Sample records for capture zone analysis

  1. Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.

    2008-01-01

    This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.

  2. A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems

    EPA Science Inventory

    This document describes a systematic approach for performing capture zone analysis associated with ground water pump and treat systems. A “capture zone” refers to the three-dimensional region that contributes the ground water extracted by one or more wells or drains. A capture ...

  3. Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology

    NASA Astrophysics Data System (ADS)

    Morse, Brad S.; Pohll, Greg; Huntington, Justin; Rodriguez Castillo, Ramiro

    2003-06-01

    In 1992, Mexican researchers discovered concentrations of arsenic in excess of World Heath Organization (WHO) standards in several municipal wells in the Zimapan Valley of Mexico. This study describes a method to delineate a capture zone for one of the most highly contaminated wells to aid in future well siting. A stochastic approach was used to model the capture zone because of the high level of uncertainty in several input parameters. Two stochastic techniques were performed and compared: "standard" Monte Carlo analysis and the generalized likelihood uncertainty estimator (GLUE) methodology. The GLUE procedure differs from standard Monte Carlo analysis in that it incorporates a goodness of fit (termed a likelihood measure) in evaluating the model. This allows for more information (in this case, head data) to be used in the uncertainty analysis, resulting in smaller prediction uncertainty. Two likelihood measures are tested in this study to determine which are in better agreement with the observed heads. While the standard Monte Carlo approach does not aid in parameter estimation, the GLUE methodology indicates best fit models when hydraulic conductivity is approximately 10-6.5 m/s, with vertically isotropic conditions and large quantities of interbasin flow entering the basin. Probabilistic isochrones (capture zone boundaries) are then presented, and as predicted, the GLUE-derived capture zones are significantly smaller in area than those from the standard Monte Carlo approach.

  4. CZAEM USER'S GUIDE: MODELING CAPTURE ZONES OF GROUND-WATER WELLS USING ANALYTIC ELEMENTS

    EPA Science Inventory

    The computer program CZAEM is designed for elementary capture zone analysis, and is based on the analytic element method. CZAEM is applicable to confined and/or unconfined low in shallow aquifers; the Dupuit-Forchheimer assumption is adopted. CZAEM supports the following analyt...

  5. Estimation of capture zones and drawdown at the Northwest and West Well Fields, Miami-Dade County, Florida, using an unconstrained Monte Carlo analysis: recent (2004) and proposed conditions

    USGS Publications Warehouse

    Brakefield, Linzy K.; Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin

    2013-01-01

    Travel-time capture zones and drawdown for two production well fields, used for drinking-water supply in Miami-Dade County, southeastern Florida, were delineated by the U.S Geological Survey using an unconstrained Monte Carlo analysis. The well fields, designed to supply a combined total of approximately 250 million gallons of water per day, pump from the highly transmissive Biscayne aquifer in the urban corridor between the Everglades and Biscayne Bay. A transient groundwater flow model was developed and calibrated to field data to ensure an acceptable match between simulated and observed values for aquifer heads and net exchange of water between the aquifer and canals. Steady-state conditions were imposed on the transient model and a post-processing backward particle-tracking approach was implemented. Multiple stochastic realizations of horizontal hydraulic conductivity, conductance of canals, and effective porosity were simulated for steady-state conditions representative of dry, average and wet hydrologic conditions to calculate travel-time capture zones of potential source areas of the well fields. Quarry lakes, formed as a product of rock-mining activities, whose effects have previously not been considered in estimation of capture zones, were represented using high hydraulic-conductivity, high-porosity cells, with the bulk hydraulic conductivity of each cell calculated based on estimates of aquifer hydraulic conductivity, lake depths and aquifer thicknesses. A post-processing adjustment, based on calculated residence times using lake outflows and known lake volumes, was utilized to adjust particle endpoints to account for an estimate of residence-time-based mixing of lakes. Drawdown contours of 0.1 and 0.25 foot were delineated for the dry, average, and wet hydrologic conditions as well. In addition, 95-percent confidence intervals (CIs) were calculated for the capture zones and drawdown contours to delineate a zone of uncertainty about the median estimates. Results of the Monte Carlo simulations indicate particle travel distances at the Northwest Well Field (NWWF) and West Well Field (WWF) are greatest to the west, towards the Everglades. The man-made quarry lakes substantially affect particle travel distances. In general near the NWWF, the capture zones in areas with lakes were smaller in areal extent than capture zones in areas without lakes. It is possible that contamination could reach the well fields quickly, within 10 days in some cases, if it were introduced into lakes nearest to supply wells, with one of the lakes being only approximately 650 feet from the nearest supply well. In addition to estimating drawdown and travel-time capture zones of 10, 30, 100, and 210 days for the NWWF and the WWF under more recent conditions, two proposed scenarios were evaluated with Monte Carlo simulations: the potential hydrologic effects of proposed Everglades groundwater seepage mitigation and quarry-lake expansion. The seepage mitigation scenario included the addition of two proposed anthropogenic features to the model: (1) an impermeable horizontal flow barrier east of the L-31N canal along the western model boundary between the Everglades and the urban areas of Miami-Dade County, and (2) a recharge canal along the Dade-Broward Levee near the NWWF. Capture zones and drawdown for the WWF were substantially affected by the addition of the barrier, which eliminates flow from the western boundary into the active model domain, shifting the predominant capture zone source area from the west more to the north and south. The 95-percent CI for the 210-day capture zone moved slightly in the NWWF as a result of the recharge canal. The lake-expansion scenario incorporated a proposed increase in the number and surface area of lakes by an additional 25 square miles. This scenario represents a 150-percent increase from the 2004 lake surface area near both well fields, but with the majority of increase proposed near the NWWF. The lake-expansion scenario substantially decreased the extent of the 210-day capture zone of the NWWF, which is limited to the lakes nearest the well field under proposed conditions.

  6. Capture zones for simple aquifers

    USGS Publications Warehouse

    McElwee, Carl D.

    1991-01-01

    Capture zones showing the area influenced by a well within a certain time are useful for both aquifer protection and cleanup. If hydrodynamic dispersion is neglected, a deterministic curve defines the capture zone. Analytical expressions for the capture zones can be derived for simple aquifers. However, the capture zone equations are transcendental and cannot be explicitly solved for the coordinates of the capture zone boundary. Fortunately, an iterative scheme allows the solution to proceed quickly and efficiently even on a modest personal computer. Three forms of the analytical solution must be used in an iterative scheme to cover the entire region of interest, after the extreme values of the x coordinate are determined by an iterative solution. The resulting solution is a discrete one, and usually 100-1000 intervals along the x-axis are necessary for a smooth definition of the capture zone. The presented program is written in FORTRAN and has been used in a variety of computing environments. No graphics capability is included with the program; it is assumed the user has access to a commercial package. The superposition of capture zones for multiple wells is expected to be satisfactory if the spacing is not too close. Because this program deals with simple aquifers, the results rarely will be the final word in a real application.

  7. Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.

    1994-01-01

    Ground-water capture zone boundaries for individual pumped wells in a confined aquffer were delineated by using groundwater models. Both analytical and numerical (semi-analytical) models that more accurately represent the $round-water-flow system were used. All models delineated 2-dimensional boundaries (capture zones) that represent the areal extent of groundwater contribution to a pumped well. The resultant capture zones were evaluated on the basis of the ability of each model to realistically rapresent the part of the ground-water-flow system that contributed water to the pumped wells. Analytical models used were based on a fixed radius approach, and induded; an arbitrary radius model, a calculated fixed radius model based on the volumetric-flow equation with a time-of-travel criterion, and a calculated fixed radius model derived from modification of the Theis model with a drawdown criterion. Numerical models used induded the 2-dimensional, finite-difference models RESSQC and MWCAP. The arbitrary radius and Theis analytical models delineated capture zone boundaries that compared least favorably with capture zones delineated using the volumetric-flow analytical model and both numerical models. The numerical models produced more hydrologically reasonable capture zones (that were oriented parallel to the regional flow direction) than the volumetric-flow equation. The RESSQC numerical model computed more hydrologically realistic capture zones than the MWCAP numerical model by accounting for changes in the shape of capture zones caused by multiple-well interference. The capture zone boundaries generated by using both analytical and numerical models indicated that the curnmtly used 100-foot radius of protection around a wellhead in South Carolina is an underestimate of the extent of ground-water capture for pumped wetis in this particular wellfield in the Upper Floridan aquifer. The arbitrary fixed radius of 100 feet was shown to underestimate the upgradient contribution of ground-water flow to a pumped well.

  8. Detection of brown-rot antigens in southern pine

    Treesearch

    Carol A. Clausen

    1996-01-01

    Brown-rot fungal antigens were detected by particle capture immunoassay(PCI) in southern pine 2 X 4’s beyond visible or culturable hyphal growth. Further analysis of test samples revealed changes along the 2 X 4’s that could be grouped into zones. Zone 1, the point of inoculation through 6 cm, showed low pH, measurable oxalic acid, high moisture, and high protein. Zone...

  9. Approximate solutions for radial travel time and capture zone in unconfined aquifers.

    PubMed

    Zhou, Yangxiao; Haitjema, Henk

    2012-01-01

    Radial time-of-travel (TOT) capture zones have been evaluated for unconfined aquifers with and without recharge. The solutions of travel time for unconfined aquifers are rather complex and have been replaced with much simpler approximate solutions without significant loss of accuracy in most practical cases. The current "volumetric method" for calculating the radius of a TOT capture zone assumes no recharge and a constant aquifer thickness. It was found that for unconfined aquifers without recharge, the volumetric method leads to a smaller and less protective wellhead protection zone when ignoring drawdowns. However, if the saturated thickness near the well is used in the volumetric method a larger more protective TOT capture zone is obtained. The same is true when the volumetric method is used in the presence of recharge. However, for that case it leads to unreasonableness over the prediction of a TOT capture zone of 5 years or more. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  10. Hydraulic containment: analytical and semi-analytical models for capture zone curve delineation

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Goltz, Mark N.

    2002-05-01

    We present an efficient semi-analytical algorithm that uses complex potential theory and superposition to delineate the capture zone curves of extraction wells. This algorithm is more flexible than previously published techniques and allows the user to determine the capture zone for a number of arbitrarily positioned extraction wells pumping at different rates. The algorithm is applied to determine the capture zones and optimal well spacing of two wells pumping at different flow rates and positioned at various orientations to the direction of regional groundwater flow. The algorithm is also applied to determine capture zones for non-colinear three-well configurations as well as to determine optimal well spacing for up to six wells pumping at the same rate. We show that the optimal well spacing is found by minimizing the difference in the stream function evaluated at the stagnation points.

  11. Geologic and Landuse Controls of the Risk for Domestic Well Pollution from Septic Tank Leachate

    NASA Astrophysics Data System (ADS)

    Horn, J.; Harter, T.

    2006-12-01

    A highly resolved three-dimensional groundwater model containing a domestic drinking water well and its surrounding gravel pack is simulated with MODFLOW. Typical recharge rates, domestic well depths and well sealing lengths are obtained by analyzing well log data from eastern Stanislaus County, California, an area with a significant rural and suburban population relying on domestic wells and septic tank systems. The domestic well model is run for a range of hydraulic conductivities of both, the gravel pack and the aquifer. Reverse particle tracking with MODPATH 3D is carried out to determine the capture zone of the well as a function of hydraulic conductivity. The resulting capture zone is divided into two areas: Particles representing water entering the top of the well screen represent water that flows downward through the gravel pack from somewhere below the well seal and above the well screen. The source area associated with these particles forms a narrow well-ward elongation of the main capture zone, which represents that of particles flowing horizontally across the gravel pack into the well screen. The properties of the modeled capture zones are compared to existing analytical capture zone models. A clear influence of the gravel pack on capture zone shape and size is shown. Using the information on capture zone geometry, a risk assessment tool is developed to estimate the chance that a domestic well capture zone intersects at least one septic tank drainfield in a checkerboard of rural or suburban lots of a given size, but random drainfield and domestic well distribution. Risk is computed as a function of aquifer and gravel pack hydraulic conductivity, and as a function of lot size. We show the risk of collocation of a septic tank leach field with a domestic well capture zone for various scenarios. This risk is generally highest for high hydraulic conductivities of the gravel pack and the aquifer, limited anisotropy, and higher septic system densities. Under typical conditions, the risk of septic leachate reaching a domestic well is significant and may range from 5% to over 50%.

  12. Nucleation of C60 on ultrathin SiO2

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Groce, Michelle; Cullen, William; Pimpinelli, Alberto; Williams, Ellen; Einstein, Ted

    2012-02-01

    We utilize scanning tunneling microscopy to characterize the nucleation, growth, and morphology of C60 on ultrathin SiO2 grown at room temperature. C60 thin films are deposited in situ by physical vapor deposition with thicknesses varying from <0.05 to ˜1 ML. Island size and capture zone distributions are examined for a varied flux rate and substrate deposition temperature. The C60 critical nucleus size is observed to change between monomers and dimers non-monotonically from 300 K to 500 K. Results will be discussed in terms of recent capture zone studies and analysis methods. Relation to device fabrication will be discussed. doi:10.1016/j.susc.2011.08.020

  13. Simulation of the recharge area for Frederick Springs, Dane County, Wisconsin

    USGS Publications Warehouse

    Hunt, R.J.; Steuer, J.J.

    2000-01-01

    Analysis of samples from the springs and a nearby municipal well identified large contrasts in chemistry, even for springs within 50 feet of one another. The differences were stable over time, were present in both ion and isotope analyses, and showed a distinct gradation from high nitrate, high calcium, Ordovician-carbonate dominated water in western spring vents to low nitrate, lower calcium, Cambrian-sandstone influenced water in eastern spring vents. The difference in chemistry was attributed to distinctive bedrock geology as demonstrated by overlaying the 50 percent probability capture zone over a bedrock geology map for the area. This finding gives additional confidence to the capture zone calculated by the ground-water flow model.

  14. Capture Versus Capture Zones: Clarifying Terminology Related to Sources of Water to Wells.

    PubMed

    Barlow, Paul M; Leake, Stanley A; Fienen, Michael N

    2018-03-15

    The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water-budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head-dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three-dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water-budget analyses, most often with groundwater-flow models. Transport models, particularly particle-tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  15. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    PubMed

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Genetic profiling to determine potential origins of boll weevils (Coleoptera: Curculionidae) captured in a Texas eradication zone: endemicity, immigration, or sabotage?

    PubMed

    Kim, Kyung Seok; Sappington, Thomas W; Allen, Charles T

    2008-12-01

    Thirty-seven boll weevils, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), were captured in pheromone traps near Lubbock, TX, in the Southern High Plains/Caprock eradication zone during August-October 2006. No boll weevils had been captured in this zone or neighboring zones to the north earlier in the year, and only very low numbers had been captured in neighboring zones to the south and east. Therefore, the captures near Lubbock were unexpected. Five of the weevils captured the last week of August were preserved and genotyped at 10 microsatellite loci for comparison with a database of genotypes for 22 boll weevil populations sampled from eight U.S. states and four locations in Mexico. The Lubbock population itself is an unlikely source, suggesting that the captured weevils probably did not originate from a low-level endemic population. Populations from eastern states, Mexico, and Big Spring, TX, can be confidently excluded as potential source regions. Although the Weslaco and Kingsville, TX, areas cannot be statistically excluded, they are unlikely sources. The most likely sources are nearby areas in New Mexico, TX, or southwest Oklahoma, or from areas of eastern Texas represented by Waxahachie and El Campo populations. Together, genetic and circumstantial evidence suggest either that the trapped boll weevils are the offspring of alone mated female that immigrated from eastern Texas earlier in the summer or that weevils originally captured near Waxahachie but now long-dead were planted in the traps by a disgruntled employee of the eradication program.

  17. Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones

    NASA Astrophysics Data System (ADS)

    Chapman, Steven W.; Parker, Beth L.; Sale, Tom C.; Doner, Lee Ann

    2012-08-01

    It is now widely recognized that contaminant release from low permeability zones can sustain plumes long after primary sources are depleted, particularly for chlorinated solvents where regulatory limits are orders of magnitude below source concentrations. This has led to efforts to appropriately characterize sites and apply models for prediction incorporating these effects. A primary challenge is that diffusion processes are controlled by small-scale concentration gradients and capturing mass distribution in low permeability zones requires much higher resolution than commonly practiced. This paper explores validity of using numerical models (HydroGeoSphere, FEFLOW, MODFLOW/MT3DMS) in high resolution mode to simulate scenarios involving diffusion into and out of low permeability zones: 1) a laboratory tank study involving a continuous sand body with suspended clay layers which was 'loaded' with bromide and fluorescein (for visualization) tracers followed by clean water flushing, and 2) the two-layer analytical solution of Sale et al. (2008) involving a relatively simple scenario with an aquifer and underlying low permeability layer. All three models are shown to provide close agreement when adequate spatial and temporal discretization are applied to represent problem geometry, resolve flow fields and capture advective transport in the sands and diffusive transfer with low permeability layers and minimize numerical dispersion. The challenge for application at field sites then becomes appropriate site characterization to inform the models, capturing the style of the low permeability zone geometry and incorporating reasonable hydrogeologic parameters and estimates of source history, for scenario testing and more accurate prediction of plume response, leading to better site decision making.

  18. Capture Zone Distributions and Island Morphologies in Organic Epitaxy and Graphene Formation

    NASA Astrophysics Data System (ADS)

    Pimpinelli, Alberto; Einstein, T. L.

    2013-03-01

    Stating that island nucleation is an essential step in the formation of an epitaxial or supported layer may appear trivially obvious. However, less trivial is the observation that the size of the critical nucleus plays a crucial role in that it determines both the island density (and therefore the size of domains) and the evolution of the island morphology. In this talk we will describe recent developments in the analysis of capture zone distributions (CZD) specifically tailored for application to organic materials. We will also describe specific features of organic and graphene island morphologies, and discuss how they are related to the nucleation process and to the size of the critical nucleus. Work at UMD supported by NSF-MRSEC, Grant DMR 05-20471 and NSF CHE 07-49949

  19. Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships

    PubMed Central

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-01-01

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715

  20. Grain boundary plane orientation fundamental zones and structure-property relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less

  1. EPA MODELING TOOLS FOR CAPTURE ZONE DELINEATION

    EPA Science Inventory

    The EPA Office of Research and Development supports a step-wise modeling approach for design of wellhead protection areas for water supply wells. A web-based WellHEDSS (wellhead decision support system) is under development for determining when simple capture zones (e.g., centri...

  2. Comparing Models and Methods for the Delineation of Stream Baseflow Contribution Areas

    NASA Astrophysics Data System (ADS)

    Chow, R.; Frind, M.; Frind, E. O.; Jones, J. P.; Sousa, M.; Rudolph, D. L.; Nowak, W.

    2016-12-01

    This study addresses the delineation of areas that contribute baseflow to a stream reach, also known as stream capture zones. Such areas can be delineated using standard well capture zone delineation methods, with three important differences: (1) natural gradients are smaller compared to those produced by supply wells and are therefore subject to greater numerical errors, (2) stream discharge varies seasonally, and (3) stream discharge varies spatially. This study focuses on model-related uncertainties due to parameter non-uniqueness, discretization schemes, and particle tracking algorithms. The methodology is applied to the Alder Creek watershed in southwestern Ontario. Four different model codes are compared: HydroGeoSphere, WATFLOW, MODFLOW, and FEFLOW. In addition, two delineation methods are compared: reverse particle tracking and reverse transport, where the latter considers local-scale parameter uncertainty by using a macrodispersion term to produce a capture probability plume. The results from this study indicate that different models can calibrate acceptably well to the same data and produce very similar distributions of hydraulic head, but can produce different capture zones. The stream capture zone is found to be highly sensitive to the particle tracking algorithm. It was also found that particle tracking by itself, if applied to complex systems such as the Alder Creek watershed, would require considerable subjective judgement in the delineation of stream capture zones. Reverse transport is an alternate approach that provides probability intervals for the baseflow contribution areas. In situations where the two approaches agree, the confidence in the delineation is reinforced.

  3. Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones.

    PubMed

    Chapman, Steven W; Parker, Beth L; Sale, Tom C; Doner, Lee Ann

    2012-08-01

    It is now widely recognized that contaminant release from low permeability zones can sustain plumes long after primary sources are depleted, particularly for chlorinated solvents where regulatory limits are orders of magnitude below source concentrations. This has led to efforts to appropriately characterize sites and apply models for prediction incorporating these effects. A primary challenge is that diffusion processes are controlled by small-scale concentration gradients and capturing mass distribution in low permeability zones requires much higher resolution than commonly practiced. This paper explores validity of using numerical models (HydroGeoSphere, FEFLOW, MODFLOW/MT3DMS) in high resolution mode to simulate scenarios involving diffusion into and out of low permeability zones: 1) a laboratory tank study involving a continuous sand body with suspended clay layers which was 'loaded' with bromide and fluorescein (for visualization) tracers followed by clean water flushing, and 2) the two-layer analytical solution of Sale et al. (2008) involving a relatively simple scenario with an aquifer and underlying low permeability layer. All three models are shown to provide close agreement when adequate spatial and temporal discretization are applied to represent problem geometry, resolve flow fields and capture advective transport in the sands and diffusive transfer with low permeability layers and minimize numerical dispersion. The challenge for application at field sites then becomes appropriate site characterization to inform the models, capturing the style of the low permeability zone geometry and incorporating reasonable hydrogeologic parameters and estimates of source history, for scenario testing and more accurate prediction of plume response, leading to better site decision making. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Microbiological Impact on Carbon Capture and Sequestration: Biotic Processes in Natural CO2 Analogue

    EPA Science Inventory

    Multiple ground-water based microbial community analyses including membrane lipids assays for phospholipid fatty acid and DNA analysis were performed from hydraulically isolated zones. DGGE results from DNA extracts from vertical profiling of the entire depth of aquifer sampled a...

  5. Delineating baseflow contribution areas for streams - A model and methods comparison

    NASA Astrophysics Data System (ADS)

    Chow, Reynold; Frind, Michael E.; Frind, Emil O.; Jones, Jon P.; Sousa, Marcelo R.; Rudolph, David L.; Molson, John W.; Nowak, Wolfgang

    2016-12-01

    This study addresses the delineation of areas that contribute baseflow to a stream reach, also known as stream capture zones. Such areas can be delineated using standard well capture zone delineation methods, with three important differences: (1) natural gradients are smaller compared to those produced by supply wells and are therefore subject to greater numerical errors, (2) stream discharge varies seasonally, and (3) stream discharge varies spatially. This study focuses on model-related uncertainties due to model characteristics, discretization schemes, delineation methods, and particle tracking algorithms. The methodology is applied to the Alder Creek watershed in southwestern Ontario. Four different model codes are compared: HydroGeoSphere, WATFLOW, MODFLOW, and FEFLOW. In addition, two delineation methods are compared: reverse particle tracking and reverse transport, where the latter considers local-scale parameter uncertainty by using a macrodispersion term to produce a capture probability plume. The results from this study indicate that different models can calibrate acceptably well to the same data and produce very similar distributions of hydraulic head, but can produce different capture zones. The stream capture zone is found to be highly sensitive to the particle tracking algorithm. It was also found that particle tracking by itself, if applied to complex systems such as the Alder Creek watershed, would require considerable subjective judgement in the delineation of stream capture zones. Reverse transport is an alternative and more reliable approach that provides probability intervals for the baseflow contribution areas, taking uncertainty into account. The two approaches can be used together to enhance the confidence in the final outcome.

  6. Delineating baseflow contribution areas for streams - A model and methods comparison.

    PubMed

    Chow, Reynold; Frind, Michael E; Frind, Emil O; Jones, Jon P; Sousa, Marcelo R; Rudolph, David L; Molson, John W; Nowak, Wolfgang

    2016-12-01

    This study addresses the delineation of areas that contribute baseflow to a stream reach, also known as stream capture zones. Such areas can be delineated using standard well capture zone delineation methods, with three important differences: (1) natural gradients are smaller compared to those produced by supply wells and are therefore subject to greater numerical errors, (2) stream discharge varies seasonally, and (3) stream discharge varies spatially. This study focuses on model-related uncertainties due to model characteristics, discretization schemes, delineation methods, and particle tracking algorithms. The methodology is applied to the Alder Creek watershed in southwestern Ontario. Four different model codes are compared: HydroGeoSphere, WATFLOW, MODFLOW, and FEFLOW. In addition, two delineation methods are compared: reverse particle tracking and reverse transport, where the latter considers local-scale parameter uncertainty by using a macrodispersion term to produce a capture probability plume. The results from this study indicate that different models can calibrate acceptably well to the same data and produce very similar distributions of hydraulic head, but can produce different capture zones. The stream capture zone is found to be highly sensitive to the particle tracking algorithm. It was also found that particle tracking by itself, if applied to complex systems such as the Alder Creek watershed, would require considerable subjective judgement in the delineation of stream capture zones. Reverse transport is an alternative and more reliable approach that provides probability intervals for the baseflow contribution areas, taking uncertainty into account. The two approaches can be used together to enhance the confidence in the final outcome. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Molecular differences in transition zone and peripheral zone prostate tumors

    PubMed Central

    Sinnott, Jennifer A.; Rider, Jennifer R.; Carlsson, Jessica; Gerke, Travis; Tyekucheva, Svitlana; Penney, Kathryn L.; Sesso, Howard D.; Loda, Massimo; Fall, Katja; Stampfer, Meir J.; Mucci, Lorelei A.; Pawitan, Yudi; Andersson, Sven-Olof; Andrén, Ove

    2015-01-01

    Prostate tumors arise primarily in the peripheral zone (PZ) of the prostate, but 20–30% arise in the transition zone (TZ). Zone of origin may have prognostic value or reflect distinct molecular subtypes; however, it can be difficult to determine in practice. Using whole-genome gene expression, we built a signature of zone using normal tissue from five individuals and found that it successfully classified nine tumors of known zone. Hypothesizing that this signature captures tumor zone of origin, we assessed its relationship with clinical factors among 369 tumors of unknown zone from radical prostatectomies (RPs) and found that tumors that molecularly resembled TZ tumors showed lower mortality (P = 0.09) that was explained by lower Gleason scores (P = 0.009). We further applied the signature to an earlier study of 88 RP and 333 transurethral resection of the prostate (TURP) tumor samples, also of unknown zone, with gene expression on ~6000 genes. We had observed previously substantial expression differences between RP and TURP specimens, and hypothesized that this might be because RPs capture primarily PZ tumors, whereas TURPs capture more TZ tumors. Our signature distinguished these two groups, with an area under the receiver operating characteristic curve of 87% (P < 0.0001). Our findings that zonal differences in normal tissue persist in tumor tissue and that these differences are associated with Gleason score and sample type suggest that subtypes potentially resulting from different etiologic pathways might arise in these zones. Zone of origin may be important to consider in prostate tumor biomarker research. PMID:25870172

  8. Progress in characterizing submonolayer island growth: Capture-zone distributions, growth exponents, & hot precursors

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore L.; Pimpinelli, Alberto; González, Diego Luis; Morales-Cifuentes, Josue R.

    2015-09-01

    In studies of epitaxial growth, analysis of the distribution of the areas of capture zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often the best way to extract the critical nucleus size i. For non-random nucleation the normalized areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD) Pβ(s) = asβ exp(-bs2), particularly in the central region 0.5 < s < 2 where data are least noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis, suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate orders of magnitude more data than experiments, they permit close examination of the tails of the distribution, which differ from the simple GWD form. One refinement is based on a fragmentation model. We also compare island-size distributions. We compare analysis by island-size distribution and by scaling of island density with flux. Modifications appear for attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on amorphous mica, comparing the results of the three analysis techniques and reconciling their results via a novel model of hot precursors based on rate equations, pointing out the existence of intermediate scaling regimes between DLA and ALA.

  9. Ichthyofauna as bioindicator of environmental quality in an industrial district in the amazon estuary, Brazil.

    PubMed

    Viana, A P; Lucena Frédou, F

    2014-05-01

    The objective of the present study was to describe the ecological status of ichthyofauna in an industrial district (Pará river, Amazon estuary), through the use of different environmental descriptors. To evaluate the impacts of the industrial area and cargo terminal, three areas were considered: Zone 1 (maximum impact), Zone 2 (median impact) and Zone 3 (low impact). A total of 77 species were captured. Differences in the composition of the ichthyofauna were recorded between Zones and environments (main channel and tidal channel). The ecological indices revealed clear evidence of the impact of the industrial hub and cargo terminal on the fish communities. In Zone 1, there was a reduction in the number of feeding groups (in the main channel) and larger fish and the Shannon diversity index and Margalef's richness were also significantly lower. The multivariate analysis separated the different Zones clearly into three groups, indicating marked differences in the levels of contamination in the different parts of the study area.

  10. WORKING WITH WHAEM2000: CAPTURE ZONE DELINEATION FOR A CITY WELLFIELD IN A VALLEY FILL GLACIAL OUTWASH AQUIFER SUPPORTING WELLHEAD PROTECTION

    EPA Science Inventory

    The purpose of this document is to introduce through a case study the use of the ground water geohydrology computer program WhAEM for Microsoft Windows (32-bit), or WhAEM2000. WhAEM2000 is a public domain, ground-water flow model designed to facilitate capture zone delineation an...

  11. An analytical study on groundwater flow in drainage basins with horizontal wells

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2014-06-01

    Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.

  12. Atmospheric Boundary Layer Dynamics Near Ross Island and Over West Antarctica.

    NASA Astrophysics Data System (ADS)

    Liu, Zhong

    The atmospheric boundary layer dynamics near Ross Island and over West Antarctica has been investigated. The study consists of two parts. The first part involved the use of data from ground-based remote sensing equipment (sodar and RASS), radiosondes, pilot balloons, automatic weather stations, and NOAA AVHRR satellite imagery. The second part involved the use of a high resolution boundary layer model coupled with a three-dimensional primitive equation mesoscale model to simulate the observed atmospheric boundary layer winds and temperatures. Turbulence parameters were simulated with an E-epsilon turbulence model driven by observed winds and temperatures. The observational analysis, for the first time, revealed that the airflow passing through the Ross Island area is supplied mainly by enhanced katabatic drainage from Byrd Glacier and secondarily drainage from Mulock and Skelton glaciers. The observed diurnal variation of the blocking effect near Ross Island is dominated by the changes in the upstream katabatic airflow. The synthesized analysis over West Antarctica found that the Siple Coast katabatic wind confluence zone consists of two superimposed katabatic airflows: a relatively warm and more buoyant katabatic flow from West Antarctica overlies a colder and less buoyant katabatic airflow from East Antarctica. The force balance analysis revealed that, inside the West Antarctic katabatic wind zone, the pressure gradient force associated with the blocked airflow against the Transantarctic Mountains dominates; inside the East Antarctic katabatic wind zone, the downslope buoyancy force due to the cold air overlying the sloping terrain is dominant. The analysis also shows that these forces are in geostrophic balance with the Coriolis force. An E-epsilon turbulence closure model is used to simulate the diurnal variation of sodar backscatter. The results show that the model is capable of qualitatively capturing the main features of the observed sodar backscatter. To improve the representation of the atmospheric boundary layer, a second-order turbulence closure model coupled with the input from a mesoscale model was applied to the springtime Siple Coast katabatic wind confluence zone. The simulation was able to capture the main features of the confluence zone, which were not well resolved by the mesoscale model.

  13. Genetic and morphological structure of a spruce hybrid (Picea sitchensis x P. glauca) zone along a climatic gradient.

    PubMed

    Hamilton, Jill A; Aitken, Sally N

    2013-08-01

    Historic colonization and contemporary evolutionary processes contribute to patterns of genetic variation and differentiation among populations. However, separating the respective influences of these processes remains a challenge, particularly for natural hybrid zones, where standing genetic variation may result from evolutionary processes both preceding and following contact, influencing the evolutionary trajectory of hybrid populations. Where adaptation to novel environments may be facilitated by interspecific hybridization, teasing apart these processes will have practical implications for forest management in changing environments. We evaluated the neutral genetic architecture of the Picea sitchensis (Sitka spruce) × P. glauca (white spruce) hybrid zone along the Nass and Skeena river valleys in northwestern British Columbia using chloroplast, mitochondrial, and nuclear microsatellite markers, in combination with cone morphological traits. Sitka spruce mitotype "capture", evidenced by this species dominating the maternal lineage, is consistent with earlier colonization of the region by Sitka spruce. This "capture" differs from the spatial distribution of chloroplast haplotypes, indicating pollen dispersal and its contribution to geographic structure. Genetic ancestry, based on nuclear markers, was strongly influenced by climate and geography. Highly parallel results for replicate transects along environmental gradients provide support for the bounded hybrid superiority model of hybrid zone maintenance. • This broad-scale analysis of neutral genetic structure indicates the importance of historic and contemporary gene flow, environmental selection, and their interaction in shaping neutral genetic variation within this hybrid zone, informative to seed transfer development and reforestation for future climates.

  14. Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Ndembo Longo, Jean; Vanclooster, Marnik

    2016-03-01

    A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.

  15. Hydrodynamics of the Capture Zone of a Partially Penetrating Well in a Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris A.; Javandel, Iraj; Witherspoon, Paul A.

    1995-04-01

    In the pump and treat approach to the problem of managing a contaminated aquifer, a key problem is to design an effective capture system that collects only the polluted groundwater without allowing any of it to escape. At present, it is customary to design a capture system using fully penetrating withdrawal wells. Very often, however, only part of the vertical thickness of the aquifer is contaminated, so the question may arise whether a more efficient capture system can be achieved using partially penetrating wells. Very little work has been done on the application of partially penetrating wells to this problem. A new semianalytic method that can be used in determining the geometry of the capture zone for steady state flow to a partially penetrating well that is screened from the top (or from the bottom) of a confined aquifer has been developed. By combining the velocity potentials for flow to the well with that for the regional flow field, a three-dimensional velocity potential that can be used in determining the complete geometry of the capture surface has been developed. The results have shown that with a constant pumping rate the maximum horizontal extent of the capture surface at the top (or bottom) of the aquifer increases as the degree of penetration decreases. As one would expect, the maximum vertical extent increases as the depth of penetration increases. Thus, if one knows the actual location of the contaminant plume, an appropriate combination of the degree of penetration and pumping rate can be selected to create an effective capture zone.

  16. Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil

    NASA Astrophysics Data System (ADS)

    de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.

    2018-05-01

    A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.

  17. Young inversion with multiple linked QTLs under selection in a hybrid zone.

    PubMed

    Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius P; Mandáková, Terezie; Prasad, Kasavajhala V S K; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Kathryn; Schranz, M Eric; Wing, Rod; Lysak, Martin A; Schmutz, Jeremy; Rokhsar, Daniel S; Mitchell-Olds, Thomas

    2017-04-03

    Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.

  18. Young inversion with multiple linked QTLs under selection in a hybrid zone

    PubMed Central

    Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius; Mandáková, Terezie; Prasad, Kasavajhala V. S. K.; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N.; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W.; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Katherine; Schranz, M. Eric; Wing, Rod; Lysak, Martin A.; Schmutz, Jeremy; Rokhsar, Daniel S.; Mitchell-Olds, Thomas

    2017-01-01

    Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favored alleles at multiple loci. However, it is unknown whether favored mutations slowly accumulate on older inversions or if young inversions spread because they capture preexisting adaptive Quantitative Trait Loci (QTLs). By genetic mapping, chromosome painting and genome sequencing we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation. PMID:28812690

  19. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  20. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transient flow conditions in probabilistic wellhead protection: importance and ways to manage spatial and temporal uncertainty in capture zone delineation

    NASA Astrophysics Data System (ADS)

    Enzenhoefer, R.; Rodriguez-Pretelin, A.; Nowak, W.

    2012-12-01

    "From an engineering standpoint, the quantification of uncertainty is extremely important not only because it allows estimating risk but mostly because it allows taking optimal decisions in an uncertain framework" (Renard, 2007). The most common way to account for uncertainty in the field of subsurface hydrology and wellhead protection is to randomize spatial parameters, e.g. the log-hydraulic conductivity or porosity. This enables water managers to take robust decisions in delineating wellhead protection zones with rationally chosen safety margins in the spirit of probabilistic risk management. Probabilistic wellhead protection zones are commonly based on steady-state flow fields. However, several past studies showed that transient flow conditions may substantially influence the shape and extent of catchments. Therefore, we believe they should be accounted for in the probabilistic assessment and in the delineation process. The aim of our work is to show the significance of flow transients and to investigate the interplay between spatial uncertainty and flow transients in wellhead protection zone delineation. To this end, we advance our concept of probabilistic capture zone delineation (Enzenhoefer et al., 2012) that works with capture probabilities and other probabilistic criteria for delineation. The extended framework is able to evaluate the time fraction that any point on a map falls within a capture zone. In short, we separate capture probabilities into spatial/statistical and time-related frequencies. This will provide water managers additional information on how to manage a well catchment in the light of possible hazard conditions close to the capture boundary under uncertain and time-variable flow conditions. In order to save computational costs, we take advantage of super-positioned flow components with time-variable coefficients. We assume an instantaneous development of steady-state flow conditions after each temporal change in driving forces, following an idea by Festger and Walter, 2002. These quasi steady-state flow fields are cast into a geostatistical Monte Carlo framework to admit and evaluate the influence of parameter uncertainty on the delineation process. Furthermore, this framework enables conditioning on observed data with any conditioning scheme, such as rejection sampling, Ensemble Kalman Filters, etc. To further reduce the computational load, we use the reverse formulation of advective-dispersive transport. We simulate the reverse transport by particle tracking random walk in order to avoid numerical dispersion to account for well arrival times.

  2. Characterizing Submonolayer Growth of 6P on Mica: Capture Zone Distributions vs. Growth Exponents and the Role of Hot Precursors

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto

    2015-03-01

    Analyzing capture-zone distributions (CZD) using the generalized Wigner distribution (GWD) has proved a powerful way to access the critical nucleus size i. Of the several systems to which the GWD has been applied, we consider 6P on mica, for which Winkler's group found i ~ 3 . Subsequently they measured the growth exponent α (island density ~Fα , for flux F) of this system and found good scaling but different values at small and large F, which they attributed to DLA and ALA dynamics, but with larger values of i than found from the CZD analysis. We investigate this result in some detail. The third talk of this group describes a new universal relation between α and the characteristic exponent β of the GWD. The second talk reports the results of a proposed model that takes long-known transient ballistic adsorption into account, for the first time in a quantitative way. We find several intermediate scaling regimes, with distinctive values of α and an effective activation energy. One of these, rather than ALA, gives the best fit of the experimental data and a value of i consistent with the CZD analysis. Work at UMD supported by NSF CHE 13-05892.

  3. Evaluation of the Contributing Area for Recovery Wells at the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota

    USGS Publications Warehouse

    Davis, J. Hal

    2007-01-01

    The Naval Industrial Reserve Ordnance Plant is located on the southernmost tip of Anoka County, Minnesota, within the City of Fridley, and about one-quarter mile east of the Mississippi River. Industrial production at the plant began in 1941 and has continued since that time. Contamination spills and poor disposal practices in the past have led to significant ground-water contamination beneath the facility. A ground-water recovery (and containment) system began operation in 1992 to prevent contaminated ground-water from migrating off site. In an effort to determine the effectiveness of the recovery system, pressure transducers were installed in 23 monitoring wells, multiple hand water-level measurements were taken in an additional 56 wells, and two extensive rounds of water-level measurements were taken in all wells (one during pumping and one during non-pumping conditions). The cones of depression of the shallow flow zone wells AT-8 (17 gallons per minute (gal/min) and AT-9 (142 gal/min) overlap to form one broad cone, while the cone of depression of well AT-7 (42 gal/min) was more isolated. Shallow flow zone well AT-5A (156 gal/min) had a large, broad cone of depression which was the result of the relatively high pumping rate and the relatively high permeability of 200 feet per day (ft/d). Intermediate flow zone well AT-3A (182 gal/min) had a broad cone of depression that extended to the intermediate clays; well AT-10 (23 gal/min) had a relatively steep cone because it was screened in a relatively low-permeability zone. Deep flow zone well AT-5B (86 gal/min) had a broad cone of depression. Intermediate well AT-3A appears to be drawing water up vertically out of the deep flow zone. The combined contributing areas of recovery wells AT-7, AT-8, and AT-9 capture the high levels of trichloroethene (TCE) contamination (greater than 100 parts per billion (ppb) along their combined axis. Well AT-5A has a broad contributing area that reaches approximately halfway to the Mississippi River and captures the eastern flank of the highest levels of contamination in the shallow zone; but it does not capture the highest levels that will still discharge to the Mississippi River. The combined contributing areas of wells AT-3A and AT-10 should capture the TCE contamination in the intermediate zone that is moving off site. Well AT-5B captures about a third of the TCE contamination in the deep flow zone where the concentration exceeds 100 ppb.

  4. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes.

  5. Port authority transportation reinvestment zone : executive summary.

    DOT National Transportation Integrated Search

    2017-03-01

    The transportation reinvestment zone (TRZ) is a relatively new tool for infrastructure finance : that allows governmental entities with taxing authority to set aside funds for local match : contributions for transportation projects and capture the la...

  6. Further Developments in Characterizing Capture Zone Distributions (CZD) in Island Growth

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Pimpinelli, Alberto; González, Diego Luis

    2014-03-01

    As argued previously, analysis of the distribution of the areas of capture zones (i.e. proximity polygons [or Voronoi tesselations] with respect to island centers) is often the best way to extract the critical nucleus size in studies of epitaxial growth. For non-Poisson deposition (i.e. when island nucleation is not fully random) the areas of these Voronoi cells can be well described by the generalized Wigner distribution (GWD), particularly in the central region around the mean area where the distribution is largest. We discuss several recent applications to experimental systems, catelogued in a recent minireview,[2] showing how this perspective leads to insights about the critical nucleus size. In contrast, several (but not all) studies have shown that the GWD may not describe the numerical data from painstaking simulations in both tails.2 We discuss some refinements that have been proposed, as well as scaling forms. Finally, we comment on applications to social phenomena. Emphasis is on very recent developments. Work at UMD supported by NSF CHE 13-05892 & NSF MRSEC DMR 05-20471.

  7. Port authority transportation reinvestment zone development and implementation guidebook.

    DOT National Transportation Integrated Search

    2017-03-01

    Transportation reinvestment zones (TRZs) are a relatively new tool for infrastructure finance that allows governmental entities with taxing authority to set aside funds for local match contributions for transportation projects and capture the land va...

  8. Spatially Directed Proteomics of the Human Lens Outer Cortex Reveals an Intermediate Filament Switch Associated With the Remodeling Zone

    PubMed Central

    Wenke, Jamie L.; McDonald, W. Hayes; Schey, Kevin L.

    2016-01-01

    Purpose To quantify protein changes in the morphologically distinct remodeling zone (RZ) and adjacent regions of the human lens outer cortex using spatially directed quantitative proteomics. Methods Lightly fixed human lens sections were deparaffinized and membranes labeled with fluorescent wheat germ agglutinin (WGA-TRITC). Morphology directed laser capture microdissection (LCM) was used to isolate tissue from four distinct regions of human lens outer cortex: differentiating zone (DF), RZ, transition zone (TZ), and inner cortex (IC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the plasma membrane fraction from three lenses (21-, 22-, and 27-year) revealed changes in major cytoskeletal proteins including vimentin, filensin, and phakinin. Peptides from proteins of interest were quantified using multiple reaction monitoring (MRM) mass spectrometry and isotopically-labeled internal peptide standards. Results Results revealed an intermediate filament switch from vimentin to beaded filament proteins filensin and phakinin that occurred at the RZ. Several other cytoskeletal proteins showed significant changes between regions, while most crystallins remained unchanged. Targeted proteomics provided accurate, absolute quantification of these proteins and confirmed vimentin, periplakin, and periaxin decrease from the DF to the IC, while filensin, phakinin, and brain acid soluble protein 1 (BASP1) increase significantly at the RZ. Conclusions Mass spectrometry-compatible fixation and morphology directed laser capture enabled proteomic analysis of narrow regions in the human lens outer cortex. Results reveal dramatic cytoskeletal protein changes associated with the RZ, suggesting that one role of these proteins is in membrane deformation and/or the establishment of ball and socket joints in the human RZ. PMID:27537260

  9. An automated time and hand motion analysis based on planar motion capture extended to a virtual environment

    NASA Astrophysics Data System (ADS)

    Tinoco, Hector A.; Ovalle, Alex M.; Vargas, Carlos A.; Cardona, María J.

    2015-09-01

    In the context of industrial engineering, the predetermined time systems (PTS) play an important role in workplaces because inefficiencies are found in assembly processes that require manual manipulations. In this study, an approach is proposed with the aim to analyze time and motions in a manual process using a capture motion system embedded to a virtual environment. Capture motion system tracks IR passive markers located on the hands to take the positions of each one. For our purpose, a real workplace is virtually represented by domains to create a virtual workplace based on basic geometries. Motion captured data are combined with the virtual workplace to simulate operations carried out on it, and a time and motion analysis is completed by means of an algorithm. To test the methodology of analysis, a case study was intentionally designed using and violating the principles of motion economy. In the results, it was possible to observe where the hands never crossed as well as where the hands passed by the same place. In addition, the activities done in each zone were observed and some known deficiencies were identified in the distribution of the workplace by computational analysis. Using a frequency analysis of hand velocities, errors in the chosen assembly method were revealed showing differences in the hand velocities. An opportunity is seen to classify some quantifiable aspects that are not identified easily in a traditional time and motion analysis. The automated analysis is considered as the main contribution in this study. In the industrial context, a great application is perceived in terms of monitoring the workplace to analyze repeatability, PTS, workplace and labor activities redistribution using the proposed methodology.

  10. Otolith patterns of rockfishes from the northeastern Pacific.

    PubMed

    Tuset, Victor M; Imondi, Ralph; Aguado, Guillermo; Otero-Ferrer, José L; Santschi, Linda; Lombarte, Antoni; Love, Milton

    2015-04-01

    Sagitta otolith shape was analysed in twenty sympatric rockfishes off the southern California coast (Northeastern Pacific). The variation in shape was quantified using canonical variate analysis based on fifth wavelet function decomposition of otolith contour. We selected wavelets because this representation allow the identifications of zones or single morphological points along the contour. The entire otoliths along with four subsections (anterior, ventral, posterodorsal, and anterodorsal) with morphological meaning were examined. Multivariate analyses (MANOVA) showed significant differences in the contours of whole otolith morphology and corresponding subsection among rockfishes. Four patterns were found: fusiform, oblong, and two types of elliptic. A redundancy analysis indicated that anterior and anterodorsal subsections contribute most to define the entire otolith shape. Complementarily, the eco-morphological study indicated that the depth distribution and strategies for capture prey were correlated to otolith shape, especially with the anterodorsal zone. © 2014 Wiley Periodicals, Inc.

  11. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  12. Characterization of the hydrogeology and stress state in the vicinity of the homestake mine, Lead, SD

    NASA Astrophysics Data System (ADS)

    Ebenhack, Johnathan Foss

    Underground workings in fractured rock are common worldwide. They have applications in numerous areas and fields of study. These include mining operations, civil engineering projects like tunnels and underground facilities, and research projects that require underground laboratories such as the physics research being conducted by Sanford Laboratory at the former Homestake mine and Fermi Laboratory near Chicago (Bahcall et al. 2001, Elsworth 2009, Sadoulet et al. 2006, bge science DUSEL, fnal.gov). These excavations can reach several kilometers in depth including the 3.9 km deep TauTona mine in South Africa, the 3 km deep LaRonde mine in Quebec and the 2.4 km deep Homestake mine in South Dakota. Large quantities of rock are removed when constructing deep excavations, for example Rahn and Roggenthen (2002) estimated the total volume of rock removed from the Homestake mine to be 2.1x107 m3. Removing large volumes of rock alters the local stress state and ground water flow, potentially increasing risks to workers and the environment (Kaiser et al. 2008, Blodgett et al. 2002, Lucier et al. 2009, Goldbach 2010, Kang et al. 2010). The objective of this research is to develop a better understanding of how deep rock excavations can alter groundwater flow, stress state, and deformation in the rock that envelopes them. The approach is to evaluate how the hydraulic head, flow paths and stress state have been affected by excavation at the Homestake mine in Lead, South Dakota, one of the deepest mines in North America. The Homestake mine was selected as a focus of this research because it has recently been evaluated as the site of a deep underground research laboratory where an understanding of the groundwater flow and stress state was needed to plan underground experiments. The investigation includes poroelastic modeling of the Homestake mine using available geologic and geophysical data and mine records. Results from the analyses indicate that mining and dewatering have changed the hydrology and stress state in the vicinity of the Homestake mine. Dewatering reduces the hydraulic head and changes the flow systems in the vicinity of the mine. Four major hydrogeologic zones are recognized: 1.) a Shallow Flow System in the upper few hundred meters that dominates recharge and discharge to streams, 2.) a Recharge Capture Zone where water that has entered the region as recharge since mining began is captured by the mine, 3.) a Storage Capture Zone where water from storage in the host rock around the mine is captured, and 4.) a Mine Workings Zone where rock has been removed. Water enters the system at the top of the Shallow Flow System and either discharges to the streams or flows downward and becomes recharge to the lower capture zones. The Recharge Capture Zone grows with time as regions of storage are depleted and new recharge enters, and eventually it is assumed that the entire capture zone for the mine will become the Recharge Capture Zone. Fluxes from the Shallow Flow System to the Recharge Capture Zone typically range from 1x10-9 to 4x10-9 m/s. The largest recharge fluxes from the Shallow Flow System to the Recharge Capture Zone occur above the shallowest portions of the mine. Recharge flux also occurs above areas adjacent to the mine, and when projected to the surface the Recharge Capture Zone creates a roughly elliptical shape that is 6 km x 3.6 km. The Storage Capture Zone extends out beyond and below the Recharge Capture Zone and when projected to the surface creates a roughly elliptical region that is approximately 8.3 km x 6.6 km and extends down to depths of almost 5 km. Hydraulic heads and flow paths have been affected beyond the Storage Capture Zone but this water had not reached the mine by 135 years and therefore these regions are not included in the capture zones. The model was calibrated using in-situ stress data at various points in the mine to improve its ability to estimate the stress state and mechanical deformation around the Homestake mine. This was done by varying the rock density, Poisson's ratio, the effective Young's modulus of the workings region, and including initial stresses until predicted stresses best fit in-situ stress data. The changing mechanical properties in the workings and dewatering cause changes to the stress around the mine. The mining process typically causes increased compression laterally around the workings and decreased compression above, below, and within the workings. The greatest changes in total stress are near the base of the mine and reach roughly 40 MPa between the ore bodies and in the lower portions of the West Ore Body. The softening of the mine region because of material removal and decreased fluid pressure in the workings results in deformation in the vicinity of the mine. Subsidence occurs above the mine region and is greatest near the surface and decreases with depth; above the shallowest workings subsidence can reach approximately 0.18 m. There is also uplift along the footwall of the workings in the deeper portions of the mine that can reach up to 0.022 m. Horizontal displacements of as much as several centimeters occur around the mine and with displacement towards the workings region. Deformation in the vicinity of the mine results in tilt that is towards the workings with the greatest tilts near the surface. A fault that intersects the West Ore Body was considered as a location for an experiment into the mechanics of earthquake nucleation, so the stress state in the vicinity of this feature was of particular interest. This simulation shows that mining and dewatering reduce fluid pressure and change stresses along the fault. The shear stress along the fault typically increases along most of the fault and decreases in the region where the fault and West Ore Body intersect. Increased shear is typically on the order of 1 to 2 MPa but can reach as much as 5 MPa in areas around the intersection of the fault and West Ore Body. In the region along the fault intersecting the West Ore Body, the decrease in shear can reach -11 MPa. The total normal stress along the fault becomes more compressive along most of the fault and less compressive in the intersection between the fault and West Ore Body. The increase in total compression is approximately 2 MPa, and the reduction in compression in the intersection is approximately 10 MPa. The critical shear stress along the fault was calculated using Mohr-Coulomb failure criteria presented by Byerlee (1978), and the ratio of the estimated shear stress along the fault and the critical shear stress (ts/tf) was found to approximate the potential for slip along the fault. Mining results in a reduction in slip potential with values of ts/t f ranging from 0.66 to 1.1 before mining and from 0.22 to 0.67 after mining. This reduction in slip potential results from reductions in fluid pressure and increased normal compression caused by mining activities.

  13. INEEL Source Water Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehlke, Gerald

    2003-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme.more » Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL’s public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.« less

  14. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    NASA Astrophysics Data System (ADS)

    Choomphon-anomakhun, Natthaphon; Ebner, Armin D.; Natenapit, Mayuree; Ritter, James A.

    2017-04-01

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical model was shown to be capable of realistically predicting the dynamic nature of magnetic particle capture and accumulation around a wire in HGMS-type systems.

  15. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unitmore » scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.« less

  16. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  17. Multianalyte, dipstick-type, nanoparticle-based DNA biosensor for visual genotyping of single-nucleotide polymorphisms.

    PubMed

    Litos, Ioannis K; Ioannou, Penelope C; Christopoulos, Theodore K; Traeger-Synodinos, Jan; Kanavakis, Emmanuel

    2009-06-15

    DNA biosensors involve molecular recognition of the target sequence by hybridization with specific probes and detection by electrochemical, optical or gravimetric transduction. Disposable, dipstick-type biosensors have been developed recently, which enable visual detection of DNA without using instruments. In this context, we report a multianalyte DNA biosensor for visual genotyping of two single-nucleotide polymorphisms (SNPs). As a model, the biosensor was applied to the simultaneous genotyping of two SNPs, entailing the detection of four alleles. A PCR product that flanks both polymorphic sites is subjected to a single primer extension (PEXT) reaction employing four allele-specific primers, each containing a region complementary to an allele and a characteristic segment that enables subsequent capture on a test zone of the biosensor. The primers are extended with dNTPs and biotin-dUTP only if there is perfect complementarity with the interrogated sequence. The PEXT mixture is applied to the biosensor. As the developing buffer migrates along the strip, all the allele-specific primers are captured by immobilized oligonucleotides at the four test zones of the biosensor and detected by antibiotin-functionalized gold nanoparticles. As a result, the test zones are colored red if extension has occurred denoting the presence of the corresponding allele in the original sample. The excess nanoparticles are captured by immobilized biotinylated albumin at the control zone of the sensor forming another red zone that indicates the proper performance of the system. The assay was applied successfully to the genotyping of twenty clinical samples for two common SNPs of MBL2 gene.

  18. Terrestrial Planet Finder Coronagraph 2005: Overview of Technology Development and System Design Studies

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.

    2005-01-01

    Technology research, design trades, and modeling and analysis guide the definition of a Terrestrial Planet Finder Coronagraph Mission that will search for and characterize earth-like planets around near-by stars. Operating in visible wavebands, this mission will use coronagraphy techniques to suppress starlight to enable capturing and imaging the reflected light from a planet orbiting in the habitable zone of its parent star. The light will be spectrally characterized to determine the presence of life-indicating chemistry in the planet atmosphere.

  19. Capture envelopes of rectangular hoods in cross drafts.

    PubMed

    Huang, R F; Sir, S Y; Chen, Y K; Yeh, W Y; Chen, C W; Chen, C C

    2001-01-01

    The suction fields of the rectangular hoods of various aspect ratios varying from 0.1 to 10 that are subject to the influence of cross drafts were experimentally studied in an apparatus consisting of a hood model/wind tunnel assembly. The velocity field on the symmetry plane was measured with a two-component laser Doppler anemometer. Being under the influence of cross draft, the suction field presents a characteristic capture envelope, which is described by a dividing streamline. The characteristics of the capture envelope were found to be determined by the cross-draft to hood-suction velocity ratio R and the hood-opening aspect ratio AR. The flow characteristics of the hoods with aspect ratios less than unity were dramatically different from those with aspect ratios greater than one. If areas of the hood openings had the same values, the hydraulic-diameter normalized characteristic length scales of the capture zone of the square hood were as same as those of the circular hood. When the diameter of a circular hood was equal to the width of a square hood, the physical dimensions of the capture zones created by these two hoods coincided with each other.

  20. Agricultural adaptation to water scarcity in the Sri Lankan dry zone: A comparison of two water managment regimes

    NASA Astrophysics Data System (ADS)

    Burchfield, E. K.

    2014-12-01

    The island nation of Sri Lanka is divided into two agro-climatic zones: the southwestern wet zone and the northeastern dry zone. The dry zone is exposed to drought-like conditions for several months each year. Due to the sporadic nature of rainfall, dry zone livelihoods depend on the successful storage, capture, and distribution of water. Traditionally, water has been captured in rain-fed tanks and distributed through a system of dug canals. Recently, the Sri Lankan government has diverted the waters of the nation's largest river through a system of centrally managed reservoirs and canals and resettled farmers to cultivate this newly irrigated land. This study uses remotely sensed MODIS and LANDSAT imagery to compare vegetation health and cropping patterns in these distinct water management regimes under different conditions of water scarcity. Of particular interest are the socioeconomic, infrastructural, and institutional factors that affect cropping patterns, including field position, water storage capacity, and control of water resources. Results suggest that under known conditions of water scarcity, farmers cultivate other field crops in lieu of paddy. Cultivation changes depend to a large extent on the institutional distance between water users and water managers as well as the fragmentation of water resources within the system.

  1. Seismic evidence for rotating mantle flow around subducting slab edge associated with oceanic microplate capture

    NASA Astrophysics Data System (ADS)

    Mosher, Stephen G.; Audet, Pascal; L'Heureux, Ivan

    2014-07-01

    Tectonic plate reorganization at a subduction zone edge is a fundamental process that controls oceanic plate fragmentation and capture. However, the various factors responsible for these processes remain elusive. We characterize seismic anisotropy of the upper mantle in the Explorer region at the northern limit of the Cascadia subduction zone from teleseismic shear wave splitting measurements. Our results show that the mantle flow field beneath the Explorer slab is rotating anticlockwise from the convergence-parallel motion between the Juan de Fuca and the North America plates, re-aligning itself with the transcurrent motion between the Pacific and North America plates. We propose that oceanic microplate fragmentation is driven by slab stretching, thus reorganizing the mantle flow around the slab edge and further contributing to slab weakening and increase in buoyancy, eventually leading to cessation of subduction and microplate capture.

  2. How Well Does Fracture Set Characterization Reduce Uncertainty in Capture Zone Size for Wells Situated in Sedimentary Bedrock Aquifers?

    NASA Astrophysics Data System (ADS)

    West, A. C.; Novakowski, K. S.

    2005-12-01

    Regional groundwater flow models are rife with uncertainty. The three-dimensional flux vector fields must generally be inferred using inverse modelling from sparse measurements of hydraulic head, from measurements of hydraulic parameters at a scale that is miniscule in comparison to that of the domain, and from none to a very few measurements of recharge or discharge rate. Despite the inherent uncertainty in these models they are routinely used to delineate steady-state or time-of-travel capture zones for the purpose of wellhead protection. The latter are defined as the volume of the aquifer within which released particles will arrive at the well within the specified time and their delineation requires the additional step of dividing the magnitudes of the flux vectors by the assumed porosity to arrive at the ``average linear groundwater velocity'' vector field. Since the porosity is usually assumed constant over the domain one could be forgiven for thinking that the uncertainty introduced at this step is minor in comparison to the flow model calibration step. We consider this question when the porosity in question is fracture porosity in flat-lying sedimentary bedrock. We also consider whether or not the diffusive uptake of solute into the rock matrix which lies between the source and the production well reduces or enhances the uncertainty. To evaluate the uncertainty an aquifer cross section is conceptualized as an array of horizontal, randomly-spaced, parallel-plate fractures of random aperture, with adjacent horizontal fractures connected by vertical fractures again of random spacing and aperture. The source is assumed to be a continuous concentration (i.e. a dirichlet boundary condition) representing a leaking tank or a DNAPL pool, and the receptor is a fully pentrating well located in the down-gradient direction. In this context the time-of-travel capture zone is defined as the separation distance required such that the source does not contaminate the well beyond a threshold concentration within the specified time. Aquifers are simulated by drawing the random spacings and apertures from specified distributions. Predictions are made of capture zone size assuming various degrees of knowledge of these distributions, with the parameters of the horizontal fractures being estimated using simulated hydraulic tests and a maximum likelihood estimator. The uncertainty is evaluated by calculating the variance in the capture zone size estimated in multiple realizations. The results show that despite good strategies to estimate the parameters of the horizontal fractures the uncertainty in capture zone size is enormous, mostly due to the lack of available information on vertical fractures. Also, at realistic distances (less than ten kilometers) and using realistic transmissivity distributions for the horizontal fractures the uptake of solute from fractures into matrix cannot be relied upon to protect the production well from contamination.

  3. Capturing Spatial Variability of Biogeochemical Mass Exchanges and Reaction Rates in Wetland Water and Soil through Model Compartmentalization

    EPA Science Inventory

    A common phenomenon observed in natural and constructed wetlands is short-circuiting of flow and formation of stagnant zones that are only indirectly connected with the incoming water. Biogeochemistry of passive areas is potentially much different than that of active zones. In ...

  4. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2

    NASA Astrophysics Data System (ADS)

    Gloege, Lucas; McKinley, Galen A.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2017-07-01

    The shunt of photosynthetically derived particulate organic carbon (POC) from the euphotic zone and deep remineralization comprises the basic mechanism of the "biological carbon pump." POC raining through the "twilight zone" (euphotic depth to 1 km) and "midnight zone" (1 km to 4 km) is remineralized back to inorganic form through respiration. Accurately modeling POC flux is critical for understanding the "biological pump" and its impacts on air-sea CO2 exchange and, ultimately, long-term ocean carbon sequestration. Yet commonly used parameterizations have not been tested quantitatively against global data sets using identical modeling frameworks. Here we use a single one-dimensional physical-biogeochemical modeling framework to assess three common POC flux parameterizations in capturing POC flux observations from moored sediment traps and thorium-234 depletion. The exponential decay, Martin curve, and ballast model are compared to data from 11 biogeochemical provinces distributed across the globe. In each province, the model captures satellite-based estimates of surface primary production within uncertainties. Goodness of fit is measured by how well the simulation captures the observations, quantified by bias and the root-mean-square error and displayed using "target diagrams." Comparisons are presented separately for the twilight zone and midnight zone. We find that the ballast hypothesis shows no improvement over a globally or regionally parameterized Martin curve. For all provinces taken together, Martin's b that best fits the data is [0.70, 0.98]; this finding reduces by at least a factor of 3 previous estimates of potential impacts on atmospheric pCO2 of uncertainty in POC export to a more modest range [-16 ppm, +12 ppm].

  5. Bed Erosion Process in Geophysical Viscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.

    2017-12-01

    The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.

  6. Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes

    NASA Astrophysics Data System (ADS)

    Hsu, Chiao-Peng; Lin, Yu-Min; Chen, Po-Yu

    2015-04-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved specialized leaves fulfilling the multi-functions of attracting, capturing, retaining and digesting the prey, mostly arthropods. Different capturing mechanisms have been proposed and discussed in previous works. The most important capture mechanism is the unique super-hydrophilic surface properties of the peristome. The combination of a hierarchical surface structure and nectar secretions results in an exceptional water-lubricated trapping system. Anisotropic and unidirectional wettability is attributed to the ridge-like surface and epidermal folding. The three-dimensional plate-like wax crystals in the hydrophobic waxy zone can further prevent the prey from escaping. The captured prey are then digested in the hydrophilic digestive zone. The hybrid species Nepenthes × Miranda was investigated in this study. The surface morphology and hierarchical microstructure were characterized by scanning electron microscope. Contact angle measurement and wetting efficiency tests were performed to determine the wettability of the peristome under fresh, nectar-free and sucrose-coated conditions with controlled temperature and humidity. The results showed that sucrose-coated peristome surfaces possess the best wetting efficiency. The structure-property-function relationship and the capturing mechanism of Nepenthes were elucidated, which could further lead to the design and synthesis of novel bio-inspired surfaces and potential applications.

  7. Tracking tracer breakthrough in the hyporheic zone using time‐lapse DC resistivity, Crabby Creek, Pennsylvania

    USGS Publications Warehouse

    Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.

    2010-01-01

    Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.

  8. Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets

    NASA Astrophysics Data System (ADS)

    Grant, S. B.; Kim, J. H.; Jones, B. H.; Jenkins, S. A.; Wasyl, J.; Cudaback, C.

    2005-10-01

    Field experiments and modeling studies were carried out to characterize the surf zone entrainment and along-shore transport of pollution from two tidal outlets that drain into Huntington Beach and Newport Beach, popular public beaches in southern California. The surf zone entrainment and near-shore transport of pollutants from these tidal outlets appears to be controlled by prevailing wave conditions and coastal currents, and fine-scale features of the flow field around the outlets. An analysis of data from dye experiments and fecal indicator bacteria monitoring studies reveals that the along-shore flux of surf zone water is at least 50 to 300 times larger than the cross-shore flux of surf zone water. As a result, pollutants entrained in the surf zone hug the shore, where they travel significant distances parallel to the beach before diluting to extinction. Under the assumption that all surf zone pollution at Huntington Beach originates from two tidal outlets, the Santa Ana River and Talbert Marsh outlets, models of mass and momentum transport in the surf zone approximately capture the observed tidal phasing and magnitude of certain fecal indicator bacteria groups (total coliform) but not others (Escherichia coli and enterococci), implying the existence of multiple sources of, and/or multiple transport pathways for, fecal pollution at this site. The intersection of human recreation and near-shore pollution pathways implies that, from a human health perspective, special care should be taken to reduce the discharge of harmful pollutants from land-side sources of surface water runoff, such as tidal outlets and storm drains.

  9. Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Kauffman, L.J.; Kipp, K.L.; Landon, M.K.; Crandall, C.A.; Burow, K.R.; Brown, C.J.

    2008-01-01

    In 2003–2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida (Floridan aquifer system), respectively. Nitrate fluxes to the water table were larger in agricultural settings than urban settings, indicating that it would be beneficial to reduce PSW capture zone areas in agricultural regions. Mixing calculations indicate that about 50 to 85% of the nitrate in water from the PSW could be from those modern anthropogenic sources, with the remainder coming from sources in old (>50 years) recharge or sources in young recharge in undisturbed settings such as forests. Excess N2 concentrations and age tracers showed that denitrification at Modesto occurred gradually (first‐order rate constant of 0.02/a) in a thick reaction zone following a ∼30‐year lag time after recharge. Denitrification generally was not an important nitrate sink at Woodbury. At York and Tampa, denitrification occurred rapidly (0.5 to 6/a) in thin reaction zones in fine‐grained sediments that separated the anoxic PSW producing zones from overlying oxic, high‐nitrate ground water. Particle tracking showed that a major pathway by which anthropogenic nitrate reached the York and Tampa PSW was by movement through long well screens crossing multiple hydrogeologic units (York) and by movement through karst features (Tampa), processes which reduced ground water residence times in the denitrifying zones. These results illustrate how PSW vulnerability to nitrate contamination depends on complex variations and interactions between contaminant sources, reaction rates, transit times, mixing, and perturbation of ground water flow in contrasting hydrogeologic settings.

  10. Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.; BöHlke, J. K.; Kauffman, L. J.; Kipp, K. L.; Landon, M. K.; Crandall, C. A.; Burow, K. R.; Brown, C. J.

    2008-04-01

    In 2003-2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida (Floridan aquifer system), respectively. Nitrate fluxes to the water table were larger in agricultural settings than urban settings, indicating that it would be beneficial to reduce PSW capture zone areas in agricultural regions. Mixing calculations indicate that about 50 to 85% of the nitrate in water from the PSW could be from those modern anthropogenic sources, with the remainder coming from sources in old (>50 years) recharge or sources in young recharge in undisturbed settings such as forests. Excess N2 concentrations and age tracers showed that denitrification at Modesto occurred gradually (first-order rate constant of 0.02/a) in a thick reaction zone following a ˜30-year lag time after recharge. Denitrification generally was not an important nitrate sink at Woodbury. At York and Tampa, denitrification occurred rapidly (0.5 to 6/a) in thin reaction zones in fine-grained sediments that separated the anoxic PSW producing zones from overlying oxic, high-nitrate ground water. Particle tracking showed that a major pathway by which anthropogenic nitrate reached the York and Tampa PSW was by movement through long well screens crossing multiple hydrogeologic units (York) and by movement through karst features (Tampa), processes which reduced ground water residence times in the denitrifying zones. These results illustrate how PSW vulnerability to nitrate contamination depends on complex variations and interactions between contaminant sources, reaction rates, transit times, mixing, and perturbation of ground water flow in contrasting hydrogeologic settings.

  11. Ground-state proton decay of 69Br and implications for the rp -process 68Se waiting-point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Andrew M; Shapira, Dan; Lynch, William

    2011-01-01

    The first direct measurement of the proton separation energy, S p , for the proton-unbound nucleus 69Br is reported. Of interest is the exponential dependence of the 2 p-capture rate on S p which can bypass the 68Se waiting-point in the astrophysical rp process. An analysis of the observed proton decay spectrum is given in terms of the 69Se mirror nucleus and the influence of S p is explored within the context of a single-zone X-ray burst model.

  12. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongming; Oskay, Caglar

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage ismore » directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.« less

  13. Capture zone of a multi-well system in bounded peninsula-shaped aquifers.

    PubMed

    Zarei-Doudeji, Somayeh; Samani, Nozar

    2014-08-01

    In this paper we present the equation of capture zone for multi-well system in peninsula-shaped confined and unconfined aquifers. The aquifer is rectangular in plan view, bounded along three sides, and extends to infinity at the fourth side. The bounding boundaries are either no-flow (impervious) or in-flow (constant head) so that aquifers with six possible boundary configurations are formed. The well system is consisted of any number of extraction or injection wells or combination of both with any flow rates. The complex velocity potential equations for such a well-aquifer system are derived to delineate the capture envelop. Solutions are provided for the aquifers with and without a uniform regional flow of any directions. The presented equations are of general character and have no limitations in terms of well numbers, positions and types, extraction/injection rate, and regional flow rate and direction. These solutions are presented in form of capture type curves which are useful tools in hands of practitioners to design in-situ groundwater remediation systems, to contain contaminant plumes, to evaluate the surface-subsurface water interaction and to verify numerical models. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Visibility graphlet approach to chaotic time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutua, Stephen; Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega; Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn

    Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems.more » Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.« less

  15. Geographical distribution of genetic polymorphism of the pathogen Histoplasma capsulatum isolated from infected bats, captured in a central zone of Mexico.

    PubMed

    Taylor, Maria Lucia; Chávez-Tapia, Catalina B; Rojas-Martínez, Alberto; del Rocio Reyes-Montes, Maria; del Valle, Mirian Bobadilla; Zúñiga, Gerardo

    2005-09-01

    Fourteen Histoplasma capsulatum isolates recovered from infected bats captured in Mexican caves and two human H. capsulatum reference strains were analyzed using random amplification of polymorphic DNA PCR-based and partial DNA sequences of four genes. Cluster analysis of random amplification of polymorphic DNA-patterns revealed differences for two H. capsulatum isolates of one migratory bat Tadarida brasiliensis. Three groups were identified by distance and maximum-parsimony analyses of arf, H-anti, ole, and tub1 H. capsulatum genes. Group I included most isolates from infected bats and one clinical strain from central Mexico; group II included the two isolates from T. brasiliensis; the human G-217B reference strain from USA formed an independent group III. Isolates from group II showed diversity in relation to groups I and III, suggesting a different H. capsulatum population.

  16. The impact of (n, γ) reaction rate uncertainties of unstable isotopes near N = 50 on the i-process nucleosynthesis in He-shell flash white dwarfs

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel; Perdikakis, Georgios; Herwig, Falk; Schatz, Hendrik; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Nikas, Stylianos; Spyrou, Artemis

    2018-05-01

    The first-peak s-process elements Rb, Sr, Y and Zr in the post-AGB star Sakurai's object (V4334 Sagittarii) have been proposed to be the result of i-process nucleosynthesis in a post-AGB very-late thermal pulse event. We estimate the nuclear physics uncertainties in the i-process model predictions to determine whether the remaining discrepancies with observations are significant and point to potential issues with the underlying astrophysical model. We find that the dominant source in the nuclear physics uncertainties are predictions of neutron capture rates on unstable neutron rich nuclei, which can have uncertainties of more than a factor 20 in the band of the i-process. We use a Monte Carlo variation of 52 neutron capture rates and a 1D multi-zone post-processing model for the i-process in Sakurai's object to determine the cumulative effect of these uncertainties on the final elemental abundance predictions. We find that the nuclear physics uncertainties are large and comparable to observational errors. Within these uncertainties the model predictions are consistent with observations. A correlation analysis of the results of our MC simulations reveals that the strongest impact on the predicted abundances of Rb, Sr, Y and Zr is made by the uncertainties in the (n, γ) reaction rates of 85Br, 86Br, 87Kr, 88Kr, 89Kr, 89Rb, 89Sr, and 92Sr. This conclusion is supported by a series of multi-zone simulations in which we increased and decreased to their maximum and minimum limits one or two reaction rates per run. We also show that simple and fast one-zone simulations should not be used instead of more realistic multi-zone stellar simulations for nuclear sensitivity and uncertainty studies of convective–reactive processes. Our findings apply more generally to any i-process site with similar neutron exposure, such as rapidly accreting white dwarfs with near-solar metallicities.

  17. `Dhara': An Open Framework for Critical Zone Modeling

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.

    2016-12-01

    Processes in the Critical Zone, which sustain terrestrial life, are tightly coupled across hydrological, physical, biological, chemical, pedological, geomorphological and ecological domains over both short and long timescales. Observations and quantification of the Earth's surface across these domains using emerging high resolution measurement technologies such as light detection and ranging (lidar) and hyperspectral remote sensing are enabling us to characterize fine scale landscape attributes over large spatial areas. This presents a unique opportunity to develop novel approaches to model the Critical Zone that can capture fine scale intricate dependencies across the different processes in 3D. The development of interdisciplinary tools that transcend individual disciplines and capture new levels of complexity and emergent properties is at the core of Critical Zone science. Here we introduce an open framework for high-performance computing model (`Dhara') for modeling complex processes in the Critical Zone. The framework is designed to be modular in structure with the aim to create uniform and efficient tools to facilitate and leverage process modeling. It also provides flexibility to maintain, collaborate, and co-develop additional components by the scientific community. We show the essential framework that simulates ecohydrologic dynamics, and surface - sub-surface coupling in 3D using hybrid parallel CPU-GPU. We demonstrate that the open framework in Dhara is feasible for detailed, multi-processes, and large-scale modeling of the Critical Zone, which opens up exciting possibilities. We will also present outcomes from a Modeling Summer Institute led by Intensively Managed Critical Zone Observatory (IMLCZO) with representation from several CZOs and international representatives.

  18. Analyzing capture zone distributions (CZD) in growth: Theory and applications

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore L.; Pimpinelli, Alberto; Luis González, Diego

    2014-09-01

    We have argued that the capture-zone distribution (CZD) in submonolayer growth can be well described by the generalized Wigner distribution (GWD) P(s) =asβ exp(-bs2), where s is the CZ area divided by its average value. This approach offers arguably the most robust (least sensitive to mass transport) method to find the critical nucleus size i, since β ≈ i + 2. Various analytical and numerical investigations, which we discuss, show that the simple GWD expression is inadequate in the tails of the distribution, it does account well for the central regime 0.5 < s < 2, where the data is sufficiently large to be reliably accessible experimentally. We summarize and catalog the many experiments in which this method has been applied.

  19. Temperature-dependent nucleation and capture-zone scaling of C 60 on silicon oxide

    NASA Astrophysics Data System (ADS)

    Groce, M. A.; Conrad, B. R.; Cullen, W. G.; Pimpinelli, A.; Williams, E. D.; Einstein, T. L.

    2012-01-01

    Submonolayer films of C 60 have been deposited on ultrathin SiO 2 films for the purpose of characterizing the initial stages of nucleation and growth as a function of temperature. Capture zones extracted from the initial film morphology were analyzed using both the gamma and generalized Wigner distributions. The calculated critical nucleus size i of the C 60 islands was observed to change over the temperature range 298 K to 483 K. All fitted values of i were found to be between 0 and 1, representing stable monomers and stable dimers, respectively. With increasing temperature of film preparation, we observed i first increasing through this range and then decreasing. We discuss possible explanations of this reentrant-like behavior.

  20. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  1. White Historical Activity Theory: Toward a Critical Understanding of White Zones of Proximal Development

    ERIC Educational Resources Information Center

    Leonardo, Zeus; Manning, Logan

    2017-01-01

    Best known for arguing that individual development is part of social and historical development Vygotsky's entry into education may be captured by his concept of the "zone of proximal development" (ZPD). ZPD has not yet been synthesized with a critical study of whiteness. When ZPD is used to explain racial disparities in the service of…

  2. Evaluation of unmanned aerial vehicles (UAVs) for detection of cattle in the Cattle Fever Tick Permanent Quarantine Zone

    USDA-ARS?s Scientific Manuscript database

    An unmanned aerial vehicle was used to capture videos of cattle in pastures to determine the efficiency of this technology for use by Mounted Inspectors in the Permanent Quarantine zone (PQZ) of the Cattle Fever Tick Eradication Program in south Texas along the U.S.-Mexico Border. These videos were ...

  3. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  4. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    PubMed Central

    Tu, You-Lin; Chen, Shih-Jui; Hwang, Yean-Ren

    2016-01-01

    In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate) is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB) theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation. PMID:27886050

  5. Playful and mindful interactions in the recursive adaptations of the zone of proximal development: a critical complexity science approach

    NASA Astrophysics Data System (ADS)

    Raia, Federica; Deng, Mario C.

    2011-12-01

    We discuss Konstantinos Alexakos, Jayson Jones and Victor Rodriguez's hermeneutic study of formation and function of kinship-like relationships among inner city male students of color in a college physics classroom. From our Critical Complexity Science framework we first discuss the reading erlebnisse of students laughing at and with each other as something that immediately captured our attention in being transformative of the classroom. We continue by exploring their classroom and research experience as an emergent structure modifying their collective as well as their individual experiences. As we analyze both the classroom and the research space as a complex system, we reflect on the instructor/students interactions characterized by an asymmetrical "power" relationship. From our analysis we propose to consider the zone of proximal development as the constantly emerging and transforming person experience ( erlebnisse and erfahrung).

  6. Penny-shaped crack propagation in spallation of Zr-BMGs

    NASA Astrophysics Data System (ADS)

    Ling, Z.; Huang, X.; Dai, L. H.

    2015-09-01

    Typical penny-shaped microcracks at their propagating in spallation of Zr-based bulk metallic glass (Zr-BMG) samples were captured by a specially designed plate impact technique. Based on the morphology and stress environment of the microcrack, a damaged zone or propagation zone around the crack tips, similar to the cohesive zone in classical fracture theories, is applied. Especially the scale of such a damaged zone represents a scale of the crack propagation. Its fast propagation would quickly bring a longer crack or cause cracks coalesce to form another longer one. The estimated propagation scales of microcracks are reasonable compared with what occurred in the Zr-BMG samples.

  7. Development of an anti-EPO antibody detection kit based on lab-on-a-chip and bridging antibody technologies.

    PubMed

    Oh, Jin-Gyo; Seong, Jihyun; Han, Sunmi; Heo, Tae-Hwe

    2018-05-17

    Immunogenicity is a major concern in the use of biological drugs. In particular, antibody-mediated pure red cell aplasia (PRCA) is a rare condition that is caused by administration of recombinant erythropoietin. There are numerous assay platforms for detect EPO anti-drug antibody (ADA), and most have appropriate assay sensitivity, but in need of improvement in terms of assay turnaround time and user accessibility. Here, the new method was developed based on lab-on-a-chip technology and bridging ELISA. The FREND™ Cartridge is equipped with a microfluidic lateral flow channel, enabling easy, fast and accurate immunoassays with small sample volumes. Biotinylated EPO was immobilized on the avidin-coated solid phase of the test zone in the FREND™ cartridge. Initially, ADA in the serum sample binds to the detector conjugate (EPO-HRP-anti HRP antibody-FL bead) in the conjugation zone, and it flows into the test zone prepared with capture complex (avidin-biotinylated EPO). Unbound detector complexes are captured in the reference zone. The FREND™ system detects and quantifies the fluorescence signals in each zone and then calculates the concentration of EPO ADA in the sample. The FREND™ EPO ADA kit may be useful in local clinics as a rapid method for monitoring patients administered recombinant erythropoietin. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  8. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    NASA Astrophysics Data System (ADS)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  9. Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone

    NASA Astrophysics Data System (ADS)

    Lingala, Nishanth; Sri Namachchivaya, N.; Pavlyukevich, Ilya

    2017-04-01

    For nonlinear oscillators, frequency of oscillations depends on the oscillation amplitude. When a nonlinear oscillator is periodically driven, the phase space consists of many resonance zones where the oscillator frequency and the driving frequency are commensurable. It is well known that, a small subset of initial conditions can lead to capture in one of the resonance zones. In this paper we study the effect of weak noise on the escape from a resonance zone. Using averaging techniques we obtain the mean exit time from a resonance zone and study the dependence of the exit rate on the parameters of the oscillator. Paper dedicated to Professor Peter W Sauer of University of Illinois on the occasion of his 70th birthday.

  10. Development of a one-step immunochromatographic strip test for the detection of sennosides A and B.

    PubMed

    Putalun, Waraporn; Morinaga, Osamu; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2004-01-01

    An immunochromatographic strip test was developed to detect sennoside A (1) and sennoside B (2) using anti-1 and anti-2 monoclonal antibodies. The qualitative assay was based on a competitive immunoassay in which the detector reagent consisted of colloidal gold particles coated with the respective sennoside antibodies. The capture reagents were 1- and 2-human serum albumin (HSA) conjugates immobilised on a nitrocellulose membrane on the test strip. The sample containing 1 and 2, together with detector reagent, passed over the zone where the capture reagents had been immobilised. The analytes in the sample competed for binding to the limited amount of antibodies in the detector reagent with the immobilised 1- and 2-HSA conjugates on the membrane and hence positive samples showed no colour in the capture spot zone. Detection limits for the strip test were 125 ng/mL for both sennosides. The assay system is useful as a rapid and simple screening method for the detection of 1 and 2 in plants, drugs and body fluids.

  11. An automatic, stagnation point based algorithm for the delineation of Wellhead Protection Areas

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Sethi, Rajandrea; di Molfetta, Antonio

    2008-07-01

    Time-related capture areas are usually delineated using the backward particle tracking method, releasing circles of equally spaced particles around each well. In this way, an accurate delineation often requires both a very high number of particles and a manual capture zone encirclement. The aim of this work was to propose an Automatic Protection Area (APA) delineation algorithm, which can be coupled with any model of flow and particle tracking. The computational time is here reduced, thanks to the use of a limited number of nonequally spaced particles. The particle starting positions are determined coupling forward particle tracking from the stagnation point, and backward particle tracking from the pumping well. The pathlines are postprocessed for a completely automatic delineation of closed perimeters of time-related capture zones. The APA algorithm was tested for a two-dimensional geometry, in homogeneous and nonhomogeneous aquifers, steady state flow conditions, single and multiple wells. Results show that the APA algorithm is robust and able to automatically and accurately reconstruct protection areas with a very small number of particles, also in complex scenarios.

  12. Transonic Navier-Stokes computations of strake-generated vortex interactions for a fighter-like configuration

    NASA Technical Reports Server (NTRS)

    Reznick, Steve

    1988-01-01

    Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.

  13. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    NASA Astrophysics Data System (ADS)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  14. More are better, but the details matter: combinations of multiple Fresnel zone plates for improved resolution and efficiency in X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Jacobsen, Chris

    Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less

  15. A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae)

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Eyster, Ritchie S.; Allen, Charles T.

    2011-07-01

    The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas / Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.

  16. A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae).

    PubMed

    Westbrook, John K; Eyster, Ritchie S; Allen, Charles T

    2011-07-01

    The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas/Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.

  17. Organochlorine and organophosphorus pesticide residues in fodder and milk samples along Musi river belt, India.

    PubMed

    Kotinagu, Korrapati; Krishnaiah, Nelapati

    2015-04-01

    The present study was conducted to find the organochlorine pesticide (OCP) and organophosphorus pesticide (OPP) residues in fodder and milk samples along Musi river belt, India. Fodder and milk samples collected from the six zones of Musi river belt, Hyderabad India were analyzed by gas chromatography with electron capture detector for OCP residues and pulsated flame photometric detector for the presence of OPP residues. The gas chromatographic analysis of fodder samples of Zone 5 of Musi river showed the residues of dicofol at concentration of 0.07±0.0007 (0.071-0.077). Among organophosphorus compounds, dimetheoate was present in milk samples collected from Zone 6 at a level of 0.13±0.006 (0.111-0.167). The residues of OCPs, OPPs and cyclodies were below the detection limit in the remaining fodder and milk samples collected from Musi river belt in the present study. The results indicate that the pesticide residues in fodder and milk samples were well below the maximum residue level (MRL) values, whereas dicofol in fodder and dimethoate in milk were slightly above the MRL values specified by EU and CODEX.

  18. Organochlorine and organophosphorus pesticide residues in fodder and milk samples along Musi river belt, India

    PubMed Central

    Kotinagu, Korrapati; Krishnaiah, Nelapati

    2015-01-01

    Aim: The present study was conducted to find the organochlorine pesticide (OCP) and organophosphorus pesticide (OPP) residues in fodder and milk samples along Musi river belt, India. Materials and Methods: Fodder and milk samples collected from the six zones of Musi river belt, Hyderabad India were analyzed by gas chromatography with electron capture detector for OCP residues and pulsated flame photometric detector for the presence of OPP residues. Results: The gas chromatographic analysis of fodder samples of Zone 5 of Musi river showed the residues of dicofol at concentration of 0.07±0.0007 (0.071-0.077). Among organophosphorus compounds, dimetheoate was present in milk samples collected from Zone 6 at a level of 0.13±0.006 (0.111-0.167). The residues of OCPs, OPPs and cyclodies were below the detection limit in the remaining fodder and milk samples collected from Musi river belt in the present study. Conclusion: The results indicate that the pesticide residues in fodder and milk samples were well below the maximum residue level (MRL) values, whereas dicofol in fodder and dimethoate in milk were slightly above the MRL values specified by EU and CODEX. PMID:27047132

  19. Multidisciplinary fingerprints: forensic reconstruction of an insect reinvasion

    PubMed Central

    Kim, Kyung Seok; Jones, Gretchen D.; Westbrook, John K.; Sappington, Thomas W.

    2010-01-01

    An unexpected outbreak of boll weevils, Anthonomus grandis, an insect pest of cotton, across the Southern Rolling Plains (SRP) eradication zone of west-central Texas, USA, was detected soon after passage of Tropical Storm Erin through the Winter Garden district to the south on 16 August 2007. The synchrony and broad geographic distribution of the captured weevils suggest that long-distance dispersal was responsible for the reinvasion. We integrated three types of assessment to reconstruct the geographic origin of the immigrants: (i) DNA fingerprinting; (ii) pollen fingerprinting; and (iii) atmospheric trajectory analysis. We hypothesized the boll weevils originated in the Southern Blacklands zone near Cameron, or in the Winter Garden district near Uvalde, the nearest regions with substantial populations. Genetic tests broadly agree that the immigrants originated southeast of the SRP zone, probably in regions represented by Uvalde or Weslaco. The SRP pollen profile from weevils matched that of Uvalde better than that of Cameron. Wind trajectories supported daily wind-aided dispersal of weevils from the Uvalde region to the SRP from 17 to 24 August, but failed to support migration from the Cameron region. Taken together the forensic evidence strongly implicates the Winter Garden district near Uvalde as the source of reinvading boll weevils. PMID:19828497

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleman, S.E.

    This report documents a series of capture zone analyses performed to access the expected overall performance of two (of the twelve) vertical airlift recirculation wells (ARWs) (specifically, SSR-011 and SRR-012) located in the Southern Sector of A/M Area.

  1. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    USGS Publications Warehouse

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  2. On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations, MERRA and ECMWF data sets

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Jiang, J. H.; Su, H.

    2015-01-01

    The spatial variability of the tropical tropospheric relative humidity (RH) throughout the vertical extent of the troposphere is examined using Global Positioning System Radio Occultation (GPSRO) observations from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission. These high vertical resolution observations capture the detailed structure and moisture budget of the Hadley Cell circulation. We compare the COSMIC observations with the European Center for Medium-range Weather Forecast (ECMWF) Re-Analysis Interim (ERA-Interim) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) climatologies. Qualitatively, the spatial pattern of RH in all data sets matches up remarkably well, capturing distinct features of the general circulation. However, RH discrepancies exist between ERA-Interim and COSMIC data sets, which are noticeable across the tropical boundary layer. Specifically, ERA-Interim shows a drier Inter Tropical Convergence Zone (ITCZ) by 15-20% compared both to COSMIC and MERRA data sets, but this difference decreases with altitude. Unlike ECMWF, MERRA shows an excellent agreement with the COSMIC observations except above 400 hPa, where GPSRO observations capture drier air by 5-10%. RH climatologies were also used to evaluate intraseasonal variability. The results indicate that the tropical middle troposphere at ±5-25° is most sensitive to seasonal variations. COSMIC and MERRA data sets capture the same magnitude of the seasonal variability, but ERA-Interim shows a weaker seasonal fluctuation up to 10% in the middle troposphere inside the dry air subsidence regions of the Hadley Cell. Over the ITCZ, RH varies by maximum 9% between winter and summer.

  3. "First-person view" of pathogen transmission and hand hygiene - use of a new head-mounted video capture and coding tool.

    PubMed

    Clack, Lauren; Scotoni, Manuela; Wolfensberger, Aline; Sax, Hugo

    2017-01-01

    Healthcare workers' hands are the foremost means of pathogen transmission in healthcare, but detailed hand trajectories have been insufficiently researched so far. We developed and applied a new method to systematically document hand-to-surface exposures (HSE) to delineate true hand transmission pathways in real-life healthcare settings. A head-mounted camera and commercial coding software were used to capture ten active care episodes by eight nurses and two physicians and code HSE type and duration using a hierarchical coding scheme. We identified HSE sequences of particular relevance to infectious risks for patients based on the WHO 'Five Moments for Hand Hygiene'. The study took place in a trauma intensive care unit in a 900-bed university hospital in Switzerland. Overall, the ten videos totaled 296.5 min and featured eight nurses and two physicians. A total of 4222 HSE were identified (1 HSE every 4.2 s), which concerned bare (79%) and gloved (21%) hands. The HSE inside the patient zone ( n  = 1775; 42%) included mobile objects (33%), immobile surfaces (5%), and patient intact skin (4%), while HSE outside the patient zone ( n  = 1953; 46%) included HCW's own body (10%), mobile objects (28%), and immobile surfaces (8%). A further 494 (12%) events involved patient critical sites. Sequential analysis revealed 291 HSE transitions from outside to inside patient zone, i.e. "colonization events", and 217 from any surface to critical sites, i.e. "infection events". Hand hygiene occurred 97 times, 14 (5% adherence) times at colonization events and three (1% adherence) times at infection events. On average, hand rubbing lasted 13 ± 9 s. The abundance of HSE underscores the central role of hands in the spread of potential pathogens while hand hygiene occurred rarely at potential colonization and infection events. Our approach produced a valid video and coding instrument for in-depth analysis of hand trajectories during active patient care that may help to design more efficient prevention schemes.

  4. Geohydrology and simulations of ground-water flow at Verona well field, Battle Creek, Michigan, 1988

    USGS Publications Warehouse

    Lynch, E.A.; Grannemann, N.G.

    1997-01-01

    Public water supply for the city of Battle Creek, Mich. is withdrawn from the Marshall Sandstone through wells at the Verona well field. Analysis of borehole acoustic televiewer, gamma, and single-point-resistance logs from wells in Bailey Park, near the well field, indicates 12 fracture zones in the Marshall Sandstone. Further interpretation of flow-meter and temperature logs from the same wells indicates that the fracture zones are locally interconnected but appear to remain isolated over a lateral distance of 3,000 feet. Organic chemicals were detected in water samples collected from water-supply wells in the Verona well field in 1981. In 1985, six water-supply wells were converted to purge wells to intercept organic chemicals and divert them from the remaining water-supply wells. Removal of these wells from service resulted in a water-supply shortage. A proposal in which an alternative purge system could be installed so that wells that are out of service may be reactivated was examined. A ground-water-flow model developed for this study indicates that, under the current purge configuration, most water from contaminant-source areas either is captured by purge wells or flows to the Battle Creek River. Some water, however, is captured by three water-supply wells. Model simulations indicate that with the addition of eight purge wells, the well field would be protected from contamination, most water from the contaminant-source areas would be captured by the purge system, and only a small portion would flow to the Battle Creek River. In an effort to augment the city's water supply, the potential for expansion of the Verona well field to the northeast also was investigated. Because of the addition of three municipal wells northeast of the well field, some water from the site of a gasoline spill may be captured by two water-supply wells. Ground water in the area northeast of Verona well field contains significantly lower concentrations of iron, manganese, and calcium carbonate than does water in the existing well field area. However, the Marshall Sandstone in this area has significantly lower transmissivities than those within Verona well field.

  5. Fleeing to Fault Zones: Incorporating Syrian Refugees into Earthquake Risk Analysis along the East Anatolian and Dead Sea Rift Fault Zones

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Paradise, T. R.

    2016-12-01

    The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian Fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into cities, towns, and villages—placing stress on urban settings and increasing potential exposure to strong shaking. Yet, displaced populations are not traditionally captured in data sources used in earthquake risk analysis or loss estimations. Accordingly, we present a district-level analysis assessing the spatial overlap of earthquake hazards and refugee locations in southeastern Turkey to determine how migration patterns are altering seismic risk in the region. Using migration estimates from the U.S. Humanitarian Information Unit, we create three district-level population scenarios that combine official population statistics, refugee camp populations, and low, median, and high bounds for integrated refugee populations. We perform probabilistic seismic hazard analysis alongside these population scenarios to map spatial variations in seismic risk between 2011 and late 2015. Our results show a significant relative southward increase of seismic risk for this period due to refugee migration. Additionally, we calculate earthquake fatalities for simulated earthquakes using a semi-empirical loss estimation technique to determine degree of under-estimation resulting from forgoing migration data in loss modeling. We find that including refugee populations increased casualties by 11-12% using median population estimates, and upwards of 20% using high population estimates. These results communicate the ongoing importance of placing environmental hazards in their appropriate regional and temporal context which unites physical, political, cultural, and socio-economic landscapes. Keywords: Earthquakes, Hazards, Loss-Estimation, Syrian Crisis, Migration, Refugees

  6. Sampling and analysis of airborne resin acids and solvent-soluble material derived from heated colophony (rosin) flux: a method to quantify exposure to sensitizing compounds liberated during electronics soldering.

    PubMed

    Smith, P A; Son, P S; Callaghan, P M; Jederberg, W W; Kuhlmann, K; Still, K R

    1996-07-17

    Components of colophony (rosin) resin acids are sensitizers through dermal and pulmonary exposure to heated and unheated material. Significant work in the literature identifies specific resin acids and their oxidation products as sensitizers. Pulmonary exposure to colophony sensitizers has been estimated indirectly through formaldehyde exposure. To assess pulmonary sensitization from airborne resin acids, direct measurement is desired, as the degree to which aldehyde exposure correlates with that of resin acids during colophony heating is undefined. Any analytical method proposed should be applicable to a range of compounds and should also identify specific compounds present in a breathing zone sample. This work adapts OSHA Sampling and Analytical Method 58, which is designed to provide airborne concentration data for coal tar pitch volatile solids by air filtration through a glass fiber filter, solvent extraction of the filter, and gravimetric analysis of the non-volatile extract residue. In addition to data regarding total soluble material captured, a portion of the extract may be subjected to compound-specific analysis. Levels of soluble solids found during personal breathing zone sampling during electronics soldering in a Naval Aviation Depot ranged from below the "reliable quantitation limit" reported in the method to 7.98 mg/m3. Colophony-spiked filters analyzed in accordance with the method (modified) produced a limit of detection for total solvent-soluble colophony solids of 10 micrograms/filter. High performance liquid chromatography was used to identify abietic acid present in a breathing zone sample.

  7. Genetic Diversity of Talpa Europaea and Nova Hanta Virus (NVAV) in France

    PubMed Central

    Hugot, Jean-Pierre; Gu, Se Hun; Feliu, Carlos; Ventur, Jacint; Ribas, Alexis; Dormion, Jerôme; Yanagihara, Richard; Nicolas, Violaine

    2014-01-01

    Summary Nova hantavirus (NVAV) was first identified in a single European mole (Talpa europaea), captured in Hungary. Analysis of lung tissues from 94 moles captured in France revealed NVAV in 50%. Based on the genetic diversity of the cytochrome b mtDNA, moles collected in Poitiers and Bordeaux were more closely related to the Iberian mole (T. occidentalis), a species previously assumed to be restricted to the Iberian Peninsula. Several hypotheses are discussed to explain these observations: 1) presence of hitherto unnoticed T. occidentalis in southwestern France; 2) existence of an ancient mitochondrial introgression phenomenon between the two Talpa species, producing a particular phenotype in some hybrids; 3) existence of a hybrid zone between the two species; and 4) existence of a new Talpa species. NVAV was not detected in the southwestern moles, which begs the question of the potential presence of a particular Hantavirus sp. in this population and/or in the Iberian moles. PMID:25530620

  8. Laser capture microdissection: Big data from small samples

    PubMed Central

    Datta, Soma; Malhotra, Lavina; Dickerson, Ryan; Chaffee, Scott; Sen, Chandan K.; Roy, Sashwati

    2015-01-01

    Any tissue is made up of a heterogeneous mix of spatially distributed cell types. In response to any (patho) physiological cue, responses of each cell type in any given tissue may be unique and cannot be homogenized across cell-types and spatial co-ordinates. For example, in response to myocardial infarction, on one hand myocytes and fibroblasts of the heart tissue respond differently. On the other hand, myocytes in the infarct core respond differently compared to those in the peri-infarct zone. Therefore, isolation of pure targeted cells is an important and essential step for the molecular analysis of cells involved say in the progression of disease. Laser capture microdissection (LCM) is powerful to obtain a pure targeted cell subgroup, or even a single cell, quickly and precisely under the microscope, successfully tackling the problem of tissue heterogeneity in molecular analysis. This review presents an overview of LCM technology, the principles, advantages and limitations and its down-stream applications in the fields of proteomics, genomics and transcriptomics. With powerful technologies and appropriate applications, this technique provides unprecedented insights into cell biology from cells grown in their natural tissue habitat as opposed to those cultured in artificial petri dish conditions. PMID:25892148

  9. Laser capture microdissection: Big data from small samples.

    PubMed

    Datta, Soma; Malhotra, Lavina; Dickerson, Ryan; Chaffee, Scott; Sen, Chandan K; Roy, Sashwati

    2015-11-01

    Any tissue is made up of a heterogeneous mix of spatially distributed cell types. In response to any (patho) physiological cue, responses of each cell type in any given tissue may be unique and cannot be homogenized across cell-types and spatial co-ordinates. For example, in response to myocardial infarction, on one hand myocytes and fibroblasts of the heart tissue respond differently. On the other hand, myocytes in the infarct core respond differently compared to those in the peri-infarct zone. Therefore, isolation of pure targeted cells is an important and essential step for the molecular analysis of cells involved in the progression of disease. Laser capture microdissection (LCM) is powerful to obtain a pure targeted cell subgroup, or even a single cell, quickly and precisely under the microscope, successfully tackling the problem of tissue heterogeneity in molecular analysis. This review presents an overview of LCM technology, the principles, advantages and limitations and its down-stream applications in the fields of proteomics, genomics and transcriptomics. With powerful technologies and appropriate applications, this technique provides unprecedented insights into cell biology from cells grown in their natural tissue habitat as opposed to those cultured in artificial petri dish conditions.

  10. "I knew it was wrong the moment I got the order": A narrative thematic analysis of moral injury in combat veterans.

    PubMed

    Held, Philip; Klassen, Brian J; Hall, Joanne M; Friese, Tanya R; Bertsch-Gout, Marcel M; Zalta, Alyson K; Pollack, Mark H

    2018-05-03

    Moral injury is a nascent construct intended to capture reactions to events that violate deeply held beliefs and moral values. Although a model of moral injury has been proposed, many of the theoretical propositions of this model have yet to be systematically studied. We conducted semistructured interviews with eight veterans who reported experiencing morally injurious events during war zone deployments. Using narrative thematic analysis, five main themes and associated subthemes emerged from the data. The main themes capture the timing of the event, contextual factors that affected the decision-making process during the morally injurious event, reactions to the moral injurious event, search for purpose and meaning, and opening up. The findings from the present study supported an existing model of moral injury, while extending it in several important ways. Preliminary clinical recommendations and directions for future research are discussed based on the study findings. These include directly exploring the context surrounding the morally injurious event, examining the veterans' moral appraisals, and helping them assume appropriate responsibility for their actions to reduce excessive self-blame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions.

    PubMed

    Turner, Leslie M; Harr, Bettina

    2014-12-09

    Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.

  12. Highway work zone intrusion alert systems implementation guide.

    DOT National Transportation Integrated Search

    2017-07-01

    Adopting new technology and innovation is vital for governmental entities to effectively conduct business for its citizens. One major challenge of capturing and realizing the multitude of benefits produced by innovative safety technologies is proper ...

  13. Morphology, spatial pattern and sediment of Nitraria tangutorum nebkhas in barchans interdune areas at the southeast margin of the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Yang, YanYan; Liu, LianYou; Shi, PeiJun; Zhang, GuoMing; Qu, ZhiQiang; Tang, Yan; Lei, Jie; Wen, HaiMing; Xiong, YiYing; Wang, JingPu; Shen, LingLing

    2015-03-01

    To understand the characteristics of the nebkhas in barchan interdune areas, isolated barchan dunes at the southeast margin of the Badain Jaran Desert in China and Nitraria tangutorun nebkhas in the interdune areas were selected, and the morphometric parameters, spatial patterns, and granulometric characteristics of the nebkhas in various interdune zones were compared. According to the locations relative to barchan dunes, the interdune areas were divided into three zones: the windward interdune zone (Zw), the leeward interdune zone (Zl), and the horn interdune zone (Zh). The zone that is proximal to barchan dunes and has never been disturbed by barchan dunes was also selected (Zi). The morphometric parameters were measured through a satellite image and field investigation. The population density and spatial patterns were analyzed using the satellite image, and surface sediment samples of the nebkhas and barchan dunes were collected for grain size analysis. The morphometric parameters of Nitraria tangutorun nebkhas in the interdune zones differ significantly. The nebkhas in Zh are larger than those observed in the other zones, and the nebkhas are the smallest in Zl. In all of the zones, the long-axis orientation of the nebkhas is perpendicular to the prevailing wind direction. The population density of the nebkhas in Zw is relatively higher, whereas the density in Zh and Zl becomes obviously lower. The spatial distribution of nebkhas in all of the zones can be categorized as a dispersed pattern. The sediments of the nebkhas are coarsest in Zh and finest in Zl. In addition, the sediments of the nebkhas in all of the zones are finer than those of barchan dunes. The amount of sand captured by the nebkhas in the interdune areas is approximately 20% of the volume of barchan dunes. The variations of the nebkhas' sizes, spatial pattern and sediment are subjected to migration, flow field and sand transport of barchan dunes and sand accumulation with plant growth in the interdune areas, which suggest complex mutual interactions between barchan dunes and the nebkhas in the interdune areas.

  14. How Actuated Particles Effectively Capture Biomolecular Targets

    PubMed Central

    2017-01-01

    Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952

  15. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Ryan, J. C.; Hubbard, A.; Irvine-Fynn, T. D.; Doyle, S. H.; Cook, J. M.; Stibal, M.; Box, J. E.

    2017-06-01

    Calibration and validation of satellite-derived ice sheet albedo data require high-quality, in situ measurements commonly acquired by up and down facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite-derived albedo can only be justified when the measured surface is homogeneous at the length-scale of both satellite pixel and in situ footprint. Here we use digital imagery acquired by an unmanned aerial vehicle to evaluate point-to-pixel albedo comparisons across the western, ablating margin of the Greenland Ice Sheet. Our results reveal that in situ measurements overestimate albedo by up to 0.10 at the end of the melt season because the ground footprints of AWS-mounted pyranometers are insufficient to capture the spatial heterogeneity of the ice surface as it progressively ablates and darkens. Statistical analysis of 21 AWS across the entire Greenland Ice Sheet reveals that almost half suffer from this bias, including some AWS located within the wet snow zone.

  16. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Ryan, J.; Hubbard, A., II; Irvine-Fynn, T. D.; Doyle, S. H.; Cook, J.; Stibal, M.; Smith, L. C.; Box, J. E.

    2017-12-01

    Calibration and validation of satellite-derived ice sheet albedo data require high-quality, in situ measurements commonly acquired by up and down facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite-derived albedo can only be justified when the measured surface is homogeneous at the length-scale of both satellite pixel and in situ footprint. We used digital imagery acquired by an unmanned aerial vehicle to evaluate point-to-pixel albedo comparisons across the western, ablating margin of the Greenland Ice Sheet. Our results reveal that in situ measurements overestimate albedo by up to 0.10 at the end of the melt season because the ground footprints of AWS-mounted pyranometers are insufficient to capture the spatial heterogeneity of the ice surface as it progressively ablates and darkens. Statistical analysis of 21 AWS across the entire Greenland Ice Sheet reveals that almost half suffer from this bias, including some AWS located within the wet snow zone.

  17. Willy: A prize noble Ur-Fremdling - Its history and implications for the formation of Fremdlinge and CAI

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; El Goresy, A.; Wasserburg, G. J.

    1985-01-01

    The structure and composition of Willy, a 150-micron-diameter Fremdling in CAI 5241 from the Allende meteorite, are investigated using optical, secondary-electron, and electron-backscatter microscopy and electron-microprobe analysis. The results are presented in diagrams, maps, tables, graphs, and micrographs and compared with those for other Allende Fremdlinge. Willy is found to have a concentric-zone structure comprising a complex porous core of magnetite, metal, sulfide, scheelite, and other minor phases; a compact magnetite-apatite mantle; a thin (20 microns or less) reaction-assemblage zone; and a dense outer rim of fassaite with minor spinel. A multistage formation sequence involving changes in T and fO2 and preceding the introduction of Willy into the CAI (which itself preceded CAI spinel and silicate formation) is postulated, and it is inferred from the apparent lack of post-capture recrystallization that Willy has not been subjected to temperatures in excess of 600 C and may represent the precursor material for many other Fremdlinge.

  18. Investigation on the growth and characterization of 4-aminobenzophenone single crystal by the vertical dynamic gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Prabhakaran, SP.; Ramesh Babu, R.; Sukumar, M.; Bhagavannarayana, G.; Ramamurthi, K.

    2014-03-01

    Growth of bulk single crystal of 4-Aminobenzophenone (4-ABP) from the vertical dynamic gradient freeze (VDGF) setup designed with eight zone furnace was investigated. The experimental parameters for the growth of 4-ABP single crystal with respect to the design of VDGF setup are discussed. The eight zones were used to generate multiple temperature gradients over the furnace, and video imaging system helped to capture the real time growth and solid-liquid interface. 4-ABP single crystal with the size of 18 mm diameter and 40 mm length was grown from this investigation. Structural and optical quality of grown crystal was examined by high resolution X-ray diffraction and UV-visible spectral analysis, respectively and the blue emission was also confirmed from the photoluminescence spectrum. Microhardness number of the crystal was estimated at different loads using Vicker's microhardness tester. The size and quality of single crystal grown from the present investigation are compared with the vertical Bridgman grown 4-ABP.

  19. Domestic wells have high probability of pumping septic tank leachate

    NASA Astrophysics Data System (ADS)

    Horn, J. E.; Harter, T.

    2011-06-01

    Onsite wastewater treatment systems such as septic systems are common in rural and semi-rural areas around the world; in the US, about 25-30 % of households are served by a septic system and a private drinking water well. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. Particularly in areas with small lots, thus a high septic system density, these typically shallow wells are prone to contamination by septic system leachate. Typically, mass balance approaches are used to determine a maximum septic system density that would prevent contamination of the aquifer. In this study, we estimate the probability of a well pumping partially septic system leachate. A detailed groundwater and transport model is used to calculate the capture zone of a typical drinking water well. A spatial probability analysis is performed to assess the probability that a capture zone overlaps with a septic system drainfield depending on aquifer properties, lot and drainfield size. We show that a high septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We conclude that mass balances calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances which experience limited attenuation, and those being harmful even in low concentrations.

  20. Enhancement in the sensitivity of microfluidic enzyme-linked immunosorbent assays through analyte preconcentration.

    PubMed

    Yanagisawa, Naoki; Dutta, Debashis

    2012-08-21

    In this Article, we describe a microfluidic enzyme-linked immunosorbent assay (ELISA) method whose sensitivity can be substantially enhanced through preconcentration of the target analyte around a semipermeable membrane. The reported preconcentration has been accomplished in our current work via electrokinetic means allowing a significant increase in the amount of captured analyte relative to nonspecific binding in the trapping/detection zone. Upon introduction of an enzyme substrate into this region, the rate of generation of the ELISA reaction product (resorufin) was observed to increase by over a factor of 200 for the sample and 2 for the corresponding blank compared to similar assays without analyte trapping. Interestingly, in spite of nonuniformities in the amount of captured analyte along the surface of our analysis channel, the measured fluorescence signal in the preconcentration zone increased linearly with time over an enzyme reaction period of 30 min and at a rate that was proportional to the analyte concentration in the bulk sample. In our current study, the reported technique has been shown to reduce the smallest detectable concentration of the tumor marker CA 19-9 and Blue Tongue Viral antibody by over 2 orders of magnitude compared to immunoassays without analyte preconcentration. When compared to microwell based ELISAs, the reported microfluidic approach not only yielded a similar improvement in the smallest detectable analyte concentration but also reduced the sample consumption in the assay by a factor of 20 (5 μL versus 100 μL).

  1. Denitrification in the Arabian Sea: A 3D ecosystem modelling study

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas R.; Ryabchenko, Vladimir A.; Fasham, Michael J. R.; Gorchakov, Victor A.

    2007-12-01

    A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr -1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m -2 d -1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m -2 d -1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.

  2. Tools for port TRZs and TRZs for multimodal applications : project summary.

    DOT National Transportation Integrated Search

    2017-01-01

    Transportation reinvestment zones (TRZs) are a : relatively new tool for infrastructure finance that : allows governmental entities with taxing : authority to set aside local match contributions : for transportation projects and capture the land : va...

  3. Jupiter

    NASA Image and Video Library

    1998-06-04

    This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. http://photojournal.jpl.nasa.gov/catalog/PIA00343

  4. ETP-0492, Measured Residual Stresses in CYL S/N 53 Fretted Area

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L.

    1998-01-01

    This test report presents the results of a residual stress survey of the inner clevis leg of lightweight cylinder SIN 053 as described by ETP-0492. The intent of this testing was to evaluate the residual stresses that occur in and around the inner clevis leg at the capture feature contact zone during a normal flight cycle. Lightweight case cylinder segment IU50717, S/N L053 from Flight STS-27 exhibited fretting around the contact zone of the inner clevis leg and the capture feature of the field joint. Post flight inspection revealed several large fitting pits on the inside of the inner clevis leg. This cylinder was assigned for both residual stress and metallurgical evaluation. This report is concerned only with the residual so= evaluations. The effects of glass bead cleaning and fi=ing were evaluated using the x-ray diffraction method.

  5. Capture zone area distributions for nucleation and growth of islands during submonolayer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Li, Maozhi; Evans, James W.

    2016-12-07

    A fundamental evolution equation is developed to describe the distribution of areas of capture zones (CZs) associated with islands formed by homogeneous nucleation and growth during submonolayer deposition on perfect flat surfaces. This equation involves various quantities which characterize subtle spatial aspects of the nucleation process. These quantities in turn depend on the complex stochastic geometry of the CZ tessellation of the surface, and their detailed form determines the CZ area distribution (CZD) including its asymptotic features. For small CZ areas, behavior of the CZD reflects the critical island size, i. For large CZ areas, it may reflect the probabilitymore » for nucleation near such large CZs. Predictions are compared with kinetic Monte Carlo simulation data for models with two-dimensional compact islands with i = 1 (irreversible island formation by diffusing adatom pairs) and i = 0 (adatoms spontaneously convert to stable nuclei, e.g., by exchange with the substrate).« less

  6. Developments in Characterizing Capture Zone Distributions in Island Growth

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Pimpinelli, Alberto; GonzáLez, Diego Luis; Sathiyanarayanan, Rajesh

    2013-03-01

    The utility of using the distribution of capture zones (CZD) to characterize epitaxial growth continues to mount. For non-Poisson deposition (i.e. when island nucleation is not fully random) the areas of these Voronoi cells (proximity polygons) can be well described by the generalized Wigner distribution (GWD), particularly in the central region around the mean area. We discuss several recent applications to experimental systems, showing how this perspective leads to insights about the critical nucleus size. In contrast, several studies have shown that the GWD may not describe the numerical data from painstaking simulations in both tails. We discuss some refinements that have been proposed. Finally, we comment on applications to social phenomena such as area distributions of secondary administrative units (like counties) and of Voronoi cells around Metro stops. Work at UMD supported by NSF-MRSEC Grant DMR 05-20471 and NSF CHE 07-49949

  7. Spatial Variability of accumulation across the Western Greenland Ice Sheet Percolation Zone from ground-penetrating-radar and shallow firn cores

    NASA Astrophysics Data System (ADS)

    Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.; Birkel, S. D.; Meehan, T. G.; Graeter, K.; Overly, T. B.; McCarthy, F.

    2017-12-01

    The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone over the past several decades has led to increased mass loss at lower elevations due to recent warming. Uncertainties in mass balance are especially large in regions with sparse and/or outdated in situ measurements. This study is the first to calculate in situ accumulation over a large region of western Greenland since the Program for Arctic Regional Climate Assessment campaign during the 1990s. Here we analyze 5000 km of 400 MHz ground penetrating radar data and sixteen 25-33 m-long firn cores in the western GrIS percolation zone to determine snow accumulation over the past 50 years. The cores and radar data were collected as part of the 2016-2017 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). With the cores and radar profiles we capture spatial accumulation gradients between 1850-2500 m a.s.l and up to Summit Station. We calculate accumulation rates and use them to validate five widely used regional climate models and to compare with IceBridge snow and accumulation radars. Our results indicate that while the models capture most regional spatial climate patterns, they lack the small-scale spatial variability captured by in situ measurements. Additionally, we evaluate temporal trends in accumulation at ice core locations and throughout the traverse. Finally, we use empirical orthogonal function and correlation analyses to investigate the principal drivers of radar-derived accumulation rates across the western GrIS percolation zone, including major North Atlantic climate modes such as the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, and Greenland Blocking Index.

  8. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions

    PubMed Central

    Turner, Leslie M; Harr, Bettina

    2014-01-01

    Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone. DOI: http://dx.doi.org/10.7554/eLife.02504.001 PMID:25487987

  9. Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.

    PubMed

    Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John

    2016-03-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.

  10. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    NASA Astrophysics Data System (ADS)

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing

    2018-01-01

    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  11. Computational fluid dynamics of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    It is pointed out that transonic flow is one of the fields where computational fluid dynamics turns out to be most effective. Codes for the design and analysis of supercritical airfoils and wings have become standard tools of the aircraft industry. The present investigation is concerned with mathematical models and theorems which account for some of the progress that has been made. The most successful aerodynamics codes are those for the analysis of flow at off-design conditions where weak shock waves appear. A major breakthrough was achieved by Murman and Cole (1971), who conceived of a retarded difference scheme which incorporates artificial viscosity to capture shocks in the supersonic zone. This concept has been used to develop codes for the analysis of transonic flow past a swept wing. Attention is given to the trailing edge and the boundary layer, entropy inequalities and wave drag, shockless airfoils, and the inverse swept wing code.

  12. On the dependence on inclination of capture probability of short-period comets

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Tsujii, T.

    1990-06-01

    Calculation is made of probability of capture whereby a nearly parabolic comet with perihelion near the Jovian orbit comes to have a perihelion distance less than 2.5 AU and a period less than 200 yr. The probability is found to depend strongly on the inclination, in accordance with earlier results of Everhart and of Stagg and Bailey. It is large for orbits close to the ecliptic but decreases drastically for large inclinations. The overall probability of capture from randomly distributed orbits is 0.00044, which shows that either the presently observed short-period comets are not in a steady state or the source flux may be in the Uranus-Neptune zone.

  13. Biogeochemical flux and phytoplankton succession: A year-long sediment trap record in the Australian sector of the Subantarctic Zone

    NASA Astrophysics Data System (ADS)

    Wilks, Jessica V.; Rigual-Hernández, Andrés S.; Trull, Thomas W.; Bray, Stephen G.; Flores, José-Abel; Armand, Leanne K.

    2017-03-01

    The Subantarctic Zone (SAZ) plays a crucial role in global carbon cycling as a significant sink for atmospheric CO2. In the Australian sector, the SAZ exports large quantities of organic carbon from the surface ocean, despite lower algal biomass accumulation in surface waters than other Southern Ocean sectors. We present the first analysis of diatom and coccolithophore assemblages and seasonality, as well as the first annual quantification of bulk organic components of captured material at the base of the mixed layer (500 m depth) in the SAZ. Sediment traps were moored in the SAZ southwest of Tasmania as part of the long-term SAZ Project for one year (September 2003 to September 2004). Annual mass flux at 500 m and 2000 m was composed mainly of calcium carbonate, while biogenic silica made up on average <10% of material captured in the traps. Organic carbon flux was estimated at 1.1 g m-2 y-1 at 500 m, close to the estimated global mean carbon flux. Low diatom fluxes and high fluxes of coccoliths were consistent with low biogenic silica and high calcium carbonate fluxes, respectively. Diatoms and coccoliths were identified to species level. Diatom and coccolithophore sinking assemblages reflected some seasonal ecological succession. A theoretical scheme of diatom succession in live assemblages is compared to successional patterns presented in sediment traps. This study provides a unique, direct measurement of the biogeochemical fluxes and their main biological carbon vectors just below the winter mixed layer depth at which effective sequestration of carbon occurs. Comparison of these results with previous sediment trap deployments at the same site at deeper depths (i.e. 1000, 2000 and 3800 m) documents the changes particle fluxes experience in the lower "twilight zone" where biological processes and remineralisation of carbon reduce the efficiency of carbon sequestration.

  14. A narrow hybrid zone between two Cottus species in Wills Creek, Potomac drainage.

    PubMed

    Kinziger, A P; Raesly, R L

    2001-01-01

    We describe a narrow hybrid zone between the mottled sculpin (Cottus b. bairdi) and the Blue Ridge sculpin (C. caeruleomentum). Seven characters (dorsal fin rays, pectoral fin rays, caudal base band condition, male spawning coloration, and one frequency and two fixed allozyme differences) distinguish the two taxa in the hybrid zone. C. caeruleomentum and C. b. bairdi diverged in these characters in allopatry as indicated by their distribution on opposite sides of the Atlantic-Ohio divide. However, a stream capture placed these two taxa in secondary contact in Wills Creek, Potomac drainage (Atlantic slope). Allozyme data indicate the presence of post-F(1) hybrids in the zone of secondary contact. Changes in allozymes, morphology, and spawning coloration along a transect in Wills Creek reveal the hybrid zone is less than 20 river kilometers in length. Estimates of root mean square dispersal and gene flow tentatively suggest that selection is operating in the Wills Creek hybrid zone. C. b. bairdi and C. caeruleomentum are maintaining their identity in seven distinguishing characters on opposite ends of the hybrid zone revealing these two taxa are independent evolutionary lineages.

  15. Geographic dimensions of a health network dedicated to occupational and work related diseases.

    PubMed

    Delaunay, Marie; Godard, Vincent; Le Barbier, Mélina; Gilg Soit Ilg, Annabelle; Aubert, Cédric; Maître, Anne; Barbeau, Damien; Bonneterre, Vincent

    2016-09-27

    Although introduced nearly 40 years ago, Geographic Information Systems (GISs) have never been used to study Occupational Health information regarding the different types, scale or sources of data. The geographic distribution of occupational diseases and underlying work activities were always analyzed independently. Our aim was to consider the French Network of Occupational Disease (OD) clinics, namely the "French National OD Surveillance and Prevention Network" (rnv3p) as a spatial object in order to describe its catchment. We mapped rnv3p observations at the workplace level. We initially analyzed rnv3p capture with reference to its own data, then to the underlying workforce (INSEE "Employment Areas"), and finally compared its capture of one emblematic occupational disease (mesothelioma) to an external dataset provided by a surveillance system thought to be exhaustive (PNSM). While the whole country is covered by the network, the density of observations decreases with increase in the distance from the 31 OD clinics (located within the main French cities). Taking into account the underlying workforce, we show that the probability to capture and investigation of OD (assessed by rates of OD per 10,000 workers) also presents large discrepancies between OD clinics. This capture rate might also show differences according to the disease, as exemplified by mesothelioma. The geographic approach to this network, enhanced by the possibilities provided by the GIS tool, allow a better understanding of the coverage of this network at a national level, as well as the visualization of capture rates for all OD clinics. Highlighting geographic and thematic shading zones bring new perspectives to the analysis of occupational health data, and should improve occupational health vigilance and surveillance.

  16. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies.

    PubMed

    Moran, Jonathan A; Hawkins, Barbara J; Gowen, Brent E; Robbins, Samantha L

    2010-03-01

    Nepenthes pitcher plant species differ in their prey capture strategies, prey capture rates, and pitcher longevity. In this study, it is investigated whether or not interspecific differences in nutrient sequestration strategy are reflected in the physiology and microstructure of the pitchers themselves. Using a non-invasive technique (MIFE), ion fluxes in pitchers of Nepenthes ampullaria Jack, Nepenthes bicalcarata Hook.f., and Nepenthes rafflesiana Jack were measured. Scanning electron microscopy was also used to characterize the distribution of glandular and other structures on the inner pitcher walls. The results demonstrate that nutrient sequestration strategy is indeed mirrored in pitcher physiology and microstructure. Species producing long-lived pitchers with low prey capture rates (N. ampullaria, N. bicalcarata) showed lower rates of NH(4)(+) uptake than N. rafflesiana, a species producing short-lived pitchers with high capture rates. Crucially, species dependent upon aquatic commensals (N. ampullaria, N. bicalcarata) actively manipulated H(+) fluxes to maintain less acid pitcher fluid than found in 'typical' species; in addition, these species lacked the lunate cells and epicuticular waxes characteristic of 'typical' insectivorous congeners. An unexpected finding was that ion fluxes occurred in the wax-covered, non-glandular zones in N. rafflesiana. The only candidates for active transport of aqueous ions in these zones appear to be the epidermal cells lying beneath the lunate cells, as these are the only sites not visibly coated with epicuticular waxes.

  17. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies

    PubMed Central

    Moran, Jonathan A.; Hawkins, Barbara J.; Gowen, Brent E.; Robbins, Samantha L.

    2010-01-01

    Nepenthes pitcher plant species differ in their prey capture strategies, prey capture rates, and pitcher longevity. In this study, it is investigated whether or not interspecific differences in nutrient sequestration strategy are reflected in the physiology and microstructure of the pitchers themselves. Using a non-invasive technique (MIFE), ion fluxes in pitchers of Nepenthes ampullaria Jack, Nepenthes bicalcarata Hook.f., and Nepenthes rafflesiana Jack were measured. Scanning electron microscopy was also used to characterize the distribution of glandular and other structures on the inner pitcher walls. The results demonstrate that nutrient sequestration strategy is indeed mirrored in pitcher physiology and microstructure. Species producing long-lived pitchers with low prey capture rates (N. ampullaria, N. bicalcarata) showed lower rates of NH4+ uptake than N. rafflesiana, a species producing short-lived pitchers with high capture rates. Crucially, species dependent upon aquatic commensals (N. ampullaria, N. bicalcarata) actively manipulated H+ fluxes to maintain less acid pitcher fluid than found in ‘typical’ species; in addition, these species lacked the lunate cells and epicuticular waxes characteristic of ‘typical’ insectivorous congeners. An unexpected finding was that ion fluxes occurred in the wax-covered, non-glandular zones in N. rafflesiana. The only candidates for active transport of aqueous ions in these zones appear to be the epidermal cells lying beneath the lunate cells, as these are the only sites not visibly coated with epicuticular waxes. PMID:20150519

  18. Deaths associated with Hurricane Sandy - October-November 2012.

    PubMed

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  19. Use of Additional Lighting for Traffic Control and Speed Reduction in Work Zones

    DOT National Transportation Integrated Search

    2018-02-01

    The Federal Highway Administration (FHWA) is seeking new approaches to the design of the next national long-distance travel study- advanced methods of capturing and analyzing travel data to support effective, defensible transportation decision-making...

  20. Constraints on Fault Damage Zone Properties and Normal Modes from a Dense Linear Array Deployment along the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Lin, F. C.; Share, P. E.; Ben-Zion, Y.; Vernon, F.; Schuster, G. T.; Karplus, M. S.

    2016-12-01

    We present earthquake data and statistical analyses from a month-long deployment of a linear array of 134 Fairfield three-component 5 Hz seismometers along the Clark strand of the San Jacinto fault zone in Southern California. With a total aperture of 2.4km and mean station spacing of 20m, the array locally spans the entire fault zone from the most intensely fractured core to relatively undamaged host rock on the outer edges. We recorded 36 days of continuous seismic data at 1000Hz sampling rate, capturing waveforms from 751 local events with Mw>0.5 and 43 teleseismic events with M>5.5, including two 600km deep M7.5 events along the Andean subduction zone. For any single local event on the San Jacinto fault, the central stations of the array recorded both higher amplitude and longer duration waveforms, which we interpret as the result of damage-related low-velocity structure acting as a broad waveguide. Using 271 San Jacinto events, we compute the distributions of three quantities for each station: maximum amplitude, mean amplitude, and total energy (the integral of the envelope). All three values become statistically lower with increasing distance from the fault, but in addition show a nonrandom zigzag pattern which we interpret as normal mode oscillations. This interpretation is supported by polarization analysis which demonstrates that the high-amplitude late-arriving energy is strongly vertically polarized in the central part of the array, consistent with Love-type trapped waves. These results, comprising nearly 30,000 separate coseismic waveforms, support the consistent interpretation of a 450m wide asymmetric damage zone, with the lowest velocities offset to the northeast of the mapped surface trace by 100m. This asymmetric damage zone has important implications for the earthquake dynamics of the San Jacinto and especially its ability to generate damaging multi-segment ruptures.

  1. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Phelan, Thomas J.; Abriola, Linda M.; Gibson, Jenny L.; Smits, Kathleen M.; Christ, John A.

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.

  2. Influence of periodically changing oxidizing and reducing environment on sulfur capture under PFBC conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yrjas, P.; Hupa, M.

    1997-12-31

    In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 C. Previously, the maximum has been attributed to the sintering of the sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this paper the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) is reported. In themore » pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}, SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, may play a more important role than the slightly reducing zones, concerning the sulfur capture in fluidized bed combustors.« less

  3. Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis

    NASA Technical Reports Server (NTRS)

    Cai, Jinsheng; Sirignano, William A.

    2001-01-01

    A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.

  4. Simulation of zones of contribution to wells at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York

    USGS Publications Warehouse

    Misut, Paul

    2014-01-01

    A three-dimensional groundwater-flow model is coupled with the particle-tracking program MODPATH to delineate zones of contribution to wells pumping from the Magothy aquifer and supplying water to a chlorinated volatile organic compound removal plant at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York. By use of driller’s logs, a transitional probability approach generated three alternative realizations of heterogeneity within the Magothy aquifer to assess uncertainty in model representation. Finer-grained sediments with low hydraulic conductivity were realized as laterally discontinuous, thickening towards the south, and comprising about 17 percent of the total aquifer volume. Particle-tracking evaluations of a steady state present conditions model with alternative heterogeneity realizations were used to develop zones of contribution of remedial pumping wells. Because of heterogeneity and high rates of advection within the coarse-grained sediments, transport by dispersion and (or) diffusion was assumed to be negligible. Resulting zones of contribution of existing remedial wells are complex shapes, influenced by heterogeneity of each realization and other nearby hydrologic stresses. The use of two particle tracking techniques helped identify zones of contribution to wells. Backtracking techniques and observations of points of intersection of backward-tracked particles at shells of the GM–38 Hot Spot, as defined by surfaces of equal total volatile organic compound concentration, identified the source of water within the GM–38 Hot Spot to simulated wells. Forward-tracking techniques identified the fate of water within the GM–38 Hot Spot, including well capture and discharge to model constant head and drain boundaries. The percentage of backward-tracked particles, started at GM–38 wells that were sourced from within the Hot Spot, varied from 72.0 to 98.2, depending on the Hot Spot delineation used (present steady state model and Magothy aquifer heterogeneity realization A). The percentage of forward-tracked particles that were captured by GM–38 wells varied from 81.1 to 94.6, depending on the Hot Spot delineation used, with the remainder primarily captured by Bethpage Water District Plant 4 production wells (present steady state model and Magothy aquifer heterogeneity realization A). Less than 1 percent of forward-tracked particles ultimately discharge at model constant head and drain boundaries. The differences between forward- and backward-tracked particle percentage ranges are due to some forward-tracked particles not being captured by GM–38 wells, and some backward-tracked particles not intersecting specific regions of the Hot Spot. During 2013, an aquifer test generated detailed time series of well pumping rates and corresponding water-level responses were recorded at numerous locations. These data were used to verify the present conditions steady state model and demonstrate the sensitivity of model results to transient-state changes.

  5. Time-evolution of uniform momentum zones in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Laskari, Angeliki; Hearst, R. Jason; de Kat, Roeland; Ganapathisubramani, Bharathram

    2016-11-01

    Time-resolved planar particle image velocimetry (PIV) is used to analyse the organisation and evolution of uniform momentum zones (UMZs) in a turbulent boundary layer. Experiments were performed in a recirculating water tunnel on a streamwise-wall-normal plane extending approximately 0 . 5 δ × 1 . 8 δ , in x and y, respectively. In total 400,000 images were captured and for each of the resulting velocity fields, local peaks in the probability density distribution of the streamwise velocity were detected, indicating the instantaneous presence of UMZs throughout the boundary layer. The main characteristics of these zones are outlined and more specifically their velocity range and wall-normal extent. The variation of these characteristics with wall normal distance and total number of zones are also discussed. Exploiting the time information available, time-scales of zones that have a substantial coherence in time are analysed and results show that the zones' lifetime is dependent on both their momentum deficit level and the total number of zones present. Conditional averaging of the flow statistics seems to further indicate that a large number of zones is the result of a wall-dominant mechanism, while the opposite implies an outer-layer dominance.

  6. A Proposed Data Fusion Architecture for Micro-Zone Analysis and Data Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin McCarthy; Milos Manic

    Data Fusion requires the ability to combine or “fuse” date from multiple data sources. Time Series Analysis is a data mining technique used to predict future values from a data set based upon past values. Unlike other data mining techniques, however, Time Series places special emphasis on periodicity and how seasonal and other time-based factors tend to affect trends over time. One of the difficulties encountered in developing generic time series techniques is the wide variability of the data sets available for analysis. This presents challenges all the way from the data gathering stage to results presentation. This paper presentsmore » an architecture designed and used to facilitate the collection of disparate data sets well suited to Time Series analysis as well as other predictive data mining techniques. Results show this architecture provides a flexible, dynamic framework for the capture and storage of a myriad of dissimilar data sets and can serve as a foundation from which to build a complete data fusion architecture.« less

  7. Jovian 'Twilight Zone'

    NASA Image and Video Library

    2018-03-01

    This image captures the swirling cloud formations around the south pole of Jupiter, looking up toward the equatorial region. NASA's Juno spacecraft took the color-enhanced image during its eleventh close flyby of the gas giant planet on Feb. 7 at 7:11 a.m. PST (10:11 a.m. EST). At the time, the spacecraft was 74,896 miles (120,533 kilometers) from the tops of Jupiter's clouds at 84.9 degrees south latitude. Citizen scientist Gerald Gerald Eichstädt processed this image using data from the JunoCam imager. This image was created by reprocessing raw JunoCam data using trajectory and pointing data from the spacecraft. This image is one in a series of images taken in an experiment to capture the best results for illuminated parts of Jupiter's polar region. To make features more visible in Jupiter's terminator -- the region where day meets night -- the Juno team adjusted JunoCam so that it would perform like a portrait photographer taking multiple photos at different exposures, hoping to capture one image with the intended light balance. For JunoCam to collect enough light to reveal features in Jupiter's dark twilight zone, the much brighter illuminated day-side of Jupiter becomes overexposed with the higher exposure. https://photojournal.jpl.nasa.gov/catalog/PIA21980

  8. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling

    NASA Astrophysics Data System (ADS)

    McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation.

  9. Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects.

    PubMed

    Matsushima, Kyoji; Sonobe, Noriaki

    2018-01-01

    Digitized holography techniques are used to reconstruct three-dimensional (3D) images of physical objects using large-scale computer-generated holograms (CGHs). The object field is captured at three wavelengths over a wide area at high densities. Synthetic aperture techniques using single sensors are used for image capture in phase-shifting digital holography. The captured object field is incorporated into a virtual 3D scene that includes nonphysical objects, e.g., polygon-meshed CG models. The synthetic object field is optically reconstructed as a large-scale full-color CGH using red-green-blue color filters. The CGH has a wide full-parallax viewing zone and reconstructs a deep 3D scene with natural motion parallax.

  10. Application of digital soil mapping in Argentina: An example using apparent soil electrical conductivity

    NASA Astrophysics Data System (ADS)

    Domenech, Marisa; Castro Franco, Mauricio; Costa, Jose Luis; Aparicio, Virginia

    2017-04-01

    Apparent soil electrical conductivity (ECa) has been used to capture soil data in several Argentinean Pampas locations. The aim of this study was to generate digital soil mapping on the basis of understanding the relation among ECa and soil properties in three farming fields of the southeast Buenos Aires province. We carried out a geostatistical analysis using ECa data obtained at two depths 0-30cm (ECa_30cm) and 0-90cm (ECa_90cm). Then, two zones derived from ECa measurements were delimited in each field. A soil-sampling scheme was applied in each zone using two depths: 0-30cm and 30-90cm. Texture, Organic Matter Content (OMC), cation-exchange capacity (CEC), pH, saturated paste electrical conductivity (ECe) and effective depth were analyzed. The relation between zones and soil properties were studied using nested factor ANOVA. Our results indicated that clay content and effective depth showed significant differences among ECa_30 zones in all fields. In Argentine Pampas, the presence of petrocalcic horizons limits the effective soil depth at field scale. These horizons vary in depth, structure, hardness and carbonates content. In addition, they influence the spatial pattern of clay content. The relation among other physical and chemical soil properties was not consistent. Two soil unit maps were delimited in each field. These results might support irrigation management due to clay content and effective depth would be controlling soil water storage. Our findings highlight the high accuracy use of soil sensors in developing digital soil mapping at field scale, irrigation management zones, precision agriculture and hydrological modeling in Pampas region conditions.

  11. Application of Analysis and Modeling for Surface Water-Ground Water System: Preliminary Study of Artificial Recharge in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Koo, M.; Lee, K.; Ko, K.; Barry, J. M.

    2008-12-01

    The primary goal of this study is to secure sustainable groundwater resources with application of the analysis and modeling of coupled surface water-groundwater system to Jeju Island in the form of artificial recharge. Artificial recharge technology is a feasible method to augment groundwater resources in Jeju Island, Korea. Jeju-friendly Aquifer Recharge Technology (J-ART) that will be developed in this study is a technology for securing sustainable water resources by capturing ephemeral stream water with no interference in the environment such as natural recharge or eco-system, capturing the water in the reservoirs, recharging it through designed borehole after appropriate treatment, and then making it to be used at down-gradient production wells. Precipitation pattern in the study area is shifting to more sparsely-distributed and heavier rain type in summer season which reduces infiltration and/or groundwater recharge but increases runoff and flash flood on stream. Stream water as a source for J-ART is available only a few times a year since the stream bed is highly feasible to be percolated. To characterize quantitatively stream water, automatic temporal data collection system for water level, water velocity, and water qualities of total 8 parameters including temperature, water depth, pH, EC, DO, turbidity, NO3-N and Cl-. Characterizing groundwater flow from recharge area to discharge area should be achieved to evaluate the efficiency of J-ART. Jeju volcanic island has very thick unsaturated zone which is approximately 50 percent of the elevation on which it is. This hydrogeological property is good to inject source water through unsaturated zone to increase transport time, to get main basal aquifer, and to naturally filter the injected water during the transport. However, characterizing groundwater flow through the thick unsaturated zone with repeatedly overlapping permeable/impermeable layers would be a challenge. Estimation method of the infiltration velocity of soil water, groundwater age dating, and evaluation method for groundwater flow/circulation using stable isotopes are developed to evaluate artificial recharge. Input parameters for groundwater flow model are collected and analyzed quantitatively to develop model for simulating groundwater flow and thermal transport during artificial recharge. Self-potential survey method is reviewed theoretically as a geophysical evaluation method to characterize unsaturated flow during artificial recharge.

  12. Need Authorities for the Gray Zone Stop Whining. Instead, Help Yourself to Title 100. Hell,Take Some Title 200 While Youre at it

    DTIC Science & Technology

    2016-12-07

    greatly enabled by cap - ture options, and directly feeds the last two steps. “Exploit” refers to both the individual captured and all of the...difficult, and placing decisionmakers in a space where it is becoming more the norm that a decision must be taken, absent all (or even most) of the...of the Gray Zone. Because of the United States’ conventional (and nuclear ) military overmatch against any near peer competitor for the foreseeable

  13. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL

    EPA Science Inventory

    The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...

  14. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  15. WELLHEAD ANALYTIC ELEMENT MODEL FOR WINDOWS

    EPA Science Inventory

    WhAEM2000 (wellhead analytic element model for Win 98/00/NT/XP) is a public domain, ground-water flow model designed to facilitate capture zone delineation and protection area mapping in support of the State's and Tribe's Wellhead Protection Programs (WHPP) and Source Water Asses...

  16. Multidisciplinary Fingerprints: Forensic Reconstruction of an Insect Reinvasion

    USDA-ARS?s Scientific Manuscript database

    Beginning late August 2007, more than 150 boll weevils, Anthonomus grandis, were unexpectedly captured across an extensive area of the Southern Rolling Plains (SRP) eradication zone of West-Central Texas, which was essentially weevil-free since 2003. This outbreak was detected soon after the passag...

  17. Infrared imaging results of an excited planar jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures amore » large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.« less

  18. Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX.

    PubMed

    Leong, Y J; Sanchez, N P; Wallace, H W; Karakurt Cevik, B; Hernandez, C S; Han, Y; Flynn, J H; Massoli, P; Floerchinger, C; Fortner, E C; Herndon, S; Bean, J K; Hildebrandt Ruiz, L; Jeon, W; Choi, Y; Lefer, B; Griffin, R J

    2017-08-01

    The sources of submicrometer particulate matter (PM 1 ) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM 1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM 1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM 1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM 1 mass concentrations (average 11.6 ± 5.7 µg/m 3 ) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM 1 (average 4.4 ± 3.3 µg/m 3 ), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA. This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM 1 ) in greater Houston. The data set indicates substantial spatial variations in PM 1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM 1 . These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM 1 from automobiles and industry but also to reduce the emissions of important secondary PM 1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.

  19. Religiousness as a Predictor of Suicide: An Analysis of 162 European Regions.

    PubMed

    Stack, Steven; Laubepin, Frederique

    2018-01-25

    Research on religion as a protective factor has been marked by four recurrent limitations: (1) an overemphasis on the United States, a nation where religiosity is relatively high; (2) a neglect of highly secularized zones of the world, where religiousness may be too weak to affect suicide; (3) restriction of religiousness to religious affiliation, a construct which may miss capturing other dimensions of religiousness such as the importance of religion in one's life; and (4) an overwhelming use of the nation as a unit of analysis, which masks variation in religiousness within nations. The present article addresses these limitations by performing a cross-national test of the following hypothesis: The greater the strength of subjective religiousness, the lower the suicide rate, using small units of analysis for a secularized area of the world. All data refer to 162 regions within 22 European nations. Data were extracted from two large databases, EUROSTAT and the European Social Surveys (ESS Round 4), and merged using NUTS-2 (Nomenclature of Statistical Territorial Units) regions as the unit of analysis. Controls are incorporated for level of economic development, education, and measures of economic strain. The results of a multiple regression analysis demonstrated that controlling for the other constructs in the model, religiousness is associated with lower suicide rates, confirming the hypothesis. Even in secularized European nations, where there is a relatively weak moral community to reinforce religion, religiousness acts as a protective factor against suicide. Future work is needed to explore the relationship in other culture zones of the world. © 2018 The American Association of Suicidology.

  20. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  1. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    PubMed Central

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-01

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data. PMID:26761018

  2. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.

    PubMed

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-08

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  3. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.

    2017-03-01

    Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.

  4. Apparent Brecciation Gradient, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hawkins, A. T.; Johnson, S. E.

    2004-05-01

    Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic and geochemical analysis of the matrix igneous material in the attempt to better understand the dynamic processes that occur in subvolcanic environments and the mechanisms involved in breccia formation.

  5. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

    USGS Publications Warehouse

    Mirus, Benjamin B.; Nimmo, J.R.

    2013-01-01

    The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.

  6. A post audit of a model-designed ground water extraction system.

    PubMed

    Andersen, Peter F; Lu, Silong

    2003-01-01

    Model post audits test the predictive capabilities of ground water models and shed light on their practical limitations. In the work presented here, ground water model predictions were used to design an extraction/treatment/injection system at a military ammunition facility and then were re-evaluated using site-specific water-level data collected approximately one year after system startup. The water-level data indicated that performance specifications for the design, i.e., containment, had been achieved over the required area, but that predicted water-level changes were greater than observed, particularly in the deeper zones of the aquifer. Probable model error was investigated by determining the changes that were required to obtain an improved match to observed water-level changes. This analysis suggests that the originally estimated hydraulic properties were in error by a factor of two to five. These errors may have resulted from attributing less importance to data from deeper zones of the aquifer and from applying pumping test results to a volume of material that was larger than the volume affected by the pumping test. To determine the importance of these errors to the predictions of interest, the models were used to simulate the capture zones resulting from the originally estimated and updated parameter values. The study suggests that, despite the model error, the ground water model contributed positively to the design of the remediation system.

  7. Advanced karst hydrological and contaminant monitoring techniques for real-time and high resolution applications

    USDA-ARS?s Scientific Manuscript database

    In telogenetic and soil-mantled karst aquifers, the movement of autogenic recharge through the epikarstic zone and into the regional aquifer can be a complex process and have implications for flooding, groundwater contamination, and other difficult to capture processes. Recent advances in instrument...

  8. ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    Injection of calcium-based sorbents into the postflame zone of utility boilers is capable of achieving sulfur dioxide (SO2) captures of 50-60% at a stoichiometry of 2. Calcium hydroxide [Ca(OH)2] appears to be the most effective commercially available sorbent. Recent attempts to ...

  9. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL (EPA/600/SR-94/210)

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a groundwater flo...

  10. PREVENTING CONTAMINATION OF PUBLIC WATER SUPPLY WELLS USING COMPUTERIZED MODELING AND MAPPING TOOLS

    EPA Science Inventory

    The EPA Office of Research and Development and the Office of Ground Water and Drinking Water have collaborated since 1998 on the development of a public domain ground-water flow modeling system designed to facilitate capture zone delineation and protection area mapping for public...

  11. Monitoring Rates of Subsidence and Relative Sea-Level Rise in Low-Elevation Coastal Zones: A New Approach

    NASA Astrophysics Data System (ADS)

    Tornqvist, T. E.; Jankowski, K. L.; Fernandes, A. M.; Keogh, M.; Nienhuis, J.

    2017-12-01

    Low-elevation coastal zones (LECZs) that often host large population centers are particularly vulnerable to accelerating rates of relative sea-level rise (RSLR). Traditionally, tide-gauge records are used to obtain quantitative data on rates of RSLR, given that they are perceived to capture the rise of the sea surface, as well as land subsidence which is often substantial in such settings. We argue here that tide gauges in LECZs often provide ambiguous data because they ultimately measure RSLR with respect to a benchmark that is typically anchored tens of meters deep. This is problematic because the prime target of interest is usually the rate of RSLR with respect to the land surface. We illustrate this problem with newly obtained rod surface elevation table - marker horizon (RSET-MH) data from coastal Louisiana (n = 274) that show that shallow subsidence in the uppermost 5-10 m accounts for 60-85% of total subsidence. Since benchmarks in this region are anchored at 23 m depth on average, tide-gauge records by definition do not capture this important process and thus underestimate RSLR by a considerable amount. We show how RSET-MH data, combined with GPS and satellite altimetry data, enable us to bypass this problem. Rates of RSLR in coastal Louisiana over the past 6-10 years are 12 ± 8 mm/yr, considerably higher than numbers reported in recent studies based on tide-gauge analysis. Subsidence rates, averaged across this region, total about 9 mm/yr. It is likely that the problems with tide-gauge data are not unique to coastal Louisiana, so we suggest that our new approach to RSLR measurements may be useful in LECZs worldwide, with considerable implications for metropolitan areas like New Orleans that are located within such settings.

  12. Dry reagent dipstick test combined with 23S rRNA PCR for molecular diagnosis of bacterial infection in arthroplasty.

    PubMed

    Kalogianni, Despina P; Goura, Sophia; Aletras, Alexios J; Christopoulos, Theodore K; Chanos, Michalis G; Christofidou, Myrto; Skoutelis, Athanasios; Ioannou, Penelope C; Panagiotopoulos, Elias

    2007-02-15

    Periprosthetic joint infections present a challenging problem in orthopaedics. Conventional methods for detection of arthroplasty infections rely on bacterial culture of synovial fluid aspirates. During recent years, however, molecular tests that are based on DNA amplification by the polymerase chain reaction (PCR), followed by electrophoretic analysis of the products, have been introduced. We report a simple and inexpensive assay that allows visual detection and confirmation of the PCR-amplified sequences by hybridization within minutes. The assay is performed in a dry reagent dipstick format (strip) and does not require special instrumentation. Universal primers are used for PCR of the 23S ribosomal RNA (rRNA) gene. The biotinylated amplification product is hybridized with dA-tailed probes that are specific for six pathogens commonly involved in periprosthetic joint infections. The mixture is applied to the strip, which is then immersed in the appropriate buffer. The buffer migrates along the strip by capillary action and rehydrates gold nanoparticles with oligo(dT) strands attached to their surface. The nanoparticles bind to the target DNA through hybridization, and the hybrids are captured by immobilized streptavidin at the test zone of the strip, producing a characteristic red line. Unbound nanoparticles are captured by immobilized oligo(dT) strands at the control zone of the strip, generating a second line. The dipstick test was applied to the detection of Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faesium, and Haemophilus influenza. Twelve samples of synovial fluids from patients were analyzed for the detection and identification of the infection caused by the six pathogens. The results were compared with bacterial cultures.

  13. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Mair, Alan; El-Kadi, Aly I.

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  14. Identification of biogeochemical hot spots using time-lapse hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Loecke, T.; Burgin, A.

    2016-12-01

    The identification and monitoring of biogeochemical hot spots and hot moments is difficult using point based sampling techniques and sensors. Without proper monitoring and accounting of water, energy, and trace gas fluxes it is difficult to assess the environmental footprint of land management practices. One key limitation is optimal placement of sensors/chambers that adequately capture the point scale fluxes and thus a reasonable integration to landscape scale flux. In this work we present time-lapse hydrogeophysical imaging at an old agricultural field converted into a wetland mitigation bank near Dayton, Ohio. While the wetland was previously instrumented with a network of soil sensors and surface chambers to capture a suite of state variables and fluxes, we hypothesize that time-lapse hydrogeophysical imaging is an underutilized and critical reconnaissance tool for effective network design and landscape scaling. Here we combine the time-lapse hydrogeophysical imagery with the multivariate statistical technique of Empirical Orthogonal Functions (EOF) in order to isolate the spatial and temporal components of the imagery. Comparisons of soil core information (e.g. soil texture, soil carbon) from around the study site and organized within like spatial zones reveal statistically different mean values of soil properties. Moreover, the like spatial zones can be used to identify a finite number of future sampling locations, evaluation of the placement of existing sensors/chambers, upscale/downscale observations, all of which are desirable techniques for commercial use in precision agriculture. Finally, we note that combining the EOF analysis with continuous monitoring from point sensors or remote sensing products may provide a robust statistical framework for scaling observations through time as well as provide appropriate datasets for use in landscape biogeochemical models.

  15. Development of OCR system for portable passport and visa reader

    NASA Astrophysics Data System (ADS)

    Visilter, Yury V.; Zheltov, Sergey Y.; Lukin, Anton A.

    1999-01-01

    The modern passport and visa documents include special machine-readable zones satisfied the ICAO standards. This allows to develop the special passport and visa automatic readers. However, there are some special problems in such OCR systems: low resolution of character images captured by CCD-camera (down to 150 dpi), essential shifts and slopes (up to 10 degrees), rich paper texture under the character symbols, non-homogeneous illumination. This paper presents the structure and some special aspects of OCR system for portable passport and visa reader. In our approach the binarization procedure is performed after the segmentation step, and it is applied to the each character site separately. Character recognition procedure uses the structural information of machine-readable zone. Special algorithms are developed for machine-readable zone extraction and character segmentation.

  16. Hydrogeologic investigation of the Malvern TCE Superfund Site, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    1997-01-01

    The Malvern TCE Superfund Site, a former solvent recycling facility that now stores and sells solvents, consists of a plant and disposal area, which are approximately 1,900 ft (feet) apart. The site is underlain by an unconfined carbonate bedrock aquifer in which permeability has been enhanced in places by solution. Water levels respond quickly to precipitation and show a similar seasonal variation, response to precipitation, and range of fluctuation. The altitude of water levels in wells at the disposal area is nearly identical because of the small hydraulic gradient. A comparison of water-table maps for 1983, 1993, and 1994 shows that the general shape of the water table and hydraulic gradients in the area have remained the same through time and for different climatic conditions.The plant area is underlain by dolomite of the Elbrook Formation. The dolomite at the plant area does not yield as much water as the dolomite at the disposal area because it is less fractured, and wells penetrate few water-bearing fractures. Yields of nine wells at the plant area range from 1 to 200 gal/min (gallons per minute); the median yield is 6 gal/min. Specific capacities range from 0.08 to 2 (gal/min)/ft (gallons per minute per foot). Aquifer tests were conducted in two wells; median transmissivities estimated from the aquifer-test data ranged from 528 to 839 feet squared per day. Maximum concentrations of volatile organic compounds (VOC's) in ground water at the plant area in 1996 were 53,900 ug/L (micrograms per liter) for trichloroethylene (TCE), 7,110 ug/L for tetrachloroethylene (PCE), and 17,700 ug/L for 1,1,1-trichloroethane (TCA).A ground-water divide is located between the plant area and the disposal area. Ground-water withdrawal for dewatering the Catanach quarry has caused a cone of depression in the water-table surface that reaches to the plant area. From the plant area, ground water flows 1.2 miles to the northeast and discharges to the Catanach quarry. The regional hydraulic gradient between the plant and the Catanach quarry is 0.019. Concentrations of VOC's in water from wells drilled northeast and donwgradient of the plant property boundary are one to two orders of magnitude less than concentrations in water from wells less than 100 ft away at the plant.A capture-zone analysis was performed for two wells at the plant area. The analysis showed that pumping well CC-19 at 20 gal/min would be sufficient to capture all ground-water flow from the plant area. Although water from other wells at the plant site contains higher concentrations of VOC's than water from well CC-19, pumping well CC-19 would induce the flow of water with higher concentrations of VOC's; however, pumping well CC-19 might causes VOC's to move lower into the aquifer.The disposal area is underlain by the Ledger Dolomite. The dolomite at the disposal area is much more fractured than the dolomite at the plant area. Although many of the fractures are filled or partially filled with clay, the dolomite at the disposal area yields more water than the dolomite at the plant area. Yields of eight wells at the disposal area range from 15 to more than 200 gal/min; the median yield is greater than 100 gal/min. Specific capacities range from 2 to 280 (gal/min)/ft. Aquifer tests were conducted in two wells; estimated transimissivities were 34,900 and 56,300 feet squared per day. Concentrations of VOC's in ground water are lower at the disposal area than at the plant area. Water samples collected from wells at the disposal area in 1996 had maximum concentrations of TCE of 768 ug/L, PCE of 111 ug/L, and TCA of 108 ug/L. These concentrations are lower than concentrations in water samples collected before cleanup of drums in the disposal area was completed in 1984.Ground water from the disposal area flows south-southeast toward Valley Creek. The hydraulic gradient between the disposal area and Valley Creek is 0.001. A well-defined plume of VOC’s in ground water extends downgradient from the disposal area toward Valley Creek. A comparison of data from 1995 to 1996 with data from 1981 to 1984 shows that concentrations of TCE, PCE, and TCA in water from most off-site wells have decreased and that water from fewer wells contains detectable concentrations of those compounds.A capture-zone analysis was performed for three wells at the disposal area. The analysis showed that pumping wells CC-16, CC-17, and CC-18 at a combined rate of 270 gal/min would form a capture zone ranging from approximately 443 to 477 ft wide at a distance 500 ft upgradient from the center of the pumping wells. Pumping wells CC-16 and CC-17 together at a combined rate of 172 gal/min would form a capture zone ranging from approximately 172 to 400 ft wide at a distance 500 ft upgradient from the center of the pumping wells.

  17. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  18. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE PAGES

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; ...

    2017-08-12

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  19. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Jing, X.

    2017-12-01

    Rainwater harvesting is now increasingly used to manage urban flood and alleviate water scarcity crisis. In this study, a computational tool based on water balance equation is developed to assess stormwater capture and water saving efficiency and economic viability of rainwater harvesting systems (RHS) in eight cities across four climatic zones of China. It requires daily rainfall, contributing area, runoff losses, first flush volume, storage capacity, daily water demand and economic parameters as inputs. Three non-potable water demand scenarios (i.e., toilet flushing, lawn irrigation, and combination of them) are considered. The water demand for lawn irrigation is estimated using the Cropwat 8.0 and Climwat 2.0. Results indicate that higher water saving efficiency and water supply time reliability can be achieved for RHS with larger storage capacities, for lower water demand scenarios and located in more humid regions, while higher stormwater capture efficiency is associated with larger storage capacity, higher water demand scenarios and less rainfall. For instance, a 40 m3 RHS in Shanghai (humid climate) for lawn irrigation can capture 17% of stormwater, while its water saving efficiency and time reliability can reach 96 % and 98%, respectively. The water saving efficiency and time reliability of a 20 m3 RHS in Xining (semi-arid climate) for toilet flushing are 19% and 16%, respectively, but it can capture 63% of stormwater. With the current values of economic parameters, economic viability of RHS can be achieved in humid and semi-humid regions for reasonably designed RHS; however, it is not financially viable to install RHS in arid regions as the benefit-cost ratio is much smaller than 1.0.

  20. On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations and MERRA and ECMWF data sets

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Jiang, J. H.; Su, H.

    2015-04-01

    The spatial variability of the tropical tropospheric relative humidity (RH) throughout the vertical extent of the troposphere is examined using Global Positioning System Radio Occultation (GPSRO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. These high vertical resolution observations capture the detailed structure and moisture budget of the Hadley Cell circulation. We compare the COSMIC observations with the European Center for Medium-range Weather Forecast (ECMWF) Reanalysis Interim (ERA-Interim) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) climatologies. Qualitatively, the spatial pattern of RH in all data sets matches up remarkably well, capturing distinct features of the general circulation. However, RH discrepancies exist between ERA-Interim and COSMIC data sets that are noticeable across the tropical boundary layer. Specifically, ERA-Interim shows a drier Intertropical Convergence Zone (ITCZ) by 15-20% compared to both COSMIC and MERRA data sets, but this difference decreases with altitude. Unlike ECMWF, MERRA shows an excellent agreement with the COSMIC observations except above 400 hPa, where GPSRO observations capture drier air by 5-10%. RH climatologies were also used to evaluate intraseasonal variability. The results indicate that the tropical middle troposphere at ±5-25° is most sensitive to seasonal variations. COSMIC and MERRA data sets capture the same magnitude of the seasonal variability, but ERA-Interim shows a weaker seasonal fluctuation up to 10% in the middle troposphere inside the dry air subsidence regions of the Hadley Cell. Over the ITCZ, RH varies by maximum 9% between winter and summer.

  1. Near real-time monitoring and mapping of specific conductivity levels across Lake Texoma, USA

    USGS Publications Warehouse

    Atkinson, S.F.; Mabe, J.A.

    2006-01-01

    A submersible sonde equipped with a specific conductivity probe, linked with a global positioning satellite receiver was developed, deployed on a small boat, and used to map spatial and temporal variations in specific conductivity in a large reservoir. 7,695 sample points were recorded during 8 sampling trips. Specific conductivity ranged from 442 uS/cm to 3,378 uS/cm over the nine-month study. The data showed five statistically different zones in the reservoir: 2 different riverine zones, 2 different riverine transition zones, and a lacustrine zone (the main lake zone). These data were imported to a geographic information system where they were spatially interpolated to generate 8 maps showing specific conductivity levels across the entire surface of the lake. The highly dynamic nature of water quality, due to the widely differing nature of the rivers that flow into the reservoir and the effect of large inflows of fresh water during winter storms is easily captured and visualized using this approach. ?? Springer Science+Business Media, Inc. 2006.

  2. Exploration of interaction zones of β-tubulin colchicine binding domain of helminths and binding mechanism of anthelmintics.

    PubMed

    Ranjan, Prabodh; Kumar, Sivakumar Prasanth; Kari, Vijayakrishna; Jha, Prakash Chandra

    2017-06-01

    Numerous studies postulated the possible modes of anthelmintic activity by targeting alternate or extended regions of colchicine binding domain of helminth β-tubulin. We present three interaction zones (zones vide -1 to -3) in the colchicine binding domain of Haemonchus contortus (a helminth) β-tubulin homology model and developed zone-wise structure-based pharmacophore models coupled with molecular docking technique to unveil the binding hypotheses. The resulted ten structure-based hypotheses were then refined to essential three point pharmacophore features that captured recurring and crucial non-covalent receptor contacts and proposed three characteristics necessary for optimal zone-2 binding: a conserved pair of H bond acceptor (HBA to form H bond with Asn226 residue) and an aliphatic moiety of molecule separated by 3.75±0.44Å. Further, an aliphatic or a heterocyclic group distant (11.75±1.14Å) to the conserved aliphatic site formed the third feature component in the zone-2 specific anthelmintic pharmacophore model. Alternatively, an additional HBA can be substituted as a third component to establish H bonding with Asn204. We discern that selective zone-2 anthelmintics can be designed effectively by closely adapting the pharmacophore feature patterns and its geometrical constraints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Global Distribution of Aerosols Over the Open Ocean as Derived from the Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.; Tindale, N. W.

    1999-01-01

    Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity interactions.

  4. ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    The paper discusses the enhancement of reactivity in surfactant-modified sorbents for S02 control. Injecting calcium-based sorbents into the post-flame zone of utility boilers can achieve S02 captures of 50-60% at a stoichiometry of 2. Calcium hydroxide-- Ca(OH)2--appears to be t...

  5. Groundwater vulnerability maps for pesticides for Flanders

    NASA Astrophysics Data System (ADS)

    Dams, Jef; Joris, Ingeborg; Bronders, Jan; Van Looy, Stijn; Vanden Boer, Dirk; Heuvelmans, Griet; Seuntjens, Piet

    2017-04-01

    Pesticides are increasingly being detected in shallow groundwater and and are one of the main causes of the poor chemical status of phreatic groundwater bodies in Flanders. There is a need for groundwater vulnerability maps in order to design monitoring strategies and land-use strategies for sensitive areas such as drinking water capture zones. This research focuses on the development of generic vulnerability maps for pesticides for Flanders and a tool to calculate substance-specific vulnerability maps at the scale of Flanders and at the local scale. (1) The generic vulnerability maps are constructed using an index based method in which maps of the main contributing factors in soil and saturated zone to high concentrations of pesticides in groundwater are classified and overlain. Different weights are assigned to the contributing factors according to the type of pesticide (low/high mobility, low/high persistence). Factors that are taken into account are the organic matter content and texture of soil, depth of the unsaturated zone, organic carbon and redox potential of the phreatic groundwater and thickness and conductivity of the phreatic layer. (2) Secondly a tool is developed that calculates substance-specific vulnerability maps for Flanders using a hybrid approach where a process-based leaching model GeoPEARL is combined with vulnerability indices that account for dilution in the phreatic layer. The GeoPEARL model is parameterized for Flanders in 1434 unique combinations of soil properties, climate and groundwater depth. Leaching is calculated for a 20 year period for each 50 x 50 m gridcell in Flanders. (3) At the local scale finally, a fully process-based approach is applied combining GeoPEARL leaching calculations and flowline calculations of pesticide transport in the saturated zone to define critical zones in the capture zone of a receptor such as a drinking water well or a river segment. The three approaches are explained more in detail and illustrated with the results for the entire Flanders region and for a case-study focusing at a drinking water production site in West Flanders.

  6. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling.

    PubMed

    McMillan, Lindsay A; Rivett, Michael O; Wealthall, Gary P; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Spatial distribution analysis of chemical and biochemical properties across Koiliaris CZO

    NASA Astrophysics Data System (ADS)

    Tsiknia, Myrto; Varouchakis, Emmanouil A.; Paranychianakis, Nikolaos V.; Nikolaidis, Nikolaos P.

    2015-04-01

    Arid and semi-arid ecosystems cover approximately 47% of the Earth's surface. Soils in these climatic zones are often severely degraded and poor in organic carbon and nutrients. Anthropogenic activities like overgrazing and intensive agricultural practices further exacerbate the quality of the soils making them more vulnerable to erosion and accelerating losses of nutrients which might end up to surface waterways degrading their quality. Data of the geospatial distribution of nutrient availability as well as on the involved processes at watershed level might help us to identify areas which will potentially act as sources of nutrients and probably will allow us to adopt appropriate management practices to mitigate environmental impacts. In the present study we have performed an extensive sampling campaign (50 points) across a typical Mediterranean watershed, the Koiliaris Critical Zone Observatory (CZO), organized in such a way to effectively capture the complex variability (climatic, soil properties, hydrology, land use) of the watershed. Analyses of soil physico-chemical properties (texture, pH, EC, TOC, TN, NO3--N, and NH4+-N) and biochemical assays (potential nitrification rate, nitrogen mineralization rate, enzymes activities) were carried out. Geostatistical analysis and more specifically the kriging interpolation method was employed to generate distribution maps of the distribution of nitrogen forms and of the related biochemical assays. Such maps could provide an important tool for effective ecosystem management and monitoring decisions.

  8. Spatial and temporal variability in surf zone fish assemblages on the coast of northern New Jersey

    NASA Astrophysics Data System (ADS)

    Wilber, D. H.; Clarke, D. G.; Burlas, M. H.; Ruben, H.; Will, R. J.

    2003-02-01

    The surf zone fish community along 15 km of northern New Jersey shoreline was sampled every 2 weeks by beach seine in the late summers and early falls of 1995-1999 in conjunction with monitoring of a beach nourishment project. Fifty-seven species representing 30 families were collected during the course of the study. Over 90% of each sampling period's catch was composed of five taxa or less. These taxa included Atlantic and rough silversides, Menidia menidia and Membras martinica, bluefish, Pomatomus saltatrix, and bay and striped anchovies, Anchoa mitchilli and Anchoa hepsetus, with the relative contributions of these taxa varying among years. Both bluefish and anchovy abundances varied by an order of magnitude among years. Size-frequency distributions indicate summer-spawned bluefish recruit to the surf zone habitat as two cohorts in August and October, respectively. Fish abundance and richness were greater at substations closest to rock groins. Taxonomic richness declined along with decreasing water temperature in the fall, but was not correlated with turbidity or tide stage (measured as minutes before or after low tide). The extensive sampling effort undertaken in this study, 2190 seine hauls that captured 295 868 fish, was examined in relation to the number and relative proportions of taxa collected. Species accumulation curves and percent similarity calculations were used to investigate the adequacy of a reduced sampling protocol in characterizing the taxonomic composition of the surf zone fish community. Calculations from eight complete sampling periods (84 seine hauls each) indicate that a reduction in sampling effort by one-half would have yielded on average 75% of the total number of species captured with approximately 85% similarity in relative species composition.

  9. Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar

    NASA Astrophysics Data System (ADS)

    Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.

    2003-12-01

    The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.

  10. Measuring horizontal atmospheric turbulence at ground level from optical turbulence generator (OTG) using a 1D sensor

    NASA Astrophysics Data System (ADS)

    Tíjaro Rojas, Omar J.; Torres Moreno, Yezid; Rhodes, William T.

    2017-06-01

    Different theories including Kolmogorov have been valid to explain and model physic phenomenal like vertical atmospheric turbulence. In horizontal path, we still have many questions, due to weather problems and consequences that it generates. To emulate some conditions of environment, we built an Optical Turbulence Generator (OTG) having spatial, humidity and temperature, measurements that were captured in the same time from optical synchronization. This development was made using digital modules as ADC (Analog to Digital Converters) and communications protocol as SPI. We all made from microcontrollers. On the other hand, to measure optical signal, we used a photomultiplier tube (PMT) where captured the intensity of fringes that shifted with a known frequency. Outcomes show temporal shift and phase drive from dependent samples (in time domain) that correspond with frozen turbulence given by Taylor theory. Parameters studied were C2n, scintillation and inner scale in temporal patterns and analysis of their relationship with the physical associated variables. These patterns were taken from Young Interferometer in laboratory room scale. In the future, we hope with these studies, we will can implement an experiment to characterize atmospheric turbulence in a long distance, placed in the equatorial weather zone.

  11. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.

    2017-06-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.

  12. Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-01-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  13. Evaluation of XHVRB for Capturing Explosive Shock Desensitization

    NASA Astrophysics Data System (ADS)

    Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric

    2017-06-01

    Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. A comparative study of advanced shock-capturing schemes applied to Burgers' equation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Przekwas, A. J.

    1992-01-01

    A systematic evaluation is conducted of all extant numerical schemes for nonlinear scalar transport problems, and several advanced shock-capturing schemes are used to solve the nonlinear Burgers' equation in order to characterize their ability to resolve the sharp discontinuity, expansion zone, and propagation and collision features of shocks. For discontinuous functions, the Warming-Beam scheme generates preshock wiggles, while the Lax-Wendroff scheme generates postshock ones. Such limiters as the MUSCL or the superbee are more compressive than minimod or monotonic limiters. The performance of such TVD schemes as the upwind, the symmetric, and the Roe-Sweby, resemble each other.

  15. Identification of a core set of rhizobial infection genes using data from single cell-types.

    PubMed

    Chen, Da-Song; Liu, Cheng-Wu; Roy, Sonali; Cousins, Donna; Stacey, Nicola; Murray, Jeremy D

    2015-01-01

    Genome-wide expression studies on nodulation have varied in their scale from entire root systems to dissected nodules or root sections containing nodule primordia (NP). More recently efforts have focused on developing methods for isolation of root hairs from infected plants and the application of laser-capture microdissection technology to nodules. Here we analyze two published data sets to identify a core set of infection genes that are expressed in the nodule and in root hairs during infection. Among the genes identified were those encoding phenylpropanoid biosynthesis enzymes including Chalcone-O-Methyltransferase which is required for the production of the potent Nod gene inducer 4',4-dihydroxy-2-methoxychalcone. A promoter-GUS analysis in transgenic hairy roots for two genes encoding Chalcone-O-Methyltransferase isoforms revealed their expression in rhizobially infected root hairs and the nodule infection zone but not in the nitrogen fixation zone. We also describe a group of Rhizobially Induced Peroxidases whose expression overlaps with the production of superoxide in rhizobially infected root hairs and in nodules and roots. Finally, we identify a cohort of co-regulated transcription factors as candidate regulators of these processes.

  16. Weighted and directed interactions in evolving large-scale epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus

    2016-10-01

    Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only - in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.

  17. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    PubMed

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  18. Enhancement of long period components of recorded and synthetic ground motions using InSAR

    USGS Publications Warehouse

    Abell, J.A.; Carlos de la Llera, J.; Wicks, C.W.

    2011-01-01

    Tall buildings and flexible structures require a better characterization of long period ground motion spectra than the one provided by current seismic building codes. Motivated by that, a methodology is proposed and tested to improve recorded and synthetic ground motions which are consistent with the observed co-seismic displacement field obtained from interferometric synthetic aperture radar (InSAR) analysis of image data for the Tocopilla 2007 earthquake (Mw=7.7) in Northern Chile. A methodology is proposed to correct the observed motions such that, after double integration, they are coherent with the local value of the residual displacement. Synthetic records are generated by using a stochastic finite-fault model coupled with a long period pulse to capture the long period fling effect. It is observed that the proposed co-seismic correction yields records with more accurate long-period spectral components as compared with regular correction schemes such as acausal filtering. These signals provide an estimate for the velocity and displacement spectra, which are essential for tall-building design. Furthermore, hints are provided as to the shape of long-period spectra for seismic zones prone to large co-seismic displacements such as the Nazca-South American zone. ?? 2011 Elsevier Ltd.

  19. Flow separation in a straight draft tube, particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Maciel, Y.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    As part of the BulbT project, led by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University), the efficiency and power break off in a bulb turbine has been investigated. Previous investigations correlated the break off to draft tube losses. Tuft visualizations confirmed the emergence of a flow separation zone at the wall of the diffuser. Opening the guide vanes tends to extend the recirculation zone. The flow separations were investigated with two-dimensional and two-component particle image velocimetry (PIV) measurements designed based on the information collected from tuft visualizations. Investigations were done for a high opening blade angle with a N11 of 170 rpm, at best efficiency point and at two points with a higher Q11. The second operating point is inside the efficiency curve break off and the last operating point corresponds to a lower efficiency and a larger recirculation region in the draft tube. The PIV measurements were made near the wall with two cameras in order to capture two measurement planes simultaneously. The instantaneous velocity fields were acquired at eight different planes. Two planes located near the bottom wall were parallel to the generatrix of the conical part of the diffuser, while two other bottom planes diverged more from the draft tube axis than the cone generatrix. The last four planes were located on the draft tube side and diverged more from the draft tube axis than the cone generatrix. By combining the results from the various planes, the separation zone is characterized using pseudo-streamlines of the mean velocity fields, maps of the Reynolds stresses and maps of the reverse-flow parameter. The analysis provides an estimation of the separation zone size, shape and unsteady character, and their evolution with the guide vanes opening.

  20. The Boomerang Lift: A Three-Step Compartment-Based Approach to the Youthful Cheek.

    PubMed

    Schreiber, Jillian E; Terner, Jordan; Stern, Carrie S; Beut, Javier; Jelks, Elizabeth B; Jelks, Glenn W; Tepper, Oren M

    2018-04-01

    Autologous fat grafting is an important tool for plastic surgeons treating the aging face. Malar augmentation with fat is often targeted to restore the youthful facial contour and provides support to the lower eyelid. The existence of distinct facial fat compartments suggests that a stepwise approach may be appropriate in this regard. The authors describe a three-step approach to malar augmentation using targeted deep malar fat compartmental augmentation, termed the "boomerang lift." Clinical patients undergoing autologous fat grafting for malar augmentation were injected in three distinct deep malar fat compartments: the lateral sub-orbicularis oculi fat, the medial sub-orbicularis oculi fat, and the deep medial cheek (n = 9). Intraoperative three-dimensional images were taken at baseline and following compartmental injections (Canfield VECTRA H1). Images were overlaid between the augmented and baseline captures, and the three-dimensional surface changes were analyzed, which represented the resulting "augmentation zone." Three-dimensional analysis demonstrated a unique pattern for the augmentation zone consistent across patients. The augmentation zone resembled a boomerang, with the short tail supporting the medial lower lid and the long tail extending laterally along the zygomatic arch. The upper border was restricted by the level of the nasojugal interface, and the lower border was defined medially by the nasolabial fold and laterally by the level of the zygomaticocutaneous ligament. Lateral and medial sub-orbicularis oculi fat injections defined the boundaries of the boomerang shape, and injection to the deep medial cheek provided maximum projection. This is the first description of deep malar augmentation zones in clinical patients. Three-dimensional surface imaging was ideal for analyzing the surface change in response to targeted facial fat grafting. The authors' technique resulted in a reproducible surface shape, which they term the boomerang lift.

  1. Antibiogramj: A tool for analysing images from disk diffusion tests.

    PubMed

    Alonso, C A; Domínguez, C; Heras, J; Mata, E; Pascual, V; Torres, C; Zarazaga, M

    2017-05-01

    Disk diffusion testing, known as antibiogram, is widely applied in microbiology to determine the antimicrobial susceptibility of microorganisms. The measurement of the diameter of the zone of growth inhibition of microorganisms around the antimicrobial disks in the antibiogram is frequently performed manually by specialists using a ruler. This is a time-consuming and error-prone task that might be simplified using automated or semi-automated inhibition zone readers. However, most readers are usually expensive instruments with embedded software that require significant changes in laboratory design and workflow. Based on the workflow employed by specialists to determine the antimicrobial susceptibility of microorganisms, we have designed a software tool that, from images of disk diffusion tests, semi-automatises the process. Standard computer vision techniques are employed to achieve such an automatisation. We present AntibiogramJ, a user-friendly and open-source software tool to semi-automatically determine, measure and categorise inhibition zones of images from disk diffusion tests. AntibiogramJ is implemented in Java and deals with images captured with any device that incorporates a camera, including digital cameras and mobile phones. The fully automatic procedure of AntibiogramJ for measuring inhibition zones achieves an overall agreement of 87% with an expert microbiologist; moreover, AntibiogramJ includes features to easily detect when the automatic reading is not correct and fix it manually to obtain the correct result. AntibiogramJ is a user-friendly, platform-independent, open-source, and free tool that, up to the best of our knowledge, is the most complete software tool for antibiogram analysis without requiring any investment in new equipment or changes in the laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    PubMed

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  3. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    PubMed Central

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems. PMID:22163479

  4. Earth observation

    NASA Image and Video Library

    2014-09-06

    ISS040-E-124198 (6 Sept. 2014) --- Puget Sound is partly reflecting the sun in this detailed image taken by an Expedition 40 crew member on the International Space Station. Patterns of boat wakes are prominent in the sun’s partial reflection zone. The difference between the boat wakes in this view relates to the speed of the boat and the particular patterns (of several) that happen to be captured in the specific light reflection angles at the time the image was taken. The land areas show parts of Seattle. The darkest areas with rectangular grids are suburbs richly covered with trees. The broadly gray zones of the central city (bottom center) are brighter where structures are lower, as in the harbor zone (Harbor Island), and darker where the shadows of high-rise buildings downtown cast black shadows. Interstate Highway 5 bisects downtown.

  5. Dynamics of tactical behaviour in association football when manipulating players' space of interaction.

    PubMed

    Ric, Angel; Torrents, Carlota; Gonçalves, Bruno; Torres-Ronda, Lorena; Sampaio, Jaime; Hristovski, Robert

    2017-01-01

    The analysis of positional data in association football allows the spatial distribution of players during matches to be described in order to improve the understanding of tactical-related constraints on the behavioural dynamics of players. The aim of this study was to identify how players' spatial restrictions affected the exploratory tactical behaviour and constrained the perceptual-motor workspace of players in possession of the ball, as well as inter-player passing interactions. Nineteen professional outfield male players were divided into two teams of 10 and 9 players, respectively. The game was played under three spatial constraints: a) players were not allowed to move out of their allocated zones, except for the player in possession of the ball; b) players were allowed to move to an adjacent zone, and; c) non-specific spatial constraints. Positional data was captured using a 5 Hz interpolated GPS tracking system and used to define the configuration states of players for each second in time. The configuration state comprised 37 categories derived from tactical actions, distance from the nearest opponent, distance from the target and movement speed. Notational analysis of players in possession of the ball allowed the mean time of ball possession and the probabilities of passing the ball between players to be calculated. The results revealed that the players' long-term exploratory behaviour decreased and their short-term exploration increased when restricting their space of interaction. Relaxing players' positional constraints seemed to increase the speed of ball flow dynamics. Allowing players to move to an adjacent sub-area increased the probabilities of interaction with the full-back during play build-up. The instability of the coordinative state defined by being free from opponents when players had the ball possession was an invariant feature under all three task constraints. By allowing players to move to adjacent sub-areas, the coordinative state became highly unstable when the distance from the target decreased. Ball location relative to the scoring zone and interpersonal distance constitute key environmental information that constrains the players' coordinative behaviour. Based on our results, dynamic overlap is presented as a good option to capture tactical performance. Moreover, the selected collective (i.e. relational) variables would allow coaches to identify the effects of training drills on teams and players' behaviour. More research is needed considering these type variables to understand how the manipulation of constraints induce a more stable or flexible dynamical structure of tactical behaviour.

  6. Dynamics of tactical behaviour in association football when manipulating players' space of interaction

    PubMed Central

    Torrents, Carlota; Gonçalves, Bruno; Torres-Ronda, Lorena; Sampaio, Jaime; Hristovski, Robert

    2017-01-01

    The analysis of positional data in association football allows the spatial distribution of players during matches to be described in order to improve the understanding of tactical-related constraints on the behavioural dynamics of players. The aim of this study was to identify how players’ spatial restrictions affected the exploratory tactical behaviour and constrained the perceptual-motor workspace of players in possession of the ball, as well as inter-player passing interactions. Nineteen professional outfield male players were divided into two teams of 10 and 9 players, respectively. The game was played under three spatial constraints: a) players were not allowed to move out of their allocated zones, except for the player in possession of the ball; b) players were allowed to move to an adjacent zone, and; c) non-specific spatial constraints. Positional data was captured using a 5 Hz interpolated GPS tracking system and used to define the configuration states of players for each second in time. The configuration state comprised 37 categories derived from tactical actions, distance from the nearest opponent, distance from the target and movement speed. Notational analysis of players in possession of the ball allowed the mean time of ball possession and the probabilities of passing the ball between players to be calculated. The results revealed that the players’ long-term exploratory behaviour decreased and their short-term exploration increased when restricting their space of interaction. Relaxing players’ positional constraints seemed to increase the speed of ball flow dynamics. Allowing players to move to an adjacent sub-area increased the probabilities of interaction with the full-back during play build-up. The instability of the coordinative state defined by being free from opponents when players had the ball possession was an invariant feature under all three task constraints. By allowing players to move to adjacent sub-areas, the coordinative state became highly unstable when the distance from the target decreased. Ball location relative to the scoring zone and interpersonal distance constitute key environmental information that constrains the players’ coordinative behaviour. Based on our results, dynamic overlap is presented as a good option to capture tactical performance. Moreover, the selected collective (i.e. relational) variables would allow coaches to identify the effects of training drills on teams and players’ behaviour. More research is needed considering these type variables to understand how the manipulation of constraints induce a more stable or flexible dynamical structure of tactical behaviour. PMID:28708868

  7. Determination of inadvertent atrial capture during para-Hisian pacing.

    PubMed

    Obeyesekere, Manoj; Leong-Sit, Peter; Skanes, Allan; Krahn, Andrew; Yee, Raymond; Gula, Lorne J; Bennett, Matthew; Klein, George J

    2011-08-01

    Inadvertent capture of the atrium will lead to spurious results during para-Hisian pacing. We sought to establish whether the stimulation-to-atrial electrogram interval at the proximal coronary sinus (stim-PCS) or high right atrium (stim-HRA) could signal inadvertent atrial capture. Para-Hisian pacing with and without intentional atrial capture was performed in 31 patients. Stim-HRA and stim-PCS intervals were measured with atrial capture, His plus para-Hisian ventricular (H+V) capture, and para-Hisian ventricular (V) capture alone. The mean stim-HRA interval was significantly shorter with atrial capture (66 ± 18 ms) than with H+V (121 ± 27 ms, P < 0.001) or V capture alone (174 ± 38 ms, P < 0.001). The mean stim-PCS interval was significantly shorter with atrial capture (51 ± 16 ms) than with H+V (92 ± 22 ms, P<0.001) or V capture alone (146 ± 33 ms, P < 0.001). A stim-PCS < 60 ms (stim-HRA < 70 ms) was observed only with atrial capture. A stim-PCS >90 ms (stim-HRA >100 ms) was observed only in the absence of atrial capture. A stim-HRA of < 85 ms was highly specific and stim-PCS of < 85 ms highly sensitive at identifying atrial capture. Stim-HRA intervals of 75 to 97 ms and stim-PCS intervals of 65 to 88 ms were observed with either atrial, His, or para-Hisian ventricular capture without atrial capture. In this overlap zone, all patients demonstrated a stim-PCS or stim-HRA interval prolongation of at least 20 ms when the catheter was advanced to avoid deliberate atrial pacing. The QRS morphology was of limited value in distinguishing atrial capture due to concurrent ventricular or H+V capture, as observed in 20 of 31 (65%) patients. Stim-PCS and stim-HRA intervals can be used to monitor for inadvertent atrial capture during para-Hisian pacing. A stim-PCS < 60 ms (or stim-HRA < 70 ms) and stim-PCS > 90 ms (or stim-HRA > 100 ms) were observed only with and without atrial capture, respectively, but there was significant overlap between these values. Deliberate atrial capture and loss of capture reliably identifies atrial capture regardless of intervals.

  8. Diet selectivity in a terrestrial forest invertebrate, the Auckland tree wētā, across three habitat zones.

    PubMed

    Brown, Matthew B G J; Gemmill, Chrissen E C; Miller, Steven; Wehi, Priscilla M

    2018-03-01

    Insects are important but overlooked components of forest ecosystems in New Zealand. For many insect species, information on foraging patterns and trophic relationships is lacking. We examined diet composition and selectivity in a large-bodied insect, the Auckland tree wētā Hemideina thoracica , in three habitat zones in a lowland New Zealand forest. We asked whether H. thoracica selectively forage from available plant food sources, and whether these choices were lipid-rich compared to nonpreferred available plants. We also identified the proportion of invertebrates in their frass as a proxy for omnivory. From reconnaissance plot sampling, together with fecal fragment analysis, we report that more than 93% of individual tree wētā had eaten invertebrates before capture. Additionally, wētā in the highest elevation hillslope habitat zone consumed significantly fewer species of plants on average than wētā on the low-elevation terrace habitat. Upper hillslope wētā also had the highest average number of invertebrate fragments in their frass, significantly more than wētā in the low-elevation terrace habitat zone. Wētā showed high variability in the consumption of fruit and seeds across all habitat zones. Generally, we did not observe diet differences between the sexes (although it appears that male wētā in the mid-hillslope habitat ate fruits and seeds more voraciously than females), suggesting that the sexes have similar niche breadths and display similar degrees of omnivorous behavior. Extraction of leaf lipids demonstrated a range of lipid content values in available plants, and Ivlev's Electivity Index indicated that plant species which demonstrated high electivity tended to have higher concentrations of lipids in their leaves. Our findings indicate that H. thoracica forage omnivorously and selectively, and hence play multiple roles in native ecosystems and food webs.

  9. Ability of modern distal tibia plates to stabilize comminuted pilon fracture fragments: Is dual plate fixation necessary?

    PubMed

    Penny, Phillip; Swords, Michael; Heisler, Jason; Cien, Adam; Sands, Andrew; Cole, Peter

    2016-08-01

    The purpose of this study was to examine the screw trajectory of ten commercially available distal tibia plates and compare them to common fracture patterns seen in OTA C type pilon fractures to determine their ability to stabilize the three most common fracture fragments while buttressing anterolateral zones of comminution. We hypothesized that a single plate for the distal tibia would fail to adequately stabilize all three main fracture fragments and zones of comminution in complex pilon fractures. Ten synthetic distal tibia sawbones models were used in conjunction with ten different locking distal tibia plate designs from three manufacturers (Depuy Synthes, J&J Co, Paoli, PA; Smith & Nephew, Memphis, TN; and Stryker, Mawa, NJ). Both medial and anterolateral plates from each company were utilized and separately applied to an individual sawbone model. Three implants allowing variable angle screw placement were used. The location of the locking screws and buttress effect 1cm above the articular surface was noted for each implant using axial computed tomography (CT). The images were then compared to a recently published "pilon fracture map" using an overlay technique to establish the relationship between screw location and known common fracture lines and areas of comminution. Each of the three main fragments was considered "captured" by a screw if it was purchased by at least two screws thereby controlling rotational forces on each fragment. Three of four anterolateral plates lacked stable fixation in the medial fragment. Of the 4 anterolateral plates used, only the variable angle anterolateral plate by Depuy Synthes captured the medial fragment with two screws. All four anterolateral plates buttressed the area of highest comminution and had an average of 1.25 screws in the medial fragment and an average of 3 screws in the posterolateral fragment. All five direct medial plates had variable fixation within anterolateral and posterolateral fragments with an average of 1.8 screws in the anterolateral fragment and an average of 1.3 screws in the posterolateral fragment. The Depuy Synthes variable angle anterolateral plate allowed for fixation of the medial fragment with two screws while simultaneously buttressing the zone of highest comminution and capturing both the anterolateral and posterolateral fragments with five and three screws respectively. The variable angle anteromedial plate by Depuy Synthes captured all three main fracture fragments but it did not buttress the anterolateral zone of comminution. In OTA 43C type pilon fractures, 8 out of 10 studied commercially available implants precontoured for the distal tibia, do not adequately stabilize the three primary fracture fragments typically seen in these injuries. Anterolateral plates were superior in addressing the coronal primary fracture line across the apex of the plafond, and buttressing the zone of comminution. None of the available plates can substitute for an understanding of the fracture planes and fragments typically seen in complex intra-articular tibia fractures and the addition of a second plate is necessary for adequate stability. Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Entering and exiting behaviour of the phlebotomine sand fly Lutzomyia longiflocosa (Diptera: Psychodidae) in rural houses of the sub-Andean region of Colombia

    PubMed Central

    Pardo, Raúl Hernando; Santamaría, Erika; Cabrera, Olga Lucia

    2016-01-01

    The present study identified the entering and exiting sites for Lutzomyia longiflocosa in rural houses of the sub-Andean region in Colombia. Entering sites were identified with sticky traps set up outside the bedrooms, around the eave openings, and with cage traps enclosing the slits in the doors and windows inside the bedrooms. Exiting sites were identified by releasing groups of females indoors. These females were blood fed and marked with fluorescent powders. Females were recaptured with the trap placement described above but set up on the opposite sides of the openings. In the entering experiment, a significantly higher number of females were captured in the sticky traps at the zone nearest the eave openings (n = 142) than those captured in the other zones of the trap (n = 52); similarly, a higher number of females were captured on the front side of the house (n = 105) than at the rear side (n = 37). Only two females were collected in the cage trap. In the exiting experiment, at the ceiling, the highest percentage (86.2%) of females was recaptured with sticky traps nearest the eave openings and on the front side of the house (70.0%). Seven females were collected in the cage trap. Lu. longiflocosa entered and exited houses primarily through the eave openings in a non-random pattern in relation to the sides of the house. PMID:27925019

  11. Entering and exiting behaviour of the phlebotomine sand fly Lutzomyia longiflocosa (Diptera: Psychodidae) in rural houses of the sub-Andean region of Colombia.

    PubMed

    Pardo, Raúl Hernando; Santamaría, Erika; Cabrera, Olga Lucia

    2017-01-01

    The present study identified the entering and exiting sites for Lutzomyia longiflocosa in rural houses of the sub-Andean region in Colombia. Entering sites were identified with sticky traps set up outside the bedrooms, around the eave openings, and with cage traps enclosing the slits in the doors and windows inside the bedrooms. Exiting sites were identified by releasing groups of females indoors. These females were blood fed and marked with fluorescent powders. Females were recaptured with the trap placement described above but set up on the opposite sides of the openings. In the entering experiment, a significantly higher number of females were captured in the sticky traps at the zone nearest the eave openings (n = 142) than those captured in the other zones of the trap (n = 52); similarly, a higher number of females were captured on the front side of the house (n = 105) than at the rear side (n = 37). Only two females were collected in the cage trap. In the exiting experiment, at the ceiling, the highest percentage (86.2%) of females was recaptured with sticky traps nearest the eave openings and on the front side of the house (70.0%). Seven females were collected in the cage trap. Lu. longiflocosa entered and exited houses primarily through the eave openings in a non-random pattern in relation to the sides of the house.

  12. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk.

    PubMed

    Chen, Yiqiang; Chen, Qian; Han, Miaomiao; Liu, Jiangyang; Zhao, Peng; He, Lidong; Zhang, Yuan; Niu, Yiming; Yang, Wenjun; Zhang, Liying

    2016-05-15

    In this study, we developed a novel near-infrared fluorescence based multiplex lateral flow immunoassay by conjugating a near-infrared label to broad-specificity monoclonal antibody/receptor as detection complexes. Different antigens were dispensed onto separate test zones of nitrocellulose membrane to serve as capture reagents. This assay format allowed the simultaneous detection of four families of antibiotics (β-lactams, tetracyclines, quinolones and sulfonamides) in milk within 20 min. Qualitative and quantitative analysis of target antibiotics were realized by imaging the fluorescence intensity of the near-infrared label captured on respective test lines. For qualitative analysis, the cut-off values of β-lactams, tetracyclines, quinolones and sulfonamides were determined to be 8 ng/mL, 2 ng/mL, 4 ng/mL and 8 ng/mL respectively, which were much lower than the conventional gold nanoparticle based lateral flow immunoassay. For quantitative analysis, the detection ranges were 0.26-3.56 ng/mL for β-lactams, 0.04-0.98 ng/mL for tetracyclines, 0.08-2.0 ng/mL for quinolones, and 0.1-3.98 ng/mL for sulfonamides, with linear correlation coefficients higher than 0.97. The mean spiked recoveries ranged from 93.7% to 108.2% with coefficient of variations less than 16.3%. These results demonstrated that this novel immunoassay is a promising approach for rapidly screening the four families of antibiotic residues in milk. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Prevalence of Leishmania species in rodents: A systematic review and meta-analysis in Iran.

    PubMed

    Foroutan, Masoud; Khademvatan, Shahram; Majidiani, Hamidreza; Khalkhali, Hamidreza; Hedayati-Rad, Faezeh; Khashaveh, Shahla; Mohammadzadeh, Habib

    2017-08-01

    Leishmaniasis are diverse group of diseases caused by numerous species of genus Leishmania. Herein we have contrived a systematic review and meta-analysis on the prevalence of Leishmania species in rodents of Iran. For this purpose, following the general methodology recommended for systematic reviews and meta-analysis, six English databases (PubMed, Science Direct, Scopus, Ovid, Web of Science and Google Scholar) and four Persian databases (Magiran, SID, Iran Doc and Iran Medex) were explored during January 1995 till June 2015. Papers were selected based on 8 pre-defined inclusion criteria. During the years, a total number of 4485 different rodents were captured; among which 1291 cases were Leishmania positive. The calculated weighted prevalence of Leishmania species in rodents was 23% (95% CI=18-28). Given geographical zones of Iran, the highest and lowest prevalence rate was belonged to North 50% (95% CI=40-61) and West 11% (95% CI=5-17), respectively. Rhombomys opimus (1766), Meriones lybicus (1258) and Tatera indica (488) were the three most abundant captured rodents, while the highest prevalence of Leishmania species was observed in Nesokia indica 48% (95% CI=42-54) and followed by R. opimus 39% (95% CI=30-47). Egger's regression test was performed to detect publication bias, which revealed it may not have a significant influence on overall weighted prevalence estimate (P=0.317). Meta-regression analysis demonstrated that there is no significant relationship between overall prevalence with sample size (P=0.1) and year of publication (P=0.7). The results showed remarkable prevalence of Leishmania species in rodent reservoirs. In future, adopting a suitable strategy for control and combat with rodents is necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modeling temperature inversion in southeastern Yellow Sea during winter 2016

    NASA Astrophysics Data System (ADS)

    Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun

    2017-05-01

    A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.

  15. A Novel Application of the Multichannel Analysis of Surface Waves (MASW) Method for Estimating the Critical Zone Thicknes

    NASA Astrophysics Data System (ADS)

    Nelson, S.; Yaede, J.; McBride, J. H.; Park, C.; Turnbull, S. J.; Tingey, D. G.

    2014-12-01

    MASW approaches are suitable for the accurate measurement of variably thick weathering profiles by producing shear-wave (Vs) profiles. The critical zone (CZ) base is usually a transitional boundary, which is captured by MASW but not by conventional seismic reflection techniques. Modified MASW methods were used in Hawaii, USA to extend the investigative depth of saprolite (kaolin clays, Fe-oxides) thickness calibrated against wells with geologic logs. Active-source ± passive dispersion curves produced improved low-frequency fundamental modes by combining records with varying source-receiver offsets, enabling the generation of Vs profiles to >50 m depth. The top of unaltered bedrock occurs at a Vs of >~500 m/s. Intra-saprolite high Vs zones probably represent aa flow interiors with fewer primary discontinuities (vesicles and fractures), therefore imparting higher secondary stiffness than altered pahoehoe and pyroclastic material. The MASW approach permits measuring CZ thicknesses at discrete locations rapidly, inexpensively, and without drilling. For example, employed on slopes of the Koolau Volcano (neither aggrading nor degrading), the downward rate of advance of the weathering front of the CZ varies from 0.02 to 0.03 mm/yr in wet and ~0.01 mm/yr in dry areas. This compares well with recent work based on solute mass fluxes averaged over large areas. MASW can be deployed in a variety of settings where rapid estimation of the CZ thickness at particular locations is desired.

  16. Probabilistic Models For Earthquakes With Large Return Periods In Himalaya Region

    NASA Astrophysics Data System (ADS)

    Chaudhary, Chhavi; Sharma, Mukat Lal

    2017-12-01

    Determination of the frequency of large earthquakes is of paramount importance for seismic risk assessment as large events contribute to significant fraction of the total deformation and these long return period events with low probability of occurrence are not easily captured by classical distributions. Generally, with a small catalogue these larger events follow different distribution function from the smaller and intermediate events. It is thus of special importance to use statistical methods that analyse as closely as possible the range of its extreme values or the tail of the distributions in addition to the main distributions. The generalised Pareto distribution family is widely used for modelling the events which are crossing a specified threshold value. The Pareto, Truncated Pareto, and Tapered Pareto are the special cases of the generalised Pareto family. In this work, the probability of earthquake occurrence has been estimated using the Pareto, Truncated Pareto, and Tapered Pareto distributions. As a case study, the Himalayas whose orogeny lies in generation of large earthquakes and which is one of the most active zones of the world, has been considered. The whole Himalayan region has been divided into five seismic source zones according to seismotectonic and clustering of events. Estimated probabilities of occurrence of earthquakes have also been compared with the modified Gutenberg-Richter distribution and the characteristics recurrence distribution. The statistical analysis reveals that the Tapered Pareto distribution better describes seismicity for the seismic source zones in comparison to other distributions considered in the present study.

  17. A Mathematical Model of Demand-Supply Dynamics with Collectability and Saturation Factors

    NASA Astrophysics Data System (ADS)

    Li, Y. Charles; Yang, Hong

    We introduce a mathematical model on the dynamics of demand and supply incorporating collectability and saturation factors. Our analysis shows that when the fluctuation of the determinants of demand and supply is strong enough, there is chaos in the demand-supply dynamics. Our numerical simulation shows that such a chaos is not an attractor (i.e. dynamics is not approaching the chaos), instead a periodic attractor (of period-3 under the Poincaré period map) exists near the chaos, and coexists with another periodic attractor (of period-1 under the Poincaré period map) near the market equilibrium. Outside the basins of attraction of the two periodic attractors, the dynamics approaches infinity indicating market irrational exuberance or flash crash. The period-3 attractor represents the product’s market cycle of growth and recession, while period-1 attractor near the market equilibrium represents the regular fluctuation of the product’s market. Thus our model captures more market phenomena besides Marshall’s market equilibrium. When the fluctuation of the determinants of demand and supply is strong enough, a three leaf danger zone exists where the basins of attraction of all attractors intertwine and fractal basin boundaries are formed. Small perturbations in the danger zone can lead to very different attractors. That is, small perturbations in the danger zone can cause the market to experience oscillation near market equilibrium, large growth and recession cycle, and irrational exuberance or flash crash.

  18. Soil Flushing Through a Thick Vadose Zone: Perchlorate Removal Documented at Edwards AFB, California

    NASA Astrophysics Data System (ADS)

    Battey, T. F.; Shepard, A. J.; Tait, R. J.

    2007-12-01

    There are currently few viable alternatives for perchlorate remediation in the vadose zone, particularly for the relatively thick vadose zones that are typical in the arid southwest where many perchlorate sites occur. Perchlorate in the vadose zone occurs in the form of highly soluble salts that may represent a risk to human or ecological receptors, and may also represent a threat to the underlying groundwater. A soil flushing treatability study was conducted at Edwards Air Force Base in the Mojave Desert of southern California at a site with a 129-foot thick vadose zone consisting primarily of clayey sand. This study utilized an infiltration gallery in conjunction with extraction, treatment, and re-injection of groundwater at the site, which contained perchlorate-contaminated soil and groundwater. The study objective was to evaluate the effectiveness of the infiltration gallery to 1) introduce treated groundwater back into the aquifer and 2) wash the perchlorate from the vadose zone soils to the aquifer. The infiltration gallery consisted of slotted PVC pipes within a highly permeable engineered bed of washed gravel. The initial water introduced into the gallery was amended with potassium bromide tracer. A downhole neutron probe was used to track the movement of the wetting front downward and outward from the gallery. Successive neutron measurements in vertical access tubes revealed that the introduced water reached the 125-foot bottom of the access tubes 14 weeks after the water was introduced into the gallery. The bromide tracer was detected in groundwater immediately below the gallery approximately 1 week later. The infiltration gallery was able to sustain an average flow rate of 2.3 gallons per minute. Prior to infiltration, the perchlorate concentration in groundwater below the gallery was 4,500 µg/L. Approximately 18 weeks after the start of infiltration, a perchlorate spike of 72,400 µg/L was detected below the gallery. The increase in perchlorate groundwater concentrations indicates the transfer of perchlorate from the vadose zone to the saturated zone, where it was readily captured by an adjacent groundwater extraction well. Continued flushing of treated water through the vadose and saturated zones resulted in a rapid decline in perchlorate groundwater concentrations. Confirmation soil boreholes documented the effectiveness of the soil treatment after perchlorate groundwater concentrations returned to their pre-soil flushing levels. This treatability study demonstrates that perchlorate can be removed from a thick sandy vadose zone by controlled infiltration with associated hydraulic control of groundwater to capture the leached perchlorate. The treatability study results also indicates that an infiltration gallery may provide 1) a cost-effective alternative to injection wells for reintroducing treated groundwater to the aquifer and 2) an effective mechanism for the delivery of amendments to the vadose zone and aquifer for promoting enhanced biodegradation of perchlorate in soil and groundwater.

  19. WORKING WITH WHAEM2000: SOURCE WATER ASSESSMENT FOR A GLACIAL OUTWASH WELLFIELD, VINCENNES, INDIANA (REVISED MARCH 2003)

    EPA Science Inventory

    The purpose of this document is to introduce the use of the ground water geohydrology computer program WhAEM for Microsoft Windows (32-bit), or WhAEM2000. WhAEM2000 is a public domain, ground-water flow model designed to facilitate capture zone delineation and protection area map...

  20. The Dangerous Staircase: Exploring Sexuality between Teachers and Students

    ERIC Educational Resources Information Center

    De-Malach, Naomi

    2016-01-01

    The link between pedagogy and sexuality is an educational twilight zone both dangerous and full of possibilities. Being such a controversial and sensitive issue, teachers should have a safe space to discuss it. I suggest that fiction manages to capture the evasive nature of the subject. To illustrate this point, I analyze the novel "Up the…

  1. The Global Economic Crisis: Setbacks to the Educational Agenda for the Minority in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Ingubu, Moses Shiasha

    2010-01-01

    This paper captures the impact of the Global Economic Crisis on educational programs serving minority groups in developing countries. It has been established that the most vulnerable groupings include nomadic and pastoralist communities, slum dwellers, children in war zones, and women. Various educational interventions such as mobile schooling,…

  2. ANALYTIC ELEMENT MODELING FOR SOURCE WATER ASSESSMENTS OF PUBLIC WATER SUPPLY WELLS: CASE STUDIES IN GLACIAL OUTWASH AND BASIN-AND-RANGE

    EPA Science Inventory

    Over the last 10 years the EPA has invested in analytic elements as a computational method used in public domain software supporting capture zone delineation for source water assessments and wellhead protection. The current release is called WhAEM2000 (wellhead analytic element ...

  3. SOURCE WATER AREA DELINEATION OF PUBLIC WATER SUPPLY WELLS USING WHAEM2000. INTERNATIONAL GROUND WATER MODELING CENTER NEWSLETTER, V.19(1):4

    EPA Science Inventory

    WhAEM2000 is computer program that solves steady state ground-water flow and advective streamlines in homogeneous, single layer aquifers. The program was designed for capture zone delineation in support of protection of the source water area surrounding public water supply well...

  4. Morphology of seahorse head hydrodynamically aids in capture of evasive prey.

    PubMed

    Gemmell, Brad J; Sheng, Jian; Buskey, Edward J

    2013-01-01

    Syngnathid fish (seahorses, pipefish and sea dragons) are slow swimmers yet capture evasive prey (copepods) using a technique known as the 'pivot' feeding, which involves rapid movement to overcome prey escape capabilities. However, this feeding mode functions only at short range and requires approaching very closely to hydrodynamically sensitive prey without triggering an escape. Here we investigate the role of head morphology on prey capture using holographic and particle image velocimetry (PIV). We show that head morphology functions to create a reduced fluid deformation zone, minimizing hydrodynamic disturbance where feeding strikes occur (above the end of the snout), and permits syngnathid fish to approach highly sensitive copepod prey (Acartia tonsa) undetected. The results explain how these animals can successfully employ short range 'pivot' feeding effectively on evasive prey. The need to approach prey with stealth may have selected for a head shape that produces lower deformation rates than other fish.

  5. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2018-03-01

    We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.

  6. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE PAGES

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...

    2018-03-16

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  7. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  8. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    NASA Astrophysics Data System (ADS)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated rainfall in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, while CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR datasets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of rainfall geographically specially in the North zone and seasonally during the summer and spring months in the other zones.

  9. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    NASA Astrophysics Data System (ADS)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye

    2016-10-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30 years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and evaluate their applicability for agricultural drought evaluation when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ rainfall measurements across Chile were initially compared to the satellite-based precipitation estimates. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite-based estimates. Nine statistics were used to evaluate the performance of satellite products to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated precipitation in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, further CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in-situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in-situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR data sets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of precipitation geographically specially in the North zone and seasonally during the summer and spring months in the other zones.

  10. Experimental investigation of aerodynamics, combustion, and emissions characteristics within the primary zone of a gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Elkady, Ahmed M.

    2006-04-01

    The present work investigates pollutant emissions production, mainly nitric oxides and carbon monoxide, within the primary zone of a highly swirling combustion and methods with which to reduce their formation. A baseline study was executed at different equivalence ratios and different inlet air temperatures. The study was then extended to investigate the effects of utilizing transverse air jets on pollutant emission characteristics at different jet locations, jet mass ratio, and overall equivalence ratio as well as to investigate the jets' overall interactions with the recirculation zone. A Fourier Transform Infrared (FTIR) spectrometer was employed to measure emissions concentrations generated during combustion of Jet-A fuel in a swirl-cup assembly. Laser Doppler Velocimetry (LDV) was employed to investigate the mean flow aerodynamics within the combustor. Particle Image Velocimetry (PIV) was utilized to capture the instantaneous aerodynamic behavior of the non-reacting primary zone. Results illustrate that NOx production is a function of both the recirculation zone and the flame length. At low overall equivalence ratios, the recirculation zone is found to be the main producer of NOx. At near stoichiometric conditions, the post recirculation zone appears to be responsible for the majority of NOx produced. Results reveal the possibility of injecting air into the recirculation zone without altering flame stability to improve emission characteristics. Depending on the jet location and strength, nitric oxides as well as carbon monoxide can be reduced simultaneously. Placing the primary air jet just downstream of the fuel rich recirculation zone can lead to a significant reduction in both nitric oxides and carbon monoxide. In the case of fuel lean recirculation zone, reduction of nitric oxides can occur by placing the jets below the location of maximum radius of the recirculation zone.

  11. Analytical Investigation of the Decrease in the Size of the Habitable Zone Due to a Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, Dorian S.

    2016-08-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  12. Analytical Investigation of the Decrease in the Size of the Habitable Zone due to Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2016-12-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a Snowball state and a warm climate are only possible beyond this limit if the weathering rate in the Snowball climate is smaller than the CO2 outgassing rate (otherwise stable Snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  13. S3: School Zone Safety System Based on Wireless Sensor Network

    PubMed Central

    Yoo, Seong-eun; Chong, Poh Kit; Kim, Daeyoung

    2009-01-01

    School zones are areas near schools that have lower speed limits and where illegally parked vehicles pose a threat to school children by obstructing them from the view of drivers. However, these laws are regularly flouted. Thus, we propose a novel wireless sensor network application called School zone Safety System (S3) to help regulate the speed limit and to prevent illegal parking in school zones. S3 detects illegally parked vehicles, and warns the driver and records the license plate number. To reduce the traveling speed of vehicles in a school zone, S3 measures the speed of vehicles and displays the speed to the driver via an LED display, and also captures the image of the speeding vehicle with a speed camera. We developed a state machine based vehicle detection algorithm for S3. From extensive experiments in our testbeds and data from a real school zone, it is shown that the system can detect all kinds of vehicles, and has an accuracy of over 95% for speed measurement. We modeled the battery life time of a sensor node and validated the model with a downscaled measurement; we estimate the battery life time to be over 2 years. We have deployed S3 in 15 school zones in 2007, and we have demonstrated the robustness of S3 by operating them for over 1 year. PMID:22454567

  14. Global root zone storage capacity from satellite-based evaporation data

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel; van Dijk, Albert; Guerschman, Juan; Keys, Patrick; Gordon, Line; Savenije, Hubert

    2016-04-01

    We present an "earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale-independent. In contrast to traditional look-up table approaches, our method captures the variability in root zone storage capacity within land cover type, including in rainforests where direct measurements of root depth otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. We find that evergreen forests are able to create a large storage to buffer for extreme droughts (with a return period of up to 60 years), in contrast to short vegetation and crops (which seem to adapt to a drought return period of about 2 years). The presented method to estimate root zone storage capacity eliminates the need for soils and rooting depth information, which could be a game-changer in global land surface modelling.

  15. Temporal Expression-based Analysis of Metabolism

    PubMed Central

    Segrè, Daniel

    2012-01-01

    Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM). We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such “history-dependent” sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques. PMID:23209390

  16. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  17. Containment of groundwater contamination plumes: minimizing drawdown by aligning capture wells parallel to regional flow

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Goltz, Mark N.

    2004-01-01

    Pump-and-treat systems that are installed to contain contaminated groundwater migration typically involve placement of extraction wells perpendicular to the regional groundwater flow direction at the down gradient edge of a contaminant plume. These wells capture contaminated water for above ground treatment and disposal, thereby preventing further migration of contaminated water down gradient. In this work, examining two-, three-, and four-well systems, we compare well configurations that are parallel and perpendicular to the regional groundwater flow direction. We show that orienting extraction wells co-linearly, parallel to regional flow, results in (1) a larger area of aquifer influenced by the wells at a given total well flow rate, (2) a center and ultimate capture zone width equal to the perpendicular configuration, and (3) more flexibility with regard to minimizing drawdown. Although not suited for some scenarios, we found orienting extraction wells parallel to regional flow along a plume centerline, when compared to a perpendicular configuration, reduces drawdown by up to 7% and minimizes the fraction of uncontaminated water captured.

  18. Some uses of wavelets for imaging dynamic processes in live cochlear structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, J.

    2007-09-01

    A variety of image and signal processing algorithms based on wavelet filtering tools have been developed during the last few decades, that are well adapted to the experimental variability typically encountered in live biological microscopy. A number of processing tools are reviewed, that use wavelets for adaptive image restoration and for motion or brightness variation analysis by optical flow computation. The usefulness of these tools for biological imaging is illustrated in the context of the restoration of images of the inner ear and the analysis of cochlear motion patterns in two and three dimensions. I also report on recent work that aims at capturing fluorescence intensity changes associated with vesicle dynamics at synaptic zones of sensory hair cells. This latest application requires one to separate the intensity variations associated with the physiological process under study from the variations caused by motion of the observed structures. A wavelet optical flow algorithm for doing this is presented, and its effectiveness is demonstrated on artificial and experimental image sequences.

  19. Habitat associations of vertebrate prey within the controlled area study zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marr, N.V.; Brandt, C.A.; Fitzner, R.E.

    1988-03-01

    Twelve study locations were established in nine habitat types in the vicinity of the proposed reference repository location. Eight species of small mammals were captured. Great Basin pocket mice (Perognathus parvus) comprised the majority of individuals captured, followed by deer mice (Peromyscus maniculatus), Northern pocket gopher (Thomomys talpoides), Western harvest mouse (Reithrodontomys megalotus), Grasshopper mouse (Onychomys leucogaster), Montane vole, (Microtus montanus), House mouse (Mus musculus), and the Bushy-tailed woodrat (Neotoma cinerea). Pocket mice were captured in all habitats sampled; deer mice were obtained in all habitats save hopsage and nearly pure cheatgrass stands. The highese capture rates were found inmore » bitterbrush and riparian habitats. Capture sex ratios for both pocket mice and deer mice were significantly different from equality. Body weights for deer mice and pocket mice exhibited a great deal of heterogeneity across trap sites, although only the heterogeneity for pocket mice was significant. In general, body weights for both species were greater in the sagebrush habitats than elsewhere. These differences are interpreted in light of habitat evaluation methodologies. Six species of reptiles and one species of amphibian were captured. Side-blotched lizards (Uta stansburiana) were by far the most frequently captured species. The predominant snakes captured were the yellow-bellied racer (Coluber constrictor) and the Great Basin gopher snake (Pituophis melanoleucus). Two Great Basin spadefoot toads (Scaphiopus intermontanus) captured at the Rattlesnake Springs trap site. Species diversity was quite low (Shannon-Wiener H )equals) 1.03). Side-blotched lizards were found in all habitats save near the talus on Gable Mountain and on the gravel pad site. The only other lizard species (northern sagebrush lizard (Sceloporus graciosus) and short-horned lizard (Phrynosoma douglasii)) were obtained in bitterbrush habitat. 20 refs., 1 fig., 9 tabs.« less

  20. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India.

    PubMed

    Jhariya, Manoj Kumar

    2017-09-25

    Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha -1 and 2.79 to 4.92 m 2  ha -1 , respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson's index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha -1 , respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between themselves in terms of basal area (BA). The total shrub production was 1.59-3.53 t ha -1  year -1 while the C sequestration potential of 0.71-1.57 t ha -1  year -1 under different fire regimes. Shrub community in the medium fire zone reflected higher productivity and higher C sequestration in comparison to other fire zone. Among the different plant parts, the biomass accumulation ratio was highest in the root of shrub community among various fire regimes. Screening of species for restoration and different land-use pattern on the basis of biomass accumulation and carbon sequestering potential would be an effective strategy for decision-making in sustainable forest management.

  1. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    USGS Publications Warehouse

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    Rapid urban development and population growth in Palm Beach County, Florida, have been accompanied with the need for additional freshwater withdrawals from the surficial aquifer system. To maintain water quality, County officials protect capture areas and determine zones of transport of municipal supply wells. A multistep process was used to help automate the delineation of wellhead protection areas. A modular ground-water flow model (MODFLOW) Telescopic Mesh Refinement program (MODTMR) was used to construct an embedded flow model and combined with particle tracking to delineate zones of transport to supply wells; model output was coupled with a geographic information system. An embedded flow MODFLOW model was constructed using input and output file data from a preexisting three-dimensional, calibrated model of the surficial aquifer system. Three graphical user interfaces for use with the geographic information software, ArcView, were developed to enhance the telescopic mesh refinement process. These interfaces include AvMODTMR for use with MODTMR; AvHDRD to build MODFLOW river and drain input files from dynamically segmented linear (canals) data sets; and AvWELL Refiner, an interface designed to examine and convert well coverage spatial data layers to a MODFLOW Well package input file. MODPATH (the U.S. Geological Survey particle-tracking postprocessing program) and MODTOOLS (the set of U.S. Geological Survey computer programs to translate MODFLOW and MODPATH output to a geographic information system) were used to map zones of transport. A steady-state, five-layer model of the Boca Raton area was created using the telescopic mesh refinement process and calibrated to average conditions during January 1989 to June 1990. A sensitivity analysis of various model parameters indicates that the model is most sensitive to changes in recharge rates, hydraulic conductivity for layer 1, and leakance for layers 3 and 4 (Biscayne aquifer). Recharge (58 percent); river (canal) leakance (29 percent); and inflow through the northern, western, and southern prescribed flux model boundaries (10 percent) represent the major inflow components. Principal outflow components in the Boca Raton well field area include well discharge (56 percent), river (canal) leakance (27 percent), and water that discharges along the coast (10 percent). A particle-tracking analysis using MODPATH was conducted to better understand well-field ground-water flow patterns and time of travel. MODTOOLS was used to construct zones-of-transport spatial data for municipal supply wells. Porosity estimates were uniformly increased to study the effect of porosity on zones of transport. Where porosity was increased, the size of the zones of transport were shown to decrease.

  2. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells

    PubMed Central

    Backer, Ronald; Schwandt, Timo; Greuter, Mascha; Oosting, Marije; Jüngerkes, Frank; Tüting, Thomas; Boon, Louis; O’Toole, Tom; Kraal, Georg; Limmer, Andreas; den Haan, Joke M. M.

    2009-01-01

    The spleen is the lymphoid organ that induces immune responses toward blood-borne pathogens. Specialized macrophages in the splenic marginal zone are strategically positioned to phagocytose pathogens and cell debris, but are not known to play a role in the activation of T-cell responses. Here we demonstrate that splenic marginal metallophilic macrophages (MMM) are essential for cross-presentation of blood-borne antigens by splenic dendritic cells (DCs). Our data demonstrate that antigens targeted to MMM as well as blood-borne adenoviruses are efficiently captured by MMM and exclusively transferred to splenic CD8+ DCs for cross-presentation and for the activation of cytotoxic T lymphocytes. Depletion of macrophages in the marginal zone prevents cytotoxic T-lymphocyte activation by CD8+ DCs after antibody targeting or adenovirus infection. Moreover, we show that tumor antigen targeting to MMM is very effective as antitumor immunotherapy. Our studies point to an important role for splenic MMM in the initial steps of CD8+ T-cell immunity by capturing and concentrating blood-borne antigens and the transfer to cross-presenting DCs which can be used to design vaccination strategies to induce antitumor cytotoxic T-cell immunity. PMID:20018690

  3. Effects of geomorphology, habitat, and spatial location on fish assemblages in a watershed in Ohio, USA.

    PubMed

    D'Ambrosio, Jessica L; Williams, Lance R; Witter, Jonathan D; Ward, Andy

    2009-01-01

    In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.

  4. Mixed stock analysis of Lake Michigan's Lake Whitefish Coregonus clupeaformis commercial fishery

    USGS Publications Warehouse

    Andvik, Ryan; Sloss, Brian L.; VanDeHey, Justin A.; Claramunt, Randall M.; Hansen, Scott P.; Isermann, Daniel A.

    2016-01-01

    Lake whitefish (Coregonus clupeaformis) support the primary commercial fishery in Lake Michigan. Discrete genetic stocks of lake whitefish have been identified and tagging data suggest stocks are mixed throughout much of the year. Our objectives were to determine if (1) differential stock harvest occurs in the commercial catch, (2) spatial differences in genetic composition of harvested fish were present, and (3) seasonal differences were present in the harvest by commercial fisheries that operate in management zones WI-2 and WFM-01 (Green Bay, Lake Michigan). Mixed stock analysis was conducted on 17 commercial harvest samples (n = 78–145/sample) collected from various ports lake-wide during 2009–2010. Results showed significant mixing with variability in stock composition across most samples. Samples consisted of two to four genetic stocks each accounting for ≥ 10% the catch. In 10 of 17 samples, the stock contributing the largest proportion made up < 60% of the harvest. In general, seasonal and annual differences existed in the proportional stock contribution at a single capture location. Samples from Wisconsin's primary commercial fishing management zone (WI-2) were composed predominately of fish from the Big Bay de Noc (Michigan) stock as opposed to the geographically proximate, North–Moonlight Bay (Wisconsin) stock. These findings have implications for management and allocation of fish to various quotas. Specifically, geographic location of harvest, the current means of allocating harvest quotas, is not the best predictor of genetic stock harvest.

  5. Constraints on formation processes of two coarse-grained calcium- aluminum-rich inclusions: a study of mantles, islands and cores

    USGS Publications Warehouse

    Meeker, G.P.

    1995-01-01

    Many coarse-grained calcium- aluminum-rich inclusions (CAIs) contain features that are inconsistent with equilibrium liquid crystallization models of origin. Spinel-free islands (SFIs) in spinel-rich cores of Type B CAIs are examples of such features. One model previously proposed for the origin of Allende 5241, a Type B1 CAI containing SFIs, involves the capture and assimilation of xenoliths by a liquid droplet in the solar nebula (El Goresy et al, 1985; MacPherson et al 1989). This study reports new textural and chemical zoning data from 5241 and identifies previously unrecognized chemical zoning patterns in the melilite mantle and in a SFI. -from Author

  6. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptualmore » models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.« less

  7. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    NASA Astrophysics Data System (ADS)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  8. Modeling the intersections of Food, Energy, and Water in climate-vulnerable Ethiopia with an application to small-scale irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sankaranarayanan, S.; Zaitchik, B. F.; Siddiqui, S.

    2017-12-01

    Africa is home to some of the most climate vulnerable populations in the world. Energy and agricultural development have diverse impacts on the region's food security and economic well-being from the household to the national level, particularly considering climate variability and change. Our ultimate goal is to understand coupled Food-Energy-Water (FEW) dynamics across spatial scales in order to quantify the sensitivity of critical human outcomes to FEW development strategies in Ethiopia. We are developing bottom-up and top-down multi-scale models, spanning local, sub-national and national scales to capture the FEW linkages across communities and climatic adaptation zones. The focus of this presentation is the sub-national scale multi-player micro-economic (MME) partial-equilibrium model with coupled food and energy sector for Ethiopia. With fixed large-scale economic, demographic, and resource factors from the national scale computable general equilibrium (CGE) model and inferences of behavior parameters from the local scale agent-based model (ABM), the MME studies how shocks such as drought (crop failure) and development of resilience technologies would influence FEW system at a sub-national scale. The MME model is based on aggregating individual optimization problems for relevant players. It includes production, storage, and consumption of food and energy at spatially disaggregated zones, and transportation in between with endogenously modeled infrastructure. The aggregated players for each zone have different roles such as crop producers, storage managers, and distributors, who make decisions according to their own but interdependent objective functions. The food and energy supply chain across zones is therefore captured. Ethiopia is dominated by rain-fed agriculture with only 2% irrigated farmland. Small-scale irrigation has been promoted as a resilience technology that could potentially play a critical role in food security and economic well-being in Ethiopia, but that also intersects with energy and water consumption. Here, we focus on the energy usage for small-scale irrigation and the collective impact on crop production and water resources across zones in the MME model.

  9. Northern Hemisphere Influence on the Position of the SPCZ During MIS3: a High Resolution Glacial Rainfall Record from a Niuean Speleothem

    NASA Astrophysics Data System (ADS)

    Sinclair, D.; Sherrell, R. M.; Tremaine, D. M.; Sweeney, J. R.; Rowe, H.; Wright, J. D.; Mortlock, R. A.; Hellstrom, J. C.; Cheng, H.; Min, A.; Edwards, R. L.

    2017-12-01

    Here we present a high-resolution glacial paleorainfall record from the heart of the South Pacific Convergence Zone (SPCZ) extracted from a stalagmite from the remote island of Niue (19°03'S 169°52'W). The record spans much of MIS3 (25-45 ka) and captures rapid rainfall changes associated with shifts in the SPCZ. It is clear that rapid climate shifts in the Northern Hemisphere have a strong influence on the SPCZ. All of the warm Dansgaard-Oeschger (`D-O') interstadials across this period are represented by rainfall increases, with D-O Events 9-11 particularly strongly represented. Since Niue lies south of the core of the SPCZ, this implies that rather than shifting northwards (as the ITCZ does), the SPCZ instead rotates clockwise in response to northern Hemisphere warming (analogous to a shift between modern El Nino and La Nina states). We propose that changes to surface ocean temperature gradients in the Eastern Pacific modulate the strength of the Wind Evaporation SST feedback, changing the size and westward penetration of the eastern Pacific dry zone, resulting in changes to the diagonality of the SPCZ. Our record also captures a response to strong northern Hemisphere cooling. The 25-45 ka record is bounded by large hiatuses (inferred dry conditions) coincident with cold Heinrich Stadials (HS) 2 and 5, while HS3 and HS4 are captured as distinct reductions in speleothem growth rate and proxy evidence for declining rainfall. This is consistent with a counter-clockwise rotation of the SPCZ during Northern cooling, supporting our proposed mechanism. Interestingly, our record also captures several other (non-Heinrich) cooling events, including a strong 500-year dry interval at 26ka that is seen in Chinese and Brazilian speleothems and coincides with a strong cooling over Asia (inferred from Greenland dust records). We note the (possibly coincidental) timing between this event and the Oruanui super-eruption at 25.6 ka.

  10. Sensitivity tests on the rates of the excited states of positron decays during the rapid proton capture process of the one-zone X-ray burst model

    NASA Astrophysics Data System (ADS)

    Lau, Rita

    2018-02-01

    In this paper, we investigate the sensitivities of positron decays on a one-zone model of type-I X-ray bursts. Most existing studies have multiplied or divided entire beta decay rates (electron captures and beta decay rates) by 10. Instead of using the standard Fuller & Fowler (FFNU) rates, we used the most recently developed weak library rates [1], which include rates from Langanke et al.'s table (the LMP table) (2000) [2], Langanke et al.'s table (the LMSH table) (2003) [3], and Oda et al.'s table (1994) [4] (all shell model rates). We then compared these table rates with the old FFNU rates [5] to study differences within the final abundances. Both positron decays and electron capture rates were included in the tables. We also used pn-QRPA rates [6,7] to study the differences within the final abundances. Many of the positron rates from the nuclei's ground states and initial excited energy states along the rapid proton capture (rp) process have been measured in existing studies. However, because temperature affects the rates of excited states, these studies should have also acknowledged the half-lives of the nuclei's excited states. Thus, instead of multiplying or dividing entire rates by 10, we studied how the half-lives of sensitive nuclei in excited states affected the abundances by dividing the half-lives of the ground states by 10, which allowed us to set the half-lives of the excited states. Interestingly, we found that the peak of the final abundance shifted when we modified the rates from the excited states of the 105Sn positron decay rates. Furthermore, the abundance of 80Zr also changed due to usage of pn-QRPA rates instead of weak library rates (the shell model rates).

  11. Evaluation of the Boll Weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae) suppression program in the state of Goiás, Brazil.

    PubMed

    de Lima, I S; Degrande, P E; Miranda, J E; dos Santos, W J

    2013-02-01

    The boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the most important cotton pest in Brazil. A large-scale field-testing of a Boll Weevil Suppression Program (BWSP) was implemented to assess its technical and operational feasibility for boll weevil suppression in the state of Goiás, Brazil. The pilot plan focused on 3,608 ha of cotton during the 2006/2007 and 6,011 ha in the 2007/2008 growing seasons; the areas were divided into four inner zones with an outer buffer zone. We analyzed data on boll weevil captures using pheromone traps installed in the BWSP fields, on the detection of the first insect and the first damaged floral bud, greatest damage, and number of insecticide applications. The nonparametric Mann-Whitney U test was used to evaluate the differences between presuppression and suppression years. Fourteen pheromone-baited trapping evaluations were used to compare the weevil populations from 2006/2007 and 2007/2008 growing seasons. The BWSP regime reduced in-season boll weevil captures from 15- to 500-fold compared to presuppression levels in the preceding year. The low capture rates were related to delays in infestation and damage by weevils. The smaller population size measured by trapping and field monitoring reduced the number of required insecticide treatments. The BWSP strategy was efficient in suppressing populations of this pest and is a viable program for cotton production in subtropical and tropical regions, with long-term economic and environmental benefits.

  12. Transport of neutral solute across articular cartilage: the role of zonal diffusivities.

    PubMed

    Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A

    2015-07-01

    Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.

  13. Global root zone storage capacity from satellite-based evaporation

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  14. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2018-04-10

    Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific conductance, water temperature, pH, and discharge) were made at up to 26 sites along the springs reach. These data demonstrate the interaction between the saline, thermal groundwater system and the Virgin River, and provide estimates of reductions in dissolved-solids loads to the river.The interference tests show that pumping thermal groundwater from the shallow carbonate aquifer adjacent to the springs is effective at capturing high dissolved-solids loads discharging from Pah Tempe Springs before they enter the Virgin River. Discharge measurements made in the Virgin River downstream of the springs reach show that streamflow is reduced by approximately the amount pumped, indicating that complete capture of thermal discharge is possible. During the February 2014 test, the dissolved-solids load removed by pumping (190 tons per day) was approximately equal to the dissolved-solids load reduction observed in the river below the springs reach, indicating near 100-percent efficient capture of spring-sourced dissolved solids. However, an observed decrease in temperature and specific conductance of the pumping discharge during the high-flow test in November 2014 showed that capture of the cool, fresh river water can occur and is more likely at a higher stage in the Virgin River.

  15. Characterization of return flow pathways during flood irrigation

    NASA Astrophysics Data System (ADS)

    Claes, N.; Paige, G. B.; Parsekian, A.; Gordon, B. L.; Miller, S. N.

    2015-12-01

    With a decline in water resources available for private consumption and irrigation, the importance of sustainable water management practices is increasing. Local management decisions, based on models may affect the availability of water both locally and downstream, causing a ripple effect. It is therefore important that the models that these local management decisions are based on, accurately quantify local hydrological processes and the timescales at which they happen. We are focusing on return flow from flood irrigation, which can occur via different pathways back to the streams: overland flow, near-surface return flow and return flow via pathways below the vadose zone. The question addressed is how these different pathways each contribute to the total amount of return flow and the dynamics behind them. We used time-lapse ERT measurements in combination with an ensemble of ERT and seismic lines to answer this question via (1) capturing the process of gradual fragmentation of aqueous environments in the vadose zone during drying stages at field scale; (2) characterization of the formation of preferential flow paths from infiltrating wetting fronts during wetting cycles at field scale. The time-lapse ERT provides the possibility to capture the dynamic processes involved during the occurrence of finger flow or macro-pores when an intensive wetting period during flood irrigation occurs. It elucidates the dynamics of retention in the vadose zone during drying and wetting periods at field scale. This method provides thereby a link to upscale from laboratory experiments to field scale and watershed scale for finger flow and preferential flow paths and illustrates the hysteresis behavior at field scale.

  16. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji

    2016-11-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml blood) in this first nanotube-CTC chip study.

  17. On- and off-fault coseismic surface deformation associated with the September 2013 M7.7 Balochistan, Pakistan earthquake measured from mapping and automated pixel correlation

    NASA Astrophysics Data System (ADS)

    Gold, R. D.; Reitman, N. G.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.

    2014-12-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the Hoshab fault in southern Pakistan. We remotely measured the coseismic surface deformation field using high-resolution (0.5 m) pre- and post-event satellite imagery. We measured ~300 near-field (0-10 m from fault) laterally offset piercing points (streams, terrace risers, roads, etc.) and find peak left-lateral offsets of ~12-15 m. We characterized the far-field (0-10 km from fault) displacement field using manual (~250 measurements) and automated image cross-correlation methods (e.g., pixel tracking) and find peak displacement values of ~16 m, which commonly exceed the on-fault displacement magnitudes. Our preliminary observations suggest the following: (1) coseismic surface displacement typically increases with distance away from the surface trace of the fault (e.g., highest displacement values in the far field), (2) for certain locations along the fault rupture, as little as 50% of the coseismic displacement field occurred in the near-field; and (3) the magnitudes of individual displacements are inversely correlated to the width of the surface rupture zone (e.g., largest displacements where the fault zone is narrowest). This analysis highlights the importance of identifying field study sites spanning fault sections with narrow deformation zones in order to capture the entire deformation field. For regions of distributed deformation, these results would predict that geologic slip rate studies underestimate a fault's complete slip rate.

  18. Pedestrian-oriented zoning is associated with reduced income and poverty disparities in adult active travel to work, United States.

    PubMed

    Chriqui, Jamie F; Leider, Julien; Thrun, Emily; Nicholson, Lisa M; Slater, Sandy J

    2017-02-01

    Active travel to work can provide additional minutes of daily physical activity. While the literature points to the relationship between zoning, equity and socioeconomic status, and physical activity, no study has quantitatively explored these connections. This study examined whether zoning may help to moderate any income and poverty inequities in active travel and taking public transit to work. Research was conducted between May 2012 and June 2015. Zoning data were compiled for 3914 jurisdictions covering 45.45% of the U.S. population located in 471 of the most populous U.S. counties and 2 consolidated cities located in 48 states and the District of Columbia. (Sensitivity analyses also captured unincorporated areas which, with the municipalities, collectively covered ~72% of the U.S. ) Zoning codes were obtained and evaluated to assess the pedestrian-orientation of the zoning codes. Public transit use, active travel to work, median household income, and poverty data were obtained for all study jurisdictions from the 2010-2014 American Community Survey estimates. Associations were examined through multivariate regression models, controlling for community sociodemographics, clustered on county, with robust standard errors. We found that certain pedestrian-oriented zoning provisions (e.g., crosswalks, bike-pedestrian connectivity, street connectivity, bike lanes, bike parking, and more zoning provisions) were associated with reduced income and/or poverty disparities in rates of public transit use and active travel to work. Findings from this study can help to inform cross-sectoral collaborations between the public health, planning, and transportation fields regarding zoning for pedestrian-orientation and active travel. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    NASA Astrophysics Data System (ADS)

    Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin

    2014-11-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.

  20. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.

    PubMed

    Mair, Alan; El-Kadi, Aly I

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (>1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach. © 2013 Elsevier B.V. All rights reserved.

  1. Superboom Caustic Analysis and Measurement Program (SCAMP) Final Report

    NASA Technical Reports Server (NTRS)

    Page, Juliet; Plotkin, Ken; Hobbs, Chris; Sparrow, Vic; Salamone, Joe; Cowart, Robbie; Elmer, Kevin; Welge, H. Robert; Ladd, John; Maglieri, Domenic; hide

    2015-01-01

    The objectives of the Superboom Caustic Analysis and Measurement (SCAMP) Program were to develop and validate, via flight-test measurements, analytical models for sonic boom signatures in and around focal zones as they are expected to occur during commercial aircraft transition from subsonic to supersonic flight, and to apply these models to focus boom prediction of low-boom aircraft designs. The SCAMP program has successfully investigated sonic boom focusing both analytically and experimentally, while gathering a comprehensive empirical flight test and acoustic dataset, and developing a suite of focused sonic boom prediction tools. An experimental flight and acoustic measurement test was designed during the initial year of the SCAMP program, with execution of the SCAMP flight test occurring in May 2011. The current SCAMP team, led by Wyle, includes partners from the Boeing Company, Pennsylvania State University, Gulfstream Aerospace, Eagle Aeronautics, and Central Washington University. Numerous collaborators have also participated by supporting the experiment with human and equipment resources at their own expense. The experiment involved precision flight of a McDonnell Douglas (now Boeing) F-18B executing different maneuvers that created focused sonic booms. The maneuvers were designed to center on the flight regime expected for commercial supersonic aircraft transonic transition, and also span a range of caustic curvatures in order to provide a variety of conditions for code validations. The SCAMP experiment was designed to capture concurrent F-18B on-board flight instrumentation data, high-fidelity ground-based and airborne acoustic data, and surface and upper air meteorological data. Close coordination with NASA Dryden resulted in the development of new experimental instrumentation and techniques to facilitate the SCAMP flight-test execution, including the development of an F-18B Mach rate cockpit display, TG-14 powered glider in-flight sonic boom measurement instrumentation and "Where's the Focus?" (WTF) software for near-real time way-point computation accounting for local atmospherics. In May 2011, 13 F-18B flights were conducted during 5 flying days over a 2 week period. A densely populated 10,000 ft-long ground acoustic array with 125-ft microphone spacing was designed to capture pre-, focus, and post-focus regions. The ground-based acoustic array was placed in a nominally east-west orientation in the remote Cuddeback lakebed region, north of Edwards AFB. This area was carefully selected to avoid placing focused booms on populated areas or solar power facilities. For the SCAMP measurement campaign, approvals were obtained to temporarily extend the Black Mountain supersonic corridor northward by three miles. The SCAMP flight tests successfully captured 70 boom events, with 61 focus passes, and 9 calibration passes. Seventeen of the focus passes and three of the calibration passes were laterally offset; with the others being centerline flights. Airborne incoming sonic boom wave measurements were measured by the TG-14 for 10 of the F-18B flight passes including one maximum focus signature, several N-u combinations, several overlapped N-u signatures, and several evanescent waves. During the 27-month program, the SCAMP team developed a suite of integrated computer codes with sonic boom focusing predictive capabilities: PCBoom, Lossy Nonlinear Tricomi Equation Method (LNTE) and the Nonlinear Progressive wave Equation (NPE) method. PCBoom propagates the rays through the atmosphere and, in addition to legacy focus signature prediction based on the Gill-Seebass method, provides input source characteristics and propagation parameters to LNTE and NPE. LNTE, a Tricomi solver that incorporates atmospheric losses, computes the focus signature at the focus, and computes the focus signature in the vicinity of the focal zone, including the evanescent and post-focus zones. LNTE signature auralization from low-boom vehicle designs has been demonstrated in the NASA Langley Interior Effects Room (IER). The NPE has also been validated for use in prediction of focused ground boom signatures in sonic boom focal zones. The NPE formulation has the capability to incorporate atmospheric turbulence in the predictions. This has been applied to sonic boom propagation in the past. Prediction of turbulence effects on focal zone signatures was not, however, explored during the SCAMP program.

  2. Age-structured mark-recapture analysis: A virtual-population-analysis-based model for analyzing age-structured capture-recapture data

    USGS Publications Warehouse

    Coggins, L.G.; Pine, William E.; Walters, C.J.; Martell, S.J.D.

    2006-01-01

    We present a new model to estimate capture probabilities, survival, abundance, and recruitment using traditional Jolly-Seber capture-recapture methods within a standard fisheries virtual population analysis framework. This approach compares the numbers of marked and unmarked fish at age captured in each year of sampling with predictions based on estimated vulnerabilities and abundance in a likelihood function. Recruitment to the earliest age at which fish can be tagged is estimated by using a virtual population analysis method to back-calculate the expected numbers of unmarked fish at risk of capture. By using information from both marked and unmarked animals in a standard fisheries age structure framework, this approach is well suited to the sparse data situations common in long-term capture-recapture programs with variable sampling effort. ?? Copyright by the American Fisheries Society 2006.

  3. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  4. Degree of anisotropy as an automated indicator of rip channels in high resolution bathymetric models

    NASA Astrophysics Data System (ADS)

    Trimble, S. M.; Houser, C.; Bishop, M. P.

    2017-12-01

    A rip current is a concentrated seaward flow of water that forms in the surf zone of a beach as a result of alongshore variations in wave breaking. Rips can carry swimmers swiftly into deep water, and they are responsible for hundreds of fatal drownings and thousands of rescues worldwide each year. These currents form regularly alongside hard structures like piers and jetties, and can also form along sandy coasts when there is a three dimensional bar morphology. This latter rip type tends to be variable in strength and location, making them arguably the most dangerous to swimmers and most difficult to identify. These currents form in characteristic rip channels in surf zone bathymetry, in which the primary axis of self-similarity is oriented shore-normal. This paper demonstrates a new method for automating identification of such rip channels in bathymetric digital surface models (DSMs) using bathymetric data collected by various remote sensing methods. Degree of anisotropy is used to detect rip channels and distinguishes between sandbars, rip channels, and other beach features. This has implications for coastal geomorphology theory and safety practices. As technological advances increase access and accuracy of topobathy mapping methods in the surf zone, frequent nearshore bathymetric DSMs could be more easily captured and processed, then analyzed with this method to result in localized, automated, and frequent detection of rip channels. This could ultimately reduce rip-related fatalities worldwide (i) in present mitigation, by identifying the present location of rip channels, (ii) in forecasting, by tracking the channel's evolution through multiple DSMs, and (iii) in rip education by improving local lifeguard knowledge of the rip hazard. Although this paper on applies analysis of degree of anisotropy to the identification of rip channels, this parameter can be applied to multiple facets of barrier island morphological analysis.

  5. Terminal spacecraft rendezvous and capture with LASSO model predictive control

    NASA Astrophysics Data System (ADS)

    Hartley, Edward N.; Gallieri, Marco; Maciejowski, Jan M.

    2013-11-01

    The recently investigated ℓasso model predictive control (MPC) is applied to the terminal phase of a spacecraft rendezvous and capture mission. The interaction between the cost function and the treatment of minimum impulse bit is also investigated. The propellant consumption with ℓasso MPC for the considered scenario is noticeably less than with a conventional quadratic cost and control actions are sparser in time. Propellant consumption and sparsity are competitive with those achieved using a zone-based ℓ1 cost function, whilst requiring fewer decision variables in the optimisation problem than the latter. The ℓasso MPC is demonstrated to meet tighter specifications on control precision and also avoids the risk of undesirable behaviours often associated with pure ℓ1 stage costs.

  6. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    NASA Technical Reports Server (NTRS)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  7. Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Pantano, Carlos

    2018-01-01

    Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.

  8. Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Verkhoglyadova, Olga; Iijima, Byron

    2018-03-01

    We construct a 9-year data record (2007-2015) of the tropospheric specific humidity using Global Positioning System radio occultation (GPS RO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. This record covers the ±40° latitude belt and includes estimates of the zonally averaged monthly mean specific humidity from 700 up to 400 hPa. It includes three major climate zones: (a) the deep tropics (±15°), (b) the trade winds belts (±15-30°), and (c) the subtropics (±30-40°). We find that the RO observations agree very well with the European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the Atmospheric Infrared Sounder (AIRS) by capturing similar magnitudes and patterns of variability in the monthly zonal mean specific humidity and interannual anomaly over annual and interannual timescales. The JPL and UCAR specific humidity climatologies differ by less than 15 % (depending on location and pressure level), primarily due to differences in the retrieved refractivity. In the middle-to-upper troposphere, in all climate zones, JPL is the wettest of all data sets, AIRS is the driest of all data sets, and UCAR, ERA-Interim, and MERRA are in very good agreement, lying between the JPL and AIRS climatologies. In the lower-to-middle troposphere, we present a complex behavior of discrepancies, and we speculate that this might be due to convection and entrainment. Conclusively, the RO observations could potentially be used as a climate variable, but more thorough analysis is required to assess the structural uncertainty between centers and its origin.

  9. GEMAS: Spatial pattern analysis of Ni by using digital image processing techniques on European agricultural soil data

    NASA Astrophysics Data System (ADS)

    Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya

    2017-04-01

    Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.

  10. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Silberschmidt, Vadim V.

    2015-09-01

    The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  11. Characterising the Architecture of New Zealand's Geothermal Structural Fluid Flow Networks Using Borehole Images

    NASA Astrophysics Data System (ADS)

    McNamara, David; Milicich, Sarah; Massiot, Cécile

    2017-04-01

    Borehole imaging has been used worldwide since the 1950's to capture vital geological information on the lithology, structure, and stress conditions of the Earth's subsurface. In New Zealand both acoustic and resistivity based borehole image logs are utilised to explore the geological nature of the basement and volcanic rocks that contain the country's unique geothermal reservoirs. Borehole image logs in wells from three geothermal fields in the Taupo Volcanic Zone (TVZ) provide the first, direct, subsurface, structural orientation measurements in New Zealand geothermal reservoir lithologies. While showing an overall structural pattern aligned to the regional tectonic trend, heterogeneities are observed that provide insight into the complexity of the structurally controlled, geothermal, fluid flow pathways. Analysis of imaged stress induced features informs us that the stress field orientation in the TVZ is also not homogenous, but is variable at a local scale.

  12. Auroral LSTIDs and SAR Arc Occurrences in Northern California During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.

    2015-12-01

    A 630nm allsky imager has been operated for two years in northern California at the Hat Creek Radio Observatory. F-region airglow data captured by the imager ranges from approximately L=1.7 -2.7. Since installation of the imager several geomagnetic storms have occurred with varying intensities. Two main manifestations of the geomagnetic storms are observed in the 630 nm airglow data: large-scale traveling ionospheric disturbances that are launched from the auroral zone and Stable Auroral Red (SAR) arcs during more intense geomagnetic storms. We will present a statistical analysis of these storm-time phenomena in northern California for the past eighteen months. This imager is part of a larger all-sky imaging network across the continental United States, termed MANGO (Midlatitude All-sky-imaging Network for Geophysical Observations). Where available, we will add data from networked imagers located at similar L-shell in other states as well.

  13. Performance Characteristics of the Multi-Zone NAS Parallel Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang; VanderWijngaart, Rob F.

    2003-01-01

    We describe a new suite of computational benchmarks that models applications featuring multiple levels of parallelism. Such parallelism is often available in realistic flow computations on systems of grids, but had not previously been captured in bench-marks. The new suite, named NPB Multi-Zone, is extended from the NAS Parallel Benchmarks suite, and involves solving the application benchmarks LU, BT and SP on collections of loosely coupled discretization meshes. The solutions on the meshes are updated independently, but after each time step they exchange boundary value information. This strategy provides relatively easily exploitable coarse-grain parallelism between meshes. Three reference implementations are available: one serial, one hybrid using the Message Passing Interface (MPI) and OpenMP, and another hybrid using a shared memory multi-level programming model (SMP+OpenMP). We examine the effectiveness of hybrid parallelization paradigms in these implementations on three different parallel computers. We also use an empirical formula to investigate the performance characteristics of the multi-zone benchmarks.

  14. Summer diet of the peregrine falcon in faunistically rich and poor zones of Arizona analyzed with capture-recapture modeling

    Treesearch

    David H. Ellis; Catherine H. Ellis; Beth Ann Sabo; Amadeo M. Rea; James Dawson; James K. Fackler; Charles T. Larue; John Schmitt; Dwight G. Smith; Marc Kery

    2004-01-01

    We collected prey remains from 25 Peregrine Falcon (Falco peregrinus) territories across Arizona from 1977 to 1988 yielding 58 eyrie-years of data. Along with 793 individual birds (107 species and six additional genera), we found seven mammals and nine insects. In addition, two nestling peregrines were consumed. We found a larger dependence upon White-throated Swifts...

  15. Steady groundwater flow through many cylindrical inhomogeneities in a multi-aquifer system

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    2003-06-01

    A new approach is presented for the simulation of steady-state groundwater flow in multi-aquifer systems that contain many cylindrical inhomogeneities. The hydraulic conductivity of all aquifers and the resistance of all leaky layers may be different inside each cylinder. The approach is based on separation of variables and combines principles of the theory for multi-aquifer flow with principles of the analytic element method. The solution fulfills the governing differential equations exactly everywhere; the head, flow, and leakage between aquifers may be computed analytically at any point in the aquifer system. The boundary conditions along the circumference of the cylinder are satisfied approximately, but may be met at any precision. Two examples are discussed to illustrate the accuracy of the approach and the significance of inhomogeneities in multi-aquifer systems. The first application simulates the vertical and horizontal, advective spreading of a conservative tracer in a homogeneous aquifer that is overlain by an aquifer with cylindrical inclusions of higher permeability. The second application concerns the three-dimensional shape of the capture zone of a well that is screened in the bottom aquifer of a three-aquifer system. The capture zone extends to the top aquifer due to cylindrical holes of lower resistance in the separating clay layers.

  16. At-sea distribution of satellite-tracked grey-faced petrels, Pterodroma macroptera gouldi, captured on the Ruamaahua (Aldermen) Islands, New Zealand

    USGS Publications Warehouse

    MacLeod, Catriona; Adams, Josh; Lyver, Phil

    2008-01-01

    We used satellite telemetry to determine the at-sea distribution of 32 adult (non-breeders and failed breeders) Grey-faced Petrels, Pterodroma macroptera gouldi, during July-October in 2006 and 2007. Adults captured at breeding colonies on the Ruamaahua (Aldermen) Islands ranged across the southwestern Pacific Ocean and Tasman Sea between 20-49°S and 142°E and 1300 W Petrels were located almost exclusively over offshore waters> 1000 m depth. The extent oftheir distributions was similar across years, but petrels ranged farther south and west in 2006. Individuals displayed a high degree ofspatial overlap (48-620/0 among individuals) and area use revealed three general "hotspots" within their overall range: waters near the Ruamaahua Islands; the central Tasman Sea; and the area surrounding the Chatham Rise. In July-August 2006, most petrels congregated over the Tasman Sea, but for the same period in 2007 were predominantly associated with Chatham Rise. The home ranges of petrels tended to overlap disproportionately more than expected with the Australian Exclusive Economic Zone and less than expected with High Seas, relative to the area available in each zone, in July-August 2006. Accordingly, multiple nations are responsible for determining potential impacts resulting from fisheries bycatch and potential resource competition with Grey-faced Petrels.

  17. The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudepierre, Seth G.; O'Brien, T. P.; Fennell, J. F.

    We present measurements of relativistic electrons (0.7–1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that ~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As ~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these twomore » events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Lastly, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.« less

  18. The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region

    DOE PAGES

    Claudepierre, Seth G.; O'Brien, T. P.; Fennell, J. F.; ...

    2017-03-15

    We present measurements of relativistic electrons (0.7–1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that ~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As ~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these twomore » events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Lastly, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.« less

  19. Coverage of pilot parenteral vaccination campaign against canine rabies in N'Djaména, Chad.

    PubMed Central

    Kayali, U.; Mindekem, R.; Yémadji, N.; Vounatsou, P.; Kaninga, Y.; Ndoutamia, A. G.; Zinsstag, J.

    2003-01-01

    Canine rabies, and thus human exposure to rabies, can be controlled through mass vaccination of the animal reservoir if dog owners are willing to cooperate. Inaccessible, ownerless dogs, however, reduce the vaccination coverage achieved in parenteral campaigns. This study aimed to estimate the vaccination coverage in dogs in three study zones of N'Djaména, Chad, after a pilot free parenteral mass vaccination campaign against rabies. We used a capture-mark-recapture approach for population estimates, with a Bayesian, Markov chain, Monte Carlo method to estimate the total number of owned dogs, and the ratio of ownerless to owned dogs to calculate vaccination coverage. When we took into account ownerless dogs, the vaccination coverage in the dog populations was 87% (95% confidence interval (CI), 84-89%) in study zone I, 71% (95% CI, 64-76%) in zone II, and 64% (95% CI, 58-71%) in zone III. The proportions of ownerless dogs to owned dogs were 1.1% (95% CI, 0-3.1%), 7.6% (95% CI, 0.7-16.5%), and 10.6% (95% CI, 1.6-19.1%) in the three study zones, respectively. Vaccination coverage in the three populations of owned dogs was 88% (95% CI, 84-92%) in zone I, 76% (95% CI, 71-81%) in zone II, and 70% (95% CI, 66-76%) in zone III. Participation of dog owners in the free campaign was high, and the number of inaccessible ownerless dogs was low. High levels of vaccination coverage could be achieved with parenteral mass vaccination. Regular parenteral vaccination campaigns to cover all of N'Djaména should be considered as an ethical way of preventing human rabies when post-exposure treatment is of limited availability and high in cost. PMID:14758434

  20. A spatial classification and database for management, research, and policy making: The Great Lakes aquatic habitat framework

    USGS Publications Warehouse

    Wang, Lizhu; Riseng, Catherine M.; Mason, Lacey; Werhrly, Kevin; Rutherford, Edward; McKenna, James E.; Castiglione, Chris; Johnson, Lucinda B.; Infante, Dana M.; Sowa, Scott P.; Robertson, Mike; Schaeffer, Jeff; Khoury, Mary; Gaiot, John; Hollenhurst, Tom; Brooks, Colin N.; Coscarelli, Mark

    2015-01-01

    Managing the world's largest and most complex freshwater ecosystem, the Laurentian Great Lakes, requires a spatially hierarchical basin-wide database of ecological and socioeconomic information that is comparable across the region. To meet such a need, we developed a spatial classification framework and database — Great Lakes Aquatic Habitat Framework (GLAHF). GLAHF consists of catchments, coastal terrestrial, coastal margin, nearshore, and offshore zones that encompass the entire Great Lakes Basin. The catchments captured in the database as river pour points or coastline segments are attributed with data known to influence physicochemical and biological characteristics of the lakes from the catchments. The coastal terrestrial zone consists of 30-m grid cells attributed with data from the terrestrial region that has direct connection with the lakes. The coastal margin and nearshore zones consist of 30-m grid cells attributed with data describing the coastline conditions, coastal human disturbances, and moderately to highly variable physicochemical and biological characteristics. The offshore zone consists of 1.8-km grid cells attributed with data that are spatially less variable compared with the other aquatic zones. These spatial classification zones and their associated data are nested within lake sub-basins and political boundaries and allow the synthesis of information from grid cells to classification zones, within and among political boundaries, lake sub-basins, Great Lakes, or within the entire Great Lakes Basin. This spatially structured database could help the development of basin-wide management plans, prioritize locations for funding and specific management actions, track protection and restoration progress, and conduct research for science-based decision making.

  1. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related to the formation of mega-landslides and mask the general radial pattern. Thus, the rift zones on El Hierro are shallow structures that commonly capture and divert ascending magma towards different parts of the island but do not condition magma ascent at depth.

  2. Three Essays In and Tests of Theoretical Urban Economics

    NASA Astrophysics Data System (ADS)

    Zhao, Weihua

    This dissertation consists of three essays on urban economics. The three essays are related to urban spatial structure change, energy consumption, greenhouse gas emissions, and housing redevelopment. Chapter 1 answers the question: Does the classic Standard Urban Model still describe the growth of cities? Chapter 2 derives the implications of telework on urban spatial structure, energy consumption, and greenhouse gas emissions. Chapter 3 investigates the long run effects of minimum lot size zoning on neighborhood redevelopment. Chapter 1 identifies a new implication of the classic Standard Urban Model, the "unitary elasticity property (UEP)", which is the sum of the elasticity of central density and the elasticity of land area with respect to population change is approximately equal to unity. When this implication of the SUM is tested, it fits US cities fairly well. Further analysis demonstrates that topographic barriers and age of housing stock are the key factors explaining deviation from the UEP. Chapter 2 develops a numerical urban simulation model with households that are able to telework to investigate the urban form, congestion, energy consumption and greenhouse gas emission implications of telework. Simulation results suggest that by reducing transportation costs, telework causes sprawl, with associated longer commutes and consumption of larger homes, both of which increase energy consumption. Overall effects depend on who captures the gains from telework (workers versus firms), urban land use regulation such as height limits or greenbelts, and the fraction of workers participating in telework. The net effects of telework on energy use and GHG emissions are generally negligible. Chapter 3 applies dynamic programming to investigate the long run effects of minimum lot size zoning on neighborhood redevelopment. With numerical simulation, comparative dynamic results show that minimum lot size zoning can delay initial land conversion and slow down demolition and housing redevelopment. Initially, minimum lot size zoning is not binding. However, as city grows, it becomes binding and can effectively distort housing supply. It can lower both floor area ratio and residential density, and reduce aggregate housing supply. Overall, minimum lot size zoning can stabilize the path of structure/land ratios, housing service levels, structure density, and housing prices. In addition, minimum lot size zoning provides more incentive for developer to maintain the building, slow structure deterioration, and raise the minimum level of housing services provided over the life cycle of development.

  3. CORMIX: AN EXPERT SYSTEM FOR MIXING ZONE ANALYSIS

    EPA Science Inventory

    United States water quality policy includes the concept of a fixing zone, a limited area where initial dilution of a discharge occurs. urrent practice in mixing zone analysis is plagued by a number of problems--mixing zone definitions vary widely, there is a diversity of discharg...

  4. Synthesis of research on work zone delays and simplified application of QuickZone analysis tool.

    DOT National Transportation Integrated Search

    2010-03-01

    The objectives of this project were to synthesize the latest information on work zone safety and management and identify case studies in which FHWAs decision support tool QuickZone or other appropriate analysis tools could be applied. The results ...

  5. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  6. Do mud deposition events on sandy beaches affect surf zone ichthyofauna? A southern Brazilian case study

    NASA Astrophysics Data System (ADS)

    Mont'Alverne, Renata; Moraes, Leonardo E.; Rodrigues, Fábio L.; Vieira, João P.

    2012-05-01

    Using fluid mud deposition events which occur regularly at Cassino Beach in south Brazil, we evaluated the influence of such events on the structure of the ichthyofauna inhabiting its shallow surf zone. Wave action was the dominant factor in differentiating between sampling sites, being lower or even absent at the mud-influenced sectors compared to beach area without mud. Samples were collected using a beach seine net at two control locations (A1 and A2), and at three locations influenced by mud deposition (B1, B2, and B3). During the study period (21 April-04 August 2009), 15,245 fishes were captured and separated into 26 taxonomic groups, from species to family. Individuals of a total length (TL) up to 50 mm accounted for 65% of the catch, while individuals of TL < 30 mm were the most numerous and more responsible for the total abundance spatial pattern. The area with higher wave action (A2) had the lowest relative species abundance and greatest diversity, whereas the areas with mud-forced lowest wave action (B2 and B3) had the highest species abundance values. Three hypotheses were proposed to explain the higher concentration and capture of juvenile fishes at mud locations. First, longshore currents may be responsible for the displacement of juvenile aggregations toward areas of lower energy. Second, individuals may select habitats with turbid waters, which may provide greater protection from predators and increased food availability. Third, areas under the influence of fluid mud deposition show higher values of viscosity, which may reduce swimming activity and hinder the escape of juvenile fishes from nets, resulting in an increased capture of individuals compared to areas without mud.

  7. Active tectonics and drainage evolution in the Tunisian Atlas driven by interaction between crustal shortening and slab pull

    NASA Astrophysics Data System (ADS)

    Camafort, Miquel; Booth-Rea, Guillermo; Pérez-Peña, Jose Vicente; Melki, Fetheddine; Gracia, Eulalia; Azañón, Jose Miguel; Ranero, César R.

    2017-04-01

    Active tectonics in North Africa is fundamentally driven by NW-SE directed slow convergence between the Nubia and Eurasia plates, leading to a region of thrust and strike-slip faulting. In this paper we analyze the morphometric characteristics of the little-studied northern Tunisia sector. The study aimed at identifying previously unknown active tectonic structures, and to further understand the mechanisms that drive the drainage evolution in this region of slow convergence. The interpretation of morphometric data was supported with a field campaign of a selection of structures. The analysis indicates that recent fluvial captures have been the main factor rejuvenating drainage catchments. The Medjerda River, which is the main catchment in northern Tunisia, has increased its drainage area during the Quaternary by capturing adjacent axial valleys to the north and south of its drainage divide. These captures are probably driven by gradual uplift of adjacent axial valleys by reverse/oblique faults or associated folds like El Alia-Teboursouk and Dkhila faults. Our fieldwork found that these faults cut Holocene colluvial fans containing seismites like clastic dikes and sand volcanoes, indicating recent seismogenic faulting. The growth and stabilization of the axial Medjerda River against the natural tendency of transverse drainages might be caused by a combination of dynamic topography and transpressive tectonics. The orientation of the large axial Medjerda drainage that runs from eastern Algeria towards northeastern Tunisia into the Gulf of Tunis, might be the associated to negative buoyancy caused by the underlying Nubia slab at its mouth, together with uplift of the Medjerda headwaters along the South Atlassic dextral transfer zone.

  8. Composition of Anopheline (Diptera: Culicidae) Community and Its Seasonal Variation in Three Environments of the City of Puerto Iguazú, Misiones, Argentina.

    PubMed

    Ramirez, P G; Stein, M; Etchepare, E G; Almirón, W R

    2018-02-28

    In order to extend the knowledge of the composition of the anopheline community and the seasonal variation related to anthropogenic modifications in the city of Puerto Iguazú, adult females were captured between 2009 and 2012. Samples were collected in three environments with different degrees of anthropogenic modification: urban, periurban, and wild. Alpha diversity was evaluated as the 'true' diversity of the species in each environment. Among environments, range-abundance curves were used to compare the composition, abundance, and uniformity of species and cluster analysis was used to analyze the similarities and differences. The temporal distribution was analyzed and the relative abundance of the species captured was correlated with meteorological variables. A total of 4,565 females, belonging to seven species: Anopheles albitarsis s.s. (Lynch-Arribálzaga), Anopheles argyritarsis (Robineau-Desvoidy), Anopheles deaneorum (Rosa-Freitas), Anopheles fluminensis (Root), Anopheles mediopunctatus (Theobald), Anopheles strodei s.l. (Root), and Anopheles triannulatus s.l. (Neiva and Pinto) were captured. The wild environment showed higher abundance, diversity, and greater uniformity reflected on the less sharp area of the range-abundance curve. Species richness was the same in the wild and periurban environments. Higher abundances were observed in summer during the months with higher temperatures. Although the wild environment showed greater Anopheles abundances and diversity, specific richness and species complementarity were similar among the three environments studied. Thus, the periurban environment would turn into a transition zone of great epidemiological importance due to the introduction of people in this environment, which represents a potential risk of malaria transmission in the area.

  9. Assessment of Seasonal Water Balance Components over India Using Macroscale Hydrological Model

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Raju, P. V.; Hakeem, K. A.; Rao, V. V.; Yadav, A.; Issac, A. M.; Diwakar, P. G.; Dadhwal, V. K.

    2016-12-01

    Hydrological models provide water balance components which are useful for water resources assessment and for capturing the seasonal changes and impact of anthropogenic interventions and climate change. The study under description is a national level modeling framework for country India using wide range of geo-spatial and hydro-meteorological data sets for estimating daily Water Balance Components (WBCs) at 0.15º grid resolution using Variable Infiltration Capacity model. The model parameters were optimized through calibration of model computed stream flow with field observed yielding Nash-Sutcliffe efficiency between 0.5 to 0.7. The state variables, evapotranspiration (ET) and soil moisture were also validated, obtaining R2 values of 0.57 and 0.69, respectively. Using long-term meteorological data sets, model computation were carried to capture hydrological extremities. During 2013, 2014 and 2015 monsoon seasons, WBCs were estimated and were published in web portal with 2-day time lag. In occurrence of disaster events, weather forecast was ingested, high surface runoff zones were identified for forewarning and disaster preparedness. Cumulative monsoon season rainfall of 2013, 2014 and 2015 were 105, 89 and 91% of long period average (LPA) respectively (Source: India Meteorological Department). Analysis of WBCs indicated that corresponding seasonal surface runoff was 116, 81 and 86% LPA and evapotranspiration was 109, 104 and 90% LPA. Using the grid-wise data, the spatial variation in WBCs among river basins/administrative regions was derived to capture the changes in surface runoff, ET between the years and in comparison with LPA. The model framework is operational and is providing periodic account of national level water balance fluxes which are useful for quantifying spatial and temporal variation in basin/sub-basin scale water resources, periodical water budgeting to form vital inputs for studies on water resources and climate change.

  10. Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2018-04-17

    This study develops an integrated technical and economic modeling framework to investigate the feasibility of ionic liquids (ILs) for precombustion carbon capture. The IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is modeled as a potential physical solvent for CO 2 capture at integrated gasification combined cycle (IGCC) power plants. The analysis reveals that the energy penalty of the IL-based capture system comes mainly from the process and product streams compression and solvent pumping, while the major capital cost components are the compressors and absorbers. On the basis of the plant-level analysis, the cost of CO 2 avoided by the IL-based capture and storage system is estimated to be $63 per tonne of CO 2 . Technical and economic comparisons between IL- and Selexol-based capture systems at the plant level show that an IL-based system could be a feasible option for CO 2 capture. Improving the CO 2 solubility of ILs can simplify the capture process configuration and lower the process energy and cost penalties to further enhance the viability of this technology.

  11. Floods, floodplains, delta plains — A satellite imaging approach

    NASA Astrophysics Data System (ADS)

    Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark

    2012-08-01

    Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.

  12. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.

    PubMed

    Dong, Ni; Huang, Helai; Zheng, Liang

    2015-09-01

    In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage

    PubMed Central

    Garrison, Presley; Yue, Shanna; Hanson, Jeffrey; Baron, Jeffrey; Lui, Julian C.

    2017-01-01

    Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers—the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may contribute to the spatial differentiation of chondrocytes in the postnatal endochondral skeleton. PMID:28467498

  14. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    DOE PAGES

    Jones, Sam; Ritter, Christian; Herwig, Falk; ...

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage themore » interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10 9 (in some cases 10 10) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H- 12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.« less

  15. Novel Visual Sensor Coverage and Deployment in Time Aware PTZ Wireless Visual Sensor Networks.

    PubMed

    Yap, Florence G H; Yen, Hong-Hsu

    2016-12-30

    In this paper, we consider the visual sensor deployment algorithm in Pan-Tilt-Zoom (PTZ) Wireless Visual Sensor Networks (WVSNs). With PTZ capability, a sensor's visual coverage can be extended to reduce the number of visual sensors that need to be deployed. The coverage zone of a visual sensor in PTZ WVSN is composed of two regions, a Direct Coverage Region (DCR) and a PTZ Coverage Region (PTZCR). In the PTZCR, a visual sensor needs a mechanical pan-tilt-zoom operation to cover an object. This mechanical operation can take seconds, so the sensor might not be able to adjust the camera in time to capture the visual data. In this paper, for the first time, we study this PTZ time-aware PTZ WVSN deployment problem. We formulate this PTZ time-aware PTZ WVSN deployment problem as an optimization problem where the objective is to minimize the total visual sensor deployment cost so that each area is either covered in the DCR or in the PTZCR while considering the PTZ time constraint. The proposed Time Aware Coverage Zone (TACZ) model successfully captures the PTZ visual sensor coverage in terms of camera focal range, angle span zone coverage and camera PTZ time. Then a novel heuristic, called Time Aware Deployment with PTZ camera (TADPTZ) algorithm, is proposed to solve the problem. From our computational experiments, we found out that TACZ model outperforms the existing M coverage model under all network scenarios. In addition, as compared to the optimal solutions, the TACZ model is scalable and adaptable to the different PTZ time requirements when deploying large PTZ WVSNs.

  16. Novel Visual Sensor Coverage and Deployment in Time Aware PTZ Wireless Visual Sensor Networks

    PubMed Central

    Yap, Florence G. H.; Yen, Hong-Hsu

    2016-01-01

    In this paper, we consider the visual sensor deployment algorithm in Pan-Tilt-Zoom (PTZ) Wireless Visual Sensor Networks (WVSNs). With PTZ capability, a sensor’s visual coverage can be extended to reduce the number of visual sensors that need to be deployed. The coverage zone of a visual sensor in PTZ WVSN is composed of two regions, a Direct Coverage Region (DCR) and a PTZ Coverage Region (PTZCR). In the PTZCR, a visual sensor needs a mechanical pan-tilt-zoom operation to cover an object. This mechanical operation can take seconds, so the sensor might not be able to adjust the camera in time to capture the visual data. In this paper, for the first time, we study this PTZ time-aware PTZ WVSN deployment problem. We formulate this PTZ time-aware PTZ WVSN deployment problem as an optimization problem where the objective is to minimize the total visual sensor deployment cost so that each area is either covered in the DCR or in the PTZCR while considering the PTZ time constraint. The proposed Time Aware Coverage Zone (TACZ) model successfully captures the PTZ visual sensor coverage in terms of camera focal range, angle span zone coverage and camera PTZ time. Then a novel heuristic, called Time Aware Deployment with PTZ camera (TADPTZ) algorithm, is proposed to solve the problem. From our computational experiments, we found out that TACZ model outperforms the existing M coverage model under all network scenarios. In addition, as compared to the optimal solutions, the TACZ model is scalable and adaptable to the different PTZ time requirements when deploying large PTZ WVSNs. PMID:28042829

  17. Traffic analysis toolbox volume IX : work zone modeling and simulation, a guide for analysts

    DOT National Transportation Integrated Search

    2009-03-01

    This document is the second volume in the FHWA Traffic Analysis Toolbox: Work Zone Analysis series. Whereas the first volume provides guidance to decision-makers at agencies and jurisdictions considering the role of analytical tools in work zone plan...

  18. Topographic data acquisition in tsunami-prone coastal area using Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Marfai, M. A.; Sunarto; Khakim, N.; Cahyadi, A.; Rosaji, F. S. C.; Fatchurohman, H.; Wibowo, Y. A.

    2018-04-01

    The southern coastal area of Java Island is one of the nine seismic gaps prone to tsunamis. The entire coastline in one of the regencies, Gunungkidul, is exposed to the subduction zone in the Indian Ocean. Also, the growing tourism industries in the regency increase its vulnerability, which places most of its areas at high risk of tsunamis. The same case applies to Kukup, i.e., one of the most well-known beaches in Gunungkidul. Structurally shaped cliffs that surround it experience intensive wave erosion process, but it has very minimum access for evacuation routes. Since tsunami modeling is a very advanced analysis, it requires an accurate topographic data. Therefore, the research aimed to generate the topographic data of Kukup Beach as the baseline in tsunami risk reduction analysis and disaster management. It used aerial photograph data, which was acquired using Unmanned Aerial Vehicle (UAV). The results showed that the aerial photographs captured by drone had accurate elevation and spatial resolution. Therefore, they are applicable for tsunami modeling and disaster management.

  19. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  20. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  1. Surface deformation associated with the 2013 Mw7.7 Balochistan earthquake: Geologic slip rates may significantly underestimate strain release

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin

    2015-04-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault sections with narrow deformation zones in order to capture the full deformation field. Our results imply that hazard analyses based on geologically-determined fault slip rates (e.g., near-field) should consider the significant and heterogeneous mismatch we document between on- and off-fault coseismic deformation.

  2. Combining SAR with LANDSAT for Change Detection of Riparian Buffer Zone in a Semi-arid River Basin

    NASA Astrophysics Data System (ADS)

    Chang, N.

    2006-12-01

    A combination of RADARSAT-1 and Landsat 5 TM satellite images linking the soil moisture variation with Normalized Difference Vegetation Index (NDVI) measurements were used to accomplish remotely sensed change detection of riparian buffer zone in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The CCRW was selected as the study area contributing to the reservoir, which is mostly agricultural and range land in a semi-arid coastal environment. This makes the study significant due to the interception capability of non-point source impact within the riparian buffer zone and the maintenance of ecosystem integrity region wide. First of all, an estimation of soil moisture using RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery was conducted. With its all-weather capability, the RADARSAT-1 is a promising tool for measuring the surface soil moisture over seasons. The time constraint is almost negligible since the RADARSAT-1 is able to capture surface soil moisture over a large area in a matter of seconds, if the area is within its swath. RADARSAT-1 images presented at here were captured in two acquisitions, including April and September 2004. With the aid of five corner reflectors deployed by Alaska Satellite Facility (ASF), essential radiometric and geometric calibrations were performed to improve the accuracy of the SAR imagery. The horizontal errors were reduced from initially 560 meter down to less than 5 meter at the best try. Then two Landsat 5 TM satellite images were summarized based on its NDVI. The combination of and NDVI and SAR data obviously show that soil moisture and vegetation biomass wholly varies in space and time in the CCRW leading to identify the riparian buffer zone evolution over seasons. It is found that the seasonal soil moisture variation is highly tied with the NDVI values and the change detection of buffer zone is technically feasible. It will contribute to develop more effective management strategies for non-point source pollution control, bird habitat monitoring, and grazing and live stock handlings in the future. Future research focuses on comparison of soil moisture variability within RADARSAT-1 footprints and NDVI variations against interferometric SAR for studying riparian ecosystem functioning on a seasonal basis.

  3. The utility of microsatellite DNA markers for the evaluation of area-wide integrated pest management using SIT for the fruit fly, Bactrocera dorsalis (Hendel), control programs in Thailand.

    PubMed

    Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.

  4. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data

    PubMed Central

    Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P.

    2018-01-01

    Background Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Methods Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Results Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Conclusion Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise effectiveness on zonal basis. PMID:29377908

  5. 76 FR 53381 - Endangered and Threatened Wildlife and Plants; Termination of the Southern Sea Otter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...We, the U.S. Fish and Wildlife Service (Service), propose to remove the regulations that govern the southern sea otter (Enhydra lutris nereis) translocation program, including the establishment of an experimental population of southern sea otters, and all associated management actions. We are also proposing to amend the Authority citation for 50 CFR part 17 by removing the reference to Public Law 99- 625, the statute that authorized the Secretary to promulgate regulations establishing the southern sea otter translocation program. Removal of the regulations will terminate the program. We are proposing this action because we believe that the southern sea otter translocation program has failed to fulfill its purpose, as outlined in the southern sea otter translocation plan, and that our recovery and management goals for the species cannot be met by continuing the program. Our conclusion is based, in part, on an evaluation of the program against specific failure criteria established at the program's inception. This proposed action would terminate the designation of the experimental population of southern sea otters, abolish the southern sea otter translocation and management zones, and eliminate the current requirement to remove southern sea otters from San Nicolas Island and the management zone. This proposed rule would also eliminate future actions, required under the current regulations, to capture and relocate southern sea otters for the purpose of establishing an experimental population, and to remove southern sea otters in perpetuity from an ``otter-free'' management zone. As a result, it would allow southern sea otters to expand their range naturally into southern California waters. We have prepared a revised draft supplemental environmental impact statement (SEIS) and an initial regulatory flexibility analysis (IRFA) to accompany this proposed rule.

  6. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data.

    PubMed

    Awine, Timothy; Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P

    2018-01-01

    Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise effectiveness on zonal basis.

  7. Lateral Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Arnac, Sarah R.; Hill, Michael A.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center (AFRC) and the NASA Langley Research Center (LaRC), in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics near the sonic boom carpet extremity. The FaINT was an effort that collected finely-space sonic boom data across the entire lateral cutoff transition region. A major objective of the effort was to investigate the acoustic phenomena that occur at the audible edge of a sonic boom carpet, including the transition and shadow zones. A NASA F-18B aircraft made supersonic passes such that its sonic boom carpet transition zone would intersect a linear 60-microphone, 7500-ft long array. A TG-14 motor glider equipped with a microphone on its wing also attempted to capture the same sonic boom rays that were measured on the ground, at altitudes of 3000 - 6000 ft above ground level. This paper determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, and established a value of 65 dB as a limit for the acoustic levels defining the lateral extent of a sonic boom's noise region; analyzed the change in sonic boom levels as a function of distance from flight path both on the ground and 4500 ft above the ground; and compared between sonic boom measurements and numerical predictions.

  8. Mach Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation in the Mach cutoff shadow zone. The effort was conducted in the fall of 2012 and named the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics below Mach cutoff altitude. FaINT was able to correlate sonic boom noise levels measured below cutoff altitude with precise airplane flight conditions, potentially increasing the accuracy over previous studies. A NASA F-18B airplane made supersonic passes such that its Mach cutoff caustic would be at varying distances above a linear 60-microphone, 7375-ft (2247.9 m) long array. A TG-14 motor glider equipped with a microphone on its wing-tip also attempted to capture the same sonic boom waves above ground, but below the Mach cutoff altitude. This paper identified an appropriate metric for sonic boom waveforms in the Mach cutoff shadow zone called Perceived Sound Exposure Level; derived an empirical relationship between Mach cutoff flight conditions and noise levels in the shadow zone; validated a safe cutoff altitude theory presented by previous studies; analyzed the sensitivity of flight below Mach cutoff to unsteady atmospheric conditions and realistic aircraft perturbations; and demonstrated the ability to record sonic boom measurements over 5000 ft (1524.0 m) above ground level, but below Mach cutoff altitude.

  9. Modern diatom assemblages as tools for paleoenvironmental reconstruction: a case study from estuarine intertidal zones in southern Iberia

    NASA Astrophysics Data System (ADS)

    Gomes, Ana; Boski, Tomasz; Moura, Delminda; Szkornik, Katie; Witkowski, Andrzej; Connor, Simon; Laut, Lazaro; Sobrinho, Frederico; Oliveira, Sónia

    2017-04-01

    Diatoms are unicellular algae that live in saline, brackish and freshwater environments, either floating in the water column or associated with various substrates (e.g., muddy and sandy sediments). Diatoms are sensitive to changes in environmental variables such as salinity, sediment texture, nutrient availability, light and temperature. This characteristic, along with their short lifespan, allows diatoms to quickly respond to environmental changes. Since the beginning of the 20th century, diatoms have been widely used to study the Holocene evolution of estuaries worldwide, particularly to reconstruct ecological responses to sea-level and climate changes. However, diatoms have been poorly studied in estuarine intertidal zones, due to the complexity of these environments, which have both fluvial and marine influences. The aim of this study was to understand diatom diversity and spatial distribution in intertidal zones from two geomorphologically and hydrologically distinct estuaries. Sediment samples were collected from within the intertidal zones along the Arade and Guadiana River estuaries in southern Iberia. The sampling points embraced almost all the tidal and salinity gradients of both estuaries, capturing the highest possible environmental variability and hence of diatom assemblages. At each sampling point, the salinity and pH of the sediment interstitial water were measured. The sediment samples were subdivided for diatom identification, textural analysis and organic matter determination. All sampling points were georeferenced by DGPS and the duration of tidal inundation was calculated for each site. Following diatom identification, the data were analysed statistically (i.e. cluster analysis, PCA, DCA and RDA). The present study revealed that there is a great diatom diversity in both estuaries (418 species), with several species new to science. The most important diatom species (with abundances higher or equal to 5%) occur in five ecological groups, which are associated to five distinct environments: lower estuary sandflats, lower estuary mudflats, middle to upper estuary mudflats, lower estuary salt marshes and middle estuary salt marshes. This study allowed us to establish modern analogues that are essential for developing transfer functions (quantitative palaeoenvironmental estimates). These methods will enable more accurate Holocene paleoenvironmental reconstructions on the southern Iberian coast and will improve knowledge about the evolution of estuarine environments globally . The work was supported by the SFRH/BD/62405/2009 fellowship, funded by the Portuguese Foundation for Science and Technology.

  10. Geostatistics applied to cross-well reflection seismic for imaging carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Parra, Jorge; Emery, Xavier

    2013-05-01

    Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the cokriging image. In the zones above and below this permeability barrier, the water production is very high, which agrees with water well observations at the Port Mayaca aquifer.

  11. Radon and radium in the ice-covered Arctic Ocean, and what they reveal about gas exchange in the sea ice zone.

    NASA Astrophysics Data System (ADS)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Moran, S. B.

    2014-12-01

    The polar sea ice zones are regions of high primary productivity and interior water mass formation. Consequently, the seasonal sea ice cycle appears important to both the solubility and biological carbon pumps. To estimate net CO2 transfer in the sea ice zone, we require accurate estimates of the air-sea gas transfer velocity. In the open ocean, the gas transfer velocity is driven by wind, waves and bubbles - all of which are strongly altered by the presence of sea ice, making it difficult to translate open ocean estimates of gas transfer to the ice zone. In this study, we present profiles of 222Rn and 226Ra throughout the mixed-layer and euphotic zone. Profiles were collected spanning a range of sea ice cover conditions from 40 to 100%. The profiles of Rn/Ra can be used to estimate the gas transfer velocity, but the 3.8 day half-life of 222Rn implies that mixed layer radon will have a memory of the past ~20 days of gas exchange forcing, which may include a range of sea ice cover conditions. Here, we compare individual estimates of the gas transfer velocity to the turbulent forcing conditions constrained from shipboard and regional reanalysis data to more appropriately capture the time history upper ocean Rn/Ra.

  12. Modeling Zone-3 Protection with Generic Relay Models for Dynamic Contingency Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiuhua; Vyakaranam, Bharat GNVSR; Diao, Ruisheng

    This paper presents a cohesive approach for calculating and coordinating the settings of multiple zone-3 protections for dynamic contingency analysis. The zone-3 protections are represented by generic distance relay models. A two-step approach for determining zone-3 relay settings is proposed. The first step is to calculate settings, particularly, the reach, of each zone-3 relay individually by iteratively running line open-end fault short circuit analysis; the blinder is also employed and properly set to meet the industry standard under extreme loading conditions. The second step is to systematically coordinate the protection settings of the zone-3 relays. The main objective of thismore » coordination step is to address the over-reaching issues. We have developed a tool to automate the proposed approach and generate the settings of all distance relays in a PSS/E dyr format file. The calculated zone-3 settings have been tested on a modified IEEE 300 system using a dynamic contingency analysis tool (DCAT).« less

  13. Joint Services Electronics Program. Appendix

    DTIC Science & Technology

    1992-11-01

    the accu- clude surface waves, creeping waves, multiple racy, convergence, and CPU times for the MM diffractions, shadowing effects , etc. A second ad...Method which is an approximation to the true current J Jn= A /m on the strip. The next section will discuss the - computation of the far zone...to the cavity (0 part of the incident plane wave captured by interior E•,. After a background discussion of the aperture at the open end is divided

  14. 40 CFR Appendix A to Subpart IIIi... - Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions From...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coating, i. 2.5.1You must weigh the blank panel. (Same as in bake oven panel test.) The mass of the blank... spray booth zones being tested. (Different than bake oven panel test.) This weighing must be conducted... and before the bake oven where the coating applied to the panel is cured, 2.5.5.2All of the flash-off...

  15. 40 CFR Appendix A to Subpart IIIi... - Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions From...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coating, i. 2.5.1You must weigh the blank panel. (Same as in bake oven panel test.) The mass of the blank... spray booth zones being tested. (Different than bake oven panel test.) This weighing must be conducted... and before the bake oven where the coating applied to the panel is cured, 2.5.5.2All of the flash-off...

  16. 40 CFR Appendix A to Subpart IIIi... - Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions From...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coating, i. 2.5.1You must weigh the blank panel. (Same as in bake oven panel test.) The mass of the blank... spray booth zones being tested. (Different than bake oven panel test.) This weighing must be conducted... and before the bake oven where the coating applied to the panel is cured, 2.5.5.2All of the flash-off...

  17. 40 CFR Appendix A to Subpart IIIi... - Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions From...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coating, i. 2.5.1You must weigh the blank panel. (Same as in bake oven panel test.) The mass of the blank... spray booth zones being tested. (Different than bake oven panel test.) This weighing must be conducted... and before the bake oven where the coating applied to the panel is cured, 2.5.5.2All of the flash-off...

  18. 40 CFR Appendix A to Subpart IIIi... - Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions From...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coating, i. 2.5.1You must weigh the blank panel. (Same as in bake oven panel test.) The mass of the blank... spray booth zones being tested. (Different than bake oven panel test.) This weighing must be conducted... and before the bake oven where the coating applied to the panel is cured, 2.5.5.2All of the flash-off...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvo, J.J.; Ho, S.V.; Shoemaker, S.H.

    Remediating soils and groundwater that have been contaminated with chlorinated solvents is a significant challenge for current environmental technology. Soils with a high proportion of fine silts and clays have been especially recalcitrant due to their low permeability. Recently, electrokinetics has shown great promise in gaining access to these contaminated zones that fail to yield with traditional pumping methods. An integrated approach using electrokinetics combined with in situ capture and destruction zones (LASAGNA{sup trademark}) is being developed and field tested by Monsanto, DuPont and GE under the auspices of the EPA`s Remediation Technology Development Forum and with financial support frommore » the Department of Energy. To speed implementation and encourage partnering, royalty-free cross-licensing of the developed technology is available to consortium members for use on their sites.« less

  20. Between-subject variability in asymmetry analysis of macular thickness.

    PubMed

    Alluwimi, Muhammed S; Swanson, William H; Malinovsky, Victor E

    2014-05-01

    To investigate the use of asymmetry analysis to reduce between-subject variability of macular thickness measurements using spectral domain optical coherence tomography. Sixty-three volunteers (33 young subjects [aged 21 to 35 years] and 30 older subjects [aged 45 to 85 years]) free of eye disease were recruited. Macular images were gathered with the Spectralis optical coherence tomography. An overlay 24- by 24-degree grid was divided into five zones per hemifield, and asymmetry analysis was computed as the difference between superior and inferior zone thicknesses. We hypothesized that the lowest variation and the highest density of ganglion cells will be found approximately 3 to 6 degrees from the foveola, corresponding to zones 1 and 2. For each zone and age group, between-subject SDs were compared for retinal thickness versus asymmetry analysis using an F test. To account for repeated comparisons, p < 0.0125 was required for statistical significance. Axial length and corneal curvature were measured with an IOLMaster. For OD, asymmetry analysis reduced between-subject variability in zones 1 and 2 in both groups (F > 3.2, p < 0.001). Standard deviation for zone 1 dropped from 12.0 to 3.0 μm in the young group and from 11.7 to 2.6 μm in the older group. Standard deviation for zone 2 dropped from 13.6 to 5.3 μm in the young group and from 11.1 to 5.8 μm in the older group. Combining all subjects, neither retinal thickness nor asymmetry analysis showed a strong correlation with axial length or corneal curvature (R² < 0.01). Analysis for OS yielded the same pattern of results, as did asymmetry analyses between eyes (F > 3.8, p < 0.0001). Asymmetry analysis reduced between-subject variability in zones 1 and 2. Combining the five zones together produced a higher between-subject variation of the retinal thickness asymmetry analysis; thus, we encourage clinicians to be cautious when interpreting the asymmetry analysis printouts.

  1. Performance Characteristics of a Kernel-Space Packet Capture Module

    DTIC Science & Technology

    2010-03-01

    Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to

  2. Individually assessed boldness predicts Perca fluviatilis behaviour in shoals, but is not associated with the capture order or angling method.

    PubMed

    Kekäläinen, J; Podgorniak, T; Puolakka, T; Hyvärinen, P; Vainikka, A

    2014-11-01

    Selectivity of recreational angling on fish behaviour was studied by examining whether capture order or lure type (natural v. artificial bait) in ice-fishing could explain behavioural variation among perch Perca fluviatilis individuals. It was also tested if individually assessed personality predicts fish behaviour in groups, in the presence of natural predators. Perca fluviatilis showed individually repeatable behaviour both in individual and in group tests. Capture order, capture method, condition factor or past growth rate did not explain variation in individual behaviour. Individually determined boldness as well as fish size, however, were positively associated with first entrance to the predator zone (i.e. initial risk taking) in group behaviour tests. Individually determined boldness also explained long-term activity and total time spent in the vicinity of predators in the group. These findings suggest that individual and laboratory-based boldness tests predict boldness of P. fluviatilis in also ecologically relevant conditions, i.e. in shoals and in the presence of natural predators. The present results, however, also indicate that the above-mentioned two angling methods may not be selective for certain behavioural types in comparison to each other. © 2014 The Fisheries Society of the British Isles.

  3. Capture-zone design in an aquifer influenced by cyclic fluctuations in hydraulic gradients

    NASA Astrophysics Data System (ADS)

    Zawadzki, Willy; Chorley, Don; Patrick, Guy

    2002-10-01

    Design of a groundwater pumping and treatment system for a wood-treatment facility adjacent to the tidally influenced Fraser River estuary required the development of methodologies to account for cyclic variations in hydraulic gradients. Design of such systems must consider the effects of these cyclic fluctuations on the capture of dissolved-phase contaminants. When the period of the cyclic fluctuation is much less than the travel time of the dissolved contaminant from the source to the discharge point, the hydraulic-gradient variations resulting from these cycles can be ignored. Capture zones are then designed based on the average hydraulic gradient determined using filter techniques on continuous groundwater-level measurements. When the period of cyclic fluctuation in hydraulic gradient is near to or greater than the contaminant travel time, the resulting hydraulic-gradient variations cannot be ignored. In these instances, procedures are developed to account for these fluctuations in the capture-zone design. These include proper characterization of the groundwater regime, assessment of the average travel time and period of the cyclic fluctuations, and numerical techniques which allow accounting for the cyclic fluctuations in the design of the capture zone. Résumé. L'étude d'un système de pompage et de traitement de l'eau souterraine d'une usine de traitement du bois proche de l'estuaire de la rivière Fraser, influencé par les marées, a nécessité la mise au point de méthodologies pour prendre en compte les variations cycliques de gradients hydrauliques. L'étude de tels systèmes doit considérer les effets de ces variations cycliques sur l'extraction des contaminants en phase dissoute. Lorsque la période des variations cycliques est très inférieure au temps de parcours du contaminant dissous entre la source et le point d'émergence, les variations du gradient hydraulique résultant de ces cycles peuvent être ignorées. Les zones d'extraction sont alors réalisées sur la base du gradient hydraulique moyen déterminé au moyen de techniques de filtrage sur des mesures continues de la piézométrie. Lorsque la période de la fluctuation cyclique dans le gradient hydraulique est proche de ou supérieure au temps de parcours du contaminant, les variations résultantes de gradient hydraulique ne peuvent plus être ignorées. Dans ces cas-là, des procédures ont été mises au point pour prendre en compte ces fluctuations dans la conception de la zone d'extraction. Celles-ci prennent en considération la caractérisation propre du régime de la nappe, l'évaluation du temps de parcours moyen et de la période des fluctuations cycliques, et des techniques numériques qui permettent de considérer les fluctuations cycliques dans la conception de la zone d'extraction. Resumen. El diseño de un sistema de bombeo y tratamiento de aguas subterráneas para una instalación de manufactura de madera que está próxima al estuario del río Fraser, sometido a la influencia de las mareas, ha requerido el desarrollo de metodologías para tener en cuenta las variaciones cíclicas de los gradientes hidráulicos. El diseño de tales sistemas debe considerar los efectos de las fluctuaciones cíclicas en la captura de contaminantes en fase disuelta. Cuando el período de la fluctuación cíclica es mucho menor que el tiempo de tránsito del contaminante disuelto entre el punto de entrada y el de descarga, se puede ignorar las variaciones del gradiente hidráulico provocadas por dichos ciclos. Las zonas de captura se diseñan entonces en función del gradiente hidráulico promedio, que se determina mediante técnicas de filtrado de medidas continuas del nivel piezométrico. Cuando el período de la fluctuación cíclica del gradiente hidráulico es comparable o mayor que el tiempo de tránsito del contaminante, no puede ignorarse las variaciones resultantes en el gradiente hidráulico. En ese caso, se tiene que desarrollar procedimientos para contar con las fluctuaciones en el diseño de las zonas de captura. Ello implica una adecuada caracterización del régimen de las aguas subterráneas, el establecimiento del tiempo de tránsito y del período de las fluctuaciones cíclicas, y el uso de técnicas numéricas que permitan incluirlas en el diseño de la zona de captura.

  4. Shore zone in protection of water quality in agricultural landscape-the Mściwojów Reservoir, southwestern Poland.

    PubMed

    Dąbrowska, Jolanta; Kaczmarek, Halina; Markowska, Joanna; Tyszkowski, Sebastian; Kempa, Olgierd; Gałęza, Marta; Kucharczak-Moryl, Ewa; Moryl, Andrzej

    2016-08-01

    Shore zones are transition areas (ecotones) between aquatic and terrestrial ecosystems. Their function in the environment is crucial because they serve as buffer zones that capture pollutants and slow down erosion of reservoir and watercourse banks provided that they are managed properly. Research on a shore zone was conducted at the Mściwojów retention reservoir with an innovative water self-purification system. After several years of its operation, an increased phosphate concentration in the main part of the reservoir was reported. The mapping of the terrain's surface and modeling of hydrological processes in the direct catchment area of the said reservoir were done using the digital elevation model (DEM). The DEM was created from LiDAR data obtained in 2012 by airborne laser scanning. Analyses of the surface runoff led to identification of surface runoff transport pathways, along which the eroded material from cultivated fields is discharged directly to the reservoir. Surface runoff transport pathways gather the eroded material from a maximum area of 45,000 m(2) in the western part of the direct catchment and 40,000 m(2) in the eastern part of it. Due to the reservoir management negligence, the riparian zone designed for the Mściwojów Reservoir no longer exists. The percentage of the natural shore that undergoes erosion processes is over 54. The said processes and fluctuations of the water level in the reservoir, as well as degradation of the shore zone caused by human activity, bring about limited plant development in the littoral zone, which in turn lowers the reservoir's resistance to degradation.

  5. Laser microdissection and capture of pure cardiomyocytes and fibroblasts from infarcted heart regions: perceived hyperoxia induces p21 in peri-infarct myocytes.

    PubMed

    Kuhn, Donald E; Roy, Sashwati; Radtke, Jared; Khanna, Savita; Sen, Chandan K

    2007-03-01

    Myocardial infarction caused by ischemia-reperfusion in the coronary vasculature is a focal event characterized by an infarct-core, bordering peri-infarct zone and remote noninfarct zone. Recently, we have reported the first technique, based on laser microdissection pressure catapulting (LMPC), enabling the dissection of infarction-induced biological responses in multicellular regions of the heart. Molecular mechanisms in play at the peri-infarct zone are central to myocardial healing. At the infarct site, myocytes are more sensitive to insult than robust fibroblasts. Understanding of cell-specific responses in the said zones is therefore critical. In this work, we describe the first technique to collect the myocardial tissue with a single-cell resolution. The infarcted myocardium was identified by using a truncated hematoxylin-eosin stain. Cell elements from the infarct, peri-infarct, and noninfarct zones were collected in a chaotropic RNA lysis solution with micron-level surgical precision. Isolated RNA was analyzed for quality by employing microfluidics technology and reverse transcribed to generate cDNA. Purity of the collected specimen was established by real-time PCR analyses of cell-specific genes. Previously, we have reported that the oxygen-sensitive induction of p21/Cip1/Waf1/Sdi1 in cardiac fibroblasts in the peri-infarct zone plays a vital role in myocardial remodeling. Using the novel LMPC technique developed herein, we confirmed that finding and report for the first time that the induction of p21 in the peri-infarct zone is not limited to fibroblasts but is also evident in myocytes. This work presents the first account of an analytical technique that applies the LMPC technology to study myocardial remodeling with a cell-type specific resolution.

  6. Orbital Resonances in the Solar Nebula: Strengths and Weaknesses

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1993-01-01

    A planetesimal moving in the Solar Nebula experiences an aero- dynamic drag which causes its orbit to circularize and shrink. However, resonant perturbations from a protoplanet interior to the planetesimal's orbit ran counteract both the orbital decay and the damping of the eccentricity: the planetesimal can be captured into an orbital resonance and its eccentricity pumped up to a modestly high equilibrium value. Thus, orbital resonances constitute (partial) barriers to the delivery of planetesimals into the feeding zone of the protoplanet. We have established the characteristics of the phenomenon of resonance capture by gas drag in the circular restricted three-body approximation. We have determined the strengths of the equilibrium resonant orbits with respect to impulsive velocity perturbations. We conclude that planetesimals captured in orbital resonances are quite vulnerable to being dislocated from these orbits by mutual planetesimal interactions, but that the resonances are effective in slowing down the rate of orbital decay of planetesimals. Only very small bodies, less or approx. equal to 100 m, are able to reach a approx. 1 mass of the earth protoplanet without being slowed down by resonances.

  7. Design of Fishing Boat for Pelabuhanratu Fishermen as One of Effort to Increase Production of Capture Fisheries

    NASA Astrophysics Data System (ADS)

    Nur, Iswadi; Joko Suranto, Purwo

    2018-02-01

    Design of fishing boat for Pelabuhanratu fisherman as one of effort to increase production of capture fisheries. The fishing boat should be proper for the characteristic of its service area, as; capacity of fishing boat up to 60 GT, the fishing boat has minimum 6 fish holds and location of fish hold in the middle body, the fishing boat hull has the bilge keel plate, and the material of hull fishing boat to be made of wooden, steel, aluminium, or fiberglass. Main dimesion of fishing boat is Length Over All = 25.436 m, Breadth = 4.55 m, Draft = 1.6 m, Speed = 12.5 knots. The research had been known every thing that will be supporting the production of capture fisheries like ; amount of fish production = 25.030 ton per day, the fishing port capacity approximately 268.957GT per day, the area of fishing port < 30 hectares, the zone of fish processing industry had not completed, therefore all data research result less than standard of Oceanic Fising Port. So Pelabuhanratu National Fishing Port can not be changed to Oceanic Fishing Port.

  8. Cadmium contamination of tissues and organs of delphinids species (Stenella attenuata)--influence of biological and ecological factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.M.; Amiard, J.C.; Amiard-Triquet, C.

    1990-12-01

    Based on a sample of 27 dolphins (Stenella attenuata) captured in the Eastern tropical zone of the Pacific Ocean, this study was carried out to analyze the cadmium accumulation levels and distribution in 12 organs or tissue samples. The average cadmium concentrations were between 0.2 mg Cd.kg-1 in the brain and muscle and 48 mg Cd.kg-1 in the kidneys. For most of organs and tissues the average values were between 1 and 5 mg Cd.kg-1. Kidneys, liver, muscle, and intestine contained almost 85% of the total cadmium burden of all tissues considered in this study. Most of the biological andmore » ecological factors taken into account (age, sex, total weight, and length of the dolphins, weight of the organs, place and date of capture) interacted with the cadmium concentrations and burdens in the collected organs or tissues. Three factors appear to be of prime importance: age, body weight, and geographical location of the area of capture.« less

  9. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis.

    PubMed

    Thege, Fredrik I; Lannin, Timothy B; Saha, Trisha N; Tsai, Shannon; Kochman, Michael L; Hollingsworth, Michael A; Rhim, Andrew D; Kirby, Brian J

    2014-05-21

    We have developed and optimized a microfluidic device platform for the capture and analysis of circulating pancreatic cells (CPCs) and pancreatic circulating tumor cells (CTCs). Our platform uses parallel anti-EpCAM and cancer-specific mucin 1 (MUC1) immunocapture in a silicon microdevice. Using a combination of anti-EpCAM and anti-MUC1 capture in a single device, we are able to achieve efficient capture while extending immunocapture beyond single marker recognition. We also have detected a known oncogenic KRAS mutation in cells spiked in whole blood using immunocapture, RNA extraction, RT-PCR and Sanger sequencing. To allow for downstream single-cell genetic analysis, intact nuclei were released from captured cells by using targeted membrane lysis. We have developed a staining protocol for clinical samples, including standard CTC markers; DAPI, cytokeratin (CK) and CD45, and a novel marker of carcinogenesis in CPCs, mucin 4 (MUC4). We have also demonstrated a semi-automated approach to image analysis and CPC identification, suitable for clinical hypothesis generation. Initial results from immunocapture of a clinical pancreatic cancer patient sample show that parallel capture may capture more of the heterogeneity of the CPC population. With this platform, we aim to develop a diagnostic biomarker for early pancreatic carcinogenesis and patient risk stratification.

  10. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only recycle wastewater, but can also increase the likelihood of denitrification. Thus the farmer essentially can choose whether, and to which extent, to install capture wells and take advantage of the ecosystem attenuation services. Decision rules from the dynamic optimization model demonstrate best management practices for the farm to improve its economic and environmental performance. I further use an economic valuation technique to value these services. Under the Millennium Ecosystem Assessment framework, nitrate attenuation in the unsaturated and saturated zone provides regulatory ecosystem services to humans, mainly nutrient regulation and waste treatment. With the integrated farm model, the production function approach is adopted to get the economic value of these regulatory services. The results highlight the significant role the environment can play in nitrate pollution control and potential benefits from designing policies that acknowledge this role. The most desirable policies are those that create incentive for farmers to use potential ecosystem services, which significantly reduce environmental compliance costs and increase social welfare.

  11. [Characterization of contacts of the population of Guinea with synanthropic rodents as Lassa fever virus carriers].

    PubMed

    Inapogui, A P; Konstantinov, O K; Lapshov, V N; Comara, S K

    2007-01-01

    Questionnaire surveys made in 17 villages from 3 ecological zones of Guinea have provided evidence for the population's contact with synanthropic rodents as Lassa fever virus carriers. Over 100 rodents are quarterly captured in the houses of the traditional type in the villages located in the savanna woodland. Less than 10 specimens are captured at the food warehouses. There are more than 100 rodents in the majority of houses of the traditional type in the villages located in the secondary forest. In the villages of rainy tropical forests, the capture rate is low--10 to 100 rodents. The main rodent capturers are boys and young men (aged 7 to 20 years) who are principal rodent meat eaters; although almost the whole population, particularly in rural areas, consumes this meat in varying degrees. The proportion of captured rats of the genus Mastomys (the carrier of Lassa fever virus) in the town of Kindia is 11%. In the rural area, it is much higher (as high as 94%) in the villages located in the rainy tropical forests. It is estimated that one trapper quarterly catches 0.2 (in the savanna woodland) to 6.9 (in the secondary forests) infected rats, which agrees with the data of a serological survey of Guinea's population. By and large, the majority of the Guinean population may be referred to as a group at risk for Lassa fever due to their permanent contacts with rodents.

  12. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface -groundwater interactions in riparian zones. In the future, a better prediction and targeted management of buffer mechanisms in riparian zones will be possible.

  13. Analysis of dead zone sources in a closed-loop fiber optic gyroscope.

    PubMed

    Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To

    2016-01-01

    Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.

  14. Modeling the Rock Glacier Cycle

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers have much longer response times to climate change than their pure ice cousins.

  15. Measuring Land Change in Coastal Zone around a Rapidly Urbanized Bay.

    PubMed

    Huang, Faming; Huang, Boqiang; Huang, Jinliang; Li, Shenghui

    2018-05-23

    Urban development is a major cause for eco-degradation in many coastal regions. Understanding urbanization dynamics and underlying driving factors is crucial for urban planning and management. Land-use dynamic degree indices and intensity analysis were used to measure land changes occurred in 1990, 2002, 2009, and 2017 in the coastal zone around Quanzhou bay, which is a rapidly urbanized bay in Southeast China. The comprehensive land-use dynamic degree and interval level intensity analysis both revealed that land change was accelerating across the three time intervals in a three-kilometer-wide zone along the coastal line (zone A), while land change was fastest during the second time interval 2002⁻2009 in a separate terrestrial area within coastal zone (zone B). Driven by urbanization, built-up gains and cropland losses were active for all time intervals in both zones. Mudflat losses were active except in the first time interval in zone A due to the intensive sea reclamation. The gain of mangrove was active while the loss of mangrove is dormant for all three intervals in zone A. Transition level analysis further revealed the similarities and differences in processes within patterns of land changes for both zones. The transition from cropland to built-up was systematically targeted and stationary while the transition from woodland to built-up was systematically avoiding transition in both zones. Built-up tended to target aquaculture for the second and third time intervals in zone A but avoid Aquaculture for all intervals in zone B. Land change in zone A was more significant than that in zone B during the second and third time intervals at three-level intensity. The application of intensity analysis can enhance our understanding of the patterns and processes in land changes and suitable land development plans in the Quanzhou bay area. This type of investigation is useful to provide information for developing sound land use policy to achieve urban sustainability in similar coastal areas.

  16. Ground-state proton decay of {sup 69}Br and implications for the {sup 68}Se astrophysical rapid proton-capture process waiting point.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A. M.; Famiano, M. A.; Lynch, W. G.

    2011-06-24

    We report on the first direct measurement of the proton separation energy for the proton-unbound nucleus {sup 69}Br. Bypassing the {sup 68}Se waiting point in the rp process is directly related to the 2p-capture rate through {sup 69}Br, which depends exponentially on the proton separation energy. We find a proton separation energy for {sup 69}Br of S{sub p}({sup 69}Br) = -785{sub -40}{sup +34} keV; this is less bound compared to previous predictions which have relied on uncertain theoretical calculations. The influence of the extracted proton separation energy on the rp process occurring in type I x-ray bursts is examined withinmore » the context of a one-zone burst model.« less

  17. Palynostratigraphical correlation of the excavated Miocene lignite seams of the Yataǧan basin (Muǧla Province, south-western Turkey)

    NASA Astrophysics Data System (ADS)

    Bouchal, Johannes Martin; Grímsson, Friðgeir; Denk, Thomas

    2016-04-01

    The excavated main lignite seams and overlying lacustrine sediments of the opencast mines Eskihisar, Salihpaşalar, and Tı naz, Muǧla Province, south-western Turkey were investigated using a high taxonomic resolution palynological approach. The Eskihisar section comprises 47m and 56 samples of which 30 were usable for palynological analysis. The Tı naz section comprises 75 m and 29 samples of which 15 were usable for palynological analysis. Finally, the Salihpaşalar section comprises 25 m and 26 samples of which 16 were usable for palynological analysis. The age of the palynological sections is middle to late Miocene based on radiometric dating and vertebrate fossils. In order to investigate dispersed pollen and spores and their botanical affinities a combined light microscopy and scanning electron microscopy approach was used. The rich palynoflora comprises: seven types of algal cysts (Botryococcus, Zygnemataceae), seventeen spore types belonging to Lycopsida (club mosses), Marsileaceae (water-clover), Osmundaceae, Pteridaceae (brake), and Polypodiaceae; 14 types of gymnosperm pollen belonging to Ephedraceae (Mormon tea), Cupressaceae, Pinaceae (Cathaya, cedar, hemlock, pine, spruce); five types of monocotyledone pollen belonging to Poaceae (grasses, common reed), and Typhaceae (bulrush, bur-reed); ca 90 dicotyledone pollen types belonging to Altingiaceae (sweet gum), Amaranthaceae (goosefoot), Anacardiaceae (sumac family), Apiaceae (parsley family), Aquifoliaceae (holly), Asteraceae (sunflower family), Betulaceae (alder, birch, hazel, hophornbeam, hornbeam), Campanulaceae (bellflower family), Cannabaceae (hackberries), Caprifoliaceae (honeysuckle, teasel family), Caryophyllaceae (pink family), Ericaceae (heather family), Eucommiaceae, Euphorbiaceae (spurge family), Fabaceae (bean family), Fagaceae (beech, oak), Geraniaceae (storkbills), Juglandaceae (hickory, walnut, wingnut), Lamiaceae (bagflower), Linaceae (flax), Lythraceae (waterwillow), Malvaceae (basswood, mallow family), Myricaceae (bayberry), Oleaceae (olive family), Onagraceae (evening primrose family), Plumbaginaceae (sea-lavender), Polygonaceae (docks, knotweed), Ranunculaceae (buttercup family), Rosaceae (rose family), Salicaceae (willow), Sapindaceae (maple), Sapotaceae, and Ulmaceae (elm, Zelkova). The objectives of this investigation were (1) to evaluate whether the three palynological sections were deposited at the same time, and (2) to show regional vegetation differences within a single sedimentary basin. We found three general pollen zones corresponding to different sedimentary settings and palaeoenvironments. The first pollen zone was linked to lignite formation (swamp forest, fern spores, Alnus, Decodon). The second pollen zone reflects lacustrine conditions (Typhaceae) and surrounding hinterland vegetation dominated by Fagaceae. The third pollen zone is dominated by herbaceous taxa, whereas woody taxa are less diverse and less abundant. In general, the three palynological sections are congruent in reflecting distinct pollen zones. However main vegetation types may be represented by different dominating taxa (e. g. Alnus dominace in Eskihisar and Tı naz localities while absent in Salihpaşalar) and rare taxa may differ between localities. Our results demonstrate that in order to achieve a comprehensive understanding of environmental and vegetation conditions in a sedimentary basin, a single palynological section (locality) may not capture the entirety of environmental conditions and changes.

  18. Work zone safety analysis and modeling: a state-of-the-art review.

    PubMed

    Yang, Hong; Ozbay, Kaan; Ozturk, Ozgur; Xie, Kun

    2015-01-01

    Work zone safety is one of the top priorities for transportation agencies. In recent years, a considerable volume of research has sought to determine work zone crash characteristics and causal factors. Unlike other non-work zone-related safety studies (on both crash frequency and severity), there has not yet been a comprehensive review and assessment of methodological approaches for work zone safety. To address this deficit, this article aims to provide a comprehensive review of the existing extensive research efforts focused on work zone crash-related analysis and modeling, in the hopes of providing researchers and practitioners with a complete overview. Relevant literature published in the last 5 decades was retrieved from the National Work Zone Crash Information Clearinghouse and the Transport Research International Documentation database and other public digital libraries and search engines. Both peer-reviewed publications and research reports were obtained. Each study was carefully reviewed, and those that focused on either work zone crash data analysis or work zone safety modeling were identified. The most relevant studies are specifically examined and discussed in the article. The identified studies were carefully synthesized to understand the state of knowledge on work zone safety. Agreement and inconsistency regarding the characteristics of the work zone crashes discussed in the descriptive studies were summarized. Progress and issues about the current practices on work zone crash frequency and severity modeling are also explored and discussed. The challenges facing work zone safety research are then presented. The synthesis of the literature suggests that the presence of a work zone is likely to increase the crash rate. Crashes are not uniformly distributed within work zones and rear-end crashes are the most prevalent type of crashes in work zones. There was no across-the-board agreement among numerous papers reviewed on the relationship between work zone crashes and other factors such as time, weather, victim severity, traffic control devices, and facility types. Moreover, both work zone crash frequency and severity models still rely on relatively simple modeling techniques and approaches. In addition, work zone data limitations have caused a number of challenges in analyzing and modeling work zone safety. Additional efforts on data collection, developing a systematic data analysis framework, and using more advanced modeling approaches are suggested as future research tasks.

  19. A Carbon Cycle Model for the Social-Ecological Process in Coastal Wetland: A Case Study on Gouqi Island, East China

    PubMed Central

    Xiong, Lihu; Zhu, Wenjia

    2017-01-01

    Coastal wetlands offer many important ecosystem services both in natural and in social systems. How to simultaneously decrease the destructive effects flowing from human activities and maintaining the sustainability of regional wetland ecosystems are an important issue for coastal wetlands zones. We use carbon credits as the basis for regional sustainable developing policy-making. With the case of Gouqi Island, a typical coastal wetlands zone that locates in the East China Sea, a carbon cycle model was developed to illustrate the complex social-ecological processes. Carbon-related processes in natural ecosystem, primary industry, secondary industry, tertiary industry, and residents on the island were identified in the model. The model showed that 36780 tons of carbon is released to atmosphere with the form of CO2, and 51240 tons of carbon is captured by the ecosystem in 2014 and the three major resources of carbon emission are transportation and tourism development and seawater desalination. Based on the carbon-related processes and carbon balance, we proposed suggestions on the sustainable development strategy of Gouqi Island as coastal wetlands zone. PMID:28286690

  20. Real object-based 360-degree integral-floating display using multiple depth camera

    NASA Astrophysics Data System (ADS)

    Erdenebat, Munkh-Uchral; Dashdavaa, Erkhembaatar; Kwon, Ki-Chul; Wu, Hui-Ying; Yoo, Kwan-Hee; Kim, Young-Seok; Kim, Nam

    2015-03-01

    A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system's angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone.

  1. Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling

    NASA Astrophysics Data System (ADS)

    Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang

    2018-04-01

    Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (< 1.5 cm) a viscoelastic model matches better, while an elastic model is more robust overall. Within landward embayments, where lateral stresses from surrounding protrusions damp the flexural response, a 2-D model captures behaviour that is missed in simple 1-D models. We conclude that improvements in current tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.

  2. A Carbon Cycle Model for the Social-Ecological Process in Coastal Wetland: A Case Study on Gouqi Island, East China.

    PubMed

    Li, Yanxia; Xiong, Lihu; Zhu, Wenjia

    2017-01-01

    Coastal wetlands offer many important ecosystem services both in natural and in social systems. How to simultaneously decrease the destructive effects flowing from human activities and maintaining the sustainability of regional wetland ecosystems are an important issue for coastal wetlands zones. We use carbon credits as the basis for regional sustainable developing policy-making. With the case of Gouqi Island, a typical coastal wetlands zone that locates in the East China Sea, a carbon cycle model was developed to illustrate the complex social-ecological processes. Carbon-related processes in natural ecosystem, primary industry, secondary industry, tertiary industry, and residents on the island were identified in the model. The model showed that 36780 tons of carbon is released to atmosphere with the form of CO 2 , and 51240 tons of carbon is captured by the ecosystem in 2014 and the three major resources of carbon emission are transportation and tourism development and seawater desalination. Based on the carbon-related processes and carbon balance, we proposed suggestions on the sustainable development strategy of Gouqi Island as coastal wetlands zone.

  3. Gold nanoparticle-based enhanced lateral flow immunoassay for detection of Cronobacter sakazakii in powdered infant formula.

    PubMed

    Pan, Ruili; Jiang, Yujun; Sun, Luhong; Wang, Rui; Zhuang, Kejin; Zhao, Yueming; Wang, Hui; Ali, Md Aslam; Xu, Honghua; Man, Chaoxin

    2018-05-01

    Cronobacter sakazakii is an opportunistic foodborne pathogen that can infect newborns through powdered infant formula (PIF). In this study, we developed a novel enhanced lateral flow immunoassay (LFA) with enhanced sensitivity for detection of C. sakazakii in PIF by the naked eye. The proposed strategy for signal enhancement of the traditional LFA used concentrated gold nanoparticles (AuNP) as the enhancer to conjugate with capture antibodies, which could increase the immobilized capture antibodies concentration at the detection zone to improve capture efficiency. Besides, the detection signal was further amplified by accumulated AuNP as the C. sakazakii labeled with AuNP probes was captured by antibodies conjugated with enhancer at the test line. We also studied the effect of different concentrations of capture antibodies and concentrated AuNP on detection performance, and found that 2.2 mg/mL of capture antibodies and 0.06 nM concentrated AuNP were the optimal combination that could avoid a false-positive signal and maximally amplify the detection signal of the enhanced LFA. Using this strategy, the detection sensitivity of the enhanced LFA was 10 3 cfu/mL and improved 100-fold compared with traditional LFA. The strip was highly specific to C. sakazakii, and the time for detection of C. sakazakii in PIF was shortened by 3 h. In summary, the enhanced LFA developed by the addition of concentrated AuNP as the enhancer can be used as a sensitive, rapid, visual qualitative and point-of-care test method for detecting target analytes. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Freeway work zone lane capacity.

    DOT National Transportation Integrated Search

    2009-01-01

    The focus of this report is a capacity analysis of two long-term urban freeway Work Zones. Work Zone #1 : tapered four mainline lanes to two, using two separate tapers; Work Zone #2 tapered two mainline lanes to one. : Work Zone throughput was analyz...

  5. An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.

    2014-12-01

    Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.

  6. A minimalist probabilistic description of root zone soil water

    USGS Publications Warehouse

    Milly, P.C.D.

    2001-01-01

    The probabilistic response of depth‐integrated soil water to given climatic forcing can be described readily using an existing supply‐demand‐storage model. An apparently complex interaction of numerous soil, climate, and plant controls can be reduced to a relatively simple expression for the equilibrium probability density function of soil water as a function of only two dimensionless parameters. These are the index of dryness (ratio of mean potential evaporation to mean precipitation) and a dimensionless storage capacity (active root zone soil water capacity divided by mean storm depth). The first parameter is mainly controlled by climate, with surface albedo playing a subsidiary role in determining net radiation. The second is a composite of soil (through moisture retention characteristics), vegetation (through rooting characteristics), and climate (mean storm depth). This minimalist analysis captures many essential features of a more general probabilistic analysis, but with a considerable reduction in complexity and consequent elucidation of the critical controls on soil water variability. In particular, it is shown that (1) the dependence of mean soil water on the index of dryness approaches a step function in the limit of large soil water capacity; (2) soil water variance is usually maximized when the index of dryness equals 1, and the width of the peak varies inversely with dimensionless storage capacity; (3) soil water has a uniform probability density function when the index of dryness is 1 and the dimensionless storage capacity is large; and (4) the soil water probability density function is bimodal if and only if the index of dryness is <1, but this bimodality is pronounced only for artificially small values of the dimensionless storage capacity.

  7. Handbook of capture-recapture analysis

    USGS Publications Warehouse

    Amstrup, Steven C.; McDonald, Trent L.; Manly, Bryan F.J.

    2005-01-01

    Every day, biologists in parkas, raincoats, and rubber boots go into the field to capture and mark a variety of animal species. Back in the office, statisticians create analytical models for the field biologists' data. But many times, representatives of the two professions do not fully understand one another's roles. This book bridges this gap by helping biologists understand state-of-the-art statistical methods for analyzing capture-recapture data. In so doing, statisticians will also become more familiar with the design of field studies and with the real-life issues facing biologists.Reliable outcomes of capture-recapture studies are vital to answering key ecological questions. Is the population increasing or decreasing? Do more or fewer animals have a particular characteristic? In answering these questions, biologists cannot hope to capture and mark entire populations. And frequently, the populations change unpredictably during a study. Thus, increasingly sophisticated models have been employed to convert data into answers to ecological questions. This book, by experts in capture-recapture analysis, introduces the most up-to-date methods for data analysis while explaining the theory behind those methods. Thorough, concise, and portable, it will be immensely useful to biologists, biometricians, and statisticians, students in both fields, and anyone else engaged in the capture-recapture process.

  8. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.

    PubMed

    Gogoi, Priya; Sepehri, Saedeh; Chow, Will; Handique, Kalyan; Wang, Yixin

    2017-01-01

    Molecular analysis of circulating tumor cells (CTCs) is hindered by low sensitivity and high level of background leukocytes of currently available CTC enrichment technologies. We have developed a novel device to enrich and retrieve CTCs from blood samples by using a microfluidic chip. The Celsee PREP100 device captures CTCs with high sensitivity and allows the captured CTCs to be retrieved for molecular analysis. It uses the microfluidic chip which has approximately 56,320 capture chambers. Based on differences in cell size and deformability, each chamber ensures that small blood escape while larger CTCs of varying sizes are trapped and isolated in the chambers. In this report, we used the Celsee PREP100 to capture cancer cells spiked into normal donor blood samples. We were able to show that the device can capture as low as 10 cells with high reproducibility. The captured CTCs were retrieved from the microfluidic chip. The cell recovery rate of this back-flow procedure is 100% and the level of remaining background leukocytes is very low (about 300-400 cells). RNA from the retrieved cells are extracted and converted to cDNA, and gene expression analysis of selected cancer markers can be carried out by using RT-PCR assays. The sensitive and easy-to-use Celsee PREP100 system represents a promising technology for capturing and molecular characterization of CTCs.

  9. Inferring the effects of compositional boundary layers on crystal nucleation, growth textures, and mineral chemistry in natural volcanic tephras through submicron-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zellmer, Georg; Sakamoto, Naoya; Hwang, Shyh-Lung; Matsuda, Nozomi; Iizuka, Yoshiyuki; Moebis, Anja; Yurimoto, Hisayoshi

    2016-09-01

    Crystal nucleation and growth are first order processes captured in volcanic rocks and record important information about the rates of magmatic processes and chemical evolution of magmas during their ascent and eruption. We have studied glass-rich andesitic tephras from the Central Plateau of the Southern Taupo Volcanic Zone by electron- and ion-microbeam imaging techniques to investigate down to sub-micrometre scale the potential effects of compositional boundary layers (CBLs) of melt around crystals on the nucleation and growth of mineral phases and the chemistry of crystal growth zones. We find that CBLs may influence the types of mineral phases nucleating and growing, and growth textures such as the development of swallowtails. The chemistry of the CBLs also has the capacity to trigger intermittent overgrowths of nanometre-scale bands of different phases in rapidly growing crystals, resulting in what we refer to as cryptic phase zoning. The existence of cryptic phase zoning has implications for the interpretation of microprobe compositional data, and the resulting inferences made on the conditions of magmatic evolution. Identification of cryptic phase zoning may in future lead to more accurate thermobarometric estimates and thus geospeedometric constraints. In future, a more quantitative characterization of CBL formation and its effects on crystal nucleation and growth may contribute to a better understanding of melt rheology and magma ascent processes at the onset of explosive volcanic eruptions, and will likely be of benefit to hazard mitigation efforts.

  10. Ecology of urban malaria vectors in Niamey, Republic of Niger.

    PubMed

    Labbo, Rabiou; Fandeur, Thierry; Jeanne, Isabelle; Czeher, Cyril; Williams, Earle; Arzika, Ibrahim; Soumana, Amadou; Lazoumar, Ramatoulaye; Duchemin, Jean-Bernard

    2016-06-08

    Urbanization in African cities has major impact on malaria risk. Niamey, the capital of the Republic of Niger, is situated in the West African Sahel zone. The short rainy season and human activities linked with the Niger River influence mosquito abundance. This study aimed at deciphering the factors of distribution of urban malaria vectors in Niamey. The distribution of mosquito aquatic stages was investigated monthly from December 2002 to November 2003, at up to 84 breeding sites, throughout Niamey. An exploratory analysis of association between mosquito abundance and environmental factors was performed by a Principal Component Analysis and confirmed by Kruskall-Wallis non-parametric test. To assess the relative importance of significant factors, models were built for Anopheles and Culicinae. In a second capture session, adult mosquitoes were collected weekly with pyrethrum sprays and CDC light-traps from June 2008 to June 2009 in two differentiated urban areas chosen after the study's first step. Members of the Anopheles gambiae complex were genotyped and Anopheles females were tested for the presence of Plasmodium falciparum circumsporozoite antigens using ELISA. In 2003, 29 % of 8420 mosquitoes collected as aquatic stages were Anopheles. They were significantly more likely to be found upstream, relatively close to the river and highly productive in ponds. These factors remained significant in regression and generalized linear models. The Culicinae were found significantly more likely close to the river, and in the main temporary affluent stream. In 2009, Anopheles specimens, including Anopheles gambiae s.l. (95 %), but also Anopheles funestus (0.6 %) accounted for 18 % of the adult mosquito fauna, with a large difference between the two sampled zones. Three members of the An. gambiae complex were found: Anopheles arabiensis, Anopheles coluzzii, and An. gambiae. Nineteen (1.3 %) out of 1467 females tested for P. falciparum antigen were found positive. The study provides valuable update knowledge on malaria vector ecology and distribution in Niamey. The identification of spatial and environmental risk factors could pave the way to larval source management strategy and allow malaria vector control to focus on key zones for the benefit of the community.

  11. High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection.

    PubMed

    Autebert, Julien; Coudert, Benoit; Champ, Jérôme; Saias, Laure; Guneri, Ezgi Tulukcuoglu; Lebofsky, Ronald; Bidard, François-Clément; Pierga, Jean-Yves; Farace, Françoise; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis

    2015-05-07

    A new generation of the Ephesia cell capture technology optimized for CTC capture and genetic analysis is presented, characterized in depth and compared with the CellSearch system as a reference. This technology uses magnetic particles bearing tumour-cell specific EpCAM antibodies, self-assembled in a regular array in a microfluidic flow cell. 48,000 high aspect-ratio columns are generated using a magnetic field in a high throughput (>3 ml h(-1)) device and act as sieves to specifically capture the cells of interest through antibody-antigen interactions. Using this device optimized for CTC capture and analysis, we demonstrated the capture of epithelial cells with capture efficiency above 90% for concentrations as low as a few cells per ml. We showed the high specificity of capture with only 0.26% of non-epithelial cells captured for concentrations above 10 million cells per ml. We investigated the capture behavior of cells in the device, and correlated the cell attachment rate with the EpCAM expression on the cell membranes for six different cell lines. We developed and characterized a two-step blood processing method to allow for rapid processing of 10 ml blood tubes in less than 4 hours, and showed a capture rate of 70% for as low as 25 cells spiked in 10 ml blood tubes, with less than 100 contaminating hematopoietic cells. Using this device and procedure, we validated our system on patient samples using an automated cell immunostaining procedure and a semi-automated cell counting method. Our device captured CTCs in 75% of metastatic prostate cancer patients and 80% of metastatic breast cancer patients, and showed similar or better results than the CellSearch device in 10 out of 13 samples. Finally, we demonstrated the possibility of detecting cancer-related PIK3CA gene mutation in 20 cells captured in the chip with a good correlation between the cell count and the quantitation value Cq of the post-capture qPCR.

  12. Composting-derived organic coating on biochar enhances its affinity to nitrate

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Joseph, Stephen; Conte, Pellegrino; Albu, Mihaela; Obst, Martin; Borch, Thomas; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-04-01

    Biochar is defined charcoal that is produced by the thermal treatment of biomass in the (partial) absence of oxygen (pyrolysis) for non-oxidative applications, especially in agriculture. Due to its high surface area and porous structure, it is suggested as a beneficial soil amendment to increase crop yields and to tailor biogeochemical cycles in agro-ecosystems to reduce both greenhouse gas emissions and nutrient leaching. While early research focused on single applications of large amounts of biochar (>10 t ha-1), economic and ecological boundaries as well as practical considerations and recent findings shifted the focus towards low-dose (˜1 t ha-1) and potentially repeated applications of nutrient-enriched biochars, i.e. biochar-based fertilizers in the root-zone. Thus, biochar must be "loaded" with nutrients prior to its use as a root-zone amendment. Co-composting is suggested as a superior method, as co-composted biochar was shown to promote plant growth and showed the desired slow release of nutrients such as nitrate ("nitrate capture", Kammann et al., 2015 SR5:11080). However, the underlying mechanisms are not understood and nitrate capture has been quantified only for isolated biochars but not for e.g. biochar-amended composts without prior separation of the biochar. In the present study, we used repeated extractions with 2 M KCl and found that up to 30% of the nitrate present in a biochar-amended compost is captured in biochar, although biochar was amended to the initial composting feedstock (manure) only at 4% (w/w). Additionally, we quantified nitrate capture by pristine biochar after soaking the biochar in NH4NO3 solution in the absence of any additional organic carbon and nitrate capture of separated co-composted biochar. Assuming pseudo-first order kinetics for biochar nitrate release, we found an increase of biochar's affinity to nitrate after co-composting. Spectro-microscopical investigations (scanning transmission electron microscopy with electron energy loss spectroscopy - STEM-EELS, scanning transmission X-ray microscopy STXM) revealed the formation of a nano-porous organic coating on co-composted biochar. This coating alters the interaction of biochar with water as evidenced by proton fast field cycling nuclear magnetic resonance (1H FFC NMR) relaxometry and might explain its distinct characteristics. Our findings offer a roadmap for future research to design sustainable slow-release nitrogen fertilizers based on biochar to reduce the environmental impact of agriculture. Further microscopic studies are necessary to understand the preconditions of the formation of organic coatings on biochar on a holistic basis to design biochar post-production treatments.

  13. Meteoroid capture cell construction

    NASA Technical Reports Server (NTRS)

    Zook, H. A.; High, R. W. (Inventor)

    1976-01-01

    A thin membrane covering the open side of a meteoroid capture cell causes an impacting meteoroid to disintegrate as it penetrates the membrane. The capture cell then contains and holds the meteoroid particles for later analysis.

  14. [Comparative analysis of 3D data visibility of the prepared tooth finishing line on a synthetic jaw model, captured by international scanners in a laboratory conditions].

    PubMed

    Ryakhovskiy, A N; Kostyukova, V V

    The aim of the study was to compare accuracy of digital impression's finishing line and the zone under it taken by different intraoral scanning systems. Parameters of comparison were: different level of the finishing line to the gingiva and width of sulcus after retraction. For this purpose two synthetic jaw models with prepared teeth were scanned using intraoral scanning systems: 3D Progress (MHT S.P.A., IT - MHT Optic Research AG, CH); True Definition (3M ESPE, USA); Trios (3Shape A/S, DNK); CEREC AC Bluecam, CEREC Omnicam (Sirona Dental System GmbH, DE); Planscan (Planmeca, FIN) (each n=10). Reference-scanning was done by ATOS Core (GOM mbH, DE). The resulting digital impressions were superimposed with the master-scan. The lowest measured deviations (trueness) for intraoral scanners, where the finishing line was 0.5 mm above gingiva were with scanner True Definition - 18.8±6.63 (on the finishing line) and 51.0±14.33 µm (0.3 mm under the finishing line). In conditions where finishing line was on the same level with gingiva, scanner Trios showed the best results: 17.0±3.96 and 52.7±6.52 µm. When the finishing line was 0.5 mm under gingiva, none of the testing scanners could visualize the zone 0.3 mm lower the finishing line. The best results for accuracy o the finishing line in that circumstances showed Trios: 15.1±5.05 µm. The optimum visualization of the finishing line and the zone under it was reached when the sulcus was 0.3 mm after retraction. Thus, the best accuracy was obtained with Trios: 10.3±2.69 (on the finishing line) and 57.2±13.58 µm (0.3 mm under finishing line). The results show that intraoral scanners also provide enough accuracy for indicating finishing line and the zone under it in different conditions of preparation and gingiva retraction. However, not all of the testing scanners can properly indicate finishing line and the zone under it when shoulder is below gingiva and the width of sulcus is less than 0.2 mm.

  15. Seamless presentation capture, indexing, and management

    NASA Astrophysics Data System (ADS)

    Hilbert, David M.; Cooper, Matthew; Denoue, Laurent; Adcock, John; Billsus, Daniel

    2005-10-01

    Technology abounds for capturing presentations. However, no simple solution exists that is completely automatic. ProjectorBox is a "zero user interaction" appliance that automatically captures, indexes, and manages presentation multimedia. It operates continuously to record the RGB information sent from presentation devices, such as a presenter's laptop, to display devices, such as a projector. It seamlessly captures high-resolution slide images, text and audio. It requires no operator, specialized software, or changes to current presentation practice. Automatic media analysis is used to detect presentation content and segment presentations. The analysis substantially enhances the web-based user interface for browsing, searching, and exporting captured presentations. ProjectorBox has been in use for over a year in our corporate conference room, and has been deployed in two universities. Our goal is to develop automatic capture services that address both corporate and educational needs.

  16. Linking animal-borne video to accelerometers reveals prey capture variability.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori

    2013-02-05

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78-89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83-0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging.

  17. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Heiba, Ahmad; Baxter, Van D.; Shen, Bo

    2017-01-01

    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, foodmore » service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.« less

  18. Indonesia, Malaysia, and the Philippines Security Cooperation in the Celebes Sea

    DTIC Science & Technology

    2008-06-01

    Soviet-Afghan conflict.34 Jemmah Islamiyah of Indonesia (founded by Abu Bakar Bashir, and Indonesian national of Yemeni heritage) dates to the 1970s...the suspects stated they were trained in the Ubaidiah and Abu Bakar camps before the latter was captured by the Philippine Army in 1999.43 In 2003...international trade. Ian Storey labeled the Celebes Sea’s triborder area as the “danger zone of Southeast Asia,” due to cross-border activities of the Abu

  19. Numerical simulation of cloud and precipitation structure during GALE IOP-2

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Perkey, D. J.; Seablom, M. S.

    1988-01-01

    A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.

  20. Environmental Radioactivity Study in Surface Sediments of Guacanayabo Gulf (Cuba)

    NASA Astrophysics Data System (ADS)

    Reyes, H.; López-Pino, N.; Rizo, O. Díaz; Bernal, J. L.; D'Alessandro, K.; Padilla, F.; Corrales, Y.; Casanova, O. A.; Gelen, A.; Martínez, Y.; Aguilar, J.; Arado, J. O.; Maidana, N. L.

    2009-06-01

    Sediment samples have been collected in the Guacanayabo gulf located in the southeast Cuba, to determinate the radioactivity levels of 210Pb, 234Th, 214Pb, 137Cs, 232Th and 40K using Low-Background Gamma Spectrometry and to evaluate its impact in the habitat of important marine species for fishery industry. The obtained results show the lowest radioactivity levels determined in Cuban marine environments. The species capture declination in the last years is not originated by radioactive pollution of the zone.

  1. Advance Technology Satellites in the Commercial Environment. Volume 2: Final Report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A forecast of transponder requirements was obtained. Certain assumptions about system configurations are implicit in this process. The factors included are interpolation of baseline year values to produce yearly figures, estimation of satellite capture, effects of peak-hours and the time-zone staggering of peak hours, circuit requirements for acceptable grade of service capacity of satellite transponders, including various compression methods where applicable, and requirements for spare transponders in orbit. The graphical distribution of traffic requirements was estimated.

  2. ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, S.; Vienne, A.; Cooper, N. J.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied bymore » the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.« less

  3. Impact of Resolution on the Representation of Precipitation Variability Associated With the ITCZ

    NASA Astrophysics Data System (ADS)

    De Benedetti, Marc; Moore, G. W. K.

    2017-12-01

    The Intertropical Convergence Zone (ITCZ) is responsible for most of the weather and climate in equatorial regions along with many tropical-midlatitude interactions. It is therefore important to understand how models represent its structure and variability. Most ITCZ-associated precipitation is convective, making it unclear how horizontal resolution impacts its representation. To assess this, we introduce a novel technique that involves calculation of the precipitation field's decorrelation length scale (DCLS) using model data sets that share a common lineage with horizontal resolutions from 16 to 160 km. All resolutions captured the ITCZ's mean structure; however, imprints of topography, such as Hawaii and sea surface temperature, including the variability associated with upwelling cold water off the coast of South America, are more clearly represented at higher resolutions. The DCLS analysis indicates that there are changes in the spatial variability of the ITCZ's precipitation that are not reflected in its mean structure, thus confirming its utility as a diagnostic.

  4. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data

    PubMed Central

    Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-01-01

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569

  5. Origin of the Chaotic Motion of the Saturnian Satellite Atlas

    NASA Astrophysics Data System (ADS)

    Renner, S.; Cooper, N. J.; El Moutamid, M.; Sicardy, B.; Vienne, A.; Murray, C. D.; Saillenfest, M.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.

  6. Groundwater protection of minimal water supply systems integrating simple hydrogeological information

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María Elena

    2016-04-01

    According to the current EU environmental legislation, groundwater protection is one of the key issues to be addressed when new industrial activities have to be authorised. This work shows a simple methodology that could be used by local and environmental authorities in order to analyse the potential risk caused by an industrial spill on a natural environment. The methodology leads to the determination of the protection area around an extraction well system using the information given by: i) a set of local piezometers, ii) the chemical nature of the industrial spill and iii) the hydrogeological parameters of the local aquifer. The exact location of the contaminant source is not needed for the analysis. The flow equation is afterwards solved using a finite-difference approximation scheme under stationary conditions. Finally, the capture zones for different times are computed by a simple upstream advective transport model. Results on the determination of the perimeter protection area definition of a water supply system in the municipality of L'Alcora (Castellón) in Spain are shown.

  7. Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon

    USGS Publications Warehouse

    Gomez, D.M.; Anthony, R.G.

    1996-01-01

    We compared species composition and relative abundance of herpetofauna between riparian and upslope habitats among 5 forest types (shrub, open sapling-pole, large sawtimber and old-growth conifer forests, and deciduous forests) in Western Oregon. Riparian- and upslope- associated species were identified based on capture frequencies from pitfall trapping. Species richness was similar among forest types but slightly greater in the shrub stands. The abundances of 3 species differed among forest types. Total captures was highest in deciduous forests, intermediate in the mature conifer forests, and lowest in the 2 young coniferous forests. Species richness was similar between stream and upslope habitats; however, captures were higher in riparian than upslope habitat. Tailed frogs (Ascaphus truei), Dunn's salamanders (Plethodon dunni), roughskin newts(Tanicha granulosa), Pacific giant salamanders (Dicamptodon tenebrosus) and red-legged frogs(Rana aurora) were captured more frequently in riparian than upslope habitats. Of these species the red-legged frog and Pacific giant salamander may depend on riparian habitat for at least part of their life requirements, while tailed frogs, Dunn's salamanders and roughskin newts appear to be riparian associated species. In addition, we found Oregon salamanders (Ensatina eschscholtzi) were associated with upslope habitats. We suggest riparian management zones should be al least 75-100 m on each side of the stream and that management for upslope/and or old forest associates may be equally as important as for riparian species.

  8. Early warning risk assessment for drinking water production: decoding subtle evidence

    NASA Astrophysics Data System (ADS)

    Merz, Christoph; Lischeid, Gunnar; Böttcher, Steven

    2016-04-01

    Due to increasing demands for high quality water for drinking water supply all over the world there is acute need for methods to detect possible threats to groundwater resources early. Especially drinking water production in complex geologic settings has a particularly high risk for unexpected degradation of the groundwater quality due to the unknown interplay between anthropogenically induced hydraulic changes and geochemical processes. This study investigates the possible benefit of the Principal Component Analysis (PCA) for groundwater and drinking water management using common sets of physicochemical monitoring data. The approach was used to identify the prevailing processes driving groundwater quality shifts and related threats, which might be masked in anthropogenically impacted aquifer systems. The approach was applied to a data set from a waterworks located in the state of Brandenburg, NE Germany, which has been operating since nearly four decades. The region faces confronting and increasing demands due to rising peri-urban settlements. The PCA subdivided the data set according to different strengths of effects induced by differing geochemical processes at different sites in the capture zone of the waterworks and varying in time. Thus a spatial assessment of these processes could be performed as well as a temporal assessment of long-term groundwater quality shifts in the extracted water. The analysis revealed that over the period of 16 years of water withdrawal the geochemistry of the extracted groundwater had become increasingly more dissimilar compared to the characteristics found at the majority of observation wells. This component could be identified as highly mineralized CaSO4 dominated water from unexamined deeper zones of the aquifer system. Due to the complex geochemical and hydraulic interactions in the system, this process was masked and was not evident in the data set without validation by the applied statistical analysis. The findings give a clear indication of a potential threat to the groundwater resources in this region with danger for drinking water contamination in a medium-term period.

  9. Initial Results from Lunar Electromagnetic Sounding with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Fuqua, H.; Fatemi, S.; Poppe, A. R.; Delory, G. T.; Grimm, R. E.; De Pater, I.

    2016-12-01

    Electromagnetic Sounding constrains conducting layers of the lunar interior by observing variations in the Interplanetary Magnetic Field. Here, we focus our analysis on the time domain transfer function method locating transient events observed by two magnetometers near the Moon. We analyze ARTEMIS and Apollo magnetometer data. This analysis assumes the induced field responds undisturbed in a vacuum. In actuality, the dynamic plasma environment interacts with the induced field. Our models indicate distortion but not confinement occurs in the nightside wake cavity. Moreover, within the deep wake, near-vacuum region, distortion of the induced dipole fields due to the interaction with the wake is minimal depending on the magnitude of the induced field, the geometry of the upstream fields, and the upstream plasma parameters such as particle densities, solar wind velocity, and temperatures. Our results indicate the assumption of a vacuum dipolar response is reasonable within this minimally disturbed zone. We then interpret the ATEMIS magnetic field signal through a geophysical forward model capturing the induced response based on prescribed electrical conductivity models. We demonstrate our forward model passes benchmarking analyses and solves the magnetic induction response for any input signal as well as any 2 or 3 dimensional conductivity profile. We locate data windows according to the following criteria: (1) probe locations such that the wake probe is within 500km altitude within the wake cavity and minimally disturbed zone, and the second probe is in the free streaming solar wind; (2) a transient event consisting of an abrupt change in the magnetic field occurs enabling the observation of induction; (3) cross correlation analysis reveals the magnetic field signals are well correlated between the two probes and distances observed. Here we present initial ARTEMIS results providing further insight into the lunar interior structure. This method and modeling results are applicable to any airless body with a conducting interior, interacting directly with the solar wind in the absence of a parent body magnetic field as well as any two point magnetometer constellation.

  10. FRAP Analysis: Accounting for Bleaching during Image Capture

    PubMed Central

    Wu, Jun; Shekhar, Nandini; Lele, Pushkar P.; Lele, Tanmay P.

    2012-01-01

    The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis. PMID:22912750

  11. Dynamic Monitoring of Energy Services in Conflict Regions using Suomi-NPP VIIRS

    NASA Astrophysics Data System (ADS)

    Stokes, E.; Roman, M. O.

    2015-12-01

    While remote sensing data has proven useful for understanding the environmental conditions surrounding conflict, it can also present a more nuanced, dynamic picture inside conflict zones. This study investigates the use of global nighttime environmental products as derived from the Suomi-NPP satellite's Visible Infrared Imaging Radiometer Suite (VIIRS) to identify and track the location and timing of regional conflicts in the Middle East as reflected in changes to the region's energy infrastructure. The study focuses on a 43-month period (c. Jan 2012 - Aug 2015) over major urban centers in Iraq, Syria, Egypt, and Lebanon. The new daily dynamic products captured a series of striking downturns in energy service supply and demand that occurred in 2012 in the Syrian cities of Damascus (-50%) and Aleppo (-94%) corresponding to the onset of major military confrontations (The Battle of Aleppo on 7/15/2012 and The Damascus Bombing on 7/23/2012, respectively). Iraqi cities recently captured by the Islamic State of Iraq and the Levant (ISIL) (e.g. Mosul, Tikrit, Tal Afor, Ramadi), also showed marked average decreases in energy service provision (-84% since 4/1/2014) compared to their unoccupied counterparts (e.g., Baghdad and Sulaimaniya at +6%). A seasonal trend decomposition analysis is used to disentangle climactic, social, and political factors affecting the VIIRS time-series, distinguishing between energy patterns associated with conflict and those associated with cultural festivals, load shedding, seasonal weather, and socioeconomic factors.

  12. The co-genetic evolution of metamorphic core complexes and drainage systems

    NASA Astrophysics Data System (ADS)

    Trost, Georg; Neubauer, Franz; Robl, Jörg

    2016-04-01

    Metamorphic core complexes (MCCs) are large scale geological features that globally occur in high strain zones where rocks from lower crustal levels are rapidly exhumed along discrete fault zones, basically ductile-low-angle normal faults recognizable by a metamorphic break between the cool upper plate and hot lower plate. Standard methods, structural analysis and geochronology, are applied to reveal the geodynamic setting of MCCs and to constrain timing and rates of their exhumation. Exhumation is abundantly accompanied by spatially and temporally variable vertical (uplift) and horizontal motions (lateral advection) representing the tectonic driver of topography formation that forces drainage systems and related hillslopes to adjust. The drainage pattern commonly develops in the final stage of exhumation and contributes to the decay of the forming topography. Astonishingly, drainage systems and their characteristic metrics (e.g. normalized steepness index) in regions coined by MCCs have only been sparsely investigated to determine distinctions between different MCC-types (A- and B-type MCCs according to Le Pourhiet et al., 2012). They however, should significantly differ in their topographic expression that evolves by the interplay of tectonic forcing and erosional surface processes. A-type MCCs develop in an overall extensional regime and are bounded partly by strike-slip faults showing transtensional or transpressional components. B-type MCCs are influenced by extensional dynamics only. Here, we introduce C-type MCCs that are updoming along oversteps of crustal-scale, often orogen-parallel strike-slip shear zones. In this study, we analyze drainage systems of several prominent MCCs, and compare their drainage patterns and channel metrics to constrain their geodynamic setting. The Naxos MCC represents an A-type MCC. The Dayman Dome located in Papua New Guinea a B-type MCC, whereas MCCs of the Red River Shear Zone, the Diancang, Ailao-Shan and Day Nui Con Voi complexes, show structural features of the C-type endmember. In the case of the Diancang complex, the MCC is even superimposed by late stage B-type dynamics. The Tauern window and Lepontine dome in the Alps are described as C-type MCCs. We extracted drainage systems and basins and calculated Strahler orders to explore asymmetries in the drainage pattern and to detect evidence for horizontal advection of rivers and catchments. We computed longitudinal river profiles and determined the normalized steepness indexes for channels to uncover regions of spatially variable uplift rates and to constrain the state of landscape adjustment at active MCCs. Furthermore, we analyzed the stability of watersheds by computing so called χ-maps. A-type MCCs show a drainage pattern, which is partly parallel to the stretching and elongation direction, potentially developing from grooves of the detachment. The B-type MCCs show preferences for a radial oriented drainage pattern along lateral terminations. The radial morphology is overprinted by fault systems and neighboring uplifted domes beside the investigation site. A clear preferred direction for further capturing of catchments can be described along detachment zones. The results show an asymmetric alignment of the drainage networks of C-type MCCs, caused by tilting and lateral offset of the streams. One side of the valley shows short streams, whereas the other side is characterized by long, deeply incised streams with a clear tendency to capture adjacent catchments. In C-type MCCs, the drainage pattern develops perpendicular to the trunk streams, which are subparallel to confining faults. The tributaries of the trunk valleys show often dragging in shear direction of the confining fault. The drainage pattern along ductile low-angle normal faults seemingly develops parallel to these faults and shows an asymmetry due to tilting towards the hangingwall block. The analysis reveals that the three types of MCCs can be distinguished by their drainage pattern. All three types have a distinct central drainage divide in common, which is getting elongated in the stretching direction in C-type MCCs and remains small in B-type MCCs. Further early results of our analysis show the high potential of employing morphometric tools in combination with methods from structural geology and low temperature geochronology to determine the type of MCCs, to reveal timing and rates of uplift and horizontal advection, and to constrain the state of landscape adjustment at active MCCs.

  13. Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations

    PubMed Central

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358

  14. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations.

    PubMed

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.

  15. Annual movements of a steppe eagle (Aquila nipalensis) summering in Mongolia and wintering in Tibet

    USGS Publications Warehouse

    Ellis, D.H.; Moon, S.L.; Robinson, J.W.

    2001-01-01

    An adult female steppe eagle (Aquila nipalensis Hodgson) was captured and fitted with a satellite transmitter in June 1995 in southeastern Mongolia. In fall, it traveled southwest towards India as expected, but stopped in southeastern Tibet and wintered in a restricted zone within the breeding range of the steppe eagle. In spring, the bird returned to the same area of Mongolia where it was captured. These observations, though derived from the movements of a single bird, suggest three things that are contrary to what is generally believed about steppe eagle biology. First, not all steppe eagles move to warmer climes in winter. Second, not all steppe eagles are nomadic in winter. Finally, because our bird wintered at the periphery of the steppe eagle breeding range in Tibet, perhaps birds that breed in this same area also winter there. If so, not all steppe eagles are migratory.

  16. Mapping the stability field of Jupiter Trojans

    NASA Technical Reports Server (NTRS)

    Levison, H. F.; Shoemaker, E. M.; Wolfe, R. F.

    1991-01-01

    Jupiter Trojans are a remnant of outer solar system planetesimals captured into stable or quasistable libration about the 1:1 resonance with the mean motion of Jupiter. The observed swarms of Trojans may provide insight into the original mass of condensed solids in the zone from which the Jovian planets accumulated, provided that the mechanisms of capture can be understood. As the first step toward this understanding, the stability field of Trojans were mapped in the coordinate proper eccentricity, e(sub p), and libration amplitude, D. To accomplish this mapping, the orbits of 100 particles with e(sub p) in the range of 0 to 0.8 and D in the range 0 to 140 deg were numerically integrated. Orbits of the Sun, the four Jovian planets, and the massless particles were integrated as a full N-body system, in a barycentric frame using fourth order symplectic scheme.

  17. CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL

    NASA Astrophysics Data System (ADS)

    Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.

    2008-12-01

    A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated waters.

  18. Effects of seasonal variability in across- and alongshore transport of anchoveta ( Engraulis ringens) larvae on model-based pre-recruitment indices off central Chile

    NASA Astrophysics Data System (ADS)

    Parada, Carolina; Colas, Francois; Soto-Mendoza, Samuel; Castro, Leonardo

    2012-01-01

    An individual-based model (IBM) of anchoveta ( Engraulis ringens) larvae was coupled to a climatological hydrodynamic (Regional Oceanic Modeling System, ROMS) model for central-southern Chile to answer the question as to whether or not across- and alongshore transport off central-southern Chile enhances retention in the spawning areas during the winter and summer reproductive periods, using model-based pre-recruitment indices (simulated transport success to nursery areas). The hydrodynamic model validation showed that ROMS captures the mean Seas Surface Temperature and Eddie Kinetic Energy observed in satellite-based data over the entire region. The IBM was used to simulate the transport of eggs and larvae from spawning zones in central Chile (Constitución, Dichato, Gulf of Arauco and Lebu-Corral) to historical nursery areas (HRZ, region between 35°S and 37°S). Model results corroborated HRZ as the most successful pre-recruitment zone (particles originated in the Dichato and Gulf of Arauco spawning areas), as well as identifying Lebu-Corral as a zone of high retention with a high associated pre-recruitment index (particles originated in the Lebu-Corral spawning zone). The highest pre-recruitment values were mainly found in winter. The Constitución and Dichato spawning zones displayed a typical summer upwelling velocity pattern, while the Gulf of Arauco in summertime showed strong offshore and alongshore velocity components. The Lebu-Corral region in winter presented important near-surface cross-shore transport towards the coast (associated with downwelling events), this might be one of the major mechanisms leading to high retention levels and a high pre-recruitment index for Lebu-Corral spawning zone. The limitations of the modeling approach are discussed and put into perspective for future work.

  19. Morphological Idiosyncracies in Classical Arabic: Evidence Favoring Lexical Representations over Rules.

    ERIC Educational Resources Information Center

    Miller, Ann M.

    A lexical representational analysis of Classical Arabic is proposed that captures a generalization that McCarthy's (1979, 1981) autosegmental analysis misses, namely that idiosyncratic characteristics of the derivational binyanim in Arabic are lexical, not morphological. This analysis captures that generalization by treating all the idiosyncracies…

  20. Crustal Structure Beneath India and Tibet: New Constraints From Inversion of Receiver Functions

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Ravi Kumar, M.; Mohanty, Debasis D.; Singh, Chandrani; Biswas, Rahul; Srinagesh, D.

    2017-10-01

    The Indian subcontinent comprises geological terranes of varied age and structural character. In this study, we provide new constraints to existing crustal models by inverting the P-to-s receiver functions (RFs) at 317 broadband seismic stations. Inversion results fill crucial gaps in existing velocity models (CRUST1.0 and SEAPS) by capturing regions which are less represented. The final model produced is much more heterogeneous and is able to capture the structural variations between closely spaced seismic stations. In comparison to the global models, major differences are seen for seismic stations located over various rift zones (e.g., Godavari, Narmada, and Cambay) and those close to the coastal regions where transition from oceanic to continental crust is expected to create drastic changes in the crustal configuration. Seismic images are produced along various profiles using 49,682 individual RFs recorded at 442 seismic stations. Lateral variations captured using migrated images across the Himalayan collisional front revealed the hitherto elusive southern extent of the Moho and intracrustal features south of the Main Central Thrust (MCT). Poisson's ratio and crustal thickness estimates obtained using H-k stacking technique and inversion of RFs are grossly similar lending credence to the robustness of inversions. An updated crustal thickness map produced using 1,525 individual data points from controlled source seismics and RFs reveals a (a) thickened crust (>55 km) at the boundary of Dharwar Craton and Southern Granulite Terrain, (b) clear difference in crustal thickness estimates between Eastern Dharwar Craton and Western Dharwar Craton, (c) thinner crust beneath Cambay Basin between southwest Deccan Volcanic Province and Delhi-Aravalli Fold Belt, (d) thinner crust (<35 km) beneath Bengal Basin, (e) thicker crust (>40 km) beneath paleorift zones like Narmada Son Lineament and Godavari Graben, and (f) very thick crust beneath central Tibet (>65 km) with maximum lateral variations along the Himalayan collision front.

  1. Improving the effectiveness of smart work zone technologies.

    DOT National Transportation Integrated Search

    2016-11-01

    This project evaluates the effectiveness of sensor network systems for work zone traffic estimation. The comparative analysis is : performed on a work zone modeled in microsimulation and calibrated with field data from two Illinois work zones. Realis...

  2. Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis.

    PubMed

    Tadimety, Amogha; Syed, Abeer; Nie, Yuan; Long, Christina R; Kready, Kasia M; Zhang, John X J

    2017-01-23

    This comprehensive review serves as a guide for developing scalable and robust liquid biopsies on chip for capture, detection, and analysis of circulating tumor cells (CTCs). Liquid biopsy, the detection of biomarkers from body fluids, has proven challenging because of CTC rarity and the heterogeneity of CTCs shed from tumors. The review starts with the underlying biological mechanisms that make liquid biopsy a challenge before moving into an evaluation of current technological progress. Then, a framework for evaluation of the technologies is presented with special attention to throughput, capture rate, and cell viability for analysis. Technologies for CTC capture, detection, and analysis will be evaluated based on these criteria, with a focus on current approaches, limitations and future directions. The paper provides a critical review for microchip developers as well as clinical investigators to build upon the existing progress towards the goal of designing CTC capture, detection, and analysis platforms.

  3. Performance analysis of Aloha networks with power capture and near/far effect

    NASA Astrophysics Data System (ADS)

    McCartin, Joseph T.

    1989-06-01

    An analysis is presented for the throughput characteristics for several classes of Aloha packet networks. Specifically, the throughput for variable packet length Aloha utilizing multiple power levels to induce receiver capture is derived. The results are extended to an analysis of a selective-repeat ARQ Aloha network. Analytical results are presented which indicate a significant increase in throughput for a variable packet network implementing a random two power level capture scheme. Further research into the area of the near/far effect on Aloha networks is included. Improvements in throughput for mobile radio Aloha networks which are subject to the near/far effect are presented. Tactical Command, Control and Communications (C3) systems of the future will rely on Aloha ground mobile data networks. The incorporation of power capture and the near/far effect into future tactical networks will result in improved system analysis, design, and performance.

  4. Detonation Propagation in Slabs and Axisymmetric Rate Sticks

    NASA Astrophysics Data System (ADS)

    Romick, Christopher; Aslam, Tariq

    Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.

  5. Limited distal organelles and synaptic function in extensive monoaminergic innervation.

    PubMed

    Tao, Juan; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.

  6. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2005-11-01

    The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.

  7. Multiparameter cell affinity chromatography: separation and analysis in a single microfluidic channel.

    PubMed

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-10-02

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.

  8. Linking animal-borne video to accelerometers reveals prey capture variability

    PubMed Central

    Watanabe, Yuuki Y.; Takahashi, Akinori

    2013-01-01

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78–89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83–0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging. PMID:23341596

  9. Object-based class modelling for multi-scale riparian forest habitat mapping

    NASA Astrophysics Data System (ADS)

    Strasser, Thomas; Lang, Stefan

    2015-05-01

    Object-based class modelling allows for mapping complex, hierarchical habitat systems. The riparian zone, including forests, represents such a complex ecosystem. Forests within riparian zones are biologically high productive and characterized by a rich biodiversity; thus considered of high community interest with an imperative to be protected and regularly monitored. Satellite earth observation (EO) provides tools for capturing the current state of forest habitats such as forest composition including intermixture of non-native tree species. Here we present a semi-automated object based image analysis (OBIA) approach for the mapping of riparian forests by applying class modelling of habitats based on the European Nature Information System (EUNIS) habitat classifications and the European Habitats Directive (HabDir) Annex 1. A very high resolution (VHR) WorldView-2 satellite image provided the required spatial and spectral details for a multi-scale image segmentation and rule-base composition to generate a six-level hierarchical representation of riparian forest habitats. Thereby habitats were hierarchically represented within an image object hierarchy as forest stands, stands of homogenous tree species and single trees represented by sunlit tree crowns. 522 EUNIS level 3 (EUNIS-3) habitat patches with a mean patch size (MPS) of 12,349.64 m2 were modelled from 938 forest stand patches (MPS = 6868.20 m2) and 43,742 tree stand patches (MPS = 140.79 m2). The delineation quality of the modelled EUNIS-3 habitats (focal level) was quantitatively assessed to an expert-based visual interpretation showing a mean deviation of 11.71%.

  10. Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification.

    PubMed

    Passarelli, M C; Cesar, A; Riba, I; DelValls, T A

    2017-10-01

    Changes in the marine carbonate system may affect various calcifying organisms. This study is aimed to compare the sensitivity of embryo-larval development of two species of sea urchins (Paracentrutos lividus and Lytechinus variegatus) collected and exposed to samples from different coastal zone (Spain and Brazil) to ocean acidification. The results showed that the larval stages are very sensitive to small changes in the seawater's pH. The larvae from P. lividus species showed to be more sensitive to acidified elutriate sediments than larvae from L. variegatus sea urchin. Furthermore, this study has demonstrated that the CO 2 enrichment in aquatic ecosystems cause changes on the mobility of the metals: Zn, Cu, Fe, Al and As, which was presented different behavior among them. Although an increase on the mobility of metals was found, the results using the principal component analysis showed that the pH reduction show the highest correlations with the toxicity and is the main cause of embryo-larval development inhibition. In this comparative study it is demonstrated that both species are able to assess potential effects of the ocean acidification related to CO 2 enrichment by both near future scenarios and the risk associated with CO 2 leakages in the Carbon Capture and Storage (CCS) process, and the importance of comparative studies in different zones to improve the understanding of the impacts caused by ocean acidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The application of neural network model to the simulation nitrous oxide emission in the hydro-fluctuation belt of Three Gorges Reservoir

    NASA Astrophysics Data System (ADS)

    Song, Lanlan

    2017-04-01

    Nitrous oxide is much more potent greenhouse gas than carbon dioxide. However, the estimation of N2O flux is usually clouded with uncertainty, mainly due to high spatial and temporal variations. This hampers the development of general mechanistic models for N2O emission as well, as most previously developed models were empirical or exhibited low predictability with numerous assumptions. In this study, we tested General Regression Neural Networks (GRNN) as an alternative to classic empirical models for simulating N2O emission in riparian zones of Reservoirs. GRNN and nonlinear regression (NLR) were applied to estimate the N2O flux of 1-year observations in riparian zones of Three Gorge Reservoir. NLR resulted in lower prediction power and higher residuals compared to GRNN. Although nonlinear regression model estimated similar average values of N2O, it could not capture the fluctuation patterns accurately. In contrast, GRNN model achieved a fairly high predictability, with an R2 of 0.59 for model validation, 0.77 for model calibration (training), and a low root mean square error (RMSE), indicating a high capacity to simulate the dynamics of N2O flux. According to a sensitivity analysis of the GRNN, nonlinear relationships between input variables and N2O flux were well explained. Our results suggest that the GRNN developed in this study has a greater performance in simulating variations in N2O flux than nonlinear regressions.

  12. Single-axis gyroscopic motion with uncertain angular velocity about spin axis

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1977-01-01

    A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.

  13. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses.

    PubMed

    Balázs, Mercedesz; Martin, Flavius; Zhou, Tong; Kearney, John

    2002-09-01

    Marginal zone (MZ) and B1 B lymphocytes participate jointly in the early immune response against T-independent (TI) particulate antigens. Here we show that blood-derived neutrophil granulocytes and CD11c(lo) immature dendritic cells (DC) are the primary cells that efficiently capture and transport particulate bacteria to the spleen. In a systemic infection, CD11c(lo) DC, but not neutrophils, provide critical survival signals, which can be inhibited by TACI-Fc, to antigen-specific MZ B cells and promote their differentiation into IgM-secreting plasmablasts. In a local TI response, peritoneal cavity macrophages provide similar support to B1 B-derived Ag-specific blasts. In the absence of soluble TACI ligands, Ag-activated MZ- and B1-derived blasts lack survival signals and undergo apoptosis, resulting in severely impaired antibody responses.

  14. Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle

    NASA Astrophysics Data System (ADS)

    Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing

    2018-06-01

    Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.

  15. Experimental tests of truncated diffusion in fault damage zones

    NASA Astrophysics Data System (ADS)

    Suzuki, Anna; Hashida, Toshiyuki; Li, Kewen; Horne, Roland N.

    2016-11-01

    Fault zones affect the flow paths of fluids in groundwater aquifers and geological reservoirs. Fault-related fracture damage decreases to background levels with increasing distance from the fault core according to a power law. This study investigated mass transport in such a fault-related structure using nonlocal models. A column flow experiment is conducted to create a permeability distribution that varies with distance from a main conduit. The experimental tracer response curve is preasymptotic and implies subdiffusive transport, which is slower than the normal Fickian diffusion. If the surrounding area is a finite domain, an upper truncated behavior in tracer response (i.e., exponential decline at late times) is observed. The tempered anomalous diffusion (TAD) model captures the transition from subdiffusive to Fickian transport, which is characterized by a smooth transition from power-law to an exponential decline in the late-time breakthrough curves.

  16. Analysis of ground-water flow in the Madison aquifer using fluorescent dyes injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    USGS Publications Warehouse

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO, which is located adjacent to the loss zone, was similar to the concentration in the stream. Fluorescein arrived at well NON (injection at site S1), which is located about 2 miles northeast of the loss zone, within about 1.6 days, and the maximum concentration was 44 ug/L. For injection at site S4, when streamflow was about 12 ft3/s, fluorescein was detected in samples from six wells and time to first arrival ranged from 0.2 to 16 days. Following injection at site S4 in 2004, the length of time that dye remained in the capture zone of well NON, which is located approximately 2 miles from the loss zone, was almost an order of magnitude greater than in 2003. For injection at site R1, Rhodamine WT was detected at well DRU and spring TI-SP with time to first arrival of about 0.5 and 1.1 days and maximum concentrations of 6.2 and 0.91 ug/L, respectively. Well DRU and spring TI-SP are located near the center of the Rapid Creek loss zone where the creek has a large meander. Measurable concentrations were observed for spring TI-SP as many as 109 days after the dye injection. The direction of a conduit flow path in the Spring Creek area was to the northeast with ground-water velocities that ranged from 770 to 6,500 feet per day. In the Rapid Creek loss zone, a conduit flow path east of the loss zone was not evident from the dye injection.

  17. Motion Analysis System for Instruction of Nihon Buyo using Motion Capture

    NASA Astrophysics Data System (ADS)

    Shinoda, Yukitaka; Murakami, Shingo; Watanabe, Yuta; Mito, Yuki; Watanuma, Reishi; Marumo, Mieko

    The passing on and preserving of advanced technical skills has become an important issue in a variety of fields, and motion analysis using motion capture has recently become popular in the research of advanced physical skills. This research aims to construct a system having a high on-site instructional effect on dancers learning Nihon Buyo, a traditional dance in Japan, and to classify Nihon Buyo dancing according to style, school, and dancer's proficiency by motion analysis. We have been able to study motion analysis systems for teaching Nihon Buyo now that body-motion data can be digitized and stored by motion capture systems using high-performance computers. Thus, with the aim of developing a user-friendly instruction-support system, we have constructed a motion analysis system that displays a dancer's time series of body motions and center of gravity for instructional purposes. In this paper, we outline this instructional motion analysis system based on three-dimensional position data obtained by motion capture. We also describe motion analysis that we performed based on center-of-gravity data obtained by this system and motion analysis focusing on school and age group using this system.

  18. Dislocation models of interseismic deformation in the western United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.

    2008-01-01

    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.

  19. Evaluation of work zone speed limits : an objective and subjective analysis of work zones in Missouri.

    DOT National Transportation Integrated Search

    2011-02-01

    This study objectively and subjectively examined speed characteristics and driver compliance with the posted speed limit : in Missouri work zones. The objective evaluation collected vehicle speeds from four work zones with different : configurations ...

  20. LES/RANS Simulation of a Supersonic Reacting Wall Jet

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Boles, John A.; Baurle, Robert A.

    2010-01-01

    This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width.

  1. Survey of ungulate abundance on Santa Rosa Island, Channel Islands National Park, California, March 2009

    USGS Publications Warehouse

    Griffin, Paul C.; Schoenecker, Kate A.; Gogan, Peter J.; Lubow, Bruce C.

    2009-01-01

    Reliable estimates of elk (Cervus elaphus) and deer (Odocoileus hemionus) abundance on Santa Rosa Island, Channel Islands National Park, California, are required to assess the success of management actions directed at these species. We conducted a double-observer aerial survey of elk on a large portion of Santa Rosa Island on March 19, 2009. All four persons on the helicopter were treated as observers. We used two analytical approaches: (1) with three capture occasions corresponding to three possible observers, pooling the observations from the two rear-seat observers, and (2) with four capture occasions treating each observer separately. Approach 1 resulted in an estimate of 483 elk in the survey zone with a 95-percent confidence interval of 479 to 524 elk. Approach 2 resulted in an estimate of 489 elk in the survey zone with a 95-percent confidence interval of 471 to 535 elk. Approximately 5 percent of the elk groups that were estimated to have been present in the survey area were not seen by any observer. Fog prevented us from collecting double-observer observations for deer as intended on March 20. However, we did count 434 deer during the double-observer counts of elk on March 19. Both the calculated number of elk and the observed number of deer are minimal estimates of numbers of each ungulate species on Santa Rosa Island as weather conditions precluded us from surveying the entire island.

  2. Fast words boundaries localization in text fields for low quality document images

    NASA Astrophysics Data System (ADS)

    Ilin, Dmitry; Novikov, Dmitriy; Polevoy, Dmitry; Nikolaev, Dmitry

    2018-04-01

    The paper examines the problem of word boundaries precise localization in document text zones. Document processing on a mobile device consists of document localization, perspective correction, localization of individual fields, finding words in separate zones, segmentation and recognition. While capturing an image with a mobile digital camera under uncontrolled capturing conditions, digital noise, perspective distortions or glares may occur. Further document processing gets complicated because of its specifics: layout elements, complex background, static text, document security elements, variety of text fonts. However, the problem of word boundaries localization has to be solved at runtime on mobile CPU with limited computing capabilities under specified restrictions. At the moment, there are several groups of methods optimized for different conditions. Methods for the scanned printed text are quick but limited only for images of high quality. Methods for text in the wild have an excessively high computational complexity, thus, are hardly suitable for running on mobile devices as part of the mobile document recognition system. The method presented in this paper solves a more specialized problem than the task of finding text on natural images. It uses local features, a sliding window and a lightweight neural network in order to achieve an optimal algorithm speed-precision ratio. The duration of the algorithm is 12 ms per field running on an ARM processor of a mobile device. The error rate for boundaries localization on a test sample of 8000 fields is 0.3

  3. Feeding Habits of Introduced Black Rats, Rattus rattus, in Nesting Colonies of Galapagos Petrel on San Cristóbal Island, Galapagos

    PubMed Central

    Riofrío-Lazo, Marjorie; Páez-Rosas, Diego

    2015-01-01

    Introduced rodents are responsible for ecosystem changes in islands around the world. In the Galapagos archipelago, their effects on the native flora and fauna are adverse, including the extinction of endemic rodents in some islands and the reduction in the reproductive success of the Galapagos petrel (Pterodroma phaeopygia) in its nesting zones. Understanding the feeding behavior of introduced rodents and their trophic interactions with native and non-native species on islands, can assist in the design of management strategies and conservation plans of invasive and endemic species respectively. Four petrel nesting colonies were monitored during June 2013 on San Cristóbal Island (El Plátano, El Junco, San Joaquín, and La Comuna). The feeding habits of black rats were evaluated by analyzing stomach contents and stable isotopes in hair. Three species of introduced rodents were captured. R. rattus was the most abundant at all sites (n=43, capture success (CS) = 55.8%), followed by the house mouse, Mus musculus (n = 17, CS = 37.8%), and the Norwegian rat, R. norvegicus (n = 4, CS = 4.5%), captured only at La Comuna. The omnivorous black rat ate mostly plants (98%) and arthropods (2%). Intact seeds of Miconia robinsoniana were the main food at all sites (relative abundance=72.1%, present in 95% of the analyzed stomachs), showing the black rats’ possible role in the archipelago as endemic seed dispersers. There was no evidence of petrel’s intake; however, its possible consumption is not discarded at all. The δ15N and δ13C analysis corroborated the primarily herbivorous diet of black rats. The isotopic signatures of the three rodent species reflect the inter- and intra-specific differential use of food resources. Black rat showed a wider diet in La Comuna, which was related to a lower availability of its primary prey and its ability to adapt to the available resources in its habitat. PMID:25984724

  4. Analytics For Distracted Driver Behavior Modeling in Dilemma Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jan-Mou; Malikopoulos, Andreas; Thakur, Gautam

    2014-01-01

    In this paper, we present the results obtained and insights gained through the analysis of TRB contest data. We used exploratory analysis, regression, and clustering models for gaining insights into the driver behavior in a dilemma zone while driving under distraction. While simple exploratory analysis showed the distinguishing driver behavior patterns among different popu- lation groups in the dilemma zone, regression analysis showed statically signification relationships between groups of variables. In addition to analyzing the contest data, we have also looked into the possible impact of distracted driving on the fuel economy.

  5. THE RADIATIVE NEUTRON CAPTURE ON 2H, 6Li, 7Li, 12C AND 13C AT ASTROPHYSICAL ENERGIES

    NASA Astrophysics Data System (ADS)

    Dubovichenko, Sergey; Dzhazairov-Kakhramanov, Albert; Burkova, Natalia

    2013-05-01

    The continued interest in the study of radiative neutron capture on atomic nuclei is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross-section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This paper is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The consideration of these processes is done within the framework of the potential cluster model (PCM), general description of which was given earlier. The methods of usage of the results obtained, based on the phase shift analysis intercluster potentials, are demonstrated in calculations of the radiative capture characteristics. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the basic reaction chain of primordial nucleosynthesis in the course of the Universe formation.

  6. Bench Scale Process for Low Cost CO 2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less

  7. Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Audet, P.

    2017-12-01

    Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.

  8. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle

    NASA Astrophysics Data System (ADS)

    Ribeiro, Julia M.; Lee, Cin-Ty A.

    2017-12-01

    The depth of slab dehydration is thought to be controlled by the thermal state of the downgoing slab: cold slabs are thought to mostly dehydrate beneath the arc front while warmer slabs should mostly dehydrate beneath the fore-arc. Cold subduction zone lavas are thus predicted to have interacted with greater extent of water-rich fluids released from the downgoing slab, and should thus display higher water content and be elevated in slab-fluid proxies (i.e., high Ba/Th, H2O/Ce, Rb/Th, etc.) compared to hot subduction zone lavas. Arc lavas, however, display similar slab-fluid signatures regardless of the thermal state of the slab, suggesting more complexity to volatile cycling in subduction zones. Here, we explore whether the serpentinized fore-arc mantle may be an important fluid reservoir in subduction zones and whether it can contribute to arc magma generation by being dragged down with the slab. Using simple mass balance and fluid dynamics calculations, we show that the dragged-down fore-arc mantle could provide enough water (∼7-78% of the total water injected at the trenches) to account for the water outfluxes released beneath the volcanic arc. Hence, we propose that the water captured by arc magmas may not all derive directly from the slab, but a significant component may be indirectly slab-derived via dehydration of dragged-down fore-arc serpentinites. Fore-arc serpentinite dehydration, if universal, could be a process that explains the similar geochemical fingerprint (i.e., in slab fluid proxies) of arc magmas.

  9. Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport.

    PubMed

    Molins, S; Mayer, K U; Amos, R T; Bekins, B A

    2010-03-01

    Contaminant attenuation processes in the vadose zone of a crude oil spill site near Bemidji, MN have been simulated with a reactive transport model that includes multicomponent gas transport, solute transport, and the most relevant biogeochemical reactions. Dissolution and volatilization of oil components, their aerobic and anaerobic degradation coupled with sequential electron acceptor consumption, ingress of atmospheric O(2), and the release of CH(4) and CO(2) from the smear zone generated by the floating oil were considered. The focus of the simulations was to assess the dynamics between biodegradation and gas transport processes in the vadose zone, to evaluate the rates and contributions of different electron accepting processes towards vadose zone natural attenuation, and to provide an estimate of the historical mass loss. Concentration distributions of reactive (O(2), CH(4), and CO(2)) and non-reactive (Ar and N(2)) gases served as key constraints for the model calibration. Simulation results confirm that as of 2007, the main degradation pathway can be attributed to methanogenic degradation of organic compounds in the smear zone and the vadose zone resulting in a contaminant plume dominated by high CH(4) concentrations. In accordance with field observations, zones of volatilization and CH(4) generation are correlated to slightly elevated total gas pressures and low partial pressures of N(2) and Ar, while zones of aerobic CH(4) oxidation are characterized by slightly reduced gas pressures and elevated concentrations of N(2) and Ar. Diffusion is the most significant transport mechanism for gases in the vadose zone; however, the simulations also indicate that, despite very small pressure gradients, advection contributes up to 15% towards the net flux of CH(4), and to a more limited extent to O(2) ingress. Model calibration strongly suggests that transfer of biogenically generated gases from the smear zone provides a major control on vadose zone gas distributions and vadose zone carbon balance. Overall, the model was successful in capturing the complex interactions between biogeochemical reactions and multicomponent gas transport processes. However, despite employing a process-based modeling approach, honoring observed parameter ranges, and generally obtaining good agreement between field observations and model simulations, accurate quantification of natural attenuation rates remains difficult. The modeling results are affected by uncertainties regarding gas phase saturations, tortuosities, and the magnitude of CH(4) and CO(2) flux from the smear zone. These findings highlight the need to better delineate gas fluxes at the model boundaries, which will help constrain contaminant degradation rates, and ultimately source zone longevity. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Vadose zone attenuation of organic compounds at a crude oil spill site - Interactions between biogeochemical reactions and multicomponent gas transport

    USGS Publications Warehouse

    Molins, S.; Mayer, K.U.; Amos, R.T.; Bekins, B.A.

    2010-01-01

    Contaminant attenuation processes in the vadose zone of a crude oil spill site near Bemidji, MN have been simulated with a reactive transport model that includes multicomponent gas transport, solute transport, and the most relevant biogeochemical reactions. Dissolution and volatilization of oil components, their aerobic and anaerobic degradation coupled with sequential electron acceptor consumption, ingress of atmospheric O2, and the release of CH4 and CO2 from the smear zone generated by the floating oil were considered. The focus of the simulations was to assess the dynamics between biodegradation and gas transport processes in the vadose zone, to evaluate the rates and contributions of different electron accepting processes towards vadose zone natural attenuation, and to provide an estimate of the historical mass loss. Concentration distributions of reactive (O2, CH4, and CO2) and non-reactive (Ar and N2) gases served as key constraints for the model calibration. Simulation results confirm that as of 2007, the main degradation pathway can be attributed to methanogenic degradation of organic compounds in the smear zone and the vadose zone resulting in a contaminant plume dominated by high CH4 concentrations. In accordance with field observations, zones of volatilization and CH4 generation are correlated to slightly elevated total gas pressures and low partial pressures of N2 and Ar, while zones of aerobic CH4 oxidation are characterized by slightly reduced gas pressures and elevated concentrations of N2 and Ar. Diffusion is the most significant transport mechanism for gases in the vadose zone; however, the simulations also indicate that, despite very small pressure gradients, advection contributes up to 15% towards the net flux of CH4, and to a more limited extent to O2 ingress. Model calibration strongly suggests that transfer of biogenically generated gases from the smear zone provides a major control on vadose zone gas distributions and vadose zone carbon balance. Overall, the model was successful in capturing the complex interactions between biogeochemical reactions and multicomponent gas transport processes. However, despite employing a process-based modeling approach, honoring observed parameter ranges, and generally obtaining good agreement between field observations and model simulations, accurate quantification of natural attenuation rates remains difficult. The modeling results are affected by uncertainties regarding gas phase saturations, tortuosities, and the magnitude of CH4 and CO2 flux from the smear zone. These findings highlight the need to better delineate gas fluxes at the model boundaries, which will help constrain contaminant degradation rates, and ultimately source zone longevity. ?? 2009 Elsevier B.V.

  11. Under-reporting of road traffic mortality in developing countries: application of a capture-recapture statistical model to refine mortality estimates.

    PubMed

    Samuel, Jonathan C; Sankhulani, Edward; Qureshi, Javeria S; Baloyi, Paul; Thupi, Charles; Lee, Clara N; Miller, William C; Cairns, Bruce A; Charles, Anthony G

    2012-01-01

    Road traffic injuries are a major cause of preventable death in sub-Saharan Africa. Accurate epidemiologic data are scarce and under-reporting from primary data sources is common. Our objectives were to estimate the incidence of road traffic deaths in Malawi using capture-recapture statistical analysis and determine what future efforts will best improve upon this estimate. Our capture-recapture model combined primary data from both police and hospital-based registries over a one year period (July 2008 to June 2009). The mortality incidences from the primary data sources were 0.075 and 0.051 deaths/1000 person-years, respectively. Using capture-recapture analysis, the combined incidence of road traffic deaths ranged 0.192-0.209 deaths/1000 person-years. Additionally, police data were more likely to include victims who were male, drivers or pedestrians, and victims from incidents with greater than one vehicle involved. We concluded that capture-recapture analysis is a good tool to estimate the incidence of road traffic deaths, and that capture-recapture analysis overcomes limitations of incomplete data sources. The World Health Organization estimated incidence of road traffic deaths for Malawi utilizing a binomial regression model and survey data and found a similar estimate despite strikingly different methods, suggesting both approaches are valid. Further research should seek to improve capture-recapture data through utilization of more than two data sources and improving accuracy of matches by minimizing missing data, application of geographic information systems, and use of names and civil registration numbers if available.

  12. Under-Reporting of Road Traffic Mortality in Developing Countries: Application of a Capture-Recapture Statistical Model to Refine Mortality Estimates

    PubMed Central

    Samuel, Jonathan C.; Sankhulani, Edward; Qureshi, Javeria S.; Baloyi, Paul; Thupi, Charles; Lee, Clara N.; Miller, William C.; Cairns, Bruce A.; Charles, Anthony G.

    2012-01-01

    Road traffic injuries are a major cause of preventable death in sub-Saharan Africa. Accurate epidemiologic data are scarce and under-reporting from primary data sources is common. Our objectives were to estimate the incidence of road traffic deaths in Malawi using capture-recapture statistical analysis and determine what future efforts will best improve upon this estimate. Our capture-recapture model combined primary data from both police and hospital-based registries over a one year period (July 2008 to June 2009). The mortality incidences from the primary data sources were 0.075 and 0.051 deaths/1000 person-years, respectively. Using capture-recapture analysis, the combined incidence of road traffic deaths ranged 0.192–0.209 deaths/1000 person-years. Additionally, police data were more likely to include victims who were male, drivers or pedestrians, and victims from incidents with greater than one vehicle involved. We concluded that capture-recapture analysis is a good tool to estimate the incidence of road traffic deaths, and that capture-recapture analysis overcomes limitations of incomplete data sources. The World Health Organization estimated incidence of road traffic deaths for Malawi utilizing a binomial regression model and survey data and found a similar estimate despite strikingly different methods, suggesting both approaches are valid. Further research should seek to improve capture-recapture data through utilization of more than two data sources and improving accuracy of matches by minimizing missing data, application of geographic information systems, and use of names and civil registration numbers if available. PMID:22355338

  13. Improved resistivity imaging of groundwater solute plumes using POD-based inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.; Khan, T.

    2012-12-01

    We propose a new approach for enforcing physics-based regularization in electrical resistivity imaging (ERI) problems. The approach utilizes a basis-constrained inversion where an optimal set of basis vectors is extracted from training data by Proper Orthogonal Decomposition (POD). The key aspect of the approach is that Monte Carlo simulation of flow and transport is used to generate a training dataset, thereby intrinsically capturing the physics of the underlying flow and transport models in a non-parametric form. POD allows for these training data to be projected onto a subspace of the original domain, resulting in the extraction of a basis for the inversion that captures characteristics of the groundwater flow and transport system, while simultaneously allowing for dimensionality reduction of the original problem in the projected space We use two different synthetic transport scenarios in heterogeneous media to illustrate how the POD-based inversion compares with standard Tikhonov and coupled inversion. The first scenario had a single source zone leading to a unimodal solute plume (synthetic #1), whereas, the second scenario had two source zones that produced a bimodal plume (synthetic #2). For both coupled inversion and the POD approach, the conceptual flow and transport model used considered only a single source zone for both scenarios. Results were compared based on multiple metrics (concentration root-mean square error (RMSE), peak concentration, and total solute mass). In addition, results for POD inversion based on 3 different data densities (120, 300, and 560 data points) and varying number of selected basis images (100, 300, and 500) were compared. For synthetic #1, we found that all three methods provided qualitatively reasonable reproduction of the true plume. Quantitatively, the POD inversion performed best overall for each metric considered. Moreover, since synthetic #1 was consistent with the conceptual transport model, a small number of basis vectors (100) contained enough a priori information to constrain the inversion. Increasing the amount of data or number of selected basis images did not translate into significant improvement in imaging results. For synthetic #2, the RMSE and error in total mass were lowest for the POD inversion. However, the peak concentration was significantly overestimated by the POD approach. Regardless, the POD-based inversion was the only technique that could capture the bimodality of the plume in the reconstructed image, thus providing critical information that could be used to reconceptualize the transport problem. We also found that, in the case of synthetic #2, increasing the number of resistivity measurements and the number of selected basis vectors allowed for significant improvements in the reconstructed images.

  14. Single-Pixel Optical Fluctuation Analysis of Calcium Channel Function in Active Zones of Motor Nerve Terminals

    PubMed Central

    Luo, Fujun; Dittrich, Markus; Stiles, Joel R.; Meriney, Stephen D.

    2011-01-01

    We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca2+) channels during an action potential and the number of such Ca2+ channels within active zones of frog neuromuscular junctions. Analysis revealed ~36 Ca2+ channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (~200–250). The probability that each channel opened during an action potential was only ~0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca2+ channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca2+ influx through individual Ca2+ channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones. PMID:21813687

  15. Comparing two-zone models of dust exposure.

    PubMed

    Jones, Rachael M; Simmons, Catherine E; Boelter, Fred W

    2011-09-01

    The selection and application of mathematical models to work tasks is challenging. Previously, we developed and evaluated a semi-empirical two-zone model that predicts time-weighted average (TWA) concentrations (Ctwa) of dust emitted during the sanding of drywall joint compound. Here, we fit the emission rate and random air speed variables of a mechanistic two-zone model to testing event data and apply and evaluate the model using data from two field studies. We found that the fitted random air speed values and emission rate were sensitive to (i) the size of the near-field and (ii) the objective function used for fitting, but this did not substantially impact predicted dust Ctwa. The mechanistic model predictions were lower than the semi-empirical model predictions and measured respirable dust Ctwa at Site A but were within an acceptable range. At Site B, a 10.5 m3 room, the mechanistic model did not capture the observed difference between PBZ and area Ctwa. The model predicted uniform mixing and predicted dust Ctwa up to an order of magnitude greater than was measured. We suggest that applications of the mechanistic model be limited to contexts where the near-field volume is very small relative to the far-field volume.

  16. Loss of local capture of the pulmonary vein myocardium after antral isolation: prevalence and clinical significance.

    PubMed

    Squara, Fabien; Liuba, Ioan; Chik, William; Santangeli, Pasquale; Zado, Erica S; Callans, David J; Marchlinski, Francis E

    2015-03-01

    Capture of the myocardial sleeves of the pulmonary veins (PV) during PV pacing is mandatory for assessing exit block after PV isolation (PVI). However, previous studies reported that a significant proportion of PVs failed to demonstrate local capture after PVI. We designed this study to evaluate the prevalence and the clinical significance of loss of PV capture after PVI. Thirty patients (14 redo) undergoing antral PVI were included. Before and after PVI, local PV capture was assessed during circumferential pacing (10 mA/2 milliseconds) with a circular multipolar catheter (CMC), using EGM analysis from each dipole of the CMC and from the ablation catheter placed in ipsilateral PV. Pacing output was varied to optimize identification of sleeve capture. All PVs demonstrated sleeve capture before PVI, but only 81% and 40% after first time and redo PVI, respectively (P < 0.001 vs. before PVI). In multivariate analysis, absence of spontaneous PV depolarizations after PVI and previous PVI procedures were associated with less PV sleeve capture after PVI (40% sleeve capture, P < 0.001 for both). Loss of PV local capture by design was coincident with the development of PV entrance block and importantly predicted absence of acute reconnection during adenosine challenge with 96% positive predictive value (23% negative predictive value). Loss of PV local capture is common after antral PVI resulting in entrance block, and may be used as a specific alternate endpoint for PV electrical isolation. Additionally, loss of PV local capture may identify PVs at very low risk of acute reconnection during adenosine challenge. © 2014 Wiley Periodicals, Inc.

  17. Density estimation using the trapping web design: A geometric analysis

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.

    1994-01-01

    Population densities for small mammal and arthropod populations can be estimated using capture frequencies for a web of traps. A conceptually simple geometric analysis that avoid the need to estimate a point on a density function is proposed. This analysis incorporates data from the outermost rings of traps, explaining large capture frequencies in these rings rather than truncating them from the analysis.

  18. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    PubMed

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  19. Bacterial communities in soil samples from the Mingyong Glacier of southwestern China.

    PubMed

    Li, Haoyu; Taj, Muhammad Kamran; Ji, Xiuling; Zhang, Qi; Lin, Liangbing; Zhou, Zhimei; Wei, Yunlin

    2017-05-01

    The present study was an effort to determine the bacterial diversity of soils in Mingyong Glacier located at the Meili Snow Mountains of southwestern China. Mingyong Glacier has different climatic zones within a very narrow area, and bacterial community diversity in this low temperature area remains largely unknown. In this study, soil samples were collected from four different climatic zones: M11A (dry warm valley), M14 (forest), M15 (grass land), and M16 (glacier zones). Phylogenetic analysis based on 16S rRNA gene V6 hypervariable region showed high bacterial abundance in the glacier. The number of Operational Taxonomic Units ranged from 2.24×10 3 to 5.56×10 3 in soil samples. Statistical analysis of 16S rRNA gene clone libraries results showed that bacterial diversity in zones M11A,M14 and M16 are higher than in zone M15. The bacterial community structures are clearly distinguishable, and phylogenetic analysis showed that the predominant phyla were Proteobacteria, Deinococcus-Thermus, Firmicutes, Actinobacteria, and Nitrospirae in Mingyong Glacier. Seventy-nine different orders from four zones have been isolated. Bacterial diversity and distribution of bacterial communities related to the anthropogenic perturbations in zone (M15) were confirmed by diversity index analysis, and the diversity index of other three zones was satisfactory through this analysis software. The results suggest that bacterial diversity and distribution analyses using bacterial 16S rRNA gene V6 hypervariable region were successful, and bacterial communities in this area not only had the same bacterial phyla compared to other glaciers but also had their own rare species.

  20. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    USGS Publications Warehouse

    Karacan, C.O.; Olea, R.A.; Goodman, G.

    2012-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control.This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines.Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may change up to 3. MMscf per acre and, in a multi-panel district, may total 9. Bcf of methane within the gas emission zone. Therefore, ventilation and gas capture systems should be designed accordingly. In addition, rock displacements within the gas emission zone are spatially distributed. From an engineering and practical point of view, spatial distributions of GIP and distributions of rock displacements should be correlated with in-mine emissions and gob gas venthole productions. ?? 2011.

  1. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    PubMed Central

    Karacan, C. Özgen; Olea, Ricardo A.; Goodman, Gerrit

    2015-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control. This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines. Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may change up to 3 MMscf per acre and, in a multi-panel district, may total 9 Bcf of methane within the gas emission zone. Therefore, ventilation and gas capture systems should be designed accordingly. In addition, rock displacements within the gas emission zone are spatially distributed. From an engineering and practical point of view, spatial distributions of GIP and distributions of rock displacements should be correlated with in-mine emissions and gob gas venthole productions. PMID:26435558

  2. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2009-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor. Morphometry of the corneal endothelium is presently done by semi-automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development of fully automated analysis of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images. The digitally enhanced images of the corneal endothelium were transformed, using the fast Fourier transform (FFT). Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.

  3. Modeling association among demographic parameters in analysis of open population capture-recapture data.

    PubMed

    Link, William A; Barker, Richard J

    2005-03-01

    We present a hierarchical extension of the Cormack-Jolly-Seber (CJS) model for open population capture-recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis-Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.

  4. Highly sensitive detection of the group A Rotavirus using Apolipoprotein H-coated ELISA plates compared to quantitative real-time PCR.

    PubMed

    Adlhoch, Cornelia; Kaiser, Marco; Hoehne, Marina; Mas Marques, Andreas; Stefas, Ilias; Veas, Francisco; Ellerbrok, Heinz

    2011-02-10

    The principle of a capture ELISA is binding of specific capture antibodies (polyclonal or monoclonal) to the surface of a suitable 96 well plate. These immobilized antibodies are capable of specifically binding a virus present in a clinical sample. Subsequently, the captured virus is detected using a specific detection antibody. The drawback of this method is that a capture ELISA can only function for a single virus captured by the primary antibody. Human Apolipoprotein H (ApoH) or β2-glycoprotein 1 is able to poly-specifically bind viral pathogens. Replacing specific capture antibodies by ApoH should allow poly-specific capture of different viruses that subsequently could be revealed using specific detection antibodies. Thus, using a single capture ELISA format different viruses could be analysed depending on the detection antibody that is applied. In order to demonstrate that this is a valid approach we show detection of group A rotaviruses from stool samples as a proof of principle for a new method of capture ELISA that should also be applicable to other viruses. Stool samples of different circulating common human and potentially zoonotic group A rotavirus strains, which were pretested in commercial EIAs and genotyped by PCR, were tested in parallel in an ApoH-ELISA set-up and by quantitative real-time PCR (qPCR). Several control samples were included in the analysis. The ApoH-ELISA was suitable for the capture of rotavirus-particles and the detection down to 1,000 infectious units (TCID(50/ml)). Subsets of diagnostic samples of different G- and P-types were tested positive in the ApoH-ELISA in different dilutions. Compared to the qPCR results, the analysis showed high sensitivity, specificity and low cross-reactivity for the ApoH-ELISA, which was confirmed in receiver operating characteristics (ROC) analysis. In this study the development of a highly sensitive and specific capture ELISA was demonstrated by combining a poly-specific ApoH capture step with specific detection antibodies using group A rotaviruses as an example.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jianguang; Piao, Shilong; Chen, Anping

    Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night-time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in themore » response of NDVI to changes in day- versus night-time temperatures. For instance, while higher daytime temperature (T max) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between T max and NDVI is much larger in spring (41% of area in boreal zone – total area 12.6 × 10 6 km 2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in T max, increases in T max tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night-time temperature (T min) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day- and night-time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Lastly, understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation-climate models« less

  6. A test strip platform based on DNA-functionalized gold nanoparticles for on-site detection of mercury (II) ions.

    PubMed

    Guo, Zhiyong; Duan, Jing; Yang, Fei; Li, Min; Hao, Tingting; Wang, Sui; Wei, Danyi

    2012-05-15

    A test strip, based on DNA-functionalized gold nanoparticles for Hg(2+) detection, has been developed, optimized and validated. The developed colorimetric mercury sensor system exhibited a highly sensitive and selective response to mercury. The measurement principle is based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and streptavidin-biotin interaction. A biotin-labeled and thiolated DNA was immobilized on the gold nanoparticles (AuNPs) surface through a self-assembling method. Another thymine-rich DNA, which was introduced to form DNA duplexes on the AuNPs surface with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination in the presence of Hg(2+), was immobilized on the nitrocellulose membrane as the test zone. When Hg(2+) ions were introduced into this system, they induced the two strands of DNA to intertwist by forming T-Hg(2+)-T bonds resulting in a red line at the test zone. The biotin-labeled and thiolated DNA-functionalized AuNPs could be captured by streptavidin which was immobilized on the nitrocellulose membrane as the control zone. Under optimized conditions, the detection limit for Hg(2+) was 3 nM, which is lower than the 10nM, maximum contaminant limit defined by the US Environmental Protection Agency (EPA) for drinking water. A parallel analysis of Hg(2+) in pool water samples using cold vapor atomic absorption spectrometry showed comparable results to those obtained from the strip test. Therefore, the results obtained in this study could be used as basic research for the development of Hg(2+) detection, and the method developed could be a potential on-site screening tool for the rapid detection of Hg(2+) in different water samples without special instrumentation. All experimental variables that influence the test strip response were optimized and reported. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Statistical analysis of major ion and trace element geochemistry of water, 1986-2006, at seven wells transecting the freshwater/saline-water interface of the Edwards Aquifer, San Antonio, Texas

    USGS Publications Warehouse

    Mahler, Barbara J.

    2008-01-01

    The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer. 

  8. Environmental Radioactivity Study in Surface Sediments of Guacanayabo Gulf (Cuba)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, H.; Rizo, O. Diaz; Bernal, J. L.

    Sediment samples have been collected in the Guacanayabo gulf located in the southeast Cuba, to determinate the radioactivity levels of {sup 210}Pb, {sup 234}Th, {sup 214}Pb, {sup 137}Cs, {sup 232}Th and {sup 40}K using Low-Background Gamma Spectrometry and to evaluate its impact in the habitat of important marine species for fishery industry. The obtained results show the lowest radioactivity levels determined in Cuban marine environments. The species capture declination in the last years is not originated by radioactive pollution of the zone.

  9. Aquatic Plant Control Research Program. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants. The Herpetofauna of Lake Conway: Species Accounts.

    DTIC Science & Technology

    1983-07-01

    complex suite of physiological and 39 respiratory adaptations (Ultch 1976) enable this species to occupy both open water and littoral zone environments...be an adaptation to avoid fish predation on juveniles in open water and may explain the spring peak in funnel trap captures near shore (Fig. 10). 79...population of C. picta probably is not established on Lake Conway. The one collected individual 103 defecated gastropod (Viviparous sp.) shells and

  10. Experimental reconstruction of the Berry curvature in a topological Bloch band

    NASA Astrophysics Data System (ADS)

    Weitenberg, Christof; Flaeschner, Nick; Rem, Benno; Tarnowski, Matthias; Vogel, Dominik; Luehmann, Dirk-Soeren; Sengstock, Klaus

    2016-05-01

    Topological properties lie at the heart of many fascinating phenomena in solid state systems such as quantum Hall systems or Chern insulators. The topology can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Employing fermionic ultracold atoms in a hexagonal optical lattice, we engineer the Berry curvature of the Bloch bands using resonant driving and measure it with full momentum resolution. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.

  11. Siphonophores and the Deep Scattering Layer.

    PubMed

    Barham, E G

    1963-05-17

    Bathyscaphe dives in the San Diego Trough have revealed a close spatial relation between siphonophores and the deep scattering layer as recorded by precision depth recording echo-sounders. Measurements of gas bubbles within the flotation structures of Nanomia bijuga captured in a closing net in an ascended scattering layer indicate that these are very close to the resonant size for 12-kcy/sec sound. Because such organisms are capable of making prolonged vertical migrations, and are widespread geographically, they are very probably the major cause of stratified zones of scattering throughout the oceans of the world.

  12. GONAF - the borehole Geophysical Observatory at the North Anatolian Fault in the eastern Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Dresen, Georg; Ceken, Ulubey; Tuba Kadirioglu, Filiz; Feyiz Kartal, Recai; Kilic, Tugbay; Nurlu, Murat; Yanik, Kenan; Acarel, Digdem; Bulut, Fatih; Ito, Hisao; Johnson, Wade; Malin, Peter Eric; Mencin, Dave

    2017-05-01

    The Marmara section of the North Anatolian Fault Zone (NAFZ) runs under water and is located less than 20 km from the 15-million-person population center of Istanbul in its eastern portion. Based on historical seismicity data, recurrence times forecast an impending magnitude M>7 earthquake for this region. The permanent GONAF (Geophysical Observatory at the North Anatolian Fault) has been installed around this section to help capture the seismic and strain activity preceding, during, and after such an anticipated event.

  13. The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models

    NASA Astrophysics Data System (ADS)

    Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.

    2017-12-01

    Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W., Katz, R. F., Tian, M and Rudge, J. F. (2017). Thermal impact of magmatism in subduction zones. arxiv.org/abs/1701.02550 [2] Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). EPSL, doi:10.1016/j.epsl.2014.05.052 [3] England, P. C., Katz, Richard F. (2010). Nature, doi:10.1038/nature09417

  14. Macroscale intraspecific variation and environmental heterogeneity: analysis of cold and warm zone abundance, mortality, and regeneration distributions of four eastern US tree species

    Treesearch

    Anantha M. Prasad

    2015-01-01

    I test for macroscale intraspecific variation of abundance, mortality, and regeneration of four eastern US tree species (Tsuga canadensis, Betula lenta, Liriodendron tulipifera, and Quercus prinus) by splitting them into three climatic zones based on plant hardiness zones (PHZs). The primary goals of the analysis are to assess the...

  15. Work zone simulator analysis : driver performance and acceptance of alternate merge sign configurations.

    DOT National Transportation Integrated Search

    2016-06-01

    Improving work zone road safety is an issue of great interest due to the high number of crashes observed in work : zones. Departments of Transportation (DOTs) use a variety of methods to inform drivers of upcoming work zones. One method : used by DOT...

  16. Delineation of marine ecosystem zones in the northern Arabian Sea during winter

    NASA Astrophysics Data System (ADS)

    Shalin, Saleem; Samuelsen, Annette; Korosov, Anton; Menon, Nandini; Backeberg, Björn C.; Pettersson, Lasse H.

    2018-03-01

    The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50-75° E and 15-30° N) during the winter months (November-March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The input of iron seems to be important in both the open-ocean and coastal areas of the northern and north-western parts of the northern Arabian Sea, where the seasonal variability of the Chl a pattern closely follows the variability of iron deposition.

  17. Capturing Nanotechnology's Current State of Development via Analysis of Patents. OECD Science, Technology and Industry Working Papers, 2007/4

    ERIC Educational Resources Information Center

    Igami, Masatsura; Okazaki, Teruo

    2007-01-01

    This analysis aims at capturing current inventive activities in nanotechnologies based on the analysis of patent applications to the European Patent Office (EPO). Reported findings include: (1) Nanotechnology is a multifaceted technology, currently consisting of a set of technologies on the nanometre scale rather than a single technological field;…

  18. Qualitative Analysis of E-Liquid Emissions as a Function of Flavor Additives Using Two Aerosol Capture Methods.

    PubMed

    Eddingsaas, Nathan; Pagano, Todd; Cummings, Cody; Rahman, Irfan; Robinson, Risa; Hensel, Edward

    2018-02-13

    This work investigates emissions sampling methods employed for qualitative identification of compounds in e-liquids and their resultant aerosols to assess what capture methods may be sufficient to identify harmful and potentially harmful constituents present. Three popular e-liquid flavors (cinnamon, mango, vanilla) were analyzed using qualitative gas chromatography-mass spectrometry (GC-MS) in the un-puffed state. Each liquid was also machine-puffed under realistic-use flow rate conditions and emissions were captured using two techniques: filter pads and methanol impingers. GC-MS analysis was conducted on the emissions captured using both techniques from all three e-liquids. The e-liquid GC-MS analysis resulted in positive identification of 13 compounds from the cinnamon flavor e-liquid, 31 from mango, and 19 from vanilla, including a number of compounds observed in all e-liquid experiments. Nineteen compounds were observed in emissions which were not present in the un-puffed e-liquid. Qualitative GC-MS analysis of the emissions samples identify compounds observed in all three samples: e-liquid, impinge, and filter pads, and each subset thereof. A limited number of compounds were observed in emissions captured with impingers, but were not observed in emissions captured using filter pads; a larger number of compounds were observed on emissions collected from the filter pads, but not those captured with impingers. It is demonstrated that sampling methods have different sampling efficiencies and some compounds might be missed using only one method. It is recommended to investigate filter pads, impingers, thermal desorption tubes, and solvent extraction resins to establish robust sampling methods for emissions testing of e-cigarette emissions.

  19. Qualitative Analysis of E-Liquid Emissions as a Function of Flavor Additives Using Two Aerosol Capture Methods

    PubMed Central

    Eddingsaas, Nathan; Pagano, Todd; Cummings, Cody; Rahman, Irfan; Robinson, Risa

    2018-01-01

    This work investigates emissions sampling methods employed for qualitative identification of compounds in e-liquids and their resultant aerosols to assess what capture methods may be sufficient to identify harmful and potentially harmful constituents present. Three popular e-liquid flavors (cinnamon, mango, vanilla) were analyzed using qualitative gas chromatography-mass spectrometry (GC-MS) in the un-puffed state. Each liquid was also machine-puffed under realistic-use flow rate conditions and emissions were captured using two techniques: filter pads and methanol impingers. GC-MS analysis was conducted on the emissions captured using both techniques from all three e-liquids. The e-liquid GC-MS analysis resulted in positive identification of 13 compounds from the cinnamon flavor e-liquid, 31 from mango, and 19 from vanilla, including a number of compounds observed in all e-liquid experiments. Nineteen compounds were observed in emissions which were not present in the un-puffed e-liquid. Qualitative GC-MS analysis of the emissions samples identify compounds observed in all three samples: e-liquid, impinge, and filter pads, and each subset thereof. A limited number of compounds were observed in emissions captured with impingers, but were not observed in emissions captured using filter pads; a larger number of compounds were observed on emissions collected from the filter pads, but not those captured with impingers. It is demonstrated that sampling methods have different sampling efficiencies and some compounds might be missed using only one method. It is recommended to investigate filter pads, impingers, thermal desorption tubes, and solvent extraction resins to establish robust sampling methods for emissions testing of e-cigarette emissions. PMID:29438289

  20. Laser Capture Microdissection for Protein and NanoString RNA analysis

    PubMed Central

    Golubeva, Yelena; Salcedo, Rosalba; Mueller, Claudius; Liotta, Lance A.; Espina, Virginia

    2013-01-01

    Laser capture microdissection (LCM) allows the precise procurement of enriched cell populations from a heterogeneous tissue, or live cell culture, under direct microscopic visualization. Histologically enriched cell populations can be procured by harvesting cells of interest directly, or isolating specific cells by ablating unwanted cells. The basic components of laser microdissection technology are a) visualization of cells via light microscopy, b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and c) removal of cells of interest from the heterogeneous tissue section. The capture and cutting methods (instruments) for laser microdissection differ in the manner by which cells of interest are removed from the heterogeneous sample. Laser energy in the capture method is infrared (810nm), while in the cutting mode the laser is ultraviolet (355nm). Infrared lasers melt a thermolabile polymer that adheres to the cells of interest, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes laser capture microdissection using an ArcturusXT instrument for protein LCM sample analysis, and using a mmi CellCut Plus® instrument for RNA analysis via NanoString technology. PMID:23027006

  1. The utility of live video capture to enhance debriefing following transcatheter aortic valve replacement.

    PubMed

    Seamans, David P; Louka, Boshra F; Fortuin, F David; Patel, Bhavesh M; Sweeney, John P; Lanza, Louis A; DeValeria, Patrick A; Ezrre, Kim M; Ramakrishna, Harish

    2016-10-01

    The surgical and procedural specialties are continually evolving their methods to include more complex and technically difficult cases. These cases can be longer and incorporate multiple teams in a different model of operating room synergy. Patients are frequently older, with comorbidities adding to the complexity of these cases. Recording of this environment has become more feasible recently with advancement in video and audio capture systems often used in the simulation realm. We began using live capture to record a new procedure shortly after starting these cases in our institution. This has provided continued assessment and evaluation of live procedures. The goal of this was to improve human factors and situational challenges by review and debriefing. B-Line Medical's LiveCapture video system was used to record successive transcatheter aortic valve replacement (TAVR) procedures in our cardiac catheterization/laboratory. An illustrative case is used to discuss analysis and debriefing of the case using this system. An illustrative case is presented that resulted in long-term changes to our approach of these cases. The video capture documented rare events during one of our TAVR procedures. Analysis and debriefing led to definitive changes in our practice. While there are hurdles to the use of this technology in every institution, the role for the ongoing use of video capture, analysis, and debriefing may play an important role in the future of patient safety and human factors analysis in the operating environment.

  2. The utility of live video capture to enhance debriefing following transcatheter aortic valve replacement

    PubMed Central

    Seamans, David P.; Louka, Boshra F.; Fortuin, F. David; Patel, Bhavesh M.; Sweeney, John P.; Lanza, Louis A.; DeValeria, Patrick A.; Ezrre, Kim M.; Ramakrishna, Harish

    2016-01-01

    Background: The surgical and procedural specialties are continually evolving their methods to include more complex and technically difficult cases. These cases can be longer and incorporate multiple teams in a different model of operating room synergy. Patients are frequently older, with comorbidities adding to the complexity of these cases. Recording of this environment has become more feasible recently with advancement in video and audio capture systems often used in the simulation realm. Aims: We began using live capture to record a new procedure shortly after starting these cases in our institution. This has provided continued assessment and evaluation of live procedures. The goal of this was to improve human factors and situational challenges by review and debriefing. Setting and Design: B-Line Medical's LiveCapture video system was used to record successive transcatheter aortic valve replacement (TAVR) procedures in our cardiac catheterization/laboratory. An illustrative case is used to discuss analysis and debriefing of the case using this system. Results and Conclusions: An illustrative case is presented that resulted in long-term changes to our approach of these cases. The video capture documented rare events during one of our TAVR procedures. Analysis and debriefing led to definitive changes in our practice. While there are hurdles to the use of this technology in every institution, the role for the ongoing use of video capture, analysis, and debriefing may play an important role in the future of patient safety and human factors analysis in the operating environment. PMID:27762242

  3. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    PubMed

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  4. Economic and energetic analysis of capturing CO2 from ambient air

    PubMed Central

    House, Kurt Zenz; Baclig, Antonio C.; Ranjan, Manya; van Nierop, Ernst A.; Wilcox, Jennifer; Herzog, Howard J.

    2011-01-01

    Capturing carbon dioxide from the atmosphere (“air capture”) in an industrial process has been proposed as an option for stabilizing global CO2 concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO2 from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO2, based on experience with as-built large-scale trace gas removal systems. PMID:22143760

  5. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    NASA Astrophysics Data System (ADS)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  6. Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Spivey, Benjamin James

    2011-07-01

    Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.

  7. Data Capture and Analysis Using the BBC Microcomputer--an Interfacing Project Applied to Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Jones, Lawrence; Graham, Ian

    1986-01-01

    Reviews the main principles of interfacing and discusses the software developed to perform kinetic data capture and analysis with a BBC microcomputer linked to a recording spectrophotometer. Focuses on the steps in software development. Includes results of a lactate dehydrogenase assay. (ML)

  8. Quantitative analysis of arm movement smoothness

    NASA Astrophysics Data System (ADS)

    Szczesna, Agnieszka; Błaszczyszyn, Monika

    2017-07-01

    The paper deals with the problem of motion data quantitative smoothness analysis. We investigated values of movement unit, fluidity and jerk for healthy and paralyzed arm of patients with hemiparesis after stroke. Patients were performing drinking task. To validate the approach, movement of 24 patients were captured using optical motion capture system.

  9. Simultaneous capture and in situ analysis of circulating tumor cells using multiple hybrid nanoparticles.

    PubMed

    Lee, Hun Joo; Cho, Hyeon-Yeol; Oh, Jin Ho; Namkoong, Kak; Lee, Jeong Gun; Park, Jong-Myeon; Lee, Soo Suk; Huh, Nam; Choi, Jeong-Woo

    2013-09-15

    Using hybrid nanoparticles (HNPs), we demonstrate simultaneous capture, in situ protein expression analysis, and cellular phenotype identification of circulating tumor cells (CTCs). Each HNP consists of three parts: (i) antibodies that bind specifically to a known biomarker for CTCs, (ii) a quantum dot that emits fluorescence signals, and (iii) biotinylated DNA that allows capture and release of CTC-HNP complex to an in-house developed capture & recovery chip (CRC). To evaluate our approach, cells representative of different breast cancer subtypes (MCF-7: luminal; SK-BR-3: HER2; and MDA-MB-231: basal-like) were captured onto CRC and expressions of EpCAM, HER2, and EGFR were detected concurrently. The average capture efficiency of CTCs was 87.5% with identification accuracy of 92.4%. Subsequently, by cleaving the DNA portion with restriction enzymes, captured cells were released at efficiencies of 86.1%. Further studies showed that these recovered cells are viable and can proliferate in vitro. Using HNPs, it is possible to count, analyze in situ protein expression, and culture CTCs, all from the same set of cells, enabling a wide range of molecular- and cellular-based studies using CTCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Results of complex aortic stent grafting of abdominal aortic aneurysms stratified according to the proximal landing zone using the Society for Vascular Surgery classification.

    PubMed

    Patel, Sanjay D; Constantinou, Jason; Simring, Dominic; Ramirez, Manfred; Agu, Obiekezie; Hamilton, Hamish; Ivancev, Krassi

    2015-08-01

    Advances in endovascular technology have led to the successful treatment of complex abdominal aortic aneurysms. However, there is currently no consensus on what constitutes a juxtarenal, pararenal, or suprarenal aneurysm. There is emerging evidence that the extent of the aneurysm repair is associated with outcome. We compare the outcomes of 150 consecutive patients treated with a fenestrated or branched stent graft and present the data stratified according to the Society for Vascular Surgery classification based on proximal anatomic landing zones. A prospectively collected database of consecutive patients undergoing fenestrated or branched stent graft insertion in a tertiary center between 2008 and 2013 was retrospectively analyzed. Aneurysms were subdivided into zones according to where the area of proximal seal could be achieved in relation to the visceral arteries. Zone 8 covers the renal arteries, zone 7 covers the superior mesenteric artery, and zone 6 covers the celiac axis. Patient demographics, operative variables, mortality, and major morbidity were analyzed by univariate and multivariate analysis to assess for differences between zones. During the study period, 150 patients were treated. There were 49 in zone 8, 76 in zone 7, and 25 in zone 6. Prior aortic surgery had been performed in 19 patients, which included 11 patients with previous endovascular aneurysm repairs. There was significantly increased blood loss (P < .001), operative time (P < .0001), total hospital stay (P = .018), and intensive care unit stay (P < .0001) as the zones ascended the aorta. There were 14 inpatient deaths recorded across all zones with a 30-day mortality rate of 8%. Logistic regression analysis for 30 day mortality showed a significant increase as the zones ascended (P = .007). Kaplan-Meier analysis showed that 5-year survival significantly deteriorated as the zones ascended (P = .039), with no significant difference in the freedom from reintervention curves between zones (P = .37). We have shown that the extent of the aneurysm repair as determined by the proximal sealing zone is associated with outcome. Mortality, operative duration, blood loss, and hospital stay all significantly increased as the zones ascended. These data also validate the use of the proposed new classification based on aortic anatomy. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  11. On the benefits of living in clumps: a case study on Polytrichastrum formosum.

    PubMed

    Zajączkowska, U; Grabowska, K; Kokot, G; Kruk, M

    2017-03-01

    The study concerns the mechanics and water relationships of clumps of a species of endohydric moss, Polytrichastrum formosum. Anatomical and morphological studies were done using optical and scanning electron microscopy. Experiments on waterdrop capture and their distribution to adjacent shoots within a moss clump were performed with the experimental set-up for the droplet collision phenomena and ultra-high speed camera. The mechanical strength of the moss clump was tested on an electromechanical testing machine. During the process of moss clump wetting, the falling water drops were captured by the apical stem part or leaves, then flowed down while adhering to the gametophore and never lost their surface continuity. In places of contact with another leaf, the water drop stops there and joins the leaves, enabling their hydration. Mathematical analysis of anatomical images showed that moss stems have different zones with varying cell lumen and cell wall/cell radius ratios, suggesting the occurrence of a periodic component structure. Our study provides evidence that the reaction of mosses to mechanical forces depends on the size of the clump, and that small groups are clearly stronger than larger groups. The clump structure of mosses acts as a net for falling rain droplets. Clumps of Polytrichastrum having overlapping leaves, at the time of loading formed a structure similar to a lattice. The observed reaction of mosses to mechanical forces indicates that this phenomenon appears to be analogous to the 'size effect on structural strength' that is of great importance for various fields of engineering. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Selection of a suitable plant for phytoremediation in mining artisanal zones.

    PubMed

    Chamba, I; Gazquez, M J; Selvaraj, T; Calva, J; Toledo, J J; Armijos, C

    2016-09-01

    A study was undertaken with the aim of identifying a suitable plant for the phytoremediation of metal-polluted soil from an artisanal mining area in Ecuador. Three zones including a natural zone (NZ), abandoned zone (AZ) and intensively mined zone (IZ) were selected. Three common native plants grown in the three zones were identified and collected, including Miconia zamorensis, Axonopus compressus and Erato polymnioides. The percentage of arbuscular mycorrhizal colonization that benefits their own survival in polluted soil was analyzed in the root samples of these candidate species. Analysis of the soils and plants collected from the different zones showed that the concentrations of Pb, Zn, Cu and Cd were comparatively lower in the NZ, higher in the AZ and IZ, and highest in the AZ for all the metals. The concentration of all these metals in plant tissues was the highest in E. polymnioides. The data analysis including the metal accumulation index, bioconcentration factor and translocation factor strongly identified E. polymnioides as a hyperaccumulator plant suitable for phytoremediation.

  13. Documentation for Initial Seismic Hazard Maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of maps using different assumptions about site conditions. One set of maps is for a firm-rock site condition (30-m averaged shear-wave velocity, Vs30, of 760 m/s). We also developed hazard maps that contain site amplification based on a grid of Vs30 values estimated from topographic slope. These maps take into account amplification from soils. We stress that these new maps are designed to quantify the hazard for Haiti; they do not consider all the sources of earthquake hazard that affect the Dominican Republic and therefore should not be considered as complete hazard maps for eastern Hispaniola. For example, we have not included hazard from earthquakes in the Mona Passage nor from large earthquakes on the subduction zone interface north of Puerto Rico. Furthermore, they do not capture all the earthquake hazards for eastern Cuba.

  14. Capturing Public Opinion on Public Health Topics: A Comparison of Experiences from a Systematic Review, Focus Group Study, and Analysis of Online, User-Generated Content.

    PubMed

    Giles, Emma Louise; Adams, Jean M

    2015-01-01

    Capturing public opinion toward public health topics is important to ensure that services, policy, and research are aligned with the beliefs and priorities of the general public. A number of approaches can be used to capture public opinion. We are conducting a program of work on the effectiveness and acceptability of health promoting financial incentive interventions. We have captured public opinion on financial incentive interventions using three methods: a systematic review, focus group study, and analysis of online user-generated comments to news media reports. In this short editorial-style piece, we compare and contrast our experiences with these three methods. Each of these methods had their advantages and disadvantages. Advantages include tailoring of the research question for systematic reviews, probing of answers during focus groups, and the ability to aggregate a large data set using online user-generated content. However, disadvantages include needing to update systematic reviews, participants conforming to a dominant perspective in focus groups, and being unable to collect respondent characteristics during analysis of user-generated online content. That said, analysis of user-generated online content offers additional time and resource advantages, and we found it elicited similar findings to those obtained via more traditional methods, such as systematic reviews and focus groups. A number of methods for capturing public opinions on public health topics are available. Public health researchers, policy makers, and practitioners should choose methods appropriate to their aims. Analysis of user-generated online content, especially in the context of news media reports, may be a quicker and cheaper alternative to more traditional methods, without compromising on the breadth of opinions captured.

  15. Particle dynamics and deposition in true-scale pulmonary acinar models.

    PubMed

    Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué

    2015-09-11

    Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1-2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations.

  16. Particle dynamics and deposition in true-scale pulmonary acinar models

    PubMed Central

    Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué

    2015-01-01

    Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1–2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations. PMID:26358580

  17. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  18. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  19. Biological production in the Indian Ocean upwelling zones - Part 1: refined estimation via the use of a variable compensation depth in ocean carbon models

    NASA Astrophysics Data System (ADS)

    Geethalekshmi Sreeush, Mohanan; Valsala, Vinu; Pentakota, Sreenivas; Venkata Siva Rama Prasad, Koneru; Murtugudde, Raghu

    2018-04-01

    Biological modelling approach adopted by the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP-II) provided amazingly simple but surprisingly accurate rendition of the annual mean carbon cycle for the global ocean. Nonetheless, OCMIP models are known to have seasonal biases which are typically attributed to their bulk parameterisation of compensation depth. Utilising the criteria of surface Chl a-based attenuation of solar radiation and the minimum solar radiation required for production, we have proposed a new parameterisation for a spatially and temporally varying compensation depth which captures the seasonality in the production zone reasonably well. This new parameterisation is shown to improve the seasonality of CO2 fluxes, surface ocean pCO2, biological export and new production in the major upwelling zones of the Indian Ocean. The seasonally varying compensation depth enriches the nutrient concentration in the upper ocean yielding more faithful biological exports which in turn leads to accurate seasonality in the carbon cycle. The export production strengthens by ˜ 70 % over the western Arabian Sea during the monsoon period and achieves a good balance between export and new production in the model. This underscores the importance of having a seasonal balance in the model export and new productions for a better representation of the seasonality of the carbon cycle over upwelling regions. The study also implies that both the biological and solubility pumps play an important role in the Indian Ocean upwelling zones.

  20. Restoring ecosystem services to littoral zones of rivers in the urban core of Chongqing, China.

    PubMed

    Xian, Xu-Dong; Feng, Yi-Long; Willison, J H Martin; Ai, Li-Jiao; Wang, Ping; Wu, Zhi-Neng

    2015-08-01

    Two examples of the creation of naturalized areas in the littoral zone of the Three Gorges Reservoir in the urban core of Chongqing City, China, are described. The areas were created for the purpose of restoring ecological functions and services. Plants were selected based on surveys of natural wetland vegetation in the region, and experiments were conducted to discover the capacity of species of interest to survive the sometimes extreme hydrological regimes at the sites. Novel methods were developed to stabilize the plants against the rigors of extreme summer floods and constant swash, notably zigzag berms of rocks wrapped in iron mesh. The areas include native reeds, grasses, shrubs, and trees. Plant communities in the areas are zoned according to flooding stress, and their structure is less stable at lower elevations that are subjected to greater stress. The tall grass Saccharum spontaneum (widespread in Southern Asia) and the tree Pterocarya stenoptera (native to Southwest China) are notable for their utility at these sites in the center of a large city. Communities of tall reeds and grasses have become so dense and stable that they now provide the ecosystem services of capturing river sediments and resisting erosion of the river banks. It is recommended that extensive greening of the riparian zones in urban areas of the Three Gorges Reservoir be conducted for the purpose of providing ecosystem services, based in part on the experiences described here.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, J.; Collier, H.; Angstman, B.

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft.more » For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.« less

  2. Effects of Contaminated Site Age on Dissolution Dynamics

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.

    2004-12-01

    This work presents a streamtube-based analytical approach to evaluate reduction in groundwater contaminant flux resulting from partial mass reduction in a nonaqueous phase liquid (NAPL) source zone. The reduction in contaminant flux, Rj, discharged from the source zone is a remediation performance metric that has a direct effect on the fundamental drivers of remediation: protection of human health risks and the environment. Spatial variability is described within a Lagrangian framework where aquifer hydrodynamic heterogeneities are characterized using nonreactive travel time distributions, while NAPL spatial distribution heterogeneity can be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to evaluate the relationship between reduction in contaminant mass, Rm, and Rj. A portion of the contaminant mass in the source zone is assumed to be removed via in-situ flushing remediation, with the initial and final conditions defined as steady-state natural-gradient groundwater flow through the contaminant source zone. The combined effect of aquifer and NAPL heterogeneities are shown to be captured in a single parameter, reactive travel time variability, that was determined to be the most important factor controlling the relationship between Rm and Rj. Increased values of the following parameters are shown to result in more favorable contaminant elution dynamics (i.e., greater flux reduction for a given reduction in mass): aquifer hydrodynamic heterogeneity, NAPL source zone heterogeneity, positive correlation between travel time and NAPL content, and time since the contamination event. Less favorable elution behavior is shown to result from negative correlations between travel time and NAPL content and rate-limited dissolution. The specific emphasis of this presentation is on the effects of the length of time that has elapsed since the contamination event (site age) on the dissolution dynamics.

  3. AN EXTERNAL RADIATION BELT AT A HEIGHT OF 320 KM ABOVE THE EARTH (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernov, S.N.; Savenko, I.A.; Shavrin, P.I.

    1961-10-01

    The orbit of the second Russian sputnik was almost circular with altitude extremes of 307 and 339 km. The count rate obtained from a scintillation counter (NaI (Tl) crystall on board the sputnik showed an increase from 4 to 11 disinteg/cm/sup 2/-sec on going from the equator to latitudes of plus or minus 40 to 50 deg due to the variation in cosmic ray count with latitude. Then, a sharp increase in count rate of 20-600 disinteg/cm/sup 2/-sec was observed at geometrical latitudes 50 to 65 deg . Conjugate points were determined, where a zone of increased activity in Siberiamore » was related with a region in the South Indian Ocean, and a zone in North America was related with a zone in the South Pacific Ocean. Thus, zones of increased radiation in the Northern Hemisphere were related to corresponding zones in the Southern Hemisphere by means of the force lines of the geomagnetic field which determines the external radiation belt. The limit of the radiation belt at small latitudes corresponds with the isocline delta = 70 deg in the Northern Hemisphere and with delta = 66 deg in the Southern Hemisphere. The radiation was found to be due to gamma rays having an energy of 100 to 300 kev which originated from the slow-down of electrons hitting the shell of the sputnik. It was estimated that the upper limit of the lifetime of the electrons in the belt was 10/sup 6/to 10/ sup 8/ seconds. Hence it is more likely that the electrons are captured by local acceleration of electrons within the limits of the geomagnetic field than in accordance with a neutron hypothesis (TTT)« less

  4. Definition of management zones for enhancing cultivated land conservation using combined spatial data.

    PubMed

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation, stabilize agricultural production, promote sustainable use of cultivated land and guarantee food security.

  5. Fracture of a composite reinforced by unidirectional fibers

    NASA Astrophysics Data System (ADS)

    Hasanov, F. F.

    2014-11-01

    An elastic medium weakened by a periodic system of circular holes filled with homogeneous elastic fibers whose surface is coated with a homogeneous film is considered. A fracture model for a medium with a periodic structure is proposed, which is based on an analysis of the fracture zone near the crack tip. It is assumed that the fracture zone is a layer of finite length containing a material with partially broken bonds between separate structural elements (end zone). The fracture zone is considered as part of the crack. The bonds between crack faces in the end zone are modeled by applying the cohesive forces caused by the presence of bonds to the crack surface. An analysis of the limit equilibrium of shear cracks in the end zone of the model is performed on the basis of a nonlocal fracture criterion together with a force condition for the motion of crack tip and a deformation condition for determining the motion of faces of end-zone cracks. In the analysis, relationships between the cohesive forces and the shear of crack faces are established, the stress state near the crack is assessed with account of external loading, cohesive forces, and fiber arrangement, and the critical external loads as functions of geometric parameters of the composite are determined.

  6. Work zone safety analysis.

    DOT National Transportation Integrated Search

    2013-11-01

    This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...

  7. The Habitable Zone Gallery 2.0: The Online Exoplanet System Visualization Suite

    NASA Astrophysics Data System (ADS)

    Chandler, C. O.; Kane, S. R.; Gelino, D. M.

    2017-11-01

    The Habitable Zone Gallery 2.0 provides new and improved visualization and data analysis tools to the exoplanet habitability community and beyond. Modules include interactive habitable zone plotting and downloadable 3D animations.

  8. Spatiotemporal variation of river temperature as a predictor of groundwater/surface-water interactions in an arid watershed in China

    NASA Astrophysics Data System (ADS)

    Yao, Yingying; Huang, Xiang; Liu, Jie; Zheng, Chunmiao; He, Xiaobo; Liu, Chuankun

    2015-08-01

    Interactions between groundwater and surface water in arid regions are complex, and recharge-discharge processes are often influenced by the hydrological regime, climate and geology. Traditional methods such as hydraulic gradient measuring by piezometers, differential discharge gauging and conservative tracer experiments, are often inadequate to capture the spatial and temporal variation of exchange rates. In this study, the distribution and the size of the overall groundwater inflow zone (GIZ) and the hyporheic inflow zone (HIZ) in the middle Heihe River Basin, northwest China, are characterized, and the relative inflow flux is estimated by high-resolution temperature measurements. Distributed temperature sensing (DTS) was used to measure the mixing temperatures of a 5-km reach of streambed with a spatial resolution of 0.5 m. The sampling interval was 0.25 m, and the temporal interval was 15 and 10 min at Pingchuan and Banqiao experimental sites, respectively. Two separate measurement periods in Pingchuan (Ping1, Ping2) captured different meteorological and stream-flow conditions. The results show that the number and the size range of the individual HIZs are greater than those of GIZs. Groundwater upwelling (GIZ) causes a larger decrease in river-water temperature with less inflow flux compared with the HIZ. The distribution pattern of HIZs and GIZs is influenced by the hydrodynamics of the river and the hydraulic permeability of the riverbed. High-resolution temperature variation based on DTS is an effective predictor of distributed inflows from groundwater upwelling and hyporheic exchange in an arid region.

  9. High-speed spectral infrared imaging of spark ignition engine combustion. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComiskey, T.; Jiang, H.; Qian, Y.

    1993-03-05

    In-cylinder flame propagation and its impact on thermal characteristics of the combustion chamber were studied by using a new high-speed spectral infrared imaging system. In this work, successive spectral IR images of combustion chamber events were captured while varying several parameters, including fuel/air, spark timing, speed, and warming-up period. Some investigation of cyclic variation, knock, and high-temperature components during the non-combustion period was also conducted. It was found that the spectral images obtained in both short and long wavelength bands exhibited unique pieces of in-cylinder information, i.e., (qualitative) distributions of temperature and combustion products, respectively. During the combustion period, themore » temperature of early-formed combustion products continued to increase while the flame front temperature, e.g. near the end gas zone, remained relatively low. The exhaust valve emitted strong radiation starting from the early stage of the combustion period. The spark plug emitted the strongest radiation during the non-combustion period. Considerable cyclic variation in growth of the flame front and completion of the reaction was observable. The radiation from both spectral bands became stronger as the engine warm-up period in While operating the engine with the addition of n-heptane in the intake to produce knock, we captured spectral IR images of the end gas right before it was abruptly consumed. The combustion products that were formed in the end-gas volume upon knock, showed no evidence of higher temperature than other zones in the combustion chamber.... Spectral infrared imaging, High-speed, Digital data, Instantaneous distribution, Spark ignition combustion.« less

  10. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  11. Characterizing the diversity of coral reef habitats and fish communities found in a UNESCO World Heritage Site: the strategy developed for Lagoons of New Caledonia.

    PubMed

    Andréfouët, S; Wantiez, L

    2010-01-01

    Since 1972, the UNESCO "World Heritage Convention" offers an international canvas for conservation and management that targets areas of high cultural and environmental significance. To support the designation of areas within the 36.000 km(2) of New Caledonia coral reefs and lagoons as a World Heritage Site, the natural value and diversity of the proposed zones needed to be demonstrated. To exhaustively identify each configuration of shallow habitats, high resolution remote sensing images were used to select the sampling sites. This optimal scheme resulted in the selection of nearly 1300 sampling sites, and was then simplified to render its application realistic. In the final sampling plan, only the most common or the most remarkable coral zones were selected. Following this selection, in situ habitat and fish surveys were conducted in 2006-2008 in five large areas spanning a 600 km-long latitudinal gradient. Habitats were described using line-intercept transects in parallel with underwater visual census of indicator and commercial coral reef fish species. We report here on the results achieved in terms of: (i) the actual diversity of coral habitats captured by the remote sensing based sampling strategy, (ii) the different reef fish communities captured from the different sites, and (iii) how well they represent New Caledonia diversity. We discuss the possible generalization of this scheme to other sites, in the context of World Heritage Site selection and for other large-scale conservation planning activities. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Capturing Hot Moments of Carbon Cycling in the Hyporheic Zone of an Intermittent Stream

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Harjung, A.; Vieweg, M.; Butturini, A.; Schmidt, C.; Fleckenstein, J. H.; Sabater, F.

    2016-12-01

    Intermittent streams are increasingly recognized as a factor for underestimating potential CO2 emissions of aquatic ecosystems, because they are neglected during their dry phase. This can be partly attributed to poor understanding of dissolved organic matter (DOM) processing at highly reactive interfaces such as the hyporheic zone (HZ). Here, hydrological transitions drive rapid changes in the spatiotemporal distribution of dissolved oxygen (DO), thus creating hot moments of increased biogeochemical cycling. However, capturing these process-dynamics requires a continuous monitoring of hyporheic pore water at a sufficient temporal and spatial resolution. In order to investigate the transitions between the wet and dry phase, we used a combination of automated pore water sampling and in situ measurements. By combining conventional pumping approaches with recently developed technology we achieved a high resolution multi-scale, quasi continuous monitoring of relevant parameters of the carbon cycle. Our novel approach coupled continuous fluorescence DOM and infrared CO2 sensor measurements with spatially continuous vertical oxygen profiling in situ. A proof-of-concept application was established in a semi-pristine Mediterranean stream during the drying period in summer 2015. Previous sampling campaigns already identified the water level as a driver of DOM composition in the HZ. Once the surface flow switches to subsurface flow, the HZ becomes a sink for aromatic, high molecular weight compounds, while protein-like, autochthonous DOM gets released. Generally, we observed exponential increases in hyporheic CO2 from this point on, co-occurring with a sharp vertical DO gradient as a function of changing hydrological conditions.

  13. Visual Field Asymmetry in Attentional Capture

    ERIC Educational Resources Information Center

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  14. The structure of partially-premixed methane/air flames under varying premixing

    NASA Astrophysics Data System (ADS)

    Kluzek, Celine; Karpetis, Adonios

    2008-11-01

    The present work examines the spatial and scalar structure of laminar, partially premixed methane/air flames with the objective of developing flamelet mappings that capture the effect of varying premixture strength (air addition in fuel.) Experimental databases containing full thermochemistry measurements within laminar axisymmetric flames were obtained at Sandia National Laboratories, and the measurements of all major species and temperature are compared to opposed-jet one-dimensional flow simulation using Cantera and the full chemical kinetic mechanism of GRI 3.0. Particular emphasis is placed on the scalar structure of the laminar flames, and the formation of flamelet mappings that capture all of the salient features of thermochemistry in a conserved scalar representation. Three different premixture strengths were examined in detail: equivalence ratios of 1.8, 2.2, and 3.17 resulted in clear differences in the flame scalar structure, particularly in the position of the rich premixed flame zone and the attendant levels of major and intermediate species (carbon monoxide and hydrogen).

  15. Adsorption mechanisms of the nonequilibrium incorporation of admixtures in a growing crystal

    NASA Astrophysics Data System (ADS)

    Franke, V. D.; Punin, Yu. O.; Smetannikova, O. G.; Kenunen, D. S.

    2007-12-01

    The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.

  16. Intermediate-Scale Investigation of Capillary and Dissolution Trapping during CO2 Injection and Post-Injection in Heterogeneous Geological Formations

    NASA Astrophysics Data System (ADS)

    Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.

    2010-12-01

    The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.

  17. Precise 40Ar/39Ar dating of basaltic dykes as an indicator of paleostress: exemple of the Icelandic rift jumps.

    NASA Astrophysics Data System (ADS)

    Arnaud, N. O.; Garcia, S.; Bergerat, F.

    2003-04-01

    Dykes constitute unique indicators of local paleostress. When compiled over a large area and over a significant time span they also underline larger changes in the global field stress and thus may be used together with the present day finite deformation to address global geodynamical problems. However, their use has often proved problematic because of their cryptic nature favouring excess argon retention or intake from the host rocks, as well as hydrothermal circulations and groundmass alteration. These flaws can be overtaken by careful sampling and specific sample preparation to get rid of “polluting” phases, reduction of the amount of used material using only hand picked glassy mesostasis, and replication of the analysis on several aliquots. This protocol allows to increase the number of significant results. In Iceland, rift zones have kept jumping for the past 20 Ma and probably even earlier as a response to the discontinuous capture of the mid-ocean ridge by the underlying Icelandic hotspot. However, direct determination of the age and location of paleorift zones has proven problematic because of rapid changes in the dipping of the lavas associated to overcasting of the oldest flows by younger ones, and also because of the retreat and discontinuity of flows associated with the severe glacial erosion. Dykes however do not suffer such problems and constitute excellent space/time indicators. About 65 dykes have systematically been dated on a 350 km long E-W cross section across the Northern Volcanic Zone, from the Vatnsnes peninsula to the east coast across the presently active Krafla rift. Excess argon proved to be rare, probably because of similar age and petrography between host rocks and intrusive dykes, although the basaltic dykes remain poor in potassium. Alteration of the groundmass was sometimes severe but replicate analysis usually helped in assessing a significant age. The final age distribution profile obtained from this important amount of data allows to position the paleorift and to infer that successive rifts were in fact simultaneously active for 5-5.5 Ma. The position/age relations of the dykes yields diverging plate velocities along the rifts margins from 10 Ma to the present day in agreement with the global plate motion and validate the approach by direct dating of the dykes as a powerful tool in tectonic studies.

  18. Tracing Geophysical Indicators of Fluid-Induced Serpentinization in the Pampean Flat Slab Subduction Region of Chile

    NASA Astrophysics Data System (ADS)

    Bourke, J. R.; Nikulin, A.; Park, J. J.

    2016-12-01

    An activity gap in the Andean volcanic arc in the Pampean section of the subduction zone in Chile ( 28°-33°S) marks a section of flat-slab subduction. Past studies connected this change in geometry to the collision and subduction of the Juan Fernandez Ridge and the resulting migration of both the thrust front and magmatism eastward to the Sierras Pampeanas. The fate of fluids released from the subducting Nazca slab remains uncertain and the degree of their interaction with the basal layer of the continental lithosphere is poorly understood. We present initial results of a receiver-function investigation and forward-modeling effort at station GO03 operated by the Chilean National Seismic Network. Receiver function analysis of 75 well-recorded teleseismic earthquake events recorded at GO03 allow us to constrain the position of the subducting Nazca slab and to address the physical properties of the interplate contact zone. Critically, our analysis indicates presence of a highly-anisotropic zone of low velocities directly above the subucting Nazca slab. We point out a remarkable similarity in geophysical characteristics between the observed seismic anomaly at GO03 and a volume of proposed serpentinization in an area of sub-horizontal subduction above the Juan de Fuca slab in Cascadia. This interpretation is further supported by forward-modeling receiver functions at GO03 relying on a velocity model that incorporates a serpentinized interplate region. The newly-identified low-velocity highly-anisotropic layer may extend beyond the GO03 area and act as a mineral reservoir that captures and, possibly, transports fluids derived from the dehydrating Nazca Plate as it subducts below South America. It is likely that there is a relationship between this feature and the lack of volcanic activity in the Pampean flat slab region. Figure Caption: A) Backazimuth sweep of receiver functions recorded at station GO03 with predicted phase arrivals plotted for 55 km, 65 km, 75 km and 85 km. B) Depth-migrated receiver functions for station GO03 relying on AK-135 velocity model and local seismicity (Mw>4.5) plotted within 15km of a 100km profile centered on GO03 along the dominant direction of subduction (74°).

  19. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    PubMed Central

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-01-01

    Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to prevent pathogen attacks and general abiotic stresses after organ shedding. Conclusion The LCM-based data generated in this survey represent the most accurate description of the main biological processes and genes involved in organ abscission in citrus. This study provides novel molecular insight into ethylene-promoted leaf abscission and identifies new putative target genes for characterization and manipulation of organ abscission in citrus. PMID:19852773

  20. Deformation mechanisms of idealised cermets under multi-axial loading

    NASA Astrophysics Data System (ADS)

    Bele, E.; Goel, A.; Pickering, E. G.; Borstnar, G.; Katsamenis, O. L.; Pierron, F.; Danas, K.; Deshpande, V. S.

    2017-05-01

    The response of idealised cermets comprising approximately 60% by volume steel spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric compressive stress states. Digital volume correlation (DVC) anal`ysis of X-ray micro-computed tomography scans (μ-CT), and the measured macroscopic stress-strain curves of the specimens revealed two deformation mechanisms. At low triaxialities the deformation is granular in nature, with dilation occurring within shear bands. Under higher imposed hydrostatic pressures, the deformation mechanism transitions to a more homogeneous incompressible mode. However, DVC analyses revealed that under all triaxialities there are regions with local dilatory and compaction responses, with the magnitude of dilation and the number of zones wherein dilation occurs decreasing with increasing triaxiality. Two numerical models are presented in order to clarify these mechanisms: (i) a periodic unit cell model comprising nearly rigid spherical particles in a porous metal matrix and (ii) a discrete element model comprising a large random aggregate of spheres connected by non-linear normal and tangential "springs". The periodic unit cell model captured the measured stress-strain response with reasonable accuracy but under-predicted the observed dilation at the lower triaxialities, because the kinematic constraints imposed by the skeleton of rigid particles were not accurately accounted for in this model. By contrast, the discrete element model captured the kinematics and predicted both the overall levels of dilation and the simultaneous presence of both local compaction and dilatory regions with the specimens. However, the levels of dilation in this model are dependent on the assumed contact law between the spheres. Moreover, since the matrix is not explicitly included in the analysis, this model cannot be used to predict the stress-strain responses. These analyses have revealed that the complete constitutive response of cermets depends both on the kinematic constraints imposed by the particle aggregate skeleton, and the constraints imposed by the metal matrix filling the interstitial spaces in that skeleton.

  1. Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the central Adriatic during fall 2002

    USGS Publications Warehouse

    Taillandier, V.; Griffa, A.; Poulain, P.-M.; Signell, R.; Chiggiato, J.; Carniel, S.

    2008-01-01

    In this paper we present an application of a variational method for the reconstruction of the velocity field in a coastal flow in the central Adriatic Sea, using in situ data from surface drifters and outputs from the ROMS circulation model. The variational approach, previously developed and tested for mesoscale open ocean flows, has been improved and adapted to account for inhomogeneities on boundary current dynamics over complex bathymetry and coastline and for weak Lagrangian persistence in coastal flows. The velocity reconstruction is performed using nine drifter trajectories over 45 d, and a hierarchy of indirect tests is introduced to evaluate the results as the real ocean state is not known. For internal consistency and impact of the analysis, three diagnostics characterizing the particle prediction and transport, in terms of residence times in various zones and export rates from the boundary current toward the interior, show that the reconstruction is quite effective. A qualitative comparison with sea color data from the MODIS satellite images shows that the reconstruction significantly improves the description of the boundary current with respect to the ROMS model first guess, capturing its main features and its exchanges with the interior when sampled by the drifters. Copyright 2008 by the American Geophysical Union.

  2. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    USGS Publications Warehouse

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  3. Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession

    NASA Astrophysics Data System (ADS)

    Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.

    2017-12-01

    The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were used to perform computational fluid simulation (Lattice-Boltzmann multi relaxation time method) and estimate the permeability. These results will be useful for understanding the deformation process and hydraulic properties across meter-scale damage zones.

  4. Pertinent anatomy and analysis for midface volumizing procedures.

    PubMed

    Surek, Christopher C; Beut, Javier; Stephens, Robert; Jelks, Glenn; Lamb, Jerome

    2015-05-01

    The study was conducted to construct an anatomically inspired midfacial analysis facilitating safe, accurate, and dynamic nonsurgical rejuvenation. Emphasis is placed on determining injection target areas and adverse event zones. Twelve hemifacial fresh cadavers were dissected in a layered fashion. Dimensional measurements between the midfacial fat compartments, prezygomatic space, mimetic muscles, and neurovascular bundles were used to develop a topographic analysis for clinical injections. A longitudinal line from the base of the alar crease to the medial edge of the levator anguli oris muscle (1.9 cm), lateral edge of the levator anguli oris muscle (2.6 cm), and zygomaticus major muscle (4.6 cm) partitions the cheek into two aesthetic regions. A six-step facial analysis outlines three target zones and two adverse event zones and triangulates the point of maximum cheek projection. The lower adverse event zone yields an anatomical explanation to inadvertent jowling during anterior cheek injection. The upper adverse event zone localizes the palpebral branch of the infraorbital artery. The medial malar target area isolates quadrants for anterior cheek projection and tear trough effacement. The middle malar target area addresses lid-cheek blending and superficial compartment turgor. The lateral malar target area highlights lateral cheek projection and locates the prezygomatic space. This stepwise analysis illustrates target areas and adverse event zones to achieve midfacial support, contour, and profile in the repose position and simultaneous molding of a natural shape during animation. This reproducible method can be used both procedurally and in record-keeping for midface volumizing procedures.

  5. Provisional tree and shrub seed zones for the Great Plains

    Treesearch

    Richard A. Cunningham

    1975-01-01

    Seed collection zones are subdivisions of land areas established to identify seed sources and to control the movement of seed and planting stock. Seed zones are needed for many species because of the genetic variation associated with their geographic distribution. Zone boundaries may be delineated from experimental data that identify genetic variation, or by analysis...

  6. A behaviorally-explicit approach for delivering vaccine baits to mesopredators to control epizootics in fragmented landscapes

    DOE PAGES

    Beasley, James C.; Atwood, Todd C.; Byrne, Michael E.; ...

    2015-01-14

    Despite the widespread use of aerial baiting to manage epizootics among free-ranging populations,particularly in rabies management, bait acceptance and seroconversion rates often are lower than required to eliminate spread of disease. Our objectives in this study, therefore, were to evaluate the performance of stratified bait distribution models derived from resource selection functions (RSF) on uptake of placebo rabies baits by raccoons ( Procyon lotor) and Virginia opossums ( Didelphis virginiana), as well as the probability of bait uptake as a function of proximity to bait distribution areas in fragmented agricultural ecosystems. Among 478 raccoons and 108 opossums evaluated for presencemore » of Rhodamine B (RB) across 8 sites, only 26% of raccoons and 20% of opossums exhibited marking consistent with bait consumption 14–24 days post-baiting. The effective area treated, based on 90% kernel density estimators of marked individuals, ranged from 99–240 ha larger than bait distribution zones, with RB marked individuals captured up to 753m beyond the bait zone. Despite incorporation of RSF data into bait distribution models, no differences in uptake rates were observed between treatment and control sites. These data likely reflect the underlying constraints imposed by the loss and fragmentation of habitat on animal movement in heterogeneous landscapes, forcing individuals to optimize movements at coarse (i.e., patch-level) rather than fine spatial scales in highly fragmented environments. Our data also confirm that the probability of bait acceptance decreases with increasing distance from bait zone interiors, even within the zone itself. Thus, although bait acceptance was confirmed beyond bait zone boundaries, the proportion of vaccinated individuals may comprise a small minority of the population at increasing distances from baiting interiors. These data suggest focal baiting creates a buffered area of treated individuals around bait zones or bait stations, but repeated treatments may be needed to achieve sufficient uptake to eradicate disease.« less

  7. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.

  8. Cost-benefit analysis for invasive species control: the case of greater Canada goose Branta canadensis in Flanders (northern Belgium)

    PubMed Central

    Casaer, Jim; De Smet, Lieven; Devos, Koen; Huysentruyt, Frank; Robertson, Peter A.; Verbeke, Tom

    2018-01-01

    Background Sound decisions on control actions for established invasive alien species (IAS) require information on ecological as well as socio-economic impact of the species and of its management. Cost-benefit analysis provides part of this information, yet has received relatively little attention in the scientific literature on IAS. Methods We apply a bio-economic model in a cost-benefit analysis framework to greater Canada goose Branta canadensis, an IAS with documented social, economic and ecological impacts in Flanders (northern Belgium). We compared a business as usual (BAU) scenario which involved non-coordinated hunting and egg destruction with an enhanced scenario based on a continuation of these activities but supplemented with coordinated capture of moulting birds. To assess population growth under the BAU scenario we fitted a logistic growth model to the observed pre-moult capture population. Projected damage costs included water eutrophication and damage to cultivated grasslands and were calculated for all scenarios. Management costs of the moult captures were based on a representative average of the actual cost of planning and executing moult captures. Results Comparing the scenarios with different capture rates, different costs for eutrophication and various discount rates, showed avoided damage costs were in the range of 21.15 M€ to 45.82 M€ under the moult capture scenario. The lowest value for the avoided costs applied to the scenario where we lowered the capture rate by 10%. The highest value occurred in the scenario where we lowered the real discount rate from 4% to 2.5%. Discussion The reduction in damage costs always outweighed the additional management costs of moult captures. Therefore, additional coordinated moult captures could be applied to limit the negative economic impact of greater Canada goose at a regional scale. We further discuss the strengths and weaknesses of our approach and its potential application to other IAS. PMID:29404211

  9. Cost-benefit analysis for invasive species control: the case of greater Canada goose Branta canadensis in Flanders (northern Belgium).

    PubMed

    Reyns, Nikolaas; Casaer, Jim; De Smet, Lieven; Devos, Koen; Huysentruyt, Frank; Robertson, Peter A; Verbeke, Tom; Adriaens, Tim

    2018-01-01

    Sound decisions on control actions for established invasive alien species (IAS) require information on ecological as well as socio-economic impact of the species and of its management. Cost-benefit analysis provides part of this information, yet has received relatively little attention in the scientific literature on IAS. We apply a bio-economic model in a cost-benefit analysis framework to greater Canada goose Branta canadensis , an IAS with documented social, economic and ecological impacts in Flanders (northern Belgium). We compared a business as usual (BAU) scenario which involved non-coordinated hunting and egg destruction with an enhanced scenario based on a continuation of these activities but supplemented with coordinated capture of moulting birds. To assess population growth under the BAU scenario we fitted a logistic growth model to the observed pre-moult capture population. Projected damage costs included water eutrophication and damage to cultivated grasslands and were calculated for all scenarios. Management costs of the moult captures were based on a representative average of the actual cost of planning and executing moult captures. Comparing the scenarios with different capture rates, different costs for eutrophication and various discount rates, showed avoided damage costs were in the range of 21.15 M€ to 45.82 M€ under the moult capture scenario. The lowest value for the avoided costs applied to the scenario where we lowered the capture rate by 10%. The highest value occurred in the scenario where we lowered the real discount rate from 4% to 2.5%. The reduction in damage costs always outweighed the additional management costs of moult captures. Therefore, additional coordinated moult captures could be applied to limit the negative economic impact of greater Canada goose at a regional scale. We further discuss the strengths and weaknesses of our approach and its potential application to other IAS.

  10. Novel Methods to Explore Building Energy Sensitivity to Climate and Heat Waves Using PNNL's BEND Model

    NASA Astrophysics Data System (ADS)

    Burleyson, C. D.; Voisin, N.; Taylor, T.; Xie, Y.; Kraucunas, I.

    2017-12-01

    The DOE's Pacific Northwest National Laboratory (PNNL) has been developing the Building ENergy Demand (BEND) model to simulate energy usage in residential and commercial buildings responding to changes in weather, climate, population, and building technologies. At its core, BEND is a mechanism to aggregate EnergyPlus simulations of a large number of individual buildings with a diversity of characteristics over large spatial scales. We have completed a series of experiments to explore methods to calibrate the BEND model, measure its ability to capture interannual variability in energy demand due to weather using simulations of two distinct weather years, and understand the sensitivity to the number and location of weather stations used to force the model. The use of weather from "representative cities" reduces computational costs, but often fails to capture spatial heterogeneity that may be important for simulations aimed at understanding how building stocks respond to a changing climate (Fig. 1). We quantify the potential reduction in temperature and load biases from using an increasing number of weather stations across the western U.S., ranging from 8 to roughly 150. Using 8 stations results in an average absolute summertime temperature bias of 4.0°C. The mean absolute bias drops to 1.5°C using all available stations. Temperature biases of this magnitude translate to absolute summertime mean simulated load biases as high as 13.8%. Additionally, using only 8 representative weather stations can lead to a 20-40% bias of peak building loads under heat wave or cold snap conditions, a significant error for capacity expansion planners who may rely on these types of simulations. This analysis suggests that using 4 stations per climate zone may be sufficient for most purposes. Our novel approach, which requires no new EnergyPlus simulations, could be useful to other researchers designing or calibrating aggregate building model simulations - particularly those looking at the impact of future climate scenarios. Fig. 1. An example of temperature bias that results from using 8 representative weather stations: (a) surface temperature from NLDAS on 5-July 2008 at 2000 UTC; (b) temperature from 8 representative stations at the same time mapped to all counties within a given IECC climate zone; (c) the difference between (a) and (b).

  11. Paper-based Devices for Isolation and Characterization of Extracellular Vesicles

    PubMed Central

    Chen, Chihchen; Lin, Bo-Ren; Hsu, Min-Yen; Cheng, Chao-Min

    2015-01-01

    Extracellular vesicles (EVs), membranous particles released from various types of cells, hold a great potential for clinical applications. They contain nucleic acid and protein cargo and are increasingly recognized as a means of intercellular communication utilized by both eukaryote and prokaryote cells. However, due to their small size, current protocols for isolation of EVs are often time consuming, cumbersome, and require large sample volumes and expensive equipment, such as an ultracentrifuge. To address these limitations, we developed a paper-based immunoaffinity platform for separating subgroups of EVs that is easy, efficient, and requires sample volumes as low as 10 μl. Biological samples can be pipetted directly onto paper test zones that have been chemically modified with capture molecules that have high affinity to specific EV surface markers. We validate the assay by using scanning electron microscopy (SEM), paper-based enzyme-linked immunosorbent assays (P-ELISA), and transcriptome analysis. These paper-based devices will enable the study of EVs in the clinic and the research setting to help advance our understanding of EV functions in health and disease. PMID:25867034

  12. The economic payoff for a state-of-the-art high-efficiency flat-plate crystalline silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.; Callaghan, W. T.

    1987-01-01

    In 1986 during the flat-plate solar array project, silicon solar cells 4.0 sq cm in area were fabricated at the Jet Propulsion Laboratory (JPL) with a conversion efficiency of 20.1 percent (AM1.5-global). Sixteen cells were processed with efficiencies measuring 19.5 percent (AM1.5 global) or better. These cells were produced using refined versions of conventional processing methods, aside from certain advanced techniques that bring about a significant reduction in a major mechanism (surface recombination) that limits cell efficiency. Wacker Siltronic p-type float-zone 0.18-ohm-cm wafers were used. Conversion efficiencies in this range have previously been reported by other researchers, but generally on much smaller (0.5 vs. 4.0 cm) devices which have undergone sophisticated and costly processing steps. An economic analysis is presented of the potential payoffs for this approach, using the Solar Array Manufacturing Industry Costing Standards (SAMICS) methodology. The process sequence used and the assumptions made for capturing the economies of scale are presented.

  13. A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence

    USGS Publications Warehouse

    Baisden, W.T.; Amundson, Ronald; Brenner, D.L.; Cook, A.C.; Kendall, C.; Harden, J.W.

    2002-01-01

    We examine soil organic matter (SOM) turnover and transport using C and N isotopes in soil profiles sampled circa 1949, 1978, and 1998 (a period spanning pulse thermonuclear 14C enrichment of the atmosphere) along a 3-million-year annual grassland soil chronosequence. Temporal differences in soil ??14C profiles indicate that inputs of recently living organic matter (OM) occur primarily in the upper 20-30 cm but suggest that OM inputs can occur below the primary rooting zone. A three-pool SOM model with downward transport captures most observed variation in ??14C, percentages of C and N, ??13C, and ??15N, supporting the commonly accepted concept of three distinct SOM pools. The model suggests that the importance of the decadal SOM pool in N dynamics is greatest in young and old soils. Altered hydrology and possibly low pH and/or P dynamics in highly developed old soils cause changes in soil C and N turnover and transport of importance for soil biogeochemistry models.

  14. Isolation and Characterization of Fipronil Degrading Acinetobacter calcoaceticus and Acinetobacter oleivorans from Rhizospheric Zone of Zea mays.

    PubMed

    Uniyal, Shivani; Paliwal, Rashmi; Verma, Megha; Sharma, R K; Rai, J P N

    2016-06-01

    An enrichment culture technique was used for the isolation of bacteria capable of utilizing fipronil as a sole source of carbon and energy. Based on morphological, biochemical characteristics and phylogenetic analysis of 16S rRNA sequence, the bacterial strains were identified as Acinetobacter calcoaceticus and Acinetobacter oleivorans. Biodegradation experiments were conducted in loamy sand soil samples fortified with fipronil (50 µg kg(-1)) and inoculated with Acinetobacter sp. cells (45 × 10(7) CFU mL(-1)) for 90 days. Soil samples were periodically analyzed by gas liquid chromatography equipped with electron capture detector. Biodegradation of fipronil fitted well with the pseudo first-order kinetics, with rate constant value between 0.041 and 0.051 days(-1). In pot experiments, fipronil and its metabolites fipronil sulfide, fipronil sulfone and fipronil amide were found below quantifiable limit in soil and root, shoot and leaves of Zea mays. These results demonstrated that A. calcoaceticus and A. oleivorans may serve as promising strains in the bioremediation of fipronil-contaminated soils.

  15. Ethanol-dispersed and antibody-conjugated polymer nanofibers for the selective capture and 3-dimensional culture of EpCAM-positive cells.

    PubMed

    Yoon, Junghyo; Yoon, Hee-Sook; Shin, Yoojin; Kim, Sanghyun; Ju, Youngjun; Kim, Jungbae; Chung, Seok

    2017-07-01

    Electrospun and ethanol-dispersed polystyrene-poly(styrene-co-maleic anhydride) (PS-PSMA) nanofibers (NFs) were used as a platform for the selective capture and three-dimensional culture of EpCAM-positive cells in cell culture medium and whole blood. The NFs were treated with streptavidin to facilitate bond formation between the amino groups of streptavidin and the maleic anhydride groups of the NFs. A biotinylated anti-EpCAM monoclonal antibody (mAb) was attached to the streptavidin-conjugated NFs via the selective binding of streptavidin and biotin. Upon simple mixing and shaking with EpCAM-positive cancer cells in a wide concentration range from 10 to 1000,000 cells per 10mL, the mAb-attached NFs (mAb-NFs) captured the Ep-CAM positive cells in an efficiency of 59%-67% depending on initial cell concentrations, with minor mechanical capture of 14%-36%. Captured cells were directly cultured, forming cell aggregates, in the NF matrix, which ensures the cell proliferation and follow-up analysis. Furthermore, the capture capacity of mAb-NFs was assessed in the presence of whole blood and blood lysates, indicating cluster formation that captured target cells. It is anticipated that the antibody-attached NFs can be employed for the capture and analysis of very rare EpCAM positive circulating cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development of a balloon-borne device for analysis of high-altitude ice and aerosol particulates: Ice Cryo Encapsulator by Balloon (ICE-Ball)

    NASA Astrophysics Data System (ADS)

    Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.; Magee, N. B.

    2016-12-01

    We report on details of continuing instrument development and deployment of a novel balloon-borne device for capturing and characterizing atmospheric ice and aerosol particles, the Ice Cryo Encapsulator by Balloon (ICE-Ball). The device is designed to capture and preserve cirrus ice particles, maintaining them at cold equilibrium temperatures, so that high-altitude particles can recovered, transferred intact, and then imaged under SEM at an unprecedented resolution (approximately 3 nm maximum resolution). In addition to cirrus ice particles, high altitude aerosol particles are also captured, imaged, and analyzed for geometry, chemical composition, and activity as ice nucleating particles. Prototype versions of ICE-Ball have successfully captured and preserved high altitude ice particles and aerosols, then returned them for recovery and SEM imaging and analysis. New improvements include 1) ability to capture particles from multiple narrowly-defined altitudes on a single payload, 2) high quality measurements of coincident temperature, humidity, and high-resolution video at capture altitude, 3) ability to capture particles during both ascent and descent, 4) better characterization of particle collection volume and collection efficiency, and 5) improved isolation and characterization of capture-cell cryo environment. This presentation provides detailed capability specifications for anyone interested in using measurements, collaborating on continued instrument development, or including this instrument in ongoing or future field campaigns.

  17. Demonstration of innovative techniques for work zone safety data analysis

    DOT National Transportation Integrated Search

    2009-07-15

    Based upon the results of the simulator data analysis, additional future research can be : identified to validate the driving simulator in terms of similarities with Ohio work zones. For : instance, the speeds observed in the simulator were greater f...

  18. Analysis of existing work-zone devices with MASH safety performance criteria.

    DOT National Transportation Integrated Search

    2009-02-01

    Crashworthy, work-zone, portable sign support systems accepted under NCHRP Report No. 350 were analyzed to : predict their safety peformance according to the TL-3 MASH evaluation criteria. An analysis was conducted to determine : which hardware param...

  19. Tularosa Basin Play Fairway Analysis: Strain Analysis

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    A DEM of the Tularosa Basin was divided into twelve zones, each of which a ZR ratio was calculated for. This submission has a TIFF image of the zoning designations, along with a table with respective ZR ratio calculations in the metadata.

  20. Stability of a slotted ALOHA system with capture effect

    NASA Astrophysics Data System (ADS)

    Onozato, Yoshikuni; Liu, Jin; Noguchi, Shoichi

    1989-02-01

    The stability of a slotted ALOHA system with capture effect is investigated under a general communication environment where terminals are divided into two groups (low-power and high-power) and the capture effect is modeled by capture probabilities. An approximate analysis is developed using catastrophe theory, in which the effects of system and user parameters on the stability are characterized by the cusp catastrophe. Particular attention is given to the low-power group, since it must bear the strain under the capture effect. The stability conditions of the two groups are given explicitly by bifurcation sets.

Top