Science.gov

Sample records for caradoc mixed siliciclastic-carbonate

  1. The nature of matrix in mixed siliciclastic-carbonate turbidites: An example from the Oquirrh-Wood River basin

    SciTech Connect

    Geslin, J.K. . Dept. of Earth and Space Sciences)

    1992-01-01

    Upper Pennsylvanian to Lower Permian strata of the Oquirrh-Wood River basin (OWRB) in southern Idaho are dominated by mixed siliciclastic-carbonate sediment gravity flows, including amalgamated sandy turbidites or grain flows, and silty turbidites. Previously, the petrology of the carbonate fraction of mixed siliciclastic-carbonate turbidites from the OWRB has been described as predominantly micrite. A source of micrite is present in phylloid algal mounds, which comprise a carbonate platform on the eastern basin margin. Visible micritized skeletal grains and fusulinids are uncommon in these sediments. It has been proposed that the micrite was subsequently neomorphosed to microspar or large, blocky spar. The actual volume of micrite in these deposits is enigmatic. Classic studies of turbidite hydrodynamics indicate that matrix accounts for no more than 20 percent, and commonly less, of the experimental turbidite deposits. Therefore, it is unlikely, based on hydrodynamics, that mixed siliciclastic-carbonate turbidites contain more than 20 percent micritic matrix. To resolve this enigma, multiple samples of the siliciclastic-carbonate turbidites from the OWRB were examined using a fluorescence (blue-light) microscope and the white-card technique. Under fluorescence the carbonate fraction of these samples was determined to contain micritized skeletal fragments; peloids, and micritized fusulinids. During diagenesis many of the carbonate grains were deformed and crushed to form carbonate pseudomatrix. Abundant carbonate grains indicate that mixed siliciclastic-carbonate turbidites from the OWRB adhere to established hydrodynamic principles, and contain less than 20 percent detrital matrix.

  2. Recognition of maximum flooding events in mixed siliciclastic-carbonate systems: Key to global chronostratigraphic correlation

    USGS Publications Warehouse

    Mancini, E.A.; Tew, B.H.

    1997-01-01

    The maximum flooding event within a depositional sequence is an important datum for correlation because it represents a virtually synchronous horizon. This event is typically recognized by a distinctive physical surface and/or a significant change in microfossil assemblages (relative fossil abundance peaks) in siliciclastic deposits from shoreline to continental slope environments in a passive margin setting. Recognition of maximum flooding events in mixed siliciclastic-carbonate sediments is more complicated because the entire section usually represents deposition in continental shelf environments with varying rates of biologic and carbonate productivity versus siliciclastic influx. Hence, this event cannot be consistently identified simply by relative fossil abundance peaks. Factors such as siliciclastic input, carbonate productivity, sediment accumulation rates, and paleoenvironmental conditions dramatically affect the relative abundances of microfossils. Failure to recognize these complications can lead to a sequence stratigraphic interpretation that substantially overestimates the number of depositional sequences of 1 to 10 m.y. duration.

  3. Mixing mechanisms in siliciclastic-carbonate successions of Khan Formation (Permian), Central Iran

    NASA Astrophysics Data System (ADS)

    Shadan, Mahdi; Hosseini-Barzi, Mahboubeh

    2010-05-01

    Mixing mechanisms in siliciclastic-carbonate successions of Khan Formation (Permian), Central Iran M. Shadan & M. Hosseini-Barzi Geology Department, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran shadangeo@gmail.com Mixing mechanisms in siliciclastic-carbonate successions of Khan Formation (Permian) have been studied in two sections (Chahroof with 197 m thick in north and Cheshmeh Bakhshi with 204 m thick in south) along basement Kalmard fault in Posht-e-Badam block, Central Iran. Siliciclastic units are characterized by well sorted, fine to medium grain quartzarenites with laterite interbeds, deposited in shoreline zone (foreshore, upper and lower shoreface) influencing wave and longshore currents. Longshore sands which have been transported along the coast made the sand bars in the shoreface. Further along the coast, returning of these currents as rip currents produced erosive channel inlets and caused to carry fine grain into the deeper regions of the basin. Based on this sedimentary model we introduced longshore currents as a probable agent for mixing, by transporting some volumes of sands into the adjacent carbonate environments. Vertically, clastic units of Khan Formation underlined by carbonate units of a tidal flat and high-energy inner ramp system. Repeating of this pattern produced 3 cycles in each section. Cyclic evolution, in studied sections, is accompanied with discrepancy in erosion and sedimentation. These factors caused to disperse local sub-aerial exposures in successions which are recognizable by laterite and conglomerate interbeds. These horizons of sub-aerial exposures are more often in Chahroof section than in Cheshmeh Bakhshi section and indicate more fluctuations of relative sea level probably due to more local tectonic activity in the northern part of the Kalmard fault than in the southern part of it. Also, thicker siliciclastic units in Chahroof section show higher rate of sediment supply and/or more accommodation space

  4. Stratigraphic framework of sediment-starved sand ridges on a mixed siliciclastic/carbonate inner shelf; west-central Florida

    USGS Publications Warehouse

    Edwards, J.H.; Harrison, S.E.; Locker, S.D.; Hine, A.C.; Twichell, D.C.

    2003-01-01

    Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (???1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may

  5. Facies analysis and sequence stratigraphy of the Cenomanian-Turonian mixed siliciclastic-carbonate sediments in west Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Anan, Tarek I.

    2014-06-01

    The unconformity bounded Cenomanian-Turonian succession in west Sinai is subdivided into three formations: the Raha, Abu Qada, and Wata. These rock units were deposited in a mixed siliciclastic-carbonate system on a ramp setting. The studied ramp only includes inner and mid-ramp facies, whereas the outer ramp facies occurs in northern Sinai. Four sequence boundaries (SB) were recognized in the studied formations due to the presence of subaerial exposure or flooding events in the facies stacking pattern. The first and last sequence boundaries (SB1 and SB4) might be considered as Type 1 sequence boundary attributable to the presence of widespread erosion. It is difficult to determine type of the second and third sequence boundaries (SB2 and SB3) because of their minor unconformity and minimal erosion. Determination of systems tracts within the Wata Formation is debatable owing to the action of dolomitization that has destroyed both original components and sedimentary structures. The lowstand systems tracts of the recorded sequences are characterized by sandstones, siltstones, and sandy shales, while fossiliferous shale and limestone with oysters prevailed during sea level rise. The highstand systems tracts are generally characterized by shallow intertidal and subtidal deposits that are made up of abundant oyster wackestones with benthic foraminifera and ostracods.

  6. Sequence boundaries in uppermost Proterozoic mixed siliciclastic-carbonate rocks: Deep Spring Formation, southern Basin and Range

    SciTech Connect

    Parsons, S.M.; Rees, M.N. . Geosciences Dept.)

    1993-04-01

    The authors propose that a sequence boundary lies at the top of the Reed Dolomite and another at the top of the lower member of the overlying Deep Spring Formation. These boundaries should be useful in correlating critical pre-trilobite Neoproterozoic rocks across the southern Basin and Range Province. Furthermore, the mixed siliciclastic-carbonate rocks between these boundaries reflect an intimate interplay between subsidences, sea-level change and the different rates at which siliciclastic and carbonate sediments accumulate. The Type 2 sequence boundary at the top of the Reed Dolomite is marked in outcrop near Bishop, California by minor channelization and dissolution surfaces that resulted from subaerial exposure of the carbonate platform. This sea level low stand is recorded in the lower Deep Spring Formation, 150 km northwest, by carbonate sediment-gravity-flow deposits. With initiation of transgression, siliciclastics buried the eroded platform and carbonate sedimentation continued in the northwest. As sea level continued to rise, carbonate deposition occurred across the region. Time of maximum flooding is represented by lagoonal deposits in the southeast and a condensed section to the northwest. The condensed section is characterized by dolomitized limestones containing glauconite and small shelly fossils that are overlain by thinly interbedded shales and siltstones with rare trace fossils. The slower rate of siliciclastic deposition on the rapidly subsiding shelf produced an increase in accommodation space resulting in development of an ooid shoal to the southeast. To the northwest, however, continued submarine deposition produced thinly interbedded limestone turbidities and shales. Ooid accumulation outpaced subsidence and together with sea level fall resulted in extensive subaerial exposure of the oolite. Thus, the top of the lower member of the Deep Spring Formation represents the second Type 2 sequence boundary.

  7. Late Oligocene-Early Miocene larger benthic foraminifera from the mixed siliciclastic-carbonate and reefal strata of Kharabeh Sanji stratigraphic section, NW Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, R.

    2012-04-01

    The marine Oligo-Miocene sediments of the Qom Formation at Kharabeh Sanji section west Uromieh consisting of mixed siliciclastic-carbonates changing to reefal strata were studied in detail to establish a high resolution biostratigraphic zonal scheme. Contineous distribution of larger benthic foraminifera (mainly miogypsinids) allowed us to correlate the identified taxa with the shallow benthic zonation (SBZ) already introduced for European sequences and to ascribe detailed age to the study section based on the determined biozones. The identified fauna include the genera Miogypsinodes, Miogypsina, Neorotalia, Nephrolepidina, Eulepidina and Spiroclypeus. The foraminifereal assemblage resemble to the fauna described from European basins characterizing the SBZ 23 to SBZ 25 zones representing a time interval from the Late Chattian to Burdigalian.

  8. Total assemblages of benthic foraminifera from a mixed siliciclastic/carbonate inner shelf; preliminary results from the bays of Soline and Nin (Adriatic Sea, Croatia)

    NASA Astrophysics Data System (ADS)

    Vidović, J.; Ćosović, V.; Juračić, M.; Benac, Č.

    2012-04-01

    Eastern Adriatic shelf is mixed siliciclastic/carbonate area with a great proportion of carbonate biogenous production. This study presents analysis and comparison of total benthic foraminiferal assemblages (their composition, diversity and distribution) in surface sediments from two Eastern Adriatic shallow water bays (Soline and Nin Bay), sampled seasonally from 2006 to 2008. In order to characterize the carbonate sediment production, 62 samples along the bathymetric profiles (from 2 to 20 m) were collected by scuba diving with short PVC corers. Granulometrical analysis was done using method of wet sieving. Statistical analyses (cluster analysis, PCA) were performed using Past program. The most abundant biogenous components in different sediments from Soline Bay (muddy sandy gravel and mud) are foraminifera, followed by fragments of mollusks, gastropods, bryozoans and sea urchins. Foraminiferal assemblages are high diversified as confirmed by Shannon-Wiener index varying from 2.14 to 3.39, Fisher α index from 5.74 to 16.30 and Equitability from 0.32 to 0.72. The shallowest part of the bay is covered with the sand, consisted of high proportion of siliciclastic component and impoverished in biogenous remnants. Foraminiferal assemblages have low diversity (Shannon-Wiener index 1.36, Fisher α index 2.31 and Equitability 0.32). Throughout Nin Bay, sediments (classified as sand, muddy sand and mud) are consisted of various biogenic remnants. Foraminiferal assemblages have high biodiversity, with Shannon-Wiener index varying from 2.51 to 3.20, α-Fisher index from 7.84 to 12.64 and Equitability from 0.37 to 0.77. Statistical analyses (cluster analysis and PCA) grouped foraminifera in two major assemblages, related to sediment type. On sandy and gravely substrates, assemblage is dominated by epifaunal genera and species: Quinqueloculina sp. (6-20%), Elphidium sp. (5-16%), Neoconorbina terquemi (6-10 %) and Asterigerinata mamilla (5-7%). Infaunal species, Ammonia

  9. Depositional framework and sequence stratigraphic aspects of the Coniacian Santonian mixed siliciclastic/carbonate Matulla sediments in Nezzazat and Ekma blocks, Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Azabi, M. H.; El-Araby, A.

    2007-04-01

    Superb outcrops of mixed siliciclastic/carbonate rocks mark the Coniacian-Santonian Matulla Formation exposed in Nezzazat and Ekma blocks, west central Sinai. They are built up of various lithofacies that reflect minor fluctuations in relative sea-level from lower intertidal to slightly deep subtidal settings. Relying on the facies characteristics and stratal geometries, the siliciclastic rocks are divided into seven depositional facies, including beach foreshore laminated sands, upper shoreface cross-bedded sandstone, lower shoreface massive bioturbated and wave-rippled sandstones, shallow subtidal siltstone and deep subtidal shale/claystone. The carbonate rocks comprise lower intertidal lime-mudstone, floatstone and dolostone, shallow subtidal skeletal shoal of oyster rudstone/bioclastic grainstone, and shoal margin packstone. Oolitic grain-ironstone and ferribands are partially intervened the facies types. Deposition has taken place under varied conditions of restricted, partly open marine circulation, low to high wave energy and normal to raised salinity during alternating periods of abundant and ceased clastic supply. The facies types are arranged into asymmetric upward-shallowing cycles that record multiple small-scale transgressive-regressive events. Lime-mudstone and sandstone normally terminate the regressive events. Four sequence boundaries marking regional relative sea-level falls divide the Matulla Formation into three stratigraphic units. These boundaries are Turonian/Coniacian, intra-Coniacian, Coniacian/Santonian and Santonian/Campanian. They do not fit with those sequence boundaries proposed in Haq et al.'s global eustatic curves (1988) except for the sea-level fall associated with the intra-Coniacian boundary. Other sequence boundaries have resulted from regional tectonic impact of the Syrian Arc Fold System that has been initiated in north Egypt during the Latest Turonian-Coniacian. These boundaries enclose three well-defined 3rd order

  10. Preliminary results in larger benthic foraminifera assemblage in a mixed siliciclastic-carbonate platform from the Upper Cretaceous of the External Prebetic Domain (Valencia province, SE Spain)

    NASA Astrophysics Data System (ADS)

    Robles-Salcedo, Raquel; Vicedo, Vicent

    2016-04-01

    In the External Prebetic Domain (Betic Mountain Range, Valencia province, SE Spain) it is difficult to find good outcrops to study larger benthic foraminifera (LBF), particularly in the Upper Cretaceous deposits, because of three main reasons. During the Upper Cretaceous, the complex paleogeography in the northern Prebetic Domain developed a complex system of shallow-water platforms. This is directly linked to the complexity in the distribution of the facies observed nowadays, which may change drastically in lateral, closely related outcrops having a special negative impact in the lateral extension of stratigraphical levels containing LBF. The second reason is the nature of the shallow water environments in which the larger foraminifera lived. The local continental influence derived in the establishment of very complex mixed platforms. Thus, there is not a complete register through carbonate rocks, but an alternation of microconglomerates, sandstones, calcarenites and carbonates that can be observed in the stratigraphic series of the Upper Cretaceous. This affects negatively in observing changes in the evolutionary trends of taxa. The third reason difficulting the study of LBF in northern localities of the Prebetic Domain is diagenetic. Dolomitization affects a huge part of the Mesozoic rocks deleting all fossil microfauna in the affected rocks. Such three reasons are behind the difficulty in developing correlations and having a comprehensive understanding of the biostratigraphy and phylogeny of the taxa involved. However, after several field trips developed in the northern Prebetic area, an excellent reference section for the study of the LBF in the Prebetic Domain has been identified in the surroundings of the Pinet village (Valencia province). Here, a relatively continuous section with scarce dolomitization and good conditions of accessibility exists. The larger foraminifera assemblages appering in the Pinet section will be compared with other paleobiogeographic

  11. Trace element signature of Late Jurassic siliciclastic-carbonate sedimentary strata from western Montana, southeastern British Columbia and southern Alberta

    SciTech Connect

    Sablock, J. . Dept. of Geosciences)

    1992-01-01

    A trace element signature, a characteristic pattern of enrichment and depletion of trace elements, was determined for a group of siliciclastic-carbonate Oxfordian and Kimmeridgian sedimentary strata, collected from outcrops in western Montana, southeastern British Columbia and southern Alberta. The average values, by petrofacies, of 10 major and 18 trace elements were measured for 40 samples. These data were normalized to Upper Continental Crust (UCC), and plotted against averaged published values of graywackes from the same facies. The rare earth elements (REEs), as well as Ti, Zr, Nb and Y are considered immobile even through diagenesis, and at least low level metamorphism. So these elements should form a reliable part of the geochemical signature. Compared to UCC and average graywacke, Jurassic samples are very depleted in Zr, Nb and Y. Oxfordian samples have slightly higher rare earth element values, i.e. La, Ce and Nd, than either other Jurassic samples or average graywacke. The most likely source of REE values are garnets and tourmaline which occur as inclusions in monocrystalline quartz grains. This pattern, and petrological study, point to a sedimentary source area, deficient in feldspar, heavy minerals and rock fragments. The consistency of the signature throughout this time may indicate slow uplift of a widespread sedimentary source area, or could be an effect of greater mixing and shorter residence time of dissolved materials in an epeiric sea.

  12. Evolution of the siliciclastic-carbonate shelf system of the northern Kenyan coastal belt in response to Late Pleistocene-Holocene relative sea level changes

    NASA Astrophysics Data System (ADS)

    Accordi, Giovanni; Carbone, Federico

    2016-11-01

    A classification of depositional environments of the Lamu Archipelago is proposed based on a sedimentary facies analysis of unconsolidated and hard bottoms of the study area. The genesis of the siliciclastic-carbonate depositional pattern, typical of this East African region, is closely related both to the presence of a quartz-dominate Pleistocene riverine net-flooded during the Holocene sea level rise-and to the coeval development on the shallow shelf of a coral ecosystem producing vast skeletal sediments. The present facies pattern originates from the variable contribution in time and space of three sediment types: skeletal carbonate, quartz and palimpsest debris. The facies analysis allowed to distinguish 10 depositional facies and to differentiate them into three main types of substratum: soft bottom, reefal hard bottom and non-reefal hard bottom. These three types define both the loose facies typical of the channelized coastal belt and several facies of the shallow shelf. In the first, the amounts and textures of the stored sediment are strictly related to three major geomorphic types of substratum: sheltered mangal flat, shallow channel and deep channel. In the second and the third, a wide range of textures is related to coastal flats, benches, islets and emerging rocks. This modern facies pattern is implemented through a series of evolutionary phases: i-during the Last Interglacial Period, since isotope substage 5b, the shallow shelf-above -20 m-is permanently exposed for about 80 ka, with erosion, karstification and cuts of river channels through the shelf; ii-after the Last Glacial Maximum, when the sea level fell to about 110-115 m b.p.s.l. (below present sea level) at 18-17 ka BP, the sea level rose at -20 m for about 9 ka, flooding the shallow shelf area and gradually drowning the riverine net; iii-the maximum flooding of the coastal belt was reached at about 4.5 ka BP, when a gradual moisture reduction caused a decrease of siliciclastic sediment supply

  13. Holocene siliciclastic-carbonate facies mosaics, Northern Belize: Exploration analog to some midcontinent Pennsylvanian (Morrowan) reservoirs

    SciTech Connect

    Lowe, D.B.; Mazzullo, S.J.

    1995-09-01

    Midwinter Lagoon is a large, shallow coastal lagoon, bordered on its seaward side by a barrier, along the mainland coast of northern Belize. As much as 19 ft of Holocene sediments, deposited on karsted Tertiary limestones during the Flandrian transgression, consist of a complex mosaic of mixed siliciclastic and carbonate facies. Basal transgressive marine, intra-lagoonal facies are variously siliciclastic-rich carbonates to carbonate-rich siliciclastics, locally with layers of shoreline mangrove peat. These facies shallow-upward to either siliciclastic or carbonate-dominated sands or muds. Lagoonal facies were deposited within a broad topographic low, locally punctuated by bedrock highs, on the underlying limestone. The seaward edge of the barrier bar complex, which was deposited on a linear topographic high, consists mostly of quartz sands, whereas the lagoonal side is a mixture of quartzose and carbonate sediments (sands and muds). The barrier bar appears to have accreted southward in response to southerly longshore drift as a tidal inlet-spit complex; quartz sands are being transported into the lagoon from its seaward side. In terms of geometry, modern and buried, intra-lagoonal carbonate sands occur as lobes deposited proximal to extant and older tidal inlets. Either carbonate or siliciclastic sands variously occur as erratically distributed, anastomosing beach deposits around small mangrove islands and along the irregular mainland coast. In contrast, siliciclastic sands on the seaward side of the barrier define a narrow but areally persistent linear trend. Similar complex facies associations and geometries are typical of many Pennsylvanian (Morrowan) reservoirs in the midcontinent US.

  14. Deglacial origin of barrier reefs along low-latitude mixed siliciclastic and carbonate continental shelf edges.

    PubMed

    Droxler, André W; Jorry, Stéphan J

    2013-01-01

    Because the initial phase of barrier reef evolution is often buried under more recent phases of coralgal growth, the origins of modern barrier reefs have remained elusive. Direct observations on the nature of the substrate on top of which barrier reefs have developed are lacking, and simple questions about whether the substrate contributes to their overall linear morphology have remained unanswered. We present here a review dedicated to late-Quaternary shelf-edge deposition in tropical mixed siliciclastic-carbonate systems. These modern analogs are used to develop a quantitative understanding of shelf-edge barrier reef formation during different segments of relatively well-established sea-level cycles. The onset of rapid sea-level rise during early deglaciations, when siliciclastics were deposited along newly formed coasts at up-dip positions, provided opportune time windows for coralgal communities to establish themselves on top of maximum lowstand siliciclastic coastal deposits, such as beach ridges and lowstand shelf-edge deltas.

  15. Integrated workflow for characterizing and modeling a mixed sedimentary system: The Ilerdian Alveolina Limestone Formation (Graus-Tremp Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Hamon, Youri; Deschamps, Remy; Joseph, Philippe; Doligez, Brigitte; Schmitz, Julien; Lerat, Olivier

    2016-09-01

    This paper proposes an advanced stochastic workflow to jointly model sedimentary facies and diagenesis. The formation of interest is the Early Eocene Alveolina Limestone Formation, which outcrops in the Serraduy area (Graus-Tremp Basin, NE Spain). Ten sedimentary lithotypes representing facies or facies associations of a mixed siliciclastic-carbonate ramp system were identified within the succession. A 3D model describing the depositional architecture is also proposed. The results from the diagenetic study evidenced the occurrence of several successive calcite cements, which were grouped into five diagenetic imprints for modeling. These imprints were then quantified to ease their integration into numerical models. The following step consisted in building a 3D gridded model with seven different modeling units. They were populated using a bi-plurigaussian simulation approach that reproduced both the sedimentary organization and the observed diagenetic imprint distributions. Last, the simulation results were validated referring to paleogeographic and diagenetic conceptual maps.

  16. Modern cool-water siliciclastic/carbonate sediments, lacepede shelf South Australia

    SciTech Connect

    Bone, Y.; Gostin, V. ); James, N.P. ); Von der Borch, C.C. )

    1991-03-01

    The Lacepeded Shelf is a 130 km {times} 100 km open embayment along the southern passive continental margin of Australia. The shelf includes the mouth of the River Murray - Australia's largest drainage system- the extensive arcuate Coorong strand, the 50-70 m deep and flat plateau of the shelf proper, the nonrimmed shelf break, and the upper slope to depths of 200 m. The shelf bathymetry is locally interrupted by seafloor highs, reflecting the underlying rugged terrain of deformed Precambrian and early Paleozoic bedrock in the west and Tertiary limestones and Quaternary dunes in the east. The late Pleistocene/Holocene sediment blanket is formed by discrete sedimentary facies. Quartz sands cover a significant cross-shelf zone opposite the river mouth, with current generated offsets. High-resolution seismic profiles reveal buried lowstand channels. The mid-shelf is an area of conspicuously coarse-grained, mud-free loose sediments composed of variable amounts of bryozoans and bivalves. The shelf break and upper slop bryozoan sands are similar, apart from species differences, from 40 to 100 m, with an increase in mud below 100 m. The seafloor highs are sites of prolific bryozoan, calcareous algae, sponge, and bivalve growth, the skeletons of which are shed onto the shelf. Bryozoan distribution is moderated by water depth and substrate type. Most forms are low-Mg calcite to high-Mg calcite, but two major groups are aragonitic. Distribution of these different mineralogical types is important for later diagenesis. Both terrigenous clastic and carbonate sediments are a mixture of relict and modern components, depending upon location, and reflect Holocene glacio-eustatic sea-level changes.

  17. Sediment-starved sand ridges on a mixed carbonate/siliciclastic inner shelf off west-central Florida

    USGS Publications Warehouse

    Harrison, S.E.; Locker, S.D.; Hine, A.C.; Edwards, J.H.; Naar, D.F.; Twichell, D.C.; Mallinson, D.J.

    2003-01-01

    currents. An elevated rock terrace extending from the headland supports these ridges in a shallower water environment than the surrounding shelf, allowing them to be more easily influenced by currents and surface gravity waves. Tidal currents, storm-generated flows, and seasonally developed flows are shore-parallel and oriented obliquely to the NW-SE trending ridges, indicating that they have developed as described by the Huthnance model. Although inner shelf sand ridges have been extensively examined elsewhere, this study is the first to describe them in a low-energy, sediment-starved, dominantly mixed siliciclastic/carbonate sedimentary environment situated on a former limestone platform. ?? 2003 Elsevier B.V. All rights reserved.

  18. Mixed Dementia

    MedlinePlus

    ... with Lewy bodies , What Is Alzheimer's? NIA-Funded Memory & Aging Project Reveals Mixed Dementia Common Data from ... commonly with Alzheimer's disease. For example, in the Memory and Aging Project study involving long-term cognitive ...

  19. Ion mixing

    NASA Technical Reports Server (NTRS)

    Matteson, S.; Nicolet, M.-A.

    1983-01-01

    Recent experimental studies of the ion-mixing phenomenon are summarized. Ion mixing is differentiated from ion implantation and shown to be a useful technique for overcoming the sputter-dependent limitations of implantation processes. The fundamental physical principles of ion/solid interactions are explored. The basic experimental configurations currently in use are characterized: bilayered samples, multilayered samples, and samples with a thin marker layer. A table listing the binary systems (metal-semiconductor or metal-metal) which have been investigated using each configuration is presented. Results are discussed, and some sample data are plotted. The prospects for future application of ion mixing to the alteration of solid surface properties are considered. Practical applications are seen as restricted by economic considerations to the production of small, expensive components or to fields (such as the semiconductor industry) which already have facilities for ion implantation.

  20. Lateral Mixing

    DTIC Science & Technology

    2013-09-30

    apl.uw.edu/dasaro LONG-TERM GOALS I seek to understand the processes controlling lateral mixing in the ocean, particularly at the submesoscale ...APPROACH During AESOP, Lee and D’Asaro pioneered an innovative approach to measuring submesoscale structure in strong fronts. An adaptive measurement...injection of potential vorticity and scalars is predicted to create an intense ‘ submesoscale soup’ of high small-scale variance. The combination of small

  1. Lateral Mixing

    DTIC Science & Technology

    2012-11-08

    to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . 1 DISTRIBUTION STATEMENT A. Approved for...integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal opportunity to...2011 I also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the

  2. Lateral Mixing

    DTIC Science & Technology

    2011-09-30

    ocean as it responds to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . My approach for...therefore requires integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal...also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the center of

  3. Mixed cryoglobulinemia

    PubMed Central

    Ferri, Clodoveo

    2008-01-01

    Mixed cryoglobulinemia (MC), type II and type III, refers to the presence of circulating cryoprecipitable immune complexes in the serum and manifests clinically by a classical triad of purpura, weakness and arthralgias. It is considered to be a rare disorder, but its true prevalence remains unknown. The disease is more common in Southern Europe than in Northern Europe or Northern America. The prevalence of 'essential' MC is reported as approximately 1:100,000 (with a female-to-male ratio 3:1), but this term is now used to refer to a minority of MC patients only. MC is characterized by variable organ involvement including skin lesions (orthostatic purpura, ulcers), chronic hepatitis, membranoproliferative glomerulonephritis, peripheral neuropathy, diffuse vasculitis, and, less frequently, interstitial lung involvement and endocrine disorders. Some patients may develop lymphatic and hepatic malignancies, usually as a late complication. MC may be associated with numerous infectious or immunological diseases. When isolated, MC may represent a distinct disease, the so-called 'essential' MC. The etiopathogenesis of MC is not completely understood. Hepatitis C virus (HCV) infection is suggested to play a causative role, with the contribution of genetic and/or environmental factors. Moreover, MC may be associated with other infectious agents or immunological disorders, such as human immunodeficiency virus (HIV) infection or primary Sjögren's syndrome. Diagnosis is based on clinical and laboratory findings. Circulating mixed cryoglobulins, low C4 levels and orthostatic skin purpura are the hallmarks of the disease. Leukocytoclastic vasculitis involving medium- and, more often, small-sized blood vessels is the typical pathological finding, easily detectable by means of skin biopsy of recent vasculitic lesions. Differential diagnoses include a wide range of systemic, infectious and neoplastic disorders, mainly autoimmune hepatitis, Sjögren's syndrome, polyarthritis, and B

  4. Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: A modern example of mixed carbonate siliciclastic sedimentation

    NASA Astrophysics Data System (ADS)

    Brandano, Marco; Civitelli, Giacomo

    2007-10-01

    epibathyal zones that represent shelf-break and upper slope sedimentation. The Maerl facies (F4a,b; mf4a,b) and the skeletal sands (F2a,b; mf2a1, mf2a2, mf2b) fall within the circalittoral zone. The circalittoral zone in the water depth interval between 82 m and 112 m display relict facies (F6, mf6). Finally facies F5 (Siliciclastic sands) includes subfacies F5b (mf5b), located in the circalittoral zone at depths of 49 to 101 mwd and restricted to the western and eastern sectors of Ponza, and subfacies F5a in the upper infralittoral zone (15 mwd/25 mwd) where erosional processes prevail. Carbonate content analyses indicate that maximum carbonate production on the Pontinian shelf took place in the 60-80 mwd interval. Facies F4 (Maerl) represents the environment characterized by the highest carbonate production rates. In the Pontian area siliciclastic-carbonate mixing took place in the infralittoral zone and in the lower circalittoral zone. In the infralittoral zone erosional processes on the rocky shoreline produced lithoclasts and vulcanoclastic deposits that were reworked by wave-induced near-shore currents. In the lower circalittoral zone the prolific production by photic biota (red algae) ends, while skeletal remains of the aphotic environment mixes with planktonic sediments characterized by low carbonate values. Sand (63 μm-2 mm) is the dominant grain size class, however gravel-dominated facies (F4 Maerl) are present in water depths (50 to 112 mwd) which are significantly below the storm wave base. Glauconite mineralization appears on the Pontinian shelf from 50 mwd and increases in abundance along the deeper bathymetries. The compositional characteristics of relict facies F6 shows the concurrence of biota assemblages of the infralittoral and circalittoral zones, likely representing the record of the last Holocene transgressive event (18 ky) and expressed by the overlapping of components of different environments.

  5. Mixing in astrophysics

    SciTech Connect

    Fryer, Christopher Lee

    2011-01-07

    Turbulent mixing plays a vital role in many fields in astronomy. Here I review a few of these sites, discuss the importance of this turbulent mixing and the techniques used by astrophysicists to solve these problems.

  6. Mixing in explosions

    SciTech Connect

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  7. Mixed methods research.

    PubMed

    Halcomb, Elizabeth; Hickman, Louise

    2015-04-08

    Mixed methods research involves the use of qualitative and quantitative data in a single research project. It represents an alternative methodological approach, combining qualitative and quantitative research approaches, which enables nurse researchers to explore complex phenomena in detail. This article provides a practical overview of mixed methods research and its application in nursing, to guide the novice researcher considering a mixed methods research project.

  8. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  9. Cement mixing with vibrator

    SciTech Connect

    Allen, T.E.

    1991-07-09

    This patent describes a method of cementing a casing string in a bore hole of a well. It comprises introducing water and dry cement material into a mixing vessel; mixing the water and dry cement material in the mixing vessel to form a cement slurry, the slurry including lumps of the dry cement material, the mixing including steps of: agitating the slurry; and while agitating the slurry, transmitting vibrational energy into the slurry and thereby aiding disintegration and subsequent wetting of the lumps of the dry cement material in the slurry; and pumping the slurry into an annulus between the casing string and the bore hole.

  10. Mixed waste minimization/mixed waste avoidance

    SciTech Connect

    Todisco, L.R.

    1994-12-31

    This presentation describes methods for the minimization and volume reduction of low-level radioactive and mixed wastes. Many methods are presented including: source reduction, better waste monitoring activities, waste segregation, recycling, administrative controls, and optimization of waste-generating processes.

  11. Dilution Zone Mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1983-01-01

    Studies to characterize dilution zone mixing; experiments on the effects of free-stream turbulence on a jet in crossflow; and the development of an interactive computer code for the analysis of the mixing of jets with a confined crossflow are reviewed.

  12. MHD turbulent mixing layers

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Benjamin, R.A.; Cho, J.; Leitner, S.N.

    2005-09-28

    Turbulent mixing layers have been proposed to explain observations of line ratios of highly ionized elements in the interstellar medium. We present preliminary results of numerical simulations of turbulent mixing layers in a magnetized medium. We developed a MHD code with radiative cooling. The magnetic field is expected to be a controlling factor by suppressing instabilities that lead to the turbulent mixing. Our results suggest that the difference in turbulent mixing in the unmagnetized case as compared to the case of a weak magnetic field, {beta} = Pgas/Pmag {approx} 10, is insignificant. With a more thorough exploration of parameter space, this work will provide more reliable diagnostics of turbulent mixing layers than those available today.

  13. Microfluidic Mixing: A Review

    PubMed Central

    Lee, Chia-Yen; Chang, Chin-Lung; Wang, Yao-Nan; Fu, Lung-Ming

    2011-01-01

    The aim of microfluidic mixing is to achieve a thorough and rapid mixing of multiple samples in microscale devices. In such devices, sample mixing is essentially achieved by enhancing the diffusion effect between the different species flows. Broadly speaking, microfluidic mixing schemes can be categorized as either “active”, where an external energy force is applied to perturb the sample species, or “passive”, where the contact area and contact time of the species samples are increased through specially-designed microchannel configurations. Many mixers have been proposed to facilitate this task over the past 10 years. Accordingly, this paper commences by providing a high level overview of the field of microfluidic mixing devices before describing some of the more significant proposals for active and passive mixers. PMID:21686184

  14. ADVANCED MIXING MODELS

    SciTech Connect

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and

  15. ADVANCED MIXING MODELS

    SciTech Connect

    Lee, S; Dimenna, R; Tamburello, D

    2011-02-14

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in

  16. The mixing of fluids

    SciTech Connect

    Ottino, J.M.

    1989-01-01

    What do the eruption of Krakatau, the manufacture of puff pastry and the brightness of stars have in common Each involves some aspect of mixing. Mixing also plays a critical role in modern technology. Chemical engineers rely on mixing to ensure that substances react properly, to produce polymer blends that exhibit unique properties and to disperse drag-reducing agents in pipelines. Yet in spite of its of its ubiquity in nature and industry, mixing is only imperfectly under-stood. Indeed, investigators cannot even settle on a common terminology: mixing is often referred to as stirring by oceanographers and geophysicists, as blending by polymer engineers and as agitation by process engineers. Regardless of what the process is called, there is little doubt that it is exceedingly complex and is found in a great variety of systems. In constructing a theory of fluid mixing, for example, one has to take into account fluids that can be miscible or partially miscible and reactive or inert, and flows that are slow and orderly or very fast and turbulent. It is therefore not surprising that no single theory can explain all aspect of mixing in fluids and that straightforward computations usually fail to capture all the important details. Still, both physical experiments and computer simulations can provide insight into the mixing process. Over the past several years the authors and his colleague have taken both approaches in an effort to increase understanding of various aspect of the process-particularly of mixing involving slow flows and viscous fluids such as oils.

  17. Mixing method and apparatus

    DOEpatents

    Green, Norman W.

    1982-06-15

    Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

  18. Nearly discontinuous chaotic mixing

    SciTech Connect

    Sharp, David Howland; Lim, Hyun K; Yu, Yan; Glimm, James G

    2009-01-01

    A new scientific approach is presented for a broad class of chaotic problems involving a high degree of mixing over rapid time scales. Rayleigh-Taylor and Richtmyer-Meshkov unstable flows are typical of such problems. Microscopic mixing properties such as chemical reaction rates for turbulent mixtures can be obtained with feasible grid resolution. The essential dependence of (some) fluid mixing observables on transport phenomena is observed. This dependence includes numerical as well as physical transport and it includes laminar as well as turbulent transport. A new approach to the mathematical theory for the underlying equations is suggested.

  19. Guidelines for mixed waste minimization

    SciTech Connect

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  20. Artificial upwelling and mixing

    SciTech Connect

    Not Available

    1989-01-01

    The authors present results related to artificial upwelling and coastal mariculture using deep ocean water and mixing in coastal waters. They discuss the application of research results for marine waste disposal.

  1. Mixed-Media Owls

    ERIC Educational Resources Information Center

    Schultz, Kathy

    2010-01-01

    The fun of creating collages is there are unlimited possibilities for the different kinds of materials one can use. In this article, the author describes how her eighth-grade students created an owl using mixed media.

  2. Asymmetric antiproton debuncher: No bad mixing, more good mixing

    SciTech Connect

    Visnjic, V.

    1994-07-01

    An asymmetric lattice for the Fermilab Antiproton Debuncher is designed. The lattice has zero mixing between the pickups and the kickers (bad mixing) while the mixing in the rest of the machine (good mixing) can be varied (even during the operation of the machine) in order to optimize the stochastic cooling. As an example, a lattice with zero bad mixing and twice the good mixing is presented. The betatron cooling rate in this lattice is twice its present value.

  3. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 10 rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  4. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 19 equivalent rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  5. Mixed waste management options

    SciTech Connect

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  6. Mixed waste: Proceedings

    SciTech Connect

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  7. Natural convective mixing flows

    NASA Astrophysics Data System (ADS)

    Ramos, Eduardo; de La Cruz, Luis; del Castillo, Luis

    1998-11-01

    Natural convective mixing flows. Eduardo Ramos and Luis M. de La Cruz, National University of Mexico and Luis Del Castillo San Luis Potosi University. The possibility of mixing a fluid with a natural convective flow is analysed by solving numerically the mass, momentum and energy equations in a cubic container. Two opposite vertical walls of the container are assumed to have temperatures that oscillate as functions of time. The phase of the oscillations is chosen in such a way that alternating corrotating vortices are formed in the cavity. The mixing efficiency of this kind of flow is examined with a Lagrangian tracking technique. This work was partially financed by CONACyT-Mexico project number GE0044

  8. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, Robert R. (Inventor)

    1987-01-01

    A remotely controllable mixing system (210) in which a plurality of mixing assemblies (10a-10e) are arranged in an annular configuration, and wherein each assembly (10) employs a central chamber (16) and two outer, upper and lower, chambers (12, 14). Valves (18, 20) are positioned between chambers, and these valves (18, 20) for a given mixing assembly (10) are operated by upper and lower control rotors (29), which in turn are driven by upper and lower drive rotors (270, 270b). Additionally, a hoop (278) is compressed around upper control rotors (29) and a hoop (278b) is compressed around lower control rotors (29) to thus insure constant frictional engagement between all control rotors (29) and drive rotors (270, 270b). The drive rollers (270, 270b) are driven by a motor (213).

  9. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  10. Mixing navigation on networks

    NASA Astrophysics Data System (ADS)

    Zhou, Tao

    2008-05-01

    In this article, we propose a mixing navigation mechanism, which interpolates between random-walk and shortest-path protocol. The navigation efficiency can be remarkably enhanced via a few routers. Some advanced strategies are also designed: For non-geographical scale-free networks, the targeted strategy with a tiny fraction of routers can guarantee an efficient navigation with low and stable delivery time almost independent of network size. For geographical localized networks, the clustering strategy can simultaneously increase efficiency and reduce the communication cost. The present mixing navigation mechanism is of significance especially for information organization of wireless sensor networks and distributed autonomous robotic systems.

  11. Atomization and mixing study

    NASA Technical Reports Server (NTRS)

    Ferrenberg, A.; Jaqua, V. W.

    1983-01-01

    The state of the art in atomization and mixing for triplet, pentad, and coaxial injectors is described. Injectors that are applicable for LOX/hydrocarbon propellants and main chamber and fuel rich preburner/gas generator mixture ratios are of special interest. Various applicable correlating equations and parameters as well as test data found in the literature are presented. The validity, utility, and important aspects of these data and correlations are discussed and the measurement techniques used are evaluated. Propellant mixing tests performed are described and summarized, results are reported, and tentative conclusions are included.

  12. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  13. Atomization and Mixing Study

    NASA Technical Reports Server (NTRS)

    Ferrenberg, A.; Hunt, K.; Duesberg, J.

    1985-01-01

    The primary objective was the obtainment of atomization and mixing performance data for a variety of typical liquid oxygen/hydrocarbon injector element designs. Such data are required to establish injector design criteria and to provide critical inputs to liquid rocket engine combustor performance and stability analysis, and computational codes and methods. Deficiencies and problems with the atomization test equipment were identified, and action initiated to resolve them. Test results of the gas/liquid mixing tests indicated that an assessment of test methods was required. A series of 71 liquid/liquid tests were performed.

  14. Sylgard® Mixing Study

    SciTech Connect

    Bello, Mollie; Welch, Cynthia F.; Goodwin, Lynne Alese; Keller, Jennie

    2014-08-22

    Sylgard® 184 and Sylgard® 186 silicone elastomers form Dow Corning® are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY™ Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.

  15. Mixing and Transport.

    ERIC Educational Resources Information Center

    Ditmars, John D.

    1978-01-01

    Presents a literature review of longitudinal dispersion, mixing and transport in streams, rivers, lakes, reservoirs, estuaries, and oceans. This review covers also: (1) fluid-solid mixtures and (2) oil spill behavior. A list of 189 references published in 1976 and 1977 is presented. (HM)

  16. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  17. Stabilizer for mixed fuels

    SciTech Connect

    Yamamura, M.; Igarashi, T.; Ukigai, T.

    1984-03-13

    A stabilizer for mixed fuels containing a reaction product obtained by reacting (1) a polyol having at least 3 hydroxyl groups in the molecule and a molecular weight of 400-10,000 with (2) an epihalohydrin, as the principal component.

  18. True Anonymity Without Mixes

    NASA Astrophysics Data System (ADS)

    Molina-Jimenez, C.; Marshall, L.

    2002-04-01

    Anonymizers based on mix computers interposed between the sender and the receiver of an e-mail message have been used in the Internet for several years by senders of e-mail messages who do not wish to disclose their identity. Unfortunately, the degree of anonymity provided by this paradigm is limited and fragile. First, the messages sent are not truly anonymous but pseudo-anonymous since one of the mixes, at least, always knows the sender's identity. Secondly, the strength of the system to protect the sender's identity depends on the ability and the willingness of the mixes to keep the secret. If the mixes fail, the sender/'s anonymity is reduced to pieces. In this paper, we propose a novel approach for sending truly anonymous messages over the Internet where the anonymous message is sent from a PDA which uses dynamically assigned temporary, non-personal, random IP and MAC addresses. Anonymous E-cash is used to pay for the service.

  19. Radial Mixing in Turbomachines

    DTIC Science & Technology

    1991-03-31

    Belgium March 31, 1991 Final Scientific Report June 1, 1989 - July 31, 1990 VUB -STR -17 Approved for public release; distribution unlimited. - Prepared ...secondary flows and turbulence as sources of mixing was investigated by conducting experiments using hot-wire anemometry and ehtylene tracer gas

  20. Long-term effect of the Kärdla crater (Hiiumaa, Estonia) on Late Ordovician carbonate sedimentation

    NASA Astrophysics Data System (ADS)

    Ainsaar, Leho; Suuroja, Kalle; Semidor, Maili

    Kärdla impact crater, 4 km in diameter, was formed in the early Caradoc (Late Ordovician) in the Baltoscandian shelf sea, a sediment-starved temperate-water carbonate basin. The Upper Ordovician post-impact sediments that cover the Kärdla crater are 15-275 m thick. The crater rimwall is composed of three separate basement rises that formed islands or shoals in the Late Ordovician shelf sea and influenced the sedimentation in the surrounding area. The rises provide the means to study the shallow-water sedimentary environments and sea-level history. This may be one of the few cases, where shore environments of the Baltoscandian Ordovician palaeobasin are preserved in the geological record. Lithofacies distribution was studied in the crater area from data of about 100 drillcores. Grain size distribution and composition of the non-carbonate material were analyzed in six core sections in order to reconstruct the history of crater erosion. The post-impact marine deposits lie on a partly redeposited and mixed ejecta layer derived from the Cambrian to Lower Ordovician silici-clastic deposits in the target area. Beds of marine carbonate sediments of Caradoc age, wackestones and mudstones, on-lap on the slope of the crater rim. A shift of sedimentation towards the crater rim during the Caradoc is evidence of a relative sea-level rise, which was a combination of early Caradoc eustatic rise, crater area subsidence, and compaction of pre-impact and impact sediments. The occurrences of coarse sand and gravel in specific stratigraphic intervals reflect the intensity of wave action and sea-level changes in the area. A detailed curve of sea-level changes during Late Ordovician has been constructed and different post-impact sedimentation models are presented for the crater area. The sedimentation pattern changed during the Caradoc as a result of sea-level rise and climatic change. The synchronous appearance of echinoderm bioclastic accumulations in shoal areas in Estonian mainland

  1. Mixing by individual swimmers

    NASA Astrophysics Data System (ADS)

    Pushkin, Dmitri; Shum, Henry; Yeomans, Julia

    2012-11-01

    Despite their evolutionary and technological importance, different biomixing mechanisms, their effectiveness and universality remain poorly understood. In this talk we focus on the Lagrangian transport of the surrounding fluid by swimmers. Low Re passive tracers advected by swimmers move in loops that are, in general, almost closed. We analyze the reasons for this behavior and, as non-closedness of the loops is a natural requirement for an efficient mixing, propose a classification of possible mechanisms for biogenic mixing. Next, we discuss the universal (common to all swimmers) and the swimmer-dependent features of the resulting tracer displacements and analyze the Darwin drift, the total fluid volume displaced by a swimmer passing from and to infinity. We show that the Darwin drift is finite for force-free swimmers and can be decomposed into a universal and a swimmer-dependent part. We illustrate our consideration with examples for model swimmers and biological data.

  2. Experiments in mixed reality

    NASA Astrophysics Data System (ADS)

    Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark

    2010-01-01

    As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.

  3. Magnetically driven surface mixing

    NASA Astrophysics Data System (ADS)

    Belkin, M.; Snezhko, A.; Aranson, I. S.; Kwok, W.-K.

    2009-07-01

    Magnetic microparticles suspended on the surface of liquid and energized by vertical alternating magnetic field exhibit complex collective behavior. Various immobile and self-propelled self-assembled structures have been observed. Here, we report on experimental studies of mixing and surface diffusion processes in this system. We show that the pattern-induced surface flows have properties of quasi-two-dimensional turbulence. Correspondingly, the surface advection of tracer particle exhibits properties of Brownian diffusion.

  4. Flows, Turbulence, and Mixing

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex

    2003-07-01

    HST and FUSE spectra of distant UV-bright sources reveal interstellar absorption lines of high stages of ionization {O VI, C IV, N V, Si IV} arising in many different astrophysical environments such as superbubbles, interstellar chimneys, high-velocity clouds, galaxy halos and cosmic filaments. Turbulence, always present in the magnetized ISM, must mix the hot { 10^6 K} gas with cooler gas within "turbulent mixing layers". Present theory, based on 1D steady-state flows, suggest the line ratios in these layers differ significantly from photoionized gas, radiative shocks, cooling zones, or conduction fronts. These models are use to infer mass and energy fluxes important to understanding the ISM. We propose to develop a suite of 3D time-dependent models that properly calculate turbulent mixing. We will produce synthetic UV absorption lines and optical emission lines directly relevant to HST observations that use GHRS, STIS, and eventually, COS. These models will allow us to explore the sensitivity of the spectral diagnostics to magnetic field strength, turbulence intensity, and relative velocity of the hot and cold gas. We will publish the resulting grid of spectral diagnostics and make them available through the Web.

  5. Stochastic neutrino mixing mechanism

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.; Zavanin, E. M.

    2013-05-01

    We propose a mechanism which provides an explanation of the Gallium and antineutrino reactor anomalies. Differently from original Pontecorvo’s hypothesis, this mechanism is based on the phenomenological assumption in which the admixture of neutrino mass eigenstates in the moments of neutrino creation and detection can assume different configurations around the admixture parametrized by the usual values of the mixing angles θ12, θ23, and θ13. For simplicity, we assume a Gaussian distribution for the mixing angles in such a way that the average value of this distribution is given by the usual values of the mixing angles, and the width of the Gaussian is denoted by α. We show that the proposed mechanism provides a possible explanation for very short-baseline neutrino disappearance, necessary to accommodate Gallium and antineutrino reactor anomalies, which is not allowed in usual neutrino oscillations based on Pontecorvo’s original hypotheses. We also can describe high-energy oscillation experiments, like LSND, Fermi, and NuTeV, assuming a weakly energy dependent width parameter, α(E), that nicely fits all experimental results.

  6. Mixing kaons with mixed action chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Aubin, Christopher

    2006-12-01

    We calculate the neutral kaon mixing parameter, BK , to next-to-leading order in mixed action (domain-wall valence with staggered sea quarks) chiral perturbation theory. We find the expres- sion for BK in this mixed-action case only differs from the continuum partially quenched expres- sion by an additional analytic term. Additionally, in preparation for a lattice calculation of BK with a mixed action, we discuss quantitatively the effects of the taste violations as well as finite volume effects.

  7. MixSIAR: advanced stable isotope mixing models in R

    EPA Science Inventory

    Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...

  8. Error Estimates for Mixed Methods.

    DTIC Science & Technology

    1979-03-01

    This paper presents abstract error estimates for mixed methods for the approximate solution of elliptic boundary value problems. These estimates are...then applied to obtain quasi-optimal error estimates in the usual Sobolev norms for four examples: three mixed methods for the biharmonic problem and a mixed method for 2nd order elliptic problems. (Author)

  9. Magnetically coupled system for mixing

    SciTech Connect

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  10. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  11. B Lifetimes and Mixing

    SciTech Connect

    Evans, Harold G.; /Indiana U.

    2009-05-01

    The Tevatron experiments, CDF and D0, have produced a wealth of new B-physics results since the start of Run II in 2001. We've observed new B-hadrons, seen new effects, and increased many-fold the precision with which we know the properties of b-quark systems. In these proceedings, we will discuss two of the most fruitful areas in the Tevatron B-physics program: lifetimes and mixing. We'll examine the experimental issues driving these analyses, present a summary of the latest results, and discuss prospects for the future.

  12. Collisional atomic mixing

    NASA Astrophysics Data System (ADS)

    Biersack, Jochen P.

    The collisional mixing of thin metal markers in silicon is investigated with the computer program TRIM-DYNAMIC (T-DYN). This code assumes that at high dose irradiation, the substrate Si or Ge, will get fully amorphized, and the recoil atom can stop in any position after slowing down below a certain final energy Ef (taken here as 3 eV). In order to avoid chemical effects, the system Au marker in a silicon matrix was chosen for the TRIM simulation. The results are in good agreement with the experimental findings, as compiled in the review article by Paine and Averback. Similar collisional mixing effects occur in the process of SIMS or Auger electron depth profiling, and cannot be avoided. An example is given here for a thin layer of arsenic vapor deposited on Si and covered by amorphous silicon. The analysing ion beam in this case was 14.5 keV Cs+ incident at 37° towards the surface normal. In comparison with the SIMS measurements by modern depth profiling equipment, again good agreement was found between the T-DYN results and the experiment.

  13. Transition mixing study

    NASA Technical Reports Server (NTRS)

    Reynolds, R.; White, C.

    1986-01-01

    A computer model capable of analyzing the flow field in the transition liner of small gas turbine engines is developed. A FORTRAN code has been assembled from existing codes and physical submodels and used to predict the flow in several test geometries which contain characteristics similar to transition liners, and for which experimental data was available. Comparisons between the predictions and measurements indicate that the code produces qualitative results but that the turbulence models, both K-E and algebraic Reynolds Stress, underestimate the cross-stream diffusion. The code has also been used to perform a numerical experiment to examine the effect of a variety of parameters on the mixing process in transition liners. Comparisons illustrate that geometries with significant curvature show a drift of the jet trajectory toward the convex wall and weaker wake region vortices and decreased penetration for jets located on the convex wall of the liner, when compared to jets located on concave walls. Also shown were the approximate equivalency of angled slots and round holes and a technique by which jet mixing correlations developed for rectangular channels can be used for can geometries.

  14. Wave mixing spectroscopy

    SciTech Connect

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.

  15. Sedimentologic and tectonic evolution of the Upper Cretaceous-Lower Tertiary succession at Wadi Qena, Egypt

    NASA Astrophysics Data System (ADS)

    Soliman, Mohamed A.; Habib, Mohamed E.; Ahmed, Ezzat A.

    1986-01-01

    The Upper Cretaceous-Lower Tertiary rocks around Wadi Qena, Egypt, represent a mixed siliciclastic-carbonate-phosphorite succession including (from base to top) the Nubia Sandstone, Quseir Shale, Duwi Formation, Dakhla Shale, Tarawan Chalk, Esna Shale and Thebes Formation. Facies and microfacies investigations were carried out. The Nubia Sandstone was deposited by a fluviatile system, whereas the Quseir Shale was laid down by deltaic sedimentation. The Dakhla Shale, Esna Shale and Tarawan Chalk were formed in open marine (pelagic) realms. The Thebes Formation is a shallowing carbonate facies. Phosphorites were accumulated as lag deposits by reworking and winnowing of pre-existing phosphatic materials. The sedimentation of the Upper Cretaceous-Lower Tertiary rocks were affected by regional and local tectonics (i.e., faulting). The latter played a substantial role in the distribution of the different facies particularly the siliciclastic-carbonate facies.

  16. Mixed methods, mixed methodology health services research in practice.

    PubMed

    Johnstone, P Lynne

    2004-02-01

    Mixed methods, mixed methodology research is a little documented but increasingly accepted approach employed to investigate organizational phenomena. The author presents a synthesis of literature that informed the decision to adopt a mixed methods, mixed methodology, dominantly naturalistic study approach to health services research in which she explored the process and organizational consequences of new artifact adoption in surgery. She describes the way whereby a collective case study involving five Australian hospitals yielded quantitative and qualitative data that were analyzed using inductive and/or deductive reasoning. She goes beyond the theoretical rational for employing a mixed methods, mixed methodology approach to present a summative conceptual model of the research process and describe the structural aspects of the dissertation in which the research was reported that should benefit researchers contemplating the value of such an approach.

  17. Mixed Mode Matrix Multiplication

    SciTech Connect

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  18. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  19. Biogenic inputs to ocean mixing.

    PubMed

    Katija, Kakani

    2012-03-15

    Recent studies have evoked heated debate about whether biologically generated (or biogenic) fluid disturbances affect mixing in the ocean. Estimates of biogenic inputs have shown that their contribution to ocean mixing is of the same order as winds and tides. Although these estimates are intriguing, further study using theoretical, numerical and experimental techniques is required to obtain conclusive evidence of biogenic mixing in the ocean. Biogenic ocean mixing is a complex problem that requires detailed understanding of: (1) marine organism behavior and characteristics (i.e. swimming dynamics, abundance and migratory behavior), (2) mechanisms utilized by swimming animals that have the ability to mix stratified fluids (i.e. turbulence and fluid drift) and (3) knowledge of the physical environment to isolate contributions of marine organisms from other sources of mixing. In addition to summarizing prior work addressing the points above, observations on the effect of animal swimming mode and body morphology on biogenic fluid transport will also be presented. It is argued that to inform the debate on whether biogenic mixing can contribute to ocean mixing, our studies should focus on diel vertical migrators that traverse stratified waters of the upper pycnocline. Based on our understanding of mixing mechanisms, body morphologies, swimming modes and body orientation, combined with our knowledge of vertically migrating populations of animals, it is likely that copepods, krill and some species of gelatinous zooplankton and fish have the potential to be strong sources of biogenic mixing.

  20. Fluid mixing in stratified gravity currents: the Prandtl mixing length.

    PubMed

    Odier, P; Chen, J; Rivera, M K; Ecke, R E

    2009-04-03

    Shear-induced vertical mixing in a stratified flow is a key ingredient of thermohaline circulation. We experimentally determine the vertical flux of momentum and density of a forced gravity current using high-resolution velocity and density measurements. A constant eddy-viscosity model provides a poor description of the physics of mixing, but a Prandtl mixing length model relating momentum and density fluxes to mean velocity and density gradients works well. For the average gradient Richardson number Ri(g) approximately 0.08 and a Taylor Reynolds number Re(lambda) approximately 100, the mixing lengths are fairly constant, about the same magnitude, comparable to the turbulent shear length.

  1. Estimating beta-mixing coefficients

    PubMed Central

    McDonald, Daniel J.; Shalizi, Cosma Rohilla; Schervish, Mark

    2015-01-01

    The literature on statistical learning for time series assumes the asymptotic independence or “mixing” of the data-generating process. These mixing assumptions are never tested, and there are no methods for estimating mixing rates from data. We give an estimator for the beta-mixing rate based on a single stationary sample path and show it is L1-risk consistent. PMID:26279742

  2. Optimal broadcasting of mixed states

    SciTech Connect

    Dang Guifang; Fan Heng

    2007-08-15

    The N to M (M{>=}N) universal quantum broadcasting of mixed states {rho}{sup xN} is proposed for a qubit system. The broadcasting of mixed states is universal and optimal in the sense that the shrinking factor is independent of the input state and achieves the upper bound. The quantum broadcasting of mixed qubits is a generalization of the universal quantum cloning machine for identical pure input states. A pure state decomposition of the identical mixed qubits {rho}{sup xN} is obtained.

  3. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    SciTech Connect

    Albright, Carl H.

    2009-11-01

    An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.

  4. Mixed voltage VLSI design

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  5. Mixed oxide fuel development

    SciTech Connect

    Leggett, R.D.; Omberg, R.P.

    1987-05-08

    This paper describes the success of the ongoing mixed-oxide fuel development program in the United States aimed at qualifying an economical fuel system for liquid metal cooled reactors. This development has been the cornerstone of the US program for the past 20 years and has proceeded in a deliberate and highly disciplined fashion with high emphasis on fuel reliability and operational safety as major features of an economical fuel system. The program progresses from feature testing in EBR-II to qualifying full size components in FFTF under fully prototypic conditions to establish a basis for extending allowable lifetimes. The development program started with the one year (300 EFPD) core, which is the FFTF driver fuel, continued with the demonstration of a two year (600 EFPD) core and is presently evaluating a three year (900 EFPD) fuel system. All three of these systems, consistent with other LMR fuel programs around the world, use fuel pellets gas bonded to a cladding tube that is assembled into a bundle and fitted into a wrapper tube or duct for ease of insertion into a core. The materials of construction progressed from austenitic CW 316 SS to lower swelling austenitic D9 to non swelling ferritic/martensitic HT9. 6 figs., 2 tabs.

  6. Mixing in polymeric microfluidic devices.

    SciTech Connect

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H.; Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  7. Anomalous Sediment Mixing by Bioturbation

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Xie, M.; Packman, A. I.

    2013-12-01

    Bioturbation, the reworking of sediments by animals and plants, is the dominant mode of sediment mixing in low-energy environments, and plays an important role in sedimentary biogeochemical processes. Mixing resulting from bioturbation has historically been modeled as a diffusive process. However, diffusion models often do not provide a sufficient description of sediment mixing due to bioturbation. Stochastic models, such as the continuous time random walk (CTRW) model, provide more general descriptions of mixing behavior that are applicable even when regular diffusion assumptions are not met. Here we present results from an experimental investigation of anomalous sediment mixing by bioturbation in freshwater sediments. Clean and heavy-metal-contaminated sediments were collected from Lake DePue, a backwater lake of the Illinois River. The burrowing worm species Lumbriculus variegatus was introduced to homogenized Lake DePue sediments in aerated aquaria. We then introduced inert fine fluorescent particles to the sediment-water interface. Using time-lapse photography, we observed the mixing of the fluorescent particles into the sediment bed over a two-week period. We developed image analysis software to characterize the concentration distribution of the fluorescent particles as a function of sediment depth, and applied this to the time-series of images to evaluate sediment mixing. We fit a one-dimensional CTRW model to the depth profiles to evaluate the underlying statistical properties of the mixing behavior. This analysis suggests that the sediment mixing caused by L. variegatus burrowing is subdiffusive in time and superdiffusive in space. We also found that heavy metal contamination significantly reduces L. variegatus burrowing, causing increasingly anomalous sediment mixing. This result implies that there can be important feedbacks between sediment chemistry, organism behavior, and sediment mixing that are not considered in current environmental models.

  8. Microfluidic mixing using contactless dielectrophoresis.

    PubMed

    Salmanzadeh, Alireza; Shafiee, Hadi; Davalos, Rafael V; Stremler, Mark A

    2011-09-01

    The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead capacitively coupled to the mixing chamber through thin dielectric barriers, which eliminates many of the problems encountered with standard DEP. Four system designs with rectangular and circular mixing chambers were fabricated in PDMS. Mixing tests were conducted for flow rates from 0.005 to 1 mL/h subject to an alternating current signal range of 0-300 V at 100-600 kHz. When the time scales of the bulk fluid motion and the DEP motion were commensurate, rapid mixing was observed. The rectangular mixing chambers were found to be more efficient than the circular chambers. This approach shows potential for mixing low diffusivity biological samples, which is a very challenging problem in laminar flows at small scales.

  9. Mixed-Methods Research Methodologies

    ERIC Educational Resources Information Center

    Terrell, Steven R.

    2012-01-01

    Mixed-Method studies have emerged from the paradigm wars between qualitative and quantitative research approaches to become a widely used mode of inquiry. Depending on choices made across four dimensions, mixed-methods can provide an investigator with many design choices which involve a range of sequential and concurrent strategies. Defining…

  10. Mixed Waste Working Group report

    SciTech Connect

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  11. Mixed connective tissue disease.

    PubMed

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies.

  12. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  13. Mixing in confined stratified aquifers

    NASA Astrophysics Data System (ADS)

    Bolster, Diogo; Valdés-Parada, Francisco J.; LeBorgne, Tanguy; Dentz, Marco; Carrera, Jesus

    2011-03-01

    Spatial variability in a flow field leads to spreading of a tracer plume. The effect of microdispersion is to smooth concentration gradients that exist in the system. The combined effect of these two phenomena leads to an 'effective' enhanced mixing that can be asymptotically quantified by an effective dispersion coefficient (i.e. Taylor dispersion). Mixing plays a fundamental role in driving chemical reactions. However, at pre-asymptotic times it is considerably more difficult to accurately quantify these effects by an effective dispersion coefficient as spreading and mixing are not the same (but intricately related). In this work we use a volume averaging approach to calculate the concentration distribution of an inert solute release at pre-asymptotic times in a stratified formation. Mixing here is characterized by the scalar dissipation rate, which measures the destruction of concentration variance. As such it is an indicator for the degree of mixing of a system. We study pre-asymptotic solute mixing in terms of explicit analytical expressions for the scalar dissipation rate and numerical random walk simulations. In particular, we divide the concentration field into a mean and deviation component and use dominant balance arguments to write approximate governing equations for each, which we then solve analytically. This allows us to explicitly evaluate the separate contributions to mixing from the mean and the deviation behavior. We find an approximate, but accurate expression (when compared to numerical simulations) to evaluate mixing. Our results shed some new light on the mechanisms that lead to large scale mixing and allow for a distinction between solute spreading, represented by the mean concentration, and mixing, which comes from both the mean and deviation concentrations, at pre-asymptotic times.

  14. Baroclinic mixing in HE fireballs

    SciTech Connect

    Kuhl, A.L.; Ferguson, R.E.; Priolo, F.; Chien, K.Y.; Collins, J.P.

    1993-08-01

    Numerical simulations of the turbulent mixing in the fireball of an HE blast wave were performed with a second-order Godunov code. Adaptive mesh refinement was used to capture the convective mixing processes on the computational grid. The calculations revealed that the interface between the shock-compressed air and the dense detonation products was unstable. Vorticity was generated in that region by baroclinic effects. This caused the interface to roll-up into a turbulent mixing layer. Four phases of mixing were identified: a strong blast wave phase, where the mixing region was swept outward by the shockinduced flow; an implosion phase, that stretched the inner boundary of the mixing region back toward the origin; a re-shocking phase, where the imploding shock expands back outward from the origin and re-energizes the mixing later by RichtmyerMeshkov effects; and an asymptotic mixing phase, where line-scale structures are continually recreated by folding effects but the overall vorticity decays through a cascade process. The flowfield was azimuthally averaged to evaluate the mean-flow profiles and r.m.s. fluctuation profiles across the mixing layer. The mean kinetic energy rapidly approached zero as the blast wave decayed, but the fluctuating kinetic energy asymptotically approached a small constant value. This represents the rotational kinetic energy driven by the vorticity field, that continued to mix the fluid at late times. It was shown that the vorticity field corresponds to a function that fluctuates between plus and minus values-with a volume-averaged mean of zero.

  15. Compressibility effects on turbulent mixing

    NASA Astrophysics Data System (ADS)

    Panickacheril John, John; Donzis, Diego

    2016-11-01

    We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.

  16. Mixed features in bipolar disorder.

    PubMed

    Solé, Eva; Garriga, Marina; Valentí, Marc; Vieta, Eduard

    2016-12-29

    Mixed affective states, defined as the coexistence of depressive and manic symptoms, are complex presentations of manic-depressive illness that represent a challenge for clinicians at the levels of diagnosis, classification, and pharmacological treatment. The evidence shows that patients with bipolar disorder who have manic/hypomanic or depressive episodes with mixed features tend to have a more severe form of bipolar disorder along with a worse course of illness and higher rates of comorbid conditions than those with non-mixed presentations. In the updated Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5), the definition of "mixed episode" has been removed, and subthreshold nonoverlapping symptoms of the opposite pole are captured using a "with mixed features" specifier applied to manic, hypomanic, and major depressive episodes. However, the list of symptoms proposed in the DSM-5 specifier has been widely criticized, because it includes typical manic symptoms (such as elevated mood and grandiosity) that are rare among patients with mixed depression, while excluding symptoms (such as irritability, psychomotor agitation, and distractibility) that are frequently reported in these patients. With the new classification, mixed depressive episodes are three times more common in bipolar II compared with unipolar depression, which partly contributes to the increased risk of suicide observed in bipolar depression compared to unipolar depression. Therefore, a specific diagnostic category would imply an increased diagnostic sensitivity, would help to foster early identification of symptoms and ensure specific treatment, as well as play a role in suicide prevention in this population.

  17. Mapping the Mixed Methods–Mixed Research Synthesis Terrain

    PubMed Central

    Sandelowski, Margarete; Voils, Corrine I.; Leeman, Jennifer; Crandell, Jamie L.

    2012-01-01

    Mixed methods–mixed research synthesis is a form of systematic review in which the findings of qualitative and quantitative studies are integrated via qualitative and/or quantitative methods. Although methodological advances have been made, efforts to differentiate research synthesis methods have been too focused on methods and not focused enough on the defining logics of research synthesis—each of which may be operationalized in different ways—or on the research findings themselves that are targeted for synthesis. The conduct of mixed methods–mixed research synthesis studies may more usefully be understood in terms of the logics of aggregation and configuration. Neither logic is preferable to the other nor tied exclusively to any one method or to any one side of the qualitative/quantitative binary. PMID:23066379

  18. Mixed deterministic and probabilistic networks.

    PubMed

    Mateescu, Robert; Dechter, Rina

    2008-11-01

    The paper introduces mixed networks, a new graphical model framework for expressing and reasoning with probabilistic and deterministic information. The motivation to develop mixed networks stems from the desire to fully exploit the deterministic information (constraints) that is often present in graphical models. Several concepts and algorithms specific to belief networks and constraint networks are combined, achieving computational efficiency, semantic coherence and user-interface convenience. We define the semantics and graphical representation of mixed networks, and discuss the two main types of algorithms for processing them: inference-based and search-based. A preliminary experimental evaluation shows the benefits of the new model.

  19. Mixed deterministic and probabilistic networks

    PubMed Central

    Dechter, Rina

    2010-01-01

    The paper introduces mixed networks, a new graphical model framework for expressing and reasoning with probabilistic and deterministic information. The motivation to develop mixed networks stems from the desire to fully exploit the deterministic information (constraints) that is often present in graphical models. Several concepts and algorithms specific to belief networks and constraint networks are combined, achieving computational efficiency, semantic coherence and user-interface convenience. We define the semantics and graphical representation of mixed networks, and discuss the two main types of algorithms for processing them: inference-based and search-based. A preliminary experimental evaluation shows the benefits of the new model. PMID:20981243

  20. [Marketing mix in health service].

    PubMed

    Ameri, Cinzia; Fiorini, Fulvio

    2015-01-01

    The marketing mix is the combination of the marketing variables that a firm employs with the purpose to achieve the expected volume of business within its market. In the sale of goods, four variables compose the marketing mix (4 Ps): Product, Price, Point of sale and Promotion. In the case of providing services, three further elements play a role: Personnel, Physical Evidence and Processes (7 Ps). The marketing mix must be addressed to the consumers as well as to the employees of the providing firm. Furthermore, it must be interpreted as employees ability to satisfy customers (interactive marketing).

  1. Waveguide Four-Wave Mixing

    DTIC Science & Technology

    1991-10-01

    PL-TR--91-1045 /’--"PL-TR-- AD-A243 555 91-1045 WAVEGUIDE FOUR -WAVE MIXING Thomas B. Simpson Jia-ming Liu JAYCOR San Diego, CA 92186-5154 October...Final Report; May 88 - Mar 91 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS WAVEGUIDE FOUR -WAVE MIXING C: F29601-88-C-0023 PE: 62601F PR: 3326 6. AUTHOR(S...for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This program has investigated four -wave mixing (4-win) in non- linear

  2. Biodegradation of mixed pesticides by mixed pesticide enriched cultures.

    PubMed

    Krishna, K Rama; Philip, Ligy

    2009-01-01

    This paper discusses the degradation kinetics of mixed (lindane, methyl parathion and carbofuran) pesticides by mixed pesticide enriched cultures (MEC) under various environmental conditions. The bacterial strains isolated from the mixed microbial consortium were identified as Pseudomonas aeruginosa (MTCC 9236), Bacillus sp. (MTCC 9235) and Chryseobacterium joostei (MTCC 9237). Batch studies were conducted to estimate the biokinetic parameters like the maximum specific growth rate (mu(max)), Yield Coefficient (Y(T)), half saturation concentration (K(s)) and inhibition concentration (Ki) for individual and mixed pesticide enriched cultures. The cultures enriched in a particular pollutant always showed high growth rate and low inhibition in that particular pollutant compared to MEC. After seven weeks of incubation, mixed pesticide enriched cultures were able to degrade 72% lindane, 95% carbofuran and 100% of methyl parathion in facultative co-metabolic conditions. In aerobic systems, degradation efficiencies of lindane methyl parathion and carbofuran were increased by the addition of 2g L(- 1) of dextrose. Though many metabolic compounds of mixed pesticides were observed at different time intervals, none of the metabolites were persistent. Based on the observed metabolites, a degradation pathway was postulated for different pesticides under various environmental conditions.

  3. Modeling Mix in ICF Implosions

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Chang, B.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Peterson, J. L.; Robey, H. F.

    2014-10-01

    The observation of ablator material mixing into the hot spot of ICF implosions correlates with reduced yield in National Ignition Campaign (NIC) experiments. Higher Z ablator material radiatively cools the central hot spot, inhibiting thermonuclear burn. This talk focuses on modeling a ``high-mix'' implosion from the NIC, where greater than 1000 ng of ablator material was inferred to have mixed into the hot spot. Standard post-shot modeling of this implosion does not predict the large amounts of ablator mix necessary to explain the data. Other issues are explored in this talk and sensitivity to the method of radiation transport is found. Compared with radiation diffusion, Sn transport can increase ablation front growth and alter the blow-off dynamics of capsule dust. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Is the tribimaximal mixing accidental?

    SciTech Connect

    Abbas, Mohammed; Smirnov, A. Yu.

    2010-07-01

    The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

  5. Cutaneous mixed infections in AIDS.

    PubMed

    Piérard, G E; Piérard-Franchimont, C; Estrada, J A; Rurangirwa, A; Dosal, F L

    1990-02-01

    We report a new case of mixed infection occurring at the same site of the skin in a human immune deficiency virus-positive patient. Hyperkeratotic and crusted erosions contained fusospirochetal organisms, Cryptococcus neoformans, and another unidentified fungus.

  6. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  7. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  8. Mixed jamming method for SAR

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-feng; Zhang, Peng; Wang, Yong-sheng

    2007-11-01

    The mixed jamming method of synthetic aperture radar is analyzed and discussed. The methods of active noise and deception jamming and the signal model of transmitting is described. The raw echo signal of SAR and the model of jammed echo signal are expatiated, the characteristic of SAR and the evaluating method of jamming effect are established. Finally, the mixed jamming imaging of SAR is simulated.

  9. Dysphoric mania, mixed states, and mania with mixed features specifier: are we mixing things up?

    PubMed

    McElroy, Susan L; Keck, Paul E

    2016-11-21

    Various terms have been used to describe mania when it is accompanied by depressive symptoms. In this article, we attempt to define and discuss 3 of these terms: dysphoric mania, mixed state, and mania with mixed features specifier. We conclude that whatever term is used, it is important to be aware that mania is more often unpleasant than pleasant, and that the unpleasantness is not limited to depression.

  10. Turbulent mix experiments and simulations

    SciTech Connect

    Dimonte, G.; Schneider, M.; Frerking, C.E.

    1995-08-01

    Hydrodynamic instabilities produce material mixing that can significantly degrade weapons performance. We investigate the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities in the turbulent regime in two experimental venues. RM experiments are conducted on the Nova laser with strong radiatively driven shocks (Mach > 20) in planar, two fluid targets. Interfacial perturbations are imposed with single sinusoidal modes to test linear theory and with three dimensional (3D) random modes to produce turbulent mix. RT experiments are conducted on a new facility, the Linear Electric Motor (LEM), in which macroscopic fluids are accelerated with arbitrary temporal profiles. This allows detailed diagnosis of the turbulence over a wide range of conditions. The Nova experiments study the high compression regime whereas the LEM experiments are incompressible. The results are compared to hydrodynamic simulations with the arbitrary Lagrangian-Eulerian code (CALE). The goal is to develop and test engineering models of mix.

  11. Ion mixing of semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Xia, W.; Hsu, S. N.; Han, C. C.; Pappert, S. A.; Zhu, B.; Cozzolino, C.; Yu, P. K. L.; Lau, S. S.; Poker, D. B.; White, C. W.; Schwarz, S. A.

    1991-07-01

    Compositional disordering of III-V compound superlattice structures has received considerable attention recently due to its potential application for photonic devices. The conventional method to induce compositional disorder is to implant a moderate dose of impurity ions (˜ 10 15 cm -2) into the structure at room temperature, followed by a high-temperature annealing step (this process is referred to as IA here). Ion irradiation at room temperature alone does not cause any significant intermixing of layers. The subsequent high-temperature annealing step tends to restrict device processing flexibility. Ion mixing (IM) is capable of enhancing compositional disordering of layers at a rate which increases exponentially with the ion irradiation temperature. As a processing technique to planarize devices, ion mixing appears to be an attractive technology. In this work, we investigate compositional disordering in the AlGaAs/GaAs and the InGaAs/InP systems using ion mixing. We found that the ion mixing behavior of these two systems shows a thermally activated regime as well as an athermal regime, similar to that observed for metal-metal and metal-semiconductor systems. Ion mixing is observed to induce compositional disordering at significantly lower temperatures than that for the IA process. We have compared the two processes in terms of four parameters (1) irradiation temperature, (2) dose dependence, (3) annealing, and (4) electrically active ions. We found that the IM process is more efficient in utilizing the defects generated by ion irradiation to cause disordering. Both the physical mechanism of ion mixing and possible device implications will be discussed.

  12. Ion mixing of semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Xia, W.; Hsu, S. N.; Han, C. C.; Pappert, S. A.; Zhu, B.; Cozzolino, C.; Yu, P. K. L.; Lau, S. S.; Poker, D. B.; White, C. W.

    Compositional disordering of III-V compound superlattice structures has received considerable attention recently due to its potential application for photonic devices. The conventional method in induce compositional disorder is to implant a moderate dose of impurity ions (approx. 10 (exp 15)/sq cm) into the structure at room temperature, followed by a high temperature annealing step (this process is referred to as IA here). Ion irradiation at room temperature alone does not cause any significant intermixing of layers. The subsequent high temperature annealing step tends to restrict device processing flexibility. Ion mixing (IM) is capable of enhancing compositional disordering of layers at a rate which increases exponentially with the ion irradiation temperature. As a processing technique to planarize devices, ion mixing appears to be an attractive technology. Compositional disordering was studied disordering in the AlGaAs/GaAs and the InGaAs/InP systems using ion mixing. It was found that the ion mixing behavior of these two systems shows a thermally activated regime as well as an athermal regime, similar to that observed for metal-metal and metal-semiconductor systems. Ion mixing is observed to induce compositional disordering at significantly lower temperatures than that for the IA process. The two processes were compared in terms of five parameters (1) irradiation temperature, (2) dose dependence (3) annealing, and (4) electrically active ions. It was found that the IM process is more efficient in utilizing the defects generated by ion irradiation to cause disordering. Both the physical mechanism of ion mixing and possible device implications will be discussed.

  13. Further evidence for mixed emotions.

    PubMed

    Larsen, Jeff T; McGraw, A Peter

    2011-06-01

    Emotion theorists have long debated whether valence, which ranges from pleasant to unpleasant states, is an irreducible aspect of the experience of emotion or whether positivity and negativity are separable in experience. If valence is irreducible, it follows that people cannot feel happy and sad at the same time. Conversely, if positivity and negativity are separable, people may be able to experience such mixed emotions. The authors tested several alternative interpretations for prior evidence that happiness and sadness can co-occur in bittersweet situations (i.e., those containing both pleasant and unpleasant aspects). One possibility is that subjects who reported mixed emotions merely vacillated between happiness and sadness. The authors tested this hypothesis in Studies 1-3 by asking subjects to complete online continuous measures of happiness and sadness. Subjects reported more simultaneously mixed emotions during a bittersweet film clip than during a control clip. Another possibility is that subjects in earlier studies reported mixed emotions only because they were explicitly asked whether they felt happy and sad. The authors tested this hypothesis in Studies 4-6 with open-ended measures of emotion. Subjects were more likely to report mixed emotions after the bittersweet clip than the control clip. Both patterns occurred even when subjects were told that they were not expected to report mixed emotions (Studies 2 and 5) and among subjects who did not previously believe that people could simultaneously feel happy and sad (Studies 3 and 6). These results provide further evidence that positivity and negativity are separable in experience.

  14. Mixing in Magnetized Turbulent Media

    NASA Astrophysics Data System (ADS)

    Sur, Sharanya; Pan, Liubin; Scannapieco, Evan

    2014-04-01

    Turbulent motions are essential to the mixing of entrained fluids and are also capable of amplifying weak initial magnetic fields by small-scale dynamo action. Here we perform a systematic study of turbulent mixing in magnetized media, using three-dimensional magnetohydrodynamic simulations that include a scalar concentration field. We focus on how mixing depends on the magnetic Prandtl number, Pm, from 1 to 4 and the Mach number, { {M}}, from 0.3 to 2.4. For all subsonic flows, we find that the velocity power spectrum has a k -5/3 slope in the early kinematic phase, but steepens due to magnetic back reactions as the field saturates. The scalar power spectrum, on the other hand, flattens compared to k -5/3 at late times, consistent with the Obukohov-Corrsin picture of mixing as a cascade process. At higher Mach numbers, the velocity power spectrum also steepens due to the presence of shocks, and the scalar power spectrum again flattens accordingly. Scalar structures are more intermittent than velocity structures in subsonic turbulence, whereas for supersonic turbulence, velocity structures appear more intermittent than the scalars only in the kinematic phase. Independent of the Mach number of the flow, scalar structures are arranged in sheets in both the kinematic and saturated phases of the magnetic field evolution. For subsonic turbulence, scalar dissipation is hindered in the strong magnetic field regions, probably due to Lorentz forces suppressing the buildup of scalar gradients, whereas for supersonic turbulence, scalar dissipation increases monotonically with increasing magnetic field strength. At all Mach numbers, mixing is significantly slowed by the presence of dynamically important small-scale magnetic fields, implying that mixing in the interstellar medium and in galaxy clusters is less efficient than modeled in hydrodynamic simulations.

  15. Nonideal Rayleigh-Taylor mixing

    SciTech Connect

    Sharp, David Howland; Lin, Hyun K; Iwerks, Justin G; Gliman, James G

    2009-01-01

    Rayleigh-Taylor mixing is a classical hydrodynamic Instability, which occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical) which produce deviations from a pure Euler equation, scale Invariant formulation, and non Ideal (i.e. experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We Interpret mathematical theories of existence and non-uniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations, in other words indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as non unique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, In the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and PrandtJ numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength Initial conditions and long wavelength perturbations are observed to playa role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing In different proportions In these two different contexts.

  16. Mixe de Tlahuitoltepec, Oaxaca (Mixe of Tlahuitoltepec, Oaxaca).

    ERIC Educational Resources Information Center

    Mexico Coll. (Mexico City)

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Mixe, an indigenous language of Mexico spoken in Tlahuitoltepec, in the state of Oaxaca. The objective of collecting such a representative sampling of the…

  17. Use and abuse of mixing models (MixSIAR)

    EPA Science Inventory

    Background/Question/MethodsCharacterizing trophic links in food webs is a fundamental ecological question. In our efforts to quantify energy flow through food webs, ecologists have increasingly used mixing models to analyze biological tracer data, often from stable isotopes. Whil...

  18. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  19. Polarization mixing optical parametric oscillator.

    SciTech Connect

    Pearl, Shaul; Smith, Arlee Virgil; Arie, Ady; Blau, Pinhas; Kalmani, Gal

    2005-05-01

    We report the experimental realization of a new type of optical parametric oscillator in which oscillation is achieved by polarization rotation in a linear retarder, followed by nonlinear polarization mixing. The mixing is performed by a type II degenerate parametric downconversion in a periodically poled KTP crystal pumped by a 1064 nm pulsed Nd:YAG pump. A single, linearly polarized beam, precisely at the degenerate wavelength is generated. The output spectrum has a narrow linewidth (below the instrumentation bandwidth of 1 nm) and is highly stable with respect to variations in the crystal temperature.

  20. Bs Mixing at the Tevatron

    SciTech Connect

    Gomez-Ceballos, Guillelmo; /Cantabria Inst. of Phys.

    2006-04-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of B{sub s} mesons. B{sub s} Mixing is the most important analysis within the B Physics program of both experiments. In this paper they summarize the most recent results on this topic from both D0 and CDF experiments. There were very important updates in both experiments after his last talk, hence the organizers warmly recommended me to include the latest available results on B{sub s} mixing, instead of what he presents there.

  1. On the quantification of mixing in microfluidics.

    PubMed

    Hashmi, Ali; Xu, Jie

    2014-10-01

    Methods for quantifying mixing in microfluidics have varied largely in the past, and various indices have been employed to represent the extent of mixing. Mixing between two or more colored liquids is usually quantified using simple mathematical functions operated over a sequence of images. The function, usually termed mixing indices, involves a measure of standard deviation. Here, we first review some mixing indices and then experimentally verify the index most representative of a mixing event. It is observed that the relative mixing index is not affected by the lighting conditions, unlike other known mixing indices. Based on this finding, the use of a relative mixing index is advocated for further use in the lab-on-a-chip community for quantifying mixing events.

  2. Colour Mixing Based on Daylight

    ERIC Educational Resources Information Center

    Meyn, Jan-Peter

    2008-01-01

    Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large…

  3. Advances in compressible turbulent mixing

    SciTech Connect

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  4. Mixing and transport. [Water pollution

    SciTech Connect

    Roberts, P.J.W.

    1982-06-01

    The mixing and transport of water pollution is the subject of this literature review with 110 references. The environmental transport of pollutants is examined in streams, rivers, reservoirs, ponds, estuaries, salt marshes and coastal waters. The dynamics of fluid flow, and the physical properties of jets, plumes, and stratified fluids are discussed. (KRM)

  5. Turbulent Mixing Chemistry in Disks

    NASA Astrophysics Data System (ADS)

    Semenov, D.; Wiebe, D.

    2006-11-01

    A gas-grain chemical model with surface reaction and 1D/2D turbulent mixing is available for protoplanetary disks and molecular clouds. Current version is based on the updated UMIST'95 database with gas-grain interactions (accretion, desorption, photoevaporation, etc.) and modified rate equation approach to surface chemistry (see also abstract for the static chemistry code).

  6. Racially Mixed People in America.

    ERIC Educational Resources Information Center

    Root, Maria P. P., Ed.

    This book offers a comprehensive look at the social and psychological adjustment of multiracial people, models for identity development, contemporary immigration and marriage patterns, and methodological issues involved in conducting research with mixed-race people, all in the context of America's multiracial past and present. The following 26…

  7. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  8. Simple rheology of mixed proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixing different proteins to form strong gel networks for food applications may create synergistic increases in viscoelasticity that cannot be achieved with a single protein. In this study, small amplitude oscillatory shear analyses were used to investigate the rheology of calcium caseinate (CC), e...

  9. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  10. Towards understanding turbulent scalar mixing

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1992-01-01

    In an effort towards understanding turbulent scalar mixing, we study the effect of molecular mixing, first in isolation and then by accounting for the effects of the velocity field. The chief motivation for this approach stems from the strong resemblance of the scalar probability density function (PDF) obtained from the scalar field evolving from the heat conduction equation that arises in a turbulent velocity field. However, the evolution of the scalar dissipation is different for the two cases. We attempt to account for these differences, which are due to the velocity field, using a Lagrangian frame analysis. After establishing the usefulness of this approach, we use the heat-conduction simulations (HCS), in lieu of the more expensive direct numerical simulations (DNS), to study many of the less understood aspects of turbulent mixing. Comparison between the HCS data and available models are made whenever possible. It is established that the beta PDF characterizes the evolution of the scalar PDF during mixing from all types of non-premixed initial conditions.

  11. Reductant injection and mixing system

    SciTech Connect

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  12. Bilarge neutrino mixing and the Cabibbo angle

    NASA Astrophysics Data System (ADS)

    Boucenna, S. M.; Morisi, S.; Tórtola, M.; Valle, J. W. F.

    2012-09-01

    Recent measurements of the neutrino mixing angles cast doubt on the validity of the so-far popular tribimaximal mixing Ansatz. We propose a parametrization for the neutrino mixing matrix where the reactor angle seeds the large solar and atmospheric mixing angles, equal to each other in first approximation. We suggest such a bilarge mixing pattern as a model-building standard, realized when the leading order value of θ13 equals the Cabibbo angle λC.

  13. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  14. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  15. Mixed methods research in mental health nursing.

    PubMed

    Kettles, A M; Creswell, J W; Zhang, W

    2011-08-01

    Mixed methods research is becoming more widely used in order to answer research questions and to investigate research problems in mental health and psychiatric nursing. However, two separate literature searches, one in Scotland and one in the USA, revealed that few mental health nursing studies identified mixed methods research in their titles. Many studies used the term 'embedded' but few studies identified in the literature were mixed methods embedded studies. The history, philosophical underpinnings, definition, types of mixed methods research and associated pragmatism are discussed, as well as the need for mixed methods research. Examples of mental health nursing mixed methods research are used to illustrate the different types of mixed methods: convergent parallel, embedded, explanatory and exploratory in their sequential and concurrent combinations. Implementing mixed methods research is also discussed briefly and the problem of identifying mixed methods research in mental and psychiatric nursing are discussed with some possible solutions to the problem proposed.

  16. HETEROGENEOUS REBURNING BY MIXED FUELS

    SciTech Connect

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  17. Topological mixing with ghost rods

    NASA Astrophysics Data System (ADS)

    Gouillart, Emmanuelle; Thiffeault, Jean-Luc; Finn, Matthew D.

    2006-03-01

    Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call “ghost rods”, because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.

  18. Topological mixing with ghost rods.

    PubMed

    Gouillart, Emmanuelle; Thiffeault, Jean-Luc; Finn, Matthew D

    2006-03-01

    Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call "ghost rods", because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.

  19. Pediatric Mixed Connective Tissue Disease.

    PubMed

    Berard, Roberta A; Laxer, Ronald M

    2016-05-01

    Pediatric-onset mixed connective tissue disease is among the rare disease entities in pediatric rheumatology and includes features of arthritis, polymyositis/dermatomyositis, systemic lupus erythematosus, and systemic sclerosis. Accurate recognition and diagnosis of the disease is paramount to prevent long-term morbidity. Advances in the genetic and immunologic understanding of the factors involved in the etiopathogenesis provide an opportunity for improvements in prognostication and targeted therapy. The development of a multinational cohort of patients with mixed connective tissue disease would be invaluable to provide more updated data regarding the clinical presentation, to develop a standardized treatment approach, disease activity and outcome tools, and to provide data on long-term outcomes and comorbidities.

  20. Kinetic mixing at strong coupling

    NASA Astrophysics Data System (ADS)

    Del Zotto, Michele; Heckman, Jonathan J.; Kumar, Piyush; Malekian, Arada; Wecht, Brian

    2017-01-01

    A common feature of many string-motivated particle physics models is additional strongly coupled U (1 )'s. In such sectors, electric and magnetic states have comparable mass, and integrating out modes also charged under U (1 ) hypercharge generically yields C P preserving electric kinetic mixing and C P violating magnetic kinetic mixing terms. Even though these extra sectors are strongly coupled, we show that in the limit where the extra sector has approximate N =2 supersymmetry, we can use formal methods from Seiberg-Witten theory to compute these couplings. We also calculate various quantities of phenomenological interest such as the cross section for scattering between visible sector states and heavy extra sector states as well as the effects of supersymmetry breaking induced from coupling to the minimal supersymmetric Standard Model.

  1. Heterogeneous Reburning By Mixed Fuels

    SciTech Connect

    Anderson Hall

    2009-03-31

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  2. Lidar for Lateral Mixing (LATMIX)

    DTIC Science & Technology

    2013-09-30

    km, i.e., the “ submesoscale ”. We aim to understand the underlying mechanisms and forcing, as well as the temporal, spatial, and scale variability of...the overall objectives of the Lateral Mixing DRI to try to determine the extent to which submesoscale stirring is driven by a cascade of energy down...technical goal of our work is to develop the use of airborne LIDAR surveys of evolving dye experiments as a tool for studying submesoscale lateral dispersion

  3. MISO - Mixed Integer Surrogate Optimization

    SciTech Connect

    Mueller, Juliane

    2016-01-20

    MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.

  4. Mixed real/complex factorization

    SciTech Connect

    Lima, L.T.G. . Dept. of Electrical Engineering); Martines, N.; Pinto, H.J.C.P. . Centro de Pesquisas de Energia Electrica)

    1993-02-01

    This paper describes a mixed real/complex sparse matrix factorization and solution scheme applied to a large matrix problem. Large system eigenanalysis and frequency domain methods will directly benefit from the proposed scheme, which can reduce both memory and CPU time requirements when compared to conventional complex-only solutions. The application in hand is the small signal electromechanical stability analysis of large power systems. The savings obtained are significant considering the CPU intensive nature of these matrix problems.

  5. Mixing in the solar tachocline

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha

    We conduct numerical simulations of updated solar models including a physical treatment of the tachocline (Spiegel & Zahn 1992), the rotational transition layer localized at the base of the solar convection zone. We first describe what is the current understanding of this thin shear layer. We then show that we improve substantially the agreement between the models and the observed Sun by taking into account the macroscopic mixing occurring within this region.

  6. Coastal and Near Surface Mixing

    DTIC Science & Technology

    2016-06-07

    The challenge is to measure the mixing directly without relying on models and assumptions about the nature of turbulence. Sound is backscattered...turbulence vary considerably. The towed vehicle (Fig. 1) carries high-resolution velocity and temperature sensors (shear probes and thermistors), current...meters, a vertical array of three pairs of salinity and temperature sensors, and motion sensors. These sensors provide a measure of the density

  7. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  8. Assessing mixed waste treatment technologies

    SciTech Connect

    Berry, J.B.; Bloom, G.A.; Hart, P.W.

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m{sup 3} of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers.

  9. Ion mixing and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  10. Scalable Lateral Mixing and Coherent Turbulence (LatMix) DRI: Turbulence-Resolving Simulations of Upper-Ocean Lateral Mixing

    DTIC Science & Technology

    2013-09-30

    The interaction of finescale and submesoscale upper-ocean mixing at fronts. OBJECTIVES Physically-based parameterizations of vertical mixed layer...dimensions of the oblong domain geometry on realized submesoscale instabilities. Figure 1: Surface buoyancy b from LES of baroclinic mixed layer

  11. Testing Mixed Distributions when the Mixing Distribution Is Known

    NASA Astrophysics Data System (ADS)

    Pommeret, Denys

    In this paper we present smooth goodness of fit tests for testing the mixture distribution of a sequence of i.i.d. random variables. We consider mixture models when the mixing distribution is known. We adapt a Schwarz’s criteria initiated by Ledwina (J Am Stat Assoc 89:1000-1005, 1994) and inspired by the Neyman (Skandinavian Aktuarial 20:149-199, 1937) smooth test procedure. A Monte Carlo study is provided in order to assess the performance of the test.

  12. Model Verification of Mixed Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Evensen, D. A.; Chrostowski, J. D.; Hasselman, T. K.

    1982-01-01

    MOVER uses experimental data to verify mathematical models of "mixed" dynamic systems. The term "mixed" refers to interactive mechanical, hydraulic, electrical, and other components. Program compares analytical transfer functions with experiment.

  13. A survey of mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Brezzi, F.

    1987-01-01

    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.

  14. Paleoenvironment of the Permian rocks: a comparison between central and eastern Alborz, Iran

    NASA Astrophysics Data System (ADS)

    Lankarani, M.; Amini, A.; Mosadegh, H.

    2009-04-01

    The succession of Permian rocks in Alborz region is composed of siliciclastic and carbonate facies. All of the sediments were deposited in the Paleotethyan passive continental margin but they show different facies architecture and paleoenvironmental condition in various parts of the region. This study, as part of a wider project, has investigated sedimentary facies and paleoenvironment of the Permian rocks in central and eastern Alborz. The Permian rocks in central Alborz are dominated by siliciclastic facies (Doroud Formation) in the lower, and carbonate facies (Ruteh Formation) in the upper half. Field studies and laboratory measurements resulted in recognition of 4 terrigenous and 13 carbonate facies in the succession. A siliciclastic shallow marine system was determined as depositional environment of the terrigenous facies. A homoclinal carbonate ramp, with scattered patch reefs, was determined as depositional environment of the carbonate facies. Dasycladacean green algae, ancestral red algae, hermatypic corals and bryozoans were the major bioconstructors of the ramp. The abundance of skeletal shoals respect to ooidal shoals in the ramp margin was high. The Permian rocks in eastern Alborz are dominated by mixed siliciclastic-carbonate facies (Ruteh Formation) in the lower, and siliciclastic facies (Nesen Formation) in the upper half. The studies resulted in recognition of 5 terrigenous and 6 carbonate facies in the succession. A mixed siliciclastic-carbonate shelf with high sediment influx was determined as depositional environment of the mixed siliciclastic-carbonate facies. Occurrence of the small patch reefs with high coral diversity in this mixed shelf indicates normal marine (hyposaline) condition. Upper terrigenous facies were deposited in fluvial-flood plain system. Difference in paleoclimate and tectonic activity of two sub-basins seems to be the major cause of the differences between the Permian facies in central and eastern Alborz.

  15. Bounding CKM Mixing with a Fourth Family

    SciTech Connect

    Chanowitz, Michael S.

    2009-04-22

    CKM mixing between third family quarks and a possible fourth family is constrained by global fits to the precision electroweak data. The dominant constraint is from nondecoupling oblique corrections rather than the vertex correction to Z {yields} {bar b}b used in previous analyses. The possibility of large mixing suggested by some recent analyses of FCNC processes is excluded, but 3-4 mixing of the same order as the Cabbibo mixing of the first two families is allowed.

  16. Mixed wasted integrated program: Logic diagram

    SciTech Connect

    Mayberry, J.; Stelle, S.; O`Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  17. Contact sensitization to Compositae mix in children.

    PubMed

    Belloni Fortina, Anna; Romano, Ilaria; Peserico, Andrea

    2005-11-01

    The prevalence of contact sensitization to Compositae mix was investigated in 641 consecutive children. Seventeen children (12 with atopic dermatitis) tested positive for Compositae mix. We suggest adding Compositae mix to a pediatric screening series when investigating airborne dermatitis in children with atopic dermatitis.

  18. 7 CFR 51.2112 - Mixed varieties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Sheller Run, U.S. Standard Sheller Run, U.S. No. 1 Whole and Broken may be designated as: “U.S. No. 1 Mixed;” “U.S. Select Sheller Run Mixed;” “U.S. Standard Sheller Run Mixed;” “U.S. No. 1 Whole and...

  19. Foam-Mixing-And-Dispensing Machine

    NASA Technical Reports Server (NTRS)

    Chong, Keith Y.; Toombs, Gordon R.; Jackson, Richard J.

    1996-01-01

    Time-and-money-saving machine produces consistent, homogeneously mixed foam, enhancing production efficiency. Automatically mixes and dispenses polyurethane foam in quantities specified by weight. Consists of cart-mounted, air-driven proportioning unit; air-activated mechanical mixing gun; programmable timer/counter, and controller.

  20. Pragmatism, Evidence, and Mixed Methods Evaluation

    ERIC Educational Resources Information Center

    Hall, Jori N.

    2013-01-01

    Mixed methods evaluation has a long-standing history of enhancing the credibility of evaluation findings. However, using mixed methods in a utilitarian way implicitly emphasizes convenience over engaging with its philosophical underpinnings (Denscombe, 2008). Because of this, some mixed methods evaluators and social science researchers have been…

  1. Moments, Mixed Methods, and Paradigm Dialogs

    ERIC Educational Resources Information Center

    Denzin, Norman K.

    2010-01-01

    I reread the 50-year-old history of the qualitative inquiry that calls for triangulation and mixed methods. I briefly visit the disputes within the mixed methods community asking how did we get to where we are today, the period of mixed-multiple-methods advocacy, and Teddlie and Tashakkori's third methodological moment. (Contains 10 notes.)

  2. A Call for Conducting Multivariate Mixed Analyses

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.

    2016-01-01

    Several authors have written methodological works that provide an introductory- and/or intermediate-level guide to conducting mixed analyses. Although these works have been useful for beginning and emergent mixed researchers, with very few exceptions, works are lacking that describe and illustrate advanced-level mixed analysis approaches. Thus,…

  3. Mixed pneumoconiosis: silicosis, asbestosis, talcosis, and berylliosis.

    PubMed

    Mark, G J; Monroe, C B; Kazemi, H

    1979-06-01

    Mixed pneumoconiosis is pulmonary disease due to two or more inhaled mineral irritants. Chronic disease due to beryllium has not been a component of any described mixed pneumoconiosis. A man with occupational exposure to a combination of dusts developed severe pulmonary disease. Silicosis, talcosis, asbestosis, and berylliosis were all documented by an open biopsy of the lung. The varieties of mixed pneumoconiosis are summarized.

  4. Entropy of Mixing of Distinguishable Particles

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2014-01-01

    The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…

  5. Qualitative Approaches to Mixed Methods Practice

    ERIC Educational Resources Information Center

    Hesse-Biber, Sharlene

    2010-01-01

    This article discusses how methodological practices can shape and limit how mixed methods is practiced and makes visible the current methodological assumptions embedded in mixed methods practice that can shut down a range of social inquiry. The article argues that there is a "methodological orthodoxy" in how mixed methods is practiced…

  6. Thin film mixed potential sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.; Mukundan, Rangachary

    2007-09-04

    A mixed potential sensor for oxidizable or reducible gases and a method of making. A substrate is provided and two electrodes are formed on a first surface of the substrate, each electrode being formed of a different catalytic material selected to produce a differential voltage between the electrodes from electrochemical reactions of the gases catalyzed by the electrode materials. An electrolytic layer of an electrolyte is formed over the electrodes to cover a first portion of the electrodes from direct exposure to the gases with a second portion of the electrodes uncovered for direct exposure to the gases.

  7. Can whales mix the ocean?

    NASA Astrophysics Data System (ADS)

    Lavery, T. J.; Roudnew, B.; Seuront, L.; Mitchell, J. G.; Middleton, J.

    2012-07-01

    Ocean mixing influences global climate and enhances primary productivity by transporting nutrient rich water into the euphotic zone. The contribution of the swimming biosphere to diapycnal mixing in the ocean has been hypothesised to occur on scales similar to that of tides or winds, however, the extent to which this contributes to nutrient transport and stimulates primary productivity has not been explored. Here, we introduce a novel method to estimate the diapycnal diffusivity that occurs as a result of a sperm whale swimming through a pycnocline. Nutrient profiles from the Hawaiian Ocean are used to further estimate the amount of nitrogen transported into the euphotic zone and the primary productivity stimulated as a result. We estimate that the 80 sperm whales that travel through an area of 104 km2 surrounding Hawaii increase diapycnal diffusivity by 10-6 m2 s-1 which results in the flux of 105 kg of nitrogen into the euphotic zone each year. This nitrogen input subsequently stimulates 6 × 105 kg of carbon per year. The nutrient input of swimming sperm whales is modest compared to dominant modes of nutrient transport such as nitrogen fixation but occurs more consistently and thus may provide the nutrients necessary to enable phytoplankton growth and survival in the absence of other seasonal and daily nutrient inputs.

  8. Mixing in straight shear layers

    NASA Technical Reports Server (NTRS)

    Karasso, P. S.; Mungal, M. G.

    1992-01-01

    Planar laser-induced fluorescence measurements were performed in a liquid plane mixing layer to extract the probability density function (pdf) of the mixture fraction of a passive scalar across the layer. Three Reynolds number (Re) cases were studied, 10,000, 33,000 and 90,000, with Re based on velocity difference and visual thickness. The results show that a non-marching pdf (central hump invariant from edge to edge of the layer) exists for Re = 10,000 but that a marching type pdf characterizes the Re = 33,000 and Re = 90,000 cases. For all cases, a broad range of mixture fraction values is found at each location across the layer. Streamwise and spanwise ramps across the layer, and structure-to-structure variation were observed and are believed to be responsible for the above behavior of the composition field. Tripping the boundary layer on the high-speed side of the splitter plate for each of the above three cases resulted in increased three-dimensionality and a change in the composition field. Average and average mixed fluid compositions are reported for all cases.

  9. [Mixed states: evolution of classifications].

    PubMed

    Pringuey, D; Cherikh, F; Giordana, B; Fakra, E; Dassa, D; Cermolacce, M; Belzeaux, R; Maurel, M; Azorin, J-M

    2013-12-01

    The nosological position of mixed states has followed the course of classifying methods in psychiatry, the steps of the invention of the clinic, progress in the organization of care, including the discoveries of psychopharmacology. The clinical observation of a mixture of symptoms emerging from usually opposite clinical conditions is classical. In the 70s, a syndromic specification fixed the main symptom combinations but that incongruous assortment failed to stabilize the nosological concept. Then stricter criteriology was proposed. To be too restrictive, a consensus operates a dimensional opening that attempts to meet the pragmatic requirements of nosology validating the usefulness of the class system. This alternation between rigor of categorization and return to a more flexible criteriological option reflects the search for the right balance between nosology and diagnosis. The definition of mixed states is best determined by their clinical and prognostic severity, related to the risk of suicide, their lower therapeutic response, the importance of their psychiatric comorbidities, anxiety, emotional lability, alcohol abuse. Trying to compensate for the lack of categorical definitions and better reflecting the clinical field problems, new definitions complement criteriology with dimensional aspects, particularly taking into account temperaments.

  10. Nanoscale Mixing of Soft Solids

    SciTech Connect

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2013-03-07

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C{sub 30}H{sub 62}) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ({sup 1}H and {sup 2}H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  11. Tracer mixing at fracture intersections

    SciTech Connect

    Li, Guomin

    2001-02-10

    Discrete network models are one of the approaches used to simulate a dissolved contaminant, which is usually represented as a tracer in modeling studies, in fractured rocks. The discrete models include large numbers of individual fractures within the network structure, with flow and transport described on the scale of an individual fracture. Numerical simulations for the mixing characteristics and transfer probabilities of a tracer through a fracture intersection are performed for this study. A random-walk, particle-tracking model is applied to simulate tracer transport in fracture intersections by moving particles through space using individual advective and diffusive steps. The simulation results are compared with existing numerical and analytical solutions for a continuous intersection over a wide range of Peclet numbers. This study attempts to characterize the relative concentration at the outflow branches for a continuous intersection with different flow fields. The simulation results demonstrate that the mixing characteristics at the fracture intersections are a function not only of the Peclet number but also of the flow field pattern.

  12. Mixed Strategies in cyclic competition

    NASA Astrophysics Data System (ADS)

    Intoy, Ben; Pleimling, Michel

    2015-03-01

    Physicists have been using evolutionary game theory to model and simulate cyclically competing species, with applications to lizard mating strategies and competing bacterial strains. However these models assume that each agent plays the same strategy, which is called a pure strategy in game theory, until they are beaten by a better strategy which they immediately adopt. We relax this constraint of an agent playing a single strategy by instead letting the agent pick its strategy randomly from a probability distribution, which is called a mixed strategy in game theory. This scheme is very similar to multiple occupancy models seen in the literature, the major difference being that interactions happen between sites rather than within them. Choosing strategies out of a distribution also has applications to economic/social systems such as the public goods game. We simulate a model of mixed strategy and cylic competition on a one-dimensional lattice with three and four strategies and find interesting spatial and stability properties depending on how discretized the choice of strategy is for the agents. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  13. Mixed waste characterization reference document

    SciTech Connect

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  14. Mixing stops at the LHC

    SciTech Connect

    Agrawal, Prateek; Frugiuele, Claudia

    2014-01-01

    We study the phenomenology of a light stop NLSP in the presence of large mixing with either the first or the second generation. R-symmetric models provide a prime setting for this scenario, but our discussion also applies to the MSSM when a significant amount of mixing can be accommodated. In our framework the dominant stop decay is through the flavor violating mode into a light jet and the LSP in an extended region of parameter space. There are currently no limits from ATLAS and CMS in this region. We emulate shape-based hadronic SUSY searches for this topology, and find that they have potential sensitivity. If the extension of these analyses to this region is robust, we find that these searches can set strong exclusion limits on light stops. If not, then the flavor violating decay mode is challenging and may represent a blind spot in stop searches even at 13 TeV. Thus, an experimental investigation of this scenario is well motivated.

  15. Mixing stops at the LHC

    DOE PAGES

    Agrawal, Prateek; Frugiuele, Claudia

    2014-01-01

    We study the phenomenology of a light stop NLSP in the presence of large mixing with either the first or the second generation. R-symmetric models provide a prime setting for this scenario, but our discussion also applies to the MSSM when a significant amount of mixing can be accommodated. In our framework the dominant stop decay is through the flavor violating mode into a light jet and the LSP in an extended region of parameter space. There are currently no limits from ATLAS and CMS in this region. We emulate shape-based hadronic SUSY searches for this topology, and find thatmore » they have potential sensitivity. If the extension of these analyses to this region is robust, we find that these searches can set strong exclusion limits on light stops. If not, then the flavor violating decay mode is challenging and may represent a blind spot in stop searches even at 13 TeV. Thus, an experimental investigation of this scenario is well motivated.« less

  16. Diffusion in mixed solvents. II - The heat of mixing parameter

    NASA Technical Reports Server (NTRS)

    Carapellucci, P. A.

    1975-01-01

    Correlation of second-order rate constants for many reactions involving electron transfer between organic molecules, solvated electron reactions, iodine diffusion coefficients, and triplet state electron transfer reactions has been made with the heat of mixing parameter (HMP) for the aqueous binary solvent systems. The aqueous binary solvents studied are those containing methanol or ethanol (type I solvent); 1-propanol or tert-butyl alcohol (type II solvent); or sucrose or glycerol (type III solvent). A plot of the HMP vs. the diffusion parameter for each reaction yields superimposable curves for these reactions in a particular solvent mixture over the entire solvent mixture range, irrespective of the value of the reaction's rate constant or diffusion coefficient in water.

  17. PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert

    2008-10-01

    The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the

  18. Expandable mixing section gravel and cobble eductor

    DOEpatents

    Miller, Arthur L.; Krawza, Kenneth I.

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  19. A Darwinian mechanism for biogenic ocean mixing

    NASA Astrophysics Data System (ADS)

    Katija, Kakani; Dabiri, John

    2009-11-01

    Recent observations of biogenic turbulence in the ocean have led to conflicting ideas regarding the contribution of animal swimming to ocean mixing. Previous measurements indicate elevated turbulent dissipation in the vicinity of large populations of planktonic animals swimming in concert. However, elevated turbulent dissipation is by itself insufficient proof of substantial biogenic mixing. We conducted field measurements of mixing efficiency by individual Mastigias sp. (a Palauan jellyfish) using a self-contained underwater velocimetry apparatus. These measurements revealed another mechanism that contributes to animal mixing besides wake turbulence. This mechanism was first described by Sir Charles Galton Darwin and is in fact the dominant mechanism of mixing by swimming animals. The efficiency of Darwin's mechanism (or drift) is dependent on animal shape rather than fluid length scale and, unlike turbulent wake mixing, is enhanced by the fluid viscosity. Therefore, it provides a means of biogenic mixing that can be equally effective in small plankton and large mammals.

  20. Differences in bone-cement porosity by vacuum mixing, centrifugation, and hand mixing.

    PubMed

    Macaulay, William; DiGiovanni, Christopher W; Restrepo, Andres; Saleh, Khaled J; Walsh, Heather; Crossett, Lawrence S; Peterson, Margaret G E; Li, Stephen; Salvati, Eduardo A

    2002-08-01

    The mean pore size and percent porosity of vacuum-mixed cement were compared with centrifuged cement and cement hand mixed by skilled specialized operating room technicians. Centrifuged cement samples had the smallest mean pore size when compared with vacuum-mixed specimens. The mean pore size for the hand-mixed specimens was intermediate and not significantly different from the other 2 mixing techniques. Results were reversed, however, for mean percent porosity. Centrifuged cement had the highest percent porosity; vacuum-mixed cement, the lowest; and hand-mixed cement, intermediate. The porosity of vacuum-mixed Simplex P (Howmedica, Rutherford, NJ) bone-cement was similar from the initial to the remnant cement extruded from the cement gun. There was no reduced cement porosity with vacuum mixing or centrifugation as anticipated. Reversion to hand mixing by highly skilled technicians could result in a significant cost savings without negative effects on cement porosity.

  1. Microgravity acoustic mixing for particle cloud combustors

    NASA Technical Reports Server (NTRS)

    Pla, Frederic; Rubinstein, Robert I.

    1990-01-01

    Experimental and theoretical investigations of acoustic mixing procedures designed to uniformly distribute fuel particles in a combustion tube for application in the proposed Particle Cloud Combustion Experiment (PCCE) are described. Two acoustic mixing methods are investigated: mixing in a cylindrical tube using high frequency spinning modes generated by suitably phased, or quadrature speakers, and acoustic premixing in a sphere. Quadrature mixing leads to rapid circumferential circulation of the powder around the tube. Good mixing is observed in the circulating regions. However, because axial inhomogeneities are necessarily present in the acoustic field, this circulation does not extend throughout the tube. Simultaneous operation of the quadrature-speaker set and the axial-speaker was observed to produce considerably enhanced mixing compared to operation of the quadrature-speaker set alone. Mixing experiments using both types of speakers were free of the longitudinal powder drift observed using axial-speakers alone. Vigorous powder mixing was obtained in the sphere for many normal modes: however, in no case was the powder observed to fill the sphere entirely. Theoretical analysis indicated that mixing under steady conditions cannot fill more than a hemisphere except under very unusual conditions. Premixing in a hemisphere may be satisfactory; otherwise, complete mixing in microgravity might be possible by operating the speaker in short bursts. A general conclusion is that acoustic transients are more likely to produce good mixing than steady state conditions. The reason is that in steady conditions, flow structures like nodal planes are possible and often even unavoidable. These tend to separate the mixing region into cells across which powder cannot be transferred. In contrast, transients not only are free of such structures, they also have the characteristics, desirable for mixing, of randomness and disorder. This conclusion is corroborated by mixing

  2. Mediterranean outflow mixing and dynamics.

    PubMed

    Price, J F; Baringer, M O; Lueck, R G; Johnson, G C; Ambar, I; Parrilla, G; Cantos, A; Kennelly, M A; Sanford, T B

    1993-02-26

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass.

  3. Mixing in SRS Closure Business Unit Applications

    SciTech Connect

    POIRIER, MICHAELR.

    2004-06-23

    The following equipment is commonly used to mix fluids: mechanical agitators, jets (pumps), shrouded axial impeller mixers (Flygt mixers), spargers, pulsed jet mixers, boiling, static mixers, falling films, liquid sprays, and thermal convection. This discussion will focus on mechanical agitators, jets, shrouded axial impeller mixers, spargers, and pulsed jet mixers, as these devices are most likely to be employed in Savannah River Site (SRS) Closure Business applications. In addressing mixing problems in the SRS Tank Farm, one must distinguish between different mixing objectives. These objectives include sludge mixing (e.g., Extended Sludge Processing), sludge retrieval (e.g., sludge transfers between tanks), heel retrieval (e.g., Tanks 18F and 19F), chemical reactions (e.g., oxalic acid neutralization) and salt dissolution. For example, one should not apply sludge mixing guidelines to heel removal applications. Mixing effectiveness is a function of both the mixing device (e.g., slurry pump, agitator, air sparger) and the properties of the material to be mixed (e.g., yield stress, viscosity, density, and particle size). The objective of this document is to provide background mixing knowledge for the SRS Closure Business Unit personnel and to provide general recommendations for mixing in SRS applications.

  4. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    PubMed

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  5. Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Tan, Jianguo; Lv, Liang

    2015-12-01

    The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.

  6. Children's understanding and experience of mixed emotions.

    PubMed

    Larsen, Jeff T; To, Yen M; Fireman, Gary

    2007-02-01

    Though some models of emotion contend that happiness and sadness are mutually exclusive in experience, recent findings suggest that adults can feel happy and sad at the same time in emotionally complex situations. Other research has shown that children develop a better conceptual understanding of mixed emotions as they grow older, but no research has examined children's actual experience of mixed emotions. To examine developmental differences in the experience of mixed emotions, we showed children ages 5 to 12 scenes from an animated film that culminated with a father and daughter's bittersweet farewell. In subsequent interviews, older children were more likely than younger children to report experiencing mixed emotions. These results suggest that in addition to having a better conceptual understanding of mixed emotions, older children are more likely than younger children to actually experience mixed emotions in emotionally complex situations.

  7. Electrothermal blinking vortices for chaotic mixing

    NASA Astrophysics Data System (ADS)

    Loire, Sophie; Kauffmann, Paul; Gimenez, Paul; Meinhart, Carl; Mezic, Igor

    2012-11-01

    We present an experimental and theoretical study of electrothermal chaotic mixing using blinking of asymmetric 2D electrothermal vortices. Electrothermal flows are modelled with 2D finite element method using COMSOL software based on an enhanced electrothermal model. Velocities in top-view and side-view devices are measured by micro particle image velocimetry (μPIV). The experimentally reconstructed velocity profile shows a dramatic asymmetry between the two vortices, in good agreement with the FEM model. The separation line between the two vortices is shifted and tilted making the blinking vortices overlap. We use the mix-variance coefficient (MVC) on experimental particle detection data and numerical trajectory simulations to evaluate mixing at different scales including the layering of fluid interfaces by the flow, a keypoint for efficient mixing. The blinking vortices method greatly improve mixing efficiency. Theoretical, experimental and simulation results of the mixing process will be presented.

  8. Mercury removal from solid mixed waste

    SciTech Connect

    Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

    1994-12-31

    The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I{sub 2} leaching processes to determine the applicability of this process to mercury containing solid mixed waste.

  9. Droplet mixers: Microfluidics, mixing measures and optimization

    NASA Astrophysics Data System (ADS)

    Stone, Zachary; Stone, Howard

    2003-11-01

    Rapid mixing is essential in a variety of microfluidic applications but is often difficult to achieve at low Reynolds numbers. Inspired by a recently developed microdevice that mixes reagents in droplets, which simply flow along a periodic serpentine channel (Song, Tice and Ismagilov, 2003), we investigate a model ``droplet mixer". The model consists of a spherical droplet immersed in a periodic sequence of distinct external flows, which are superpositions of uniform and shear flows. We label the fluid inside the droplet with two colors and visualize mixing with a method we call ``backtrace imaging", which allows us to render cross-sections of the droplet at arbitrary times during the mixing cycle. To analyze our results, we present a simple measure of mixing, which allows us to locate sets of parameters that optimize mixing over a small number of flow cycles. We also consider shear flows in multiple directions and the effect of random variations in the durations of external flows.

  10. Cowles Dissolver Fire Involving IR Flare Mix

    DTIC Science & Technology

    1994-08-01

    fluoroethylene (PTFE), and a fluoroelastomer binder dissolved in acetone. Hexane is used to precipitate the binder and wash the mix. During the wash...ethylene (PTFE), and a fluoroelastomer binder. The fluoroelastomer binder is dissolved in acetone before the mix is made. The PTFE and magnesium...the binder precipitates on the surface of the suspended particles. The solids are allowed to settle and the liquid is siphoned from the mix bowl

  11. Mechanisms of tolerance induced via mixed chimerism.

    PubMed

    Sykes, Megan

    2007-05-01

    Mixed hematopoietic chimerism provides a powerful means of inducing robust, donor-specific tolerance. In this article, the minimal requirements for achieving mixed chimerism, the development of new reagents that promote its achievement, and the mechanisms by which peripheral and intrathymic tolerance are achieved via mixed chimerism are discussed. An emerging understanding of these mechanisms, along with the development of new immunosuppressive reagents, is allowing advancement toward clinical application of this approach.

  12. Quantifying uncertainty in stable isotope mixing models

    SciTech Connect

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the

  13. Quantifying uncertainty in stable isotope mixing models

    DOE PAGES

    Davis, Paul; Syme, James; Heikoop, Jeffrey; ...

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods testedmore » are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  14. Quantifying uncertainty in stable isotope mixing models

    NASA Astrophysics Data System (ADS)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-01

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, Stable Isotope Analysis in R (SIAR), a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  15. An Introduction to LANL Mixed Potential Sensors

    SciTech Connect

    Mukundan, Rangachary; Brosha, Eric Lanich; Kreller, Cortney

    2015-01-26

    These are slides for a webinar given on the topics of an introduction to LANL mixed potential sensors. Topics include the history of LANL electrochemical sensor work, an introduction to mixed potential sensors, LANL uniqueness, and an application of LANL mixed potential sensors. The summary is as follows: Improved understanding of the mixed-potential sensor mechanism (factors controlling the sensor response identified), sensor design optimized to maximize sensor sensitivity and durability (porous electrolyte/dense electrodes), electrodes selected for various specific applications (CO, HC, H2), sensor operating parameters optimized for improved gas selectivity (NOx, NH3).

  16. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect

    Lee, S.

    2014-06-25

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  17. Samoan Passage Abyssal Mixing Experiment

    NASA Astrophysics Data System (ADS)

    Mickett, J. B.; Voet, G.; Alford, M. H.; Girton, J. B.; Carter, G. S.

    2012-12-01

    The majority of the bottom water entering the North Pacific, about 6 Sv of mostly Antarctic origin, flows northward through the Samoan Passage (SP), where previous hydrographic studies have inferred extremely strong watermass modification as it transits the complicated, narrow passage. Global-scale numerical models at best poorly resolve this critical aspect of the global ocean circulation and the processes that affect it. We are in the midst of conducting a major next-generation experiment, coupling hydrographic/lowered ADCP and microstructure profiler measurements with simultaneous high-resolution profiling moorings and detailed numerical simulations. Our goals are to: (1) quantify the flow and its pathways through the SP, and compare them to measurements made 20 years ago as part of the World Ocean Circulation Experiment (WOCE), 2) quantify, with direct measurements, the turbulence and mixing the flow undergoes and the processes that lead to it, and 3) use the resulting knowledge to determine the best strategy for future monitoring of the SP. Here we present initial results from the first two of the experiment's three cruises, which have provided a detailed view of the flow magnitude, pathways and turbulence as it transits the passage's sills. Bathymetry, stratification, rotation, and inertia all play important roles in selecting the pathways taken by the flow, with the lighter layers siphoning off through the shallower sills to the west and the densest water following the deeper main eastern channel. Flows in this main channel are initially O(0.1 m/s), accelerating to > 0.4 m/s at the northernmost of the two major sills, leading to strong shears and warming of the bottom water from 0.66 to 0.72 C through mixing within the stratified overflow and entrainment of overlying water. Direct microstructure measurements show large vertical diffusivities of 10^{-4}-10^{-3} m^2/s throughout the passage and up to 10^{-2} m^2/s past the northern sill, where the flow

  18. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-02-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meeting the sanitary sewer discharge limits and subsequent Land Disposal Restriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered Best Demonstrated Available Technologies, or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a multiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  19. First principles nonequilibrium plasma mixing

    NASA Astrophysics Data System (ADS)

    Ticknor, C.; Herring, S. D.; Lambert, F.; Collins, L. A.; Kress, J. D.

    2014-01-01

    We have performed nonequilibrium classical and quantum-mechanical molecular dynamics simulations that follow the interpenetration of deuterium-tritium (DT) and carbon (C) components through an interface initially in hydrostatic and thermal equilibrium. We concentrate on the warm, dense matter regime with initial densities of 2.5-5.5 g/cm3 and temperatures from 10 to 100 eV. The classical treatment employs a Yukawa pair-potential with the parameters adjusted to the plasma conditions, and the quantum treatment rests on an orbital-free density functional theory at the Thomas-Fermi-Dirac level. For times greater than about a picosecond, the component concentrations evolve in accordance with Fick's law for a classically diffusing fluid with the motion, though, described by the mutual diffusion coefficient of the mixed system rather than the self-diffusion of the individual components. For shorter times, microscopic processes control the clearly non-Fickian dynamics and require a detailed representation of the electron probability density in space and time.

  20. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect

    Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  1. Critical Appraisal of Mixed Methods Studies

    ERIC Educational Resources Information Center

    Heyvaert, Mieke; Hannes, Karin; Maes, Bea; Onghena, Patrick

    2013-01-01

    In several subdomains of the social, behavioral, health, and human sciences, research questions are increasingly answered through mixed methods studies, combining qualitative and quantitative evidence and research elements. Accordingly, the importance of including those primary mixed methods research articles in systematic reviews grows. It is…

  2. Toponium-Z/sup 0/ mixing

    SciTech Connect

    Franzini, P.J.

    1986-11-01

    The subject of Z/sup 0/-toponium interference is briefly reviewed. The qualitative features of the Z/sup 0/ mixing with one t anti t state are discussed. Effects of mixing with the full t anti t spectrum, of the smearing due to beam spread, and of different potentials, are then shown.

  3. Discontinuous Mixed Covolume Methods for Parabolic Problems

    PubMed Central

    Zhu, Ailing

    2014-01-01

    We present the semidiscrete and the backward Euler fully discrete discontinuous mixed covolume schemes for parabolic problems on triangular meshes. We give the error analysis of the discontinuous mixed covolume schemes and obtain optimal order error estimates in discontinuous H(div) and first-order error estimate in L2. PMID:24983008

  4. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  5. 7 CFR 51.576 - Mixed blanch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Celery Definitions § 51.576 Mixed blanch. Mixed blanch consists of green and fairly...

  6. 7 CFR 51.576 - Mixed blanch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Celery Definitions § 51.576 Mixed blanch. Mixed blanch consists of green and fairly...

  7. 7 CFR 51.576 - Mixed blanch.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Celery Definitions § 51.576 Mixed blanch. Mixed blanch consists of green and fairly...

  8. Mixed Methods, Triangulation, and Causal Explanation

    ERIC Educational Resources Information Center

    Howe, Kenneth R.

    2012-01-01

    This article distinguishes a disjunctive conception of mixed methods/triangulation, which brings different methods to bear on different questions, from a conjunctive conception, which brings different methods to bear on the same question. It then examines a more inclusive, holistic conception of mixed methods/triangulation that accommodates…

  9. Mixed Methods Research Designs in Counseling Psychology

    ERIC Educational Resources Information Center

    Hanson, William E.; Creswell, John W.; Clark, Vicki L. Plano; Petska, Kelly S.; Creswell, David J.

    2005-01-01

    With the increased popularity of qualitative research, researchers in counseling psychology are expanding their methodologies to include mixed methods designs. These designs involve the collection, analysis, and integration of quantitative and qualitative data in a single or multiphase study. This article presents an overview of mixed methods…

  10. Is There a School Mix Effect?

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2006-01-01

    This paper uses the notion of "pathological" social science, wherein large claims to knowledge are made on the basis of very small differences in the data, to consider the notion of the school mix effect. It describes a variety of plausible alternative explanations for the same sets of findings, including the school mix effect, but also errors in…

  11. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect

    Balantekin, A. B.

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  12. Mixing efficiency of turbulent stratified flows

    NASA Astrophysics Data System (ADS)

    White, B. L.; Scotti, A. D.

    2012-12-01

    Small-scale mixing in the stratified interior of the ocean is a fundamental, but poorly characterized, controlling factor of the global Meridional Overturning Circulation (MOC). The mixing efficiency in the ocean has typically been assumed to be 20%, which is used as a basis to estimate the required turbulent dissipation to support the ocean diapycnal buoyancy flux. In this talk, we use DNS datasets to calculate the mixing efficiency in different classes of stratified turbulent flows. In particular, we compare flows forced thermodynamically by production of Available Potential Energy (APE) at a boundary, such as horizontal convection (a simple model for an ocean forced by differential surface heating) and flows that are forced mechanically by surface stresses. The mixing efficiency is calculated based on the irreversible diapycnal flux of buoyancy (Winters and D'Asaro, 1996; Scotti et al., 2006) instead of the more customary turbulent buoyancy flux, thereby isolating mixing from reversible processes (e.g., internal waves). For mechanically-driven flows, profiles of mixing efficiency vs. buoyancy Reynolds number are in agreement with accepted values for stratified turbulent shear flows. However, for flows in which mixing is driven in part or fully by thermodynamic forcing and an excess of APE, DNS results show much higher values of the mixing efficiency, approaching unity for horizontal convection. Implications of these results for the energy budget of the MOC are discussed. Note: The DNS data sets of turbulent stratified channel flow are provided courtesy of M. Garcia-Villalba and J. C. del Alamo.

  13. 7 CFR 29.3532 - Mixed (M).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Mixed (M). 29.3532 Section 29.3532 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3532 Mixed (M). Variegated or distinctly different colors of the type mingled...

  14. 7 CFR 29.3532 - Mixed (M).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Mixed (M). 29.3532 Section 29.3532 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3532 Mixed (M). Variegated or distinctly different colors of the type mingled...

  15. Treatment of mixed features in bipolar disorder.

    PubMed

    Rosenblat, Joshua D; McIntyre, Roger S

    2016-09-13

    Mood episodes with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)-defined mixed features are highly prevalent in bipolar disorder (BD), affecting ~40% of patients during the course of illness. Mixed states are associated with poorer clinical outcomes, greater treatment resistance, higher rates of comorbidity, more frequent mood episodes, and increased rates of suicide. The objectives of the current review are to identify, summarize, and synthesize studies assessing the efficacy of treatments specifically for BD I and II mood episodes (ie, including manic, hypomanic, and major depressive episodes) with DSM-5-defined mixed features. Two randomized controlled trials (RCTs) and 6 post-hoc analyses were identified, all of which assessed the efficacy of second-generation antipsychotics (SGAs) for the acute treatment of BD mood episodes with mixed features. Results from these studies provide preliminary support for SGAs as efficacious treatments for both mania with mixed features and bipolar depression with mixed features. However, there are inadequate data to definitively support or refute the clinical use of specific agents. Conventional mood stabilizing agents (eg, lithium and divalproex) have yet to have been adequately studied in DSM-5-defined mixed features. Further study is required to assess the efficacy, safety, and tolerability of treatments specifically for BD mood episodes with mixed features.

  16. Tower Water-Vapor Mixing Ratio

    SciTech Connect

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  17. Film processing investigation. [improved chemical mixing system

    NASA Technical Reports Server (NTRS)

    Kelly, J. L.

    1972-01-01

    The present operational chemical mixing system for the Photographic Technology Division is evaluated, and the limitations are defined in terms of meeting the present and programmed chemical supply and delivery requirements. A major redesign of the entire chemical mixing, storage, analysis, and supply system is recommended. Other requirements for immediate and future implementations are presented.

  18. Efficiency of Metal Mixing in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Saitoh, Takayuki R.

    2017-04-01

    Metal mixing plays a critical role in the enrichment of metals in galaxies. The abundance of elements such as Mg, Fe, and Ba in metal-poor stars helps us understand the metal mixing in galaxies. However, the efficiency of metal mixing in galaxies is not yet understood. Here we report a series of N-body/smoothed particle hydrodynamics simulations of dwarf galaxies with different efficiencies of metal mixing using a turbulence-induced mixing model. We show that metal mixing apparently occurs in dwarf galaxies from Mg and Ba abundances. We find that a scaling factor for metal diffusion larger than 0.01 is necessary to reproduce the measured abundances of Ba in dwarf galaxies. This value is consistent with the value expected from turbulence theory and experiments. We also find that the timescale of metal mixing is less than 40 Myr. This timescale is shorter than the typical dynamical times of dwarf galaxies. We demonstrate that the determination of a degree of scatters of Ba abundance by the observation will help us to better constrain the efficiency of metal mixing.

  19. Mixed Methods Approaches in Family Science Research

    ERIC Educational Resources Information Center

    Plano Clark, Vicki L.; Huddleston-Casas, Catherine A.; Churchill, Susan L.; Green, Denise O'Neil; Garrett, Amanda L.

    2008-01-01

    The complex phenomena of interest to family scientists require the use of quantitative and qualitative approaches. Researchers across the social sciences are now turning to mixed methods designs that combine these two approaches. Mixed methods research has great promise for addressing family science topics, but only if researchers understand the…

  20. "Reading" Mixed Methods Research: Contexts for Criticism

    ERIC Educational Resources Information Center

    Freshwater, Dawn

    2007-01-01

    Health and social care researchers, in their haste to "belong" to academia, have adopted the system of mixed methodology research, overestimating its ability to reveal the truth and occasionally imprisoning their thought in one system. In this article, some of the assumptions underpinning mixed methodology research and its discourse are subjected…

  1. Physical properties of mixed dairy food proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed food protein gels are complex systems, which changes functional behaviors such as gelling properties and viscosity depending on the miscibility of the proteins. We have noted that differences in co-solubility of mixed proteins created unique network structures and gel properties. The effects o...

  2. Quark lepton universality and large leptonic mixing

    NASA Astrophysics Data System (ADS)

    Joshipura, Anjan S.; Smirnov, A. Yu.

    2006-08-01

    A unified description of fermionic mixing is proposed which assumes that in certain basis (i) a single complex unitary matrix V diagonalizes mass matrices of all fermions to the leading order, (ii) the SU(5) relation M=MlT exists between the mass matrices of the down quarks and the charged leptons, and (iii) Md†=M. These assumptions automatically lead to different mixing patterns for quarks and leptons: Quarks remain unmixed to leading order (i.e. V=1) while leptons have non-trivial mixing given by a symmetric unitary matrix VPMNS0=VV. V depends on two physical mixing angles and for values of these angles ˜20°-25° it reproduces the observed mixing patterns rather well. We identify conditions under which the universal mixing V follows from the universal mass matrices of fermions. Relatively small perturbations to the leading order structure lead to the CKM mixing and corrections to VPMNS0. We find that if the correction matrix equals the CKM matrix, the resulting lepton mixing agrees well with data and predicts ()e3>0.08.

  3. Flowmeter determines mix ratio for viscous adhesives

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.

    1967-01-01

    Flowmeter determines mix ratio for continuous flow mixing machine used to produce an adhesive from a high viscosity resin and aliphatic amine hardener pumped through separate lines to a rotary blender. The flowmeter uses strain gages in the two flow paths and monitors their outputs with appropriate instrumentation.

  4. Milestone M4900: Simulant Mixing Analytical Results

    SciTech Connect

    Kaplan, D.I.

    2001-07-26

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  5. Mixed Methods Research in School Psychology: A Mixed Methods Investigation of Trends in the Literature

    ERIC Educational Resources Information Center

    Powell, Heather; Mihalas, Stephanie; Onwuegbuzie, Anthony J.; Suldo, Shannon; Daley, Christine E.

    2008-01-01

    This article illustrates the utility of mixed methods research (i.e., combining quantitative and qualitative techniques) to the field of school psychology. First, the use of mixed methods approaches in school psychology practice is discussed. Second, the mixed methods research process is described in terms of school psychology research. Third, the…

  6. Patterns of Age Mixing and Gender Mixing among Children and Adolescents at an Ungraded School.

    ERIC Educational Resources Information Center

    Gray, Peter; Feldman, Jay

    1997-01-01

    Examined age and gender mixing among students, ages 4-19, at an ungraded, self-directed, democratically structured school. Found that age mixing was more frequent for 12- to 15-year-olds than for younger or older students, and that gender mixing was less frequent for 8- to 11-year-olds than for any other age group. (MDM)

  7. Physics of collisionless phase mixing

    SciTech Connect

    Tsiklauri, D.; Haruki, T.

    2008-11-15

    Previous studies of phase mixing of ion cyclotron (IC), Alfvenic, waves in the collisionless regime have established the generation of parallel electric field and hence acceleration of electrons in the regions of transverse density inhomogeneity. However, outstanding issues were left open. Here we use the 2.5 D, relativistic, fully electromagnetic particle-in-cell code and an analytic magnetohydrodynamic (MHD) formulation, to establish the following points: (i) Using the generalized Ohm's law we find that the parallel electric field is supported mostly by the electron pressure tensor, with a smaller contribution from the electron inertia term. (ii) The generated parallel electric field and the fraction of accelerated electrons are independent of the IC wave frequency remaining at a level of six orders of magnitude larger than the Dreicer value and approximately 20%, respectively. The generated parallel electric field and the fraction of accelerated electrons increase with the increase of IC wave amplitude. The generated parallel electric field seems to be independent of plasma beta, while the fraction of accelerated electrons strongly increases with the decrease of plasma beta (for plasma beta of 0.0001 the fraction of accelerated electrons can be as large as 47%). (iii) In the collisionless regime IC wave dissipation length (that is defined as the distance over which the wave damps) variation with the driving frequency shows a deviation from the analytical MHD result, which we attribute to a possible frequency dependence of the effective resistivity. (iv) Effective anomalous resistivity, inferred from our numerical simulations, is at least four orders of magnitude larger than the classical Spitzer value.

  8. The mixed waste management facility

    SciTech Connect

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory`s Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to {approximately}$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at {approximately}$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability.

  9. Dilution Jet Mixing Program, phase 1

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Berenfeld, A.; Mongia, H. C.

    1982-01-01

    The effect of jet to mainstream density ratio, flow area convergence as encounted in transition sections, and nonuniform mainstream profile upstream of dilution orifices on the mixing of a row of jets with a confined cross flow was quantified. It is found that: (1) jet spreading rate in transverse direction is increased with increasing J, H/D and with decreasing S/D; (2) the density ratio has only a second order effect on the jet mixing characteristics for a constant momentum ratio; (3) the temperature distributions in the jet mixing region are strongly influenced by the undisturbed mainstream profile; (4) flow area convergence enhances mixing in radial and transverse directions. An asymmetric convergent duct with flat wall injection has the same jet mixing characteristics as a symmetric convergent duct. An asymmetric convergent duct with slant wall injection has a faster jet spreading rate in the transverse direction.

  10. Continuous Microfluidic Mixing Using Pulsatile Micropumps

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ajay; Liepmann, Dorian

    2000-11-01

    For many microfluidic and micro-TAS applications, the mixing of two fluids is required. At small length scales, however, traditional means of mixing, such as turbulence generation, are impossible yet diffusion is often too slow. For laminar mixing, 3 degrees of freedom are required. Since MEMS are normally 2-D, time-dependence is added for the third degree of freedom. This process involves the use of two positive displacement pumps to alternatively deliver two different fluids into a common channel and utilizing Taylor dispersion to mix them. This mixing process was modelled numerically and confirmed via experimental observation of fluorescent dye in a fabricated MEMS mixer. The pumps used in the device are a new design consisting of a bubble-piston and two check valves.

  11. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  12. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  13. PREFACE Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.

    2010-12-01

    The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or

  14. Nationwide review of mixed and non-mixed components from different manufacturers in total hip arthroplasty

    PubMed Central

    Peters, Rinne M; van Steenbergen, Liza N; Bulstra, Sjoerd K; Zeegers, Adelgunde V C M; Stewart, Roy E; Poolman, Rudolf W; Hosman, Anton H

    2016-01-01

    Background and purpose Combining components from different manufacturers in total hip arthroplasty (THA) is common practice worldwide. We determined the proportion of THAs used in the Netherlands that consist of components from different manufacturers, and compared the revision rates of these mixed THAs with those of non-mixed THAs. Patients and methods Data on primary and revision hip arthroplasty are recorded in the LROI, the nationwide population-based arthroplasty register in the Netherlands. We selected all 163,360 primary THAs that were performed in the period 2007–2014. Based on the manufacturers of the components, 4 groups were discerned: non-mixed THAs with components from the same manufacturer (n = 142,964); mixed stem-head THAs with different manufacturers for the femoral stem and head (n = 3,663); mixed head-cup THAs with different head and cup manufacturers (n = 12,960), and mixed stem-head-cup THAs with different femoral stem, head, and cup manufacturers (n = 1,773). Mixed prostheses were defined as THAs (stem, head, and cup) composed of components made by different manufacturers. Results 11% of THAs had mixed components (n = 18,396). The 6-year revision rates were similar for mixed and non-mixed THAs: 3.4% (95% CI: 3.1w–3.7) for mixed THAs and 3.5% (95% CI: 3.4–3.7) for non-mixed THAs. Revision of primary THAs due to loosening of the acetabulum was more common in mixed THAs (16% vs. 12%). Interpretation Over an 8-year period in the Netherlands, 11% of THAs had mixed components—with similar medium-term revision rates to those of non-mixed THAs. PMID:27348544

  15. Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive

    NASA Technical Reports Server (NTRS)

    Evans, Kurt B.

    1989-01-01

    Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.

  16. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    SciTech Connect

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP.

  17. Mixing in microfluidic devices and enhancement methods

    PubMed Central

    Ward, Kevin; Fan, Z Hugh

    2015-01-01

    Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel’s hydraulic diameter, flow velocity, and solution’s kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types. PMID:26549938

  18. Mixing in colliding, ultrasonically levitated drops.

    PubMed

    Chainani, Edward T; Choi, Woo-Hyuck; Ngo, Khanh T; Scheeline, Alexander

    2014-02-18

    Lab-in-a-drop, using ultrasonic levitation, has been actively investigated for the last two decades. Benefits include lack of contact between solutions and an apparatus and a lack of sample cross-contamination. Understanding and controlling mixing in the levitated drop is necessary for using an acoustically levitated drop as a microreactor, particularly for studying kinetics. A pulsed electrostatic delivery system enables addition and mixing of a desired-volume droplet with the levitated drop. Measurement of mixing kinetics is obtained by high-speed video monitoring of a titration reaction. Drop heterogeneity is visualized as 370 nl of 0.25 M KOH (pH: 13.4) was added to 3.7 μL of 0.058 M HCl (pH: 1.24). Spontaneous mixing time is about 2 s. Following droplet impact, the mixed drop orbits the levitator axis at about 5 Hz during homogenization. The video's green channel (maximum response near 540 nm) shows the color change due to phenolphthalein absorption. While mixing is at least an order of magnitude faster in the levitated drop compared with three-dimensional diffusion, modulation of the acoustic waveform near the surface acoustic wave resonance frequency of the levitated drop does not substantially reduce mixing time.

  19. Rate of chaotic mixing in localized flows

    NASA Astrophysics Data System (ADS)

    Jop, Pierre; Boujlel, Jalila; Gouillart, Emmanuelle; Pigeonneau, Franck; Surface du Verre et Interfaces Team

    2016-11-01

    Most of the pastes in building materials are yield-stress fluids. Mixing them efficiently is required for industrial processes but linking the rate of the mixing to the fluid properties is a challenge. We study experimentally the rate of chaotic mixing in viscoplastic fluids by using a rod-stirring protocol with a rotating vessel. Only a limited zone localized around the stirring rods is highly sheared at a given time. Using a dyed spot as the initial condition, we measure the decay of concentration fluctuations of dye as mixing proceeds. Due to numerical simulations and experimental measurements, we relate the volume of highly sheared fluid to the parameters of the flow. We propose a quantitative two-zone model for the mixing rate, taking into account the geometry of the highly sheared zone as well as the rate at which fluid is renewed inside this zone. The model predicts correctly the scaling of the exponential mixing rates during a first rapid stage and a second slower one. Moreover we show that an optimal mixing exists when varying the ratio of the rotation rate of the vessel and the velocity of the rods. French ANR (ANR-11-JS09-015).

  20. Mixing in microfluidic devices and enhancement methods.

    PubMed

    Ward, Kevin; Fan, Z Hugh

    2015-09-01

    Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel's hydraulic diameter, flow velocity, and solution's kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types.

  1. Mixing in microfluidic devices and enhancement methods

    NASA Astrophysics Data System (ADS)

    Ward, Kevin; Fan, Z. Hugh

    2015-09-01

    Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel’s hydraulic diameter, flow velocity, and solution’s kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types.

  2. Finishing bacterial genome assemblies with Mix

    PubMed Central

    2013-01-01

    Motivation Among challenges that hamper reaping the benefits of genome assembly are both unfinished assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase. Methods In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities of contigs and edges represent existing alignments between these extremities. These alignment edges are used for contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that maximizes the cumulative contig length. Results We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is guided solely by standard assembly statistics, as is the case for de novo projects. Availability Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/. PMID:24564706

  3. Incomplete Mixing in a Small, Urban stream

    NASA Astrophysics Data System (ADS)

    Ryan, R. J.; Boufadel, M. C.

    2006-05-01

    Conservative solute tracer experiments were conducted in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania, USA. Estimated flow rates were between 46 L s-1 and 81 L s-1, average stream width was 5.5 m and average stream depth was 0.2 m. Given these dimensions, most researchers would think it reasonable to assume that the stream is completely mixed vertically and horizontally. However, we found that the stream was not vertically completely mixed in a 0.95 m deep, 30 m long pool. The limited mixing was demonstrated by the vertical stratification of a tracer cloud which was completely mixed both laterally and vertically across the stream prior to entering the pool. We suggest that the cause of limited mixing is due to a balance between groundwater inflow and transverse dispersion at the cross section. We show that the unsupported assumption of complete mix may result in a wide range, and thus increased uncertainty, of the values of stream flow and longitudinal dispersion coefficient estimated from these data. We conclude that the assumption of complete mix and one-dimensional modeling must be checked against actual field conditions, even in small streams.

  4. B mixing and flavor tagging at CDF

    SciTech Connect

    Russ, James S.; /Carnegie Mellon U.

    2004-12-01

    The CDF Collaboration has made a preliminary measurement of B{sub d} mixing as a first step toward measuring mixing in the B{sub s} system. Flavor tagging using opposite-side jets and muons as well as same-side tagging schemes have been applied. Results agree well with precise results from the B-factories. They use these results to estimate CDF's B{sub s} mixing range using the present data set ({approx} 250 pb{sup -1}) and extrapolate to the potential from larger data sets in future running.

  5. A gas mixing device for MOCVD

    NASA Astrophysics Data System (ADS)

    Blaauw, C.; Miner, C. J.

    1987-08-01

    Epitaxial layers of Ga zIn 1- zAs have been grown in a horizontal, low pressure metalorganic chemical vapour deposition reactor, using a mixing manifold of radial symmetry. The effect of the inlet configuration of the reactant gases on the compositional uniformity of the layers has been investigated by photoluminescence spectroscopy. It was found that incomplete gas phase mixing of the reactants resulted in poor uniformity of the grown layers. By incorporating a mixing device in the gas line, which imparted a rotational component to the gas flow, epitaxial layer uniformities were markedly improved.

  6. Cutaneous mucinosis in mixed connective tissue disease.

    PubMed

    Favarato, Maria Helena Sampaio; Miranda, Sofia Silveira de Castro; Caleiro, Maria Teresa Correia; Assad, Ana Paula Luppino; Halpern, Ilana; Fuller, Ricardo

    2013-01-01

    Cutaneous mucinosis is a group of conditions involving an accumulation of mucin or glycosaminoglycan in the skin and its annexes. It is described in some connective tissue diseases but never in association with mixed connective tissue disease. This report concerns two cases of cutaneous mucinosis in patients with mixed connective tissue disease in remission; one patient presented the papular form, and the other reticular erythematous mucinosis. These are the first cases of mucinosis described in mixed connective tissue disease. Both cases had skin lesions with no other clinical or laboratorial manifestations, with clinical response to azathioprine in one, and to an association of chloroquine and prednisone in the other.

  7. Dilution jet mixing program, phase 3

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Myers, G.; White, C.

    1985-01-01

    The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes.

  8. Cutaneous mucinosis in mixed connective tissue disease*

    PubMed Central

    Favarato, Maria Helena Sampaio; Assad, Ana Paula Luppino; Miranda, Sofia Silveira de Castro; Halpern, Ilana; Caleiro, Maria Teresa Correia; Fuller, Ricardo

    2013-01-01

    Cutaneous mucinosis is a group of conditions involving an accumulation of mucin or glycosaminoglycan in the skin and its annexes. It is described in some connective tissue diseases but never in association with mixed connective tissue disease. This report concerns two cases of cutaneous mucinosis in patients with mixed connective tissue disease in remission; one patient presented the papular form, and the other reticular erythematous mucinosis. These are the first cases of mucinosis described in mixed connective tissue disease. Both cases had skin lesions with no other clinical or laboratorial manifestations, with clinical response to azathioprine in one, and to an association of chloroquine and prednisone in the other. PMID:24068142

  9. Strong intrinsic mixing in vortex magnetic fields.

    PubMed

    Martin, James E; Shea-Rohwer, Lauren; Solis, Kyle J

    2009-07-01

    We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of approximately 55 degrees . Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads.

  10. Microbiology: Mixing Wine, Chocolate, and Coffee.

    PubMed

    Goddard, Matthew R

    2016-04-04

    Yeasts associated with cocoa and coffee beans are genetically distinct. These populations have been created through the migration and mixing of populations associated with vineyards, trees in America, and the ancestral seat of this species in Far East Asia.

  11. [Determination of taste sensitivity with mixed solutions].

    PubMed

    Marco Algarra, R

    1990-01-01

    In the second part of our study we present the results of the mixture of four basic tastes in comparison with those of the simple solutions, mea ng as well the fatigue phenomenon with the mixed solutions.

  12. A colorimetric reaction to quantify fluid mixing

    NASA Astrophysics Data System (ADS)

    Oates, Peter M.; Harvey, Charles F.

    2006-11-01

    We found the colorimetric reaction of Tiron (1,2-dihydroxybenzene-3,5-disulfonic acid) and molybdate suitable for optical quantification of chemical reaction during fluid-fluid mixing in laboratory chambers. This reaction consists of two colorless reagents that mix to rapidly form colored, stable, soluble products. These products can be digitally imaged and quantified using light absorbance to study fluid-fluid mixing. Here we provide a model and equilibrium constants for the relevant complexation reactions. We also provide methods for relating light absorbance to product concentrations. Practical implementation issues of this reaction are discussed and an example of imaged absorbances for fluid-fluid mixing in heterogeneous porous media is given.

  13. Harmful Interactions: Mixing Alcohol with Medicines

    MedlinePlus

    ... Interactions Print version Harmful Interactions Mixing Alcohol With Medicines You’ve probably seen this warning on medicines ... falls and serious injuries, especially among older people. Medicines may have many ingredients Some medications—including many ...

  14. Mixing lengths scaling in a gravity flow

    SciTech Connect

    Ecke, Robert E; Rivera, Micheal; Chen, Jun; Ecke, Robert E

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  15. Laboratory studies of ocean mixing by microorganisms

    NASA Astrophysics Data System (ADS)

    Martinez-Ortiz, Monica; Dabiri, John O.

    2011-11-01

    Ocean mixing plays a major role in nutrient and energy transport and is an important input to climate models. Recent studies suggest that the contribution of fluid transport by swimming microorganisms to ocean mixing may be of the same order of magnitude as winds and tides. An experimental setup has been designed in order to study the mixing efficiency of vertical migration of plankton. To this end, a stratified water column is created to model the ocean's density gradient. The vertical migration of Artemia Salina (brine shrimp) within the water column is controlled via luminescent signals on the top and bottom of the column. By fluorescently labelling portions of the water column, the stirring of the density gradient by the animals is visualized and quantified. Preliminary results show that the vertical movement of these organisms produces enhanced mixing relative to control cases in which only buoyancy forces and diffusion are present.

  16. Hawaii Ocean Mixing Experiment: Program Summary

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    It is becoming apparent that insufficient mixing occurs in the pelagic ocean to maintain the large scale thermohaline circulation. Observed mixing rates fall a factor of ten short of classical indices such as Munk's "Abyssal Recipe." The growing suspicion is that most of the mixing in the sea occurs near topography. Exciting recent observations by Polzin et al., among others, fuel this speculation. If topographic mixing is indeed important, it must be acknowledged that its geographic distribution, both laterally and vertically, is presently unknown. The vertical distribution of mixing plays a critical role in the Stommel Arons model of the ocean interior circulation. In recent numerical studies, Samelson demonstrates the extreme sensitivity of flow in the abyssal ocean to the spatial distribution of mixing. We propose to study the topographic mixing problem through an integrated program of modeling and observation. We focus on tidally forced mixing as the global energetics of this process have received (and are receiving) considerable study. Also, the well defined frequency of the forcing and the unique geometry of tidal scattering serve to focus the experiment design. The Hawaiian Ridge is selected as a study site. Strong interaction between the barotropic tide and the Ridge is known to take place. The goals of the Hawaiian Ocean Mixing Experiment (HOME) are to quantify the rate of tidal energy loss to mixing at the Ridge and to identify the mechanisms by which energy is lost and mixing generated. We are challenged to develop a sufficiently comprehensive picture that results can be generalized from Hawaii to the global ocean. To achieve these goals, investigators from five institutions have designed HOME, a program of historic data analysis, modeling and field observation. The Analysis and Modeling efforts support the design of the field experiments. As the program progresses, a global model of the barotropic (depth independent) tide, and two models of the

  17. Plasma kinetic effects on interfacial mix

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Taitano, W.; Vold, E. L.; Chacon, L.; Simakov, A. N.

    2016-11-01

    Mixing at interfaces in dense plasma media is a problem central to inertial confinement fusion and high energy density laboratory experiments. In this work, collisional particle-in-cell simulations are used to explore kinetic effects arising during the mixing of unmagnetized plasma media. Comparisons are made to the results of recent analytical theory in the small Knudsen number limit and while the bulk mixing properties of interfaces are in general agreement, some differences arise. In particular, "super-diffusive" behavior, large diffusion velocity, and large Knudsen number are observed in the low density regions of the species mixing fronts during the early evolution of a sharp interface prior to the transition to a slow diffusive process in the small-Knudsen-number limit predicted by analytical theory. A center-of-mass velocity profile develops as a result of the diffusion process and conservation of momentum.

  18. Mixed waste minimization in a research environment

    SciTech Connect

    Kirner, N.

    1994-12-31

    This presentation describes minimization efforts and processes for mixed waste generated by research facilities. Waste stream assessment and treatment, and database management for various research-related waste streams is detailed.

  19. Hardy's criterion of nonlocality for mixed states

    SciTech Connect

    Ghirardi, GianCarlo; Marinatto, Luca

    2006-03-15

    We generalize Hardy's proof of nonlocality to the case of bipartite mixed statistical operators, and we exhibit a necessary condition which has to be satisfied by any given mixed state {sigma} in order that a local and realistic hidden variable model exists which accounts for the quantum mechanical predictions implied by {sigma}. Failure of this condition will imply both the impossibility of any local explanation of certain joint probability distributions in terms of hidden variables and the nonseparability of the considered mixed statistical operator. Our result can be also used to determine the maximum amount of noise, arising from imperfect experimental implementations of the original Hardy's proof of nonlocality, in presence of which it is still possible to put into evidence the nonlocal features of certain mixed states.

  20. Mixing Times in Evolutionary Game Dynamics

    NASA Astrophysics Data System (ADS)

    Black, Andrew J.; Traulsen, Arne; Galla, Tobias

    2012-07-01

    Without mutation and migration, evolutionary dynamics ultimately leads to the extinction of all but one species. Such fixation processes are well understood and can be characterized analytically with methods from statistical physics. However, many biological arguments focus on stationary distributions in a mutation-selection equilibrium. Here, we address the mixing time required to reach stationarity in the presence of mutation. We show that mixing times in evolutionary games have the opposite behavior from fixation times when the intensity of selection increases: in coordination games with bistabilities, the fixation time decreases, but the mixing time increases. In coexistence games with metastable states, the fixation time increases, but the mixing time decreases. Our results are based on simulations and the Wentzel-Kramers-Brillouin approximation of the master equation.

  1. Neutrino masses, mixing, moments, and matter

    SciTech Connect

    Marciano, W.J.

    1988-01-01

    The present status of neutrino masses, mixing, and electromagnetic moments is surveyed. Potential enhancements of neutrino oscillations, decay, and spin-flavor precession due to their interactions with matter are described.

  2. Helicity in supercritical temporal mixing layers

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N.

    2003-01-01

    Databases of transitional states obtained from Direct Numerical Simulations (DNS) of temporal, supercritical mixing layers for two species systems, 02/H2 and C7Hle/N2, are analyzed to elucidate species-specific turbulence aspects.

  3. Chaotic Mixing of Granitic and Basaltic Liquids

    NASA Astrophysics Data System (ADS)

    Decampos, C.; Ingrisch, W. E.; Perugini, D.; Dingwell, D. B.; Poli, G.

    2008-12-01

    Chaotic mixing in magma chambers may play a central role in determining the timing and dynamics of volcanic eruptions. The dynamics of such chaotic mixing has been investigated solely in analog systems and in numerical simulations to date. Here we report the first experimental study of the dynamics of chaotic mixing in molten silicates of geological relevance. A newly developed device for the simulation of chaotic dynamics has been successfully employed for this purpose. Its development is based on the importance of chaotic dynamics for mixing processes; and previous studies evidencing that chaotic dynamics could equally control magma mixing processes in nature (Perugini et al., 2006. EPSL, 234: 669-680 and references therein). The special device for chaotic mixing silicate melts at high temperatures (up to 1700°C) has been built after the journal-bearing or eccentric-cylinder geometry for viscous fluids for the study of chaotic mixing in slow flows (Swanson and Ottino, 1990. J. Fluid Mech., 213:227-249). In order to generate chaos in a flow, the streamlines must be time dependent, resulting from alternating movements between the two cylinders. The mixing experiments were performed using end-members of: haplogranite [In wt.%: SiO2(71.6), Al2O3(12.4), Na2O(7.0), K2O(9.0)] and haplobasalt [SiO2(48.6), Al2O3(16.3), CaO(23.8), MgO (11.4)]. The haplogranite was doped with trace amounts of Rb, Sr, Ba, Zr and REE oxides. The experimental protocol started with a single run of alternating movements of spindle and crucible. It lasted for 110 minutes at a temperature of 1400°C. The experiment terminated by stopping all movement and letting the sample cool to room temperature. A cylinder of the resultant mixed glassy sample was recovered by drilling. Horizontal sections of this cylinder at varying heights were prepared for microprobe and ICP-MS- Laser Ablation analyses. Preliminary optical and microprobe studies reveal crystal-free filaments of intermediary compositions

  4. Enhanced Mixing in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.

    2003-01-01

    An experimental investigation of the mixing of non-reacting opposed rows of jets injected normal to a confined rectangular crossflow has been conducted. Planar Mie-scattering was used to measure the time-average concentration distribution of the jet fluid in planes perpendicular to the duct axis. Particular emphasis was placed on the study of closely spaced orifice configurations applicable to the mixing zone of an RQL combustor. Baseline studies were performed of mixing under "ideal" conditions, i.e., plenum fed jets injecting into a crossflow uniform in velocity and turbulence intensity. In addition, more practical ("non-ideal") issues encountered during hardware design were also studied. As in other studies, mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of mean jet concentration distributions, was found to be optimum when the spacing-to-duct-height ratio was inversely proportional to the square root of the jet-to-mainstream momentum-flux ratio. This relationship is suitable for design under ideal flow conditions. Inlet flow boundary conditions of the jet and approach flow (mainstream) were found to strongly influence mixing performance, but no attempt was made to determine optimum performance under non-ideal conditions. The tests performed do offer some guidance as to expected mixing behavior for several common variables likely to be imposed by hardware constraints. Additionally, in this study it was found that for rows of orifices with opposite centerlines inline, mixing was similar for blockages up to 89 percent (previous crossflow mixing studies concerned with dilution zone configurations, blockages were typically less than 50 percent). Lower levels of unmixedness were obtained as a function of downstream location when axial injection length was minimized. Mixing may be enhanced if orifice centerlines of opposed rows are staggered, but blockage must be =50 percent in this configuration. Round hole and "square

  5. Mixed Mode for Group 4 Facsimile Systems.

    DTIC Science & Technology

    1983-11-07

    Ef110rnt barn Repel) I&. SUPPLISKINTANY NOTIES ILSay WE on"S (CoutMe eawrae side so eey~u MW Aftudp Are o nmber) Mixed Mode, Facsimile, Group 4...Mode machine to transmit messages to, or receive messages from - - such existing machines as: (1) TELETEX (2) Standard Group 4 FACSIMILE, without mixed...mode capabilities (3) Group 3 FACSIMILE Changes to these machines are not considered permissible because they are already in the field; rather, here

  6. Supersonic mixing and combustion in scramjets

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Capriotti, D. P.; Byington, C. S.; Greenberg, I.

    1991-01-01

    Experimental and theoretical studies are being conducted to explore techniques to enhance mixing in scramjet combustors using parallel fuel injection from the base of swept and unswept wall-mounted ramps. The experiments reported herein were conducted using Mach 2 and 3 combustor inlet conditions. Supporting computational and cold flow studies indicated that the observed enhanced mixing for the swept ramp configuration is primarily due to the substantially higher degree of vorticity and entrainment generated by the swept trailing edges.

  7. Microwave mixing with niobium variable thickness bridges

    NASA Technical Reports Server (NTRS)

    Wang, L.-K.; Callegari, A.; Deaver, B. S., Jr.

    1977-01-01

    Niobium thin-film bridges 300-A thick, 1-micron wide, and 0.5-micron long joining two bulk films 5000-A thick and having normal resistance of the order of 1 ohm have been fabricated and used for microwave mixing at 10 GHz. They exhibit Josephson, bolometric, and multiple-flux-flow mixing and have useful response at 100-200 GHz. The data show in a direct way limitations imposed by flux flow and heating.

  8. Quick-Mixing Studies Under Reacting Conditions

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; Samuelsen, G. S.

    1996-01-01

    The low-NO(x) emitting potential of rich-burn/quick-mix/lean-burn )RQL) combustion makes it an attractive option for engines of future stratospheric aircraft. Because NO(x) formation is exponentially dependent on temperature, the success of the RQL combustor depends on minimizing high temperature stoichiometric pocket formation in the quick-mixing section. An experiment was designed and built, and tests were performed to characterize reaction and mixing properties of jets issuing from round orifices into a hot, fuel-rich crossflow confined in a cylindrical duct. The reactor operates on propane and presents a uniform, non-swirling mixture to the mixing modules. Modules consisting of round orifice configurations of 8, 9, 10, 12, 14, and 18 holes were evaluated at a momentum-flux ratio of 57 and jet-to-mainstream mass-flaw ratio of 2.5. Temperatures and concentrations of O2, CO2, CO, HC, and NO(x) were obtained upstream, down-stream, and within the orifice plane to determine jet penetration as well as reaction processes. Jet penetration was a function of the number of orifices and affected the mixing in the reacting system. Of the six configurations tested, the 14-hole module produced jet penetration close to the module half-radius and yielded the best mixing and most complete combustion at a plane one duct diameter from the orifice leading edge. The results reveal that substantial reaction and heat release occur in the jet mixing zone when the entering effluent is hot and rich, and that the experiment as designed will serve to explore satisfactorily jet mixing behavior under realistic reacting conditions in future studies.

  9. Mixing gasdynamic laser with nonequilibrium arc excitation

    NASA Astrophysics Data System (ADS)

    Antonov, G. G.; Kovshechnikov, V. B.; Rutberg, F. G.

    2016-05-01

    A mixing gasdynamic laser with nonuniform arc excitation is investigated using a model setup. Tentative analysis of the results indicates the appropriateness of using plasmatrons to improve the efficiency of mixing gasdynamic lasers by making carbon dioxide molecules vibrationally more nonuniform. In addition, a plasmatron serves as a preionization source both for a fast-flow gas-discharge laser and for a gasdynamic laser with combined pumping.

  10. Nonadditive Mixed State Phases in Neutron Optics

    SciTech Connect

    Klepp, J.; Sponar, S.; Filipp, S.; Lettner, M.; Badurek, G.; Hasegawa, Y.

    2009-03-10

    In a neutron polarimetry experiment mixed neutron spin phases are determined. We consider evolutions leading to purely geometric, purely dynamical and combined phases. It is experimentally demonstrated that the sum of the geometric and dynamical phases--both obtained in separate measurements--is not equal to the associated total phase as obtained from a third measurement, unless the system is in a pure state. In this sense, mixed state phases are not additive.

  11. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  12. Entry Times Distribution for Mixing Systems

    NASA Astrophysics Data System (ADS)

    Haydn, N.; Yang, F.

    2016-04-01

    We consider the return times dynamics to Bowen balls for continuous maps on metric spaces which have invariant probability measures with certain mixing properties. These mixing properties are satisfied for instance by systems that allow Young tower constructions. We show that the higher order return times to Bowen balls are in the limit Poisson distributed. We also provide a general result for the asymptotic behavior of the recurrence time for Bowen balls for ergodic systems and those with specification.

  13. Convective stretching and applications to mantle mixing

    NASA Astrophysics Data System (ADS)

    Conjeepurm Subramanian, Natarajan

    In this dissertation I have developed a method to quantify the stretching and orientation of infinitesimal strain ellipsoids in three-dimensional, incompressible, and unsteady flow fields. The method is used to study the mixing properties of various mantle-like flows. Chapter 1 provides a introduction to the dissertation. In Chapter 2, I discuss the mixing properties of a three-dimensional, unsteady flow in which the time dependence and three-dimensionality of the flow can be varied independently. It is found that the time dependance of the flow is a more important control on mixing. In Chapter 3, I discuss the mixing properties in a plate-driven model of mantle convection which generates both toroidal, and poloidal components in the velocity field. It is found that as the toroidal energy in the flow is increased to match the poloidal energy, the mixing becomes more homogeneous. Computing the frequency-size distribution of the stretching experienced by the heterogeneities it is found that the marble cake structure is the most likely structure for the upper mantle. In Chapter 4, I discuss the mixing properties of iso-viscous, steady, thermal convection models at infinite Prandtl number. It is found that the strain rate in these models scales uniformly as Ra-0.55. The strain rate scaling law was used to compute the mixing time in the models. The mixing time for these models was computed as ˜ 410 My for whole mantle convection and ˜ 25 My for layered mantle convection for Ra = 1x108 and ˜ 1.4 By and ˜ 100 My for Ra = 1 x 107. As in the previous chapter, the frequency size distribution corresponding to the stretching values indicates a marble cake structure for the upper mantle. In Chapter 5, I conclude the dissertation.

  14. Quantum Darwinism for mixed-state environment

    NASA Astrophysics Data System (ADS)

    Quan, Haitao; Zwolak, Michael; Zurek, Wojciech

    2009-03-01

    We exam quantum darwinism when a system is in the presence of a mixed environment, and we find a general relation between the mutual information for the mixed-state environment and the change of the entropy of the fraction of the environment. We then look at a particular solvable model, and we numerically exam the time evolution of the ``mutual information" for large environment. Finally we discuss about the exact expressions for all entropies and the mutual information at special time.

  15. Techniques for Bs Mixing at CDF

    SciTech Connect

    Salamanna, Giuseppe; /Rome U. /INFN, Rome

    2005-12-01

    The techniques used to perform a measurement of the mixing frequency of the B{sub s} meson ({Delta}M{sub s}) with the CDF detector at the TeVatron collider are described. Particular stress is put on CDF techniques for flavor tagging, which is possibly the major issue for mixing measurements at a hadron collider. Also CDF performances on lifetime and final state reconstruction are described. The final result of the amplitude scanning presented at 2005 Winter Conferences is reported.

  16. Chemical Reactions in Turbulent Mixing Flows

    DTIC Science & Technology

    1993-07-15

    investigations of turbulent mixing, chemical reaction and combustion processes in turbulent, subsonic and supersonic flows. The program was comprised of...34) n•4I Abstract The purpose of this research is to conduct fundamental investigations of tur- bulent mixing, chemical reaction and combustion processes ...Another issue to consider is that different data- processing used on the different sets of data might result in differences between sets of data. To this end

  17. Transversal mixing in the gastrointestinal tract

    NASA Astrophysics Data System (ADS)

    Vainchtein, Dmitri; Orthey, Perry; Parkman, Henry

    2015-11-01

    We discuss results of numerical simulations and analytical modeling of transversal intraluminal mixing in the GI tract produced by segmentation and peristaltic contractions. Particles that start in different parts of the small intestine are traced over several contractions and mixing is described using the particles' probability distribution function. We show that there is optimal set of parameters of contractions, such as the depth and frequency, that produces the most efficient mixing. We show that contractions create well-defined advection patterns in transversal direction. The research is inspired by several applications. First, there is the study of bacteria populating the walls of the intestine, which rely on fluid mixing for nutrients. Second, there are gastrointestinal diseases, such as Crohn's disease, which can be treated effectively using a drug delivery capsule through GI tract, for which it is needed to know how long it takes for a released drug to reach the intestinal wall. And finally, certain neurological and muscular deceases change the parameters of contractions, thus reducing the efficiency of mixing. Understanding an admissible range of the parameters (when mixing is still sufficient for biological purposes) may indicate when the medical action is required.

  18. Charm CP violation and mixing at Belle

    NASA Astrophysics Data System (ADS)

    Rok Ko, Byeong; Belle Collaboration

    2014-11-01

    We present charm CP violation and mixing measurements at Belle. They are the first observation of D0 - bar D0 mixing in e+e- collisions from D0 → K+π- decays, the most precise mixing and indirect CP violation parameters from D0 → K0Sπ+π- decays, and the timeintegrated CP asymmetries in D0 → π0π0 and D0 → K0Sπ0 decays. Our mixing measurement in D0 → K+π- decays excludes the no-mixing hypothesis at the 5.1 standard deviation level. The mixing parameters x = (0.56 ± 0.19+0.03+0.06-0.09-0.09)%, y = (0.30 ± 0.15+0.04+0.03-0.05-0.06)% and indirect CP violation parameters |q/p| = (0.90+0.16+0.05+0.06-0.15-0.04-0.05)%, arg(q/p) = (-6 ± 11 ± 3+3-4)° measured from D0 → K0Sπ+π- decays, and the time-integrated CP asymmetries AD0→π0π0CP = (-0.03 ± 0.64 ± 0.10)% and AD0→K0Sπ0CP = (-0.21 ± 0.16 ± 0.07)% are the most precisemeasurements to date. Our measurements here are consistent with predictions of the standard model.

  19. Effects of temporal fluctuations on mixing

    NASA Astrophysics Data System (ADS)

    Pool, Maria; Dentz, Marco; Post, Vincent E. A.; Simmons, Craig T.

    2016-04-01

    Mixing and dispersion in coastal aquifers are strongly influenced by periodic temporal flow fluctuations on multiple time-scales ranging from days (tides), seasons (pumping and recharge) to glacial cycles (regression and transgressions). Transient forcing effects lead to a complex space- ant time-dependent flow response which induces enhanced spreading and mixing of a dissolved substance. We study effective mixing and solute transport in temporally fluctuating one-dimensional flow for a stable stratification of two fluids of different density. We derive explicit expressions for the concentration distribution and variance to identify the controls and obtain realistic predictions of the coupling between mixing and oscillatory transient flow. We find that the magnitude of transient-driven mixing is mainly controlled by the hydraulic diffusivity, the period and the initial interface location. We also find a spatial dependence of the effective dispersion coefficient which at long times causes the concentration profile to become asymmetric. Sand column experiments under well-controlled laboratory conditions are presented to validate the theoretical effective model defined. The proposed formulation is found to provide very good predictions and correctly reproduces the experimental mixing dynamics.

  20. Cylindrical Mixing Layer Model in Stellar Jet

    NASA Astrophysics Data System (ADS)

    Choe, Seung-Urn; Yu, Kyoung Hee

    1994-12-01

    We have developed a cylindrical mixing layer model of a stellar jet including cooling effect in order to understand an optical emission mechanism along collimated high velocity stellar jets associated with young stellar objects. The cylindrical results have been calculated to be the same as the 2D ones presented by Canto & Raga(1991) because the entrainment efficiency in our cylindrical model has been obtained to be the same value as the 2D model has given. We have discussed the morphological and physical characteristics of the mixing layers by the cooling effect. As the jet Mach number increases, the initial temperature of the mixing layer goes high because the kinetic energy of the jet partly converts to the thermal energy of the mixing layer. The initial cooling of the mixing layer is very severe, changing its outer boundary radius. A subsequent change becomes adiabatic. The number of the Mach disks in the stellar jet and the total radiative luminosity of the mixing layer, based on our cylindrical calculation, have quite agreed with the observation.

  1. Robotics for mixed waste operations, demonstration description

    SciTech Connect

    Ward, C.R.

    1993-11-01

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

  2. Experimental variable-density mixing statistics

    NASA Astrophysics Data System (ADS)

    Gerashchenko, Sergiy; Prestridge, Katherine

    2013-11-01

    Velocity and density statistics are studied experimentally for variable density mixing of a heavy fluid jet into air coflow at two Atwood numbers. The effect of buoyancy is found to be important for most turbulent quantities measured. The high At jet with larger Reynolds number shows reduced lateral spreading compared to the low At jet of smaller Reynolds number. Some universal features of variable density mixing are elucidated from PDFs of density and density gradients. The low Atwood number PDFs show fast and uniform mixing. High Atwood number PDFs of density have skewness toward the larger densities, indicating reduced rate of mixing of pure heavy fluid due to its inertia. This skewness is related to strong local compression events that can lead to enhanced molecular mixing. Turbulent kinetic energy decreases with distance from the jet for low Atwood number but increases for high Atwood number due to flow acceleration and generation of extra shear and turbulence. This is clearly a buoyancy-mediated effect. Statistical characteristics of mixing such as Favre-averaged Reynolds stress and its anisotropy, turbulent mass flux velocity, density-specific volume correlation, density power spectra are also examined in the near and far field from the jet.

  3. Neutrino mass and mixing with discrete symmetry.

    PubMed

    King, Stephen F; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A₄, S₄ and Δ(96).

  4. Characterization of Mixing Between Water and Biofuels

    NASA Astrophysics Data System (ADS)

    Cotel, Aline; Green, Erica; Acevedo, Marina; Otero, Margarita; Demond, Avery

    2012-11-01

    Currently, gasoline containing ethanol is considered to be among the best alternatives to gasoline. However, the potential environmental impact of a spill of ethanol-based biofuels on aquatic environments is an area of open discussion and research. Since these fuels are a combination of a miscible fluid (ethanol) and an immiscible fluid (gasoline), models used for traditional gasoline fuels (immiscible in water) are not applicable. Preliminary experiments show that when a solution of ethanol and glycol is mixed with water, a third mixed fluid is formed. Two distinct mixing regimes were observed. An exothermic reaction also occurred between ethanol and water. In the first regime, a turbulent wake is created between the ethanol/glycol and water layers causing the ethanol and glycol solution to entrain and mix into with the water phase. Because the mixed fluid is denser than either parent fluid, a dramatic overturning is possible. The amount of mixing was found to be dependent upon the initial ratio of ethanol to glycol in the parent fluid. The second regime begins when the turbulent wake has dissipated and the internal wave created by the plate has begun to settle, typically within the first minute. At this point, Bénard-like cells, similar to those typically seen in Rayleigh-Bénard convection, form at the interface and relatively slow mass transfer is evident. The cells at the interface show distinct features of interfacial turbulence, including small transverse waves, denoting that instabilities exist there. Funding from UM-OVPR and NSF Advance.

  5. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect

    Medeiros Varzielas, I. de; Gonzalez Felipe, R.; Serodio, H.

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  6. LED color mixing with diffractive structures

    NASA Astrophysics Data System (ADS)

    Bonenberger, Theresa; Baumgart, Jörg; Wendel, Simon; Neumann, Cornelius

    2013-03-01

    Lighting solutions with colored LEDs provide many opportunities for illumination. One of these opportunities is to create a color tunable light source. In this way different kinds of white light (color temperature) as well as discrete colors may be realized. This opens the field for applications as mood lighting. But there is always a spatial separation of the distinct LEDs that might get converted into an angular separation by any collimating optics. This angular separation causes such problems like color fringes and colored shadows that cannot be accepted in most applications. Conventional methods to solve these problems include e.g. mixing rods or dichroic filters. A new approach is the use of the dispersive effect of a diffractive structure to compensate the angular separation of the different colors. In this contribution the potential and limitations of diffractive structures in LED color mixing applications are discussed. Ray tracing simulations were performed to analyze such important parameters like efficiency, color performance and the cross section of the color mixing optics. New means for the estimation of color mixing performance were developed. A software tool makes it possible to detect the color distribution within ray trace data and it provides a quality factor to estimate the color mixing performance. It can be shown that the spectral band width has a large influence on the mixing process. Ray tracing simulations are compared with results of an experimental setup such that both measured as well as simulated data is presented.

  7. Tribimaximal mixing, discrete family symmetries, and a conjecture connecting the quark and lepton mixing matrices

    NASA Astrophysics Data System (ADS)

    Low, Catherine I.; Volkas, Raymond R.

    2003-08-01

    Neutrino oscillation experiments (excluding the Liquid Scintillator Neutrino Detector experiment) suggest a tribimaximal form for the lepton mixing matrix. This form indicates that the mixing matrix is probably independent of the lepton masses, and suggests the action of an underlying discrete family symmetry. Using these hints, we conjecture that the contrasting forms of the quark and lepton mixing matrices may both be generated by such a discrete family symmetry. This idea is that the diagonalization matrices out of which the physical mixing matrices are composed have large mixing angles, which cancel out due to a symmetry when the CKM matrix is computed, but do not do so in the MNS case. However, in the cases where the Higgs bosons are singlets under the symmetry, and the family symmetry commutes with SU(2)L, we prove a no-go theorem: no discrete unbroken family symmetry can produce the required mixing patterns. We then suggest avenues for future research.

  8. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-25

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  9. Scalable Lateral Mixing and Coherent Turbulence DRI: Use of an AUV to Quantify Submesoscale Mixing Processes

    DTIC Science & Technology

    2012-09-30

    of an AUV to Quantify Submesoscale Mixing Processes Louis Goodman School for Marine Science and Technology (SMAST) University of Massachusetts...role of ocean turbulence in submesoscale dynamics. OBJECTIVES The objective of this project is to examine the role of ocean turbulence in... submesoscale mixing observed during the June 2011 LatMix experiment. Key questions to be addressed are the following: (1) What are the space and

  10. Measurements of Molecular Mixing in a High Schmidt Number Rayleigh-Taylor Mixing Layer

    SciTech Connect

    Mueschke, N J; Schilling, O; Youngs, D L; Andrews, M

    2007-12-03

    Molecular mixing measurements are performed for a high Schmidt number (Sc {approx} 10{sup 3}), small Atwood number (A {approx} 7.5 x 10{sup -4}) buoyancy-driven turbulent Rayleigh-Taylor mixing layer in a water channel facility. Salt was added to the top stream to create the desired density difference. The degree of molecular mixing was measured as a function of time by monitoring a diffusion-limited chemical reaction between the two fluid streams. The pH of each stream was modified by the addition of acid or alkali such that a local neutralization reaction occurred as the two fluids molecularly mixed. The progress of this neutralization reaction was tracked by the addition of phenolphthalein - a pH-sensitive chemical indicator - to the acidic stream. Accurately calibrated backlit optical techniques were used to measure the average concentration of the colored chemical indicator. Comparisons of chemical product formation for pre-transitional buoyancy- and shear-driven mixing layers are given. It is also shown that experiments performed at different equivalence ratios (acid/alkali concentration) can be combined to obtain a mathematical relationship between the colored product formed and the density variance. This relationship was used to obtain high-fidelity, quantitative measures of the degree of molecular mixing which are independent of probe resolution constraints. The dependence of such mixing parameters on the Schmidt and Reynolds numbers is examined by comparing the current Sc {approx} 10{sup 3} measurements with Sc = 0.7 gas-phase and Pr = 7 liquid-phase measurements. This comparison indicates that the Schmidt number has a large effect on the bulk quantity of mixed fluid at small Reynolds numbers Re{sub h} < 10{sup 3}. At late times, all mixing parameters indicated a greater degree of molecular mixing and a decreased Schmidt number dependence. Implications for the development and quantitative assessment of turbulent transport and mixing models appropriate for

  11. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  12. Turbulent mixing in a precessing sphere

    SciTech Connect

    Goto, Susumu Shimizu, Masaki; Kawahara, Genta

    2014-11-15

    By numerically simulating turbulent flows at high Reynolds numbers in a precessing sphere, we propose a method to enhance the mixing of a fluid confined within a smooth cavity by its rotational motion alone. To precisely evaluate the mixing efficiency, we extend the quantification method proposed by Danckwerts [“The definition and measurement of some characteristics of mixtures,” Appl. Sci. Res. A 3, 279–296 (1952)] to the case in which only a finite number of fluid particle trajectories can be known. Our accurate numerical tracking of fluid particles in the flow, which is controlled by the Reynolds number (an indicator of the spin rate) and the Poincaré number (the precession rate), shows the following results. First, the mixing process on the time scale normalized by the spin period is independent of the Reynolds number as long as it is high enough for the flow to be developed turbulence. Second, fastest mixing is achieved under weak precession (Poincaré number ≈0.1); in such cases, perfect mixing requires only 10–15 spins of the container. Third, the power to sustain turbulence is a weakly increasing function of the Poincaré number, and the energy efficiency of the mixing is also maximized when the Poincaré number is about 0.1. Fourth, efficient mixing driven by the weak precession arises from the effective cooperation of complex large-scale flow and small-scale turbulence, which itself is sustained by the large-scale flow.

  13. Mixing, segregation, and flow of granular materials

    NASA Astrophysics Data System (ADS)

    McCarthy, Joseph J.

    1998-11-01

    This dissertation addresses mixing, segregation, and flow of granular materials with the ultimate goal of providing fundamental understanding and tools for the rational design and optimization of mixing devices. In particular, the paradigm cases of a slowly rotated tumbler mixer and flow down an inclined plane are examined. Computational work, as well as supporting experiments, are used to probe both two and three dimensional systems. In the avalanching regime, the mixing and flow can be viewed either on a global-scale or a local-scale. On the global-scale, material is transported via avalanches whose gross motion can be well described by geometrical considerations. On the local-scale, the dynamics of the particle motion becomes important; particles follow complicated trajectories that are highly sensitive to differences in size/density/morphology. By decomposing the problem in this way, it is possible to study the implications of the geometry and dynamics separately and to add complexities in a controlled fashion. This methodology allows even seemingly difficult problems (i.e., mixing in non-convex geometries, and mixing of dissimilar particles) to be probed in a simple yet methodical way. In addition this technique provides predictions of optimal mixing conditions in an avalanching tumbler, a criterion for evaluating the effect of mixer shape, and mixing enhancement strategies for both two and three dimensional mixers. In the continuous regime, the flow can be divided into two regions: a rapid flow region of the cascading layer at the free surface, and a fixed bed region undergoing solid body rotation. A continuum-based description, in which averages are taken across the layer, generates quantitative predictions about the flow in the cascading layer and agrees well with experiment. Incorporating mixing through a diffusive flux (as well as constitutive expression for segregation) within the cascading layer allows for the determination of optimal mixing conditions

  14. Theoretical analysis of mixing in liquid clouds - Part 3: Inhomogeneous mixing

    NASA Astrophysics Data System (ADS)

    Pinsky, Mark; Khain, Alexander; Korolev, Alexei

    2016-07-01

    An idealized diffusion-evaporation model of time-dependent mixing between a cloud volume and a droplet-free volume is analyzed. The initial droplet size distribution (DSD) in the cloud volume is assumed to be monodisperse. It is shown that evolution of the microphysical variables and the final equilibrium state are unambiguously determined by two non-dimensional parameters. The first one is the potential evaporation parameter R, proportional to the ratio of the saturation deficit to the liquid water content in the cloud volume, that determines whether the equilibrium state is reached at 100 % relative humidity, or is characterized by a complete evaporation of cloud droplets. The second parameter Da is the Damkölher number equal to the ratio of the characteristic mixing time to the phase relaxation time. Parameters R and Da determine the type of mixing.The results are analyzed within a wide range of values of R and Da. It is shown that there is no pure homogeneous mixing, since the first mixing stage is always inhomogeneous. The mixing type can change during the mixing process. Any mixing type leads to formation of a tail of small droplets in DSD and, therefore, to DSD broadening that depends on Da. At large Da, the final DSD dispersion can be as large as 0.2. The total duration of mixing varies from several to 100 phase relaxation time periods, depending on R and Da.The definitions of homogeneous and inhomogeneous types of mixing are reconsidered and clarified, enabling a more precise delimitation between them. The paper also compares the results obtained with those based on the classic mixing concepts. >

  15. Diapycnal mixing in an Arctic coastal polynya

    NASA Astrophysics Data System (ADS)

    Bouruet-Aubertot, P.; Jardon, F.; Vivier, F.; Lourenço, A.; Cuypers, Y.

    2009-12-01

    Ocean mixing plays an important role in climate variability. In Arctic coastal polynyas, which are regions of dense water formation, internal wave activity and turbulent mixing can affect the ice cover through induced ocean-ice heat flux. Mixing can also affect the fate of dense waters once formed. In March 2007, a 60m-long ice tethered mooring, recording temperature and salinity at high frequency, with a relatively fine vertical resolution was deployed in the western part of Storfjorden in the Svalbard archipelago. Estimates of turbulent dissipation rates were derived from isopycnal vertical displacements. Eddy diffusivity was next inferred using a parameterization that depends on the energetics of the stratified turbulent flow. Observed levels of dissipation of turbulent potential energy per unit mass, 1.82 x 10e-7 W/kg, and diapycnal diffusivity, 2.8 x 10e-4 m2/s, were consistent with previous direct measurements in the region. The maximum values were found under the ice-ocean interface and down to 35m with a relative minimum in between, suggesting two differents energy source. As the ice cap limits mixing by the winds, internal ocean dynamics becomes a prominent source of mixing, especially in coastal regions. The influence of tides as a possible energy source for the internal wave field was therefore investigated. Finally, the internal wave field is compared with those at mid-latitudes and reasonable agreement with the Garret-Munk model is found.

  16. Does Mixing Make Residential Ventilation More Effective?

    SciTech Connect

    Sherman, Max; Walker, Iain

    2010-08-16

    Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

  17. Mixed gaits in small avian terrestrial locomotion

    PubMed Central

    Andrada, Emanuel; Haase, Daniel; Sutedja, Yefta; Nyakatura, John A.; M. Kilbourne, Brandon; Denzler, Joachim; Fischer, Martin S.; Blickhan, Reinhard

    2015-01-01

    Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million frames) on motions of the center of mass in several bird species (quail, oystercatcher, northern lapwing, pigeon, and avocet) with numerical simulations. The birds studied do not strictly prefer walking mechanics at lower speeds or running mechanics at higher speeds. Moreover, our results clearly display that the birds in our study employ mixed gaits (such as one step walking followed by one step using running mechanics) more often than walking and, surprisingly, maybe as often as grounded running. Using a bio-inspired model based on parameters obtained from real quails, we found two types of stable mixed gaits. In the first, both legs exhibit different gait mechanics, whereas in the second, legs gradually alternate from one gait mechanics into the other. Interestingly, mixed gaits parameters mostly overlap those of grounded running. Thus, perturbations or changes in the state induce a switch from grounded running to mixed gaits or vice versa. PMID:26333477

  18. Who Moves to Mixed-Income Neighborhoods?*

    PubMed Central

    McKinnish, Terra; White, T. Kirk

    2011-01-01

    This paper uses confidential Census data, specifically the 1990 and 2000 Census Long Form data, to study the income dispersion of recent cohorts of migrants to mixed-income neighborhoods. We investigate whether neighborhoods with high levels of income dispersion attract economically diverse in-migrants. If recent in-migrants to mixed-income neighborhoods exhibit high levels of income dispersion, this is consistent with stable mixed-income neighborhoods. If, however, mixed-income neighborhoods are comprised of homogenous low-income (high-income) cohorts of long-term residents combined with homogenous high-income (low-income) cohorts of recent arrivals, this is consistent with neighborhood transition. Our results indicate that neighborhoods with high levels of income dispersion do in fact attract a much more heterogeneous set of in-migrants, particularly from the tails of the income distribution. Our results also suggest that the residents of mixed-income neighborhoods may be less heterogeneous with respect to lifetime income. PMID:21479114

  19. Mixed gaits in small avian terrestrial locomotion.

    PubMed

    Andrada, Emanuel; Haase, Daniel; Sutedja, Yefta; Nyakatura, John A; Kilbourne, Brandon M; Denzler, Joachim; Fischer, Martin S; Blickhan, Reinhard

    2015-09-03

    Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million frames) on motions of the center of mass in several bird species (quail, oystercatcher, northern lapwing, pigeon, and avocet) with numerical simulations. The birds studied do not strictly prefer walking mechanics at lower speeds or running mechanics at higher speeds. Moreover, our results clearly display that the birds in our study employ mixed gaits (such as one step walking followed by one step using running mechanics) more often than walking and, surprisingly, maybe as often as grounded running. Using a bio-inspired model based on parameters obtained from real quails, we found two types of stable mixed gaits. In the first, both legs exhibit different gait mechanics, whereas in the second, legs gradually alternate from one gait mechanics into the other. Interestingly, mixed gaits parameters mostly overlap those of grounded running. Thus, perturbations or changes in the state induce a switch from grounded running to mixed gaits or vice versa.

  20. Flavor mixing democracy and minimal CP violation

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Marc; Xing, Zhi-zhong

    2012-06-01

    We point out that there is a unique parametrization of quark flavor mixing in which every angle is close to the Cabibbo angle θC≃13° with the CP-violating phase ϕq around 1°, implying that they might all be related to the strong hierarchy among quark masses. Applying the same parametrization to lepton flavor mixing, we find that all three mixing angles are comparably large (around π/4) and the Dirac CP-violating phase ϕl is also minimal as compared with its values in the other eight possible parametrizations. In this spirit, we propose a simple neutrino mixing ansatz which is equivalent to the tri-bimaximal flavor mixing pattern in the ϕl→0 limit and predicts sin θ13=1/√{2}sin(ϕl/2) for reactor antineutrino oscillations. Hence the Jarlskog invariant of leptonic CP violation Jl=(sin ϕl)/12 can reach a few percent if θ13 lies in the range 7°⩽θ13⩽10°.

  1. Mixing Dynamics Between Water and Biofuels

    NASA Astrophysics Data System (ADS)

    Cotel, Aline; Demond, Avery; Lei, Jiariu; Green, Erica

    2013-11-01

    Currently, ethanol-based biofuels are considered to be among the best alternatives to gasoline. However, the potential environmental impact of a spill of such fuels on aquatic environments is an area of open discussion and research. Since these fuels are a combination of a miscible fluid (ethanol) and an immiscible fluid (gasoline), models used for traditional gasoline fuels (immiscible in water) are not applicable. Preliminary experiments show that when a solution of ethanol and glycol is mixed with water, a third mixed fluid is formed. Two distinct mixing regimes are observed. A turbulent wake is created between the ethanol/glycol and water layers to cause the ethanol and glycol solution to entrain and mix into with the water phase. In the first regime, due to nonlinear mixing behavior, a dramatic overturning is possible for a certain range of parameters. The second regime begins when the turbulent wake has dissipated and the internal wave created by the plate has begun to settle, typically within the first minute. At this point, Bénard-like cells, similar to those typically seen in Rayleigh-Bénard convection, form at the interface and relatively slow mass transfer is evident. Both regimes are described quantitatively with a set of dimensionless parameters.

  2. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  3. Flow and mixing by small intestine villi.

    PubMed

    Lim, Y F; de Loubens, C; Love, R J; Lentle, R G; Janssen, P W M

    2015-06-01

    Flow and mixing in the small intestine are multi-scale processes. Flows at the scale of the villi (finger-like structures of ≈500 μm length) are poorly understood. We developed a three-dimensional lattice-Boltzmann model to gain insight into the effects of villous movements and the rheology of digesta on flow, mixing and absorption of nutrients at the periphery of the intestinal lumen. Our model simulated the hydrodynamic consequences of villi movements that resulted from folding of the mucosa during longitudinal contractions. We found that cyclic approximation and separation of groups of villi generated laminar eddies at the edges of the group and augmented mass transfers in the radial direction between the inter-villous space and the intestinal lumen which improved the absorption of nutrients and mixing at the periphery of the lumen. This augmentation was greater with highly diffusible nutrients and with high levels of shear-thinning (pseudoplasticity) of the fluid. We compared our results with bulk flows simulations done by previous workers and concluded that villous movements during longitudinal contractions is a major radial mixing mechanism in the small intestine and increases mixing and absorption around the mucosa despite adverse rheology.

  4. Mixing Enhancement in a Lobed Injector

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Majamaki, A. J.; Lam, I. T.; Delabroy, O.; Karagozian, A. R.; Marble, F. E.; Smith, O. I.

    1997-01-01

    An experimental investigation of the non-reactive mixing processes associated with a lobed fuel injector in a coflowing air stream is presented. The lobed fuel injector is a device which generates streamwise vorticity, producing high strain rates which can enhance the mixing of reactants while delaying ignition in a controlled manner. The lobed injectors examined in the present study consist of two corrugated plates between which a fuel surrogate, CO2, is injected into coflowing air. Acetone is seeded in the CO2 supply as a fuel marker. Comparison of two alternative lobed injector geometries is made with a straight fuel injector to determine net differences in mixing and strain fields due to streamwise vorticity generation. Planar laser-induced fluorescence (PLIF) of the seeded acetone yields two-dimensional images of the scalar concentration field at various downstream locations, from which local mixing and scalar dissipation rates are computed. It is found that the lobed injector geometry can enhance molecular mixing and create a highly strained flowfield, and that the strain rates generated by scalar energy dissipation can potentially delay ignition in a reacting flowfield.

  5. Multipartite entangled states in particle mixing

    SciTech Connect

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.

    2008-05-01

    In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.

  6. Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.

  7. MixSIAR: A Bayesian stable isotope mixing model for characterizing intrapopulation niche variation

    EPA Science Inventory

    Background/Question/Methods The science of stable isotope mixing models has tended towards the development of modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances or syntheses of the current state of the art are published in parity with software packa...

  8. 26 CFR 1.1092(b)-4T - Mixed straddles; mixed straddle account (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... year for which the taxpayer makes the election or January 1, 1984, whichever is later. See § 1.1092(b... Corporation stock or any stock in UVW Corporation. If B makes the mixed straddle account election under this... respect to each other. If B makes the mixed straddle account election under this section for all...

  9. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1992-04-21

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  10. Passive scalar mixing in vortex rings

    NASA Astrophysics Data System (ADS)

    Sau, Rajes; Mahesh, Krishnan

    2006-11-01

    Direct numerical simulations of passive scalar mixing in vortex rings are performed, with and without crossflow. The simulation results without crossflow agree well with experimental data for `formation number', total circulation, trajectory and entrainment fraction. Scalar profiles, mixedness and volume of scalar carrying fluid are used to quantify mixing, whose characteristics are quite different in the formation and propagation phases of the ring. These results are explained in terms of entrainment by the ring. The simulations with crossflow show that the ring tilts and deforms. When the stroke ratio is greater than formation number, the ring tilts in the direction of the crossflow. On the other hand, when the stroke ratio is less than formation number, the ring tilts in the opposite direction, such that its induced velocity opposes the crossflow. The Magnus effect may be used to provide a simple explanation. The impact of this behavior on mixing will be discussed.

  11. Designing a Mixed Reality Intergenerational Entertainment System

    NASA Astrophysics Data System (ADS)

    Khoo, Eng Tat; Merritt, Tim; Cheok, Adrian David

    This chapter presents steps for designing an intergenerational mixed reality entertainment system, which focuses on physical and social interactions using a mixed reality floor system. The main design goals include the following: facilitating interactions between users with varied levels of skill in utilizing technology, utilizing the familiar physical motions from other activities to make an intuitive physical interface, and encouraging social interactions among families and friends. Detailed implementation of these steps is presented in the design of our intergenerational entertainment system, Age Invaders. Our design process is based on user-centered design. The results of the study help to focus the refinements of the existing platform from a usability standpoint and also aid in the development of new physical entertainment and interactive applications. This study provides insights into user issues including how users interact in a complex mixed reality experience.

  12. Mixed-mode fracture of ceramics

    SciTech Connect

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  13. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  14. Experiences with treatment of mixed waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.H.; Nuttall, E.

    1996-04-10

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

  15. Mixing characterization in a slab tank

    SciTech Connect

    Stoots, C.M.; Gavlak, A.M.; Calabrese, R.V.; Kyser, E.A.; Tatterson, G.B.

    1989-01-01

    Due to safety requirements, slab tanks are often used to process radioactive materials. The configuration is that of a slit or a tank of rectangular cross section with very low aspect ratio. Due to its nonconventional geometry, very little is known about the slab tank mixing environment. To better understand it, experiments have been performed in a full scale standard configuration equipped with two stirrer shafts, each containing several axial impellers. To characterize the velocity field, mean and RMS turbulent velocities have been measured at several impeller speeds with a two-component Laser Doppler Anemometer (LDA). The LDA data have been supplemented with flow visualization, circulation time, and mixing time studies. Since the slab tank is often used as a precipitator, solids suspension studies have also been performed. The results of the various experiments will be presented and will be interpreted to elucidate slab tank dynamics. The implication to mixing efficiency will also be discussed.

  16. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-10-19

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  17. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  18. Turbulent jet mixing in a supersonic stream

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Schetz, J. A.

    1971-01-01

    An experimental study of turbulent, subsonic, coaxial jet mixing of air in a supersonic air stream is presented. Data taken at five axial stations downstream of the exit of the jet supply tube, which was suspended through the nozzle throat of a supersonic wind tunnel, are given in the form of total pressure, Mach number, and velocity distributions. An investigation of the effect of swirl as a mixing aid was conducted. Swirl, produced by tangential injection of 50% of the total air mass flow leaving the jet supply tube, was examined through Schlieren photographs and total pressure surveys. From a comparison of nonswirl and swirl data, it is concluded that the swirl has no discernible effect on the mixing.

  19. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  20. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  1. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  2. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  3. Evidence for D0-D0 mixing.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Fisher, P H; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2007-05-25

    We present evidence for D0-D(0) mixing in D(0)-->K(+)pi(-) decays from 384 fb(-1) of e(+)e(-) colliding-beam data recorded near square root s=10.6 GeV with the BABAR detector at the PEP-II storage rings at the Stanford Linear Accelerator Center. We find the mixing parameters x('2)=[-0.22+/-0.30(stat)+/-0.21(syst)] x 10(-3) and y(')=[9.7+/-4.4(stat)+/-3.1(syst)] x 10(-3) and a correlation between them of -0.95. This result is inconsistent with the no-mixing hypothesis with a significance of 3.9 standard deviations. We measure R(D), the ratio of doubly Cabibbo-suppressed to Cabibbo-favored decay rates, to be [0.303+/-0.016(stat)+/-0.010(syst)]%. We find no evidence for CP violation.

  4. Mixed parity pairing in a dipolar gas

    NASA Astrophysics Data System (ADS)

    Bruun, G. M.; Hainzl, C.; Laux, M.

    2016-10-01

    We show that fermionic dipoles in a two-layer geometry form Cooper pairs with both singlet and triplet components when they are tilted with respect to the normal of the planes. The mixed parity pairing arises because the interaction between dipoles in the two different layers is not inversion symmetric. We use an efficient eigenvalue approach to calculate the zero-temperature phase diagram of the system as a function of the dipole orientation and the layer distance. The phase diagram contains purely triplet as well as mixed singlet and triplet superfluid phases. We show in detail how the pair wave function for dipoles residing in different layers smoothly changes from singlet to triplet symmetry as the orientation of the dipoles is changed. Our results indicate that dipolar quantum gases can be used to unambiguously observe mixed parity pairing.

  5. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-05-18

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  6. Geometric uncertainty relation for mixed quantum states

    SciTech Connect

    Andersson, Ole Heydari, Hoshang

    2014-04-15

    In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrödinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrödinger, and vice versa.

  7. Lidar observation of marine mixed layer

    NASA Technical Reports Server (NTRS)

    Yamagishi, Susumu; Yamanouchi, Hiroshi; Tsuchiya, Masayuki

    1992-01-01

    Marine mixed layer is known to play an important role in the transportation of pollution exiting ship funnels. The application of a diffusion model is critically dependent upon a reliable estimate of a lid. However, the processes that form lids are not well understood, though considerable progress toward marine boundary layer has been achieved. This report describes observations of the marine mixed layer from the course Ise-wan to Nii-jima with the intention of gaining a better understanding of their structure by a shipboard lidar. These observations were made in the summer of 1991. One interesting feature of the observations was that the multiple layers of aerosols, which is rarely numerically modeled, was encountered. No attempt is yet made to present a systematic analysis of all the data collected. Instead we focus on observations that seem to be directly relevant to the structure of the mixed layer.

  8. Superlubricity of a Mixed Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Zuo; Zhang, Chen-Hui; Luo, Jian-Bin; Lu, Xin-Chun; Wen, Shi-Zhu

    2011-05-01

    A super-low friction coefficient of 0.0028 is measured under a pressure of 300 MPa when the friction pair (the silicon nitride ball sliding on the silicate glass) is lubricated by the mixed aqueous solution of glycerol and boric acid. The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope (AFM) in deionized water, glycerol, boric acid and their mixed aqueous solution. Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus. The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed. It is deduced that the formation of the lubricant film has enough strength to support higher loads, the hydration effect offering the super lower shear resistance. Key words: superlubricity, water based lubricant, ultra-low friction

  9. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  10. NUCLEAR MIXING METERS FOR CLASSICAL NOVAE

    SciTech Connect

    Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art; José, Jordi

    2013-11-10

    Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ΣCNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, γ){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.

  11. Mixing processes within the polar night jet

    NASA Technical Reports Server (NTRS)

    Pierce, R. Bradley; Fairlie, T. Duncan; Grose, William L.; Swinbank, Richard; O'Neill, Alan

    1994-01-01

    Lagrangian material line simulations are performed using U.K. Meteorological Office simulated winds and temperatures to examine mixing processes in the middle- and lower-stratospheric polar night jet during the 1992 Southern Hemisphere spring and Northern Hemisphere winter. The Lagrangian simulations are undertaken to provide insight into the effects of mixing within the polar night jet on observations of the polar vortex made by instruments onboard the Upper Atmosphere Research Satellite (UARS) during these periods. A moderate to strong kinematic barrier to large-scale isentropic exchange, similar to the barrier identified in General Circulation Model (GCM) simulations, is identified during both of these periods. Characteristic timescales for mixing by large-scale isentropic motions within the polar night jet range from 20 days in the Southern Hemisphere lower stratosphere to years in the Northern Hemisphere middle stratosphere. The long mixing timescales found in the Northern Hemisphere polar night jet do not persist. Instead, the Northern Hemisphere kinematic barriers are broken down as part of the large-scale stratospheric response to a strong tropospheric blocking event. A series of Lagrangian experiments are conducted to investigate the sensitivity of the kinematic barrier to diabatic effects and to small-scale inertial gravity wave motions. Differential diabatic descent is found to have a significant impact on mixing processes within the Southern Hemisphere middle-stratospheric jet core. The interaction between small-scale displacements by idealized, inertial gravity waves and the large-scale flow is found to have a significant impact on mixing within the polar night jet in both hemispheres. These sensitivity experiments suggest that scales of motion that are unresolved in global assimilated datasets may contribute to mass exchange across the kinematic barrier to large-scale isentropic motion.

  12. Scoping Study of Airlift Circulation Technologies for Supplemental Mixing in Pulse Jet Mixed Vessels

    SciTech Connect

    Schonewill, Philip P.; Berglin, Eric J.; Boeringa, Gregory K.; Buchmiller, William C.; Burns, Carolyn A.; Minette, Michael J.

    2015-04-07

    At the request of the U.S. Department of Energy Office of River Protection, Pacific Northwest National Laboratory (PNNL) conducted a scoping study to investigate supplemental technologies for supplying vertical fluid motion and enhanced mixing in Waste Treatment and Immobilization Plant (WTP) vessels designed for high solids processing. The study assumed that the pulse jet mixers adequately mix and shear the bottom portion of a vessel. Given that, the primary function of a supplemental technology should be to provide mixing and shearing in the upper region of a vessel. The objective of the study was to recommend a mixing technology and configuration that could be implemented in the 8-ft test vessel located at Mid-Columbia Engineering (MCE). Several mixing technologies, primarily airlift circulator (ALC) systems, were evaluated in the study. This technical report contains a review of ALC technologies, a description of the PNNL testing and accompanying results, and recommended features of an ALC system for further study.

  13. Improvements in Mixing Time and Mixing Uniformity in Devices Designed for Studies of Protein Folding Kinetics

    SciTech Connect

    Yao, Shuhuai; Bakajin, Olgica

    2007-08-01

    Using a microfluidic laminar flow mixer designed for studies of protein folding kinetics, we demonstrate a mixing time of 1 +/- 1 micros with sample consumption on the order of femtomoles. We recognize two limitations of previously proposed designs: (1) size and shape of the mixing region, which limits mixing uniformity and (2) the formation of Dean vortices at high flow rates, which limits the mixing time. We address these limitations by using a narrow shape-optimized nozzle and by reducing the bend of the side channel streamlines. The final design, which combines both of these features, achieves the best performance. We quantified the mixing performance of the different designs by numerical simulation of coupled Navier-Stokes and convection-diffusion equations and experiments using fluorescence resonance energy-transfer (FRET)-labeled DNA.

  14. Medicare case-mix index increase

    PubMed Central

    Ginsburg, Paul B.; Carter, Grace M.

    1986-01-01

    Medicare paid hospitals a higher amount per admission in 1984 than had been planned because the case-mix index (CMI), which reflects the proportion of patients in high-weighted DRG's versus low-weighted ones, increased more than had been projected. This study estimated the degree to which the increase in the CMI from 1981 reflected medical practice changes, the aging of the Medicare inpatient population, changes in coding practices of physicians and hospitals, and changes in the way that the Health Care Financing Administration collects the data on case-mix. All of the above, except for aging, contributed to the increase in the CMI. PMID:10311672

  15. A Stratospheric Mixing and Transport Sampler

    NASA Technical Reports Server (NTRS)

    Sparling, Lynn

    1999-01-01

    The mixing and transport of stratospheric chemical species occurs by a variety of physical mechanisms on a range of length and time scales. Slow vertical diffusion resembles Taylor diffusion in pipe flow, while rapid stirring by chaotic advection is essentially a "baker's transformation", via the stretching and folding of material lines in the flow. Other examples include global scale transport by large organized flow structures, such as the winter stratospheric "eggbeater" that brings tropical air to the north pole. This presentation is a survey of these different mixing and transport phenomena and how we see their signatures in observations of chemical tracers.

  16. Mixed Media Filters for Aircrew Breathing Systems.

    DTIC Science & Technology

    1980-12-01

    F AD-AiLT1 382 UMPQUA RESEARCH CO MYRTLE CREEK OR F/S 6/11 I MIXED MEDIA FILTERS FOR AIRCREW BREATHING SYSTEMS. CU) IDEC 80 G V COLOMBO F33615-76-C...O603 UNCLASSIFIED SAMTR-60-27 NL C Report SAM-TR-80.27 00 lot MIXED MEDIA FILTERS FOR AIRCREW BREATHING SYSTEMS Gerald V. Colombo, M.S. Umpqua Research...Texas 78235 0 ’: 0 010 T .A NOTICES This final report was submitted by Umpqua Research Company, Myrtle Creek, Oregon 97457, under contract F33615-76-C

  17. Photochemistry and vertical mixing. [in Uranus atmosphere

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.; Sandel, B. R.; Romani, P. N.

    1991-01-01

    Earth-based observations relevant to the question of photochemistry and vertical mixing are discussed. Phytolysis of methane, the only known photochemically active volatile in the Uranian atmosphere, produces heavier hydrocarbons, the most abundant of which are ethane, acetylene, and the polyacetylenes. Unlike Jupiter and Saturn, these hydrocarbon products condense at the low temperatures prevalent in the middle atmosphere. Contrary to the pre-Voyager notion that the atmosphere of Uranus is remarkable clear, it is found that the aerosols are widely and extensively distributed. Despite its photodestruction, methane remains stable in the Uranian atmosphere. The vertical mixing on Uranus is found to be the least efficient of any of the planetary atmospheres.

  18. Overview of robotics for Mixed Waste Operations

    SciTech Connect

    Ward, C.R.

    1994-02-01

    The Mixed Waste Operations Robotics program is developing robotics technology to make the handling and treatment of Department of Energy mixed waste; better, faster, safer and cheaper. This technology will provide remote operations and not require humans to be in contact with this radioactive and hazardous waste. The technology includes remote handling and opening of waste containers, remote removal of waste from the containers, remote characterization and sorting of the waste, and remote treatment and disposition of the waste. The initial technology development program culminated in an integrated demonstration in November 1993 and each aspect of this technology is described.

  19. Nondestructive assay confirmatory assessment experiments: mixed oxide

    SciTech Connect

    Lemming, J.F.

    1980-04-30

    The confirmatory assessment experiments demonstrate traceable nondestructive assay (NDA) measurements of plutonium in mixed oxide powder using commercially available spontaneous-fission assay systems. The experiments illustrate two major concepts: the production of calibration materials using calorimetric assay, and the use of paired measurements for measurement assurance. Two batches of well-characterized mixed oxide powder were used to establish the random and systematic error components. The major components of an NDA measurement assurance technique to establish and maintain traceability are identified and their functions are demonstrated. 20 refs., 10 figs., 10 tabs.

  20. Global analysis of fermion mixing with exotics

    NASA Technical Reports Server (NTRS)

    Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele

    1991-01-01

    The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.

  1. Mixed-Mode-Bending Delamination Apparatus

    NASA Technical Reports Server (NTRS)

    Crews, John H., Jr.; Reeder, James R.

    1991-01-01

    Mixed-mode-bending delamination apparatus generates two types of delamination stress simultaneously in specimen from single externally applied point load. In technique, indivial mode I and mode II contributions to delamination in specimen analyzed by use of simple beam-theory equations, eliminating need for time-consuming, difficult numerical analysis. Allows wider range of mode I/mode II ratios than possible with many other methods. Mixed-mode delamination testing of interest in all fields utilizing composite materials, used mostly in aerospace field, but also used in automobiles, lightweight armored military vehicles, boats, and sporting equipment. Useful in general lumber, plywood, and adhesive industries, as well.

  2. Transition mixing study empirical model report

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; White, C.

    1988-01-01

    The empirical model developed in the NASA Dilution Jet Mixing Program has been extended to include the curvature effects of transition liners. This extension is based on the results of a 3-D numerical model generated under this contract. The empirical model results agree well with the numerical model results for all tests cases evaluated. The empirical model shows faster mixing rates compared to the numerical model. Both models show drift of jets toward the inner wall of a turning duct. The structure of the jets from the inner wall does not exhibit the familiar kidney-shaped structures observed for the outer wall jets or for jets injected in rectangular ducts.

  3. A Mixed Approach Of Automated ECG Analysis

    NASA Astrophysics Data System (ADS)

    De, A. K.; Das, J.; Majumder, D. Dutta

    1982-11-01

    ECG is one of the non-invasive and risk-free technique for collecting data about the functional state of the heart. However, all these data-processing techniques can be classified into two basically different approaches -- the first and second generation ECG computer program. Not the opposition, but simbiosis of these two approaches will lead to systems with the highest accuracy. In our paper we are going to describe a mixed approach which will show higher accuracy with lesser amount of computational work. Key Words : Primary features, Patients' parameter matrix, Screening, Logical comparison technique, Multivariate statistical analysis, Mixed approach.

  4. Group theory and dynamics of neutrino mixing

    NASA Astrophysics Data System (ADS)

    Lam, C. S.

    2011-06-01

    There is a direct group-theoretical connection between neutrino mixing and horizontal symmetry that can be established without any dynamical input. Such a connection is reviewed and expanded in this article. For certain symmetry groups G including A4 and S4, it is shown that a generic U(1)×G Higgs potential of a valon yields exactly the alignments dictated by the group-theoretical approach, but energy can now be used to discriminate different alignments. This mechanism possibly explains why starting from an A4 group, the tribimaximal mixing matrix with an enhanced S4 symmetry is more preferable than the one without it.

  5. Mixed waste paper to ethanol fuel

    SciTech Connect

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  6. Neutrino Masses and Mixing from Supersymmetric Inflation

    NASA Astrophysics Data System (ADS)

    Lazarides, G.

    A supersymmetric model based on a l-right symmetric gauge group is proposed where hybrid inflation, baryogenesis and neutrino oscillations are linked.This scheme, supplemented by a familiar ansatz for the neutrino Dirac masses and mixing of the two heaviest families and with the MSW resolution of the solar neutrino puzzle, implies that 1 eVmντ ≲ 9 eV. The mixing angle θμτ is predicted to lie in a narrow range which will be partially tested by the Chorus/Nomad experiment.

  7. B^0_s mixing at CDF

    SciTech Connect

    Piedra, Jonatan; /Paris U., VI-VII

    2006-08-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. One of the most important analyses within the B physics program of the CDF experiment is B{sub s}{sup 0} mixing. Since the time this school was held, several improvements in the B{sub s}{sup 0} mixing analysis have made possible the measurement of the B{sub s}{sup 0} oscillation frequency, result that has been presented at the FPCP 2006 Conference.

  8. Histogenesis of ovarian malignant mixed mesodermal tumours.

    PubMed Central

    Clarke, T J

    1990-01-01

    The histogenesis of ovarian malignant mixed mesodermal tumours, which includes the concept of metaplastic carcinoma, is controversial. Four such tumours were examined for evidence of metaplastic transition from carcinoma to sarcoma using morphology and reticulin stains. Consecutive sections were stained immunohistochemically using cytokeratin and vimentin to determine whether cells at the interface between carcinoma and sarcoma expressed both cytokeratin and vimentin. There was no evidence of morphological, architectural, or immunohistochemical transitions from carcinoma to sarcoma in the four tumours studied. This suggests that ovarian malignant mixed mesodermal tumours are not metaplastic carcinomas but are composed of histogenetically different elements. Images PMID:2160478

  9. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-12-06

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  10. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1995-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  11. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1995-12-26

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  12. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  13. Management of pesticide mixing and loading facilities

    SciTech Connect

    Dwinell, S.E.

    1994-12-31

    Many pesticide applicators have decided that a Chemical Mixing Facility (CMF) is the best way to manage problems of soil and water contamination at pesticide mixing and loading sites. These facilities must be managed properly to avoid the accumulation of potentially hazardous wastes, the creation of a point source of pollution, and possible fines for violation of environmental protection laws. Proper management must include pesticide containers, equipment rinsewater, sludge and sediments that accumulate on the pad, and materials used to contain and collect spills.

  14. Direct numerical simulation of turbulent mixing.

    PubMed

    Statsenko, V P; Yanilkin, Yu V; Zhmaylo, V A

    2013-11-28

    The results of three-dimensional numerical simulations of turbulent flows obtained by various authors are reviewed. The paper considers the turbulent mixing (TM) process caused by the development of the main types of instabilities: those due to gravitation (with either a fixed or an alternating-sign acceleration), shift and shock waves. The problem of a buoyant jet is described as an example of the mixed-type problem. Comparison is made with experimental data on the TM zone width, profiles of density, velocity and turbulent energy and degree of homogeneity.

  15. Mix experiments with the NOVA laser

    SciTech Connect

    Rupert, V.C.; Kilkenny, J.D.; Skokowski, P.G.

    1988-10-01

    The NOVA mix experiments are designed to study mix between two dissimilar materials subjected to strong (M/approximately/50) shocks and variable accelerations in a direction normal to their common boundary. The main purpose of the experiments is to provide a data base with which predictive models can be compared and normalized. Together with shock tube experiments, which explore a different regime, the current NOVA tests investigate the shock induced source terms in our model and the evolution of both Rayleigh-Taylor stable and unstable interfaces. 3 refs., 9 figs.

  16. A Mixed Methods Sampling Methodology for a Multisite Case Study

    ERIC Educational Resources Information Center

    Sharp, Julia L.; Mobley, Catherine; Hammond, Cathy; Withington, Cairen; Drew, Sam; Stringfield, Sam; Stipanovic, Natalie

    2012-01-01

    The flexibility of mixed methods research strategies makes such approaches especially suitable for multisite case studies. Yet the utilization of mixed methods to select sites for these studies is rarely reported. The authors describe their pragmatic mixed methods approach to select a sample for their multisite mixed methods case study of a…

  17. Mixed Methods Research: A Research Paradigm Whose Time Has Come

    ERIC Educational Resources Information Center

    Johnson, R. Burke; Onwuegbuzie, Anthony J.

    2004-01-01

    The purposes of this article are to position mixed methods research ("mixed research" is a synonym) as the natural complement to traditional qualitative and quantitative research, to present pragmatism as offering an attractive philosophical partner for mixed methods research, and to provide a framework for designing and conducting mixed methods…

  18. 24 CFR 891.815 - Mixed-finance developer's fee.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Mixed-finance developer's fee. 891...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.815 Mixed-finance developer's fee. (a) Mixed-finance developer's fee....

  19. 24 CFR 891.815 - Mixed-finance developer's fee.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Mixed-finance developer's fee. 891...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.815 Mixed-finance developer's fee. (a) Mixed-finance developer's fee....

  20. 24 CFR 891.825 - Mixed-finance closing documents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Mixed-finance closing documents...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.825 Mixed-finance closing documents. The mixed-finance owner must...

  1. 24 CFR 891.815 - Mixed-finance developer's fee.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Mixed-finance developer's fee. 891...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.815 Mixed-finance developer's fee. (a) Mixed-finance developer's fee....

  2. 24 CFR 891.825 - Mixed-finance closing documents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Mixed-finance closing documents...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.825 Mixed-finance closing documents. The mixed-finance owner must...

  3. 24 CFR 891.825 - Mixed-finance closing documents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Mixed-finance closing documents...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.825 Mixed-finance closing documents. The mixed-finance owner must...

  4. 24 CFR 891.815 - Mixed-finance developer's fee.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Mixed-finance developer's fee. 891...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.815 Mixed-finance developer's fee. (a) Mixed-finance developer's fee....

  5. 24 CFR 891.825 - Mixed-finance closing documents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Mixed-finance closing documents...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.825 Mixed-finance closing documents. The mixed-finance owner must...

  6. 24 CFR 891.825 - Mixed-finance closing documents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Mixed-finance closing documents...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.825 Mixed-finance closing documents. The mixed-finance owner must...

  7. 24 CFR 891.815 - Mixed-finance developer's fee.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Mixed-finance developer's fee. 891...-Profit Limited Partnerships and Mixed-Finance Development for Supportive Housing for the Elderly or Persons with Disabilities § 891.815 Mixed-finance developer's fee. (a) Mixed-finance developer's fee....

  8. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  9. What is mixing and can it be complex?

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2013-07-01

    While the concept of mixing is commonly used in science and engineering, its exact interpretation may vary between different disciplines. In the present work, we analyse the concept of mixing in context of mechanical mixing, the ergodic theory, modelling of turbulent reacting fluid flows and complex competitive systems. Although mixing represents a dissipative process, which is responsible for irreversible increase of molecular disorder, mixing nevertheless can be associated with emergence of complexity under certain conditions. This dual role of mixing is noted and examined here. The appendix discusses three fundamental hypotheses, which are related to understanding of mixing and were introduced by Boltzmann.

  10. 21 CFR 164.110 - Mixed nuts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to in paragraph (a) of this section are: (1) Almonds, black walnuts, Brazil nuts, cashews, English... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Mixed nuts. 164.110 Section 164.110 Food and Drugs... CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut...

  11. 21 CFR 164.110 - Mixed nuts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to in paragraph (a) of this section are: (1) Almonds, black walnuts, Brazil nuts, cashews, English... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Mixed nuts. 164.110 Section 164.110 Food and Drugs... CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut...

  12. 21 CFR 164.110 - Mixed nuts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to in paragraph (a) of this section are: (1) Almonds, black walnuts, Brazil nuts, cashews, English... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Mixed nuts. 164.110 Section 164.110 Food and Drugs... CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut...

  13. 21 CFR 164.110 - Mixed nuts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to in paragraph (a) of this section are: (1) Almonds, black walnuts, Brazil nuts, cashews, English... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Mixed nuts. 164.110 Section 164.110 Food and Drugs... CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut...

  14. 21 CFR 164.110 - Mixed nuts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to in paragraph (a) of this section are: (1) Almonds, black walnuts, Brazil nuts, cashews, English... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Mixed nuts. 164.110 Section 164.110 Food and Drugs... CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut...

  15. Code Mixing in a Young Bilingual Child.

    ERIC Educational Resources Information Center

    Anderson, Raquel; Brice, Alejandro

    1999-01-01

    Spontaneous speech samples of a bilingual Spanish-English speaking child were collected during a period of 17 months (ages 6-8). Data revealed percentages and rank ordering of syntactic elements switched in the longitudinal language samples obtained. Specific recommendations for using code mixing in therapy for speech-language pathologists are…

  16. Make It Active and Mix It up

    ERIC Educational Resources Information Center

    Hayman, Vicki

    2011-01-01

    The author believes that "learning is doing," especially in science. The best way she can describe what she did, and the piece of advice she wants to pass on, is "make it active and mix it up". By describing how she went about teaching this lesson, she hopes she has conveyed how doing one's research (online for a start) and…

  17. Mixed-Initiative COA Critic Advisors (MICCA)

    DTIC Science & Technology

    2013-02-01

    methods and operators to operate in MICCA. 2.1.2 Quantitative Temporal Reasoning In real world applications conditions change rapidly and punctuality ...With the help of subject matter experts and user studies we can improve the mixed initiative aspect of MICCA considerably.  Robustness of the

  18. Modeling a Rain-Induced Mixed Layer

    DTIC Science & Technology

    1990-06-01

    te -)-A-- e e -2)- . (7) ’&Z AZ Az D Using the exponential relations with trigonometry , equation (7) becomes, Ok n) 3 (I- cos2ikAz)+ D (1- cos ikAz...completely unknown because there are no prior studies which predict what portion of total energy may go into subsurface mixing. The biggest obstacle

  19. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.

    1994-01-01

    A methodology for simulation of molecular mixing and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and non-reacting shear layer present in the facility given basic assumptions about turbulence properties.

  20. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.

    1994-01-01

    A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.

  1. Control of Jet Noise Through Mixing Enhancement

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Brown, Cliff

    2003-01-01

    The idea of using mixing enhancement to reduce jet noise is not new. Lobed mixers have been around since shortly after jet noise became a problem. However, these designs were often a post-design fix that rarely was worth its weight and thrust loss from a system perspective. Recent advances in CFD and some inspired concepts involving chevrons have shown how mixing enhancement can be successfully employed in noise reduction by subtle manipulation of the nozzle geometry. At NASA Glenn Research Center, this recent success has provided an opportunity to explore our paradigms of jet noise understanding, prediction, and reduction. Recent advances in turbulence measurement technology for hot jets have also greatly aided our ability to explore the cause and effect relationships of nozzle geometry, plume turbulence, and acoustic far field. By studying the flow and sound fields of jets with various degrees of mixing enhancement and subsequent noise manipulation, we are able to explore our intuition regarding how jets make noise, test our prediction codes, and pursue advanced noise reduction concepts. The paper will cover some of the existing paradigms of jet noise as they relate to mixing enhancement for jet noise reduction, and present experimental and analytical observations that support these paradigms.

  2. Mixed Methodology in Group Research: Lessons Learned

    ERIC Educational Resources Information Center

    Shannonhouse, Laura R.; Barden, Sejal M.; McDonald, C. Peeper

    2017-01-01

    Mixed methods research (MMR) is a useful paradigm for group work as it allows exploration of both participant outcomes and "how" or "why" such changes occur. Unfortunately, the group counseling literature is not replete with MMR studies. This article reviews the application of MMR to group contexts and summarizes the corpus of…

  3. Ultrasonic mixing of epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.

    1983-01-01

    A new technique for mixing solid curing agents into liquid epoxy resins using ultrasonic energy was developed. This procedure allows standard curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents with very high melt temperatures such as 4,4 prime-diaminobenzophenone (4,4 prime-DABP) (242 C) to be mixed without premature curing. Four aromatic diamines were ultrasonically blended into MY-720 epoxy resin. These were 4,4 prime-DDS; 3,3 prime-DDA; 4,4 prime-DABP and 3,3 prime-DABP. Unfilled moldings were cast and cured for each system and their physical and mechanical properties compared.

  4. Electrostatic charge interactions in ordered powder mixes.

    PubMed

    Staniforth, J N; Rees, J E

    1982-02-01

    A method is described for measuring the electrostatic charge generated in powders following contact with a plane substrate. The method uses a Faraday well connected to an electrometer and allows the specific charge of powders to be determined. Of the various drugs and excipients studied, most charged electronegatively following contact with glass surfaces, but became electropositive after contact with polyethylene surfaces. The charge interactions of drug and excipient powders modified the behaviour of ordered mixes formed in similar conditions to those of charge measurement. Powders with like charges formed less stable ordered mixes than those in which drug and excipient particles carried opposite charges. Following triboelectrification in an air cyclone constructed of brass, powders had charges at least 100 times greater than those formed after contact with glass surfaces. Optimization of the triboelectric charging conditions allowed ordered mixes to be prepared in which a maximum electronegative charge was applied to the excipient whilst the drug was given a maximum electropositive charge. Studies of segregation/stability showed that ordered mixes subjected to triboelectrification were less prone to segregation than uncharged powders.

  5. Mixed Stream Test Rig (MISTER) Startup Report

    SciTech Connect

    Charles Park

    2011-02-01

    This report describes the work accomplished to date to design, procure, assemble, authorize, and startup the Mixed Stream Test Rig (MISTER) at the Idaho National Laboratory (INL). It describes the reasons for establishing this capability, physical configuration of the test equipment, operations methodology, initial success, and plans for completing the initial 1,000 hour test.

  6. Mixed Method Research in Special Education.

    ERIC Educational Resources Information Center

    McWilliam, R. A.

    This paper addresses the conditions under which quantitative and qualitative research methods could be combined in special education. The paper asserts that qualitative designs have not had a significant effect on special education research and speculates that mixed-method research might be more acceptable to special education researchers or…

  7. Jet Mixing in a Reacting Cylindrical Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    This paper addresses the mixing of air jets into the hot, fuel-rich products of a gas turbine primary zone. The mixing, as a result, occurs in a reacting environment with chemical conversion and substantial heat release. The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from round orifices. A specially designed reactor, operating on propane, presents a uniform mixture without swirl to mixing modules consisting of 8, 9, 10, and 12 holes at a momentum-flux ratio of 57 and a jet-to-mainstream mass-flow ratio of 2.5. Concentrations of O2, CO2, CO, and HC are obtained upstream, downstream, and within the orifice plane. O2 profiles indicate jet penetration while CO2, CO, and HC profiles depict the extent of reaction. Jet penetration is observed to be a function of the number of orifices and is found to affect the mixing in the reacting system. The results demonstrate that one module (the 12-hole) produces near-optimal penetration defined here as a jet penetration closest to the module half-radius, and hence the best uniform mixture at a plane one duct radius from the orifice leading edge.

  8. The Mixed Political Blessing of Campus Sustainability

    ERIC Educational Resources Information Center

    Breen, Sheryl D.

    2010-01-01

    The rise of sustainability rhetoric, curriculum, infrastructure, and marketing on college campuses is a mixed blessing. On the one hand, college presidents are pledging to eliminate their campuses' global warming emissions; colleges and universities are building wind turbines, composters, and green buildings; and sustainability coordinators are…

  9. The Mixed Effects Trend Vector Model

    ERIC Educational Resources Information Center

    de Rooij, Mark; Schouteden, Martijn

    2012-01-01

    Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…

  10. Mixed Waste Focus Area -- Waste form initiative

    SciTech Connect

    Nakaoka, R.; Waters, R.; Pohl, P.; Roach, J.

    1998-07-01

    The mission of the US Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI.

  11. Methodology to remediate a mixed waste site

    SciTech Connect

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  12. Training Wayfinding: Natural Movement in Mixed Reality

    DTIC Science & Technology

    2007-10-01

    This report describes an experiment that investigated a prototype mixed reality (MR) system, utilizing the Battlefield Augmented Reality System (BARS...for training wayfinding. BARS is a mobile augmented reality system that uses a head mounted display (HMD) and a wireless system that tracks the

  13. Applying Mixed Methods Techniques in Strategic Planning

    ERIC Educational Resources Information Center

    Voorhees, Richard A.

    2008-01-01

    In its most basic form, strategic planning is a process of anticipating change, identifying new opportunities, and executing strategy. The use of mixed methods, blending quantitative and qualitative analytical techniques and data, in the process of assembling a strategic plan can help to ensure a successful outcome. In this article, the author…

  14. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  15. Shaken, not Stirred: Mixing Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Robinson, E.; Trump, E. R.; Saleh, R.

    2013-12-01

    For organic vapors to condense onto or into existing particles in the atmosphere, the compounds must have a positive thermodynamic driving force. Their activity (saturation ratio) in the gas phase must exceed their activity (modified mole fraction) at the particle surface. Organic-aerosol production rates are generally quite small -- a few μg m-3 per hour at most -- and thus gas-phase saturation ratios are correspondingly small. Most experiments are conducted with far higher production rates and thus far higher saturation ratios. Consequently, experiments may or may not constrain whether organics coat particles in the real world. In addition, surface activity is often assumed to equal bulk activity for most species, meaning that particles are well mixed. However, if particles are viscous and coating rates high, diffusion through the bulk of even 100 nm particles may be slow. Again, matching experimental timescales to real-world timescales is important. Here we describe organic particle mixing experiments in which two organic particle populations are prepared separately and then intermingled by transferring the contents of one preparation chamber into another. Constituents of one population are isotopically labeled, making the mass spectra of the two particle types completely orthogonal. Following the intermingling, single-particle mass spectra allow us to track individual particle composition as the populations mix via gas-phase exchange. This allows us to explore the mixing and coating behavior of organic-aerosol populations under conditions much closer to concentrations found in the real world.

  16. Diapycnal mixing by meso-scale eddies

    NASA Astrophysics Data System (ADS)

    Eden, Carsten; Greatbatch, Richard J.

    The mean available potential energy released by baroclinic instability into the meso-scale eddy field has to be dissipated in some way and Tandon and Garrett [Tandon, A., Garrett, C., 1996. On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr. 26 (3), 406-416] suggested that this dissipation could ultimately involve irreversible mixing of buoyancy by molecular processes at the small-scale end of the turbulence cascade. We revisit this idea and argue that the presence of dissipation within the thermocline automatically requires that a component of the eddy flux associated with meso-scale eddies must be associated with irreversible mixing of buoyancy within the thermocline. We offer a parameterisation of the implied diapycnal diffusivity based on (i) the dissipation rate for eddy kinetic energy given by the meso-scale eddy closure of Eden and Greatbatch [Eden, C., Greatbatch, R.J., 2008. Towards a meso-scale eddy closure. Ocean Modell. 20, 223-239.] and (ii) a fixed mixing efficiency. The implied eddy-induced diapycnal diffusivity ( κ) is implemented in a coarse resolution model of the North Atlantic. In contrast to the vertical diffusivity given by a standard vertical mixing scheme, large lateral inhomogeneities can be found for κ in the interior of the ocean. In general, κ is large, i.e. up to o(10) cm 2/s, near the western boundaries and almost vanishing in the interior of the ocean.

  17. 40 CFR 227.29 - Initial mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of water bounded on the surface by the release zone and extending to the ocean floor, thermocline, or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Definitions § 227.29 Initial mixing....

  18. 40 CFR 227.29 - Initial mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of water bounded on the surface by the release zone and extending to the ocean floor, thermocline, or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Definitions § 227.29 Initial mixing....

  19. Terahertz homodyne self-mixing transmission spectroscopy

    SciTech Connect

    Mohr, Till Breuer, Stefan; Blömer, Dominik; Patel, Sanketkumar; Schlosser, Malte; Birkl, Gerhard; Elsäßer, Wolfgang; Simonetta, Marcello; Deninger, Anselm; Giuliani, Guido

    2015-02-09

    A compact homodyne self-mixing terahertz spectroscopy concept is experimentally investigated and confirmed by calculations. This method provides amplitude and phase information of the terahertz radiation emitted by a photoconductive antenna in a transmission experiment where a rotating chopper wheel serves as a feedback mirror. As a proof-of-principle experiment the frequency-dependent refractive index of Teflon is measured.

  20. A New Model for Mix It Up

    ERIC Educational Resources Information Center

    Holladay, Jennifer

    2009-01-01

    Since 2002, Teaching Tolerance's Mix It Up at Lunch Day program has helped millions of students cross social boundaries and create more inclusive school communities. Its goal is to create a safe, purposeful opportunity for students to break down the patterns of social self-segregation that too often plague schools. Research conducted in 2006 by…

  1. The Mixed-Phase Arctic Cloud Experiment.

    SciTech Connect

    Verlinde, J.; Harrington, Jerry Y.; McFarquhar, Greg; Yannuzzi, V. T.; Avramov, Alexander; Greenburg, S.; Johnson, N.; Zhang, G.; Poellot, Michael; Mather, Jim H.; Turner, David D.; Eloranta, E. W.; Zak, Bernard D.; Prenni, Anthony J.; Daniel, J. S.; Kok, G. L.; Tobin, D. C.; Holz, R. E.; Sassen, Kenneth; Spangenberg, D.; Minnis, Patrick; Tooman, Tim P.; Ivey, Mark D.; Richardson, S. J.; Bahrmann, C. P.; Shupe, Matthew D.; DeMott, Paul J.; Heymsfield, Andrew J.; Schofield, R.

    2007-02-01

    In order to help bridge the gaps in our understanding of mixed-phase Arctic clouds, the Department of Energy Atmospheric Radiation Measurement Program (DOE-ARM) funded an integrated, systematic observational study. The major objective of the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted September 27–October 22, 2004 during the autumnal transition season, was to collect a focused set of observations needed to advance our understanding of the cloud microphysics, cloud dynamics, thermodynamics, radiative properties, and evolution of Arctic mixed-phase clouds. These data would then be used to improve to both detailed models of Arctic clouds and large-scale climate models. M-PACE successfully documented the microphysical structure of arctic mixed-phase clouds, with multiple in situ profiles in both single-layer and multi-layer clouds, over the two ground-based remote sensing sites at Barrow and Oliktok Point. Liquid was found in clouds with temperatures down to -30C, the coldest cloud top temperature below -40C sampled by the aircraft. The remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. Flights into arctic cirrus clouds revealed microphysics properties very similar to their mid-latitude in situ formed cousins, with dominant ice crystal habit bullet rosettes.

  2. Bilarge neutrino mixing and Abelian flavor symmetry

    NASA Astrophysics Data System (ADS)

    Ding, Gui-Jun; Morisi, S.; Valle, J. W. F.

    2013-03-01

    We explore two bilarge neutrino mixing Anzätze within the context of Abelian flavor symmetry theories: (BL1) sin⁡θ12˜λ, sin⁡θ13˜λ, sin⁡θ23˜λ, and (BL2) sin⁡θ12˜λ, sin⁡θ13˜λ, sin⁡θ23˜1-λ. The first pattern is proposed by two of us and is favored if the atmospheric mixing angle θ23 lies in the first octant, while the second one is preferred for the second octant of θ23. In order to reproduce the second texture, we find that the flavor symmetry should be U(1)×Zm, while for the first pattern the flavor symmetry should be extended to U(1)×Zm×Zn with m and n of different parity. Explicit models for both mixing patterns are constructed based on the flavor symmetries U(1)×Z3×Z4 and U(1)×Z2. The models are extended to the quark sector within the framework of SU(5) grand unified theory in order to give a successful description of quark and lepton masses and mixing simultaneously. Phenomenological implications are discussed.

  3. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The U.S. Environmental Protection Agency has a long history of both supporting plume model development and providing mixing zone modeling software. The Visual Plumes model is the most recent addition to the suite of public-domain models available through the EPA-Athens Center f...

  4. Using Poetry with Mixed Ability Language Classes.

    ERIC Educational Resources Information Center

    Tomlinson, Brian

    1986-01-01

    Discusses the value of using poetry to teach English as a second language to mixed ability classes. Lists the following criteria for selecting poems: (1) universal appeal; (2) surface simplicity, (3) potential depth, (4) affective potential, (5) contemporary language, (6) brevity, and (7) potential for illustration. Describes ways of using two…

  5. Silicon photomultiplier-based optoelectronic mixing

    NASA Astrophysics Data System (ADS)

    Yishuo, Song; Xiaoping, Du; Zhaoyang, Zeng; Shengjun, Wang

    2013-09-01

    Silicon photomultiplier (SiPM)-based optoelectronic mixing (OEM) is studied for the first time. The validity of SiPM-based OEM is experimentally verified. Compared with the avalanche photodiodes-based OEM, the SiPM-based OEM is less noisy and easy to realize for its low voltage operation and high responsivity.

  6. Germinated wheat: Phytochemical composition and mixing characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germinated grain recently attracts interest due to its beneficial effect on human health. In this research, whole wheat flour samples obtained after three days and five days of germination were analyzed for biochemical components, mixing quality, and effects on human breast cancer cells. Germinati...

  7. Introduction to Studies in Granular Mixing

    ERIC Educational Resources Information Center

    Llusa, Marcos; Muzzio, Fernando

    2008-01-01

    This article describes a hands-on educational activity designed to introduce students (or industrial employees) in the pharmaceutical arena to some of the most common problems in the mixing of solids: Active Pharmaceutical Ingredient (API) and lubricant (i.e. magnesium stearate) homogenization, characterization of segregation tendencies, and…

  8. Mixed film lubrication with biobased oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most tribological processes (e.g. metalworking), occur in the mixed film regime where the boundary and hydrodynamic properties of the oils play critical roles. In the work described here, the boundary and hydrodynamic properties of various biobased oils were evaluated. The oils were then investiga...

  9. Chemical Reactions in Turbulent Mixing Flows

    DTIC Science & Technology

    1989-10-15

    example, Levenspiel (1962). Eq. 27 would be necessary. A first guess is that it might scale with 6/z as it does for subsonic flow. i.e. -(r, s; M., -0 ) -(r...France), 45-63. KELLER. J. 0. and DAILY. J. W. (1985] "The Effect of Highly Exothermic Chemical Reaction on a Two-Dimensional Mixing Layer", LEVENSPIEL

  10. MIXING QUANTIFICATION BY VISUAL IMAGING ANALYSIS

    EPA Science Inventory

    This paper reports on development of a method for quantifying two measures of mixing, the scale and intensity of segregation, through flow visualization, video recording, and software analysis. This non-intrusive method analyzes a planar cross section of a flowing system from an ...

  11. Thermal mixing in a stratified environment

    NASA Astrophysics Data System (ADS)

    Kraemer, Damian; Cotel, Aline

    1999-11-01

    Laboratory experiments of a thermal impinging on a stratified interface have been performed. The thermal was released from a cylindrical reservoir located at the bottom of a Lucite tank. The stratified interface was created by filling the tank with two different saline solutions. The density of the lower layer is greater than that of the upper layer and the thermal fluid, thereby creating a stable stratification. A pH indicator, phenolphthalein, is used to visualize and quantify the amount of mixing produced by the impingement of the thermal at the interface. The upper layer contains a mixture of water, salt and sodium hydroxide. The thermal fluid is composed of water, sulfuric acid and phenolphthalein. When the thermal entrains and mixes fluid from the upper layer, a chemical reaction takes place, and the resulting mixed fluid is now visible. The ratio of base to acid, called the equivalence ratio, was varied throughout the experiments, as well as the Richardson number. The Richardson number is the ratio of potential to kinetic energy, and is based on the thermal quantities at the interface. Results indicate that the amount of mixing produced is proportional to the Richardson number raised to the -3/2 power. Previous experiments (Zhang and Cotel 1999) revealed that the entrainment rate of a thermal in a stratified environment follows the same power law.

  12. Mission Specific Embedded Training Using Mixed Reality

    DTIC Science & Technology

    2011-10-01

    augmented reality (AR) or mixed reality as a training tool for military operations in urban terrain. Our group has developed the Battlefield Augmented ... Reality System (BARS)(trademark), which can be used for a variety of applications, such as situation awareness as well as embedded training. We have

  13. Quantum evaporation of flavor-mixed particles

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.

    2014-03-01

    Particles whose propagation (mass) and interaction (flavor) bases are misaligned are mixed, e.g., neutrinos, quarks, Kaons, etc. We show that interactions (elastic scattering) of individual mass-eigenstates can result in their inter-conversions. Most intriguing and counter-intuitive implication of this process is a new process, which we refer to as the ``quantum evaporation.'' Consider a mixed particle trapped in a gravitational potential. If such a particle scatters off something (e.g., from another mixed particle) elastically from time to time, this particle (or both particles, respectively) can eventually escape to infinity with no extra energy supplied. That is as if a ``flavor-mixed satellite'' hauled along a bumpy road puts itself in space without a rocket, fuel, etc. Of course, the process at hand is entirely quantum and has no counterpart in classical mechanics. It also has nothing to do with tunneling or other known processes. We discuss some implications to the dark matter physics, cosmology and cosmic neutrino background. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  14. Law of substitution for mixed arrays

    SciTech Connect

    Koudelka, A.J.

    1987-01-01

    The nuclear safety justification of a mixed array of dissimilar fissile units of metal units and dilute solution units, according to Clayton, has been a persistent and nagging problem. Dissimilar uranium metal or dissimilar uranium solution units in a mixed array can also create a modeling nightmare for the nuclear criticality safety engineer. Now, a calculational method known as the Law of Substitution has been developed to ensure that the k/sub eff/ of an array of uranium metal and uranium solution units will satisfy any k/sub eff/ limit set by the nuclear safety engineer. The nuclear criticality safety engineer can utilize the Law of Substitution to safely mix or substitute different uranium metal units, different uranium solution units, and more importantly, uranium metal and dilute UO/sub 2/ solution units in an array. The Law of Substitution is as follows: (1) calculate the k/sub eff/ of each unit type in its own infinite planar array. (2) Determine the edge-to-edge spacing of the infinite planar array of each type of unit to satisfy a desired k/sub eff/. (3) Select the largest edge-to-edge spacing from among the similar units in their infinite planar arrays and use that spacing for the finite or infinite planar array of mixed units.

  15. 40 CFR 227.29 - Initial mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reasonable scientific evidence to demonstrate that other methods of estimating a reasonable allowance for initial mixing are appropriate for a specific material, such methods may be used with the concurrence of... estimated by one of these methods, in order of preference: (1) When field data on the proposed dumping...

  16. 40 CFR 227.29 - Initial mixing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reasonable scientific evidence to demonstrate that other methods of estimating a reasonable allowance for initial mixing are appropriate for a specific material, such methods may be used with the concurrence of... estimated by one of these methods, in order of preference: (1) When field data on the proposed dumping...

  17. 40 CFR 227.29 - Initial mixing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reasonable scientific evidence to demonstrate that other methods of estimating a reasonable allowance for initial mixing are appropriate for a specific material, such methods may be used with the concurrence of... estimated by one of these methods, in order of preference: (1) When field data on the proposed dumping...

  18. Parametric Investigation of Localized Mixing in Reservoirs.

    DTIC Science & Technology

    1984-06-01

    epilimnion was assumed to initially com- prise the downward vertical jet used for mixing. Thus, within the epi- limnion , the jet was characterized as a...of flow of the jet. Using dimensional arguments, the penetration of the jet into the hypo- limnion (as measured from the thermocline) was related to

  19. Applied Mathematics Should Be Taught Mixed.

    ERIC Educational Resources Information Center

    Brown, Gary I.

    1994-01-01

    Discusses the differences between applied and pure mathematics and provides extensive history of mixed mathematics. Argues that applied mathematics should be taught allowing for speculative mathematics, which involves breaking down a given problem into simpler parts until one arrives at first principles. (ASK)

  20. CELLULOSE NITRATE-ACETATE MIXED ESTERS

    DTIC Science & Technology

    cellulose acetate . The degree of polymerization of the products, as estimated from viscosity data, shows the occurrence of chain degradation for both...mixed esters showed tensile strength at least comparable to that of films of cellulose nitrate or cellulose acetate . The impact sensitivity of the

  1. Extended Generalized Linear Latent and Mixed Model

    ERIC Educational Resources Information Center

    Segawa, Eisuke; Emery, Sherry; Curry, Susan J.

    2008-01-01

    The generalized linear latent and mixed modeling (GLLAMM framework) includes many models such as hierarchical and structural equation models. However, GLLAMM cannot currently accommodate some models because it does not allow some parameters to be random. GLLAMM is extended to overcome the limitation by adding a submodel that specifies a…

  2. Transient Mixing Driven by Buoyancy Flows

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Batur, C.; Zhong, H.

    2002-01-01

    Mixing driven by buoyancy-induced flows is of particular interest to microgravity processes, as the body force that governs the intensity of flow fields can be directly controlled. We consider a model experimental system to explore the dynamics of mixing which employs two miscible liquids inside a cavity separated initially by a divider. The two liquids are oriented vertically inside a rectangular cavity with constant width and height, and varying depths to span the range of a Hele-Shaw cell to a 3-D configuration. The two miscible liquids can be sufficiently diluted and died, for example water and deuterium oxide, such that a distinct interface exists across the divider. The transient mixing characteristic of the two fluids is addressed by following the Lagrangian history of the interface for various aspect ratios in the z-plane (depth variation) as well as a range of pulling velocities of the divider. The mixing characteristics of the two fluids are quantified from measurement of the length stretch of the interface and its flow field using respectively image processing techniques and Particle Imaging Velocimetry. Scaling analysis shows that the length stretch depends on four governing parameters, namely the Grashof number (Gr), Schmidt number (Sc), aspect ratio (Ar), and Reynolds number (Re). Variation of the Schmidt number is taken into account through thermophysical property variation. Thus our problem reduces to a codimension three bifurcation in parametric space for Gr, Ar, and Re.

  3. CFD Modeling of Mixed-Phase Icing

    NASA Astrophysics Data System (ADS)

    Zhang, Lifen; Liu, Zhenxia; Zhang, Fei

    2016-12-01

    Ice crystal ingestion at high altitude has been reported to be a threat for safe operation of aero-engine in recently. Ice crystals do not accrete on external surface because of cold environment. But when they enter the core flow of aero-engine, ice crystals melt partially into droplets due to higher temperature. Air-droplets-ice crystal is the mixed-phase, which will give rise to ice accretion on static and rotating components in compressor. Subsequently, compressor surge and engine shutdowns may occur. To provide a numerical tool to analyze this in detail, a numerical method was developed in this study. The mixed phase flow was solved using Eulerian-Lagrangian method. The dispersed phase was represented by one-way coupling. A thermodynamic model that considers mass and energy balance with ice crystals and droplets was presented as well. The icing code was implemented by the user-defined function of Fluent. The method of ice accretion under mixed-phase conditions was validated by comparing the results simulated on a cylinder with experimental data derived from literature. The predicted ice shape and mass agree with these data, thereby confirming the validity of the numerical method developed in this research for mixed-phase conditions.

  4. Mixed Methodology Research Design in Educational Technology

    ERIC Educational Resources Information Center

    Kumar, Muthu

    2007-01-01

    In recent times many educational researchers have moved away from the traditional purist approach of strictly adopting either a qualitative or quantitative approach to conducting research. Instead they have attempted an eclectic mix of both methods in their research inquiry, combining aspects of both the traditions at various stages of their…

  5. A Mixed Learning Approach in Mechatronics Education

    ERIC Educational Resources Information Center

    Yilmaz, O.; Tuncalp, K.

    2011-01-01

    This study aims to investigate the effect of a Web-based mixed learning approach model on mechatronics education. The model combines different perception methods such as reading, listening, and speaking and practice methods developed in accordance with the vocational background of students enrolled in the course Electromechanical Systems in…

  6. Mixed Methods Sampling: A Typology with Examples

    ERIC Educational Resources Information Center

    Teddlie, Charles; Yu, Fen

    2007-01-01

    This article presents a discussion of mixed methods (MM) sampling techniques. MM sampling involves combining well-established qualitative and quantitative techniques in creative ways to answer research questions posed by MM research designs. Several issues germane to MM sampling are presented including the differences between probability and…

  7. Vortex simulation of forced mixing layers

    NASA Technical Reports Server (NTRS)

    Inoue, O.; Leonard, A.

    1986-01-01

    Two-dimensional, spatially growing, turbulent mixing layers are simulated numerically by a vortex method and the results are compared with those determined experimentally. The effects of artificial forcing on flow development are also studied. Many of the flow features which have been observed experimentally are reproduced, and good quantitative agreements between experiments and computations are obtained.

  8. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    PubMed

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  9. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  10. Control of jet flow mixing and stabilization

    NASA Astrophysics Data System (ADS)

    Yuan, Chih-Chung

    This dissertation examines the effect of feedback controllers on mixing and stabilization of unstable two-dimensional jet flows. The mixing enhancement control law uses a pair of actuators at the jet nozzle exit acting on the shear layers near the corners by blowing and subtracting fluid in an anti-symmetric fashion with a zero net mass flux. The sensor measures the pressure difference across the nozzle diameter and is either located at downstream or at the nozzle exit with time delay. If the length/time scale is long enough and the feedback gain is sufficiently large, this control strategy will provide a constant vortex generation pattern that successfully improves mixing. The evolution of a passive scalar and mixing of particles with mass in jet flows are visualized and quantified. Probability Density Functions based on the particle/scalar distribution are constructed as measures of mixing. The stabilization control law employs filaments with distributed sensors and actuators in the jet flow. The sensors measure the local pressure difference across nozzle diameter and the actuators act as a reaction body force in the normal direction. The instability is damped with sufficiently large feedback gain. The Reynolds numbers of jet flows studied are 100 and 150 that are in the transient range. The results are obtained by means of Direct Numerical Simulation. The Navier-Stokes equations are spatially discretized by second order finite-difference method and advanced in time using a fractional step technique with a hybrid Runge-Kutta/Crank-Nicolson time discretization. This hybrid technique is developed to gain a larger time step while numerical stability is maintained. Stretched and staggered grids are used in both stream-wise and normal directions. The simulation results are validated by comparison with previous works and through self-similar analysis.

  11. Mixed waste focus area alternative technologies workshop

    SciTech Connect

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-05-24

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  12. Liquid–Liquid Mixing Studies in Annular Centrifugal Contactors Comparing Stationary Mixing Vane Options

    SciTech Connect

    Wardle, Kent E.

    2015-11-10

    Comparative studies of multiphase operation of annular centrifugal contactors showing the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported with selected measurements in a lab-scale 5 cm contactor and 12.5 cm engineering-scale unit. Fewer straight vanes give greater mixingzone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  13. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    SciTech Connect

    1994-12-31

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented.

  14. Performance of a mixed filter to identify relevant studies for mixed studies reviews

    PubMed Central

    El Sherif, Reem; Pluye, Pierre; Gore, Genevieve; Granikov, Vera; Hong, Quan Nha

    2016-01-01

    Objective Mixed studies reviews include empirical studies with diverse designs. Given that identifying relevant studies for such reviews is time consuming, a mixed filter was developed. Methods The filter was used for six journals from three disciplines. For each journal, database records were coded “empirical” (relevant) when they mentioned a research question or objective, data collection, analysis, and results. We measured precision (proportion of retrieved documents being relevant), sensitivity (proportion of relevant documents retrieved), and specificity (proportion of nonrelevant documents not retrieved). Results Records were coded with and without the filter, and descriptive statistics were performed, suggesting the mixed filter has high sensitivity. PMID:26807052

  15. Angular and spatial color mixing using mixing rods with the geometry of a chaotic-dispersive billiard system

    NASA Astrophysics Data System (ADS)

    Bonenberger, Theresa S.; Baumgart, Jörg; Neumann, Cornelius

    2016-04-01

    For mixing light from different colored LEDs, an optical color mixing system is required to avoid colored shadows and color fringes. Concerning the different color mixing systems, mixing rods are widespread as they provide very good spatial color mixing with high efficiency. The essential disadvantage of mixing rods, so far, is the lack of angular color mixing. The solution presented in this publication is the application of a chaotic-dispersive billiard's geometry on the cross section of the mixing rod. To show both the spatial and the angular mixing properties of a square and a chaotic-dispersive mixing rod, simulations generated by the raytracing software ASAP are provided. All results are validated with prototype measurements.

  16. Lithofacies and cyclicity of the Yates Formation, Permian basin: Implications for reservoir heterogeneity

    SciTech Connect

    Borer, J.M.; Harris, P.M. )

    1991-04-01

    Siliciclastics of the Yates Formation (Permian, upper Guadalupian) are significant hydrocarbon reservoirs in the US Permian basin. Subsurface and outcrop data show that the most porous lithofacies occur in a clastic-dominated middle shelf and that evaporitic inner shelf and carbonate outer shelf equivalents are mostly nonporous. Lithofacies relations and much of the heterogeneity in Yates reservoirs are related to the stacking of depositional sequences (i.e., siliciclastic-carbonate alternations and sandstone-argillaceous siltstone alternations) in response to three orders of orbitally forced, low-amplitude, eustatic variation. In general, siliciclastics dominated the Yates shelf during lowstand parts of asymmetric, 400-k.y. sea level fluctuations, whereas carbonates were deposited during sea level highstands. The character and position of sand depocenters on the Yates shelf during these lowstands were controlled by a longer duration third-order sea level variation. Shorter duration cycles controlled the heterogeneity within the 400-k.y. depositional sequences. The variation in cycle packaging, lithology, and reservoir quality between the Central Basin platform and Northwest shelf may be a response of eustatic variation on parts of the shelf with different slopes or subsidence profiles. The lithofacies described from the Yates Formation and the deposition model proposed to explain the stratigraphy may be valuable as analogs in other basins containing mixed siliciclastic-carbonate settings.

  17. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    DOE PAGES

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugalmore » contactors.« less

  18. Meeting Report: Hackathon-Workshop on Darwin Core and MIxS Standards Alignment (February 2012).

    PubMed

    Tuama, Eamonn Ó; Deck, John; Dröge, Gabriel; Döring, Markus; Field, Dawn; Kottmann, Renzo; Ma, Juncai; Mori, Hiroshi; Morrison, Norman; Sterk, Peter; Sugawara, Hideaki; Wieczorek, John; Wu, Linhuan; Yilmaz, Pelin

    2012-10-10

    The Global Biodiversity Information Facility and the Genomic Standards Consortium convened a joint workshop at the University of Oxford, 27-29 February 2012, with a small group of experts from Europe, USA, China and Japan, to continue the alignment of the Darwin Core with the MIxS and related genomics standards. Several reference mappings were produced as well as test expressions of MIxS in RDF. The use and management of controlled vocabulary terms was considered in relation to both GBIF and the GSC, and tools for working with terms were reviewed. Extensions for publishing genomic biodiversity data to the GBIF network via a Darwin Core Archive were prototyped and work begun on preparing translations of the Darwin Core to Japanese and Chinese. Five genomic repositories were identified for engagement to begin the process of testing the publishing of genomic data to the GBIF network commencing with the SILVA rRNA database.

  19. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report

    SciTech Connect

    Todreas, N.E.; Golay, M.W.; Wold, L.

    1981-02-01

    Four tasks are reported on: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

  20. Impurities, inclusions, and dislocations in multicrystalline silicon grown from well-mixed and poorly mixed melts

    NASA Astrophysics Data System (ADS)

    Funke, C.; Schmid, E.; Gärtner, G.; Reißenweber, S.; Fütterer, W.; Poklad, A.; Raabe, L.; Pätzold, O.; Stelter, M.

    2014-09-01

    This paper presents an experimental study on the interaction between impurities, inclusions, and dislocations in multi-crystalline silicon ingots grown from well-mixed and poorly mixed melts. The ingots were grown in a high-vacuum induction furnace by the vertical Bridgman method and the degree of impurity mixing within the melt was modified by changing the growth rate. Vertical and horizontal slices were prepared from the ingots and analyzed by Fourier transform IR spectroscopy, as well as reflected-light and IR transmission microscopy to measure the axial carbon concentration and the distribution of dislocations or inclusions, respectively. The correlation between individual inclusions and dislocations has been investigated by correlative reflected-light/IR transmission and scanning electron microscopy. The influence of the melt mixing on the segregation of carbon is demonstrated and discussed with respect to the consequences for the formation of inclusions and dislocation clusters in multi-crystalline silicon.

  1. Mixing in High Schmidt Number Turbulent Jets.

    NASA Astrophysics Data System (ADS)

    Miller, Paul Lewis

    This thesis is an experimental investigation of the passive scalar (species concentration) field in the far-field of round, axisymmetric, high Schmidt number (liquid phase), turbulent jets issuing into a quiescent reservoir, by means of a quantitative laser-induced fluorescence technique. Single -point concentration measurements are made on the jet centerline, at axial locations from 100 to 305 nozzle diameters downstream, and Reynolds numbers of 3,000 to 102,000, yielding data with a resolved temporal dynamic range up to 2.5 times 10^5, and capturing as many as 504 large-scale structure passages. Long-time statistics of the jet concentration are found to converge slowly. Between 100 and 300 large-scale structure passages are required to reduce the uncertainty in the mean to 1%, or so. The behavior of the jet varies with Reynolds number. The centerline concentration pdf's become taller and narrower with increasing Re, and the normalized concentration variances correspondingly decrease with Re. The concentration power spectra also evolve with Re. The behavior of the spectral slopes is examined. No constant -1 (Batchelor) spectral slope range is present. Rather, in the viscous region, the power spectra exhibit log-normal behavior, over a range of scales exceeding a factor of 40, in some cases. The frequency of the beginning of this log-normal range scales like Re^{3/4} (Kolmogorov scaling). Mixing in the far-field is found to be susceptible to initial conditions. Disturbances in the jet plenum fluid and near the nozzle exit strongly influence the scalar variance, with larger disturbances causing larger variances, i.e., less homogeneous mixing. The plenum/nozzle geometry also influences the variance. These effects of initial conditions persist for hundreds of diameters from the nozzle exit, over hundreds of large scales. Mixing in these jets differs from gas-phase, order unity Sc, jet mixing. At low to moderate Re, the higher Sc jet is less well mixed. The difference

  2. Compact mixed-reactant fuel cells

    NASA Astrophysics Data System (ADS)

    Priestnall, Michael A.; Kotzeva, Vega P.; Fish, Deborah J.; Nilsson, Eva M.

    The compact mixed-reactant (CMR) fuel cell is an important new "platform" approach to the design and operation of all types of fuel cell stacks. Amongst several other advantages, CMR has the potential to reduce polymer electrolyte membrane (PEM) stack component costs by around a third and to raise volumetric power densities by an order of magnitude. Mixed-reactant fuel cells, in which the fuel and oxidant within a cell are allowed to mix, rely upon the selectivity of anode and cathode electrocatalysts to separate the electrochemical oxidation of fuel and reduction of oxidant. A comprehensive review of the 50-year history of mixed-reactant literature has demonstrated that such systems can perform as well as and, in some circumstances, much better than conventional fuel cells. The significant innovation that Generics has introduced to this field is to combine the concept of mixed-reactant fuel cells with that of a fully porous membrane electrode assembly (MEA) structure. Passing a fuel-oxidant mixture through a stack of porous cells allows the conventional bipolar flow-field plates required in many fuel cell designs to be eliminated. In a conventional PEM stack, for example, the bipolar carbon flow-field plates may block up to half of the active cell area and account for up to 90% of the volume of the stack and of the order of one-third of the materials costs. In addition to all the advantages of mixed-reactant systems, the "flow-through" mode, embodied in Generics' CMR approach, significantly enhances mass-transport of reactants to the electrodes and can reduce reactant pressure drops across the stack. Redesigning fuel cells to operate in a CMR mode with selective electrodes offers the attractive prospect of much reduced stack costs and significantly higher stack power densities for all types of fuel cell. Initial modeling and proof of principle experiments using an alkaline system have confirmed the validity of the CMR approach and the potential for substantial

  3. Mixing and diffusion in intermittent overturning turbulence

    NASA Astrophysics Data System (ADS)

    Redondo, Jose M.; Mahjoub, Otman B.; Gonzalez-Nieto, Pilar L.; Lawry, Andrew

    2014-05-01

    The improvements in experimental methods and high resolution image analysis are nowadays able to detect subtle changes in the structure of the turbulence over a wide range of temporal and spatial scales [1], we compare the scaling shown by different mixing fronts driven by buoyancy that form a Rayleigh-Taylor mixing front. We use PIV and density front tracking in several experimental configurations akin to geophysical overturning [2-7]. We parametrize the role of unstable stratification by means of the Atwood number and compare both the scaling and the multifractal and the maximum local fractal structure functions of the different markers used to visualize the front. Both reactive and passive scalar tracers are used to investigate the mixing structure and the intermittency of the flow. Different initial conditions are compared and the mixing efficiency of the overal turbulent process evaluated [6-7]. An interesting approach, relating the Multi-Fractal dimension spectra, the intermittency and the spectral exponent is to find relationships that may be used to parameterise the sub-grid turbulence in terms of generalized diffusivities [4 ] that take into account the topology and the self-similarity of the Mixing RT and RM flows. As an example, a relationship between the diffusivity, the exponent β, the intermittency μ, and D(i), may be found for the volume fraction or the concentration, at the same time other locally measured parameters such as the enstrophy or the gradient alignment as well as their multi-fractal structures may turn out to be physically relevant indicators of the local turbulence and the mixing. Several methods of deriving local eddy diffusivity and local entrainment should give more realistic estimates of the spatial/temporal non-homogeneities (and intermittencies in the Kolmogorov 62 sense obtained as spatial correlations of the turbulent dissipation, or from structure functions) and these values may be used to parameterise turbulence at a variety

  4. Mixed and Complex Mixed Migration during Armed Conflict: Multidimensional Empirical Evidence from Nepal

    PubMed Central

    Williams, Nathalie E.

    2015-01-01

    Historically, legal, policy, and academic communities largely ascribed to a dichotomy between forced and voluntary migration, creating a black and white vision that was convenient for legal and policy purposes. More recently, discussions have begun addressing the possibility of mixed migration, acknowledging that there is likely a wide continuum between forced and voluntary, and most migrants likely move with some amount of compulsion and some volition, even during armed conflict. While the mixed migration hypothesis is well-received, empirical evidence is disparate and somewhat blunt at this point. In this article, I contribute a direct theoretical and causal pathway discussion of mixed migration. I also propose the complex mixed migration hypothesis, which argues that not only do non-conflict related factors influence migration during conflict, but they do so differently than during periods of relative peace. I empirically test both hypotheses in the context of the recent armed conflict in Nepal. Using detailed survey data and event history models, results provide strong evidence for both mixed migration and complex mixed migration during conflict hypotheses. These hypotheses and evidence suggest that armed conflict might have substantial impacts on long-term population growth and change, with significant relevance in both academic and policy spheres. PMID:26366007

  5. Mixed and Complex Mixed Migration during Armed Conflict: Multidimensional Empirical Evidence from Nepal.

    PubMed

    Williams, Nathalie E

    Historically, legal, policy, and academic communities largely ascribed to a dichotomy between forced and voluntary migration, creating a black and white vision that was convenient for legal and policy purposes. More recently, discussions have begun addressing the possibility of mixed migration, acknowledging that there is likely a wide continuum between forced and voluntary, and most migrants likely move with some amount of compulsion and some volition, even during armed conflict. While the mixed migration hypothesis is well-received, empirical evidence is disparate and somewhat blunt at this point. In this article, I contribute a direct theoretical and causal pathway discussion of mixed migration. I also propose the complex mixed migration hypothesis, which argues that not only do non-conflict related factors influence migration during conflict, but they do so differently than during periods of relative peace. I empirically test both hypotheses in the context of the recent armed conflict in Nepal. Using detailed survey data and event history models, results provide strong evidence for both mixed migration and complex mixed migration during conflict hypotheses. These hypotheses and evidence suggest that armed conflict might have substantial impacts on long-term population growth and change, with significant relevance in both academic and policy spheres.

  6. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-09

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.

  7. Mixing in a liquid metal electrode

    SciTech Connect

    Kelley, DH; Sadoway, DR

    2014-05-01

    Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized as a promising and economically viable technology for large-scale energy storage on worldwide electrical grids. But because these batteries are entirely liquid, fluid flow and instabilities may affect battery robustness and performance. Here we present estimates of flow magnitude and ultrasound measurements of the flow in a realistic liquid metal electrode. We find that flow does substantially affect mass transport by altering the electrode mixing time. Above a critical electrical current density, the convective flow organizes and gains speed, which promotes transport and would yield improved battery efficiency. (C) 2014 AIP Publishing LLC.

  8. Mixed formulation for frictionless contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational precedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large rotation theory of the structure with the effects of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The element characteristic array are obtained by using a modified form of the two-field Hellinger-Reissner mixed variational principle. The internal forces and the Lagrange multipliers are allowed to be discontinuous at interelement boundaries. The Newton-Raphson iterative scheme is used for the solution of the nonlinear algebraic equations, and the determination of the contact area and the contact pressures.

  9. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  10. Mixing Dynamics Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Microstructural and compositional homogeneity in metals and alloys can only be achieved if the initial melt is homogeneous prior to the onset of solidification processing. Naturally induced convection may initially facilitate this requirement but upon the onset of solidification significant compositional variations generally arise leading to undesired segregation. Application of alternating magnetic fields to promote a uniform bulk liquid concentration during solidification processing has been suggested. To investigate such possibilities an initial study of using traveling magnetic fields (TMF) to promote melt homogenization is reported in this work. Theoretically, the effect of TMF-induced convection on mixing phenomena is studied in the laminar regime of flow. Experimentally, with and without applied fields, both 1) mixing dynamics by optically monitoring the spreading of an initially localized dye in transparent fluids and, 2) compositional variations in metal alloys have been investigated.

  11. A mixed choroid plexus papilloma and ependymoma.

    PubMed

    Lee, Yujin; Kim, Seong Ik; Kim, Seung-Ki; Kim, In One; Park, Sung-Hye

    2016-04-01

    We report a novel case of a mixed choroid plexus papilloma (CPP) and ependymoma with cartilaginous differentiation. This kind of mixed tumor has not been previously reported in the English literature. The patient was a 5-year-old girl, who presented with a 1-week history of fever and numbness of the right lower limb. Magnetic resonance imaging of the brain with gadolinium revealed a heterogeneously enhancing mass in the occipital horn of the left lateral ventricle. Histologically, the tumor showed an intermixed CPP area and a low-grade papillary ependymoma-like area, which was studded with cartilage islands and psammoma bodies. In many foci, direct transition of CPP and ependymoma was observed, but there were no high-grade features. We report this novel case, describe the unique microscopic and immunohistochemical features, and speculate on the pathogenesis.

  12. DOE mixed waste treatment capacity analysis

    SciTech Connect

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  13. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  14. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  15. Supercritical fluid mixing in Diesel Engine Applications

    NASA Astrophysics Data System (ADS)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  16. Diphotons from electroweak triplet-singlet mixing

    DOE PAGES

    Howe, Kiel; Knapen, Simon; Robinson, Dean J.

    2016-08-23

    The neutral component of a real pseudoscalar electroweak (EW) triplet can produce a diphoton excess at 750 GeV, if it is somewhat mixed with an EW singlet pseudoscalar. This triplet-singlet mixing allows for greater freedom in the diboson branching ratios than the singlet-only case, but it is still possible to probe the parameter space extensively with 300 fb-1. The charged component of the triplet is pair produced at the LHC, which results in a striking signal in the form of a pair of Wγ resonances with an irreducible rate of 0.27 fb. Other signatures include multiboson final states from cascade decays ofmore » the triplet-singlet neutral states. In conclusion, a large class of composite models feature both EW singlet and triplet pseudo-Nambu-Goldstone bosons in their spectrum, with the diboson couplings generated by axial anomalies.« less

  17. Diphotons from electroweak triplet-singlet mixing

    SciTech Connect

    Howe, Kiel; Knapen, Simon; Robinson, Dean J.

    2016-08-23

    The neutral component of a real pseudoscalar electroweak (EW) triplet can produce a diphoton excess at 750 GeV, if it is somewhat mixed with an EW singlet pseudoscalar. This triplet-singlet mixing allows for greater freedom in the diboson branching ratios than the singlet-only case, but it is still possible to probe the parameter space extensively with 300 fb-1. The charged component of the triplet is pair produced at the LHC, which results in a striking signal in the form of a pair of Wγ resonances with an irreducible rate of 0.27 fb. Other signatures include multiboson final states from cascade decays of the triplet-singlet neutral states. In conclusion, a large class of composite models feature both EW singlet and triplet pseudo-Nambu-Goldstone bosons in their spectrum, with the diboson couplings generated by axial anomalies.

  18. Numerical simulation of excited jet mixing layers

    NASA Astrophysics Data System (ADS)

    Scott, J. N.; Hankey, W. L.

    1987-01-01

    A numerical simulation of unsteady flow in jet mixing layers, both with and without external excitation, has been performed by solving the time-dependent compressible Navier-Stokes equations. Computations were performed on a CRAY X-MP computer using MacCormick's explicit finite difference algorithm. Different excitation methods were investigated and were shown to be very effective in controlling the well organized periodic production, shedding and pairing of large scale vortex structures. It is found that pressure excitation was generally more effective than temperature excitation, and that grid refinement results in substantial improvement in the resolution of unsteady features. The location and orientation, in addition to the frequency, of the excitation source are shown to have a significant influence on the production and interaction of large scale vortex structures in the jet mixing layer.

  19. Rayleigh-Taylor Mix experiment on Pegasus

    SciTech Connect

    Sheppard, M.G.; Atchison, W.L.; Anderson, W.E.

    1997-09-01

    The Rayleigh-Taylor Mix project will attempt to diagnose and understand the growth of a mixing layer at the interface between an imploding metal liner and a polystyrene foam core in a series of pulsed power experiments on the Pegasus capacitor bank. Understanding the effects of material strength will be an important part of the study. During the initial phase of the implosion, the linear/foam interface is Rayleigh-Taylor (RT) stable; however, as the foam is compressed, it decelerates the liner, causing it to bound and to go RT unstable. This paper reports 1D and 2D MHD simulations of the first experiment in the series and preliminary results.

  20. Impact of turbulent mixing on isoprene chemistry

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Barth, M. C.; Trainer, M.

    2016-07-01

    Isoprene, a volatile organic compound that is mainly emitted from trees, rapidly reacts with hydroxyl radical (OH) during daytime and subsequently forms ozone and aerosols in the troposphere. The isoprene-OH reaction can be affected by the interplay between chemistry and mixing because the two processes occur at a similar time scale. We investigate the impact of turbulent mixing on isoprene-OH reactivity with large eddy simulations (LES) coupled with comprehensive chemistry. Our results show that the covariance of isoprene and OH causes ~20% decrease to ~10% increase of the horizontal average reaction rate, depending on nitrogen oxides (NOx = NO + NO2) abundances, compared to the rate that neglects the covariance. This wide range of effects on reaction rates is caused by the primary production and loss reactions of OH in each NOx regime. Our research promotes the use of LES for better understanding the role of turbulence in isoprene-OH reaction and parameterizations in large-scale models.

  1. Mixed connective tissue disorder and Castleman's disease.

    PubMed

    Chrispal, Anugrah; Vasuki, Zoya; Thomas, Elsa Mary; Boorugu, Hari Kishan

    2010-08-01

    We present a 16-year-old girl who presented with polyarthritis in association with Raynaud's phenomenon, malar rash, oral ulcers, photosensitivity and alopecia of 6 months duration. On evaluation, it emerged that she had a mixed connective tissue disorder with a mesangio-proliferative glomerulonephritis. Her Chest radiograph revealed a well defined left mid and lower zone opacity with evidence of a hilar mass on CT Thorax. Histopathological examination following CT guided biopsy of the mass revealed a hyaline vascular type of Castleman's disease. Mixed Connective Tissue Disorder with Castleman's Disease is a rare association; the patient presenting with varied and interesting manifestations. It is important to understand this association in view of management. The exact etio-pathogenesis of the autoimmune manifestations in patients with Castleman's disease is not clear. Treatment with immunosuppression can suppress both immune manifestations and result in tumour regression as well.

  2. Electrochemical treatment of mixed and hazardous waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-12-31

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study.

  3. Diffraction manipulation by four-wave mixing.

    PubMed

    Katzir, Itay; Ron, Amiram; Firstenberg, Ofer

    2015-03-09

    We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Λ-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 μm can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.

  4. Mixed Norm Regularized Discrimination for Image Steganalysis

    NASA Astrophysics Data System (ADS)

    Chen, Guoming; Chen, Qiang; Zhang, Dong

    2015-11-01

    The purpose of image steganalysis is to detect the presence of hidden messages in cover images. Steganalysis can be considered as a pattern recognition process to decide which class a test image belongs to: the innocent photographic image or the stego-image. This paper presents a definition of mixed L_{p,q} matrix norm as an extension of L_{2,1} matrix norm. We incorporate discriminative mixed L_{p,q} matrix norm analysis to select the features which best preserve the data distribution, e.g., manifold structure, of the whole feature sets. Experiments on different data sets verify the effectiveness of the proposed approach and the selected features are more discriminate.

  5. BDA special care case mix model.

    PubMed

    Bateman, P; Arnold, C; Brown, R; Foster, L V; Greening, S; Monaghan, N; Zoitopoulos, L

    2010-04-10

    Routine dental care provided in special care dentistry is complicated by patient specific factors which increase the time taken and costs of treatment. The BDA have developed and conducted a field trial of a case mix tool to measure this complexity. For each episode of care the case mix tool assesses the following on a four point scale: 'ability to communicate', 'ability to cooperate', 'medical status', 'oral risk factors', 'access to oral care' and 'legal and ethical barriers to care'. The tool is reported to be easy to use and captures sufficient detail to discriminate between types of service and special care dentistry provided. It offers potential as a simple to use and clinically relevant source of performance management and commissioning data. This paper describes the model, demonstrates how it is currently being used, and considers future developments in its use.

  6. MIX and Instability Growth from Oblique Shock

    SciTech Connect

    Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C; Forbes, J W

    2011-07-22

    We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.

  7. A cutaneous mixed tumor in a dog

    PubMed Central

    WATANABE, Ken-ichi; CHAMBERS, James K.; UCHIDA, Kazuyuki; NIBE, Kazumi; USHIO, Nanako; HORIUCHI, Noriyuki; KOBAYASHI, Yoshiyasu; NAKAYAMA, Hiroyuki

    2017-01-01

    The atypical cutaneous tumor of a 9-year-old mixed breed female dog was examined. The tumor was well-demarcated and histologically composed of a trichoblastic area, tricholemmal area and apocrine glandular area. Neoplastic cells in trichoblastic area and tricholemmal area had PAS-positive granules in the cytoplasm and were positive for pan-cytokeratin, cytokeratin 5/6, 14 and 19 and p63. Neoplastic cells in trichoblastic area were also positive for cytokeratin 15 and CD34. Neoplastic cells in apocrine glandular area were positive for pan-cytokeratin and cytokeratin 7, 18 and 19. Myoepithelial cell proliferation with osteocartilaginous metaplasia was observed in this area. Since neoplastic cells showed multiphenotypic differentiation for hair follicles and apocrine glands, the present case was diagnosed as a cutaneous mixed tumor. PMID:28132963

  8. Quantum darwinism in a mixed environment.

    PubMed

    Zwolak, Michael; Quan, H T; Zurek, Wojciech H

    2009-09-11

    Quantum Darwinism recognizes that we-the observers-acquire our information about the "systems of interest" indirectly from their imprints on the environment. Here, we show that information about a system can be acquired from a mixed-state, or hazy, environment, but the storage capacity of an environment fragment is suppressed by its initial entropy. In the case of good decoherence, the mutual information between the system and the fragment is given solely by the fragment's entropy increase. For fairly mixed environments, this means a reduction by a factor 1-h, where h is the haziness of the environment, i.e., the initial entropy of an environment qubit. Thus, even such hazy environments eventually reveal the state of the system, although now the intercepted environment fragment must be larger by approximately (1-h)(-1) to gain the same information about the system.

  9. Quantum Darwinism in a Mixed Environment

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.

    2009-09-01

    Quantum Darwinism recognizes that we—the observers—acquire our information about the “systems of interest” indirectly from their imprints on the environment. Here, we show that information about a system can be acquired from a mixed-state, or hazy, environment, but the storage capacity of an environment fragment is suppressed by its initial entropy. In the case of good decoherence, the mutual information between the system and the fragment is given solely by the fragment’s entropy increase. For fairly mixed environments, this means a reduction by a factor 1-h, where h is the haziness of the environment, i.e., the initial entropy of an environment qubit. Thus, even such hazy environments eventually reveal the state of the system, although now the intercepted environment fragment must be larger by ˜(1-h)-1 to gain the same information about the system.

  10. Cumulus cloud venting of mixed layer ozone

    NASA Technical Reports Server (NTRS)

    Ching, J. K. S.; Shipley, S. T.; Browell, E. V.; Brewer, D. A.

    1985-01-01

    Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon.

  11. Simplified models of mixed dark matter

    SciTech Connect

    Cheung, Clifford; Sanford, David E-mail: dsanford@caltech.edu

    2014-02-01

    We explore simplified models of mixed dark matter (DM), defined here to be a stable relic composed of a singlet and an electroweak charged state. Our setup describes a broad spectrum of thermal DM candidates that can naturally accommodate the observed DM abundance but are subject to substantial constraints from current and upcoming direct detection experiments. We identify ''blind spots'' at which the DM-Higgs coupling is identically zero, thus nullifying direct detection constraints on spin independent scattering. Furthermore, we characterize the fine-tuning in mixing angles, i.e. well-tempering, required for thermal freeze-out to accommodate the observed abundance. Present and projected limits from LUX and XENON1T force many thermal relic models into blind spot tuning, well-tempering, or both. This simplified model framework generalizes bino-Higgsino DM in the MSSM, singlino-Higgsino DM in the NMSSM, and scalar DM candidates that appear in models of extended Higgs sectors.

  12. Plane mixing layer vortical structure kinematics

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1993-01-01

    The objective of the current project was to experimentally investigate the structure and dynamics of the streamwise vorticity in a plane mixing layer. The first part of this research program was intended to clarify whether the observed decrease in mean streamwise vorticity in the far-field of mixing layers is due primarily to the 'smearing' caused by vortex meander or to diffusion. Two-point velocity correlation measurements have been used to show that there is little spanwise meander of the large-scale streamwise vortical structure. The correlation measurements also indicate a large degree of transverse meander of the streamwise vorticity which is not surprising since the streamwise vorticity exists in the inclined braid region between the spanwise vortex core regions. The streamwise convection of the braid region thereby introduces an apparent transverse meander into measurements using stationary probes. These results corroborated with estimated secondary velocity profiles in which the streamwise vorticity produces a signature which was tracked in time.

  13. Neutrino mixing in accelerated proton decays

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Dharam Vir; Labun, Lance; Torrieri, Giorgio

    2016-07-01

    We discuss the inverse β-decay of accelerated protons in the context of neutrino flavor superpositions (mixings) in mass eigenstates. The process p→ n ℓ+ ν_{ℓ} is kinematically allowed because the accelerating field provides the rest energy difference between initial and final states. The rate of p→ n conversions can be evaluated in either the laboratory frame (where the proton is accelerating) or the co-moving frame (where the proton is at rest and interacts with an effective thermal bath of ℓ and ν_{ℓ} due to the Unruh effect). By explicit calculation, we show that the rates in the two frames disagree when taking into account neutrino mixings, because the weak interaction couples to charge eigenstates whereas gravity couples to neutrino mass eigenstates (D.V. Ahluwalia et al., arXiv:1505.04082 [hep-ph]). The contradiction could be resolved experimentally, potentially yielding new information on the origins of neutrino masses.

  14. Anelastic Rayleigh-Taylor mixing layers

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Gauthier, S.

    2016-07-01

    Anelastic Rayleigh-Taylor mixing layers for miscible fluids are investigated with a recently built model (Schneider and Gauthier 2015 J. Eng. Math. 92 55-71). Four Chebyshev-Fourier-Fourier direct numerical simulations are analyzed. They use different values for the compressibility parameters: Atwood number (the dimensionless difference of the heavy and light fluid densities) and stratification (accounts for the vertical variation of density due to gravity). For intermediate Atwood numbers and finite stratification, compressibility effects quickly occurs. As a result only nonlinear behaviours are reached. The influence of the compressibility parameters on the growth speed of the RTI is discussed. The 0.1—Atwood number/0.4—stratification configuration reaches a turbulent regime. This turbulent mixing layer is analyzed with statistical tools such as moments, PDFs, anisotropy indicators and spectra.

  15. Supernova brightening from chameleon-photon mixing

    SciTech Connect

    Burrage, C.

    2008-02-15

    Measurements of standard candles and measurements of standard rulers give an inconsistent picture of the history of the universe. This discrepancy can be explained if photon number is not conserved as computations of the luminosity distance must be modified. I show that photon number is not conserved when photons mix with chameleons in the presence of a magnetic field. The strong magnetic fields in a supernova mean that the probability of a photon converting into a chameleon in the interior of the supernova is high, this results in a large flux of chameleons at the surface of the supernova. Chameleons and photons also mix as a result of the intergalactic magnetic field. These two effects combined cause the image of the supernova to be brightened resulting in a model which fits both observations of standard candles and observations of standard rulers.

  16. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices.

  17. Golden ratio prediction for solar neutrino mixing

    SciTech Connect

    Kajiyama, Yuji; Raidal, Martti; Strumia, Alessandro

    2007-12-01

    We present a simple texture that predicts the cotangent of the solar neutrino mixing angle to be equal to the golden ratio. This prediction is 1.4{sigma} below the present best-fit value and final SNO and KamLAND data could discriminate it from tri-bimaximal mixing. The neutrino mass matrix is invariant under a Z{sub 2} x Z{sub 2}{sup '} symmetry: that geometrically is a reflection along the diagonal of the golden rectangle. Assuming an analogous structure in the quark sector suggests a golden prediction for the Cabibbo angle, {theta}{sub C}={pi}/4-{theta}{sub 12}{approx_equal}13.3 deg., up to the uncertainties comparable to V{sub ub}.

  18. Mixed sediment beach processes: Kachemak Bay, Alaska

    USGS Publications Warehouse

    Ruggiero, P.; Adams, P.N.; Warrick, J.A.

    2007-01-01

    Mixed sediment beaches are morphologically distinct from and more complex than either sand or gravel only beaches. Three digital imaging techniques are employed to quantify surficial grain size and bedload sediment transport rates along the mixed sediment beaches of Kachemak Bay, Alaska. Applying digital imaging procedures originally developed for quickly and efficiently quantifying grain sizes of sand to coarse sediment classes gives promising results. Hundreds of grain size estimates lead to a quantitative characterization of the region's sediment at a significant reduction in cost and time as compared to traditional techniques. Both the sand and coarse fractions on this megatidal beach mobilize into self-organized bedforms that migrate alongshore with a seasonally reflecting the temporal pattern of the alongshore component of wave power. In contrast, the gravel bedforms also migrate in the cross-shore without significant seasonally suggesting that swash asymmetry is sufficient to mobilize the gravel even during low energy summer conditions. ?? 2007 ASCE.

  19. Flavor mixing in gauge-Higgs unification

    SciTech Connect

    Adachi, Y.; Kurahashi, N.; Lim, C. S.; Maru, N.; Tanabe, K.

    2012-07-27

    Gauge-Higgs unification is the fascinating scenario solving the hierarchy problem without supersymmetry. In this scenario, the Standard Model (SM) Higgs doublet is identified with extra component of the gauge field in higher dimensions and its mass becomes finite and stable under quantum corrections due to the higher dimensional gauge symmetry. On the other hand, Yukawa coupling is provided by the gauge coupling, which seems to mean that the flavor mixing and CP violation do not arise at it stands. In this talk, we discuss that the flavor mixing is originated from simultaneously non-diagonalizable bulk and brane mass matrices. Then, this mechanism is applied to various flavor changing neutral current (FCNC) processes via Kaluza-Klein (KK) gauge boson exchange at tree level and constraints for compactification scale are obtained.

  20. Presence within a mixed reality environment.

    PubMed

    van Schaik, Paul; Turnbull, Triece; van Wersch, Anna; Drummond, Sarah

    2004-10-01

    Mixed reality environments represent a new approach to creating technology-mediated experiences. However, there is a lack of empirical research investigating users' actual experience. The aim of the current exploratory, non-experimental study was to establish levels of and identify factors associated with presence, within the framework of Schubert et al.'s model of presence. Using questionnaire and interview methods, the experience of the final performance of the Desert Rain mixed reality environment was investigated. Levels of general and spatial presence were relatively high, but levels of involvement and realness were not. Overall, intrinsic motivation, confidence and intention to re-visit Desert Rain were high. However, age was negatively associated with both spatial presence and confidence to play. Furthermore, various problems in navigating the environment were identified. Results are discussed in terms of Schubert's model and other theoretical perspectives. Implications for system design are presented.

  1. Three-neutrino mixing: status and prospects

    NASA Astrophysics Data System (ADS)

    Marrone, A.; Capozzi, F.; Lisi, E.; Montanino, D.; Palazzo, A.

    2016-05-01

    We discuss the present knowledge of the neutrino oscillation parameters. In a three-neutrino scenario, neutrino oscillations depend on six parameters, two squared mass differences (Δm2, δm2), three mixing angles (θ 12, θ13 , θ 23) and one phase δ. While five out of these six parameters have been measured, the CP-violating phase δ remains unknown. Moreover, the octant of the mixing angle θ23 and the neutrino mass hierarchy are still undetermined. We update our previous analysis, by adding to the global fit the recent results of the antineutrino running of T2K, the first results of the NOvA experiment, the latest SuperKamiokande and IceCube atmospheric neutrino data.

  2. Supercritical Mixing in a Shear Coaxial Injector

    DTIC Science & Technology

    2016-07-27

    bottom, a circular hole acts as an outlet to the injected fluid, discharging into the outer chamber. The shear co-axial injector consists of inner...as to enable such an investigation. A line contour of 80% inner fluid is shown in black , indicating the intact core flow. The drop in the inner fluid...core( black line). D. Acoustic Excitation Two cases are chosen to examine the impact of acoustic excitation on the mixing of the coaxial jets. The

  3. New directions for Rayleigh-Taylor mixing.

    PubMed

    Glimm, James; Sharp, David H; Kaman, Tulin; Lim, Hyunkyung

    2013-11-28

    We study the Rayleigh-Taylor (RT) mixing layer, presenting simulations in agreement with experimental data. This problem is an idealized subproblem of important scientific and engineering problems, such as gravitationally induced mixing in oceanography and performance assessment for inertial confinement fusion. Engineering codes commonly achieve correct simulations through the calibration of adjustable parameters. In this sense, they are interpolative and not predictive. As computational science moves from the interpolative to the predictive and reduces the reliance on experiment, the quality of decision making improves. The diagnosis of errors in a multi-parameter, multi-physics setting is daunting, so we address this issue in the proposed idealized setting. The validation tests presented are thus a test for engineering codes, when used for complex problems containing RT features. The RT growth rate, characterized by a dimensionless but non-universal parameter α, describes the outer edge of the mixing zone. Increasingly accurate front tracking/large eddy simulations reveal the non-universality of the growth rate and agreement with experimental data. Increased mesh resolution allows reduction in the role of key subgrid models. We study the effect of long-wavelength perturbations on the mixing growth rate. A self-similar power law for the initial perturbation amplitudes is here inferred from experimental data. We show a maximum ±5% effect on the growth rate. Large (factors of 2) effects, as predicted in some models and many simulations, are inconsistent with the experimental data of Youngs and co-authors. The inconsistency of the model lies in the treatment of the dynamics of bubbles, which are the shortest-wavelength modes for this problem. An alternative theory for this shortest wavelength, based on the bubble merger model, was previously shown to be consistent with experimental data.

  4. Convective mixing in formations with horizontal barriers

    NASA Astrophysics Data System (ADS)

    Elenius, Maria T.; Gasda, Sarah E.

    2013-12-01

    It has been shown that convective mixing in porous media flow is important for applications such as saltwater intrusion and geological storage of carbon dioxide. In the latter case, dissolution from the injected phase to the resident brine is assisted by convective mixing, which leads to enhanced storage security through reduced buoyancy. Here, we focus on the effect of horizontal barriers on the efficiency of convective mixing. Previous investigations of the effect of heterogeneity on mixing efficiency have focused on random permeability fields or barriers of small extent compared to the intrinsic finger wavelength. The effect of horizontal barriers of larger extent, such as mudstone inclusions or thin shale deposits, has not been given sufficient attention. We perform detailed numerical investigations to represent the continuous solution of this problem in semi-infinite domains with barriers arranged in a periodic manner. The results show that mass flux into the domain, which is a measure of the efficiency of redistribution of the solute, is inversely proportional to the barrier length and proportional to the horizontal and vertical aperture between the barriers, for the cases studied. The flow structure is complex, and it depends not only on the total area of barriers but also largely on the distribution of barriers. Therefore, neither simple analytical models nor simple upscaling methods that lack information about the flow paths, can be used to predict the behavior. However, we compute the effective vertical permeability by flow-based upscaling and show that it can be used to directly obtain a first-order approximation to the mass flux into the domain.

  5. RCRA closure of mixed waste impoundments

    SciTech Connect

    Blaha, F.J.; Greengard, T.C.; Arndt, M.B.

    1989-11-01

    A case study of a RCRA closure action at the Rocky Flats Plant is presented. Closure of the solar evaporation ponds involves removal and immobilization of a mixed hazardous/radioactive sludge, treatment of impounded water, groundwater monitoring, plume delineation, and collection and treatment of contaminated groundwater. The site closure is described within the context of regulatory negotiations, project schedules, risk assessment, clean versus dirty closure, cleanup levels, and approval of closure plans and reports. Lessons learned at Rocky Flats are summarized.

  6. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  7. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  8. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  9. LDV Measurement of Confined Parallel Jet Mixing

    SciTech Connect

    R.F. Kunz; S.W. D'Amico; P.F. Vassallo; M.A. Zaccaria

    2001-01-31

    Laser Doppler Velocimetry (LDV) measurements were taken in a confinement, bounded by two parallel walls, into which issues a row of parallel jets. Two-component measurements were taken of two mean velocity components and three Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicate that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects.

  10. Mixing and Transport in the Surfzone

    DTIC Science & Technology

    2008-01-01

    also sample chlrophyl A ( Omand et al, submitted). The dye sampling jetski and fixed fluorometers were deployed at Huntington Beach, as part of the HB06...field experiment. SIO graduate PhD student David Clark, co- advised with Dr Feddersen, is using these observations to characterize surfzone mixing...the similarity theory of turbulence to atmospheric diffusion. Quart. J. Roy. Meteor. Soc., 76, 133–146, 1950 Clark, D.B., F. Feddersen, M. Omand

  11. Suppression of Chemotactic Explosion by Mixing

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexander; Xu, Xiaoqian

    2016-11-01

    Chemotaxis plays a crucial role in a variety of processes in biology and ecology. In many instances, processes involving chemical attraction take place in fluids. One of the most studied PDE models of chemotaxis is given by the Keller-Segel equation, which describes a population density of bacteria or mold which is attracted chemically to substance they secrete. Solutions of the Keller-Segel equation can exhibit dramatic collapsing behavior, where density concentrates positive mass in a measure zero region. A natural question is whether the presence of fluid flow can affect singularity formation by mixing the bacteria thus making concentration harder to achieve. In this paper, we consider the parabolic-elliptic Keller-Segel equation in two and three dimensions with an additional advection term modeling ambient fluid flow. We prove that for any initial data, there exist incompressible fluid flows such that the solution to the equation stays globally regular. On the other hand, it is well known that when the fluid flow is absent, there exists initial data leading to finite time blow up. Thus the presence of fluid flow can prevent the singularity formation. We discuss two classes of flows that have the explosion arresting property. Both classes are known as very efficient mixers. The first class are the relaxation enhancing (RE) flows of (Ann Math:643-674, 2008). These flows are stationary. The second class of flows are the Yao-Zlatos near-optimal mixing flows (Mixing and un-mixing by incompressible flows. arXiv:1407.4163, 2014), which are time dependent. The proof is based on the nonlinear version of the relaxation enhancement construction of (Ann Math:643-674, 2008), and on some variations of the global regularity estimate for the Keller-Segel model.

  12. Mixed waste treatment capabilities at Envirocare

    SciTech Connect

    Rafati, A.

    1994-12-31

    This presentation gives an overview of the business achievements and presents a corporate summary for the whole handling company Envirocare located in Clive, Utah. This company operates a permitted low-level radioactive and mixed waste facility which handles waste from the United States Department of Energy, Environmental Protection Agency, Department of Defense, and Fortune 500 companies. A description of business services and treatment capabilities is presented.

  13. New treatment technologies for mixed waste

    SciTech Connect

    Bloom, G.

    1994-12-31

    This presentation describes new treatment technologies for mixed and low-level radioactive wastes. Several processes are described including mercury removal techniques, steam reforming from aqueous organic wastes, development of plasma treatment systems, waste vitrification and control and recovery of vapor phase mercury in combustion flue gas. Continuous monitoring of mercury, ammonia, acid gases, and volatile organic compounds and a brief description of final waste form development is presented.

  14. Mixed methodology approach in pharmacy practice research.

    PubMed

    Azhar, Saira; Latif, Usman; Murtaza, Ghulam; Khan, Shujaat A; Hussain, Izhar

    2013-01-01

    Healthcare providers play a major role in attending to all domains of health in a population. In terms of modem healthcare delivery, better health outcomes for population can be achieved by engaging multi-disciplinary expertise. In the last decade, pharmacy profession had transformed tremendously in terms of health and pharmaceutical service provision to both patients and general population. Within this practice transformation, pharmacists, especially those in developed countries, now occupy a respectable position within the healthcare system. In contrast, services and expertise offered by pharmacists in developing countries are still underutilized, and their role as healthcare professionals is not deemed to be important either by the community or by other healthcare providers, especially doctors and nurses. In order to explore the current perspectives regarding the role of pharmacists in the context of a developing country, a systematic research is needed. Mixed methodology research should be used for evidence generation. The philosophy of mixed method research came up decades ago. This approach is widely recommended for social and human sciences research. In recent existence, many researchers have begun to recommend mixed methods research as a separate methodology or design. Many factors have brought into the evolution of mixed methods research. A combination of both forms of data can provide the most complete analysis of the issues related to the pharmacy practice research. Numbers in quantitative and words in qualitative can be enclosed together to give the better understanding of research questions. Both forms of data are necessary for pharmacy practice research especially in case of developing countries where there is a need to generate the evidence for future health policy.

  15. Photooxidation of mixed aryl and biarylphosphines.

    PubMed

    Zhang, Dong; Celaje, Jeff A; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias

    2010-07-02

    Arylphosphines and dialkylbiarylphosphines react with singlet oxygen to form phosphine oxides and phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiarylphosphines migration of the alkyl group occurs. Dialkylbiarylphosphines also yield arene epoxides, especially in electron-rich systems. Phosphinate ester formation is increased at high temperature, while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald's recent conformational model for the aerobic oxidation of dialkylbiarylphosphines.

  16. Glueball-QQ¯ mixings in the scalars

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang

    2006-02-01

    Possibly significant Okuba-Zweig-Iizuka (OZI) rule violation is found important for the scalar meson production in J / ψ hadronic decays. Its correlation with the glueball-QQ¯ mixings provides a natural explanation for the "scalar puzzle" arising from the data for J / ψ → V f0 at BES. Nevertheless, such a correlation can be examined at different energy scales and other heavy quarkonium hadronic decays, where insights into the scalar meson structures can be gained.

  17. Mixed FE analysis of viscoelastic cylindrical helixes

    NASA Astrophysics Data System (ADS)

    Arıbaş, Ü. N.; Omurtag, M. H.

    2012-09-01

    In this study, analysis of viscoelastic cylindrical helixes with circular and square cross section is investigated by using the mixed FEM based on Timoshenko beam theory. The Kelvin model is used for the viscoelastic behavior. The analysis is performed in the Laplace domain and the results are transformed back to time domain numerically by Modified Durbin algorithm. The outcome is quite satisfactory besides the necessary engineering precision.

  18. Transverse Mixing in a Natural River Channel

    NASA Astrophysics Data System (ADS)

    Swick, W. A.; Macmahan, J. H.; Reniers, A. J.; Thornton, E. B.; Brown, J.

    2010-12-01

    Transverse mixing in a river channel is investigated using field observations and a three-dimensional (3D) hydrodynamic model, Delft3D. Six fluorescent Rhodamine dye releases were conducted in a 30 m wide, 500 m long, and 2 m deep relatively straight reach in the Kootenai River, ID on 12-16 August 2010. The study reach contained a number of natural channel features, such as a pool-riffle sequence and bank irregularities, which influence transverse mixing. The dye was released at a constant rate for one hour from a kayak fixed in the center of the channel. River discharge was steady and all releases were conducted in the morning hours to avoid diurnal wind effects. Vertical dye concentrations and velocity profiles were measured near the source and four downstream locations: 25m, 100m, 300m and 500m. In addition to the stationary observations, two different roving dye sampling schemes were performed to increase the spatial dye concentration resolution. The first sampling scheme consisted of 5 evenly-spaced dye sensors being slowly moved upstream. The second scheme consisted of 3 dye sensors moved transversely across the channel at various streamwise channel locations. These observations provide the horizontal and vertical extent of the dye plume and the spatial and temporal variability of the dye concentration. Local flow structures, produced by the separation of flow over riffles and bank irregularities, strongly control the observed local concentration distributions. Qualitative calculations highlight the influence of channel irregularities on the rate of transverse mixing and quantitative inferences shed light on the dominant mixing processes operating within different parts of the channel. 1D analytical and 3D numerical model are used to assess the relative importance of turbulent diffusion and local flow structure on predicted spatial dye concentrations.

  19. $B$ mixing and lifetimes at the Tevatron

    SciTech Connect

    Gomez-Ceballos, G.; Piedra, J.

    2006-04-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. Both the D0 and CDF experiments have collected a sample of about 1 fb{sup -1}. they report results on three topics: b-hadron lifetimes, polarization amplitudes and the decay width difference in B{sub s}{sup 0} {yields} J/{psi}{phi}, and B{sub s}{sup 0} mixing.

  20. Configuration mixing calculations in soluble models

    NASA Astrophysics Data System (ADS)

    Cambiaggio, M. C.; Plastino, A.; Szybisz, L.; Miller, H. G.

    1983-07-01

    Configuration mixing calculations have been performed in two quasi-spin models using basis states which are solutions of a particular set of Hartree-Fock equations. Each of these solutions, even those which do not correspond to the global minimum, is found to contain interesting physical information. Relatively good agreement with the exact lowest-lying states has been obtained. In particular, one obtains a better approximation to the ground state than that provided by Hartree-Fock.