employed in the X-38 project. Detailed results from these studies are given in an AIAA Paper, two slide presentations, and other material which are given on a Web-based archival resource. This is the Digital Library of the Georgia Tech Experimental Aerodynamics Group.
Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.
Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P
2014-01-01
The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.
Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Sale, Danny; Aliseda, Alberto
2014-11-01
Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.
Wave energy trapping and localization in a plate with a delamination
NASA Astrophysics Data System (ADS)
Glushkov, Evgeny; Glushkova, Natalia; Golub, Mikhail V.; Moll, Jochen; Fritzen, Claus-Peter
2012-12-01
The research aims at an experimental approval of the trapping mode effect theoretically predicted for an elastic plate-like structure with a horizontal crack. The effect is featured by a sharp capture of incident wave energy at certain resonance frequencies with its localization between the crack and plate surfaces in the form of energy vortices yielding long-enduring standing waves. The trapping modes are eigensolutions of the related diffraction problem associated with nearly real complex points of its discrete frequency spectrum. To detect such resonance motion, a laser vibrometer based system has been employed for the acquisition and appropriate visualization of piezoelectrically actuated out-of-plane surface motion of a two-layer aluminum plate with an artificial strip-like delamination. The measurements at resonance and off-resonance frequencies have revealed a time-harmonic oscillation of good quality above the delamination in the resonance case. It lasts for a long time after the scattered waves have left that area. The measured frequency of the trapped standing-wave oscillation is in a good agreement with that predicted using the integral equation based mathematical model.
Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor
NASA Astrophysics Data System (ADS)
Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John
2016-11-01
In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.
Active Control of Mixing and Combustion, from Mechanisms to Implementation
NASA Astrophysics Data System (ADS)
Ghoniem, Ahmed F.
2001-11-01
Implementation of active control in complex processes, of the type encountered in high Reynolds number mixing and combustion, is predicated upon the identification of the underlying mechanisms and the construction of reduced order models that capture their essential characteristics. The mechanisms of interest must be shown to be amenable to external actuations, allowing optimal control strategies to exploit the delicate interactions that lead to the desired outcome. Reduced order models are utilized in defining the form and requisite attributes of actuation, its relationship to the monitoring system and the relevant control algorithms embedded in a feedforward or a feedback loop. The talk will review recent work on active control of mixing in combustion devices in which strong shear zones concur with mixing, combustion stabilization and flame anchoring. The underlying mechanisms, e.g., stability of shear flows, formation/evolution of large vortical structures in separating and swirling flows, their mutual interactions with acoustic fields, flame fronts and chemical kinetics, etc., are discussed in light of their key roles in mixing, burning enhancement/suppression, and combustion instability. Subtle attributes of combustion mechanisms are used to suggest the requisite control strategies.
Intermittent Swimming with a Flexible Propulsor
NASA Astrophysics Data System (ADS)
Akoz, Emre; Moored, Keith
2017-11-01
Aquatic animals use a variety of swimming gaits to propel themselves efficiently through the oceans. One type of gait known as intermittent or burst-and-coast swimming is used by species such as saithe, cod and trout. Recent studies have shown that this gait can save up to 60% of a swimmer's energy by exploiting an inviscid Garrick mechanism. These detailed studies have examined the effects of an intermittent swimming gait on rigid propulsors, yet the caudal fins of intermittent swimmers are in fact highly flexible propulsors. In this respect, to gain a comprehensive understanding of intermittent swimming, the effect of elasticity on the swimming performance and wake flow of an intermittent swimmer is investigated. To accomplish this a torsional spring structural model is strongly coupled to a fast boundary element method solver that captures the fluid-structure interaction of a two-dimensional self-propelled intermittently pitching hydrofoil. It is shown that flexibility introduces extra vortices to the coasting phase of motion that can either promote or diminish thrust production depending upon the hydrofoil parameters. An optimal intermittent flexible swimmer is shown to increase its efficiency by as much as 28% when compared to an optimal continuous flexible swimmer. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.
NASA Astrophysics Data System (ADS)
Zhao, Jiaquan; Li, Renfu; Wu, Haiyan
2018-02-01
In order to characterize the flow structure and the effect of acoustic waves caused by the shock-vortex interaction on the performance of the shock focusing, the incident plane shock wave with a single disturbance vortex focusing in a parabolic cavity is simulated systematically through solving the two-dimensional, unsteady Saint-Venant equations with the two order HLL scheme of Riemann solvers. The simulations show that the dilatation effect to be dominant in the net vorticity generation, while the baroclinic effect is dominate in the absence of initial vortex disturbance. Moreover, the simulations show that the time evolution of maximum focusing pressure with initial vortex is more complicate than that without initial vortex, which has a lot of relevance with the presence of quadrupolar acoustic wave structure induced by shock-vortex interaction and its propagation in the cavity. Among shock and other disturbance parameters, the shock Mach number, vortex Mach number and the shape of parabolic reflector proved to play a critical role in the focusing of shock waves and the strength of viscous dissipation, which in turn govern the evolution of maximum focusing pressure due to the gas dynamic focus, the change in dissipation rate and the coincidence of motion disturbance vortex with aerodynamic focus point.
Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio
NASA Astrophysics Data System (ADS)
Carr, Z. R.; Chen, C.; Ringuette, M. J.
2013-02-01
We investigate experimentally the effect of aspect ratio ( [InlineMediaObject not available: see fulltext.] ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of [InlineMediaObject not available: see fulltext.] = 2 and 4 are tested in a 50 % by mass glycerin-water mixture, with a total rotation of ϕ = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the {Q}-criterion, helicity density, and spanwise quantities. For both [InlineMediaObject not available: see fulltext.] s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ϕ = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For [InlineMediaObject not available: see fulltext.] = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ϕ = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for [InlineMediaObject not available: see fulltext.] = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the [InlineMediaObject not available: see fulltext.] = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the [InlineMediaObject not available: see fulltext.] = 2 LEV is distinct from the TV and is similarly stable. The [InlineMediaObject not available: see fulltext.] = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a "four-lobed" distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both [InlineMediaObject not available: see fulltext.] s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For [InlineMediaObject not available: see fulltext.] = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for [InlineMediaObject not available: see fulltext.] = 4. The TV circulation for each [InlineMediaObject not available: see fulltext.] is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for [InlineMediaObject not available: see fulltext.] = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For [InlineMediaObject not available: see fulltext.] = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.
The Flowfield Characteristics of a Mach 2 Diamond Jet
NASA Technical Reports Server (NTRS)
Washington, Donnell; Alvi, Farrukh S.; Krothapalli, Anjanevulu
1997-01-01
The potential for using a novel diamond-shaped nozzle which may allow for superior mixing characteristics of supersonic jets without significant thrust losses is explored. The results of flow visualization and pressure measurements indicate the presence of distinct structures in the shear layers, not normally observed in shear layers of axisymmetric and rectangular jets. As characteristics of these features suggests that they are a manifestation of significant streamwise vorticity in the shear layers. Despite the distinct nature of the flowfield structure of the present shear layer, the global growth rates of this shear layer were found to be very similar to its two-dimensional and axisymmetric counterparts. These and other observations suggest that the presence of streamwise vorticity may not play a significant role in the global development of a compressible shear layer.
Elliptic jets, part 2. Dynamics of coherent structures: Pairing
NASA Technical Reports Server (NTRS)
Husain, Hyder S.; Hussain, Fazle
1992-01-01
The dynamics of the jet column mode of vortex pairing in the near field of an elliptic jet was investigated. Hot-wire measurements and flow visualization were used to examine the details of the pairing mechanism of nonplanar vortical elliptic structures and its effect on such turbulence measures as coherent velocities, incoherent turbulence intensities, incoherent and coherent Reynolds, stresses, turbulence production, and mass entrainment. It was found that pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane. In the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently, producing considerably greater entrainment and mixing than in circular or plane jets.
Is evaporative colling important for shallow clouds?
NASA Astrophysics Data System (ADS)
Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.
2017-12-01
We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.
Streamwise vorticity in a turbine rotor with conical endwalls
NASA Astrophysics Data System (ADS)
Kost, Friedrich
1993-04-01
To investigate the spatial flow structure caused by sweep and dihedral effects in turbomachinery blade rows, detailed measurements were conducted in a windtunnel for rotating annular cascades. The special configuration consisted of a turbine rotor equipped with straight blades, a conical hub, and a conical casing with a cone half angle of 30 deg. Numerous flow data were obtained from surface pressure distributions at seven radial blade sections and from laser velocimetry upstream, downstream, and inside the rotor. It is shown that large deviations from an axisymmetric surface exist in conical flow. The conical flow gives rise to the production of streamwise vorticity which results in increased flow losses. It is furthermore shown that the secondary flow structure is mainly determined by the rotation of the turbine.
Swirl of Clouds over the Pacific
2017-12-08
Theodore von Kármán, a Hungarian-American physicist, was the first to describe the physical processes that create long chains of spiral eddies like the one shown above. Known as von Kármán vortices the patterns can form nearly anywhere that fluid flow is disturbed by an object. Since the atmosphere behaves like a fluid, the wing of an airplane, a bridge, even an island can trigger the distinctive phenomenon. On May 22, 2013, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image of cloud vortices behind Isla Socorro, a volcanic island located in the Pacific Ocean. The island, which is located a few hundred kilometers off the west coast of Mexico and the southern tip of Baja California, is part of the Revillagigedo Archipelago. Satellite sensors have spotted von Kármán vortices around the globe, including off of Guadalupe Island, near the coast of Chile, in the Greenland Sea, in the Arctic, and even next to a tropical storm. NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS More info: 1.usa.gov/14VSDQa Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Numerical study on wake characteristics of high-speed trains
NASA Astrophysics Data System (ADS)
Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei
2013-12-01
Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.
NASA Astrophysics Data System (ADS)
Ground, Cody R.; Gopal, Vijay; Maddalena, Luca
2018-04-01
By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.
Rortex—A new vortex vector definition and vorticity tensor and vector decompositions
NASA Astrophysics Data System (ADS)
Liu, Chaoqun; Gao, Yisheng; Tian, Shuling; Dong, Xiangrui
2018-03-01
A vortex is intuitively recognized as the rotational/swirling motion of the fluids. However, an unambiguous and universally accepted definition for vortex is yet to be achieved in the field of fluid mechanics, which is probably one of the major obstacles causing considerable confusions and misunderstandings in turbulence research. In our previous work, a new vector quantity that is called vortex vector was proposed to accurately describe the local fluid rotation and clearly display vortical structures. In this paper, the definition of the vortex vector, named Rortex here, is revisited from the mathematical perspective. The existence of the possible rotational axis is proved through real Schur decomposition. Based on real Schur decomposition, a fast algorithm for calculating Rortex is also presented. In addition, new vorticity tensor and vector decompositions are introduced: the vorticity tensor is decomposed to a rigidly rotational part and a non-rotationally anti-symmetric part, and the vorticity vector is decomposed to a rigidly rotational vector which is called the Rortex vector and a non-rotational vector which is called the shear vector. Several cases, including the 2D Couette flow, 2D rigid rotational flow, and 3D boundary layer transition on a flat plate, are studied to demonstrate the justification of the definition of Rortex. It can be observed that Rortex identifies both the precise swirling strength and the rotational axis, and thus it can reasonably represent the local fluid rotation and provide a new powerful tool for vortex dynamics and turbulence research.
Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
Tay, W B; van Oudheusden, B W; Bijl, H
2014-09-01
The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the spanwise studies, but the efficiency result contradicts it, indicating that other flapping parameters are involved as well. Results from this study provide a deeper understanding of the underlying aerodynamics of the X-wing type, which will help to improve the performance of insect-sized FMAVs using this unique configuration.
Surfzone vorticity in the presence of extreme bathymetric variability
NASA Astrophysics Data System (ADS)
Clark, D.; Elgar, S.; Raubenheimer, B.
2014-12-01
Surfzone vorticity was measured at Duck, NC using a novel 5-m diameter vorticity sensor deployed in 1.75 m water depth. During the 4-week deployment the initially alongshore uniform bathymetry developed 200-m long mega-cusps with alongshore vertical changes of 1.5 m or more. When waves were small and the vorticity sensor was seaward of the surfzone, vorticity variance and mean vorticity varied with the tidally modulated water depth, consistent with a net seaward flux of surfzone-generated vorticity. Vorticity variance increased with incident wave heights up to 2-m. However, vorticity variance remained relatively constant for incident wave heights above 2-m, and suggests that eddy energy may become saturated in the inner surfzone during large wave events. In the presence of mega-cusps the mean vorticity (shear) is often large and generated by bathymetrically controlled rip currents, while vorticity variance remains strongly correlated with the incident wave height. Funded by NSF, ASD(R&E), and WHOI Coastal Ocean Institute.
NASA Astrophysics Data System (ADS)
Hassanzadeh, Pedram
Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to infer the height and internal stratification of some astrophysical and geophysical vortices because direct measurements of their vertical structures are difficult. In Chapter 3, we show numerically and experimentally that localized suction in rotating continuously stratified flows produces three-dimensional baroclinic cyclones. As expected from Chapter 2, the interiors of these cyclones are super-stratified. Suction, modeled as a small spherical sink in the simulations, creates an anisotropic flow toward the sink with directional dependence changing with the ratio of the Coriolis parameter to the Brunt-Vaisala frequency. Around the sink, this flow generates cyclonic vorticity and deflects isopycnals so that the interior of the cyclone becomes super-stratified. The super-stratified region is visualized in the companion experiments that we helped to design and analyze using the synthetic schlieren technique. Once the suction stops, the cyclones decay due to viscous dissipation in the simulations and experiments. The numerical results show that the vertical velocity of viscously decaying cyclones flows away from the cyclone's midplane, while the radial velocity flows toward the cyclone's center. This observation is explained based on the cyclo-geostrophic balance. This vertical velocity mixes the flow inside and outside of cyclone and reduces the super-stratification. We speculate that the predominance of anticyclones in geophysical and astrophysical flows is due to the fact that anticyclones require sub-stratification, which occurs naturally by mixing, while cyclones require super-stratification. In Chapter 4, we show that a previously unknown instability creates space-filling lattices of 3D turbulent baroclinic vortices in linearly-stable, rotating, stratified shear flows. The instability starts from a newly discovered family of easily-excited critical layers. This new family, named the baroclinic critical layer, has singular vertical velocities; the traditional family of (barotropic) critical layer has singular stream-wise velocities and is hard to excite. In our simulations, the baroclinic critical layers in rotating stably-stratified linear shear are excited by small-volume, small-amplitude vortices or waves. The excited baroclinic critical layers then intensify by drawing energy from the background shear and roll-up into large coherent 3D vortices that excite new critical layers and vortices. The vortices self-similarly replicate to create lattices of turbulent vortices. These vortices persist for all time and are called zombie vortices because they can occur in the dead zones of protoplanetary disks. The self-replication of zombie vortices can de-stabilize the otherwise linearly and finite-amplitude stable Keplerian shear and lead to the formation of stars and planets. (Abstract shortened by UMI.)
Jupiter's Great Red Spot and other vortices
NASA Technical Reports Server (NTRS)
Marcus, Philip S.
1993-01-01
A theoretical explanation of Jupiter's Great Red Spot (GRS) as the self-organization of vorticity in turbulence is presented. A number of properties of the GRS and other Jovian vortices that are unambiguous from the data are listed. The simplest possible model that explains these properties one at a time rather than in a difficult all-encompassing planetary global circulation model is presented. It is shown that Jovian vortices reflect the behavior of quasi-geostrophic (QG) vortices embedded in an east-west wind with bands of uniform potential vorticity. It is argued that most of the properties of the Jovian vortices can be easily explained and understood with QG theory. Many of the signatures of QG vortices are apparent on Voyager images. In numerical and laboratory experiments, QG vortices relax to approximately steady states like the Jovian vortices, rather than oscillating or rotating Kida ellipses.
DNS study on bursting and intermittency in late boundary layer transition
NASA Astrophysics Data System (ADS)
Wang, YiQian; Liu, ChaoQun
2017-11-01
Experimental and numerical investigations have suggested the existence of a strong correlation between the passage of coherent structures and events of bursting and intermittency. However, a detailed cause-and-effect study on the subject is rarely found in the literature due to the complexity and the nonlinear multiscale nature of turbulent flows. The primary goal of this research is to explore the motion and evolution of coherent structures during late transition, whose structure is much more ordered than that of fully developed turbulence, and their relationship with events of bursting and intermittency based on a verified high-order direct numerical simulation (DNS). The computation was carried out on a flat plate at Reynolds number 1000 (based on the inflow displacement thickness) with an inflow Mach number 0.5. It is concluded that bursting and intermittency detected by stationary sensors in a transitional boundary layer actually result from the passage and development of vortical structures, and it would be more rational to design transitional turbulence models based on modelling the moving vortical structures rather than the statistical features and experimental experiences.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
Vortical flow management techniques
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Campbell, James F.
1987-01-01
The aerodynamic performance and controllability of advanced, highly maneuverable supersonic aircraft can be enhanced by means of 'vortex management', which refers to the purposeful manipulation and reordering of stable and concentrated vortical structures due to flow separations from highly swept leading edges and slender forebodies at moderate-to-high angles-of-attack. Attention is presently given to a variety of results obtained in the course of experiments on generic research models at NASA Langley, clarifying their underlying aerodynamics and evaluating their performance-improvement potential. The vortex-management concepts discussed encompass aerodynamic compartmentation of highly swept leading edges, vortex lift augmentation and modulation, and forebody vortex manipulation.
On hairpin vortices as model of wall turbulence structure
NASA Technical Reports Server (NTRS)
Liu, N.-S.; Shamroth, S. J.; Mcdonald, H.
1985-01-01
A model of the hairpin vortex has been constructed and used in two distinct but related approaches. The first approach is kinematic in nature in which a synthesis procedure using hairpin vortices to provide a quantitative link between mean flow quantities and the statistical quantities of near wall turbulence has become developed. The second approach is dynamic in nature, and the evolution of an incipient 'representative' hairpin vortex as well as the distortion of a background laminar boundary layer flow, in which the hairpin vortex is immersed, has been simulated by numerical solution of the unsteady, three-dimensional Navier-Stokes equations.
Forward-facing steps induced transition in a subsonic boundary layer
NASA Astrophysics Data System (ADS)
Zh, Hui; Fu, Song
2017-10-01
A forward-facing step (FFS) immersed in a subsonic boundary layer is studied through a high-order flux reconstruction (FR) method to highlight the flow transition induced by the step. The step height is a third of the local boundary-layer thickness. The Reynolds number based on the step height is 720. Inlet disturbances are introduced giving rise to streamwise vortices upstream of the step. It is observed that these small-scale streamwise structures interact with the step and hairpin vortices are quickly developed after the step leading to flow transition in the boundary layer.
The development of laser speckle velocimetry for the study of vortical flows
NASA Technical Reports Server (NTRS)
Krothapalli, A.
1991-01-01
A new experimental technique commonly known as PIDV (particle image displacement velocity) was developed to measure an instantaneous two dimensional velocity fluid in a selected plane of the flow field. This technique was successfully applied to the study of several problems: (1) unsteady flows with large scale vortical structures; (2) the instantaneous two dimensional flow in the transition region of a rectangular air jet; and (3) the instantaneous flow over a circular bump in a transonic flow. In several other experiments PIDV is routinely used as a non-intrusive measurement technique to obtain instantaneous two dimensional velocity fields.
Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4
NASA Astrophysics Data System (ADS)
Kivotides, Demosthenes
2018-06-01
It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.
NASA Astrophysics Data System (ADS)
Soni, Rahul Kumar; De, Ashoke
2018-05-01
The present study primarily focuses on the effect of the jet spacing and strut geometry on the evolution and structure of the large-scale vortices which play a key role in mixing characteristics in turbulent supersonic flows. Numerically simulated results corresponding to varying parameters such as strut geometry and jet spacing (Xn = nDj such that n = 2, 3, and 5) for a square jet of height Dj = 0.6 mm are presented in the current study, while the work also investigates the presence of the local quasi-two-dimensionality for the X2(2Dj) jet spacing; however, the same is not true for higher jet spacing. Further, the tapered strut (TS) section is modified into the straight strut (SS) for investigation, where the remarkable difference in flow physics is unfolded between the two configurations for similar jet spacing (X2: 2Dj). The instantaneous density and vorticity contours reveal the structures of varying scales undergoing different evolution for the different configurations. The effect of local spanwise rollers is clearly manifested in the mixing efficiency and the jet spreading rate. The SS configuration exhibits excellent near field mixing behavior amongst all the arrangements. However, in the case of TS cases, only the X2(2Dj) configuration performs better due to the presence of local spanwise rollers. The qualitative and quantitative analysis reveals that near-field mixing is strongly affected by the two-dimensional rollers, while the early onset of the wake mode is another crucial parameter to have improved mixing. Modal decomposition performed for the SS arrangement sheds light onto the spatial and temporal coherence of the structures, where the most dominant structures are found to be the von Kármán street vortices in the wake region.
Dynamic structure of confined shocks undergoing sudden expansion
NASA Astrophysics Data System (ADS)
Abate, G.; Shyy, W.
2002-01-01
The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.
NASA Astrophysics Data System (ADS)
Callahan, Shannon; Sajjad, Roshan; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
An experimental investigation of secondary flow structures within a 180-degree bent tube model of a curved artery was performed using phase-averaged, two-component, two-dimensional, particle image velocimetry (2C-2D PIV) under pulsatile inflow conditions. Pulsatile waveforms ranging from simple sinusoidal to physiological inflows were supplied. We developed a novel continuous wavelet transform algorithm (PIVlet 1.2) and applied it to vorticity fields for coherent secondary flow structure detection. Regime maps of secondary flow structures revealed new, deceleration-phase-dependent flow morphologies. The temporal instances where streamwise centrifugal forces dominated were associated with large-scale coherent structures, such as deformed Dean-, Lyne- and Wall-type (D-L-W) vortical structures. Magnitudes of streamwise and cross-stream centrifugal forces tend to balance during deceleration phases. Deceleration events were also associated with spatial reorganization and asymmetry in large-scale D-L-W secondary flow structures. Hence, the interaction between streamwise and cross-stream centrifugal forces that affects secondary flow morphologies is explained using a ``residual force'' parameter i.e., the difference in magnitudes of these forces. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
EDITORIAL: The FDR Prize The FDR Prize
NASA Astrophysics Data System (ADS)
Funakoshi, Mitsuaki
2011-08-01
From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.
From organized internal traffic to collective navigation of bacterial swarms
NASA Astrophysics Data System (ADS)
Ariel, Gil; Shklarsh, Adi; Kalisman, Oren; Ingham, Colin; Ben-Jacob, Eshel
2013-12-01
Bacterial swarming resulting in collective navigation over surfaces provides a valuable example of cooperative colonization of new territories. The social bacterium Paenibacillus vortex exhibits successful and diverse swarming strategies. When grown on hard agar surfaces with peptone, P. vortex develops complex colonies of vortices (rotating bacterial aggregates). In contrast, during growth on Mueller-Hinton broth gelled into a soft agar surface, a new strategy of multi-level organization is revealed: the colonies are organized into a special network of swarms (or ‘snakes’ of a fraction of millimeter in width) with intricate internal traffic. More specifically, cell movement is organized in two or three lanes of bacteria traveling between the back and the front of the swarm. This special form of cellular logistics suggests new methods in which bacteria can share resources and risk while searching for food or migrating into new territories. While the vortices-based organization on hard agar surfaces has been modeled before, here, we introduce a new multi-agent bacterial swarming model devised to capture the swarms-based organization on soft surfaces. We test two putative generic mechanisms that may underlie the observed swarming logistics: (i) chemo-activated taxis in response to chemical cues and (ii) special align-and-push interactions between the bacteria and the boundary of the layer of lubricant collectively generated by the swarming bacteria. Using realistic parameters, the model captures the observed phenomena with semi-quantitative agreement in terms of the velocity as well as the dynamics of the swarm and its envelope. This agreement implies that the bacteria interactions with the swarm boundary play a crucial role in mediating the interplay between the collective movement of the swarm and the internal traffic dynamics.
Characterization of flame stabilization technologies
NASA Astrophysics Data System (ADS)
Bush, Scott Matthew
To experimentally explore and characterize a V-gutter stabilized flame, this research study developed a Combustion Wind Tunnel Test Facility capable of effectively simulating the freestream Mach #'s and temperatures achieved within the back end of a gas turbine jet engine. After validating this facility, it was then used to gain a better understanding of the flow dynamics and combustion dynamics associated with the V-gutter configuration. The motivation for studying the V-gutter stabilized flame is due to the concern in industry today with combustion instabilities that are encountered in military aircraft. To gain a better understanding of the complex flow field associated with the V-gutter stabilized flame, this research study utilized Particle Image Velocimetry to capture both non-reacting and reacting instantaneous and mean flow structures formed in the wake region of the three dimensional V-gutter bluff body. The results of this study showed significant differences between the non-reacting and reacting flow fields. The non-reacting case resulted in asymmetric shedding of large scale vortices from the V-gutter edges while the reacting case resulted in a combination of both symmetric and asymmetric shedding of smaller scale vortical structures. A comparison of the mean velocity components shows that the reacting case results in a larger region of reversed flow, experiences an acceleration of the freestream flow due to combustion, and results in a slower dissipation of the wake region. Simultaneous dynamic pressure and CH* chemiluminescence measurements were also recorded to determine the coupling between the flow dynamics and combustion dynamics. The results of this study showed that only low frequency combustion instabilities were encountered at various conditions within the envelope of stable operation because of the interaction between longitudinal acoustic waves and unsteady heat release. When approaching rich blow out, rms pressure amplitudes were as high as 2 psi, and approaching lean blow out lead to rms pressure amplitudes around 0.2 psi. These studies also showed the instability frequency increasing with increases in either inlet temperature or inlet Mach #. Additionally, increasing the inlet velocity or the DeZubay parameter reduced the stability limits of operation for the V-gutter stabilized flame.