Science.gov

Sample records for carbide composite bodies

  1. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    DOEpatents

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  2. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  3. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  4. Joining of porous silicon carbide bodies

    DOEpatents

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  5. Composition Comprising Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  6. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  7. Diamond-silicon carbide composite

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  8. Process for making silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    1998-01-01

    A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  9. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  10. Diamond-silicon carbide composite and method

    DOEpatents

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  11. Carbides composite surface layers produced by (PTA)

    SciTech Connect

    Tajoure, Meloud; Tajouri, Ali E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar E-mail: dr.mokhtarphd@yahoo.com; Akreem, Mosbah

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  12. Silicon carbide/SRBSN composites

    SciTech Connect

    Razzell, A.G.; Lewis, M.H.

    1991-08-01

    Ceramic matrix composites have been produced using unidirectionally aligned Textron SCS-6 fibers in a sintered reaction bonded silicon nitride (SRBSN) matrix. A tape casting technique was used to produce a prepreg sheet that could be cut and stacked to form a layup. Sintering aids were MgO, Al2O3, and Y2O3 either singly or in combination, final sintering being carried out under pressure at temperatures up to 1750 C. The three-point bend strength of the material varied between 448 and 513 MPa and showed no variation with oxidation time at 1000 C up to 25 hours. Interfacial shear strength measured by indentation was 4 MPa; some samples had a reaction layer at the interface and a shear strength of greater than MPa. Within sections 6 mm from exposed fiber ends, the interfacial carbon layers were partially removed, and the interfacial shear strength was reduced with increasing oxidation time. 4 refs.

  13. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    SciTech Connect

    Petrovic, J.J.

    1992-12-31

    This patent pertains to compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia. Fabrication, fracture toughness, and bend strength are covered.

  14. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  15. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, John J.

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  16. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  17. Microwave behavior of silicon carbide/high alumina cement composites

    NASA Astrophysics Data System (ADS)

    Leiser, Kristie Sue

    2001-09-01

    Microwave susceptors have been fabricated from composites of silicon carbide/high alumina cement. These composites are very useful for microwave processing other materials. By using these composites for microwave hybrid heating, both ordinary and unique materials have the potential to be fabricated. The use of the susceptors can help to produce a more even temperature distribution across a material being microwave heated. This composite of silicon carbide particles embedded in high alumina cement only needed to be better characterized to enhance its applicability to more systems. This goal was accomplished in this study. During the course of the study, the factors affecting the heating rate of the composites were identified. These factors included silicon carbide particle size, weight percent silicon carbide in the composite, silicon carbide phase, processing atmosphere, and the maximum temperature experienced by the composite. A systematic study was designed to examine the importance of factors such as these and their effects upon the heating rate of high alumina cement/silicon carbide composites. Statistical design was employed to determine the significance of the factors of interest. The effects of these factors on the heating rate of the composites were determined. As the amount of silicon carbide in the composite increased, the heating rate tended to increase. The effects observed were explained by a combination of dielectric mixing equations, a heat transfer model and percolation theory. The silicon carbide particle size also affected the heating rate of the composites. Mathematical modeling showed that the particle size effect was a geometric effect that was dependent upon imperfect thermal contact between the silicon carbide particle and the cement matrix. The silicon carbide particle size also affected the percolation threshold of the composites. The heating rate of the composites increased when calcium carbonate present in the cement was pyrolyzed to form

  18. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful.

  19. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    NASA Technical Reports Server (NTRS)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  20. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  1. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  2. Sintered silicon carbide molded body and method for its production

    NASA Technical Reports Server (NTRS)

    Omori, M.; Sendai, M.; Ohira, K.

    1984-01-01

    Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.

  3. Carbide-reinforced metal matrix composite by direct metal deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  4. Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites

    SciTech Connect

    Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

    2007-03-26

    The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

  5. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  6. Hot forging of graphite-carbide composites. Final report

    SciTech Connect

    Jenkins, G.M.; Holland, L.R.

    1998-07-15

    This project was aimed at hot shaping of titanium carbide/graphite and vanadium carbide/graphite composite materials by heating them to above 2000 degrees celsius and pressing into an electrographite die. The sample was to be a preformed cylinder of powdered graphite mixed with powdered titanium or vanadium, lightly sintered. The preform would be heated in a hot press and the titanium or vanadium would react with some of the graphite to form titanium or vanadium carbide. The remaining (excess) graphite would form a composite with the carbide, and this could then be deformed plastically at temperatures well below the onset of plasticity in pure graphite. There were to be two major thrusts in the research: In the first, an electron beam furnace at Sandia Laboratory was to be used for rapid heating of the sample, which would then be transferred into the press. The second thrust was to be entirely at Alabama A and M University, and here they intended to use a heated, controlled atmosphere press to forge the graphite/carbide preforms at a steady temperature and measure their viscosity as a function of temperature. This report discusses the progress made on this project.

  7. Carbide-fluoride-silver self-lubricating composite

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E. (Inventor)

    1987-01-01

    A self-lubricating, friction and wear reducing composite material is described for use over a wide temperature spectrum from cryogenic temperature to about 900 C in a chemically reactive environment comprising silver, barium fluoride/calcium fluoride eutectic, and metal bonded chromium carbide.

  8. Carbide/fluoride/silver self-lubricating composite

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E. (Inventor)

    1988-01-01

    A self-lubricating, friction and wear reducing composite material for use over a wide temperature spectrum from cryogenic temperature to about 900.degree. C. in a chemically reactive environment comprising silver, barium fluoride/calcium fluoride eutectic, and metal bonded chromium carbide.

  9. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOEpatents

    Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  10. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  11. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  12. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2005-09-06

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  13. Protective coating for alumina-silicon carbide whisker composites

    DOEpatents

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  14. Method for making hot-pressed fiber-reinforced carbide-graphite composite

    DOEpatents

    Riley, Robert E.; Wallace Sr., Terry C.

    1979-01-01

    A method for the chemical vapor deposition of a uniform coating of tantalum metal on fibers of a woven graphite cloth is described. Several layers of the coated cloth are hot pressed to produce a tantalum carbide-graphite composite having a uniformly dispersed, fine grained tantalum carbide in graphite with compositions in the range of 15 to 40 volume percent tantalum carbide.

  15. Method of making carbide/fluoride/silver composites

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E. (Inventor); Dellacorte, Christopher (Inventor)

    1991-01-01

    A composition containing 30 to 70 percent chromium carbide, 5 to 20 percent soft noble metal, 5 to 20 percent metal fluorides, and 20 to 60 percent metal binder is used in a powdered metallurgy process for the production of self-lubricating components, such as bearings. The use of the material allows the self-lubricating bearing to maintain its low friction properties over an extended range of operating temperatures.

  16. Fatigue of alumina-based ceramics and chrome carbide composites

    NASA Astrophysics Data System (ADS)

    Kireitseu, Maksim V.; Yerakhavets, Liudmila; Nemerenco, Ion; Basenuk, Vladimir L.

    2003-10-01

    The paper was revealed a fatigue in the alumina-chrome carbide composite. The trapped crack front resembles a collinear array of microcracks interspersed by grains rich in transformable precipitates. This micromechanical model provides a reasonable explanation for the observed fatigue crack growth. A numerical procedure similar to the one used in the analysis of the array of collinear cracks, based on complex potentials and dislocation formalism is also used to simulate fatigue of composite coatings based on oxide ceramics and chrome carbide. Assuming power-law crack growth, it is found that the crack growth rate decreases with the applied stress intensity factor in the initial stage of fatigue crack growth. Depending on the applied load and the amount of transformation, the growth rate either goes through a minimum before increasing to the normal crack regime, or the rate continues to decrease until the crack is arrested. A detailed parametric study of the phenomenon of fatigue crack arrest in composite coatings based on oxide ceramics and chrome carbide reveals that the combination of transformation strength parameter and applied load determines whether or not crack arrest will occur, irrespective of the initial crack length. Based on the parametric study a simple linear relationship between the applied load and the minimum transformation strength parameter necessary to cause crack arrest has been developed. it will be found useful in the design against fatigue by predicting the maximum toad at which crack arrest can be expected.

  17. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  18. Status of silicon carbide composites for fusion

    SciTech Connect

    Snead, L.L.; Jones, R.H.; Kohyama, A.

    1996-04-01

    An effort is now underway to design an irradiation creep experiment involving SiC composites and SiC fibers. In order to successfully design such an experiment, it is necessary to review and assess the available data for monolithic SiC to establish the possible bounds of creep behavior for the composite. The data available show that monolithic SiC will indeed creep at a higher rate under irradiation compared to that of thermal creep, and surprisingly, it will do so in a temperature-dependant manner that is typical of metals.

  19. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  20. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  1. Silicon carbide-silicon composite having improved oxidation resistance and method of making

    NASA Technical Reports Server (NTRS)

    Luthra, Krishan Lal (Inventor); Wang, Hongyu (Inventor)

    1999-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  2. Method of making silicon carbide-silicon composite having improved oxidation resistance

    NASA Technical Reports Server (NTRS)

    Luthra, Krishan Lal (Inventor); Wang, Hongyu (Inventor)

    2002-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  3. Iron aluminide-titanium carbide composites: Microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.; Alexander, K.B.

    1996-09-01

    Composites of intermetallics and carbides (with binder contents less that 50 vol.%) are considered as potential candidates for applications requiring high wear resistance in corrosive environments. Intermetallics, especially aluminides, provide the corrosion resistance, and the high hardness of the carbide phase contributes to increased wear resistance of the composites. In this study, cost effective and simple processing techniques to obtain FeAl-TiC composites, over a wide range of binder volume fractions, are demonstrated. Binder volume fractions range from 0.15 to 0.7 (18 to 75 wt. % binder). Two techniques - liquid phase sintering of mixed powders and pressureless melt infiltration of TiC preforms was found to be very successful for obtaining fully dense composites with binder volume fractions from 0.15 to 0.3 (18 to 34 wt. %), whereas for higher binder contents liquid phase sintering of mixed powders was the best approach. Mechanical properties of these composites including the 3-point bend strength, fracture toughness and hardness are presented.

  4. Microstructural Evolution of Chloride-Cleaned Silicon Carbide Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Balogun, S. A.

    2016-02-01

    This study examines the synergy between reinforcement surface modifications on the evolution of microstructures of AA6011-silicon carbide particle (SiCp) composites in multidirectional solidification. Silicon carbide particles (SiCp) were cleaned with ammonium chloride, tin(II) chloride, sodium chloride, and palladium(II) chloride and used as reinforcement to cast AA6011-SiCp composites by applying the stir casting method. A scanning electron microscope and x-ray diffractometer were used to investigate the morphology and phases present, respectively, in the composite material. Results show that wetting agents were effective as they inhibited the formation of Al4C3 in all modified composites. The modified SiCp was found to have varying effects on the morphology, dendrite arm size and direction, size and configuration of AlFeSi, and the amount of eutectic silicon depending on the concentration of the reagent and cleaning time. The highest effect was shown by the use of 40 g/L of tin(II) chloride. The composites had short dendritic arms, good interfacial interaction, and only a few crystals of AlFeSi.

  5. Oxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    Valentin, Victor M.

    1995-01-01

    Carbon fiber reinforced Silicon Carbide (C-SiC) composites offer high strength at high temperatures and good oxidation resistance. However, these composites present some matrix microcracks which allow the path of oxygen to the fiber. The aim of this research was to study the effectiveness of a new Silicon Carbide (SiC) coating developed by DUPONT-LANXIDE to enhance the oxidation resistance of C-SiC composites. A thermogravimetric analysis was used to determine the oxidation rate of the samples at different temperatures and pressures. The Dupont coat proved to be a good protection for the SiC matrix at temperatures lower than 1240 C at low and high pressures. On the other hand, at temperatures above 1340 C the Dupont coat did not seem to give good protection to the composite fiber and matrix. Even though some results of the tests have been discussed, because of time restraints, only a small portion of the desired tests could be completed. Therefore, no major conclusions or results about the effectiveness of the coat are available at this time.

  6. Titanium-silicon carbide composite lattice structures

    NASA Astrophysics Data System (ADS)

    Moongkhamklang, Pimsiree

    Sandwich panel structures with stiff, strong face sheets and lightweight cellular cores are widely used for weight sensitive, bending dominated loading applications. The flexural stiffness and strength of a sandwich panel is determined by the stiffness, strength, thickness, and separation of the face sheets, and by the compressive and shear stiffness and strength of the cellular core. Panel performance can be therefore optimized using cores with high specific stiffness and strength. The specific stiffness and strength of all cellular materials depends upon the specific elastic modulus and strength of the material used to make the structure. The stiffest and strongest cores for ambient temperature applications utilize carbon fiber reinforced polymer (CFRP) honeycombs and lattice structures. Few options exist for lightweight sandwich panels intended for high temperature uses. High temperature alloys such as Ti-6A1-4V can be applied to SiC monofilaments to create very high specific modulus and strength fibers. These are interesting candidates for the cores of elevated temperature sandwich structures such as the skins of hypersonic vehicles. This dissertation explores the potential of sandwich panel concepts that utilize millimeter scale titanium matrix composite (TMC) lattice structures. A method has been developed for fabricating millimeter cell size cellular lattice structures with the square or diamond collinear truss topologies from 240 mum diameter Ti-6A1-4V coated SiC monofilaments (TMC monofilaments). Lattices with relative densities in the range 10% to 20% were manufactured and tested in compression and shear. Given the very high compressive strength of the TMC monofilaments, the compressive strengths of both the square and diamond lattices were dominated by elastic buckling of the constituent struts. However, under shear loading, some of the constituent struts of the lattices are subjected to tensile stresses and failure is then set by tensile failure of the

  7. Shock response of boron carbide based composites infiltrated with magnesium

    NASA Astrophysics Data System (ADS)

    Kafri, Mathan; Dariel, Moshe P.; Frage, Naum; Zaretsky, Eugene

    2012-03-01

    The fully dense composites were obtained by vacuum infiltrating boron carbide compacts (80% green density) with molten AZ91 magnesium alloy (850°C) and with the melt of a 50/50 AZ91- silicon mixture (1050°C). The densities composites were, 2.44 g/cm3 and 2.54 g/cm3, respectively. The impact response of the composites was studied in a series of VISAR -instrumented planar impact experiments with velocities of W and Cu impactors ranging from 100 to 1000 m/s. The velocity history recorded for the composites produced by infiltration with the Mg-Si alloy contains a distinct elastic precursor front followed by a plastic ramp. In contrast, the velocity history of the composite infiltrated with AZ91 does not display any step-like front; the amplitude of the elastic wave grows gradually from zero level and transforms smoothly into the plastic front. The influence of the composites microstructure on their compressive and tensile behavior is discussed.

  8. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  9. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  10. Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites

    NASA Astrophysics Data System (ADS)

    Kalluri, Ajith Kumar

    Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (<3 μm). Ball milling improved the sintering kinetics and improved the mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness). Activation energy (100 kJ/mol) and stress exponent (1.2) were obtained using the analytical model developed for power-law creep. Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack

  11. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    SciTech Connect

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  12. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  13. Affordable Fabrication and Properties of Silicon Carbide-Based Interpenetrating Phase Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    1998-01-01

    An affordable processing technique for the fabrication of silicon carbide-based interpenetrating phase composites (IPCs) is presented. This process consists of the production of microporous carbon preforms and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture for which methods to control pore volume and pore size have been established. The process gives good control of microstructure and morphology of silicon carbide-based composite materials. Room and high temperature mechanical properties (flexural strength, compressive strength, and flexural creep) of low and high silicon-silicon carbide composites will be discussed.

  14. Silicon carbide nanowires and composites obtained from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Yuejian

    In this dissertation a simple route has been developed to synthesize Silicon Carbide (beta-SiC) nanothreads and C-SiC coaxial nanotubes by solid/liquid-state reaction between multiwall carbon nanotubes and silicon conducted at 1473 K and 1723 K, respectively. Through the kinetics study of SiC formation from carbon nanotubes and Si, our results demonstrated that carbon nanotubes may have higher chemical reactivity than other forms of elemental Carbon. Based on the above investigation, CNT/SiC and diamond/CNT/SiC were manufactured. Key factors influencing the mechanical properties of final products, such as phase composition, grain size, stress-strain, sintering time, and sintering temperature were thoroughly studied with Raman spectroscopy, x-ray diffraction, SEM and TEM techniques. Taking advantage of high elasticity of Carbon nanotube and its ability to block the microcrack propagation and dislocation movement, both composites showed enhanced fracture toughness. Carbon nanotubes composites trigger a new field in fundamental science and manifest potential application in multiple industries.

  15. METHOD FOR FORMING A COATING OF MOLYBDENUM CARBIDE ON A CARBON BODY

    DOEpatents

    Simnad, M.T.

    1962-04-01

    A method is described for coating a carbon bodywith molybdenum carbide in such a manner that the carbon body is rendered less permeable to the flow of gases and has increased resistance to corrosion and erosion. The method includes coating a carbon body with molybdenum trioxide by contacting it at a temperature below the condensation temperature with molybdenum trioxide vapors and thereafter carburizing the molybdenum trioxide in situ in an inert atmosphere on the carhon body. (AEC)

  16. Modal acoustic emission source determination in silicon carbide matrix composites

    NASA Astrophysics Data System (ADS)

    Morscher, G. N.

    2000-05-01

    Modal acoustic emission has been used to monitor damage accumulation in woven silicon carbide (SiC) fiber reinforced SiC matrix composites during tensile testing. There are several potential sources of damage in these systems including transverse matrix cracking, fiber/matrix interphase debonding and sliding, longitudinal cracks in between plies, and fiber breakage. In the past, it has been shown that modal AE is excellent at detecting when damage occurs and subsides, where the damage occurs along the length of the sample, and the loss in material stiffness as a consequence of damage accumulation. The next step is to determine the extent that modal AE can be used to identify specific physical sources. This study will discuss the status of this aim for this composite system. Individual events were analyzed and correlated to specific sources based on the characteristics of the received waveforms, e.g., frequency spectrum and energy, and when the event occurred during the stress-history of the tensile test. Post-test microstructural examination of the test specimens enabled some correlation between specific types of AE events and damage sources.

  17. Phase diagram of boron carbide with variable carbon composition

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Gao, Qin; Widom, Michael

    2017-02-01

    Boron carbide exhibits intrinsic substitutional disorder over a broad composition range. The structure consists of 12-atom icosahedra placed at the vertices of a rhombohedral lattice, together with a 3-atom chain along the threefold axis. In the high-carbon limit, one or two carbon atoms can replace boron atoms on the icosahedra while the chains are primarily of type C-B-C. We fit an interatomic pair interaction model to density-functional-theory total energies to investigate the substitutional carbon disorder. Monte Carlo simulations with sampling improved by replica exchange and augmented by two-dimensional multiple histogram analysis predict three phases. The low-temperature, high-carbon-composition monoclinic C m structure disorders through a pair of phase transitions, first via an Ising-like transition to a monoclinic centrosymmetric state with space group C 2 /m , then via a first-order three-state Potts-like transition to the experimentally observed rhombohedral R 3 ¯m symmetry.

  18. Interfacial preferential dissolution on silicon carbide particulate/aluminum composites

    SciTech Connect

    Yao, H.Y.; Zhu, R.Z.

    1998-07-01

    Previous studies on corrosion of discontinuously reinforced aluminum alloy composites have assumed that the role of the reinforcement-matrix interface is merely as a preferable site for pitting. In this work, the interfacial preferential dissolution (IPD) occurring on silicon carbide particulate/aluminum (SiC{sub p}/Al) composites in a medium of aqueous sodium chloride (NaCl) solution was studied. IPD was quite distinct from pitting. IPD occurred on the composites with either a pure aluminum matrix or an aluminum alloy Al 2024 (UNS A92024) matrix, whether they were fabricated by a cast process or by a powder metallurgy process. In the light of elastoplastic mechanics, the width of the plastically deformed zone around SiC particles (created by the contraction misfit between SiC particles and the matrix during quenching) was deduced to be 0.5 D, where D is the diameter of the SiC particles. This was in agreement with the measured width of the IPD region (0.3 D to 0.4 D). It was concluded that IPD was caused by the poor integrity of the surface oxide film upon the plastically deformed zone near the interface and was independent of the chemical, metallurgical, and galvanic coupling factors around the interface, if any. A copper-deposition experiment indicated this poor integrity. IPD caused increased dissolution at SiC clusters and uniform corrosion for the composites with high SiC content. Moreover, IPD and pitting suppressed each other by a means of cathodic protection.

  19. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  20. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  1. [Effects of silicon carbide on the cure depth, hardness and compressive strength of composite resin].

    PubMed

    Wang, Ke; Lin, Yi'na; Liu, Xiaoqing

    2009-08-01

    The hardness, compressive strength and cure depth are important indices of the composite resin. This investigation was made with regard to the effects of silicon carbide on the cure depth, hardness and compressive strength of the light-curing composite resin. Different amounts of silicon carbide were added to the light-curing composite resin, which accounted for 0 wt%, 1 wt%, 0.6 wt%, 0.3 wt%, 0.1 wt%, 0.05 wt% and 0.005 wt% of the composite resin, respectively. The hardness, compressive strength and cure depth of the six afore-mentioned groups of composite resin were measured by the vernier caliper, the vickers hardness tester and the tensile strength of machine, respectively. The results showed that silicon carbide improved the hardness and compressive strength of the light-curing composite resin,when the concentration was 0.05 wt%. And the cure depth was close to that of control.

  2. Investigation of Microstructural Factors that Cause Low Fracture Toughness in Silicon Carbide Whisker/Al Alloy Composites

    DTIC Science & Technology

    1988-10-01

    TOUGHNESS IN SILICON CARBIDE WHISKER/Al ALLOY COMPOSITES oSubmittLJ to: Office of Naval Research 800 N. Quincy Street Arlington, VA 22217-5000...September 30, 1988 INVESTIGATION OF MICROSTRUCTURAL FACTORS THAT CAUSE LOW FRACTURE TOUGHNESS IN SILICON CARBIDE WHISKER/Al ALLOY COMPOSITES Submitted...Investigation of Microstructural Factors that Cause Low Fracture Toughness in Silicon Carbide Whisker/Al Alloy Composites .12 PERSONAL AUTHOR(S) F. E. Wawner

  3. Body composition in multiple sclerosis

    PubMed Central

    Dionyssiotis, Y

    2013-01-01

    Multiple sclerosis affects central nervous system leading to disability. Among other complications the deterioration of body composition is usually neglected and increases the risk for diseases such as coronary heart disease, non-insulin dependent diabetes mellitus, lipid abnormalities and bone loss leading to fractures in this population. Body mass index values, the effect of spasticity, the increased number of drugs used and the relationship between skeletal muscle and bone which interacts with impaired motor function leading to body composition alterations in multiple sclerosis are reviewed. PMID:23935336

  4. Composition optimization of self-lubricating chromium-carbide-based composite coatings for use to 760 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Chris; Sliney, Harold E.

    1987-01-01

    This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.

  5. Composition optimization of self-lubricating chromium carbide-based composite coatings for use to 760 deg C

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Sliney, H. E.

    1986-01-01

    This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.

  6. Changes in the phase composition, structure, and hardness of "titanium carbide-high-carbon steel" cermets under heat treatment

    NASA Astrophysics Data System (ADS)

    Frage, N.; Kaputkina, L. M.; Prokoshkina, V. G.; Kaputkin, D. E.; Sverdlova, N. R.

    2007-03-01

    Ceramic metals obtained by pressing and sintering of briquettes from titanium carbide powders with constant compositions (stoichiometric and with carbon deficit) followed by impregnation with steels U8, U10, and U12 are studied. The effects of the compositions of the metallic binder and of titanium carbide on the processes of austenization, dissolution, and segregation of carbides, martensitic transformation, and on the hardness of the cermets after subsequent heat treatment are determined.

  7. The Effects of Carbide Characteristics on the Performance of Tungsten Carbide-Based Composite Overlays, Deposited by Plasma-Transferred Arc Welding

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Wolfe, T.; Meszaros, K.

    2013-06-01

    In Alberta, there are huge quantities of ore processed to remove bitumen from oil sands deposits. The scale of production generates very aggressive tribocorrosive conditions during the mining, extraction, and upgrading processes. It is common to apply tungsten carbide-based composite overlays to improve the reliability and extend service lives of equipment and components. The performance of the applied overlays is largely dependent on the selection of the carbide type and the wear environment. This paper will evaluate overlays containing macrocrystalline, angular eutectic, and spherical eutectic tungsten carbides and discuss the performance of the overlays with a focus on carbide properties and the interactions between the service conditions and the composite material. This discussion will demonstrate how effective selection of protective materials can improve the reliability of oil sands equipment.

  8. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    SciTech Connect

    Ponomarev, V. I. Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-15

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide B{sub 15–x}C{sub x}, (1.5 ≤ x ≤ 3) and its magnesium derivative C{sub 4}B{sub 25}Mg{sub 1.42}. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from B{sub 12.9}C{sub 2.1} to B{sub 12.4}C{sub 2.6}.

  9. Body Composition. A Round Table.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1986

    1986-01-01

    Four experts discuss body composition, what it is, why it is assessed, how it is measured, and how to measure it in children and the aged. Standards of fatness, both overfat and underfat, and bone and muscle assessment are covered in the discussion. (MT)

  10. Silicon carbide whisker composites. (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the manufacture and applications of silicon carbide whisker reinforced composites. Citations discuss the preparation of whiskers and the processing of composites containing the whiskers. Applications include aerospace engines, automotive components, engine components, and surgical implants. Physical properties such as bending strength, crack propagation, creep, fracture toughness, and stress strain curves are covered. Ceramic matrix, metal matrix, and carbon-carbon composites are examined. (Contains a minimum of 248 citations and includes a subject term index and title list.)

  11. Spray-Formed Stainless Steel Matrix Composites with Co-Injected Carbide Particles

    NASA Astrophysics Data System (ADS)

    Cui, Chengsong; Schulz, Alwin; Uhlenwinkel, Volker; Zoch, Hans-Werner

    2011-08-01

    In order to develop new types of wear-resistant and corrosion-resistant materials, TiC and VC particles were injected into martensitic stainless steel X46Cr13 during spray forming, respectively. The microstructures of the spray-formed steel matrix composites under different processing conditions were investigated. The mechanisms of interactions between the injected particles and the matrix materials during spray forming and their effects on the microstructures of the composites were discussed and clarified based on experimental and theoretical investigations. The current results show that the injected particles may penetrate into the metallic droplets or adhere to the surface of the droplets and, therefore, are incorporated into the deposits to form metal matrix composites. Substantial heat transfer from superheated metallic melts to the room temperature carbide particles takes place as they are incorporated into the matrix material. The matrix steel solidifies in the vicinity of the carbides due to their chilling effect, and thus, the carbides may be engulfed in the matrix or pushed to the grain boundaries by the solidification fronts. TiC particles essentially retain their shape and size in the steel composites, while VC particles dissolve at least partially in the matrix and reprecipitate or form new phases in the final solidification and cooling stage. The porosity in the deposits increases with the gas to melt ratio (GMR) and the powder to melt ratio (PMR) by increasing atomizing gas pressure and powder feeding rate. Carbide type also affects the porosity of the deposits, because different thermodynamic properties of carbides change the heat dissipation and local solidification behavior of the mixture of matrix material and dissolved carbides. Moreover, the microstructure of the matrix material X46Cr13 is refined considerably with increasing GMR and PMR.

  12. Microstructure and Wear Behavior of High-Cr WCI Matrix Surface Composite Reinforced with Cemented Carbide Rods

    NASA Astrophysics Data System (ADS)

    Hou, Shuzeng; Bao, Chonggao; Zhang, Zhiyun; Bai, Yaping

    2013-07-01

    The present article reports a new superior wear resistance surface composite prepared by a vacuum evaporative pattern casting-in process. This surface composite was constructed with reinforcing cemented carbide rod (CCR) array within high-Cr white cast iron (WCI) matrix. Three reaction zones that formed around the CCRs were characterized and established the good metallurgical bonding between CCRs and matrix. In addition, some compound carbide containing Fe, Cr, W, and Co elements were formed in the reaction zones, owing to the partial dissolution of the CCRs and the resulting interdiffusion of elements such as W, Co, C, Fe, and Cr. The wear behavior of the composite was evaluated and compared with unreinforced high-Cr WCI by means of a three-body abrasive wear tester. The results showed that the wear resistance of the composite was significantly higher than that of the unreinforced high-Cr WCI. The exciting wear resistance can be ascribed to protective effect introduced by the CCRs during wear process and the good metallurgical bonding between CCRs and matrix.

  13. Processing and microstructure of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing

    NASA Astrophysics Data System (ADS)

    Yoshida, Katsumi; Budiyanto; Imai, Masamitsu; Yano, Toyohiko

    1998-10-01

    Continuous 2D woven fiber-reinforced SiC composites were fabricated by hot-pressing in Ar at 1750°C under a pressure of 40 MPa using Al-B-C or Al 2O 3-Y 2O 3-CaO system as sintering additives. In this study, fracture behavior and microstructure of the composites fabricated by this process were investigated. These composites achieved nearly full density in both cases. In the case of the composite with Al-B-C additives, the load-displacement behavior of the composite with non-coated Hi-Nicalon cloths showed completely brittle fracture, whereas that of the composite with BN-coated Hi-Nicalon cloths showed ductile fracture with a lot of fiber pull-out. On the contrary, in the case of the composite with Al 2O 3-Y 2O 3-CaO additives, the load-displacement behavior of the composite with non-coated Hi-Nicalon cloths showed slight ductile fracture with small tails, whereas that of the composite with BN-coated Hi-Nicalon cloths showed completely brittle fracture.

  14. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  15. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-02-19

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  16. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  17. The utilization of composite carbon-silicon carbide sidewall blocks in cathodes

    SciTech Connect

    Curtis, E.L.; Mascieri, P.D.; Tabereaux, A.T.

    1996-10-01

    A new composite sidewall block SILCARB, consisting of a calcined anthracite carbon glued to a nitride-bonded silicon carbide, has performed well to date in the cathode sidewall lining of five 180 kA prebake reduction cells. The applications of the new sidewall composite material are to resist oxidation and/or erosion in the sidewalls caused by an active metal pad or the oxidation of materials during cell operations. In this instance, the composite material was used as a substitute for the conventional prebake anthracite sidewall block. The goals will be to increase the potlife of cells currently operating with conventional carbon sidewalls, or alternatively offer excellent cost savings while maintaining the desired operational results in cells using full size silicon carbide bricks. Sidewall shell temperature and frozen ledge profiles of cells with SILCARB sidewall blocks are compared with cells having conventional anthracite carbon block sidewall lining.

  18. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  19. Controlled release of indomethacin from alginate-poloxamer-silicon carbide composites decrease in-vitro inflammation.

    PubMed

    Díaz-Rodríguez, P; Landin, M

    2015-03-01

    Composites of biomorphic silicon carbides (bioSiCs) and hydrogels are proposed in order to obtain materials able to load and release poor soluble drugs with application in bone pathologies therapy. Hydrogels composed by alginate and poloxamer were loaded with indomethacin, incorporated into the ceramics and crosslinked. The indomethacin release profile is dependent on the microstructure of the bioSiC selected. The loaded oak and sapelli bioSiCs composites have adequate release profiles to promote the decreasing of the secretion of pro-inflammatory cytokines in LPS stimulated macrophages, showing stronger anti-inflammatory effects than pine bioSiC composites. The released indomethacin is able to modulate the degradation of chondrocytes extracellular matrix and promote the formation of new collagen by osteoarthritic chondrocytes. Particles derived from mechanical wear of biomorphic silicon carbides do not show high toxicity, being similar to the zirconia particles.

  20. Magnetic composites based on metallic nickel and molybdenum carbide: a potential material for pollutants removal.

    PubMed

    Mambrini, Raquel V; Fonseca, Thales L; Dias, Anderson; Oliveira, Luiz C A; Araujo, Maria Helena; Moura, Flávia C C

    2012-11-30

    New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo(2)C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 and 900°C) with catalytic deposition of carbon from ethanol producing molybdenum carbide on Ni surface. In the absence of molybdenum the formation of Ni/C was observed. The magnetic molybdenum carbide was successfully used as pollutants removal by adsorption of sulfur and nitrogen compounds from liquid fuels and model dyes such as methylene blue and indigo carmine. The dibenzothiofene adsorption process over Ni/Mo(2)C reached approximately 20 mg g(-1), notably higher than other materials described in the literature and also removed almost all methylene blue dye. The great advantage of these carbide composites is that they may be easily recovered magnetically and reused.

  1. Feasibility of Electrochemical Deposition of Nickel/Silicon Carbide Fibers Composites over Nickel Superalloys

    NASA Astrophysics Data System (ADS)

    Ambrosio, E. P.; Abdul Karim, M. R.; Pavese, M.; Biamino, S.; Badini, C.; Fino, P.

    2017-02-01

    Nickel superalloys are typical materials used for the hot parts of engines in aircraft and space vehicles. They are very important in this field as they offer high-temperature mechanical strength together with a good resistance to oxidation and corrosion. Due to high-temperature buckling phenomena, reinforcement of the nickel superalloy might be needed to increase stiffness. For this reason, it was thought to investigate the possibility of producing composite materials that might improve properties of the metal at high temperature. The composite material was produced by using electrochemical deposition method in which a composite with nickel matrix and long silicon carbide fibers was deposited over the nickel superalloy. The substrate was Inconel 718, and monofilament continuous silicon carbide fibers were chosen as reinforcement. Chemical compatibility was studied between Inconel 718 and the reinforcing fibers, with fibers both in an uncoated condition, and coated with carbon or carbon/titanium diboride. Both theoretical calculations and experiments were conducted, which suggested the use of a carbon coating over the fibers and a buffer layer of nickel to avoid unwanted reactions between the substrate and silicon carbide. Deposition was then performed, and this demonstrated the practical feasibility of the process. Yield strength was measured to detect the onset of interface debonding between the substrate and the composite layer.

  2. Evolution of Morphology and Composition of the Carbides in Cr-Mo-V Steel after Service Exposure

    NASA Astrophysics Data System (ADS)

    Dong, Jiling; Shin, Keesam; He, Yinsheng; Song, Geewook; Jung, Jinesung

    2011-06-01

    Low alloy Cr-Mo-V steels are usually used in steam power generation units. The evolution of the carbides often leads to embrittlement of the components during elongated service. Therefore, the determination of carbide evolution mechanism during long-time service is important to understand and prevent premature failures such as temper embrittlement. In this study, low alloy Cr-Mo-V steels used as main steam pipes in a thermal power plant were studied after various service times as well as in the as-fabricated condition. Electron microscopic analyses were carried out on extraction replicas to observe and analyze the morphology and composition of the carbides. Predominant plate-like vanadium-rich carbides were observed in the as-fabricated condition. When exposed to on-site service, the V-rich carbides transformed to Mo-rich carbides which have a typical H morphology. The change of morphology and composition of the carbide is mainly due to the gradual depletion of Mo from the solid solution. In addition, a non-destructive carbide extraction method was established for examination of the precipitates in the working turbine rotor.

  3. Stress-Corrosion Cracking of Silicon Carbide Fiber/Silicon Carbide Composites

    SciTech Connect

    Jones, Russell H.; Henager, Charles H.; Lewinsohn, Charles A.; Windisch, Charles F.

    2000-08-01

    Ceramic matrix composites are being developed to operate at elevated temperatures and in oxidizing environments. Considerable improvements are being made in the creep resistance of SiC fibers and hence in the high-temperature properties of SiCf/SiC composites; however, more needs to be known about the stability of these materials in oxidizing environments before they will be widely accepted. Experimental weight change (1,2) and crack growth data (3,4) supports the conclusion that O2 enhanced crack growth of SiCf/SiC occurs by more than one mechanism depending on the experimental conditions. This data suggests an oxidation embrittlement mechanism (OEM) at temperatures below 1373?K and high O2 pressures and an interphase removal mechanism (IRM) at temperatures of about 700?K and above and low O2 pressures. The OEM, as proposed by Evans et al. (3), results from the reaction of O2 with SiC to form a glass layer on the fiber or within the fiber-matrix interphase region. The fracture stress of the fiber is reduced if this layer is thicker than a critical value (d>dc) and the temperature is below a critical value (TTg for d>dc. This paper summarizes the evidence for the existence of these two mechanisms and attempts to define the conditions for their operation.

  4. Synthesis and Characterization of In-situ Copper-Niobium Carbide Composite

    NASA Astrophysics Data System (ADS)

    Zuhailawati, H.; Othman, R.; Bui, D. L.; Umemoto, M.

    2008-03-01

    In this work, synthesis of copper matrix composite powder reinforced by in situ niobium carbide particle was prepared by mechanical alloying of elemental powder and subsequent heat treatment. Elemental powders of Cu-Nb-C correspond to Cu-40wt%Nb-10%wtC composition was milled for 54 hours at room temperature in a planetary ball mill. The effect of heat treatment temperature on the formation of niobium carbide was analyzed. Characterization by X-ray diffraction was done on the milled powder and heat-treated powder in order to investigate NbC formation. Results indicate that NbC began to precipitate after mechanical alloying for about 54h with heat treatment temperature of 900 °C and 1000 °C.

  5. Synthesis and Characterization of In-situ Copper-Niobium Carbide Composite

    SciTech Connect

    Zuhailawati, H.; Othman, R.; Bui, D. L.; Umemoto, M

    2008-03-17

    In this work, synthesis of copper matrix composite powder reinforced by in situ niobium carbide particle was prepared by mechanical alloying of elemental powder and subsequent heat treatment. Elemental powders of Cu-Nb-C correspond to Cu-40wt%Nb-10%wtC composition was milled for 54 hours at room temperature in a planetary ball mill. The effect of heat treatment temperature on the formation of niobium carbide was analyzed. Characterization by X-ray diffraction was done on the milled powder and heat-treated powder in order to investigate NbC formation. Results indicate that NbC began to precipitate after mechanical alloying for about 54h with heat treatment temperature of 900 deg. C and 1000 deg. C.

  6. Silicon carbide whisker composites. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the manufacture and applications of silicon carbide whisker reinforced composites. Citations discuss the preparation of whiskers and the processing of composites containing the whiskers. Applications include aerospace engines, automotive components, engine components, and surgical implants. Physical properties such as bending strength, crack propagation, creep, fracture toughness, and stress strain curves are covered. Ceramic matrix, metal matrix, and carbon-carbon composites are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Factors Controlling Elevated Temperature Strength Degradation of Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    For 5 years, the cooperative agreement NCC3-763 has focused on the development and understanding of Sic-based composites. Most of the work was performed in the area of SiC fiber-reinforced composites for UEET and NGLT and in collaboration with Goodrich Corporation under a partially reimbursable Space Act Agreement. A smaller amount of work was performed on C fiber-reinforced SiC matrix composites for NGLT. Major accomplishments during this agreement included: Improvements to the interphase used in melt-infiltrated (MI) SiC/SiC composites which increases the life under stressed-oxidation at intermediate temperatures referred to as "outside-debonding". This concept is currently in the patent process and received a Space Act Award. Mechanistic-based models of intermediate temperature degradation for MI SiC/SiC Quantification and relatively robust relationships for matrix crack evolution under stress in SiC/SiC composites which serve as the basis for stress-strain and elevated temperature life models The furthering of acoustic emission as a useful tool in composite damage evolution and the extension of the technique to other composite systems Development of hybrid C-SiC fiber-reinforced SiC matrix composites Numerous presentations at conferences, industry partners, and government centers and publications in recognized proceedings and journals. Other recognition of the author's accomplishments by NASA with a TGIR award (2004), NASA's Medal for Public Service (2004), and The American Ceramic Society s Richard M. Fulrath Award (2005). The following will briefly describe the work of the past five years in the three areas of interest: SiC/SiC composite development, mechanistic understanding and modeling of SiC/SiC composites, and environmental durability of C/SiC composites. More detail can be found in the publications cited at the end of this report.

  8. Article and method for making complex shaped preform and silicon carbide composite by melt infiltration

    NASA Technical Reports Server (NTRS)

    Steibel, James D. (Inventor); Corman, Gregory S. (Inventor); Schikner, Robert C. (Inventor); Szweda, Andrew (Inventor)

    2000-01-01

    Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.

  9. Article and method for making complex shaped preform and silicon carbide composite by melt infiltration

    NASA Technical Reports Server (NTRS)

    Steibel, James D. (Inventor); Corman, Gregory S. (Inventor); Schikner, Robert C. (Inventor); Szweda, Andrew (Inventor)

    2001-01-01

    Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.

  10. Development of a reaction-sintered silicon carbide matrix composite

    NASA Astrophysics Data System (ADS)

    Sayano, A.; Sutoh, C.; Suyama, S.; Itoh, Y.; Nakagawa, S.

    SiC matrix composites reinforced with continuous SiC-based fibres using reaction sintering (RS) for matrix processing were produced and their mechanical and physical properties were studied. Mechanical behaviour of SiCf/SiC (RS) composites in tension and in flexure exhibits improved toughness and a non-catastrophic failure due to fibre crack bridging and pullout from the matrix, and the composites exhibit high thermal conductivity, high Young's modulus and reduced porosity. Moreover, SiCf/SiC (RS) composites showed improved thermal shock resistance in comparison to monolithic RS-SiC. SiC matrix processing by RS leads to reduced production times and lower costs when compared with other methods such as polymer impregnation and pyrolysis (PIP) or chemical vapour infiltration (CVI). Composite prototypes were also produced for feasibility demonstration, and it was verified that the method could be applied to produce large parts and complex shapes.

  11. Silicon carbide whisker reinforced composites and method for making same

    DOEpatents

    Wei, G.C.

    1984-02-09

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties, especially increased fracture toughness. In the formation of these ceramic composites, the single-crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al/sub 2/O/sub 3/, mullite, or B/sub 4/C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600 to 1950/sup 0/C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m/sup 1/2/ which represents as much as a two-fold increase over that of the matrix material.

  12. Dry Sliding Wear behaviour of Aluminium-Red mud- Tungsten Carbide Hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Devi Chinta, Neelima; Selvaraj, N.; Mahesh, V.

    2016-09-01

    Red mud is an industrial waste obtained during the processing of alumina by Bayer's process. An attempt has been made to utilize the solid waste by using it as the reinforcement material in metal matrix composites. Red mud received from NALCO has been subjected for sieve analysis and milled to 42 nanometers using high energy ball mill. Red mud is used as a reinforcement material in Pure Aluminium matrix composite at 2%, 4%, and 6% weight at 100 microns level as well as 42 nano meters along with 4%Tungsten carbide by weight. Micro and Nano structured red mud powders, Tungsten carbide powder and Aluminium is mixed in a V-Blender, compacted at a pressure of 40 bar and samples are prepared by conventional sintering with vacuum as medium. In this current work, dry sliding wear characteristics at normal and heat treatment conditions are investigated with optimal combination of Aluminium, Tungsten carbide and different weight fractions of micro and nano structured red mud powder.

  13. Isotopic Composition of Barium in Single Presolar Silicon Carbide Grains

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2002-01-01

    We have measured Ba isotope distributions in individual presolar SiC grains. We find that the Ba isotopic composition in mainstream SiC grains is consistent with models of nucleosynthesis in low to intermediate mass asymptotic giant branch (AGB) stars. Additional information is contained in the original extended abstract.

  14. Modified Process For Formation Of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1996-01-01

    Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.

  15. Microstructure and orientation effects on properties of discontinuous silicon carbide/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Hoffman, C. A.

    1984-01-01

    Composite panels containing up to 40 vol % discontinuous silicon carbide SiC whisker, nodule, or particulate reinforcement in several aluminum matrices are commercially fabricated and the mechanical properties and microstructual characteristics are evaluated. The yield and tensile strengths and the ductility are controlled primarily by the matrix alloy, the temper condition, and the reinforcement content. Particulate and nodule reinforcements are as effective as whisker reinforcement. Increased ductility is attributed to purer, more uniform starting materials and to more mechanical working during fabrication. Comparing mechanical properties with those of other aluminum alloys shows that these low cost, lightweight composites demonstrate very good potential for application to aerospace structures.

  16. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  17. Carbide/Fluoride/Silver Self-Lubricating Composite

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1987-01-01

    Bearing coatings survive at operating temperatures up to 870 degrees C. PS200 composite self-lubricating coating for bearing applications operating at temperatures above failure points of traditional solid lubricants. Excellent friction and wear performance in oxidizing atmospheres up to 1,600 degrees F and reducing atmospheres up to 1,400 degrees F. Performance needed for development of advanced heat engines as adiabatic diesel and Stirling engine.

  18. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    SciTech Connect

    Nagle, Denis; Zhang, Dajie

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  19. Gravitational effects on body composition in birds

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Sanchez P., O.; Burton, R. R.

    1975-01-01

    Gallinaceous birds, presenting a wide range of body size, were adapted physiologically to hyperdynamic environments, provided by chronic centrifugation. Chemical composition was measured directly on prepared carcasses, which were anatomically comparable, and more amenable to analysis than the intact body. Body mass and body fat decreased arithmetically with increasing field strength and also with increasing body mass. Water content of lean tissue increased in hyperdynamic environments, but irrespectively of body size.

  20. Nutritional assessment with body composition measurements

    SciTech Connect

    Shizgal, H.M.

    1987-09-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes.

  1. Iron aluminide-titanium carbide composites by pressureless melt infiltration -- microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.; Alexander, K.B.; Plucknett, K.P.

    1996-09-01

    In this investigation, processing of fully dense TiC-based cermets with iron aluminide (Fe-40 at. % Al) as a binder by pressureless melt infiltration has been clearly demonstrated. The carbide contents in these composites varied from 70 to 85 vol. %. Specimens with 30 vol. % intermetallic exhibited bend strengths of 1034 MPa, fracture toughness of 18 MPa{center_dot}m{sup 1/2} and a Rockwell (R{sub A}) hardness of 83.5. Further improvements in bend strengths may be possible by controlling the grain size and by modifications of the Fe40Al/TiC interface strengths.

  2. Formation of boron nitride and boron carbide composite by nitrogen implantation at elevated temperature

    NASA Astrophysics Data System (ADS)

    Yu, N.; Romero-Borja, F.; Zhang, Z. H.; Cui, X. T.; Liu, J. R.; Wood, L. T.; Chu, W. K.; Marton, D.; Rabalais, J. W.; Forster, K. M.; Reeber, R. R.

    1993-09-01

    Boron carbide (B4C) is a wear resistant material with hardness slightly less than that of diamond. It has an excellent strength to weight ratio and relatively high toughness under controlled processing. These essential mechanical properties make B4C an ideal candidate for cutting tool and bearing applications. We will demonstrate that hexagonal boron nitride (h-BN), a good solid lubricant, can be formed on B4C surfaces through high temperature (850 °C) nitrogen ion implantation. The formation of composite B4C and h-BN on the B4C surface can potentially reduce surface friction coefficients, making the material more attractive for tribological applications.

  3. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    SciTech Connect

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-06

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900 Degree-Sign C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W{sub 2}C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  4. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-01

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900°C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W2C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  5. Evaluation of Body Composition: Why and How?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of human body composition in vivo remains a critical component in the assessment of nutritional status of an individual.Whereas traditional measurements of standing height and body weight provide information on body mass index and, hence, the risk of some chronic diseases, advanced techno...

  6. Development of high temperature materials for solid propellant rocket nozzle applications. [tantalum carbides-tungsten fiber composites

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Honeycutt, L., III

    1974-01-01

    Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.

  7. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  8. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  9. Silicon Carbide Shapes.

    DTIC Science & Technology

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  10. Shock response of boron carbide based composites infiltrated with magnesium alloys

    NASA Astrophysics Data System (ADS)

    Kafri, Mathan; Dariel, Moshe; Frage, Nahum; Zaretsky, Eugene

    2011-06-01

    The fully dense composites were obtained by vacuum infiltrating the boron carbide compacts (80% green density) with liquid AZ91 magnesium alloy (850 °C) and with the melt of 50/50 AZ91-silicon mixture (1050 °C). The densities, the elastic moduli and the Vickers hardness values of the obtained composites were, respectively, 2.44 g/cm3 and 2.54 g/cm3, 300 and 350 GPa, and 1200 and 1800 HV. The impact response of the composites was studied in a series of VISAR-instrumented planar impact experiments with velocities of W and Cu impactors ranged from 100 to 1000 m/s. It was found that velocity histories recorded for the composites produced by infiltration with Mg-Si alloy contain a distinct elastic precursor front followed by a plastic ramp. On the contrary, the velocity histories of the composites infiltrated with AZ91 do not display any step-like front; the amplitude of the elastic wave grows gradually from zero level and transforms smoothly into the plastic front. The influence of the composites microstructure on the compressive elastic-plastic behavior and on the dynamic tensile (spall) strength is discussed.

  11. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles

    SciTech Connect

    Kang, Qiping; He, Xinbo Ren, Shubin; Liu, Tingting; Liu, Qian; Wu, Mao; Qu, Xuanhui

    2015-07-15

    An effective method for preparing tungsten carbide coating on diamond surfaces was proposed to improve the interface bonding between diamond and copper. The WC coating was formed on the diamond surfaces with a reaction medium of WO{sub 3} in mixed molten NaCl–KCl salts and the copper–diamond composites were obtained by vacuum pressure infiltration of WC-coated diamond particles with pure copper. The microstructure of interface bonding between diamond and copper was discussed. Thermal conductivity and thermal expansion behavior of the obtained copper–diamond composites were investigated. Results indicated that the thermal conductivity of as-fabricated composite reached 658 W m{sup −} {sup 1} K{sup −} {sup 1}. Significant reduction in coefficient of thermal expansion of the composite compared with that of pure copper was obtained. - Highlights: • WC coating was successfully synthesized on diamond particles in molten salts. • WC coating obviously promoted the wettability of diamond and copper matrix. • WC coating greatly enhanced the thermal conductivity of Cu–diamond composite. • The composites are suitable candidates for heat sink applications.

  12. Microwave sintering of boron carbide

    DOEpatents

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  13. Assessing body composition in infants and toddlers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare different body composition techniques in infants and toddlers. Anthropometric measures including mid-upper arm circumference (MAC), triceps skinfold thickness (TSF), and weight-for-height or -length Z-scores (WHZ), and measures of body fat mass assessed wit...

  14. Measurement of Body Composition in Children.

    ERIC Educational Resources Information Center

    Lohman, T. G.

    1982-01-01

    Identification and treatment of obesity in children is believed to be an important factor in its control during the adult years. Laboratory and field methods for body composition measurement are described along with estimates of body fat content from anthropometric dimensions. (CJ)

  15. Analysis of alumina-based titanium carbide composites by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmad, Kaleem; Tawfik, Walid; Farooq, Wazirzada A.; Singh, Jagdish P.

    2014-06-01

    In this work, alumina (Al2O3) containing different volume % of titanium carbide (TiC) ranging from 0 to 30 were consolidated by the novel spark plasma sintering. The spectroscopic analysis of the plasma generated by irradiation of laser Nd:YAG (λ = 1,064 nm) on different concentrations of the composites in air atmospheric pressure was performed. The qualitative examination of the composites confirms the presence of aluminum, titanium, and carbon as major elements, while magnesium and sodium have been found as minor trace elements. Plasma parameters were estimated by assuming the LTE conditions for optically thin plasma. The electron density and temperature were evaluated by using the Stark broadening and intensity of selected aluminum emission lines, respectively. The addition of TiC to Al2O3 shows a linear behavior with plasma temperature corroborated by the calibration curve of Ti in the composites. The results suggest that calibration curve between plasma temperature and the composites can be used to estimate different concentrations of TiC in Al2O3 without analyzing the whole elements in the composites and thus opens up new applications of LIBS in ceramic industry.

  16. Deposition of silicon carbide using the chemical vapor composites process: Process characterization and comparison with RASSPVDN model predictions

    SciTech Connect

    Allendorf, M.D.; Hurt, R.H.; Yang, N. ); Reagan, P.; Robbins, M. )

    1993-07-01

    In this work, we explore the use of the chemical vapor composites (CVC) process to increase the rates of silicon carbide (SiC) growth on graphite substrates. Large SiC seed particles are used that deposit by gravity-driven sedimentation. The results show that addition of large ([ital d][sub [ital p

  17. [Body composition and comorbidity in the elderly].

    PubMed

    Bonnefoy, Marc; Gilbert, Thomas

    2015-03-01

    Obesity and excess in fat versus lean mass is well known to enhance the risk of mortality and morbidity. Several recent works have pointed the importance of analysing more precisely body composition for the assessment of prognosis of patients in terms of cardiovascular outcomes and mortality. The body mass index (BMI), commonly used for defining obese patients, does not give sufficient indication on the body composition and distribution of fat mass. In the elderly population, relative excess in fat mass associated with a decrease in lean mass is frequently observed. In such situations of sarcopenic obesity, the relative weight stability can be misleading. Sarcopenic obesity is an emerging public health problem in the geriatric population. It appears to be the situation with the worst prognosis for cardiovascular risk. In addition, recent works have highlighted the major impact of visceral fat, clearly linked with cardiovascular events. Body composition has also an impact on other pathologic conditions such as dementia, sleep apnoea or cancer. The links between body composition and morbidity in the elderly population are presented in this review, with emphasis on adipokines and their interactions with other organs such as the heart, liver, skeletal muscle or bones. More precise measurements of body composition, rather than BMI alone, should be developed in the elderly population.

  18. Body composition analysis for healthy Italian vegetarians.

    PubMed

    Siani, V; Mohamed, E I; Maiolo, C; Di Daniele, N; Ratiu, A; Leonardi, A; De Lorenzo, A

    2003-10-01

    The elementary nutritional needs of vegetarians are totally, or in great part, supplied by vegetarian food; thus the body composition of vegetarians could differ from that of omnivorous persons. The objective of the present study was to compare healthy Italian vegetarians to healthy omnivorous individuals in terms of body composition, determined using dual X-ray absorptiometry. The study population consisted of 20 vegetarians [mean age (+/-SD), 34.78+/-15.07 years; mean BMI, 22.41+/-2.15 kg/m(2)] and 10 omnivorous persons matched for age and BMI. We found no significant differences between the two groups in terms of fat mass, lean body mass, soft tissue, bone mineral content, or bone mineral density. These findings suggest that the vegetarian diet does not induce negative alterations in body composition.

  19. Elastic Moduli and Damping of Vibrational Modes of Aluminum/Silicon Carbide Composite Beams

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning

    1996-01-01

    Elastic and shear moduli were determined for two aluminum matrix composites containing 20 and 40 volume percent discontinuous silicon carbide, respectively, using transverse, longitudinal, and torsional vibrational modes of specimens prepared as thin beams. These moduli are consistent with those determined from stress-strain measurements. The damping factors for these modes were also determined. Thermal properties are used to show that part of the damping of transverse modes is caused by the transverse thermal currents discussed by C. Zener (thermo-elastic damping); this damping is frequency-dependent with a maximum damping factor of approximately 0.002. The remaining damping is frequency-independent, and has roughly similar values in transverse, longitudinal, and torsional modes: approximately 0.0001.

  20. Body Composition Changes Associated With Methadone Treatment

    PubMed Central

    Sadek, Gamal E.; Chiu, Simon; Cernovsky, Zack Z.

    2016-01-01

    Background: Methadone is associated with a statistically significant increase in BMI in the first 2 years of treatment. Objectives: To evaluate the changes of body composition (bone mass, % fat, % muscle mass, % water, and basal metabolic rate) related to this increase. Patients and Methods: Changes in body composition were monitored, via bioelectrical impedance, in 29 patients in methadone treatment for opiate dependency (age 18 to 44, mean = 29.3, SD = 7.0, 13 men, 16 women). Results: Within one year from admission to treatment, a statistically significant (t-tests, P < 0.05) increase was noted in their body mass index (BMI), % of body fat, average body mass, and average basal metabolic rate, and relative decrease in their % of muscle mass and % of bone mass. Neither absolute bone mass nor muscle mass changed significantly. Conclusions: Physicians involved in care of methadone patients should recommend dietary and lifestyle changes to improve their overall health. PMID:27162765

  1. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  2. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  3. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    SciTech Connect

    Sathiskumar, R.; Murugan, N.; Dinaharan, I.; Vijay, S.J.

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  4. Scatter in Carbon/Silicon Carbide (C/SiC) Composites Quantified

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Gyekenyesi, John P.; Mital, Subodh K.

    2004-01-01

    Carbon-fiber-reinforced silicon carbide matrix (C/SiC) composites processed by chemical vapor infiltration are candidate materials for aerospace thermal structures. Carbon fibers can retain properties at very high temperatures, but they are known to have poor oxidation resistance in adverse, high-temperature environments. Nevertheless, the combination of CVI-SiC matrix with higher stiffness and oxidation resistance, the interfacial coating, and additional surface-seal coating provides the necessary protection to the carbon fibers, and makes the material viable for high-temperature space applications operating under harsh environments. Furthermore, C/SiC composites, like other ceramic matrix composites (CMCs), exhibit graceful non-catastrophic failure because of various inherent energy dissipating mechanisms. The material exhibits nonlinearity in deformation even at very low stress levels. This is the result of the severe matrix microcracking present in the as processed composite because of large differences between the coefficients of thermal expansion of the fiber and the matrix. Utilization of these advanced composites in next generation space vehicles will require innovative structural configurations, updated materials, and refined analyses. Structural safety issues for these vehicles are in direct competition with performance and cost. One would have to quantify the uncertainties associated with the design using formal probabilistic methods. Specifically four fundamental aspects on which analyses are based-- (1) loading conditions, (2) material behavior, (3) geometrical configurations, and (4) structural connections between the composite components and baseline structure--are stochastic in nature. A direct way to formally account for uncertainties is to develop probabilistic structural analysis methods where all participating variables are described by appropriate probability density functions. The present work, however, focuses on analyzing the stochastic

  5. Solid Oxide Membrane (SOM) Process for Facile Electrosynthesis of Metal Carbides and Composites

    NASA Astrophysics Data System (ADS)

    Zou, Xingli; Chen, Chaoyi; Lu, Xionggang; Li, Shangshu; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2017-02-01

    Metal carbides (MCs) and composites including TiC, SiC, TaC, ZrC, NbC, Ti5Si3/TiC, and Nb/Nb5Si3 have been directly electrosynthesized from their stoichiometric metal oxides/carbon (MOs/C) mixture precursors by an innovative solid oxide membrane (SOM)-assisted electrochemical process. MOs/C mixture powders including TiO2/C, SiO2/C, Ta2O5/C, ZrO2/C, Nb2O5/C, TiO2/SiO2/C, Nb2O5/SiO2 were pressed to form porous pellets and then served as cathode precursors. A SOM-based anode, made from yttria-stabilized zirconia (YSZ)-based membrane, was used to control the electroreduction process. The SOM electrochemical process was performed at 1273 K (1000 °C) and 3.5 to 4.0 V in molten CaCl2. The oxygen component contained in the MOs/C precursors was gradually removed during electroreduction process, and thus, MOs/C can be directly converted into MCs and composites at the cathode. The reaction mechanism of the electroreduction process and the characteristics of the obtained MCs and composites products were systematically investigated. The results show that the electrosynthesis process typically involves compounding, electroreduction, dissolution-electrodeposition, and in situ carbonization processes. The products can be predesigned and controlled to form micro/nanostructured MCs and composites. Multicomponent multilayer composites (MMCs) have also been tried to electrosynthesize in this work. It is suggested that the SOM-assisted electroreduction process has great potential to be used for the facile and green synthesis of various MCs and composites.

  6. Some aspects of machining cast Al-SiCp composites with conventional high speed steel and tungsten carbide tools

    NASA Astrophysics Data System (ADS)

    Narahari, P.; Pai, B. C.; Pillai, R. M.

    1999-10-01

    An attempt was made to evaluate machining of eutectic Al-Si (LM6) and hypoeutectic Al-Si (LM25) alloys reinforced with 10, 15, and 20% SiCp of two particle sizes using conventional high-speed steel (HSS) and tungsten carbide (WC) tools by varying cutting speed, feed, depth of cut, and environment. Machining of metal matrix composites (MMCs) is a difficult task using HSS and WC tools. The tool life of both these conventional tools was observed to decrease with increasing percentage and coarseness of SiCp in the composites. Tungsten carbide tools had a longer tool life than HSS under all the different conditions studied. Contrary to the known phenomenon of enhanced tool life in machining monolithic alloys with the use of cutting fluid, the tool life of WC/HSS tool in machining composites with cutting fluid was only 10 to 20% of that without cutting fluid.

  7. Electric Discharge Sintering and Joining of Tungsten Carbide--Cobalt Composite with High-Speed Steel Substrate

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide-cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide-cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  8. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  9. Estimation of body composition of pigs

    SciTech Connect

    Ferrell, C.L.; Cornelius, S.G.

    1984-04-01

    A study was conducted to evaluate the use of deuterium oxide (D2O) for in vivo estimation of body composition of diverse types of pigs. Obese (Ob, 30) and contemporary Hampshire X Yorkshire (C, 30) types of pigs used in the study were managed and fed under typical management regimens. Indwelling catheters were placed in a jugular vein of 6 Ob and 6 C pigs at 4, 8, 12, 18 and 24 wk of age. The D2O was infused (.5 g/kg body weight) as a .9% NaCl solution into the jugular catheter. Blood samples were taken immediately before and at .25, 1, 4, 8, 12, 24 and 48 h after the D2O infusion and D2O concentration in blood water was determined. Pigs were subsequently killed by euthanasia injection. Contents of the gastrointestinal tract were removed and the empty body was then frozen and later ground and sampled for subsequent analyses. Ground body tissue samples were analyzed for water, fat, N, fat-free organic matter and ash. Pig type, age and the type X age interaction were significant sources of variation in live weight, D2O pool size and all empty body components, as well as all fat-free empty body components. Relationships between age and live weight or weight of empty body components, and between live weight, empty body weight, empty body water or D2O space and weight of empty components were highly significant but influenced, in most cases, by pig type. The results of this study suggested that, although relationships between D2O space and body component weights were highly significant, they were influenced by pig type and were little better than live weight for the estimation of body composition.

  10. Method Developed for Improving the Thermomechanical Properties of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; DiCarlo, James A.

    2004-01-01

    Today, a major thrust for achieving engine components with improved thermal capability is the development of fiber-reinforced silicon-carbide (SiC) matrix composites. These materials are not only lighter and capable of higher use temperatures than state-of-the-art metallic alloys and oxide matrix composites (approx. 1100 C), but they can provide significantly better static and dynamic toughness than unreinforced silicon-based monolithic ceramics. However, for successful application in advanced engine systems, the SiC matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetime. Since the high-temperature structural life of ceramic materials is typically controlled by creep-induced flaw growth, a key composite property requirement is the ability to display high creep resistance under these conditions. Also, because of the possibility of severe thermal gradients in the components, the composites should provide maximum thermal conductivity to minimize the development of thermal stresses. State-of-the-art SiC matrix composites are typically fabricated via a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by high-performance fibers, (2) chemical vapor infiltration of a fiber coating material such as boron nitride (BN) into the preform, and (3) infiltration of a SiC matrix into the remaining porous areas in the preform. Generally, the highest performing composites have matrices fabricated by the CVI process, which produces a SiC matrix typically more thermally stable and denser than matrices formed by other approaches. As such, the CVI SiC matrix is able to provide better environmental protection to the coated fibers, plus provide the composite with better resistance to crack propagation. Also, the denser CVI SiC matrix should provide optimal creep resistance and thermal conductivity to the composite. However, for adequate preform infiltration, the CVI SiC matrix

  11. Matrix cracking and creep behavior of monolithic zircon and zircon silicon carbide fiber composites

    NASA Astrophysics Data System (ADS)

    Anandakumar, Umashankar

    In this study, the first matrix cracking behavior and creep behavior of zircon matrix silicon carbide fiber composites were studied, together with the fracture and creep behavior of the monolithic zircon. These behaviors are of engineering and scientific importance, and the study was aimed at understanding the deformation mechanisms at elevated temperatures. The first matrix cracking behavior of zircon matrix uniaxially reinforced with silicon carbide fiber (SCS-6) composites and failure behavior of monolithic zircon were studied as a function of temperature (25°C, 500°C, and 1200°C) and crack length in three point bending mode. A modified vicker's indentation technique was used to vary the initial crack length in monolithic and composite samples. The interfacial shear strength was measured at these temperatures from matrix crack saturation spacing. The composites exhibited steady state and non steady state behaviors at the three different temperatures as predicted by theoretical models, while the failure stress of zircon decreased with increasing stress. The intrinsic properties of the composites were used to numerically determine the results predicted by three different matrix cracking models based on a fracture mechanics approach. The analysis showed that the model based on crack bridging analysis was valid at 25°C and 500°C, while a model based on statistical fiber failure was valid at 1200°C. Microstructural studies showed that fiber failure in the crack wake occurred at or below the matrix cracking stress at 1200°C, and no fiber failure occurred at the other two temperatures, which validated the results predicted by the theoretical models. Also, it was shown that the interfacial shear stress corresponding to debonding determined the matrix cracking stress, and not the frictional shear stress. This study showed for the first time, the steady state and non-steady state matrix cracking behavior at elevated temperatures, the difference in behavior between

  12. Top 10 Research Questions Related to Body Composition

    ERIC Educational Resources Information Center

    Going, Scott; Lee, Vinson; Blew, Rob; Laddu, Deepika; Hetherington-Rauth, Megan

    2014-01-01

    An understanding of body composition is crucial to understanding human health, disease, and function. Research in body composition has focused on the development of assessment methods, description of normal changes in body composition with growth and development and aging, and the changes that occur in body composition in response to challenges…

  13. Comparison of Some Secondary Body Composition Algorithms

    ERIC Educational Resources Information Center

    Sutton, Robert A.; Miller, Carolyn

    2006-01-01

    Body composition measurements vary greatly in degree of measurement difficulty and accuracy. Hydrostatic weighing, chemical dilution or their equivalents were the accepted "gold" standards for assessing fat mass. Dual Energy X-ray Absorptiometry (DEXA) is fast replacing these techniques as the preferred standard. However, these direct measurement…

  14. Writing Bodies: Somatic Mind in Composition Studies.

    ERIC Educational Resources Information Center

    Fleckenstein, Kristie S.

    1999-01-01

    Discusses the somatic mind, a permeable materiality in which mind and body resolve into a single entity which is (re)formed by the constantly shifting boundaries of discursive and corporeal intertextualities. Addresses its importance in composition studies. Critiques the poststructuralist disregard of corporeality. (CR)

  15. Stress localization and size dependent toughening effects in silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Beaber, Aaron Ross

    Coatings with high wear resistance have generated a great deal of interest due to a diverse range of applications, including cutting tools, turbine blades, and biomedical joint replacements. Ceramic nanocomposites offer a potential combination of high strength and toughness that is ideal for such environments. In the current dissertation research, silicon and silicon carbide based films and nanostructures were deposited using a hybrid of chemical vapor deposition and nanoparticle ballistic impaction known as hypersonic plasma particle deposition (HPPD). This included SiC/Ti-based multilayers and Si-SiC core-shell composite nanotowers. Using a combination of nanoindentation and confocal Raman microscopy, the role of plasticity and phase transformations was studied during fracture events at small length scales. In a parallel study, HPPD synthesized Si nanospheres and vapor-liquid-solid (VLS) Si nanotowers were compressed uniaxially inside the TEM. These experiments confirmed inverse length scale dependent relationships for strength and toughness in Si based on dislocation pile-up and crack tip shielding mechanisms, respectively. A transition was also identified in the deformation of Si under anisotropic loading below a critical size and used as the basis for a new toughening mechanism in Si-SiC composites. Overall, these results demonstrate the importance of nanoscale confinement and localized stress in the design of mechanically robust nanocomposites.

  16. Recent advances and issues in development of silicon carbide composites for fusion applications

    SciTech Connect

    Nozawa, T.; Hinoki, Tetsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance L.; Henager, Charles H.; Hegeman, Hans

    2009-04-30

    Radiation-resistant advanced silicon carbide composites (SiC/SiC) have been developed as a promising candidate of the high-temperature operating advanced fusion DEMO reactor. With the completion of the “proof-of-principle” phase in development of “nuclear-grade” SiC/SiC, the R&D on SiC/SiC is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in 1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, 2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and 3) irradiation effects were specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength were specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  17. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  18. Reaction sintering of two-dimensional silicon carbide fiber-reinforced silicon carbide composite by sheet stacking method

    NASA Astrophysics Data System (ADS)

    Yoshida, Katsumi; Mukai, Hideki; Imai, Masamitsu; Hashimoto, Kazuaki; Toda, Yoshitomo; Hyuga, Hideki; Kondo, Naoki; Kita, Hideki; Yano, Toyohiko

    2007-08-01

    Two-dimensionally plain woven SiC fiber-reinforced SiC composite has been developed by reaction sintering using a sheet stacking method in order to further increase mechanical and thermal properties of the composite and to obtain flexibility of manufacturing process of 2D woven SiC/SiC composites which can be applied to the fabrication of larger parts. In addition, sinterability and mechanical properties of the composite were investigated. In this study, relative density of the composites was about 90-93% and a dense composite could be obtained by reaction sintering using the sheet stacking method. The bulk density and maximum bending strength of SiC/SiC composite with a C/SiC weight ratio of 0.6 were higher than that of the composite with C/SiC ratios of 0.5 or 0.7. The values were 2.9 g/cm 3 and 200 MPa, respectively. However, the composites obtained in this study fractured in almost brittle manner due to the lower fiber volume fraction.

  19. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  20. High-Performance Metal/Carbide Composites with Far-From-Equilibrium Compositions and Controlled Microstructures

    PubMed Central

    Hu, Liangfa; O’Neil, Morgan; Erturun, Veysel; Benitez, Rogelio; Proust, Gwénaëlle; Karaman, Ibrahim; Radovic, Miladin

    2016-01-01

    The prospect of extending existing metal-ceramic composites to those with the compositions that are far from thermodynamic equilibrium is examined. A current and pressure-assisted, rapid infiltration is proposed to fabricate composites, consisting of reactive metallic and ceramic phases with controlled microstructure and tunable properties. An aluminum (Al) alloy/Ti2AlC composite is selected as an example of the far-from-equilibrium systems to fabricate, because Ti2AlC exists only in a narrow region of the Ti-Al-C phase diagram and readily reacts with Al. This kind of reactive systems challenges conventional methods for successfully processing corresponding metal-ceramic composites. Al alloy/Ti2AlC composites with controlled microstructures, various volume ratios of constituents (40/60 and 27/73) and metallic phase sizes (42–83 μm, 77–276 μm, and 167–545 μm), are obtained using the Ti2AlC foams with different pore structures as preforms for molten metal (Al alloy) infiltration. The resulting composites are lightweight and display exceptional mechanical properties at both ambient and elevated temperatures. These structures achieve a compressive strength that is 10 times higher than the yield strength of the corresponding peak-aged Al alloy at ambient temperature and 14 times higher at 400 °C. Possible strengthening mechanisms are described, and further strategies for improving properties of those composites are proposed. PMID:27752106

  1. High-Performance Metal/Carbide Composites with Far-From-Equilibrium Compositions and Controlled Microstructures

    NASA Astrophysics Data System (ADS)

    Hu, Liangfa; O’Neil, Morgan; Erturun, Veysel; Benitez, Rogelio; Proust, Gwénaëlle; Karaman, Ibrahim; Radovic, Miladin

    2016-10-01

    The prospect of extending existing metal-ceramic composites to those with the compositions that are far from thermodynamic equilibrium is examined. A current and pressure-assisted, rapid infiltration is proposed to fabricate composites, consisting of reactive metallic and ceramic phases with controlled microstructure and tunable properties. An aluminum (Al) alloy/Ti2AlC composite is selected as an example of the far-from-equilibrium systems to fabricate, because Ti2AlC exists only in a narrow region of the Ti-Al-C phase diagram and readily reacts with Al. This kind of reactive systems challenges conventional methods for successfully processing corresponding metal-ceramic composites. Al alloy/Ti2AlC composites with controlled microstructures, various volume ratios of constituents (40/60 and 27/73) and metallic phase sizes (42–83 μm, 77–276 μm, and 167–545 μm), are obtained using the Ti2AlC foams with different pore structures as preforms for molten metal (Al alloy) infiltration. The resulting composites are lightweight and display exceptional mechanical properties at both ambient and elevated temperatures. These structures achieve a compressive strength that is 10 times higher than the yield strength of the corresponding peak-aged Al alloy at ambient temperature and 14 times higher at 400 °C. Possible strengthening mechanisms are described, and further strategies for improving properties of those composites are proposed.

  2. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  3. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.

  4. Women gaze behaviour in assessing female bodies: the effects of clothing, body size, own body composition and body satisfaction.

    PubMed

    Cundall, Amelia; Guo, Kun

    2017-01-01

    Often with minimally clothed figures depicting extreme body sizes, previous studies have shown women tend to gaze at evolutionary determinants of attractiveness when viewing female bodies, possibly for self-evaluation purposes, and their gaze distribution is modulated by own body dissatisfaction level. To explore to what extent women's body-viewing gaze behaviour is affected by clothing type, dress size, subjective measurements of regional body satisfaction and objective measurements of own body composition (e.g., chest size, body mass index, waist-to-hip ratio), in this self-paced body attractiveness and body size judgement experiment, we compared healthy, young women's gaze distributions when viewing female bodies in tight and loose clothing of different dress sizes. In contrast to tight clothing, loose clothing biased gaze away from the waist-hip to the leg region, and subsequently led to enhanced body attractiveness ratings and body size underestimation for larger female bodies, indicating the important role of clothing in mediating women's body perception. When viewing preferred female bodies, women's higher satisfaction of a specific body region was associated with an increased gaze towards neighbouring body areas, implying satisfaction might reduce the need for comparison of confident body parts; furthermore undesirable body composition measurements were correlated with a gaze avoidance process if the construct was less changeable (i.e. chest size) but a gaze comparison process if the region was more changeable (i.e. body mass index, dress size). Clearly, own body satisfaction and body composition measurements had an evident impact on women's body-viewing gaze allocation, possibly through different cognitive processes.

  5. Radiation-tolerant joining technologies for silicon carbide ceramics and composites

    SciTech Connect

    Katoh, Yutai; Snead, Lance L.; Cheng, Ting; Shih, Chunghao; Lewis, W. Daniel; Koyanagi, Takaaki; Hinoki, Tatsuya; Henager, Charles H.; Ferraris, Monica

    2014-05-01

    Silicon carbide (SiC) for nuclear structural applications, whether in the monolithic ceramic or composite form, will require a robust joining technology capable of withstanding the harsh nuclear environment. This paper presents significant progress made towards identifying and processing irradiation-tolerant joining methods for nuclear-grade SiC. In doing so, a standardized methodology for carrying out joint testing has been established consistent with the small volume samples mandated by neutron irradiation testing. Candidate joining technologies were limited to those that provide low induced radioactivity and included titanium diffusion bonding, Ti–Si–C MAX-phase joining, calcia–alumina glass–ceramic joining, and transient eutectic-phase SiC joining. Samples of these joints were irradiated in the Oak Ridge National Laboratory High Flux Isotope Reactor at 500 or 800 °C, and their microstructure and mechanical properties were compared to pre-irradiation conditions. Within the limitations of statistics, all joining methodologies presented retained their joint mechanical strength to ~3 dpa at 500 °C, thus indicating the first results obtained on irradiation-stable SiC joints. Finally, under the more aggressive irradiation conditions (800 °C, ~5 dpa), some joint materials exhibited significant irradiation-induced microstructural evolution; however, the effect of irradiation on joint strength appeared rather limited.

  6. Suspension Plasma Spraying of Sub-micron Silicon Carbide Composite Coatings

    NASA Astrophysics Data System (ADS)

    Mubarok, F.; Espallargas, N.

    2015-06-01

    Thermal spraying of silicon carbide (SiC) material is a challenging task since SiC tends to decompose during atmospheric spraying process. The addition of metal or ceramic binders is necessary to facilitate the bonding of SiC particles, allowing SiC composite coating to be deposited. In the conventional procedures, the binders are added through mechanical mixing of powder constituents, making it difficult to achieve homogeneous distribution. In the new procedure proposed in this work, the binder is delivered as a nano-film of the surface of the individual SiC particles through co-precipitation treatment. Suspension plasma spray (SPS) coating technique has been used with the aim at avoiding the decomposition of SiC typically expected with atmospheric techniques, such as atmospheric plasma spray. The deposited SiC coatings by SPS showed identical SiC phase peak as identified in the suspension feedstock, indicating that the nano-film binder was able to protect SiC particles from decomposition. Further analysis by XPS revealed that SiC particles underwent some minor oxidation. Unfortunately, all the SiC coatings exhibited poor mechanical performance due to low cohesive strength, high porosity, and powdery structure making the coatings vulnerable to grain pull-out. This was due to the absence of sintering process during the spraying process contributing to the low performance of SiC SPS coatings.

  7. The material performance of HSS (high speed steel) tools and its relation with chemical composition and carbide distribution

    NASA Astrophysics Data System (ADS)

    Darmawan, B.; Kusman, M.; Hamdani, R. A.

    2016-04-01

    The study aims to compare the performance of two types of material HSS (High Speed Steel) are widely used. It also will be the chemical composition and distribution of carbide particles therein. Two types of HSS are available in the market: HSS from Germany (Bohler) and HSS from China. This research employed the pure experimental design. It consists of two stages. The first, aims to test/operate lathe machines to determine the lifetime and performance of tools based on specified wear criteria. The second, characterization of microstructure using SEM-EDS was conducted. Firstly, grinding of toolss was done so that the toolss could be used for cutting metal in the turning process. Grinding processes of the two types of toolss were done at the same geometry, that is side rake angle (12°-18°), angle of keenness (60°-68°), and side relief angle (10°-12°). Likewise, machining parameters were set in the same machining conditions. Based on the results of the tests, it is found that to reach 0.2 mm wear point, toolss made of HSS from Germany needed 24 minutes, while toolss made of HSS from China needed 8 minutes. Next, microstructure tests using SEM/EDS were done. The results of the SEM tests indicate that the carbide particles of HSS from Germany were more evenly distributed than the carbide particles of HSS from China. Carbide compounds identified in HSS from China were Cr23C6 and Fe4Mo2C. Oxide impurity of Al2O3 was also found in the material. On the other hand, in HSS from Germany, no impurity and other carbide compounds were identified, except Cr23C6 and Fe4Mo2C, also Fe4W2C, and VC or V4C3.

  8. Re-determination of the reaction path parameters of silicon deposition for aerospace silicon carbide composites via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chandrasekaram, Sandeep D.

    Development of air travel technology is always increasing and fuel efficiency is one of the most important factors that's being looked into. For a 25% increase in fuel efficiency in the future aeroplanes, reduction in the weight of the engine is one of the factors that should be addressed while increasing the strength and power generated. For this purpose, General Electric Aviation has chosen Silicon Carbide as the material to build the turbine blades of its engines. Silicon carbide works best as it is strong, can withstand high temperature and lightweight. The downside of this material is that it reacts with water vapor at temperatures greater than 2700°F to form volatile Silicon hydroxide from Silicon dioxide, its protective layer; and furthermore it reduces to Silicon monoxide that vaporizes. To counter this problem, scientists at the National Aeronautics & Space Administration (NASA) have found that a rare earth silicate could be used as an environmental barrier coating (EBC) to prevent the exposure of Silicon Carbide to water vapor. The EBC can't be directly coated on the Silicon Carbide surface as it isn't chemically adhesive enough, therefore Silicon was chosen to act as the bond coat between the Silicon Carbide and EBC. The goal of this research is to design a reactor for the composites to be coated with Silicon using the reaction and diffusion kinetics determined at higher temperatures and different partial pressures compared to the standard electronics industry. Chemical Vapor Deposition is the technique that will be used in determining the necessary parameters. The findings from this research can be further used in optimizing the utilization of the reagents and optimizing the process economically.

  9. Reaction-Based SiC Materials for Joining Silicon Carbide Composites for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Singh, M.; Serizawa, H.; Katoh, Y.; Kohyama, A.

    2000-09-01

    The fabrication of large or complex silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) components for fusion energy systems requires a method to assemble smaller components that are limited in size by manufacturing constraints. Previous analysis indicates that silicon carbide should be considered as candidate joint materials. Two methods to obtain SiC joints rely on a reaction between silicon and carbon to produce silicon carbide. This report summarizes preliminary mechanical properties of joints formed by these two methods. The methods appear to provide similar mechanical properties. Both the test methods and materials are preliminary in design and require further optimization. In an effort to determine how the mechanical test data is influenced by the test methodology and specimen size, plans for detailed finite element modeling (FEM) are presented.

  10. COMPOSITION AND METHOD FOR COATING A CERAMIC BODY

    DOEpatents

    Blanchard, M.K.

    1958-11-01

    A method is presented for protecting a beryllium carbide-graphite body. The method consists in providing a ceramic coating which must contain at least one basic oxide component, such as CaO, at least one amphoteric oxide component, such as Al/sub 2/O/sub 3/, and at least one acidic oxide component, such as SiO/ sub 2/. Various specific formulations for this ceramic coating are given and the coating is applied by conventional ceramic techniques.

  11. Method for production of ceramic oxide and carbide bodies by polymer inclusion and decomposition

    SciTech Connect

    Quinby, T. C.

    1985-08-27

    A method for the preparation of thin, free-standing metal oxide films which are useful as nuclear accelerator target materials. Cations of any metal except those of Group IA and precious metals, such as, U, Zr, Nd, Ce, Th, pr or Cr, are absorbed on a thin film of polymeric material, such as, carboxymethylcellulose, viscose rayon or cellophane. The cation impregnated polymeric material is dried. Then the impregnated film is heated in an inert atmosphere to form a carbonized membrane. The carbonized membrane is oxidized to yield a thin, self-supporting, metal oxide membrane. Or, the membrane can be heated in an inert atmosphere to yield a thin, self-supporting, metal carbide-containing membrane.

  12. Method for production of ceramic oxide and carbide bodies by polymer inclusion and decomposition

    DOEpatents

    Quinby, Thomas C.

    1985-01-01

    A method for the preparation of thin, free-standing metal oxide films which are useful as nuclear accelerator target materials. Cations of any metal except those of Group IA and precious metals, such as, U, Zr, Nd, Ce, Th, pr or Cr, are absorbed on a thin film of polymeric material, such as, carboxymethylcellulose, viscose rayon or cellophane. The cation impregnated polymeric material is dried. Then the impregnated film is heated in an inert atmosphere to form a carbonized membrane. The carbonized membrane is oxidized to yield a thin, self-supporting, metal oxide membrane. Or, the membrane can be heated in an inert atmosphere to yield a thin, self-supporting, metal carbide-containing membrane.

  13. Method for production of ceramic oxide and carbide bodies by polymer inclusion and decomposition

    DOEpatents

    Quinby, T.C.

    1984-08-30

    A method for the preparation of thin, free-standing metal oxide films which are useful as nuclear accelerator target materials is described. Cations of any metal except those of Group IA and precious metals, such as, U, Zr, Nd, Ce, Th, Pr or Cr, are absorbed on a thin film of polymeric material, such as carboxymethylcellulose, viscose rayon or cellophane. The cation impregnated polymeric material is dried. Then the impregnated film is heated in an inert atmosphere to form a carbonized membrane. The carbonized membrane is oxidized to yield a thin, self-supporting, metal oxide membrane. Or, the membrane can be heated in an inert atmosphere to yield a thin, self-supporting, metal carbide-containing membrane.

  14. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process densifying porous silicon-carbide bodies

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1994-05-17

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R[sup 1])(R[sup 2])Si--C[triple bond]C-(R[sup 3])(R[sup 4])Si--CH[double bond]CH--][sub n]--, wherein n[>=]2; and each R[sup 1], R[sup 2], R[sup 3], and R[sup 4] is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  15. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process densifying porous silicon-carbide bodies

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1994-05-17

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R.sup.1)(R.sup.2)Si--C.tbd.C--(R.sup.3)(R.sup.4)Si--CH=CH--].sub.n-- , wherein n.gtoreq.2; and each R.sup.1, R.sup.2, R.sup.3, and R.sup.4 is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  16. DEXA body composition changes among 140 conscripts.

    PubMed

    Mattila, V M; Tallroth, K; Marttinen, M; Ohrankammen, O; Pihlajamaki, H

    2009-05-01

    The aim of the study was to determine changes in body composition and physical fitness during military service. A prospective cohort study of 140 healthy male conscripts was conducted. We examined subject characteristics, aerobic performance and muscle strength, and assessed body composition using dual-energy X-ray absorptiometry (DEXA) three times. Conscripts' mean baseline weight (79.5 kg) decreased by 2 kg during the first 3 months, but increased by 0.9 kg during the second 3-month period (p<0.001). Fat mass measured by DEXA decreased by 3.2 kg during the first but increased by 0.8 kg during the second 3-month period (p<0.001). Throughout the 6-month study, an increase was seen in distance of 12-min run test (from 2 380 m to 2 530 m; p<0.001), and muscle strength score (from 6.5 to 9.5 p<0.001). Finnish military training seems to have beneficial effects on physical fitness. However, considering the relatively modest changes in body fat and physical fitness seen in conscripts with average BMIs at baseline, design of diverse training programmes for the varying baseline BMI levels are warranted to improve the physical fitness results.

  17. Processing - microstructure relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Lee, Jinil

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO 2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. The feasibility of the CVD-ZrO2 coating as a useful interphase for SiC/SiC composites was investigated with emphasis on developing critical processing-microstructure relationships. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 (t-ZrO2) to monoclinic ZrO2 (m-ZrO2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. The pre-delamination occurred as a result of (i) continuous formation of t-ZrO2 nuclei on the deposition surface; (ii) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (iii) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. We also discovered that low oxygen partial pressure in the CVD reactor was required for the nucleation of t-ZrO2 and was ultimately responsible for the delamination behavior. The effects of oxygen partial pressure on the nucleation behavior of the CVD-ZrO2 coating was systematically studied by intentionally adding the controlled amount of O2 into the CVD chamber. Characterization results suggested that the number density of t-ZrO2 nuclei apparently decreased with increasing the oxygen partial pressure from 0.004 to 1.6 Pa. Also, the coating layer became more columnar and contained larger m-ZrO2 grains. The observed relationships between the oxygen partial pressure and the morphological

  18. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    SciTech Connect

    Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

  19. Microstructure-property relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Li, Hao

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.

  20. Effects of chronic acceleration on body composition

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  1. Carbide coated fibers in graphites-aluminum composites. [(fabrication of metal matrix composites)

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1976-01-01

    Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown.

  2. Composites comprising silicon carbide fibers dispersed in magnesia-aluminate matrix and fabrication thereof and of other composites by sinter forging

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1989-10-03

    A novel ceramic-ceramic composite of a uniform dispersion of silicon carbide fibers in a matrix of MgO.multidot.nAl.sub.2 O.sub.3 wherein n ranges from about 1 to about 4.5, said composite comprising by volume from 1 to 50% silicon carbide fibers and from 99 to 50% MgO.multidot.nAl.sub.2 O.sub.3. The composite is readily fabricated by forming a powder comprising a uniform dispersion of silicon carbide fibers in poorly crystalline phase comprising MgO and Al.sub.2 O.sub.3 in a mole ratio of n and either (a) hot pressing or preferably (b) cold pressing to form a preform and then forging utilizing a temperature in the range of 1100.degree. C. to 1900.degree. C. and a strain rate ranging from about 10.sup.-5 seconds .sup.-1 to about 1 seconds .sup.-1 so that surfaces cracks do not appear to obtain a shear deformation greater than 30%.

  3. [Body composition and polycystic ovary syndrome].

    PubMed

    Zabuliene, Lina; Tutkuviene, Janina

    2010-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine metabolic disorders of reproductive age women. The main signs of PCOS are as follows: androgen excess, menstrual dysfunction, infertility, obesity, and other numerous health problems. By different authors, the disorder affects 2-28% of reproductive age women. Polycystic ovary syndrome is characterized by presence of hyperandrogenism, anovulation, menstrual cycle disturbances, also by the other metabolic changes. The lack of well-defined and universally accepted diagnostic criteria makes identification of this syndrome confusing to many clinicians. There are only few studies concerning the correlations between phenotypic expression, body composition and PCOS, and relationship with the processes of growth and sexual maturation and various environmental factors (nutrition, physical activity, stress, and other factors). There is a lack of knowledge about further PCOS development and prognosis, considering the individual and environmental factors. Variation in human body composition and shape ranges considerably: many body size and shape indices (height, weight, body composition, and proportions) are the result of long evolution process and adaptation to environment. Obviously, the morphological body parameters, physiological and biochemical indices are complex and compound the interdependent system. By current literature, more than 50% of women are overweight or obese. If waist circumference and waist-to-hip ratio of women with PCOS increase, reproductive function and metabolic state of a woman is altered more than in cases when there are no changes in these parameters. The investigations of the strongest sexual dimorphism sign--the subcutaneous and visceral fat topography--showed that women with PCOS have greater adipose tissue mass in the areas of the abdomen, waist, and upper arms than control women. It is known that some indices of sexual dimorphism may be considered as the morphological signs of

  4. Handbook of refractory carbides and nitrides: Properties, characteristics, processing and applications

    SciTech Connect

    Pierson, H.O.

    1997-12-31

    This reference work provides a complete review of the structure properties, processing and applications of refractory carbides and nitrides. The contents include: the refractory carbides; interstitial carbides, structure and composites; titanium, zirconium, and hafnium carbides; vanadium, niobium and tantalum carbides; chromium, molybdenum, and tungsten carbides; covalent carbides--structure and composition; characteristics and properties of silicon carbide and boron carbide; the refractory nitrides; interstitial nitrides--structure and composition; interstitial nitrides--properties and general characteristics; covalent nitrides--composition and structure; covalent nitrides--properties and general characteristics; processing of refractory carbides and nitrides and applications of refractory carbides and nitrides.

  5. Ultrasound: Which role in body composition?

    PubMed

    Bazzocchi, Alberto; Filonzi, Giacomo; Ponti, Federico; Albisinni, Ugo; Guglielmi, Giuseppe; Battista, Giuseppe

    2016-08-01

    Ultrasound is a non-invasive, fast, relatively inexpensive and available tool for estimating adiposity in clinical practice, and in several research settings. It does not expose patients to ionizing radiation risks, making the method ideal for the evaluation, and for follow-up studies. Several parameters and indexes based on adipose tissue thickness have been introduced and tested, and these have been correlated with clinical and laboratoristic parameters. Moreover, ultrasound can also be directed to the estimation of adipose tissue and intracellular fat indirectly, at cellular-molecular level: an opportunity for many radiologists who already and sometimes unconsciously perform "body composition" assessment when looking at the liver, at muscle as well as at other organs. However, standardized procedure and parameters are needing to improve accuracy and reproducibility. The purposes of this review are: 1) to provide a complete overview of the most used and shared measurements of adiposity; 2) to analyze technical conditions, accuracy, and clinical meaning of ultrasound in the study of body composition; 3) to provide some elements for the use of ultrasound in the evaluation of intra-cellular lipids accumulation, in two hot spots: liver and skeletal muscle.

  6. Body composition in remission of childhood cancer

    NASA Astrophysics Data System (ADS)

    Tseytlin, G. Ja; Anisimova, A. V.; Godina, E. Z.; Khomyakova, I. A.; Konovalova, M. V.; Nikolaev, D. V.; Rudnev, S. G.; Starunova, O. A.; Vashura, A. Yu

    2012-12-01

    Here, we describe the results of a cross-sectional bioimpedance study of body composition in 552 Russian children and adolescents aged 7-17 years in remission of various types of cancer (remission time 0-15 years, median 4 years). A sample of 1500 apparently healthy individuals of the same age interval was used for comparison. Our data show high frequency of malnutrition in total cancer patients group depending on type of cancer. 52.7% of patients were malnourished according to phase angle and percentage fat mass z-score with the range between 42.2% in children with solid tumors located outside CNS and 76.8% in children with CNS tumors. The body mass index failed to identify the proportion of patients with malnutrition and showed diagnostic sensitivity 50.6% for obesity on the basis of high percentage body fat and even much less so for undernutrition - 13.4% as judged by low phase angle. Our results suggest an advantage of using phase angle as the most sensitive bioimpedance indicator for the assessment of metabolic alterations, associated risks, and the effectiveness of rehabilitation strategies in childhood cancer patients.

  7. Tribological composition optimization of chromium-carbide-based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.

  8. Validity of body composition methods across ethnic population groups.

    PubMed

    Deurenberg, P; Deurenberg-Yap, M

    2003-10-01

    Most in vivo body composition methods rely on assumptions that may vary among different population groups as well as within the same population group. The assumptions are based on in vitro body composition (carcass) analyses. The majority of body composition studies were performed on Caucasians and much of the information on validity methods and assumptions were available only for this ethnic group. It is assumed that these assumptions are also valid for other ethnic groups. However, if apparent differences across ethnic groups in body composition 'constants' and body composition 'rules' are not taken into account, biased information on body composition will be the result. This in turn may lead to misclassification of obesity or underweight at an individual as well as a population level. There is a need for more cross-ethnic population studies on body composition. Those studies should be carried out carefully, with adequate methodology and standardization for the obtained information to be valuable.

  9. A general approach towards carbon supported metal carbide composites for cobalt redox couple based dye-sensitized solar cells as counter electrodes

    NASA Astrophysics Data System (ADS)

    Guo, Hongyue; Han, Qianji; Gao, Chenjing; Zheng, Haihuo; Zhu, Yajing; Wu, Mingxing

    2016-11-01

    In this work, a feasible method is put forward to synthesize carbon supported transition metal carbide composites (Cr3C2-C, Mo2C-C, WC-C, VC-C, NbC-C, TaC-C, and TiC-C, et al.) by utilizing metal chlorides as metal sources, and phenolic resin as carbon source. As demonstrated by the cyclic voltammetry results, the carbon supported carbide composites present higher peak current densities as well as lower peak-to-peak separations. Moreover, the electrochemical impedance spectroscopy results indicate lower charge transfer resistance over the pristine carbides. Compared with the carbides, the carbon supported carbide composites show much higher catalytic activities towards the cobalt redox couple regeneration in dye-sensitized solar cells (DSCs) as counter electrode. In the DSCs system, the devices using the TiC-C, VC-C, and WC-C composite counter electrodes display power conversion efficiencies of 8.85%. 9.75% and 9.42%, respectively, which are much higher than those of the counterparts utilizing TiC, VC and WC counter electrodes.

  10. Effect of body composition methodology on heritability estimation of body fatness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male ...

  11. Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable

    NASA Astrophysics Data System (ADS)

    Werheit, Helmut

    2016-10-01

    The complex, highly distorted structure of boron carbide is composed of B12 and B11C icosahedra and CBC, CBB and B□B linear elements, whose concentration depends on the chemical composition each. These concentrations are shown to be consistent with lattice parameters, fine structure data and chemical composition. The respective impacts on lattice parameters are estimated and discussed. Considering the contributions of the different structural components to the energy of the overall structure makes the structure and its variation within the homogeneity range reasonable; in particular that of B4.3C representing the carbon-rich limit of the homogeneity range. Replacing in B4.3C virtually the B□B components by CBC yields the hypothetical moderately distorted B4.0C (structure formula (B11C)CBC). The reduction of lattice parameters related is compatible with recently reported uncommonly prepared single crystals, whose compositions deviate from B4.3C.

  12. Thermal expansion properties of carbon nanotube/silicon carbide particle-reinforced magnesium composites fabricated by squeeze infiltration

    NASA Astrophysics Data System (ADS)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byoung Woo; Yim, Si On; Park, Ik Min

    2016-03-01

    In this study, hybrid composites of AZ91 Mg alloy reinforced with carbon nanotubes (CNTs) and silicon carbide particles (SiCps) were successfully fabricated by the squeeze infiltration method. For this fabrication, hybrid preforms of CNTs (5, 10, and 15 vol%) and SiCps (30 vol%) were produced by vacuum suction from slurry mix containing organic and inorganic binders. Hybrid CNT+SiCp/AZ91 Mg composites were fabricated by squeeze infiltration, and the melt infiltrated well between the reinforcements during squeeze infiltration to produce a hybrid MMC with virtually no pores. Their microstructural and thermal expansion properties were evaluated The resulting CNT+SiCp/AZ91 Mg hybrid composites were found to exhibit a significant decrease in their coefficients of thermal expansion with an increase in the CNT volume fraction, owing to the near-zero thermal expansion of the CNTs and the CTE mismatch between them and the AZ91 Mg matrix.

  13. Structural Evaluation and Mechanical Properties of Aluminum/Tungsten Carbide Composites Fabricated by Continual Annealing and Press Bonding (CAPB) Process

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Ketabchi, Mostafa; Parvin, Nader; Drummen, G. P. C.

    2014-12-01

    In the present work, a novel technique is introduced called continual annealing and press bonding (CAPB) for the manufacturing of a bulk aluminum matrix composite dispersed with 10 vol pct tungsten carbide particles (Al/WCp composite). The microstructural evolution and mechanical properties of the Al/WCp composite during various CAPB cycles were examined by scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDX), and tensile testing. The microstructure of the fabricated composite after fourteen cycles of CAPB showed homogenous distribution of the WC particles in the aluminum matrix and strong bonding between the various layers. According to WDX analysis, the manufactured Al/WCp composite did not evidence the presence of additional elements. The results indicated that the tensile strength of the composites increased with the number of CAPB cycles, and reached a maximum value of 140 MPa at the end of the fourteenth cycle, which was 1.6 times higher than the obtained value for annealed aluminum (raw material, 88 MPa). Even though the elongation of the Al/WCp composite was reduced during the initial cycles of CAPB process, it increased significantly during the final cycles. SEM observation of fracture surfaces showed that the rupture mode in the CAPB-processed Al/WCp composite was of the shear ductile rupture type.

  14. Composition optimization of chromium carbide based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1987-01-01

    A test program to determine the optimum composition of chromium carbide based solid lubricant coatings for compliant gas bearings is described. The friction and wear properties of the coatings are evaluated using a foil gas bearing test apparatus. The various coatings were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized nickel-chromium alloy foils. The test bearings were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. The bearings were tested for 9000 start/stop cycles or until the specimen wear reached a predetermined failure level. In general, the addition of silver and eutectic to the chromium carbide base stock significantly reduced foil wear and increased journal coating wear. The optimum coating composition, PS212 (70 wt% metal bonded Cr3C2, 15 wt% Ag, 15% BaF2/CaF2 eutectic), reduced foil wear by a factor of two and displayed coating wear well within acceptable limits. The load capacity of the bearing using the plasma-sprayed coating prior to and after a run-in period was ascertained and compared to polished Inconel 718 specimens.

  15. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  16. Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power.

    PubMed

    Bordet, Alexis; Lacroix, Lise-Marie; Fazzini, Pier-Francesco; Carrey, Julian; Soulantica, Katerina; Chaudret, Bruno

    2016-12-19

    The use of magnetic nanoparticles to convert electromagnetic energy into heat is known to be a key strategy for numerous biomedical applications but is also an approach of growing interest in the field of catalysis. The heating efficiency of magnetic nanoparticles is limited by the poor magnetic properties of most of them. Here we show that the new generation of iron carbide nanoparticles of controlled size and with over 80 % crystalline Fe2.2 C leads to exceptional heating properties, which are much better than the heating properties of currently available nanoparticles. Associated to catalytic metals (Ni, Ru), iron carbide nanoparticles submitted to magnetic excitation very efficiently catalyze CO2 hydrogenation in a dedicated continuous-flow reactor. Hence, we demonstrate that the concept of magnetically induced heterogeneous catalysis can be successfully applied to methanation of CO2 and represents an approach of strategic interest in the context of intermittent energy storage and CO2 recovery.

  17. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    SciTech Connect

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; Ozawa, Kazumi; Koyanagi, Takaaki; Porter, Wallace D; Snead, Lance Lewis

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating the irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.

  18. Comparison of different body composition models in acromegaly.

    PubMed

    Brummer, R J; Lönn, L; Bengtsson, B A; Kvist, H; Bosaeus, I; Sjöström, L

    1996-12-01

    The aberrant body composition of 10 patients with active acromegaly was used to evaluate the validity and limitations of several models and methods to assess body composition. Body composition was determined using either a two-compartment model, dividing the body in a body fat (BF) compartment and a fat-free mass (FFM) compartment, or a four-compartment model in which the FFM compartment comprises the three following components: body cell mass, extracellular water and the fat-free extracellular solids. The measurement techniques consisted of anthropometry, bioelectrical impedance analysis (BIA)-applying various established regression equations-tritiated water dilution, whole body 40K-counting, and whole body computed tomography (CT). This latter method was used as the reference technique. Assessment of total body water using BIA - applying the RJL or Kushner equation-correlated significantly with the assessment using tritiated water dilution (P < 0.01). Body fat assessment using the two-compartment model based on either tritiated water dilution or BIA-applying the RJL or Lukaski equation-as well as body fat assessment using the four-compartment model based on tritiated water dilution and whole body 40K-counting were significantly correlated with body fat assessment using CT (P < 0.01) and resulted in good agreement with each other with respect to the absolute values of the body fat determination. BIA using other regression equations overestimated body fat by 7.2-13.7 kg. Whole body 40K-counting was significantly correlated with CT-determined muscle plus skin volume (P < 0.001). CT-calibrated anthropometric predictions significantly overestimated body fat. It is concluded that in patients with active acromegaly, the determination of body composition using either certain two-compartment models based on measurement of total body water or bioelectrical impedance, or a four-compartment model based on total body water and total body potassium measurements show good

  19. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2000-11-01

    The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in

  20. Body Composition and Somatotype of Male and Female Nordic Skiers

    ERIC Educational Resources Information Center

    Sinning, Wayne E.; And Others

    1977-01-01

    Anthropometric measurements (body composition and somatotype characteristics) for male and female Nordic skiers showed small values for measures of variance, suggesting that the subjects represented a select body type for the sport. (Author/MJB)

  1. The computation of body composition data using a programmable calculator.

    PubMed

    Withers, R T

    1986-01-01

    A body composition programme has been developed for the Texas Instruments TI 59 programmable calculator and printer. The methodology involves the determination of body density by underwater weighing with the ventilated residual volume being measured by helium dilution. Some of the labelled output variables included on the printout are: body density, percent body fat, fat mass and fat free mass.

  2. Human body composition: advances in models and methods.

    PubMed

    Heymsfield, S B; Wang, Z; Baumgartner, R N; Ross, R

    1997-01-01

    The field of human body composition research is reaching a mature stage in its development: The three interconnected areas that define body composition research--models and their rules, methodology, and biological effects--are well-defined and are actively investigated by scientists in diverse disciplines from many different nations; and methods are available for measuring all major atomic, molecular, cellular, and tissue-system level body composition components in research, clinical, and epidemiological settings. This review summarizes main body composition research concepts, examines new component-measurement methodologies, and identifies potential areas of future research.

  3. Validity of body impedance analysis for evaluating body composition in patients undergoing long-term hemodialysis.

    PubMed

    Noguchi, Masahiro; Yamaguchi, Shinichi; Koshino, Yoshitaka; Kimura, Akira; Miyagi, Shigeji

    2015-06-01

    [Purpose] This study assessed changes in body composition before and after dialysis in chronic hemodialysis patients and determined the relationships between various body composition parameters and blood lipid levels in these patients. [Subjects] The cross-sectional study included 19 dialysis outpatients (17 men and 2 women, aged 35-82 years). [Methods] Body mass index, body weight, percent body fat, and percent skeletal muscle were measured before and after dialysis by using body impedance analysis. Blood lipid levels were obtained from patients' clinical records. The body composition parameters before and after dialysis were compared using paired t-tests. Spearman's rank correlation coefficients were calculated to determine relationships between the body composition parameters, before and after dialysis, and the blood lipid levels. [Results] All body composition parameters differed significantly before and after dialysis. High-density lipoprotein cholesterol level significantly correlated with all the body composition parameters, whereas total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels significantly correlated with some of these parameters. The correlation coefficients revealed no major differences in the relationships between blood lipid parameters and body compositions before and after dialysis. [Conclusion] Our findings suggest that body composition parameters, whether measured before or after dialysis, can be used to evaluate obesity in longitudinal studies.

  4. Body composition in MesoAmerica.

    PubMed

    Solomons, N W; Mazariegos, M

    1995-03-01

    The fundamental paradigm for the region is short stature. Adult height is on the order of 160 cm for men and 140 cm for women. The timing of this delayed growth has been fixed to the first two years of life, when as much as 2 Z-scores of stature may be loss to the median of the NCHS reference. In the elderly of the region, we have the issue of being initially short and then suffering further loss of stature with age. The height/armspan ratio has proven instructive for exploring that change in height with age. It appears to be less than in Europeans. Demands of a rigorous agricultural lifestyle, the energy content and density of the diet, and the ravages of recurrent infection and parasitism comprise the environmental determinants of body composition in poor MesoAmerican population. They are conducive to a low storage of fat, with lean body mass being subject to response to infections. Because of the basic short stature but muscular maturity of children and adults, one questions whether the assumptions of proportionality of weight for height from the NCHS reference data apply, or whether MesoAmericans should be normally greater in weight for height than a comparably short North American. For some at the lower end of the stature scale, no international reference standards actually exist for adults. All than can be measured with microtoise, calliper, flexible tape and balance has long been recorded in MesoAmerican populations. Certain high-cost and facility- dependent technologies, such as nuclear magnetic resonance imaging and whole-body neutron activation analysis, are beyond the scientific economies of any part of the region. Dual energy x-ray absorbitometry instruments are available for clinical diagnosis in Mexico, Guatemala and Costa Rica, and could be turned to research ends. Underwater weighing has been practiced variously in MesoAmerica. Researchers in Guatemala have pioneered in the investigative use of bioelectrical impedance analysis to all ages from low

  5. REVIEW: Development of methods for body composition studies

    NASA Astrophysics Data System (ADS)

    Mattsson, Sören; Thomas, Brian J.

    2006-07-01

    This review is focused on experimental methods for determination of the composition of the human body, its organs and tissues. It summarizes the development and current status of fat determinations from body density, total body water determinations through the dilution technique, whole and partial body potassium measurements for body cell mass estimates, in vivo neutron activation analysis for body protein measurements, dual-energy absorptiometry (DEXA), computed tomography (CT) and magnetic resonance imaging (MRI, fMRI) and spectroscopy (MRS) for body composition studies on tissue and organ levels, as well as single- and multiple-frequency bioimpedance (BIA) and anthropometry as simple easily available methods. Methods for trace element analysis in vivo are also described. Using this wide range of measurement methods, together with gradually improved body composition models, it is now possible to quantify a number of body components and follow their changes in health and disease.

  6. High dose neutron irradiations of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    SciTech Connect

    Perez-Bergquist, Alex G.; Nozawa, Takashi; Shih, Chunghao Phillip; Leonard, Keith J.; Snead, Lance Lewis; Katoh, Yutai

    2014-07-01

    Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy is used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300° C. Furthermore, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.

  7. Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS)

    NASA Astrophysics Data System (ADS)

    Yeo, S.; Mckenna, E.; Baney, R.; Subhash, G.; Tulenko, J.

    2013-02-01

    Uranium dioxide (UO2)-10 vol% silicon carbide (SiC) composite fuel pellets were produced by oxidative sintering and Spark Plasma Sintering (SPS) at a range of temperatures from 1400 to 1600 °C. Both SiC whiskers and SiC powder particles were utilized. Oxidative sintering was employed over 4 h and the SPS sintering was employed only for 5 min at the highest hold temperature. It was noted that composite pellets sintered by SPS process revealed smaller grain size, reduced formation of chemical products, higher density, and enhanced interfacial contact compared to the pellets made by oxidative sintering. For given volume of SiC, the pellets with powder particles yielded a smaller grain size than pellets with SiC whiskers. Finally thermal conductivity measurements at 100 °C, 500 °C, and 900 °C revealed that SPS sintered UO2-SiC composites exhibited an increase of up to 62% in thermal conductivity compared to UO2 pellets, while the oxidative sintered composite pellets revealed significantly inferior thermal conductivity values. The current study points to the improved processing capabilities of SPS compared to oxidative sintering of UO2-SiC composites.

  8. High dose neutron irradiations of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    DOE PAGES

    Perez-Bergquist, Alex G.; Nozawa, Takashi; Shih, Chunghao Phillip; ...

    2014-07-01

    Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy ismore » used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300° C. Furthermore, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.« less

  9. A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst

    SciTech Connect

    Kim, Young-ho; Irie, Hiroshi; Hashimoto, Kazuhito

    2008-05-05

    A photocatalyst composed of tungsten carbide (WC) and tungsten oxide (WO{sub 3}) has been prepared by the mechanical mixing of each powder. Its photocatalytic activity was evaluated by the gaseous isopropyl alcohol decomposition process. The photocatalyst showed high visible light photocatalytic activity with a quantum efficiency of 3.2% for 400-530 nm light. The photocatalytic mechanism was explained by means of enhanced oxygen reduction reaction due to WC, which may serve as a multielectron reduction catalyst, as well as the photogeneration of holes in the valence band of WO{sub 3}.

  10. Peer Victimisation and Its Relationships with Perceptions of Body Composition

    ERIC Educational Resources Information Center

    Frisen, Ann; Lunde, Carolina; Hwang, Philip

    2009-01-01

    The present study examined the links between children's exposure to peer victimisation, in terms of type and frequency, their body composition and subjective perceptions of body composition. A total of 960 Swedish 10-year-olds (515 girls and 445 boys) completed questionnaires about their peer victimisation experiences, weight and height, and…

  11. The Body Composition of a College Football Team.

    ERIC Educational Resources Information Center

    Wickkiser, John D.; Kelly, John M.

    This study focuses on the body composition and anthropometric measurements of 65 college football players. Body composition was determined by underwater weighing with an accurate assessment of residual volume. The anthropometric measurements included height, weight, seven skinfolds, waist circumference, and wrist diameter. A step-wise multiple…

  12. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate

    NASA Astrophysics Data System (ADS)

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-01

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  13. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate.

    PubMed

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-10

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  14. Body composition and dietary intake in neoplasic disease

    SciTech Connect

    Cohn, S.H.; Gartenhaus, W.; Vartsky, D.; Sawitsky, A.; Zanzi, I.; Vaswani, A. Yasummure, S.; Rai, K.; Cartes, E.; Ellis, K.J.

    1981-10-01

    Changes in body composition in 37 cancer patients were studied over a period of 6 months. Initially, the patients were divided into two groups: those who lost body weight (over 10%) and those who maintained or gained body weight before the study. Analysis of body composition indicated that patients who lost body weight has caloric and protein intakes markedly below ''normal'' levels at the beginning of the study. There also appears to be a direct relationship between the protein intake and the total body potassium/total body water ratio in the cancer patients. At the end of the 6-month study, the patients were again placed into two groups on the basis of weight loss or gain (and maintenance). Changes in body composition over the period were analyzed in terms of lean body mass, its protein constituent, water, and fat. Weight loss was found to reflect primarily the loss of fat, water, lean body mass (potassium), and only to a minor extent the protein component of lean body mass (nitrogen). Further, on the basis of the values of the ratios of total body nitrogen/total body potassium/total body water, it was possible to ascertain the relative normalcy of the body tissue gained or lost in the 6-month period. The results of the study suggest that the ratio total body nitrogen/total body potassium may serve as the best indicator of recent or ongoing catabolism or anabolism of the neoplastic process. By means of the application of the techniques used for the determination of body composition, it should be possible to assess regimes of hyperalimentation of cancer patients who lose body weight. (JMT)

  15. Body Composition Measurements of 161-km Ultramarathon Participants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  16. Changes in body composition of neonatal piglets during growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During studies of neonatal piglet growth it is important to be able to accurately assess changes in body composition. Previous studies have demonstrated that quantitative magnetic resonance (QMR) provides precise and accurate measurements of total body fat mass, lean mass and total body water in non...

  17. Effect of physical activity on body composition

    SciTech Connect

    Zanzi, I; Ellis, K J; Aloia, J; Cohn, S H

    1980-01-01

    It has been noted that the deleterious effects on bone calcium of prolonged periods of inactivity, such as bed rest, are halted following resumption of activity. It would seem possible in light of the observations that have been made, that exercise may stimulate bone formation and perhaps counter, to some extent, bone loss as observed in the osteoporosis of aging. The present study was designed to determine the relation between total body calcium, total body potassium and bone mineral content of the radius to the degree of physical activity in a population of normal subjects. Measurement of the calcium was made by in-vivo total body neutron activation analysis. Bone mineral content of the radius and total body potassium, (an index of lean body mass) were measured by photon absorptiometry and the whole body counter, respectively.

  18. Body composition of piglets exhibiting different growth rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth and composition of the neonatal pig is of interest because of potential impact on subsequent growth and finally, composition at market weight. The purpose of this study was to compare at weaning the growth and body composition of the largest and smallest pigs (excluding runts) from each o...

  19. Compositional effects on mechanical properties of hafnium-carbide-strengthened molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.

    1975-01-01

    The mechanical properties of swaged rod thermomechanically processed from arc melted Mo-2Re-Hf-C alloys containing as much as 0.9-mol% HfC were evaluated. The low-temperature ductilities of these alloys were not influenced by the amount of HfC present but by the amount of Hf in excess of stoichiometry. Maximum ductility occurred at 0.2- to 0.3-at.% excess Hf. At 0.3- to 0.5-mol% HfC, alloy strength varied directly with the Mo content of extracted carbide particles, both decreasing as the amount of excess Hf increased. Additions of 2-at.% Re had little effect on strength or ductility. Tensile and creep strengths of Mo-2Re-0.7Hf-0.5C alloy equaled or exceeded those of other high strength Mo alloys.

  20. Methods for Producing High-Performance Silicon Carbide Fibers, Architectural Preforms, and High-Temperature Composite Structures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Yun, Hee-Mann (Inventor)

    2014-01-01

    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  1. Hertzian indentation of colloidally processed titanium carbide-nickel aluminide composites

    NASA Astrophysics Data System (ADS)

    Collier, R. Bradley

    Advanced cermets based on titanium carbide (TiC), with a ductile nickel aluminide (Ni3Al) binder, have shown significant promise for use in a variety of demanding wear environments, due to a combination of high strength and good corrosion behaviour. A unique feature of TiC-Ni3Al cermets is that they show increasing strength from room temperature up to ˜1,000°C, while current materials such as tungsten carbide/cobalt (WC/Co) show significant strength degradation above ˜500°C. In this thesis, aqueous colloidal forming methods have been applied to process TiC preforms. The mechanisms and effectiveness of suspension stabilization were examined using methods such as zeta potential analysis, rheological measurements, and sedimentation trials for two common dispersants; an ammonium salt of polymethacrylate (PMA-NH 4) and two molecular weights (l,800 and 10,000) of polyethylenimine (PEI). TiC preforms were prepared by slip casting suspensions of up to 50 vol. % solids content. After drying, the TiC-based cermets were processed by melt infiltration with the Ni3Al alloy (IC-50) at 1475°C.Ni 3Al content was varied between 20 and 50 vol. % using this approach, resulting in final densities that exceeded 98% of theoretical. These samples were subjected to Hertzian indentation testing with loads ranging from 250 -- 2000 N, using WC-Co spheres with sizes ranging from 1.191 to 2.38 mm. Indentation stress-strain curves were produced from the indentation data and compared to the calculated elastic Hertzian response. The bonded interface method was used to examine the subsurface deformation of the material under load. Significant deformation of the binder and the eventual fracture of the TiC grains were observed. The nature of the quasi-plasticity of TiC-Ni 3Al and the effects of binder content on surface and subsurface deformation is examined.

  2. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  3. Marine Corps Body Composition Program: The Flawed Measurement System

    DTIC Science & Technology

    2006-02-07

    Marine Corps’ Body Composition Program (BCP) is designed to shift focus in the weight control program from height/weight to body fat measurements in...Marine’s body fat percentage is the least accurate of all methods currently being utilized in the medical world. It’s a flaw that is easily... Body fat will be estimated using the circumference- based method with one set of measurements for each gender (Males: height, neck circumference, and

  4. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium-vanadium steel

    NASA Astrophysics Data System (ADS)

    Titov, V. I.; Tarasenko, L. V.; Utkina, A. N.

    2017-01-01

    Based on the results of phase physicochemical analysis of high-carbon chromium-vanadium steel, the predominant type of carbide that provides high wear resistance has been established, and its amount and amount of carbon in martensite have been determined. Data on the composition and the amount of carbide phase and on the chemical composition of the martensite of high-carbon steel have been obtained, which allows determination of the alloying-element concentration limits. The mechanical testing of heats of a chosen chemical composition has been carried out after quenching and low-temperature tempering. The tests have demonstrated benefits of new steel in wear resistance and bending strength with the fatigue strength being retained, compared to steels subjected to cementation. The mechanism of secondary strengthening of the steel upon high-temperature tempering has been revealed. High-temperature tempering can be applied to articles that are required to possess both high wear resistance and heat resistance.

  5. Non-invasive techniques for determining musculoskeleton body composition

    SciTech Connect

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights.

  6. Infant BMI trajectories are associated with young adult body composition

    PubMed Central

    Slining, M. M.; Herring, A. H.; Popkin, B. M.; Mayer-Davis, E. J.; Adair, L. S.

    2013-01-01

    The dynamic aspect of early life growth is not fully captured by typical analyses, which focus on one specific time period. To better understand how infant and young child growth relate to the development of adult body composition, the authors characterized body mass index (BMI) trajectories using latent class growth analysis (LCGA) and evaluated their association with adult body composition. Data are from the Cebu Longitudinal Health and Nutrition Survey, which followed a birth cohort to age 22 years (n=1749). In both males and females, LCGA identified seven subgroups of respondents with similar BMI trajectories from 0 to 24 months (assessed with bimonthly anthropometrics). Trajectory groups were compared with conventional approaches: (1) accelerated growth between two time points (0–4 months), (2) continuous BMI gain between two points (0–4 months and 0–24 months) and (3) BMI measured at one time point (24 months) as predictors of young adult body composition measures. The seven trajectory groups were distinguished by age-specific differences in tempo and timing of BMI gain in infancy. Infant BMI trajectories were better than accelerated BMI gain between 0 and 4 months at predicting young adult body composition. After controlling for BMI at age 2 years, infant BMI trajectories still explained variation in adult body composition. Using unique longitudinal data and methods, we find that distinct infant BMI trajectories have long-term implications for the development of body composition. PMID:24040489

  7. Wear resistance and electrical property of infrared processed copper/tungsten carbide composites

    NASA Astrophysics Data System (ADS)

    Deshpande, Pranav K.

    Copper matrix composites with 53 vol% of WC particle reinforcements have been prepared with an infrared infiltration technique. The process produced fully dense composite owing to excellent wetting between copper and WC. The microhardness values of completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. The electric conductivity of these composites, as determined by a four-point-probe method, is similar to commercially available Cu/W composites containing 52 vol% of tungsten. The wear behavior of Cu/WC composites has been determined with a pin-on-disk technique against a sintered SiC abrasive disk. The wear rate as a function of a normal wear stress and composite porosity was investigated. Results have shown that up to a normal load of around 9 N (or 0.55 MPa pressure), the wear rate of fully dense Cu/WC composites increases linearly with the applied pressure. Results also show that porosity in the Cu/WC composite increases wear. A model of wear, taking into account various wear mechanisms, was developed. This model successfully predicts the wear behavior of dense Cu/WC composites. Owing to its significantly better wear resistance, as compared to Cu/W composites, the composition of Cu/53 vol% WC composite was varied by an innovative technique to improve the electrical conductivity of these composites without much compensation on its wear resistance. The technique of composition variation also helped in overcoming the shortcomings of pressure-less infiltration technique.

  8. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan; Rozier, Patrick; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2016-02-01

    Pseudocapacitive materials that store charges by fast redox reactions are promising candidates for designing high energy density electrochemical capacitors. MXenes - recently discovered two-dimensional carbides, have shown excellent capacitance in aqueous electrolytes, but in a narrow potential window, which limits both the energy and power density. Here, we investigated the electrochemical behavior of Ti3C2 MXene in 1M solution of 1-ethly-3-methylimidazolium bis- (trifluoromethylsulfonyl)-imide (EMITFSI) in acetonitrile and two other common organic electrolytes. This paper describes the use of clay, delaminated and composite Ti3C2 electrodes with carbon nanotubes in order to understand the effect of the electrode architecture and composition on the electrochemical performance. Capacitance values of 85 F g-1 and 245 F cm-3 were obtained at 2 mV s-1, with a high rate capability and good cyclability. In situ X-ray diffraction study reveals the intercalation of large EMI+ cations into MXene, which leads to increased capacitance, but may also be the rate limiting factor that determines the device performance.

  9. Processing and response of aluminum-lithium alloy composites reinforced with copper-coated silicon carbide particulates

    NASA Astrophysics Data System (ADS)

    Khor, K. A.; Cao, Y.; Boey, F. Y. C.; Hanada, K.; Murakoshi, Y.; Sudarshan, T. S.; Srivatsan, T. S.

    1998-02-01

    Lithium-containing aluminum alloys have shown promise for demanding aerospace applications because of their light weight, high strength, and good damage tolerance characteristics. Additions of ceramic reinforcements to an aluminum-lithium alloy can significantly enhance specific strength, and specific modulus while concurrently offering acceptable performance at elevated temperatures. The processing and fabrication of aluminum-lithium alloy-based composites are hampered by particulate agglomeration or clustering and the existence of poor interfacial relationships between the reinforcing phase and the matrix. The problem of distribution of the reinforcing phase in the metal matrix can be alleviated by mechanical alloying. This article presents the results of a study aimed at addressing and improving the interfacial relationship between the host matrix and the reinforcing phase. Copper-coated silicon carbide particulates are introduced as the particulate reinforcing phase, and the resultant composite mixture is processed by conventional milling followed by hot pressing and hot extrusion. The influence of extrusion ratio and extrusion temperature on microstructure and mechanical properties was established. Post extrusion processing by hot isostatic pressing was also examined. Results reveal the increase in elastic modulus of the aluminum-lithium alloy matrix reinforced with copper-coated SiC to be significantly more than the mechanically alloyed Al-Li/SiC counterpart. This suggests the possible contributions of interfacial strengthening on mechanical response in direct comparison with a uniform distribution of the reinforcing ceramic particulates.

  10. Effect of additive composition on mechanical properties of pressureless sintered silicon carbide ceramics sintered with alumina, aluminum nitride and yttria

    NASA Astrophysics Data System (ADS)

    Eom, Jung-Hye; Seo, Yu-Kwang; Kim, Young-Wook; Lee, Seoung-Jae

    2015-05-01

    Silicon carbide (SiC) ceramics were pressureless sintered with 3 vol% Al2O3-Y2O3-AlN additives with the AlN/(Al2O3+AlN) molar ratios of 0-0.75 at 1850-2000 °C for 1 hr and the effects of additive composition (i.e., changes in the AlN/(Al2O3+AlN) molar ratio while maintaining constant Y2O3 content) on the mechanical properties of the pressureless-sintered SiC ceramics were investigated. Self-reinforced microstructures consisting of relatively large platelet SiC grains and relatively small equiaxed grains have been obtained in all specimens when sintered at 1900 °C for 1 h in an argon atmosphere. The achievement of self-reinforced microstructures under such mild conditions (holding for 1 hr at 1900 °C) is caused by the beneficial effects of additive composition and the acceleration of the β→α phase transformation of SiC by seeding, i.e., the addition of 1 vol% α-SiC into β-SiC. The typical flexural strength and fracture toughness of the pressureless-sintered SiC ceramics with an AlN/(Al2O3+AlN) mole ratio of 0.5 were 433 MPa and 6.6 MPa·m1/2 at room temperature, respectively.

  11. Composite uranium carbide targets at TRIUMF: Development and characterization with SEM, XRD, XRF and L-edge densitometry

    NASA Astrophysics Data System (ADS)

    Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus

    2013-09-01

    The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.

  12. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    DOE PAGES

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; ...

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating themore » irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.« less

  13. Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation

    DOE PAGES

    Wang, Hui; Peng, Rui; Hood, Zachary D.; ...

    2016-05-24

    In the MXenes family of two-dimensional transition-metal carbides there were successful demonstrations of co-catalysts with rutile TiO2 for visible-light-induced solar hydrogen production from water splitting. The physicochemical properties of Ti3C2Tx MXene coupled with TiO2 were investigated by a variety of characterization techniques. The effect of the Ti3C2Tx loading on the photocatalytic performance of the TiO2/Ti3C2Tx composites was elucidated. Moreover, with an optimized Ti3C2Tx content of 5 wt %, the TiO2/Ti3C2Tx composite shows a 400 % enhancement in the photocatalytic hydrogen evolution reaction compared with that of pure rutile TiO2. We also expanded our exploration to other MXenes (Nb2CTx and Ti2CTx)more » as co-catalysts coupled with TiO2, and these materials also exhibited enhanced hydrogen production. These results manifest the generality of MXenes as effective co-catalysts for solar hydrogen production.« less

  14. Effect of temper on seawater corrosion of an aluminum-silicon carbide composite alloy

    SciTech Connect

    Ahmad, Z.; Abdul Aleem, B.J.

    1996-11-01

    The corrosion behavior of annealed (O), as-fabricated (F), and naturally age-hardened (T4) aluminum alloy Al 6013 with 20 vol% silicon carbide in particulate form was investigated in 3.5 wt% sodium chloride and in Arabian Gulf water. Of the three tempers, T4 showed the lowest corrosion rate (0.04 mpy and 2.61 mpy) in deaerated and aerated NaCl, respectively. The corrosion rate in seawater was slightly higher. Predominant forms of corrosion were pitting and intergranular corrosion. Formation of corrosion chimneys was observed. X-ray diffraction Fourier transform infrared spectroscopy and energy dispersive spectroscopy showed intermetallic formation and the presence of a gelatinous film of aluminum hydroxide of bayrite type. The higher corrosion resistance of the T4 temper resulted from finer and more homogeneously distributed precipitates compared to tempers F and O. In view of the alloy`s good corrosion resistance and outstanding ultimate tensile strength, yield strength and specific modulus, it can be considered a strong competitor to Al 2024, Al 2014, and Al 6061, which are used mainly for structural applications.

  15. Impact of Body Weight and Body Composition on Ovarian Cancer Prognosis.

    PubMed

    Purcell, Sarah A; Elliott, Sarah A; Kroenke, Candyce H; Sawyer, Michael B; Prado, Carla M

    2016-02-01

    Measures of body weight and anthropometrics such as body mass index (BMI) are commonly used to assess nutritional status in clinical conditions including cancer. Extensive research has evaluated associations between body weight and prognosis in ovarian cancer patients, yet little is known about the potential impact of body composition (fat mass (FM) and fat-free mass (FFM)) in these patients. Thus, the purpose of this publication was to review the literature (using PubMed and EMBASE) evaluating the impact of body weight and particularly body composition on surgical complications, morbidity, chemotherapy dosing and toxicity (as predictors of prognosis), and survival in ovarian cancer patients. Body weight is rarely associated with intra-operative complications, but obesity predicts higher rates of venous thromboembolism and wound complications post-operatively in ovarian cancer patients. Low levels of FM and FFM are superior predictors of length of hospital stay compared to measures of body weight alone, but the role of body composition on other surgical morbidities is unknown. Obesity complicates chemotherapy dosing due to altered pharmacokinetics, imprecise dosing strategies, and wide variability in FM and FFM. Measurement of body composition has the potential to reduce toxicity if the results are incorporated into chemotherapy dosing calculations. Some findings suggest that excess body weight adversely affects survival, while others find no such association. Limited studies indicate that FM is a better predictor of survival than body weight in ovarian cancer patients, but the direction of this relationship has not been determined. In conclusion, body composition as an indicator of nutritional status is a better prognostic tool than body weight or BMI alone in ovarian cancer patients.

  16. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  17. Thermodynamic modelling of phase equilibrium in system Ti-B-Si-C, synthesis and phases composition of borides and carbides layers on titanic alloyVT-1 at electron beam treatment in vacuum

    NASA Astrophysics Data System (ADS)

    Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.

    2017-01-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  18. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  19. Stress rupture behavior of silicon carbide coated, low modulus carbon/carbon composites

    SciTech Connect

    Rozak, G.A.; Wallace, J.F.

    1988-01-01

    The disadvantages of carbon-carbon composites, in addition to the oxidation problem, are low thermal expansion, expensive fabrication procedures, and poor off axis properties. The background of carbon-carbon composites, their fabrication, oxidation, oxidation protection and mechanical testing in flexure are discussed.

  20. In vivo measurement of human body composition

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Price, D. C.

    1974-01-01

    The female bed rest study has shown that, the response of women to prolonged recumbency of 2 to 3 weeks duration is very similar to that displayed by men. Some of the key findings in the women after 17 days of continuous recumbency are: (1) a decrease in plasma volume of 12-13 per cent; (2) a small decrease in total body water; (3) a decrease in total body potassium of 3 to 4 per cent; (4) a decrease in plasma potassium concentration of 4 to 5 per cent; (5) a decrease in total circulating plasma protein of 11 to 12 per cent; (6) a decrease in urinary norepinephrine excretion rate of 27 to 28 per cent; (7) a possible increase in urinary magnesium, calcium, and phosphate excretion rates; and (8) a possible increase in urinary citrate excretion rate.

  1. Relationships Between Body Image, Body Composition, Sexual Functioning, and Sexual Satisfaction Among Heterosexual Young Adults.

    PubMed

    Milhausen, Robin R; Buchholz, Andrea C; Opperman, Emily A; Benson, Lindsay E

    2015-08-01

    This study investigated the association between body image and body-image self-consciousness on sexual satisfaction, accounting for relationships between body fat and body image, and between sexual functioning and sexual satisfaction, while controlling for relationship satisfaction. Participants were 143, 18-25 year-old Caucasian men and women in heterosexual monogamous relationships, recruited from the University of Guelph and surrounding community in Ontario, Canada. Various domains of body image, body-image self-consciousness, sexual satisfaction and functioning, and relationship satisfaction data were collected by questionnaires. Body fat was measured using dual energy X-ray absorptiometry. Among men, body image was positively associated with sexual satisfaction, after controlling for relationship satisfaction. Men with greater body fat were more likely to have poorer behavioral and affective body image. Only body image specific to the sexual encounter influenced sexual functioning. Among women, no domain of body image was associated with sexual satisfaction, after controlling for relationship satisfaction. Women with greater body fat were more likely to have poorer affective and sexual-encounter-specific body image. As percent total fat increased, sexual functioning decreased. Our results suggest a complex pattern of relationships exists among body image and body composition constructs and sexual and relationship variable; and that these relationships are not the same for men and women.

  2. Materials characterization of silicon carbide reinforced titanium (Ti/SCS-6) metal matrix composites: Part I. Tensile and fatigue behavior

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Diaz, E. S.; Chiang, K. T.; Loh, D. H.

    1995-12-01

    Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eightply (0, 90, +45, -45 deg) symmetric layup. Fatigue life was found to be sensitive to fiber layup sequence. Increasing the test temperature from 24 °C to 427 °C decreased fatigue life. Interface debonding and matrix and fiber fracture were characteristic of tensile behavior regardless of test temperature. In the tensile fracture process, interface debonding between SiC and the graphite coating and between the graphite coating and the carbon core could occur. A greater amount of coating degradation at 427 °C than at 24 °C reduced the Ti/SiC interface bonding integrity, which resulted in lower tensile properties at 427 °C. During tensile testing, a crack could initiate from the debonded Ti/SiC interface and extend to the debonded interface of the neighboring fiber. The crack tended to propagate through the matrix and the interface. Dimpled fracture was the prime mode of matrix fracture. During fatigue testing, four stages of flexural deflection behavior were observed. The deflection at stage I increased slightly with fatigue cycling, while that at stage II increased significantly with cycling. Interestingly, the deflection at stage III increased negligibly with fatigue cycling. Stage IV was associated with final failure, and the deflection increased abruptly. Interface debonding, matrix cracking, and fiber bridging were identified as the prime modes of fatigue mechanisms. To a lesser extent, fiber fracture was observed during fatigue. However, fiber fracture was believed to occur near the final stage of fatigue failure. In fatigued specimens, facet-type fracture appearance was characteristic of matrix fracture morphology. Theoretical modeling of the fatigue behavior of Ti/SCS-6 composites is presented in Part II of this series of articles.

  3. Application of standards and models in body composition analysis.

    PubMed

    Müller, Manfred J; Braun, Wiebke; Pourhassan, Maryam; Geisler, Corinna; Bosy-Westphal, Anja

    2016-05-01

    The aim of this review is to extend present concepts of body composition and to integrate it into physiology. In vivo body composition analysis (BCA) has a sound theoretical and methodological basis. Present methods used for BCA are reliable and valid. Individual data on body components, organs and tissues are included into different models, e.g. a 2-, 3-, 4- or multi-component model. Today the so-called 4-compartment model as well as whole body MRI (or computed tomography) scans are considered as gold standards of BCA. In practice the use of the appropriate method depends on the question of interest and the accuracy needed to address it. Body composition data are descriptive and used for normative analyses (e.g. generating normal values, centiles and cut offs). Advanced models of BCA go beyond description and normative approaches. The concept of functional body composition (FBC) takes into account the relationships between individual body components, organs and tissues and related metabolic and physical functions. FBC can be further extended to the model of healthy body composition (HBC) based on horizontal (i.e. structural) and vertical (e.g. metabolism and its neuroendocrine control) relationships between individual components as well as between component and body functions using mathematical modelling with a hierarchical multi-level multi-scale approach at the software level. HBC integrates into whole body systems of cardiovascular, respiratory, hepatic and renal functions. To conclude BCA is a prerequisite for detailed phenotyping of individuals providing a sound basis for in depth biomedical research and clinical decision making.

  4. Body composition assessment in horses using bioimpedance spectroscopy.

    PubMed

    Ward, L C; White, K J; van der Aa Kuhle, K; Cawdell-Smith, J; Bryden, W L

    2016-02-01

    Assessment of equine body composition using objective measurements is difficult owing to the large size of the animals and the costs involved. Bioelectrical impedance spectroscopy (BIS), a technique widely used for the assessment of body composition in humans, was investigated for practicality of use in horses. BIS uses algorithms that require values for the apparent resistivities of body fluids and body proportion factors (Kb), currently not available for horses. Aims of the present study were to derive resistivity coefficients and body proportion factors and to validate their use for prediction of body composition horses. Validation of coefficients and predictive power using a split-sample agreement study design using correlation and limits of agreement analysis. Whole body impedance measurements were performed on 35 standardbred horses, yearlings to 14 yr, concurrently with determination of total body water volume (TBW) by deuterium dilution and extracellular water volume (ECW) by bromide dilution. Kb was determined in an independent group of 38 mixed-breed, age, and sex horses. Mean apparent resistivity coefficients were 511.4 and 1415.9 ohm.cm for intracellular water and TBW, respectively. Mean Kb was 1.52 ± 0.1. Using these coefficients, TBW and fat-free mass could be predicted with limits of agreement (2SD) of ± 11.6%; mean fat-free mass and fat mass were under- and overestimated by 3.1% and 14.1%, respectively, compared to measured reference values although these differences were not statistically significant. BIS is a practical technique for the assessment of body composition in equids, but the relatively wide limits of agreement, particularly for fat mass, may limit its usefulness for predicting body composition in individual horses.

  5. Creep deformation in an alumina-silicon carbide composite produced via a directed metal oxidation process

    SciTech Connect

    Lin, H.T.; Breder, K.

    1996-08-01

    Flexural creep studies were conducted in a commercially available alumina matrix composite reinforced with SiC particulates (SiC{sub p}) and aluminum metal at temperatures from 1,200 to 1,300 C under selected stress levels in air. The alumina composite (5 to 10 {micro}m alumina grain size) containing 48 vol% SiC particulates and 13 vol% aluminum alloy was fabricated via a directed metal oxidation process (DIMOX{trademark}) and had an external 15 {micro}m oxide coating. Creep results indicated that the DIMOX Al{sub 2}O{sub 3}-SiC{sub p} composite exhibited creep rates that were comparable to alumina composites reinforced with 10 vol% (8 {micro}m grain size) and 50 vol% (1.5 {micro}m grain size) SiC whiskers under the employed test conditions. The DIMOX Al{sub 2}O{sub 3}-SiC{sub p} composite exhibited a stress exponent of 2 at 1,200 C and a higher exponent value (2.6) at {ge}1,260 C, which is associated with the enhanced creep cavitation. The creep mechanism in the DIMOX alumina composite was attributed to grain boundary sliding accommodated by diffusional processes. Creep damage observed in the DIMOX Al{sub 2}O{sub 3}-SiC{sub p} composite resulted from the cavitation at alumina two-grain facets and multiple-grain junctions where aluminum alloy was present.

  6. Influence of increased body mass and body composition on cycling anaerobic power.

    PubMed

    Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew; Brown, Lee E

    2015-01-01

    Recent evidence suggests that not only body fat (BF) but high lean body mass (HLBM) adversely affects aerobic performance and may reduce aerobic endurance performance as well. However, the influence of body composition on anaerobic performance remains controversial. This study aimed to examine the effects of increased body mass (BM) and body composition on cycling anaerobic power. Peak power (PP) and mean power (MP) measurements were conducted in 2 groups of men with similar total BM but different body compositions resulting from (a) high level of BF [HBF group] or (b) high level of lean body mass [HLBM group] and in a control group. Peak power and MP were calculated in absolute values, relative to BM and lean body mass (LBM), and using allometric scaling. Absolute PP and MP were significantly higher in the HLBM group compared with the control and HBF groups. However, PP and MP relative to BM and using allometric scaling were similar in the HLBM and control groups, yet significantly higher than in the HBF group. There were no significant differences between groups in PP and MP when presented relative to LBM. Therefore, it seems that it is not BM but rather body composition that affects PP. Increased BM, resulting from increased LBM, does not adversely affect cycling anaerobic power, but a BM increase resulting from an increase in BF may adversely affect PP. Therefore, coaches and athletes should avoid excess BF to maximize cycling anaerobic power.

  7. New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall

    NASA Astrophysics Data System (ADS)

    Jimbou, R.; Saidoh, M.; Nakamura, K.; Akiba, M.; Suzuki, S.; Gotoh, Y.; Suzuki, Y.; Chiba, A.; Yamaki, T.; Nakagawa, M.; Morita, K.; Tsuchiya, B.

    1996-10-01

    A new composite was created from B 4C powder and carbon fiber by hot-pressing at 1700°C or more. The composite sintered at 1700°C with 20-35 vol% B 4C shows a thermal conductivity of 250 W/m·K at 25°C which is slightly lower than the felt type C/C, but its value becomes higher than the C/C at temperatures above 400°C. The composite with 40 at% B shows more controllable recycling properties than B 4C. The erosion yield for the composite is about half the yield for graphite at 800 K. After electron beam irradiation in order to test heat resistance no cracks were detected up to 22-23 MW/m 2 leading to a surface temperature of 2500°C.

  8. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    PubMed

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs.

  9. Hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on cemented tungsten carbide by coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Egiza, Mohamed; Tominaga, Aki; Murasawa, Koki; Gonda, Hidenobu; Sakurai, Masatoshi; Yoshitake, Tsuyoshi

    2016-08-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were deposited on cemented carbide containing Co by coaxial arc plasma deposition. With decreasing substrate temperature, the hardness was enhanced accompanied by an enhancement in the sp3/(sp2 + sp3). Energy-dispersive X-ray and secondary ion mass spectrometry spectroscopic measurements exhibited that the diffusion of Co atoms from the substrates into the films hardly occurs. The film deposited at room temperature exhibited the maximum hardness of 51.3 GPa and Young's modulus of 520.2 GPa, which evidently indicates that graphitization induced by Co in the WC substrates, and thermal deformation from sp3 to sp2 bonding are suppressed. The hard UNCD/a-C films can be deposited at a thickness of approximately 3 μm, which is an order larger than that of comparably hard a-C films. The internal compressive stress of the 51.3-GPa film is 4.5 GPa, which is evidently smaller than that of comparably hard a-C films. This is a reason for the thick deposition. The presence of a large number of grain boundaries in the film, which is a structural specific to UNCD/a-C films, might play a role in releasing the internal stress of the films.

  10. Oxidation behavior of zirconium diboride-silicon carbide composites at high temperatures

    NASA Astrophysics Data System (ADS)

    Karlsdottir, Sigrun N.

    The ZrB2-SiC composite is a prominent member of Ultra-High Temperature Ceramics (UHTCs). Here the oxidation behavior of ZrB 2-SiC composites at temperatures between 1500-1900°C is studied. The structure and composition of complex oxide scales, formed at these temperatures, are characterized using microstructural and elemental analysis. A novel method, called the Ribbon Method, was developed for testing UHTCs at high temperatures, rapidly at low cost. Self-supported UHTC ribbon specimens are resistively heated with a table-top apparatus to achieve temperatures from 900-2000°C. The Ribbon Method is a novel method for rapid oxidation characterization of UHTC at high temperatures and a valuable alternative to the current high temperature facilities for UHTCs. Oxidation studies with the Ribbon Method showed that a SiO2 rich borosilicate surface layer forms during the oxidation of the ZrB2-SiC composite and acts as a protective barrier at lower temperatures by hindering oxygen diffusion through the surface layer. The SiO2-rich surface layer starts to volatilize extensively at temperatures above 1700°C resulting in a decreases in the oxidation resistance of the composite. A novel mechanism is proposed for the high temperature oxidation of ZrB 2-SiC based composites. This mechanism is based on liquid transport of oxide liquid solution formed during oxidation at temperatures around 1550°C. Patterns in borosilicate surface layer of oxidized ZrB2-SiC composites were discovered, showing evidence of liquid flow in the oxide film. These patterns, called here convection cells, are formed when a fluid B2O 3-rich borosilicate liquid containing dissolved ZrO2 is transported to the surface where the B2O3 is lost by evaporation, depositing ZrO2 in a viscous SiO2-rich liquid. The driving force for the liquid transport is proposed to be the large volume increase upon oxidation. Liquid transport of the oxide liquid solution is claimed to play a significant role in the formation of

  11. Effects of interfaces and preferred orientation on the electrical response of composites of alumina and silicon carbide whiskers

    NASA Astrophysics Data System (ADS)

    Bertram, Brian D.

    Ceramic-matrix composites of alumina and silicon carbide whiskers have recently found novel commercial application as electromagnetic absorbers. However, a detailed understanding of how materials issues influence the composite electrical response which underpins this application has been absent until now. In this project, such composites were electrically measured over a wide range of conditions and modeled in terms of various aspects of the microstructure in order to understand how they work. For this purpose, three types of composites were made by different methods from the same set of ceramic powder blends loaded with different volume fractions of whiskers. In doing so, the interfaces between whiskers, the preferred orientations of whiskers, and the structure of electrically-connected whisker clusters were varied. In Chapter 3, it shown that Schottky energy barriers form at the junctions of the wide-bandgap semiconductor whiskers when metal electrodes are applied for measurements. These barriers were characterized on the microscopic and macroscopic level, and the gap between these different scales was bridged. Also, a modeling approach was developed for the loading dependence of the composite non-linear response which results from the barriers. In Chapter 4, the effects of significantly different types of preferred orientation are elucidated and a strong structure-property correlation is established. The effects of other structural issues on the electrical response are uncovered as well, such as those pertaining to porosity in the ceramic and the interfaces between electrically-connected SiCw. In Chapter 5, the non-linear response model of Chapter 3 is adapted in the development of a new model for electrically-percolated clusters. This model demonstrates how loading and interfacial issues influence the cluster topology and may result in the cluster having a non-linear electrical response. In Chapter 6, the effects of various factors on the broadband frequency

  12. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1989-01-24

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MP.am.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  13. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, G.C.

    1989-01-24

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al{sub 2}O{sub 3}, mullite, or B{sub 4}C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1,600 to 1,950 C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness which represents as much as a two-fold increase over that of the matrix material.

  14. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1985-01-01

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  15. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1993-11-16

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  16. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1993-01-01

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  17. Properties of silicon carbide fiber-reinforced silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1988-01-01

    The mechanical properties of NASA Lewis developed SiC/RBSN composites and their thermal and environmental stability havd been studied. The composites consist of nearly 30 vol pct of aligned 142 micron diameter chemically vapor-deposited SiC fibers in a relatively porous silicon nitride matrix. In the as-fabricated condition, the unidirectional and 2-D composites exhibited metal-like stress-strain behavior, graceful failure, and showed improved properties when compared with unreinforced matrix of comparable density. Furthermore, the measured room temperature tensile properties were relativley independent of tested volume and were unaffected by artifical notches normal to the loading direction or by thermal shocking from temperatures up to 800 C. The four-point bend strength data measured as a function of temperature to 1400 C in air showed that as-fabricated strength was maintained to 1200 C. At 1400 C, however, nearly 15 pct loss in strength was observed. Measurement of room temperature tensile strength after 100 hr exposure at temperatures to 1400 C in a nitrogen environment indicated no loss from the as-fabricated composite strength. On the other hand, after 100 hr exposure in flowing oxygen at 1200 and 1400 C, the composites showed approximately 40 pct loss from their as-fabricated ultimate tensile strength. Those exposed between 400 to 1200 C showed nearly 60 pct strength loss. Oxidation of the fiber/matrix interface as well as internal oxidation of the porous Si3N4 matrix are likely mechanisms for strength degradation. The excellent strength reproducibility, notch insensitivity, and high temperature strength of the composite makes it an ideal candidate for advanced heat engine applications provided coating or densification methods are developed to avoid internal oxidation attack.

  18. Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation

    SciTech Connect

    Wang, Hui; Peng, Rui; Hood, Zachary D.; Naguib, Michael; Adhikari, Shiba P.; Wu, Zili

    2016-05-24

    In the MXenes family of two-dimensional transition-metal carbides there were successful demonstrations of co-catalysts with rutile TiO2 for visible-light-induced solar hydrogen production from water splitting. The physicochemical properties of Ti3C2Tx MXene coupled with TiO2 were investigated by a variety of characterization techniques. The effect of the Ti3C2Tx loading on the photocatalytic performance of the TiO2/Ti3C2Tx composites was elucidated. Moreover, with an optimized Ti3C2Tx content of 5 wt %, the TiO2/Ti3C2Tx composite shows a 400 % enhancement in the photocatalytic hydrogen evolution reaction compared with that of pure rutile TiO2. We also expanded our exploration to other MXenes (Nb2CTx and Ti2CTx) as co-catalysts coupled with TiO2, and these materials also exhibited enhanced hydrogen production. These results manifest the generality of MXenes as effective co-catalysts for solar hydrogen production.

  19. Tensile and creep behavior of a silicon carbide fiber-reinforced aluminosilicate composite

    SciTech Connect

    Khobaib, M.; Zawada, L.

    1991-08-01

    Tensile and tensile creep tests were conducted with a Nicalon/aluminosilicate (Si-C-O/1723) glass composite. Tensile tests were conducted at room temperature, and the creep tests were conducted at 600, 700, and 750 C. Room temperature tensile test failure features exhibited a tortuous crack path and extensive fiber pull-out. The failure features in creep were characterized by flat fracture and little fiber pull-out. The environment appeared to play a significant role in creep failure of this composite system. 6 refs.

  20. Silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam (Inventor)

    1992-01-01

    A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  1. Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1995-01-01

    A SrO-Al2O3-2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  2. History of the U.S. Navy Body Composition program.

    PubMed

    Peterson, David D

    2015-01-01

    The Navy currently employs maximum weight-for-height tables and body fat prediction equations based on circumference measurements to assess body composition. However, many Sailors believe the current method fails to accurately predict body fat percentage. As a result, the Naval Health Research Center (NHRC) conducted numerous studies in an attempt to improve the accuracy and reliability of the Navy's Body Composition Analysis program. In 2012, NHRC conducted a study that researched the feasibility of using a single abdominal circumference (AC) measurement in lieu of circumference measurements. The Air Force and National Institutes of Health (NIH) employ a single AC measurement taken at the superior border of the iliac crest to assess body composition and all-cause mortality risk. Although the Air Force and NIH use the iliac crest, NHRC is proposing the Navy use the umbilicus as the AC site since it is less invasive and easier to identify. If implemented, the Navy would use cutoff values of 40 in. and 36 in. for males and females, respectively. The purpose of this article is to provide a brief history of the Navy's Body Composition Analysis program as well as propose the transition from circumference measurements to a single AC measurement.

  3. Somatic maturation and body composition in female healthy adolescents with or without adjustment for body fat

    PubMed Central

    Miranda, Valter Paulo N.; de Faria, Franciane Rocha; de Faria, Eliane Rodrigues; Priore, Silvia Eloiza

    2014-01-01

    Objective: To evaluate the relationship between the stages of somatic maturation and body composition in eutrophic female adolescents with or without excessive body fat. Methods: Cross-sectional study of 118 female adolescents, from 14 to 19 years-old, in Viçosa, Minas Gerais, Southeast Brazil. The adolescents were divided in two groups: Group 1 (G1), eutrophic with adequate body fat percentage, and Group 2 (G2), eutrophic with high body fat percentage. The somatic maturation was assessed by the formula for estimating the Peak Height Velocity (PHV). Results: The PHV had higher average score in G1 adolescents compared to G2 (0.26 versus 0.05; p=0.032). There was an association between G1, G2 and the somatic maturation (p=0.049). The female adolescents before and during PHV presented higher values of fat body BMI (p=0.034) and percentage of central fat (p=0.039) compared to the adolescents after PHV. There was a correspondence between before PHV stage and the excess of body fat (α=0.751). Conclusions: There was an association between somatic maturation and body composition in eutrophic female adolescents. Length, BMI and fat percentage were different among the somatic maturation stages. It is relevant to evaluate the somatic maturation and the changes occurring in the body composition during adolescence in order to better evaluate and manage the nutritional status and the body fat excess. PMID:24676194

  4. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men’s and Women’s Bodies

    PubMed Central

    Brierley, Mary-Ellen; Brooks, Kevin R.; Mond, Jonathan; Stevenson, Richard J.

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men’s bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women. PMID:27257677

  5. REGULATION OF BODY COMPOSITION AND BIOENERGETICS BY ESTROGENS

    PubMed Central

    Van Pelt, Rachael E.; Gavin, Kathleen M.; Kohrt, Wendy M.

    2015-01-01

    SYNOPSIS Evidence from basic, preclinical, and clinical research points to an important role of estradiol (E2) in the regulation of body composition and bioenergetics. There is consistent evidence from basic and preclinical research that the disruption of E2 signaling, through either genetic manipulation (e.g., estrogen receptor deletion) or surgical intervention (e.g., ovariectomy), accelerates fat accumulation, with a disproportionate increase in abdominal fat. Clinical evidence for the regulation of body composition and bioenergetics by E2 is less consistent. Evidence exists both for and against menopause as the mediator of changes in body composition. This is likely related to the prolonged nature of the menopause transition in women and the associated complexities of distinguishing effects of the loss of gonadal function from other phenomena of aging. However, a need remains to better understand the metabolic actions of estrogens in women because of the potential impact on health after the menopause. PMID:26316249

  6. Mechanical behaviour of an alumina fibre reinforced silicon carbide matrix composite at high temperature

    SciTech Connect

    Steen, M.; Valles, J.L.; Lamouroux, F. |

    1995-12-01

    In this study, the high temperature mechanical response of a 2D Al{sub 2}O{sub 3}(f)/SiC composite is investigated by uniaxial tensile, creep and fatigue tests under vacuum. During the tests, unloading-reloading cycles are introduced in order to study the evolution of damage with accumulated strain. The results show that creep damage is governed by interfacial debonding, whereas in the cyclic tests either fatigue damage only, or combined creep-fatigue damage occurs.

  7. Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions

    DTIC Science & Technology

    2015-04-17

    ToxProfiles/tp97.pdf (accessed March, 2015). (6) Eaton, J. C.; Lopinto, R. J.; Palmer, W. G. Health Effects of Hexachloroethane (HC) Smoke; accession number...movements. Such compositions are characterized by a hazard/performance trade-off. The most effective ones tend to be toxic or incendiary, while the... inhalation -related injuries and deaths.6 Other pyrotechnic smokes based on the sublimation of trans- cinnamic acid or terephthalic acid (CA, TA) are not

  8. Influence of Interfacial Carbide Layer Characteristics on Thermal Properties of Copper-Diamond Composites (Postprint)

    DTIC Science & Technology

    2014-04-01

    are considered, and are described below. Hasselman Johnson/Maxwell Mean-Field ( MMF ) model A simple model of the composite is assumed as a distri...trical conductivity than the MMF approach [27, 28]. Moreover, with regards to the predictions of k, DEM scheme yields consistent results for a wider...range of phase contrast (i.e., the ratio of the thermal conductivities of the dispersion and matrix) than the MMF model [29]. There- fore, in addition to

  9. In vivo animal models of body composition in aging

    SciTech Connect

    Yasumura, S. |; Jones, K.; Spanne, P.; Schidlovsky, G.; Wielopolski, L.; Ren, X.; Glaros, D.; Xatzikonstantinou, Y. |

    1992-12-31

    We developed several techniques that provide data on body elemental composition from in vivo measurements in rats. These methods include total body potassium by whole-body counting of endogenous {sup 40}K; total body calcium (TBCa), sodium and chloride by in vivo neutron activation analysis and total body phosphorus (TBP) and nitrogen (TBN) by photon activation analysis. These elements provide information on total body fat, total body protein and skeletal mass. Measurements were made in 6-, 12- and 24-month-old rats. TBN Increased slightly between 6 and 12 months but was significantly lower by 24 months, indicating a substantial loss in total body protein. Working at the National Synchrotron light Source, we studied rat femurs by computed microtomography (CMT), and the elemental profile of the femur cortex by synchrotron-radiation induced X-ray emission (SRIXE). Although there were no significant changes in TBCA and TBP, indices of skeletal mass, CMT revealed a marked increase in the size and number of cavities in the endosteal region of the femur cortex with increasing age. The SRIXE analysis of this cortical bone revealed a parallel decrease in the endosteal Ca/P ratio. Thus, there are major alterations in bone morphology and regional elemental composition despite only modest changes in total skeletal mass.

  10. Asymmetry in body composition in female hockey players.

    PubMed

    Krzykała, M; Leszczyński, P

    2015-08-01

    The aim of the study was to determine if a sport in which one side of the body is dominant, like field hockey, influences regional body composition and bone mineral density (BMD) distribution in particular body segments, and whether the sporting level is a determining factor. Dual energy X-ray absorptiometry (DXA) method (Lunar Prodigy Advance; General Electric, Madison, USA) with the whole body scan was used to measure bone mineral density, fat mass and lean mass in 31 female field hockey players divided according to their sporting level. The morphological asymmetry level was assessed between two body sides and body segments in athletes from the National Team (n=17) and from the Youth Team (n=14) separately and between groups. Bone mineral density in the lower extremity and of the trunk was significantly asymmetric in favor of the left side in the National Team. In the case of the Youth Team, only the trunk BMD indicated clear left-right difference with left side dominance. Both the lean mass and fat mass values were relatively higher on the left side of all body segments and it related to both analyzed groups of athletes. The present study shows that playing field hockey contributes to laterality in body composition and BMD and that the sporting level is a determining factor. In most cases the left side dominated. A greater asymmetry level was observed in more experienced female field hockey players.

  11. Validation and calibration of DEXA body composition in mice.

    PubMed

    Brommage, Robert

    2003-09-01

    Validated methods of determining murine body composition are required for studies of obesity in mice. Dual-energy X-ray absorptiometry (DEXA) provides a noninvasive approach to assess body fat and lean tissue contents. Similar to DEXA analyses in other species, body fat measurements in mice show acceptable precision but suffer from poor accuracy. Because fat and lean tissues each contain various components, these inaccuracies likely result from selection of inappropriate calibration standards. Analysis of solvents showed that the PIXImus2 DEXA gave results consistent with theoretical calculations. Male mice weighing 26-60 g and having body fat percentages ranging from 3 to 49% were analyzed by both PIXImus2 DEXA and chemical carcass analysis. DEXA overestimated mouse fat content by an average of 3.3 g, and algorithms were generated to calculate body fat from both measured body fat values and the measured ratio of high- to low-energy X-ray attenuations. With calibration to mouse body fat content measured by carcass analysis, the PIXImus2 DEXA gives accurate body composition values in mice.

  12. A study of silicon carbide synthesis from waste serpentine.

    PubMed

    Cheng, T W; Hsu, C W

    2006-06-01

    There are 60000 tons of serpentine wastes produced in year 2004 in Taiwan. This is due to the well-developed joints in the serpentine ore body as well as the stringent requirements of the particle size and chemical composition of serpentine by iron making company. The waste also creates considerable environmental problems. The purpose of this study is reutilization of waste serpentine to produce a high value silica powder after acid leaching. These siliceous microstructure products obtained from serpentine would be responsible for high reactivity and characteristic molecular sieving effect. In this study, the amorphous silica powder was then synthesized to silicon carbide with the C/SiO(2) molar ratio of 3. The experiment results show that silicon carbide can be synthesized in 1550 degrees C. The formed silicon carbide was whisker beta type SiC which can be used as raw materials for industry.

  13. Body composition and risk for metabolic alterations in female adolescents

    PubMed Central

    de Faria, Eliane Rodrigues; Gontijo, Cristiana Araújo; Franceschini, Sylvia do Carmo C.; Peluzio, Maria do Carmo G.; Priore, Silvia Eloiza

    2014-01-01

    OBJECTIVE: To study anthropometrical and body composition variables as predictors of risk for metabolic alterations and metabolic syndrome in female adolescents. METHODS: Biochemical, clinical and corporal composition data of 100 adolescents from 14 to 17 years old, who attended public schools in Viçosa, Southeastern Brazil, were collected. RESULTS: Regarding nutritional status, 83, 11 and 6% showed eutrophia, overweight/obesity and low weight, respectively, and 61% presented high body fat percent. Total cholesterol presented the highest percentage of inadequacy (57%), followed by high-density lipoprotein (HDL - 50%), low-density lipoprotein (LDL - 47%) and triacylglycerol (22%). Inadequacy was observed in 11, 9, 3 and 4% in relation to insulin resistance, fasting insulin, blood pressure and glycemia, respectively. The highest values of the fasting insulin and the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) were verified at the highest quartiles of body mass index (BMI), waist perimeter, waist-to-height ratio and body fat percent. Body mass index, waist perimeter, and waist-to-height ratio were the better predictors for high levels of HOMA-IR, blood glucose and fasting insulin. Waist-to-hip ratio was associated to arterial hypertension diagnosis. All body composition variables were effective in metabolic syndrome diagnosis. CONCLUSIONS: Waist perimeter, BMI and waist-to-height ratio showed to be good predictors for metabolic alterations in female adolescents and then should be used together for the nutritional assessment in this age range. PMID:25119752

  14. The preparation and economics of silicon carbide matrix composites by chemical vapor infiltration

    SciTech Connect

    Roman, Y.G.; Stinton, D.P.

    1995-10-01

    This paper describes a number of processing techniques that are currently in use for the development and production of continuous fiber reinforced ceramic composite materials. The limited number of available processing routes are compared with respect to the resulting material properties. As it appears the Chemical Vapor Infiltration technique is one of the most extensively developed methods. During the last decade, at least five different modifications of the isobaric isothermal CVI principle have been developed; each route having its own benefits. CVI techniques have now been developed to the extent that industrial commercialization is being realized. Projected cost aspects of the various CVI manufacturing techniques have been examined and compared.

  15. Body composition and nutrient intake of Buddhist vegetarians.

    PubMed

    Lee, Yujin; Krawinkel, Michael

    2009-01-01

    We described the body composition and nutrient intake of Buddhist vegetarians and compared the data with that of omnivores in South Korea. Vegetarian subjects were 54 Buddhist nuns, who adhered to a vegetarian diet in accordance with Buddhist teachings. We compared these finding with a group of 31 omnivore Catholic nuns who shared a similar lifestyle but different dietary pattern than those of the Buddhist nuns. All subjects completed the estimated three-day dietary record. Body composition was determined by a segmental multi-frequency-bioelectrical impedance analysis method. No height difference between the dietary groups existed but the vegetarians had a significantly higher body weight, fat free mass, body fat and body mass index (BMI, kg/m2) than the omnivores. The median BMI of both vegetarians and omnivores fell in the normal range (22.6 vs. 20.7 kg/m2). In vegetarians, body fat was inversely correlated with the duration of vegetarianism (p for trend=0.043). The long duration group of the vegetarians had lower body fat than the short duration group (12.l vs. 15.0 kg, p=0.032). The status of the nutrient intake of Korean Buddhist vegetarians was comparable to that of omnivores, and the intake of some nutrients in vegetarians was more favorable than in the omnivores.

  16. Reference Values for Body Composition and Anthropometric Measurements in Athletes

    PubMed Central

    Santos, Diana A.; Dawson, John A.; Matias, Catarina N.; Rocha, Paulo M.; Minderico, Cláudia S.; Allison, David B.; Sardinha, Luís B.; Silva, Analiza M.

    2014-01-01

    Background Despite the importance of body composition in athletes, reference sex- and sport-specific body composition data are lacking. We aim to develop reference values for body composition and anthropometric measurements in athletes. Methods Body weight and height were measured in 898 athletes (264 female, 634 male), anthropometric variables were assessed in 798 athletes (240 female and 558 male), and in 481 athletes (142 female and 339 male) with dual-energy X-ray absorptiometry (DXA). A total of 21 different sports were represented. Reference percentiles (5th, 25th, 50th, 75th, and 95th) were calculated for each measured value, stratified by sex and sport. Because sample sizes within a sport were often very low for some outcomes, the percentiles were estimated using a parametric, empirical Bayesian framework that allowed sharing information across sports. Results We derived sex- and sport-specific reference percentiles for the following DXA outcomes: total (whole body scan) and regional (subtotal, trunk, and appendicular) bone mineral content, bone mineral density, absolute and percentage fat mass, fat-free mass, and lean soft tissue. Additionally, we derived reference percentiles for height-normalized indexes by dividing fat mass, fat-free mass, and appendicular lean soft tissue by height squared. We also derived sex- and sport-specific reference percentiles for the following anthropometry outcomes: weight, height, body mass index, sum of skinfold thicknesses (7 skinfolds, appendicular skinfolds, trunk skinfolds, arm skinfolds, and leg skinfolds), circumferences (hip, arm, midthigh, calf, and abdominal circumferences), and muscle circumferences (arm, thigh, and calf muscle circumferences). Conclusions These reference percentiles will be a helpful tool for sports professionals, in both clinical and field settings, for body composition assessment in athletes. PMID:24830292

  17. CORRELATED STRONTIUM AND BARIUM ISOTOPIC COMPOSITIONS OF ACID-CLEANED SINGLE MAINSTREAM SILICON CARBIDES FROM MURCHISON

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Dauphas, Nicolas; Pellin, Michael J.; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Gyngard, Frank; Käppeler, Franz; Cristallo, Sergio; Dillmann, Iris

    2015-04-10

    We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated {sup 88}Sr/{sup 86}Sr and {sup 138}Ba/{sup 136}Ba ratios in mainstream SiC grains, we are able to resolve the effect of {sup 13}C concentration from that of {sup 13}C-pocket mass on s-process nucleosynthesis, which points toward the existence of large {sup 13}C pockets with low {sup 13}C concentrations in asymptotic giant branch stars. The presence of such large {sup 13}C pockets with a variety of relatively low {sup 13}C concentrations seems to require multiple mixing processes in parent asymptotic giant branch stars of mainstream SiC grains.

  18. Enamel Surface Evaluation after Removal of Orthodontic Composite Remnants by Intraoral Sandblasting Technique and Carbide Bur Technique: A Three-Dimensional Surface Profilometry and Scanning Electron Microscopic Study

    PubMed Central

    Mhatre, Amol C; Tandur, Arundhati P; Reddy, Sumitra S; Karunakara, B C; Baswaraj, H

    2015-01-01

    Background: The purpose of this thesis is to present a practical and efficient clinical method of returning enamel to as near its original condition as possible following removal of bonded orthodontic attachments. The main objective of this study is to evaluate and compare the iatrogenic enamel damage caused by use of two different remnant removal techniques – sandblasting technique and carbide bur technique. Materials and Methods: 40 extracted premolar teeth were selected as sample. Premolar brackets were bonded on these teeth with two different types of light cure adhesive composite resin. The remnants present on these samples after debonding the brackets were removed with two different types of remnant removal techniques namely – Carbide bur technique and sandblasting technique. Then these treated surfaces were studied under Scanning electron microscope and three-dimensional profilometer for the damage caused to the enamel. Statistical analysis used Student’s t-tests. Results: The enamel surface structure after remnant removal with intraoral sandblasting is better than that after removal with a low-speed handpiece using tungsten carbide bur. Conclusion: Sandblasting can be an acceptable alternative to rotatory handpieces to restore the enamel surface to its near-original state and prevent permanent damage to the tooth. PMID:26668478

  19. Second quantization techniques in the scattering of nonidentical composite bodies

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1986-01-01

    Second quantization techniques for describing elastic and inelastic interactions between nonidentical composite bodies are presented and are applied to nucleus-nucleus collisions involving ground-state and one-particle-one-hole excitations. Evaluations of the resultant collision matrix elements are made through use of Wick's theorem.

  20. Assessment and Interpretation of Body Composition in Physical Education

    ERIC Educational Resources Information Center

    Vehrs, Pat; Hager, Ron

    2006-01-01

    The physical educator's role is evolving into that of a teacher who is well educated in the areas of teaching, skill acquisition and development, motor learning, exercise physiology, physical conditioning, weight management, health, and lifestyle management. In an era when childhood obesity is at an all-time high, body composition can be one…

  1. Design for manufacturability evaluation: Composite NIF Pockel Cell body

    SciTech Connect

    Jensen, W.A.; Spellman, G.P.

    1994-04-01

    A survey of composite materials and processes for the NIF Optical Switch Body is described. Mechanical and physical criterion set upon the part are used as guidelines for the selection of materials and processes for manufacturing. Benefits, costs, and risks associated with selected processes, as well as a recommendation for prototype fabrication is presented.

  2. Do Lower-Body Dimensions and Body Composition Explain Vertical Jump Ability?

    PubMed

    Caia, Johnpaul; Weiss, Lawrence W; Chiu, Loren Z F; Schilling, Brian K; Paquette, Max R; Relyea, George E

    2016-11-01

    Caia, J, Weiss, LW, Chiu, LZF, Schilling, BK, Paquette, MR, and Relyea, GE. Do lower-body dimensions and body composition explain vertical jump ability? J Strength Cond Res 30(11): 3073-3083, 2016-Vertical jump (VJ) capability is integral to the level of success attained by individuals participating in numerous sport and physical activities. Knowledge of factors related to jump performance may help with talent identification and/or optimizing training prescription. Although myriad variables are likely related to VJ, this study focused on determining if various lower-body dimensions and/or body composition would explain some of the variability in performance. Selected anthropometric dimensions were obtained from 50 university students (25 men and 25 women) on 2 occasions separated by 48 or 72 hours. Estimated body fat percentage (BF%), height, body weight, hip width, pelvic width, bilateral quadriceps angle (Q-angle), and bilateral longitudinal dimensions of the feet, leg, thigh, and lower limb were obtained. Additionally, participants completed countermovement VJs. Analysis showed BF% to have the highest correlation with countermovement VJ displacement (r = -0.76, p < 0.001). When examining lower-body dimensions, right-side Q-angle displayed the strongest association with countermovement VJ displacement (r = -0.58, p < 0.001). Regression analysis revealed that 2 different pairs of variables accounted for the greatest variation (66%) in VJ: (a) BF% and sex and (b) BF% and body weight. Regression models involving BF% and lower-body dimensions explained up to 61% of the variance observed in VJ. Although the variance explained by BF% may be increased by using several lower-body dimensions, either sex identification or body weight explains comparatively more. Therefore, these data suggest that the lower-body dimensions measured herein have limited utility in explaining VJ performance.

  3. Effect of chronic centrifugation on body composition in the rat.

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1972-01-01

    Two groups of adult female rats were chronically centrifuged for 60 days (2.76 G, 4.15 G, controls at 1.00 G). Live weights of centrifugal rats decreased about 20 g (6%) per Delta 1 G above control. This weight loss comprised reductions in both body fat and fat-free body weight (FFBW) as determined by body-composition studies on eight rats per group killed at the end of centrifugation. Of nine components constituting the FFBW, only skeletal muscle, liver, and heart changed significantly in weight. Chemical composition showed reductions (compared with controls) in the fat fraction of most components and increases in the water fraction of liver and gut. Identical measurements were made on the remaining eight rats per group killed 43 days after return to 1 G. Neither centrifuged group had reached the control body-weight level at this time. No statistically significant effect of previous G level was found in any of the body-composition parameters. The possible involvment of physiological regulation was considered.

  4. Effects of weightlessness on body composition in the rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Ushakov, A. S.; Pace, N.; Smith, A. H.; Rahlmann, D. F.; Smirnova, T. A.

    1983-01-01

    The effects of weightlessness on the body composition of rats were investigated using 5 male rats exposed to 18.5 days of weightlessness on the COSMOS 1129 biosatellite and killed after reentry. The animals were immediately dissected and the three major body divisions (musculoskeletal system, skin, and pooled viscera) were analyzed for fat, water, solids, and six elements. These results were determined as percentages of the fat-free body or its components and then compared with two groups of terrestrial controls, one of which was subjected to a flight simulation in a spacecraft mock-up while the other was under standard vivarium conditions. Compared with the control groups, the flight group was found to exhibit a reduced fraction of total body water, a net shift of body water from skin to viscera, a marked diminution in the fraction of extracellular water in the fat-free body, a marked reduction in the fraction of bone mineral, no change in the quantity of stored fat or adrenal masses, and a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  5. Analysis of Relationship between the Body Mass Composition and Physical Activity with Body Posture in Children

    PubMed Central

    Baran, Joanna; Czenczek-Lewandowska, Ewelina; Leszczak, Justyna; Mazur, Artur

    2016-01-01

    Introduction. Excessive body mass in turn may contribute to the development of many health disorders including disorders of musculoskeletal system, which still develops intensively at that time. Aim. The aim of this study was to assess the relationship between children's body mass composition and body posture. The relationship between physical activity level of children and the parameters characterizing their posture was also evaluated. Material and Methods. 120 school age children between 11 and 13 years were enrolled in the study, including 61 girls and 59 boys. Each study participant had the posture evaluated with the photogrammetric method using the projection moiré phenomenon. Moreover, body mass composition and the level of physical activity were evaluated. Results. Children with the lowest content of muscle tissue showed the highest difference in the height of the inferior angles of the scapulas in the coronal plane. Children with excessive body fat had less slope of the thoracic-lumbar spine, greater difference in the depth of the inferior angles of the scapula, and greater angle of the shoulder line. The individuals with higher level of physical activity have a smaller angle of body inclination. Conclusion. The content of muscle tissue, adipose tissue, and physical activity level determines the variability of the parameter characterizing the body posture. PMID:27761467

  6. Risk of Mortality According to Body Mass Index and Body Composition Among Postmenopausal Women

    PubMed Central

    Bea, Jennifer W.; Thomson, Cynthia A.; Wertheim, Betsy C.; Nicholas, J. Skye; Ernst, Kacey C.; Hu, Chengcheng; Jackson, Rebecca D.; Cauley, Jane A.; Lewis, Cora E.; Caan, Bette; Roe, Denise J.; Chen, Zhao

    2015-01-01

    Obesity, often defined as a body mass index (BMI; weight (kg)/height (m)2) of 30 or higher, has been associated with mortality, but age-related body composition changes can be masked by stable BMI. A subset of Women's Health Initiative participants (postmenopausal women aged 50–79 years) enrolled between 1993 and 1998 who had received dual-energy x-ray absorptiometry scans for estimation of total body fat (TBF) and lean body mass (LBM) (n = 10,525) were followed for 13.6 (standard deviation, 4.6) years to test associations between BMI, body composition, and incident mortality. Overall, BMI ≥35 was associated with increased mortality (adjusted hazard ratio (HR) = 1.45, 95% confidence interval (CI): 1.16, 1.82), while TBF and LBM were not. However, an interaction between age and body composition (P < 0.001) necessitated age stratification. Among women aged 50–59 years, higher %TBF increased risk of death (HR = 2.44, 95% CI: 1.38, 4.34) and higher %LBM decreased risk of death (HR = 0.41, 95% CI: 0.23, 0.74), despite broad-ranging BMIs (16.4–69.1). However, the relationships were reversed among women aged 70–79 years (P < 0.05). BMI did not adequately capture mortality risk in this sample of postmenopausal women. Our data suggest the clinical utility of evaluating body composition by age group to more robustly assess mortality risk among postmenopausal women. PMID:26350478

  7. ["In vivo" body composition assessment; part I: a historic overview].

    PubMed

    Carnero, Elvis A; Alvero-Cruz, José Ramón; Giráldez García, Manuel Avelino; Sardinha, Luis B

    2015-05-01

    The study of body composition (BC) has gained in relevance over the last decades, mainly because of its important health- and disease- related applications within both the clinical and the sports setting. It is not a new area, and its especial relevance as an area of biology dates from the second half of the nineteenth century. In this paper, we have reviewed the three historic periods of BC, with special reference to the most important advances in in vivo assessment. Even though the earliest findings about human BC date from antiquity, the first (or 'early') stage of discovery began in 1850. Said early stage was mainly characterized by data obtained from the dissection of cadavers and by the application of biochemical methods in vivo. Longitudinal changes in body composition were also a concern. The second (so called 'recent') stage, in the second half of the twentieth century, was marked by milestones such as the formulation of the first mathematical models for the estimation of body components, and technological advances. Within the third ('contemporary' or 'current') stage of research, several groups have focused on validating the classical BC models in specific populations, on analysis of the genetic determinants (i.e. phenotypes and, more recently genotypes) of body composition, and on re-instigating the study of dynamic BC.

  8. Association between actigraphic sleep metrics and body composition

    PubMed Central

    Wirth, Michael D.; Hébert, James R.; Hand, Gregory A.; Youngstedt, Shawn D.; Hurley, Thomas G.; Shook, Robin P.; Paluch, Amanda E.; Sui, Xuemei; James, Shelli L.; Blair, Steven N.

    2015-01-01

    Purpose Determine if individuals with poor sleep characteristics (i.e., late sleep onset or wake times, short sleep duration, long sleep latency, low sleep efficiency, high wake-after-sleep-onset [WASO]) have greater body mass index (BMI=kg/m2) or body fat. Methods Data for these cross-sectional analyses were from the Energy Balance Study (University of South Carolina). Participants were between 21 and 35 years of age and had a BMI of 20–35 kg/m2. Body fat percent was measured by dual X-ray absorptiometry. Sleep and physical activity were measured by actigraphy (BodyMedia’s SenseWear® physical activity armband). General linear models were used to estimate mean BMI and body fat percent by sleep metric categories. Results Greater BMI and body fat percent were associated with low sleep efficiency (BMI=25.5 vs. 24.8kg/m2, p<0.01; body fat=27.7 vs. 26.5%, p=0.04) and high WASO (BMI=25.6 vs. 25.0 kg/m2, p=0.02; body fat=28.0 vs. 26.7%, p=0.03). Elevated BMI or body fat percent also were observed for later wake times, shorter sleep duration, and longer sleep latency. Sex modified the association between wake times and body composition. Conclusions Understanding the complex relationships between sleep and health outcomes could help reduce chronic disease burden by incorporating sleep components, measured through novel non-invasive techniques (SenseWear® armband), into weight loss interventions. PMID:26071309

  9. Gender Differences in Insulin Resistance, Body Composition, and Energy Balance

    PubMed Central

    Geer, Eliza B.; Shen, Wei

    2010-01-01

    Background Men and women differ substantially in regard to degrees of insulin resistance, body composition, and energy balance. Adipose tissue distribution, in particular the presence of elevated visceral and hepatic adiposity, plays a central role in the development of insulin resistance and obesity-related complications. Objective This review summarizes published data on gender differences in insulin resistance, body composition, and energy balance, to provide insight into novel gender-specific avenues of research as well as gender-tailored treatments of insulin resistance, visceral adiposity, and obesity. Methods English-language articles were identified from searches of the PubMed database through November 2008, and by reviewing the references cited in these reports. Searches included combinations of the following terms: gender, sex, insulin resistance, body composition, energy balance, and hepatic adipose tissue. Results For a given body mass index, men were reported to have more lean mass, women to have higher adiposity. Men were also found to have more visceral and hepatic adipose tissue, whereas women had more peripheral or subcutaneous adipose tissue. These differences, as well as differences in sex hormones and adipokines, may contribute to a more insulin-sensitive environment in women than in men. When normalized to kilograms of lean body mass, men and women had similar resting energy expenditure, but physical energy expenditure was more closely related to percent body fat in men than in women. Conclusion Greater amounts of visceral and hepatic adipose tissue, in conjunction with the lack of a possible protective effect of estrogen, may be related to higher insulin resistance in men compared with women. PMID:19318219

  10. Sarcopenia and the Analysis of Body Composition12

    PubMed Central

    Ribeiro, Sandra M. L.; Kehayias, Joseph J.

    2014-01-01

    Reduction of lean mass is a primary body composition change associated with aging. Because many factors contribute to lean mass reduction, the problem has been given various names depending on the proposed cause, such as “age-related sarcopenia,” “dynapenia,” “myopenia,” “sarcopenic obesity,” or simply “sarcopenia.” There is currently no consensus on how to best diagnose the reduction of lean mass and its consequences on health. We propose that simple body composition methods can be used to indirectly evaluate sarcopenia, provided that those techniques are validated against the “quality of lean” criterion that associates muscle mass and metabolic function with the components of fat-free mass. Promising field methods include the use of stable isotopes for the evaluation of water compartments and new approaches to bioelectrical impedance analysis, which is also associated with the monitoring of water homeostasis. PMID:24829472

  11. Nutrition, endocrinology, and body composition during space flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.; Smith, S. M.

    1998-01-01

    Space flight induces endocrine changes that perturb metabolism. This altered metabolism affects both the astronauts' body composition and the nutritional requirements necessary to maintain their health. During the last 25 years, a combination of studies conducted on Skylab (the first U.S. space laboratory), U.S. Shuttle flights, and Soviet and Russian flights provides a range of data from which general conclusions about energy and protein requirements can be drawn. We have reviewed the endocrine data from those studies and related it to changes in body composition. From these data it appears that protein and energy intake of astronauts are similar to those on Earth. However, a combination of measures, including exercise, appropriate diet, and, potentially, drugs, is required to provide the muscle health needed for long duration space flight.

  12. Body composition and calcium metabolism in adult treated coeliac disease.

    PubMed Central

    Bodé, S; Hassager, C; Gudmand-Høyer, E; Christiansen, C

    1991-01-01

    Twenty two treated adult patients with coeliac disease (aged 20-70 years) were examined. Body composition was assessed from anthropometry and directly measured by dual photon absorptiometry. Bone mineral content was measured in the spine (dual photon absorptiometry) and at two forearm sites (single photon absorptiometry). Compared with age matched healthy subjects, treated coeliac patients had lower body mass index (-5%, p less than 0.05) and lower directly measured total body fat mass (-30%, p less than 0.001). They also had decreased bone mineral content (-9 to -13%, p less than 0.01) in the spine and in the forearms. The serum concentrations of albumin, D vitamin binding protein, and iron were reduced (-6 to -22%, p less than 0.01), but otherwise blood and urine analyses were normal. We conclude that this group of treated adult coeliac patients had a reduced fat mass and bone mineral content compared with the general population. PMID:1752465

  13. [Dermatoglyphics and body composition in obstructive sleep apnea].

    PubMed

    Mercanti, Luiz Bittencourt; Bezerra, Marcio L de S; Fernandes Filho, José; Struchiner, Claudio José

    2004-09-01

    Obesity is the main risk factor for obstructive sleep apnea syndrome (OSAS) and genetic patterns can modulate the pathogenesis of the disease. The aim of this study is to describe the anthropometrics and dermatoglyphics features among OSAS carriers. We collected information on Body Mass Index (BMI), Conicity Index (CI), Body Fat Mass (BFM), somatotype and fingerprints. Thirty-one cases of OSAS were compared to an equal number of controls. Membership to the obese category is based on observed BMI and BFM. The CI distribution among cases shows a strong central obesity component. The endomorph-mesomorph somatotype category predominates among cases showing high adiposity and relative muscle-skeletic development, such as relative linearity of great mass per unit of height. Increased morbidity, as given by more serious indices of apnea, correlates positively with higher mesomorphic predominance in the body composition. Analysis of dermatoglyphic data does not show significant statistical differences between OSAS--patients and controls.

  14. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  15. Bioimpedance measurements of human body composition: critical analysis and outlook.

    PubMed

    Matthie, James R

    2008-03-01

    Bioimpedance spectroscopy represents one of the largest emerging medical device technologies. The method is generally known as impedance spectroscopy and is an inexpensive, yet extremely powerful, analytical technique for studying the electrical properties of materials. Much of what we know about biological cells and tissues comes from use of this technique in vitro. Due to the high impedance of the cell membrane, current flow through the cell is frequency dependent and this allows the fluid volume inside versus outside the body's cells to be determined. The fluid outside the cells is primarily related to fluid volume status while the intracellular fluid also relates to the body's cellular mass. Technical advances have removed much of the method's basic complexities. The first commercial bioimpedance spectroscopy device for in vivo human body composition studies was introduced in 1990. Major strides have been made and the method is now poised to enter mainstream clinical medicine but the field is only in its infancy. This paper attempts to fully describe the current use of impedance in the body composition field.

  16. Heterogeneous composite bodies with isolated lenticular shaped cermet regions

    SciTech Connect

    Sherman, Andrew J.

    2009-12-22

    A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice the average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.

  17. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

    NASA Astrophysics Data System (ADS)

    Dvilis, E. S.; Khasanov, O. L.; Gulbin, V. N.; Petyukevich, M. S.; Khasanov, A. O.; Olevsky, E. A.

    2016-03-01

    Spark-plasma sintering (SPS) is used to fabricate fully-dense metal-matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure-temperature-relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

  18. Structural characterization of hard materials by transmission electron microscopy (TEM): Diamond-Silicon Carbide composites and Yttria-stabilized Zirconia

    NASA Astrophysics Data System (ADS)

    Park, Joon Seok

    2008-10-01

    Diamond-Silicon Carbide (SiC) composites are excellent heat spreaders for high performance microprocessors, owing to the unparalleled thermal conductivity of the former component. Such a combination is obtained by the infiltration of liquid silicon in a synthetic diamond compact, where a rigid SiC matrix forms by the reaction between the raw materials. As well as the outstanding thermal properties, this engineered compound also retains the extreme hardness of the artificial gem. This makes it difficult to perform structural analysis by transmission electron microscopy (TEM), for it is not possible to produce thin foils out of this solid by conventional polishing methods. For the first time, a dual-beam focused ion beam (FIB) instrument successfully allowed site-specific preparation of electron-transparent specimens by the lift-out technique. Subsequent TEM studies revealed that the highest concentration of structural defects occurs in the vicinity of the diamond-SiC interfaces, which are believed to act as the major barriers to the transport of thermal energy. Diffraction contrast analyses showed that the majority of the defects in diamond are isolated perfect screw or 60° dislocations. On the other hand, SiC grains contain partial dislocations and a variety of imperfections such as microtwins, stacking faults and planar defects that are conjectured to consist of antiphase (or inversion) boundaries. Clusters of nanocrystalline SiC were also observed at the diamond-SiC boundaries, and a specific heteroepitaxial orientation relationship was discovered for all cubic SiC that grows on diamond {111} facets. Yttria-stabilized Zirconia (YSZ) is the most common electrolyte material for solid oxide fuel cell (SOFC) applications. It is an ionic conductor in which charge transfer is achieved by the transport of oxygen ions (O 2-). Like the diamond composite above, it is hard and brittle, and difficult to make into electron transparent TEM samples. Provided an effective

  19. What is the impact of Silicon Carbide nanoparticles to the mineral composition of rat lungs? A PIXE-μPIXE comparative study

    NASA Astrophysics Data System (ADS)

    Lozano, O.; Colaux, J. L.; Laloy, J.; Dogné, J. M.; Lucas, S.

    2015-05-01

    The exposure to nanomaterials can yield changes in the mineral composition of tissues which may have long term health repercussions. In this study, the changes in mineral composition of rat lungs, exposed to a nanoaerosol of silicon carbide (SiC), has been studied by means of global and local ion beam probes with the Particle-Induced X-ray Emission (PIXE) technique, measuring the whole lung contents and selected areas where SiC was found, respectively. It was found that from a global perspective there is a small decrease in the mineral contents (phosphorous, sulphur, chlorine and potassium) of the lung except for Ca, while locally these mineral contents tend fluctuate.

  20. The independent association between diet quality and body composition.

    PubMed

    Drenowatz, Clemens; Shook, Robin P; Hand, Gregory A; Hébert, James R; Blair, Steven N

    2014-05-12

    Excess body weight is associated with an imbalance between energy expenditure and dietary intake but evidence on the association between diet quality and body composition remains equivocal. Rather than relying on differences in diet quality between overweight/obese and normal weight adults, this study examined the association between the Healthy Eating Index 2010 (HEI-2010) and body fatness on a continuous scale, independent of physical activity (PA). Further the association between components of the HEI-2010 and risk for overweight/obesity was explored. 407 adults (27.6 ± 3.7 years) provided at least two 24-hour diet recalls over a period of 14 days, which were used to calculate the HEI-2010. Percent body fat (BF) was assessed via dual X-ray absorptiometry and PA was determined via a multi-sensor device, worn over a period of 10 days. PA was a stronger contributor to the variability in BF than the HEI-2010 and the association between HEI-2010 and BF was significant only in men. Particularly a high consumption of protein, sodium and empty calories increased the risk for overweight/obesity. Adherence to dietary guidelines positively affects body fatness in men, independent of PA. In contrast to current dietary recommendations, the risk for overweight/obesity was increased with a higher protein intake.

  1. Gravity, Body Mass and Composition, and Metabolic Rate

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1985-01-01

    Metabolic rate and body composition as a function of sex and age were defined in 5 species of common laboratory mammals, the mouse, hamster, rat, guinea pig and rabbit. Oxygen consumption and carbon dioxide production rates were measured individually in 6 male and 6 female animals for each of 8 age cohorts ranging from 1 month to 2 years, and for each of the species. From the results it is evident that among these small mammals there is no indication of scaling of muscularity to body size, despite the 100-fold difference in body mass represented by the skeletal musculature seems to reach a pronounced peak value at age 2 to 3 months and then declines, the fraction of the fat-free body represented by other body components in older animals must increase complementarily. Under normal gravity conditions muscularity in small laboratory mammals displays large, systematic variation as a function both of species and age. This variation must be considered when such animals are subjects of experiments to study the effects of altered gravitational loading on the skeletal musculature of the mammal.

  2. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    PubMed

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli.

  3. Nutritional Markers and Body Composition in Hemodialysis Patients

    PubMed Central

    Valtuille, Rodolfo; Casos, Maria Elisa; Fernandez, Elmer Andres; Guinsburg, Adrian; Marelli, Cristina

    2015-01-01

    The aims of this study were to analyse body composition, to detect the presence of undernutrition, and to establish a relationship between undernutrition and the biological markers routinely used as indicators of nutritional status in hemodialysis (HD) patients (pts). We used a body composition monitor (BCM) that expresses body weight in terms of lean tissue mass (LTM) and fat tissue mass (FTM) independent of hydration status. From nine HD units, 934 pts were included. Undernutrition was defined as having a lean tissue index (LTI = LTM/height2) below the 10th percentile of a reference population. Biochemical markers and parameters delivered by BCM were used to compare low LTI and normal LTI groups. Undernutrition prevalence was 58.8% of the population studied. Low LTI pts were older, were significantly more frequently overhydrated, and had been on HD for a longer period of time than the normal LTI group. FTI (FTI = FTM/ height2) was significantly higher in low LTI pts and increased according to BMI. LTI was not influenced by different BMI levels. Albumin and C-reactive protein correlated inversely (r = −0.28). However neither of them was statistically different when considering undernourished and normal LTI pts. Our BCM study was able to show a high prevalence of undernutrition, as expressed by low LTI. In our study, BMI and other common markers, such as albumin, failed to predict malnutrition as determined by BCM. PMID:27347538

  4. New reusable elastomer electrodes for assessing body composition

    NASA Astrophysics Data System (ADS)

    Moreno, M.-V.; Chaset, L.; Bittner, P. A.; Barthod, C.; Passard, M.

    2013-04-01

    The development of telemedicine requires finding solutions of reusable electrodes for use in patients' homes. The objective of this study is to evaluate the relevance of reusable elastomer electrodes for measuring body composition. We measured a population of healthy Caucasian (n = 17). A measurement was made with a reference device, the Xitron®, associated with AgCl Gel electrodes (Gel) and another measurement with a multifrequency impedancemeter Z-Metrix® associated with reusable elastomer electrodes (Elast). We obtained a low variability with an average error of repeatability of 0.39% for Re and 0.32% for Rinf. There is a non significantly difference (P T-test > 0.1) about 200 ml between extracellular water Ve measured with Gel and Elast in supine and in standing position. For total body water Vt, we note a non significantly difference (P T-test > 0.1) about 100 ml and 2.2 1 respectively in supine and standing position. The results give low dispersion, with R2 superior to 0.90, with a 1.5% maximal error between Gel and Elast on Ve in standing position. It looks possible, taking a few precautions, using elastomer electrodes for assessing body composition.

  5. Organosilane Polymers. IV. Polycarbosilane Precursors for Silicon Carbide.

    DTIC Science & Technology

    1981-01-01

    The current objectives of this project are: (1) optimized preparations of tractable polycarbosilane precursors for silicon carbide ; (2) conversion of...such polycarbosilanes to silicon carbide including shaped articles thereof, such as fibers; and (3) development of fundamental understanding of the...vinylic or chloromethyl (ClCH2-) silanes. These polymers are directly convertible to silicon carbide compositions by atmospheric pressure pyrolysis

  6. Effects of betaine on body composition, performance, and homocysteine thiolactone

    PubMed Central

    2013-01-01

    Background This study investigated the effects of long term betaine supplementation on body composition, performance, and homocysteine thiolactone (HCTL) in experienced strength trained men. Methods Twenty-three subjects were matched for training experience (4.8 ± 2.3 years) and body fat percentage (BF%: 16.9 ± 8.0%), randomly assigned to either a placebo (PL; n = 12) or betaine group (BET; n = 11; 2.5 g/day), and completed a 6 week periodized training program consisting of 3 two-week micro-cycles. Bench press and back squat training volumes were recorded and changes in training volume were assessed at each micro-cycle. Fasting urine was collected at baseline (BL), weeks 2, 4 and 6, and assayed for HCTL. Subjects were tested prior to and following 6 weeks of treatment. Arm and thigh cross sectional area (CSA) was estimated via girth and skin fold measurements. Body density was estimated via skin fold calipers and used to estimate BF%, fat mass (FM), and lean body mass (LBM). Performance was assessed via vertical jump (VJ), bench press 1 RM (BP), and back squat 1 RM (BS). Results Arm CSA increased significantly (p < .05) in BET but not PL. No differences existed between group and time for changes in thigh CSA. Back squat training volume increased significantly (p < .05) for both groups throughout training. Bench press training volume was significantly (p < .05) improved for BET compared to PL at microcycles one and three. Body composition (BF%, FM, LBM) improved significantly (p < .05) in BET but not PL. No differences were found in performance variables (BP, BS, VJ) between groups, except there was a trend (p = .07) for increased VJ power in BET versus PL. A significant interaction (p < .05) existed for HCTL, with increases from BL to week 2 in PL, but not BET. Additionally, HCTL remained elevated at week 4 in PL, but not BET. Conclusion Six-weeks of betaine supplementation improved body composition, arm size, bench press

  7. Body mass index and body composition among rescue firefighters personnel in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Rahimi, Nor Atiqah; Sedek, Razalee; Teh, Arnida Hani

    2016-11-01

    Obesity is a major public health problem in general population and there is no exception for firefighters. This disorder is definitely a burden for firefighters as they needed to be physically fit in order to work in dangerous situation and extinguishing fires. The purposes of this study were to determine physical characteristics and body composition among Malaysian Firefighters (MF) and to explore their association. This cross-sectional study involved 330 rescue firefighters aged between 20-50 years old from nine different districts in Selangor conducted between August and November 2015. Anthropometric measurements included height, weight and waist circumference (WC). Body composition was measured using bioelectrical impedance. The mean height, weight, body mass index (BMI), WC and body fat percentage were 169.4±5.3 cm, 74.5±12.2 kg, 25.9±3.82 kg/m2, 90.7±48.3 cm and 25.8±6.2 % respectively. The results also showed that 0.6% of them were underweight, 41.5% were normal, 44.8% were overweight and 13% were obese. The percentage of 34.8% firefighters with WC values of more than 90 cm means that they were at greater risk to have cardiovascular and diabetes disease. Body composition analysis showed that 75.5% of the subjects have high body fat level, 19.7% subjects were in healthy range but only 4.8% were considered as lean subjects. BMI was highly correlated with weight (r=0.917, p<0.01), WC (r=0.858, p<0.01) and body fat percentage (r=0.757, <0.01). Body fat percentage also showed to have a high correlation with BMI (r=0.757, p<0.01) and WC (r=0.693, p<0.01). Furthermore, overweight and obesity were found to be more prevalent among firefighters personnel of older age, married, less educated and have longer duration of services. It can be concluded that more than half of the firefighter personnel were either overweight or obese and 35% of them were at greater risk of having non-communicable diseases. This study provides useful information and serves as a source of

  8. Effects of Rapid or Slow Body Mass Reduction on Body Composition in Adult Rats

    PubMed Central

    Tai, Shinji; Tsurumi, Yasukimi; Yokota, Yukari; Masuhara, Mitsuhiko; Okamura, Koji

    2009-01-01

    Whether the speed of body mass (BM) reduction influences the body composition is uncertain. To investigate the effects of rapid vs slow body mass reduction on body composition, rats were divided into three groups; fed ad libitum for 16-day (Control, C); received restricted food intake during 16-day to decrease BM slowly (Slow, S); or fed ad libitum for 13-days and fasted for the last 3 days to rapidly reach a BM comparable to that of S (Rapid, R). Drinking water was restricted for R on day 16 to rapidly decrease their BM. All rats trained during the study. Final BM and adipose tissues mass were similar for R and S, and both were lesser than C. The skeletal muscle mass did not decrease in R and S. The liver mass was lower in R and S than C, and the decrease tended to be greater in R than S. Both the stomach and small intestine masses were significantly lower in R than C, but did not differ between S and C. In conclusion, differences of the speed of BM reduction affect the splanchnic tissues, and the decrease in splanchnic tissue mass was greater with rapid than slow BM reduction. PMID:19794927

  9. Diffusion barriers for silicon carbide particle reinforcements by ion-beam assisted deposition: Effects on interphase stability in silicon carbide(p/beta)-nickel aluminide and silicon carbide(p/gamma)-nickel aluminide composites

    NASA Astrophysics Data System (ADS)

    Cai, Zhiwei

    In this study, aluminum nitride and aluminum oxide films were used as diffusion barriers for SiC particles that were consolidated with beta-NiAl and gamma-Ni3Al matrices at temperatures of 1673 K and 1373 K, respectively. The focus of this study was to understand factors influencing the effectiveness of the diffusion barriers during the consolidation processes of the two composite systems. The barrier films were deposited on SiC particles by ion-beam assisted vacuum evaporation during which the SiC particles were radiantly heated and acoustically levitated. The nitride film formed reactively on SiC particles, and consisted of 95% aluminum nitride (balanced with aluminum nitrate and oxide). The oxygen content in the nitride film was a result of the impingement of residual oxygen and water molecules in the deposition environment. A voided globular structure of fine-grained clusters was found in a nitride film deposited on SiC particles at 593 K, which was attributed to the levitation of the particles and the deposition temperature. Nitride films deposited at a higher temperature of 793 K consisted of a fine-grained dense structure with few voids. The oxide film deposited at room temperature had a fine-grained dense structure with some globular features. This study found that film material affected film's ability of retaining integrity during compositing process, which was important for the success of the barrier films. Annealed at 1673 K, grains in a nitride film (deposited at 793 K) coalesced to an average size of 0.5 mum that was comparable to the film thickness. Grain boundaries in the film were widened by the pore agglomeration, resulting in micro-cracks. The oxide film exhibited a similar phenomenon of uninhibited grain growth and micro-crack formation at a lower temperature of 1273 K. Both films failed to be an effective barrier in SiC/beta-NiAl composite during the compositing process at 1673 K. This study showed the influence of film structure on grain growth

  10. LIQUID PHASE SINTERING OF METALLIC CARBIDES

    DOEpatents

    Hammond, J.; Sease, J.D.

    1964-01-21

    An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)

  11. Seasonal variations in the body composition of lightweight rowers.

    PubMed Central

    Morris, F L; Payne, W R

    1996-01-01

    OBJECTIVE: To monitor the seasonal body composition alterations in 18 lightweight rowers (six females, 12 males) across a rowing season incorporating preseason, early competition, competition, and postseason. METHODS: Subject age was 23.1 (SD 4.5) years, height 170.8 (5.6) cm (female, 23.5 (3.5) years, 180.5 (2.7) cm (male). Body weight, fat mass, and fat-free mass (FFM) were assessed using dual energy x ray absorptiometry (DXA-L Lunar) and skinfold techniques. Weight control techniques were documented before major regattas by a questionnaire. RESULTS: Female body weight was reduced from 61.3 (2.9) to 57.0 (1.1) kg (5.9%), while male body weight was reduced from 75.6 (3.1) to 69.8 (1.6) kg (7.8%) preseason to competition season respectively. These body weight reductions were mirrored by a significant reduction in fat mass as indicated by the sum of skinfolds [female seven sites: 80.9 (8.1) to 68.2 (11.8) mm; male eight sites: 54.2 (8.7) to 41.8 (4.8) mm], percentage body fat [female 22.1 (1.0) to 19.7 (2.4)%; male 10.0 (0.9) to 7.8 (0.8)%], and total fat [female 12.5 (5.2) to 10.9 (1.4) kg; male 7.3 (1.9) to 5.6 (1.8) kg] (DXA). In contrast, no changes were observed in FFM despite a season of intensive rowing training. Seasonal body weight control was achieved through reduced total energy and dietary fat intakes. Acute body weight reductions were achieved by exercise in 73.3% of participants, food restriction in 71.4%, and fluid restrictions in 62.9%. CONCLUSIONS: Seasonal body weight alterations in lightweight rowers are in response to a significant reduction in fat mass. However, the weight restrictions appear to be limiting an increase in FFM which could be beneficial to rowing performance. Images Figure 2 Figure 3 PMID:9015590

  12. Longitudinal body composition of children born to normal weight, overweight and obese mothers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The longitudinal trajectories of body composition of children born to normal weight, overweight and obese mothers have not been evaluated using precise body composition methods. This study investigated the relationship between maternal pre-pregnancy BMI and offspring body composition traj...

  13. Body Composition in Adult Patients with Thalassemia Major.

    PubMed

    Vlychou, Marianna; Alexiou, Evangelos; Thriskos, Paschalis; Fezoulidis, Ioannis; Vassiou, Katerina

    2016-01-01

    Objective. To assess body composition in adult male and female patients with thalassemia major by dual-energy X-ray absorptiometry (DXA) and to compare the findings with a group of healthy age-matched controls. Methods. Our study group included sixty-two patients (27 males, mean age 36 years, and 35 females, mean age 36.4 years) and fifteen age-matched healthy controls. All patients had an established diagnosis of thalassemia major and followed a regular blood transfusion scheme since childhood and chelation treatment. Fat, lean, and bone mineral density (BMD) were assessed with dual-energy X-ray absorptiometry. Ferritin levels and body mass index of all patients and controls were also recorded. Student t-test and Wilcoxon test were performed and statistical significance was set at p < 0.05. Results. BMD and whole body lean mass are lower in both male and female adult patients compared with controls (p < 0.01 in both groups), whereas whole body fat mass was found to have no statistically significant difference compared to controls. Regional trunk fat around the abdomen was found to be lower in male patients compared to controls (p = 0.02). Conclusion. Severe bone loss and diminished lean mass are expected in adult male and female patients with thalassemia major. Fat changes seem to affect mainly male patients.

  14. Iron status and body composition of competitive female ice skaters

    SciTech Connect

    Ziegler, P.J.; Caldwell, M.J.; Gerber, L.E.; Rand, A.G.

    1986-03-01

    The effects of training and competition on iron status and body composition of ice skaters were evaluated pre-season (PS), during competitive season (CS), and out of season (OS). Eighteen females, aged 14 to 16, with mean heights and weights of 158.2 +/- 4.1cm, and 50.9 +/- 5.2 kg, respectively, participated. During each season, fasted, cenous blood samples were analyzed for hematocrit (Hct), hemoglobin (Mg), serum iron (SI), total iron-binding capacity (TIBC), and serum ferritin (F). Percent body fat was estimated from skinfolds (SF) and from underwater weighting (UW). Mean percent PS body fat was 20% by both UW and SF. UW values did not change significantly with seasons. In contrast, percent SF body fat were significantly higher OS than PS and CS. Heights and weights did not differ significantly during the year. Mean Hcts were normal throughout the seasons, however mean Hbs were significantly lower during CS than OS (14.5 vs. 15.5gm/dl, respectively). Mean F did not vary significantly PS and OS. Mean SI and TIBC were in normal ranges although OS means were significantly higher than PS and CS. The results indicate that the iron status of the ice skaters in the study varied with the training seasons and was lower during CS.

  15. Body Composition in Adult Patients with Thalassemia Major

    PubMed Central

    Alexiou, Evangelos; Thriskos, Paschalis; Fezoulidis, Ioannis; Vassiou, Katerina

    2016-01-01

    Objective. To assess body composition in adult male and female patients with thalassemia major by dual-energy X-ray absorptiometry (DXA) and to compare the findings with a group of healthy age-matched controls. Methods. Our study group included sixty-two patients (27 males, mean age 36 years, and 35 females, mean age 36.4 years) and fifteen age-matched healthy controls. All patients had an established diagnosis of thalassemia major and followed a regular blood transfusion scheme since childhood and chelation treatment. Fat, lean, and bone mineral density (BMD) were assessed with dual-energy X-ray absorptiometry. Ferritin levels and body mass index of all patients and controls were also recorded. Student t-test and Wilcoxon test were performed and statistical significance was set at p < 0.05. Results. BMD and whole body lean mass are lower in both male and female adult patients compared with controls (p < 0.01 in both groups), whereas whole body fat mass was found to have no statistically significant difference compared to controls. Regional trunk fat around the abdomen was found to be lower in male patients compared to controls (p = 0.02). Conclusion. Severe bone loss and diminished lean mass are expected in adult male and female patients with thalassemia major. Fat changes seem to affect mainly male patients. PMID:27956899

  16. Body Composition and Physical Performance: Applications for the Military Services

    DTIC Science & Technology

    1992-08-01

    an important i 1uc. A perspective: onl thle current outIcomle Of the appl ica- tions of height. v" e ht. and bodN composition standard " for entrance...dard for body s’. ieht .A\\I outs’ider nigteh ass\\utie that the 5cr’. ices, hia’e \\A.cight-tat standards 10 ctistre thiat personnel can mnet the p...Important factor in the Armv’. tilt standards is, appearance The Na’. . onl the other hand, has’,estaht. shedl hecalth criteri as, important for its hod

  17. Dietary intake and body composition of prepubescent female aesthetic athletes.

    PubMed

    Soric, Maroje; Misigoj-Durakovic, Marjeta; Pedisic, Zeljko

    2008-06-01

    The purpose of this study was to assess dietary intake and body composition of prepubescent girls competing in 3 aesthetic sports (artistic and rhythmic gymnastics and ballet). Because physiological demands of ballet training are similar to those in other aesthetic sports, ballet dancers were, for the purpose of this study, regarded as athletes. The sample consisted of 39 athletes (median age, 11 years, range 9-13) and 15 controls (median age, 11 years, range 10-12). Dietary intake was assessed using a quantitative food frequency questionnaire, and body composition, by means of anthropometry. There was no significant difference in total energy intake between groups, but there was a significant difference in energy substrate distribution. Artistic gymnasts reported significantly higher carbohydrate and lower fat contribution to total energy (57% +/- 6% and 29% +/- 5%, respectively) than rhythmic gymnasts (48% +/- 6% and 36% +/- 5%), ballet dancers (51% +/- 4% and 34% +/- 3%), or controls (51% +/- 5% and 34% +/- 4%). Relative to body weight, artistic gymnasts reported higher intake of carbohydrates (9.1 +/- 4.2 g/kg) than rhythmic gymnasts (5.6 +/- 3.1 g/kg), ballet dancers (6.6 +/- 2.5 g/kg), or controls (5.4 +/- 1.9 g/kg). Artistic gymnasts also had the lowest body-fat percentage among the groups. In all the groups mean reported daily intakes of most nutrients were higher than the current daily recommended intakes. The exceptions were dietary fiber and calcium. The proportion of athletes with an inadequate reported intake was highest for phosphorus (33%), followed by vitamin A and niacin (18%) and zinc (13%).

  18. The effects of different exercise programmes on female body composition.

    PubMed

    de Mendonça, Rosa Maria Soares Costa; de Araújo Júnior, Adenilson Targino; de Sousa, Maria do Socorro Cirilo; Fernandes, Helder Miguel

    2014-09-29

    The purpose of this study was to verify the effects of 16 weeks of practicing different exercise programmes on body composition. This is an exploratory and descriptive study of 89 women aged 25 to 55 years (41.42 ± 9.23 years). The subjects were randomly divided into three experimental groups (EG): practitioners of strength training (SG), dance (DG), hydrogymnastics (HG), and a control group (CG) with sedentary women. Measurements of body mass and height, circumferences of the chest, waist, abdomen, hips, thighs, calves, and skinfolds of the triceps, suprailiac and thigh were registered in three different moments: prior to the commencement of the training program, again after 8 weeks of training, and finally after 16 weeks of training. Body density was estimated by using the trifold protocol by Jackson, Pollock and Ward. The ANOVA and deltas of change (Δ%) were used for data analysis. The level of significance was set at p<0.05. The effects of greater statistical significance on body composition related the variables "time", "group" and the interaction between the two (time × group) were observed for the percentage of fat - F% (F (1.79, 152.52) = 24.59, p <0.001, η (2) = 0.22), fat mass - FM (F (1.75, 149.01) = 12.65, p <0.001, η (2) = 0.13) and lean mass - LM (F (1.77, 150.66) = 47.38, p <0.001, η (2) = 0.36). The HG and SG were more beneficial in reducing F%. It was observed that the EG indicated healthier anthropometric aspects compared to the CG, regardless of the type of exercise programmes practiced. The time factor was more representative over the effects of exercise on anthropometric dimensions.

  19. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies

    NASA Astrophysics Data System (ADS)

    Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar

    2016-10-01

    In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.

  20. Determination of body composition in growing rats by total body electrical conductivity.

    PubMed

    Morbach, C A; Brans, Y W

    1992-04-01

    Total body electrical conductivity (TOBEC), measured with an Em-Scan SA-1 analyzer, was evaluated as a means of estimating fat-free mass and total body water content noninvasively in small laboratory animals. Ninety-four rats whose weight ranged from 5.53 to 170.84 g at 0-50 days of age were studied. The animals were killed by intraperitoneal injection of a pentobarbital overdose. After weight, crown-rump length (CRL) and TOBEC were measured, and the animals were minced with scissors and desiccated to constant weight in a convection oven. Fat was extracted by multiple bathings in petroleum ether followed by Soxhlet extraction. Fifty-four rats were used to determine the relation between fat-free mass (FFM), total body water (TBW), and TOBEC# (E) by regression analysis. The best correlations were observed between FFM and (E x CRL)1/2 (r = 0.995, p less than 0.0001). Forty rats were used to determine the predictive value of TOBEC estimates. With this instrument, TOBEC tended to underestimate FFM by an average of 3.9% and TBW by 5.3%. Accuracy was questionable for animals smaller than 13 g and TOBEC did not provide useful estimates of total body fat. Subject to these limitations, TOBEC instruments should prove to be useful for sequential in vivo estimations of body composition during growth and development of small animals.

  1. Validation of Body Condition Indices and Quantitative Magnetic Resonance in Estimating Body Composition in a Small Lizard

    PubMed Central

    WARNER, DANIEL A.; JOHNSON, MARIA S.; NAGY, TIM R.

    2017-01-01

    Measurements of body condition are typically used to assess an individual’s quality, health, or energetic state. Most indices of body condition are based on linear relationships between body length and mass. Although these indices are simple to obtain, nonlethal, and useful indications of energetic state, their accuracy at predicting constituents of body condition (e.g., fat and lean mass) are often unknown. The objectives of this research were to (1) validate the accuracy of another simple and noninvasive method, quantitative magnetic resonance (QMR), at estimating body composition in a small-bodied lizard, Anolis sagrei, and (2) evaluate the accuracy of two indices of body condition (based on length–mass relationships) at predicting body fat, lean, and water mass. Comparisons of results from QMR scans to those from chemical carcass analysis reveal that QMR measures body fat, lean, and water mass with excellent accuracy in male and female lizards. With minor calibration from regression equations, QMR will be a reliable method of estimating body composition of A. sagrei. Body condition indices were positively related to absolute estimates of each constituent of body composition, but these relationships showed considerable variation around regression lines. In addition, condition indices did not predict fat, lean, or water mass when adjusted for body mass. Thus, our results emphasize the need for caution when interpreting body condition based upon linear measurements of animals. Overall, QMR provides an alternative noninvasive method for accurately measuring fat, lean, and water mass in these small-bodied animals. PMID:28035770

  2. [Body composition at menarche. Estimation of total body weight, total body water, lean and fat body weight].

    PubMed

    Zurlo de Mirotti, S M; Lesa, A M; Barrón de Carbonetti, M; Roitter, H; Villagra de Lacuara, S

    1995-01-01

    Our aim was to confirm in our environment what has been observed and described by other writers about the importance of achieving a "critical body weight'' and an adequate "fat percentage'' -on the basis of the calculation of total body water- for the initiation and development of pubertal events. This study included 92 girls, healthy, well nourished, belonging to upper middle class from a high school of The National University of Cordoba. The longitudinal method of control was used every 6 months and at the precise moment of menarche. Out of 20 antropometrical variables observed height, weight and height, TBW as percentage of body weight, lean body and fat weight, fat percentage and skin folds ppercentiles for each girl at menarche. A regression between fat percentage and skin folds was done. Percentiles 5 to 95 of fat percentage in relation to body water percentage were estimated. At menarche the average for the different variables are: Heigth 155.6 cm +/- 0.469; Weight 45.8 Kg +/- 0,5; TBW 25.216 lit. +/- 0.318; lean body weigth 35.02 Kg (S.D.2.98); fat weigth 10.86 Kg (S. D. 3.17). The addition of skin folds was correlated fat percentage, thus, an equation was obtained for the average calculation of such percentage %F= 12.16 + (0.313 x fold addition). The minium percentage for the onset of menstrual cycles is 17.3% and corresponds to percentile 10. However, there is a 5% of girls who start to menstruate with a 15.5% of fat and none of them is below that value. The reasons mentioned above suggest that is necessary to obtain a "critical body weigth'' as well as a "fat percentage'' minimum for the onset and maintenance of menstrual cycles, among our girls, similar o what has been obtained by doctor Frisch.

  3. Body composition and somatotype of the elite of Polish fencers.

    PubMed

    Sterkowicz-Przybycień, Katarzyna

    2009-09-01

    The purpose of this study was to determine body composition and somatotype of the male fencers who were grouped by different fencing weapons. Analysis of body composition, with untrained men as background, will update the data necessary for the somatic profiles of fencers. Thirty contestants were examined during the Polish Fencing Championships in 2004. They took part in epée (n = 10), foil (n = 10) and sabre (n = 10). They were aged 23.3 +/- 2.9; their length of training was 12.6 +/- 2.5 years, with the frequency of training 15.9 +/- 3.1 hours per week. In each weapon style there were champions and vice-champions of Poland from the year 2004. Twelve of them were classified among the first fifty contestants according to the D'Escrime International Federation (FIE) ranking. An experienced evaluator performed 10 measurements necessary to designate somatotypes by means of Heath-Carter method and to estimate the percentage of body fat and composition. Sabre fencers (weight = 84.4 kg, somatotype = 3.4-5.4-1.8) were heavier than both epée fencers (77.9 kg, 3.6-4.9-2.5) and foil fencers (74.9 kg, 2.9-4.2-2.8). Sabre specialists had higher mesomorphy than foil fencers (ANOVA and Bonferroni's multi comparison test). Sabre fencers were characterized by higher fat free mass and a higher BMI and fat free mass index than fencers of the other two weapons. Discriminant analysis result was significant (p < 0.01) with a relative percentage with a 72.4 and a canonical correlation coefficient 0.692, and Wilks' lambda = 0.385. Amongst the 30 observations used to fit the model, 22 (73.3%) were correctly classified. Against the background of non-training men, fencers were distinguished by a higher body weight (79.0 vs. 72.1 kg, t = 3.97, p < 0.001) and a higher height-weight ratio (43.21 vs. 42.46, t = 2.24, p < 0.05). Fencers' somatotypes differed from the somatotypes of the untrained (3.3-4.8-2.3 vs. 3.7-4.3-3.1). They were characterized by their higher mesomorphy (t = 2.10, p < 0

  4. Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Ozawa, Kazumi; Hinoki, Tatsuya; Shimoda, Kazuya; Katoh, Yutai

    2014-05-01

    Unidirectional silicon carbide (SiC)-fiber-reinforced SiC matrix (SiC/SiC) composites fabricated by a nano-infiltration and transient eutectic-phase (NITE) process were irradiated with neutrons at 600 °C to 0.52 dpa, at 830 °C to 5.9 dpa, and at 1270 °C to 5.8 dpa. The in-plane and trans-thickness tensile and the inter-laminar shear properties were evaluated at ambient temperature. The mechanical characteristics, including the quasi-ductile behavior, the proportional limit stress, and the ultimate tensile strength, were retained subsequent to irradiation. Analysis of the stress-strain hysteresis loop indicated the increased fiber/matrix interface friction and the decreased residual stresses. The inter-laminar shear strength exhibited a significant decrease following irradiation.

  5. Temperature Dependence on the Strength and Stress Rupture Behavior of a Carbon-Fiber Reinforced Silicon Carbide (C/SiC) Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Calomino, Anthony

    2002-01-01

    Tensile strengths and stress rupture lives of carbon-fiber reinforced silicon carbide (C/SiC) specimens were measured at 800 C and are compared to previously reported 1200 C data. All tests were conducted in an environmental chamber containing 1000 ppm of oxygen in argon. The average 800 C tensile strength of 610 MPa is 10% greater than at 1200 C. Average stress rupture lives at 800 C were 2.5 times longer than those obtained at 1200 C. The difference in the 800 and 1200 C lives is related to the oxidation rate of the reinforcing carbon fibers, which is the primary damage mode of C/SiC composites in oxygen-containing environments.

  6. Familial resemblance for body composition measures: the HERITAGE Family Study.

    PubMed

    Rice, T; Daw, E W; Gagnon, J; Bouchard, C; Leon, A S; Skinner, J S; Wilmore, J H; Rao, D C

    1997-11-01

    A sex-specific familial correlation model was used to assess the heritable contributions to several measures of body composition in 86 sedentary white families participating in the HERITAGE Family Study. For this study, sedentary families were recruited, tested for a battery of measures, endurance exercise trained for 20 weeks, and remeasured. This sample is unique in that activity level was controlled for in these families at baseline measurement. In this report, three body composition variables measured at baseline were analyzed, two indexing adiposity (total subcutaneous fat based on eight skinfold measurements [SF8] and percent body fat measured by underwater weighing techniques [%BF]) and one assessing fat free mass ([FFM] derived from underwater weighing). The maximal heritabilities for SF8 (34%) and %BF (62%) were consistent with those reported in previous studies. There were no sex nor generation differences in the familial correlations, and the spouse correlation was significant, consistent with the hypothesis that the familial aggregation reflects genetic and familial environmental factors. However, the results for FFM were very different. The most parsimonious pattern of familial resemblance was consistent with mitochondrial inheritance (i.e., mother-offspring and sibling correlations were equal and were larger than those for spouse and father-offspring pairs). Under the mitochondrial hypothesis, 39% of the variance was accounted for by familial/genetic effects. However, under a nonmitochondrial hypothesis, which could not be ruled out, 65% of the FFM phenotypic variance was accounted for by familial/genetic factors. This high heritability level, as compared with results from previous studies, is consistent with the hypothesis that activity may constitute an important environmental determinant of FFM. These alternative hypotheses for FFM warrant further investigation using complex multilocus-multitrait segregation models, which allow for major genetic

  7. [Endocrine obesity: bioelectric profiles (biotypes) detected in the body composition].

    PubMed

    Miggiano, G A D; Petitti, T

    2004-09-01

    136 patients were selected (16 men and 120 women with non-specific menstrual disturbances) with a BMI (Body Mass Index) between 25 and 45 kg/m2, which were diagnosed with "disendocrinia" (GH deficit, hyperadrenocorticism, hypothyroidsm, hyperandrogenism, menstrual cycle disorders). The proposed approach, based on the visualization of the value distribution of the electric measures in different graphics, is able to immediately explain the bioelectric state of the individual's lean-mass. Subjects with hypothyroidism present, along with their overweight, less bio-conducting mass, with an altered fluid intra/extra-cellular distribution. Patients with hyperadrenocorticism show instead an hyperhydratation of the body mass, especially in the extracellular level. Patients with menstrual disorders (amenorrea, polycystic ovary syndrome, anovulatory cycle etc...) present a lean mass reduction (elevated Rs) and an increase of the intra-cellular compartment (elevated-Xc). Patients with hyper-androgenism (and hirsutism) show a characteristic bioelectric "pattern", with low Rs levels and high Xc levels. Subjects with GH deficit (men and women), has a trend of documenting bioelectric measures with lower lean mass and higher fat-mass. Different electric biotypes seem to characterize the body composition in the several endocrine disorders.

  8. Growth and body composition in Brazilian female rhythmic gymnastics athletes.

    PubMed

    Camargo, Cristiane Teixeira Amaral; Gomez-Campos, Rossana Anelice; Cossio-Bolaños, Marco Antonio; Barbeta, Vinicius Justino De Oliveira; Arruda, Miguel; Guerra-Junior, Gil

    2014-01-01

    The aim was to analyse the physical growth and body composition of rhythmic gymnastics athletes relative to their level of somatic maturation. This was a cross-sectional study of 136 athletes on 23 teams from Brazil. Mass, standing height and sitting height were measured. Fat-free and fat masses, body fat percentages and ages of the predicted peak height velocity (PHV) were calculated. The z scores for mass were negative during all ages according to both WHO and Brazilian references, and that for standing height were also negative for all ages according to WHO reference but only until 12 years old according to Brazilian reference. The mean age of the predicted PHV was 12.1 years. The mean mass, standing and sitting heights, body fat percentage, fat-free mass and fat mass increased significantly until 4 to 5 years after the age of the PHV. Menarche was reached in only 26% of these athletes and mean age was 13.2 years. The mass was below the national reference standards, and the standing height was below only for the international reference, but they also had late recovery of mass and standing height during puberty. In conclusion, these athletes had a potential to gain mass and standing height several years after PHV, indicating late maturation.

  9. Gravity, body mass and composition, and metabolic rate

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1984-01-01

    The scale effects of increased gravitational loading by chronic centrifugation on metabolic rate and body composition in metabolically mature mammals were investigated. Individual oxygen consumption rates in groups of 12 each, 8-month-old, hamster, rats, guinea pigs, and rabbits were measured at weekly intervals at 1.0 g, then 2.0 g for 6 weeks. Metabolic rate was increased significantly in all species, and stabilized after 2 weeks at 2.0 g. Statistical analysis of the data revealed that the larger the animal the greater was the increase in mass-specific metabolic rate, or metabolic intensity, over the 1.0 g value for the same animal, with the result that the interspecies allometric scaling relationship between metabolic rate and total body mass is different at 2.0 g compared 10 1.0 g. Analysis of covariance shows that the postioning constant at 2.0 g is increased by 17% at 2.0 g at the P .001 level, and the exponent is increased by 8% at the P = 0.008 level. Thus, the hypothesis that augmented gravitational loading should shift the allometric relationship between metabolic rate and body size by an increase in both parameters is supported.

  10. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  11. New way of body composition analysis using total body electrical conductivity method

    NASA Astrophysics Data System (ADS)

    Piasecki, Wojciech; Koteja, Pawel; Weiner, January; Froncisz, Wojciech

    1995-04-01

    Traditional methods of measuring total body water and fat content of animals that require sacrificing specimens are generally unacceptable when endangered species, or large animal sizes, or humans are involved. These methods are also unsuitable for following changes of fat and water content in individuals. An alternative method, based on the nonresonant absorption of a rf electromagnetic field has been used for constructing a new body composition analyzer. As the electrical conductivity of lipids is approximately 20 times lower than that of lean tissues, the rf power absorbed by the animal provides information which enables one to calculate the lean body mass and total body water. The new instrument measures rf power absorbed by an animal by measuring the quality factor (Q) of the resonant circuit with an animal placed inside the coil. Numerical calculations of the rf power absorbed by a cylindrical object containing 0.9% NaCl aqueous solution have also been performed. Experimental values confirmed the calculated dependence of the absorbed power on the cylinder radius. The device built has been calibrated on 9 males and 11 females of laboratory mice. The amount of lipids was then measured by ether extraction. The relation between instrument reading, which is proportional to the power absorption, and lean body mass (LBM) or water mass (WM) was linear and highly significant: the simple regression coefficients of determination were 0.983 for LBM, and 0.990 for WM (p<0.001). It has been found that for an individual animal with a body mass ranging from 15.9 to 40.7 g, the accuracy of measurement was ±1.6 g for LBM and ±1 g for WM.

  12. Silicon carbide sewing thread

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  13. Temperature control of thermal radiation from composite bodies

    NASA Astrophysics Data System (ADS)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  14. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    NASA Astrophysics Data System (ADS)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of <1 μm tungsten carbide reinforcements. The influence of surfactant (sodium dodecyl sulfate, SDS) concentration on particle distribution, microhardness and wear resistance of composite coatings has been studied. The nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  15. Association between Body Composition and Sport Injury in Canadian Adolescents

    PubMed Central

    Schneeberg, Amy; Koehoorn, Mieke; Emery, Carolyn A.

    2016-01-01

    Purpose: To examine the association between overweight or obesity and sport injury in a population-based sample of Canadian adolescents. Methods: Cross-sectional analyses were performed using the Canadian Community Health Survey (2009–2010), a nationally representative sample (n=12,407) of adolescents aged 12–19 years. Body composition was quantified using BMI, grouping participants into healthy weight, overweight, or obese. The outcome of interest was acute or repetitive strain injury sustained during sport in the previous year. We examined the relationship between sport injury and overweight or obesity compared with healthy weight using multivariate logistic regression, controlling for sex, ethnicity, physical activity, and socio-economic status. We also examined the interaction between physical activity and body composition in a secondary analysis with a subset of active adolescents. Results: No significant relationship was found between being overweight and sport injury (odds ratio [OR]=1.04, 95% CI: 0.92, 1.17); however, a protective effect was seen between obesity and sport injury (OR=0.67, 95% CI: 0.53, 0.84). Secondary analysis revealed that overweight youths with the highest activity level (quartile 4) did have increased odds of sport injury (OR=1.38, 95% CI: 1.04, 1.83), yet obese youths with a moderate activity level (quartile 2) were protected compared with healthy-weight youths (OR=0.46, 95% CI: 0.24, 0.91). Conclusions: Further examination of active adolescents is warranted. Studies should consider sport-specific differences and comprehensive measurement of exposure to sport. PMID:27909377

  16. Association between Body Composition and Sport Injury in Canadian Adolescents.

    PubMed

    Ezzat, Allison M; Schneeberg, Amy; Koehoorn, Mieke; Emery, Carolyn A

    2016-01-01

    Purpose: To examine the association between overweight or obesity and sport injury in a population-based sample of Canadian adolescents. Methods: Cross-sectional analyses were performed using the Canadian Community Health Survey (2009-2010), a nationally representative sample (n=12,407) of adolescents aged 12-19 years. Body composition was quantified using BMI, grouping participants into healthy weight, overweight, or obese. The outcome of interest was acute or repetitive strain injury sustained during sport in the previous year. We examined the relationship between sport injury and overweight or obesity compared with healthy weight using multivariate logistic regression, controlling for sex, ethnicity, physical activity, and socio-economic status. We also examined the interaction between physical activity and body composition in a secondary analysis with a subset of active adolescents. Results: No significant relationship was found between being overweight and sport injury (odds ratio [OR]=1.04, 95% CI: 0.92, 1.17); however, a protective effect was seen between obesity and sport injury (OR=0.67, 95% CI: 0.53, 0.84). Secondary analysis revealed that overweight youths with the highest activity level (quartile 4) did have increased odds of sport injury (OR=1.38, 95% CI: 1.04, 1.83), yet obese youths with a moderate activity level (quartile 2) were protected compared with healthy-weight youths (OR=0.46, 95% CI: 0.24, 0.91). Conclusions: Further examination of active adolescents is warranted. Studies should consider sport-specific differences and comprehensive measurement of exposure to sport.

  17. The elite athlete - assessing body shape, size, proportion and composition.

    PubMed

    Kerr, D A; Ackland, T R; Schreiner, A B

    1995-03-01

    In the quest to optimize performance of the elite athlete the sport scientist has sought to determine the ideal physique for a given sport or event. For some sports, specific structural characteristics offer definite performance advantages; for example in rowing, in addition to height, a large arm span has been identified as important. In other sports. such as long distance running, low levels of adiposity or 'fatness' appear to be linked with faster running times. There are four areas where appraisal of the athlete's physique can provide useful information: (1) identification of talented athletes; (2) to assess and monitor the growing athlete; (3) to monitor training and performance; and (4) to determine 'race weight' in weight-category sports. As a research tool a particular method must be reliable and valid. Other considerations include how expensive the method is, if it is suitable for a field situation and if large amounts of data on a number of subjects can be collected quickly. The method should be safe for both the athlete and the tester and provide useful feedback for the athlete or coach. Anthropometry, with training is able to fulfil most of these criteria and is the most widely used method of physique assessment in sports science. Large anthropometric data bases have been collected on elite athletes at Olympic games and world championships according to a standard protocol. Kinanthropometry, which has developed from anthropometry, is concerned with measurement and evaluation of different aspects of human movement and individual variation in body shape, size, proportion and composition. For the assessment of adiposity a sum of skinfolds, usually over six sites, is most commonly used rather than percentage body fat formulae. Muscle mass can be assessed indirectly through girth and corrected girth measurements. Limb lengths and breadths are used to assess skeletal structure and proportional differences in limb size. The anthropometric methods most commonly

  18. Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity.

    PubMed

    Debevec, Tadej; McDonnell, Adam C; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-03-01

    Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m(-2) completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (-8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (-2.1%, -2.8%, and -2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (-3.8%, -3.8%, -4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest.

  19. Whole body air displacement plethysmography compared with hydrodensitometry for body composition analysis

    PubMed Central

    Dewit, O.; Fuller, N; Fewtrell, M.; Elia, M; Wells, J

    2000-01-01

    AIMS—To assess the acceptability and feasibility of whole body air displacement plethysmography in children and to determine its precision and agreement with hydrodensitometry, an appropriate reference method.
METHODS—Age specific two component model equations were used to predict fat mass from body density in 22 children aged 8-12 years and in 10 adults for comparison of methods. Precision for each method was established from duplicate measurements.
RESULTS—Plethysmography was accepted more readily than hydrodensitometry (100% v 69% provided duplicate measurements). Precision for fat mass in children was 0.38 kg by plethysmography and 0.68 kg by hydrodensitometry, and results were similar in adults. The mean (SD) fat mass in children was 6.9 kg (4.0) and 6.7 kg (4.2) by plethysmography and hydrodensitometry, respectively, but 95% limits of agreement between methods were large (−4.1 kg to 3.5 kg fat).
CONCLUSION—Plethysmography was more readily accepted and had better precision than hydrodensitometry. It also provided similar body composition results for the group but not for all individual children.

 PMID:10648375

  20. Silicon carbide

    SciTech Connect

    Ault, N.N.; Crowe, J.T. )

    1991-05-01

    This paper reports that, since silicon carbide (SiC) does not occur in nature, it must be synthesized by a high-temperature chemical reaction. The first commercial production began at the end of the 19th century when Acheson developed a process of reacting sand and coke in a resistance furnace. This process is still the basic SiC manufacturing process used today. High-quality silica sand (99.5% SiO{sub 2}), low-sulfur petroleum coke, and electricity (23.8 MJ/kg) are the major ingredients in the production of SiC. The reaction takes place in a trough-like furnace with a removable refractory side (or some similar configuration) and with permanent refractory ends holding carbon electrodes. When the furnace is started, the carbon electrodes are joined by the graphite core laid the length of the furnace near the center of the mixture which fills the furnace.

  1. Aqueous Alteration and Hydrogen Generation on Parent Bodies of Unequilibrated Ordinary Chondrites: Thermodynamic Modeling for the Semarkona Composition

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Y.; Mironenko, M. V.; Shock, E. L.

    2005-01-01

    Ordinary chondrites are the most abundant class of meteorites that could represent rocky parts of solar system bodies. However, even the most primitive unequilibrated ordinary chondrites (UOC) reveal signs of mild alteration that affected the matrix and peripheral zones of chondrules. Major chemical changes include oxidation of kamacite, alteration of glass, removal of alkalis, Al, and Si from chondrules, and formation of phases enriched in halogens, alkalis, and hydrogen. Secondary mineralogical changes include formation of magnetite, ferrous olivine, fayalite, pentlandite, awaruite, smectites, phosphates, carbonates, and carbides. Aqueous alteration is consistent with the oxygen isotope data for magnetite. The presence of secondary magnetite, Ni-rich metal alloys, and ferrous silicates in UOC implies that H2O was the oxidizing agent. However, oxidation by H2O means that H2 is produced in each oxidative pathway. In turn, production of H2, and its redistribution and possible escape should have affected total pressure, as well as the oxidation state of gas, aqueous and mineral phases in the parent body. Here we use equilibrium thermodynamic modeling to explore water-rock reactions in UOC. The chemical composition of gas, aqueous, and mineral phases is considered.

  2. Are immunoglobulin concentrations associated with the body composition of adolescents?

    PubMed

    Zúñiga-Torres, María G; Martínez-Carrillo, Beatriz E; Pardo-Morales, Rosa V; Wärnberg, Julia; Marcos, Ascensión; Benítez-Arciniega, Alejandra D; Valdés-Ramos, Roxana

    2009-11-01

    The aim of this study was to analyze the association between serum concentrations of immunoglobulins (Ig) A, G, and M and body composition of adolescents from Mexico. Informed consent was obtained from parents and assent was obtained from the adolescents for the evaluation of 125 adolescents from the Capital city of Toluca and the adjacent semiurban county of Lerma de Villada. Height, weight, waist, and hip circumference were measured by trained personnel. Body mass index and waist:hip ratio were calculated from these measurements, whereas body fat (BF) was calculated from tricipital and subscapular skinfolds and measured by bioelectrical impedance. Serum concentrations of Ig were determined by nephelometry. Data were analyzed by independent samples t test and Pearson correlations. Subjects were mainly females (71.2%), with a mean age of 16.8 years (+/-0.8). No differences were reported in all indicators by weight or BF between gender. Female participants had higher Ig concentrations than males (IgG t = 2.24, p = 0.027; IgA t = 2.05, p = 0.043; IgM t = 4.49, p < 0.001). Positive correlations were reported for IgA and IgM with tricipital skinfold (r = 0.192, p = 0.041; and r = 0.221, p = 0.018, respectively) and for total BF by bioimpedance (r = 0.243, p = 0.009). Ig concentrations do not seem to be affected by overweight, obesity, or excessive or central BF in adolescents.

  3. Sedentary Activity and Body Composition of Middle School Girls: The Trial of Activity for Adolescent Girls

    ERIC Educational Resources Information Center

    Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.

    2008-01-01

    This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…

  4. School-Based BMI and Body Composition Screening and Parent Notification in California: Methods and Messages

    ERIC Educational Resources Information Center

    Madsen, Kristine A.; Linchey, Jennifer

    2012-01-01

    Background: School-based body mass index (BMI) or body composition screening is increasing, but little is known about the process of parent notification. Since 2001, California has required annual screening of body composition via the FITNESSGRAM, with optional notification. This study sought to identify the prevalence of parental notification…

  5. Metabolic Aspects of Caloric Restriction (500 Calories): Body Composition Changes.

    DTIC Science & Technology

    1979-08-01

    adjusted to Increased caloric intake. Allen and Musgrave (20) felt that decreases in body fat and water in a two-component system were adequate for...about 73% of body muscle weight). Body water - The total amount of water in the body, 72% of the lean body mass. Creatinine - Urinary excretory product

  6. Comparison of Body Composition Assessment Methods in Pediatric Intestinal Failure

    PubMed Central

    Mehta, Nilesh M.; Raphael, Bram; Guteirrez, Ivan; Quinn, Nicolle; Mitchell, Paul D.; Litman, Heather J.; Jaksic, Tom; Duggan, Christopher P.

    2015-01-01

    Objectives To examine the agreement of multifrequency bioelectric impedance analysis (BIA) and anthropometry with reference methods for body composition assessment in children with intestinal failure (IF). Methods We conducted a prospective pilot study in children 14 years of age or younger with IF resulting from either short bowel syndrome (SBS) or motility disorders. Bland Altman analysis was used to examine the agreement between BIA and deuterium dilution in measuring total body water (TBW) and lean body mass (LBM); and between BIA and dual X-ray absorptiometry (DXA) techniques in measuring LBM and FM. Fat mass (FM) and percent body fat (%BF) measurements by BIA and anthropometry, were also compared in relation to those measured by deuterium dilution. Results Fifteen children with IF, median (IQR) age 7.2 (5.0, 10.0) years, 10 (67%) male, were studied. BIA and deuterium dilution were in good agreement with a mean bias (limits of agreement) of 0.9 (-3.2, 5.0) for TBW (L) and 0.1 (-5.4 to 5.6) for LBM (kg) measurements. The mean bias (limits) for FM (kg) and %BF measurements were 0.4 (-3.8, 4.6) kg and 1.7 (-16.9, 20.3)% respectively. The limits of agreement were within 1 SD of the mean bias in 12/14 (86%) subjects for TBW and LBM, and in 11/14 (79%) for FM and %BF measurements. Mean bias (limits) for LBM (kg) and FM (kg) between BIA and DXA were 1.6 (-3.0 to 6.3) kg and -0.1 (-3.2 to 3.1) kg, respectively. Mean bias (limits) for FM (kg) and %BF between anthropometry and deuterium dilution were 0.2 (-4.2, 4.6) and -0.2 (-19.5 to 19.1), respectively. The limits of agreement were within 1 SD of the mean bias in 10/14 (71%) subjects. Conclusions In children with intestinal failure, TBW and LBM measurements by multifrequency BIA method were in agreement with isotope dilution and DXA methods, with small mean bias. In comparison to deuterium dilution, BIA was comparable to anthropometry for FM and %BF assessments with small mean bias. However, the limits of agreement

  7. Seasonal Changes in Whole Body and Regional Body Composition Profiles of Elite Collegiate Ice-Hockey Players.

    PubMed

    Prokop, Neal W; Reid, Ryan E R; Andersen, Ross E

    2016-03-01

    The monitoring of a collegiate hockey player's body composition can reflect fitness characteristics and may help players, coaches, or strength and conditioning specialists optimize physiologic gains during an off-season, whereas simultaneously preventing performance decrements in-season. The purpose of the study was to investigate changes in whole-body and regional-body composition of fat and lean tissue. The body composition profiles of 19 elite Canadian collegiate hockey players were assessed using dual energy X-ray absorptiometry. Players completed end-of-season, preseason, and midseason assessments with questionnaires relating to their off-season and in-season training. Statistically significant changes in body composition profiles were observed between the different time points because players showed various tissue gains and losses depending on the region assessed. Overall, players gained (1.38 kg, p ≤ 0.01) and lost (0.79 kg, p ≤ 0.01) fat tissue during the off-season and in-season, respectively. Players also showed a significant gain of leg lean tissue (0.29 kg, p = 0.02) and loss of arm tissue mass (-0.25 kg, p = 0.02) during the first-half of the competitive season. Several correlations emerged that may provide insight into potential trends that could be more pronounced during longer and more demanding schedules. Collegiate hockey players show changes in body composition during the off-season and in-season. The understanding of body composition profiles, body composition fluctuations, and potential variables that may influence the composition of collegiate hockey players can help coaches and athletic programs tailor their team's training, nutrition, lifestyle, and informative resources to further support their athletes.

  8. Elasticity and inelasticity of biomorphic carbon, silicon carbide, and SiC/Si composite produced on the basis of medium density fiberboard

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.

    2010-10-01

    The amplitude and temperature dependences of the Young’s modulus and the internal friction (ultrasonic absorption) of biomorphic carbon, silicon carbide, and SiC/Si composite produced from medium density fiberboard (MDF) by pyrolysis (carbonization), followed by infiltration of molten silicon into the prepared carbon preform have been studied in the temperature range 100-293 K in air and under vacuum. The measurements have been performed by the acoustic resonance method with the use of a composite vibrator for longitudinal vibrations at frequencies of approximately 100 kHz. The data obtained by acoustic measurements of the amplitude dependences of the elastic modulus have been used for evaluating the microplastic properties of samples under study. It has been shown that the Young’s modulus, the decrement of elastic vibrations, and the conventional microyield strength of the MDF samples differ from the corresponding data for previously studied similar materials produced from natural eucalyptus, beech, sapele, and pine woods. In particular, the desorption of environmental molecules at small amplitudes of vibrations, which is typical of biomorphic materials based on natural wood, is almost absent for the MDF samples. The results obtained have been explained by different structures and the influence of pores and other defects, which, to a large extent, determine the mechanical characteristics of the biomaterials under investigation.

  9. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  10. Evaluation of morphological indices and total body electrical conductivity to assess body composition in big brown bats

    USGS Publications Warehouse

    Pearce, R.D.; O'Shea, T.J.; Wunder, B.A.

    2008-01-01

    Bat researchers have used both morphological indices and total body electric conductivity (TOBEC) as proxies for body condition in a variety of studies, but have typically not validated these indices against direct measurement of body composition. We quantified body composition (total carcass lipids) to determine if morphological indices were useful predictors of body condition in big brown bats (Eptesicus fuscus). We also evaluated body composition indirectly by TOBEC using EM-SCAN?? technology. The most important predictors of body composition in multiple regression analysis were body mass-to-forearm ratio (partial r2 = 0.82, P < 0.001) followed by TOBEC measurement (partial r2 = 0.08, P < 0.001) and to a minor extent head length (partial r2 = 0.02, P < 0.05). Morphological condition indices alone may be adequate for some studies because of lower cost and effort. Marking bats with passive integrated transponder (PIT) tags affected TOBEC measurements. ?? Museum and Institute of Zoology PAS.

  11. Compositions of Oceans on Icy Solar System Bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2010-12-01

    Interior oceans may exist on at least several solar system bodies: Europa, Enceladus, Ganymede, Titan and Triton. Compositions of the oceans could reflect bulk chemistries on the bodies, degree and timing of differendentition, current temperature and pressure conditions, and chemical exchanges between icy shells, liquid layers, and suboceanic solids (rocks, sediments, ices and clathrates). Observational signs are sparse and modeling is the major approach to evaluate oceanic compositions. On Europa, a presence of S(VI) species and CO2 at endogenic surface features [1] suggests sulfates and C species (organic and/or inorganic) in the ocean. The detection of NaCl and Na2CO3/NaHCO3-bearing grains emitted from Enceladus [2] implies the dominance of Na, Cl and carbonate/bicarbonate ions in the past and/or present alkaline fluids in the interior. These observations are consistent with independent models for water-rock interaction [3]. Evaluated low contents of other elements (Mg, Fe, Ca, K, S, P, etc.) in initial oceanic waters [3] are accounted for by low solubilities of minerals deposited from water solutions (serpentine, saponite, magnetite, carbonates, sulfides and phosphates). Oceanic redox states are affected by the composition of accreted ices and rocks, hydrogen production through oxidation of solids (mainly Fe-Ni metal) by water and an efficiency of H2 escape. Formation of a sulfate-bearing ocean (as on Europa) through oxidation of sulfides could have been driven by radiolytically-formed oxidants (H2O2, O2), high-temperature (>500 K) hydrothermal activity and H2 escape. Formation of sulfate facilitates leaching of Mg from minerals leading to the Mg-SO4-Na-Cl ocean. Although some of these factors could have played roles on the Galilean satellites, formation of sulfate-bearing oceans beyond Jupiter is unlikely. Accretion of cometary-type ices on moons allows an existence of water-methanol-ammonia liquids at ~153 K, although ammonia could have been sequestered in

  12. Effect of added silicon carbide nanowires and carbon nanotubes on mechanical properties of 0-3 natural rubber composites

    NASA Astrophysics Data System (ADS)

    Janyakunmongkol, Khantichai; Nhuapeng, Wim; Thamjaree, Wandee

    2016-01-01

    In this work, the mechanical properties of 0-3 nanocomposite materials containing silicon carbide nanowires (SiCNWs), carbon nanotubes (CNTs), and natural rubber were studied. The SiCNWs and CNTs were used as reinforcement fiber whereas natural rubber was used as the matrix phase. The chemical vapor depositions (CVD) was used for synthesizing the nanowire and nanotube phases. The volume fraction of reinforcement was varied from 0 to 10%. The nanophases were mixed in the natural rubber matrix and molded by the hand lay-up technique. The mechanical properties of the samples were examined and compared with those of neat natural rubber. From the results, it was found that the hardness and density of the samples increased with the quantities of nanophases. The nanocomposites with a volume fraction of 10% exhibited maximum hardness (50.5 SHORE A). The maximum tensile strength and extent of elongation at break of the samples were obtained from the 4% volume fraction sample, which were 16.13 MPa and 1,540%, respectively.

  13. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    PubMed

    Chang, Yin-Yu; Huang, Heng-Li; Chen, Ya-Chi; Hsu, Jui-Ting; Shieh, Tzong-Ming; Tsai, Ming-Tzu

    2014-01-01

    Tantalum (Ta) is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC) and TaC/amorphous carbon (a-C) coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C), was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  14. Effects of neutering on food intake, body weight and body composition in growing female kittens.

    PubMed

    Alexander, Lucille G; Salt, Carina; Thomas, Gaelle; Butterwick, Richard

    2011-10-01

    To understand the effects of neutering on food intake, body weight (BW) and body composition in kittens, data from an unrelated study were subjected to post hoc analysis. A total of twelve pairs of 11-week-old female littermates were randomly assigned to either a neutered group (neutered at 19 weeks old) or an entire group (kept entire) and offered free access to a dry diet until the age of 1 year. Neutered kittens exhibited increased food intake and increased BW after neutering (both P < 0.00 001). Food intake (per kg BW) peaked 10 weeks after neutering; the mean intake of neutered kittens was 17 (95 % CI 8, 27) % more than entire littermates (P = 0.00 014). The intake was then reduced until there was no significant difference between the groups 18 weeks post-neutering. By 52 weeks of age, the neutered kittens were 24 (95 % CI 11, 39) % heavier than entire littermates (P < 0.0001) with a body condition score (BCS) 16.6 (95 % CI 0.9, 34.8) % higher (P = 0.0028). Neutered kittens continued to grow significantly fatter after neutering (all P < 0.0014), while entire kittens showed no significant change after 18 weeks of age. As neutered kittens consumed similar amounts of energy to their entire littermates from 18 weeks post-neutering, while their BW, BCS and percentage fat continued to increase, we suggest that neutered kittens have a reduced metabolisable energy requirement, and should therefore be fed to maintain an ideal BCS rather than ad libitum. Moreover, to maintain an ideal BCS, entire kittens consumed 93 (95 % CI 87, 100) % of their theoretical intake at 26 weeks of age, and 79 (95 % CI 72, 87) % at 52 weeks of age, suggesting that the current energy recommendation is inappropriate for these kittens.

  15. Health and Job-Specific Body Composition Standards for the US Air Force. Volume 1

    DTIC Science & Technology

    2000-01-18

    include standards for muscle strength and endurance, cardiovascular fitness, and body composition. Body composition is an important fitness parameter...program guidance requires that all service members possess the cardiovascular endurance, muscle strength and endurance, and whole-body flexibility...someone who is overweight due to excess body fat and someone who has greater than normal muscle mass. Some of these assessments include measurements of

  16. Relationship among serum taurine, serum adipokines, and body composition during 8-week human body weight control program.

    PubMed

    You, Jeong Soon; Park, Ji Yeon; Zhao, Xu; Jeong, Jin Seok; Choi, Mi Ja; Chang, Kyung Ja

    2013-01-01

    Human adipose tissue is not only a storage organ but also an active endocrine organ to release adipokines. This study was conducted to investigate the relationship among serum taurine and adipokine levels, and body composition during 8-week human body weight control program in obese female college students. The program consisted of diet therapy, exercise, and behavior modification. After the program, body weight, body fat mass, percent body fat, and body mass index (BMI) were significantly decreased. Serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased. Also serum adiponectin level was significantly increased and serum leptin level was significantly decreased. There were no differences in serum taurine and homocysteine levels. The change of serum adiponectin level was positively correlated with change of body fat mass and percent body fat. These results may suggest that body fat loss by human body weight control program is associated with an increase in serum adiponectin in obese female college students. Therefore, further study such as taurine intervention study is needed to know more exact correlation between dietary taurine intake and serum adipokines or body composition.

  17. Effects of NUTRIOSE® dietary fiber supplementation on body weight, body composition, energy intake, and hunger in overweight men.

    PubMed

    Guerin-Deremaux, Laetitia; Li, Shuguang; Pochat, Marine; Wils, Daniel; Mubasher, Mohamed; Reifer, Cheryl; Miller, Larry E

    2011-09-01

    The objective of the present study was to determine the effectiveness of a soluble dietary fiber, NUTRIOSE(®), on body weight, body composition, energy intake and hunger in overweight Chinese men. The volunteers were randomized in double-blind fashion to 250 ml fruit juice supplemented with NUTRIOSE(®) (Test, n = 60) or a maltodextrin (Control, n = 60) at a dosage of 17 g twice daily for 12 weeks. Body weight, body composition were performed at 0, 4, 8 and 12 weeks while daily energy intake and hunger were assessed every 3 days. Test subjects had reductions in body weight (1.5 kg, P < 0.001), body mass index (0.5 kg/m(2), P < 0.001) and body fat percentage (0.3%, P < 0.001) versus Controls. NUTRIOSE(®) supplementation resulted in a lower daily energy intake (3,079 kJ/day, P < 0.001) with group differences noted as early as 3 days. Test subjects reported less hunger across the study period versus Controls (P < 0.01). NUTRIOSE(®) supplementation for 12 weeks results in body composition improvements and reduces body weight, energy intake and hunger in overweight men.

  18. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    PubMed Central

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  19. [Body composition analysis in obesity: radionuclide and non radionuclide methods].

    PubMed

    Tzotzas, Themistoklis; Krassas, Gerasimos E; Doumas, Argirios

    2008-01-01

    Body composition (BC) assessment provides important information regarding the absolute or relative amount of bone, lean and fat tissue. Different somatometric techniques have been applied in numerous epidemiological and experimental studies, as well as in every day clinical practice. Traditional techniques for BC analysis include skin fold thickness measurements, radioisotope dilution methods, hydrodensitometry and underwater weighing, while newer techniques include bioelectrical impedance analysis (BIA), air displacement plethysmography (ADP), dual energy X-rays absorptiometry (DEXA), computer tomography and magnetic resonance imaging. In addition, positron emission tomography helped to the functional investigation of adipose tissue, in particular of brown tissue. All these techniques have contributed a lot to the understanding of physiological conditions such as exercise training, menopause and ageing, adolescence health parameters, as well as pathological conditions such as disorders of nutrition, cancer, obesity and diabetes mellitus. In obesity, BC contributed to diagnosis and the pathological impact of visceral adipose tissue. In addition, conditions such as pseudo- or hypermuscular obesity and sarcopenia, which are often observed in various endocrine diseases, were investigated in detail by using such methods. During weight loss, some of these methods were quite accurate in measuring changes in fat and lean mass. Apart from anthropometric measurements, a BC measurement if possible should be included in obesity assessment. Measurements of skin fold thickness combined with BIA are quite sufficient for routine clinical practice. However, in specialized clinics and in research, more sophisticated methods like ADP or DEXA are used.

  20. Carbide Transformations in Tempering of Complexly Alloyed White Cast Iron

    NASA Astrophysics Data System (ADS)

    Vdovin, K. N.; Gorlenko, D. A.; Zavalishchin, A. N.

    2015-07-01

    Variation of the chemical composition of all phases and structural components (metallic matrix, eutectic and secondary carbides) in complexly alloyed cast iron is studied after crystallization and different variants of tempering. It is shown that several groups of secondary carbides may be distinguished according to their morphology and chemical composition.

  1. Stress Rupture Behavior of Silicon Carbide Coated, Low Modulus Carbon/Carbon Composites. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rozak, Gary A.; Wallace, John F.

    1988-01-01

    The disadvantages of carbon-carbon composites, in addition to the oxidation problem, are low thermal expansion, expensive fabrication procedures, and poor off axis properties. The background of carbon-carbon composites, their fabrication, oxidation, oxidation protection and mechanical testing in flexure are discussed.

  2. Quantitative evaluation of carbides in nickel-base superalloy MAR-M247

    NASA Astrophysics Data System (ADS)

    Szczotok, A.

    2011-05-01

    It has been established that carbides in superalloys serve three functions. Fine carbides precipitated in the matrix give strengthening results. Carbides also can tie up certain elements that would otherwise promote phase instability during service. Grain boundary carbides prevent or retard grain-boundary sliding and strengthen the grain boundary, which depends significantly on carbide shape, size and distribution. Various types of carbides are possible, depending on superalloy composition and processing. In the paper optical and scanning electron microscopy investigations of carbides occurring in specimens of the polycrystalline nickel-base superalloy MAR-M247 were carried out. Conditions of carbides revealing and microstructure images acquisition have been described. Taking into consideration distribution and morphology of the carbides in matrix a method of quantitative description of Chinese script-like and blocky primary carbides on the basis of image analysis was proposed.

  3. Influence of Body Composition on Gait Kinetics throughout Pregnancy and Postpartum Period.

    PubMed

    Branco, Marco; Santos-Rocha, Rita; Vieira, Filomena; Silva, Maria-Raquel; Aguiar, Liliana; Veloso, António P

    2016-01-01

    Pregnancy leads to several changes in body composition and morphology of women. It is not clear whether the biomechanical changes occurring in this period are due exclusively to body composition and size or to other physiological factors. The purpose was to quantify the morphology and body composition of women throughout pregnancy and in the postpartum period and identify the contribution of these parameters on the lower limb joints kinetic during gait. Eleven women were assessed longitudinally, regarding anthropometric, body composition, and kinetic parameters of gait. Body composition and body dimensions showed a significant increase during pregnancy and a decrease in the postpartum period. In the postpartum period, body composition was similar to the 1st trimester, except for triceps skinfold, total calf area, and body mass index, with higher results than at the beginning of pregnancy. Regression models were developed to predict women's internal loading through anthropometric variables. Four models include variables associated with the amount of fat; four models include variables related to overall body weight; three models include fat-free mass; one model includes the shape of the trunk as a predictor variable. Changes in maternal body composition and morphology largely determine kinetic dynamics of the joints in pregnant women.

  4. Influence of Body Composition on Gait Kinetics throughout Pregnancy and Postpartum Period

    PubMed Central

    Branco, Marco; Santos-Rocha, Rita; Vieira, Filomena; Silva, Maria-Raquel; Aguiar, Liliana; Veloso, António P.

    2016-01-01

    Pregnancy leads to several changes in body composition and morphology of women. It is not clear whether the biomechanical changes occurring in this period are due exclusively to body composition and size or to other physiological factors. The purpose was to quantify the morphology and body composition of women throughout pregnancy and in the postpartum period and identify the contribution of these parameters on the lower limb joints kinetic during gait. Eleven women were assessed longitudinally, regarding anthropometric, body composition, and kinetic parameters of gait. Body composition and body dimensions showed a significant increase during pregnancy and a decrease in the postpartum period. In the postpartum period, body composition was similar to the 1st trimester, except for triceps skinfold, total calf area, and body mass index, with higher results than at the beginning of pregnancy. Regression models were developed to predict women's internal loading through anthropometric variables. Four models include variables associated with the amount of fat; four models include variables related to overall body weight; three models include fat-free mass; one model includes the shape of the trunk as a predictor variable. Changes in maternal body composition and morphology largely determine kinetic dynamics of the joints in pregnant women. PMID:27073713

  5. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    NASA Astrophysics Data System (ADS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  6. Changes in body composition of cancer patients following combined nutritional support

    SciTech Connect

    Cohn, S.H.; Vartsky, D.; Vaswani, A.N.; Sawitsky, A.; Rai, K.; Gartenhaus, W.; Yasumura, S.; Ellis, K.J.

    1982-01-01

    The effects of combined nutritional support (parenteral, enteral, and oral) were measured in cancer patients unable to maintain normal alimentation.Changes in body composition were quantified by measurement of total body levels of nitrogen, potassium, water, and fat. The protein-calorie intake of the patients was also evaluated by dietary survey (4-day recall). Standard anthropometric and biochemical measurements for nutritional assessment were obtained for comparison. The dietary evaluation indicated that the dietary supplementation for all patients was more than adequate to meet their energy requirements. Determination of body composition indicated that change in body weight was equal to the sum of the changes in body protein, total body water, and total body fat. Information on the nature of the tissue gained was obtained by comparison of body composition data with the ratio of protein:water:lean body mass for normal tissue. The mean gain of protein in the cancer patients was quite small (0.3-0.6 kg). The main change in body weight appeared to be the result of gains in body water and body fat. The total body nitrogen to potassium ratio served to define the extent of tissue anabolism following hyperalimentation. The ratio dropped in the cancer patients following hyperalimentation toward the value of the control subjects on ad libitum diets. Total body nitrogen was determined by prompt gamma neutron activation analysis, total body potassium by whole-body counting. (JMT)

  7. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, R.L.; Herbst, R.J.; Johnson, K.W.R.

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750/sup 0/C and 2000/sup 0/C were used during the reduction cycle. Sintering temperatures of 1800/sup 0/C and 2000/sup 0/C were used to prepare fuel pellet densities of 87% and > 94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproductibility of chemical and phase composition.

  8. Spark plasma sintering of silicon carbide, multi-walled carbon nanotube and graphene reinforced zirconium diboride ceramic composite

    NASA Astrophysics Data System (ADS)

    Balaraman Yadhukulakrishnan, Govindaraajan

    Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.

  9. Evaluation of body composition and nitrogen content of renal patients on chronic dialysis as determined by total body neutron activation

    SciTech Connect

    Cohn, S.H.; Brennan, B.L.; Yasumura, S.; Vartsky, D.; Vaswani, A.N.; Ellis, K.J.

    1983-07-01

    Total body protein (nitrogen), body cell mass (potassium), fat, and water were measured in 15 renal patients on maintenance hemodialysis (MHD). Total body nitrogen was measured by means of prompt ..gamma.. neutron activation analysis; total body water was determined with tritium labeled water; total body potassium was measured by whole body counting. The extracellular water was determined by a technique utilizing the measurement of total body chloride and plasma chloride. When compared with corresponding values of a control group of the same age, sex, and height, the protein content, body cell mass, and total body fat of the MHD patients were within the normal range. The only significant change was an increase in the extracellular water/body cell mass ratio in the male MHD patients compared to the control. The lack of significant difference of the nitrogen values of the MHD patients compared to matched controls suggests that dialysis minimizes any residual effects of uremic toxicity or protein-calorie malnutrition. These findings further suggest that there is a need to reevaluate the traditional anthropometric and biochemical standards of nutritional status for MHD patients. It was concluded that it is particularly important to measure protein stores of MHD patients with low protein intake to ascertain nutritional status. Finally, in vivo measurement of total body nitrogen and potassium for determination of body composition provides a simple, direct, and accurate assessment of the nutritional status of MHD patients.

  10. Body composition changes in monkeys during long-term exposure to high acceleration fields

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Kodama, A. M.; Smith, A. H.

    1977-01-01

    Adult male pig-tailed monkeys, weighing 10-14 kg, were subjected to continuous centrifuging stress for 7 months in acceleration fields up to 2.5 g. In vivo analytical techniques were used to evaluate parameters of body composition, body-fluid distribution, and hematology. Statistically significant losses in total body mass, lean body mass, total body water, extracellular water content and interstitial water content proportional to the level of high g were demonstrated.

  11. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    PubMed

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  12. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    NASA Astrophysics Data System (ADS)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  13. Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1984-01-01

    Mechanical properties and stress-strain behavior for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol % discontinuous SiC whisker, nodule, or particulate reinforcement were evaluated. It was found that the elastic modulus of the composites was isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Ductility decreased with increasing reinforcement content, however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain is attributed to cleaner matrix powder and increased mechanical working during fabrication. Conventional aluminum and titanium structural alloys were compared and have shown that the properties of these low cost, lightweight composites have good potential for application to aerospace structures.

  14. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    PubMed

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy.

  15. Body Composition Changes Resulting from Fluid Ingestion and Dehydration

    ERIC Educational Resources Information Center

    Girandola, Robert N.

    1977-01-01

    It is recommended that when obtaining measures of body density by hydrostatic weighing, the subjects normal level of hydration be ascertained, since variance in body fat calculation from the hyperhydrated to the hydrated state can amount to twenty percent (two percent in actual body fat). (MB)

  16. Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route.

    PubMed

    Wu, Zhangxiong; Yang, Yunxia; Gu, Dong; Li, Qiang; Feng, Dan; Chen, Zhenxia; Tu, Bo; Webley, Paul A; Zhao, Dongyuan

    2009-12-01

    Ordered mesostructured tungsten carbide and graphitic carbon composites (WC/C) with nanocrystalline walls are fabricated for the first time by a temperature-programmed carburization approach with phosphotungstic acid (PTA) as a precursor and mesoporous silica materials as hard templates. The mesostructure, crystal phase, and amount of deposited graphitic carbon can be conveniently tuned by controlling the silica template (SBA-15 or KIT-6), carburizing temperature (700-1000 degrees C), the PTA-loading amount, and the carburizing atmosphere (CH(4) or a CH(4)/H(2) mixture). A high level of deposited carbon is favorable for connecting and stabilizing the WC nanocrystallites to achieve high mesostructural regularity, as well as promoting the carburization reaction. Meanwhile, large pore sizes and high mesoporosity of the silica templates can promote WC-phase formation. These novel, ordered, mesoporous WC/C nanocomposites with high surface areas (74-169 m(2) g(-1)), large pore volumes (0.14-0.17 cm(3) g(-1)), narrow pore-size distributions (centered at about 3 nm), and very good oxidation resistance (up to 750 degrees C) have potential applications in fuel-cell catalysts and nanodevices.

  17. Comparison of Methods for Assessing Body Composition Changes during Weight Loss.

    ERIC Educational Resources Information Center

    Weyers, Anna M.; Mazzetti, Scott A.; Love, Dawn M.; Gomez, Ana L.; Kraemer, William J.; Volek, Jeff S.

    2002-01-01

    Investigated whether dual-energy x-ray absorptiometry (DXA) and air displacement plethysmography (ADP) would detect similar changes in body composition after moderate weight loss. Twenty adults had their body composition measured using DXA and ADP before and after an 8-week weight loss program. Overall, both DXA and ADP detected similar changes in…

  18. Validation of a new body composition method for infant and children using piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study was undertaken to validate the first quantitative nuclear magnetic resonance instrument designed and built to assess body composition from birth through adulthood (up to 50 kg). A total of 50 pigs weighing between 3.0 and 49.1 kg were studied. Each piglet’s body composition was ass...

  19. QMR: Validation of an infant and children body composition instrument using piglets against chemical analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study was undertaken to validate the first quantitative nuclear magnetic resonance instrument designed and built to assess body composition from birth through adulthood (up to 50 kg). A total of 50 pigs weighing between 3.0 and 49.1 kg were studied. Each piglet's body composition was ass...

  20. Ultrasound use for body composition and carcass quality assessment in cattle and lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic evaluation for carcass quality traits has evolved over time, in large part due to introduction of new technology such as ultrasound measures of body composition. Ultrasound measured body composition traits emulate important carcass traits, are very informative for selection purposes, are ac...

  1. Assessment of nutritional status in cancer--the relationship between body composition and pharmacokinetics.

    PubMed

    Prado, Carla M M; Maia, Yara L M; Ormsbee, Michael; Sawyer, Michael B; Baracos, Vickie E

    2013-10-01

    Several nutritional assessment tools have been used in oncology settings to monitor nutritional status and its associated prognostic significance. Body composition is fundamental for the assessment of nutritional status. Recently, the use of accurate and precise body composition tools has significantly added to the value of nutritional assessment in this clinical setting. Computerized tomography (CT) is an example of a technique which provides state-of-the-art assessment of body composition. With use of CT images, a great variability in body composition of cancer patients has been identified even in people with identical body weight or body mass index. Severe muscle depletion (sarcopenia) has emerged as a prevalent body composition phenotype which is predictive of poor functional status, shorter time to tumor progression, shorter survival, and higher incidence of dose-limiting toxicity. Variability in body composition of cancer patients may be a source of disparities in the metabolism of cytotoxic agents. Future clinical trials investigating dose reductions in patients with sarcopenia and dose-escalating studies based on pre-treatment body composition assessment have the potential to alter cancer treatment paradigms.

  2. Youth substance use and body composition: does risk in one area predict risk in the other?

    PubMed

    Pasch, Keryn E; Velazquez, Cayley E; Cance, Jessica Duncan; Moe, Stacey G; Lytle, Leslie A

    2012-01-01

    Both substance use and obesity are prevalent among youth. As youth age, substance use rates increase and over the past three decades, obesity rates among youth have tripled. While these two factors have both short- and long-term health impacts, little research has explored how substance use and obesity among youth may be related. This study explores the bi-directional longitudinal relationships between substance use and body composition. Participants (N = 704; 50.7% female) were mostly white (86.4%) with a baseline mean age of 14.7 years. Objectively measured body composition was used to calculate body mass index z-scores (BMI z-score) and percent body fat. Cross-lagged structural equation models, accounting for clustering at the school level, were run to determine the longitudinal association between body composition and self-reported substance use (alcohol, cigarette, and marijuana), adjusting for socio-demographic characteristics, pubertal status, and weight satisfaction. Baseline alcohol use predicted decreased BMI z-score at follow-up and a similar association with percent body fat approached significance. Baseline cigarette use predicted increased percent body fat. No longitudinal associations were seen between baseline body composition and future substance use. Our results suggest that substance use contributes to subsequent body composition; however, body composition does not contribute to subsequent substance use. Continued research that explores these relationships longitudinally is greatly needed.

  3. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears.

    PubMed

    Molnár, Péter K; Klanjscek, Tin; Derocher, Andrew E; Obbard, Martyn E; Lewis, Mark A

    2009-08-01

    Many species experience large fluctuations in food availability and depend on energy from fat and protein stores for survival, reproduction and growth. Body condition and, more specifically, energy stores thus constitute key variables in the life history of many species. Several indices exist to quantify body condition but none can provide the amount of stored energy. To estimate energy stores in mammals, we propose a body composition model that differentiates between structure and storage of an animal. We develop and parameterize the model specifically for polar bears (Ursus maritimus Phipps) but all concepts are general and the model could be easily adapted to other mammals. The model provides predictive equations to estimate structural mass, storage mass and storage energy from an appropriately chosen measure of body length and total body mass. The model also provides a means to estimate basal metabolic rates from body length and consecutive measurements of total body mass. Model estimates of body composition, structural mass, storage mass and energy density of 970 polar bears from Hudson Bay were consistent with the life history and physiology of polar bears. Metabolic rate estimates of fasting adult males derived from the body composition model corresponded closely to theoretically expected and experimentally measured metabolic rates. Our method is simple, non-invasive and provides considerably more information on the energetic status of individuals than currently available methods.

  4. Symmetry considerations in the scattering of identical composite bodies

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1986-01-01

    Previous studies of the interactions between composite particles were extended to the case in which the composites are identical. The form of the total interaction potential matrix elements was obtained, and guidelines for their explicit evaluation were given. For the case of elastic scattering of identical composites, the matrix element approach was shown to be equivalent to the scattering amplitude method.

  5. Dietary supplements for improving body composition and reducing body weight: where is the evidence?

    PubMed

    Manore, Melinda M

    2012-04-01

    Weight-loss supplements typically fall into 1 of 4 categories depending on their hypothesized mechanism of action: products that block the absorption of fat or carbohydrate, stimulants that increase thermogenesis, products that change metabolism and improve body composition, and products that suppress appetite or give a sense of fullness. Each category is reviewed, and an overview of the current science related to their effectiveness is presented. While some weight-loss supplements produce modest effects (<2 kg weight loss), many have either no or few randomized clinical trials examining their effectiveness. A number of factors confound research results associated with the efficacy of weight-loss supplements, such as small sample sizes, short intervention periods, little or no follow-up, and whether the supplement is given in combination with an energy-restricted diet or increased exercise expenditure. There is no strong research evidence indicating that a specific supplement will produce significant weight loss (>2 kg), especially in the long term. Some foods or supplements such as green tea, fiber, and calcium supplements or dairy products may complement a healthy lifestyle to produce small weight losses or prevent weight gain over time. Weight-loss supplements containing metabolic stimulants (e.g., caffeine, ephedra, synephrine) are most likely to produce adverse side effects and should be avoided.

  6. Anthropometry and Body Composition Status during Ramadan among Higher Institution Learning Centre Staffs with Different Body Weight Status

    PubMed Central

    Rozano, Nurismalina; Abd Hadi, Norhayati; Mat Nor, Mohd Nasir; Dandinasivara Venkateshaiah, Muralidhara

    2013-01-01

    This study was done to observe the anthropometry and body composition changes before, during, and after the holy month of Ramadan. This study was carried out on 46 staff from one of the local universities, which comprised of 14 males and 32 females ranging in age from 25 to 40 years old. There were four sessions done to complete this study, namely, a week before Ramadan (T1), 1st week of Ramadan (T2), 3rd week of Ramadan (T3), and a month after Ramadan (T4). All subjects were assessed according to weight, body circumference, and body composition status. It was found that subjects with different weight status showed a significant reduction in weight (P < 0.01) but no significant reduction in body fat percentage (P < 0.05). The findings suggest that weight reduction does not promise a reduction in body fat. Changes in neck circumference were only found in normal subjects. Hence, it can be said that overweight and obese subjects showed no changes in anthropometry status during Ramadan. No changes in body composition were reported in all three weight groups except for trunk body fat. In conclusion, normal subjects showed significant changes in various anthropometry parameters, but overweight and obese subjects showed no obvious difference. PMID:24311975

  7. Anthropometry and body composition status during Ramadan among higher institution learning centre staffs with different body weight status.

    PubMed

    Rohin, Mohd Adzim Khalili; Rozano, Nurismalina; Abd Hadi, Norhayati; Mat Nor, Mohd Nasir; Abdullah, Shaharudin; Dandinasivara Venkateshaiah, Muralidhara

    2013-01-01

    This study was done to observe the anthropometry and body composition changes before, during, and after the holy month of Ramadan. This study was carried out on 46 staff from one of the local universities, which comprised of 14 males and 32 females ranging in age from 25 to 40 years old. There were four sessions done to complete this study, namely, a week before Ramadan (T1), 1st week of Ramadan (T2), 3rd week of Ramadan (T3), and a month after Ramadan (T4). All subjects were assessed according to weight, body circumference, and body composition status. It was found that subjects with different weight status showed a significant reduction in weight (P < 0.01) but no significant reduction in body fat percentage (P < 0.05). The findings suggest that weight reduction does not promise a reduction in body fat. Changes in neck circumference were only found in normal subjects. Hence, it can be said that overweight and obese subjects showed no changes in anthropometry status during Ramadan. No changes in body composition were reported in all three weight groups except for trunk body fat. In conclusion, normal subjects showed significant changes in various anthropometry parameters, but overweight and obese subjects showed no obvious difference.

  8. Analysis of stress-strain, fracture, and ductility behavior of aluminum maxtrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1985-01-01

    Mechanical properties and stress-strain behavior were evaluated for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol pct discontinuous SiC whisker, nodule, or particulate reinforcement. The elastic modulus of the composites was found to be isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Type and orientation of reinforcement had some effect on the strengths of composites, but only for those in which the whisker reinforcement was highly oriented. Ductility decreased with increasing reinforcement content; however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain was probably attributable to cleaner matrix powder, better mixing, and increased mechanical working during fabrication. Comparison of properties with conventional aluminum and titanium structural alloys showed that the properties of the low-cost, lightweight composites demonstrated very good potential for application to aerospace structures.

  9. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles

  10. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility

    DTIC Science & Technology

    2014-11-18

    Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility Qi An and William A. Goddard, III* Materials and Process... Boron carbide (B4C) is a hard material whose value for extended engineering applications such as body armor; is limited by its brittleness under...Plasmonics, Optical Materials, and Hard Matter Superhard materials, such as diamond, cubic boron nitride,and boron carbide (B4C), exhibit many

  11. Conduction mechanism in boron carbide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  12. Some special features of the mass transfer of the liquid phase in composite materials based on tungsten and titanium carbides

    SciTech Connect

    Lisovskii, A.F.; Gracheva, T.E.

    1988-01-01

    The authors investigate the absorption of molten cobalt by the triphase composite (Ti, W)C-WC-Co and the moving forces of this process. Results indicate that absorption of metal melts by multiphase composites occurs as a consequence of the rearrangement of the high melting skeleton in the process of which the phase boundaries and contact solid-solid surfaces are replaced by solid-liquid surfaces. Physical and chemical methods causing weakening or disruption of the high melting skeleton intensify the process.

  13. Body Composition Outcomes of a Qigong Intervention Among Community-Dwelling Aging Adults.

    PubMed

    Chang, Mei-Ying; Chen, Hsiao-Yu

    2016-12-01

    Aging causes various changes in body composition, which are critical implications for health and physical functioning in aging adults. The aim of this study was to explore the body composition outcomes of a qigong intervention among community-dwelling aging adults. This was a quasi-experimental study in which 90 participants were recruited. Forty-eight participants (experimental group) attended a 30-min qigong program 3 times per week for 12 weeks, whereas 42 participants (control group) continued performing their usual daily activities. The experimental group achieved a greater reduction in the fat mass percentage at the posttest, and exhibited increased fat-free mass, lean body mass percentage, and lean body mass to fat mass ratio compared with the controls. No difference between the two groups in body mass index, fat mass, and lean body mass was observed. These results indicated that the qigong intervention showed beneficial outcomes of body composition among community-dwelling aging adults.

  14. [Changes in body composition during an extreme endurance run].

    PubMed

    Knechtle, B; Bircher, S

    2005-03-09

    We measured before, during and after a six-day-run in one athlete body weight, skinfold thickness, circumference of extremities, energy expenditure and nutritional intake. Despite an increased fat and protein intake during the race we found a significantly decrease in adipose subcutaneous tissue of the whole body and muscle mass in the active limbs whereas body weight remained stable. We presume that during running as eccentric exercise subcutaneous adipose tissue and muscle mass will be oxidised.

  15. Development of the DoD Body Composition Estimation Equations.

    DTIC Science & Technology

    1999-09-01

    This report summarizes the research findings that led to the policy decisions for development of the body fat content screening procedures and...equations that are currently under consideration for inclusion in the Department of Defense (DoD) Instruction (DoDI) 1308.3, Physical Fitness and Body Fat ...Programs. After reviewing research results, a DoD ad hoc working group recommended that a tiered body fat content standard be adopted. A weight-for

  16. [Human body composition during extended stay in microgravity].

    PubMed

    Noskov, V B; Nichiporuk, I A; Vasilieva, G Yu; Smirnov, Yu I

    2015-01-01

    According to the Sprut-2 protocol, bio-impedancemetry of ISS cosmonauts was performed once a month and also before and after mission. Multiple non-invasive body measurements were carried out in 15 cosmonauts in real time. Relocation of extracellular liquid along the body axis led to its reduction in legs and, on the contrary, an increase in the abdomen. Volumes of total body liquid as well as intra- and extracellular liquids decreased in comparison with pre-flight levels. Lean body mass also became less in microgravity, whereas fat mass showed an increase.

  17. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.

    1994-01-01

    Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources

  18. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss) The cost and scarcity of key ingredients for aquaculture feed formulation call for a wise use of resources, especially dietary proteins and energy. For years t...

  19. Body composition throughout the lifecycle: The role of dairy foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an ongoing concern about the degree of obesity world-wide and the implications for health outcomes. Body mass index (BMI) is used as the measure for the classification of overweight and obesity. However, this index does not represent actual body fat levels or the amount of active lean bod...

  20. Ultrasonic Guided-Wave-Scan System Used to Characterize C-Enhanced Silicon Carbide Composite During Creep- Rupture Tests

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Verrilli, Michael J.

    2005-01-01

    Ceramic matrix composites (CMCs) are being developed for advanced aerospace propulsion applications in order to save weight, improve reuse capability, and increase performance. However, mechanical and environmental loads applied to CMCs can cause degradation in the form of discrete flaws and distributed microdamage that can play a significant role in reducing desirable physical properties. Categories of microdamage include fiber/matrix debonding (interface failure), matrix microcracking, fiber fracture and buckling, oxidation, and second-phase formation. Distributed microdamage in CMCs has proven difficult to characterize nondestructively because of the complex microstructure and macrostructure of these materials, and a recent study regarding the durability of a ceramic matrix composite discussed the requirement for improved nondestructive evaluation (NDE) methods for monitoring degradation in these materials.

  1. Thermomechanical Fatigue Behavior of a Silicon Carbide Fiber-Reinforced Calcium Aluminosilicate Glass-Ceramic Matrix Composite.

    DTIC Science & Technology

    1992-08-01

    The impact of these factors complicating hysteresis analysis may be reduced if the effects of imperfect thermomechanical cycles on material behavior...Temperature," in Fracture Mechanics of Ceramics. Vol. 7: ComPosites. Impact Statistics and High-Temperature Phenomena, Bradt, R.C., Evans, A.G., Hasselman...r), and hoop (0) directions for conditions of applied thermal and mechanical loads may be computed as Ogm A[1 + (b)21] -t, applied(•) (33) armn A 1

  2. Isotopic Composition of Molybdenum and Barium in Single Presolar Silicon Carbide Grains of Type A+B

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2003-01-01

    Presolar SiC grains fall into several groups based on C, N, and Si isotopic compositions. Approximately 93% are defined as mainstream, having 10 less than C-12/C-13 less than 100 and N-14/N-15 ranging from 50 to 20,000. A number of studies have shown that the most likely sources of mainstream grains are low mass asymptotic giant branch stars. Models of nucleosynthesis in AGB stars reproduce the s-process enhancements seen in the heavy elements in mainstream SiC grains. Among the less common grains, A+B grains, which comprise approximately 3-4% of presolar SiC, are perhaps the least well understood. Recent studies by Amari et al. show that A+B grains can be divided into at least 4 groups based on their trace element concentration patterns. Of 20 grains studied, 7 showed trace element patterns consistent with condensation from a gas of solar system composition, while the rest had varying degrees of process enhancements. Our previous measurements on 3 A+B grains showed Mo of solar isotopic composition, but Zr with a strong enhancement in 96Zr, which is an r-process isotope but can be made in an sprocess if the neutron density is high enough to bridge the unstable Zr-95 (T(sub 1/2)= 64 d). The observation of Mo with solar system isotopic composition in the same grains is puzzling however. Meyer et al. have recently shown that a neutron burst mechanism can produce a high Zr-96/Zr-94 without enhancing Mo-100, however this model leads to enhancements in Mo-95 and Mo-97 not observed in A+B grains. We report here results of Mo measurements on 7 additional A+B grains, and Ba measurements on 2 A+B grains, and compare these to the previous studies.

  3. Computational-Experimental Processing of Boride/Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C

    DTIC Science & Technology

    2015-09-16

    oxidation resistance of ultrahigh temperature ceramic composites (UHTCC), the processing of these reactive metals and non- metals must be improved...processing of these reactive metals and non- metals must be improved dramatically to control the eventual development of the oxide scale. The research...with strategic experimentation of liquid Al-Sm alloys containing Hf, Ti or Y. • Investigate the phases formed as the liquid metal flows into the packed

  4. Effects of milk replacer composition on growth, body composition, and nutrient excretion in preweaned Holstein heifers.

    PubMed

    Hill, S R; Knowlton, K F; Daniels, K M; James, R E; Pearson, R E; Capuco, A V; Akers, R M

    2008-08-01

    Twenty-four newborn Holstein heifer calves were fed 1 of 4 milk replacers (MR): control (20% CP, 21% fat; MR fed at 441 g/d); high protein/low fat (HPLF; 28% CP, 20% fat; MR fed at 951 g/d); high protein/high fat (HPHF; 27% CP, 28% fat; MR fed at 951 g/d); and HPHF MR fed at a higher rate (HPHF+; 27% CP, 28% fat; MR fed at 1,431 g/d). Dry calf starter (20% CP, 1.43% fat) composed of ground corn (44.4%), 48% CP soybean meal (44.4%), cottonseed hulls (11.2%), and molasses (1.0%) was offered free choice. Heifers were obtained from a commercial dairy, blocked by groups of 8 in the order acquired, and randomly assigned to treatments within group. Upon arrival at the research farm, heifers were fed the control for 2 feedings. Treatments were imposed when heifers were 4 +/- 1 d of age. Heifers were on study for 61 +/- 1 d. Body weight and body size measures were taken weekly. Four-day total collection of feed refusals, feces, and urine was initiated at 57 +/- 1 d of age. Heifers were slaughtered at the end of the collection period to evaluate body composition. Preplanned contrasts were used to compare control to all, HPLF to HPHF, and HPHF to HPHF+. Heifers fed the control diet consumed more starter than those fed other treatment diets, but their total dry matter intake and apparent dry matter digestibility were lowest. Fecal output was highest in heifers fed the control diet, whereas urine output and urine N excretion were lowest. Nitrogen intake and urine N excretion were greater for heifers fed HPHF+ compared with HPHF but were not affected by MR fat content (HPLF vs. HPHF). Retention (g/d) of N and P was greater in heifers fed all nutrient-dense diets compared with those fed the control diet, but was not improved by increasing fat in the milk replacer (HPLF vs. HPHF) or by increasing the amount fed. Addition of fat to the milk replacer (HPLF vs. HPHF) increased empty body weight fat content without improving average daily gain or frame measures. Increasing the volume

  5. Method Developed for the High-Temperature Nondestructive Evaluation of Fiber-Reinforced Silicon Carbide Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    1998-01-01

    Ceramic matrix composites have emerged as candidate materials to allow higher operating temperatures (1000 to 1400 C) in gas turbine engines. A need, therefore, exists to develop nondestructive methods to evaluate material integrity at the material operating temperature by monitoring thermal and mechanical fatigue. These methods would also have potential as quality inspection tools. The goal of this investigation at the NASA Lewis Research Center is to survey and correlate the temperature-dependent damping and stiffness of advanced ceramic composite materials with imposed thermal and stress histories that simulate in-service turbine engine conditions. A typical sample size of 100 by 4 by 2 cubic millimeters, along with the specified stiffness and density, placed the fundamental vibration frequencies between 100 and 2000 Hz. A modified Forster apparatus seemed most applicable to simultaneously measure both damping and stiffness. Testing in vacuum reduced the effects of air on the measurements. In this method, a single composite sample is vibrated at its fundamental tone; then suddenly, the mechanical excitation is removed so that the sample's motion freely decays with time. Typical results are illlustrated in this paper.

  6. Body composition during fetal development and infancy through the age of 5 years

    PubMed Central

    Toro-Ramos, T; Paley, C; Pi-Sunyer, FX; Gallagher, D

    2015-01-01

    Fetal body composition is an important determinant of body composition at birth, and it is likely to be an important determinant at later stages in life. The purpose of this work is to provide a comprehensive overview by presenting data from previously published studies that report on body composition during fetal development in newborns and the infant/child through 5 years of age. Understanding the changes in body composition that occur both in utero and during infancy and childhood, and how they may be related, may help inform evidence-based practice during pregnancy and childhood. We describe body composition measurement techniques from the in utero period to 5 years of age, and identify gaps in knowledge to direct future research efforts. Available literature on chemical and cadaver analyses of fetal studies during gestation is presented to show the timing and accretion rates of adipose and lean tissues. Quantitative and qualitative aspects of fetal lean and fat mass accretion could be especially useful in the clinical setting for diagnostic purposes. The practicality of different pediatric body composition measurement methods in the clinical setting is discussed by presenting the assumptions and limitations associated with each method that may assist the clinician in characterizing the health and nutritional status of the fetus, infant and child. It is our hope that this review will help guide future research efforts directed at increasing the understanding of how body composition in early development may be associated with chronic diseases in later life. PMID:26242725

  7. Effects of weightlessness on body composition in the rat.

    PubMed

    Pitts, G C; Ushakov, A S; Pace, N; Smith, A H; Rahlmann, D F; Smirnova, T A

    1983-03-01

    Five male rats were exposed to 18.5 days of weightlessness in the Soviet mission COSMOS 1129 (flight group) and killed after reentry. They were immediately dissected into three major body subdivisions: musculoskeletal system, skin, and pooled viscera analyzed for fat, water, solids, and six elements. These results, expressed as percentages of the fat-free body or its components, were compared with two groups of terrestrial controls: one subjected to a flight simulation in a spacecraft mock-up and the other under standard vivarium conditions. Relative to the control groups the flight group showed 1) a reduced fraction of total body water, 2) a net shift of body water from skin to viscera, 3) a marked diminution in fraction of extracellular water in the fat-free body, 4) a marked reduction in fraction of bone mineral, 5) no change in the quantity of stored fat or adrenal masses, and 6) a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  8. Dietary protein source influence on body size and composition in growing zebrafish.

    PubMed

    Smith, Daniel L; Barry, R Jeff; Powell, Mickie L; Nagy, Tim R; D'Abramo, L R; Watts, Stephen A

    2013-09-01

    The importance of nutritional components on growth and body composition outcomes has been demonstrated in multiple model organisms. Although zebrafish (Danio rerio) have an established role in research laboratories for its utility in understanding developmental biology and genetics, the influence of diet composition on basic growth outcomes is less well demonstrated. In the current study, four protein sources were tested in isolation using isonitrogenous diets or combined using a defined lab diet. Fish (n≈60/group) were group housed (n≤10 fish/1.8 L tank) and fed ad libitum three times daily for 12 weeks. Fish were assessed for effects on length, body weight, and body composition (lean and fat mass). Individuals fed wheat gluten protein were significantly shorter in length, with significantly lower body weight and lean mass in both male and female fish, although percent body fat was high compared with other diets. Casein-fed fish similarly had significantly reduced body length, body weight, and lean and fat mass in both male and female fish, with a low percent body fat compared with other diets (leanest). Fish protein hydrolysate-fed fish had significantly lower lean mass and a high percent body fat, whereas soy protein isolate diet performed similarly to a mixed-protein control diet for all measured outcomes. These results suggest that the protein source, with accompanying amino acid ratios or additional protein source differences, has a significant impact on growth and body composition outcomes in zebrafish when fed in a semipurified, defined diet background.

  9. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Yan, Pengtao; Zhang, Ruijun; Jia, Jin; Wu, Chao; Zhou, Aiguo; Xu, Jiang; Zhang, Xuesha

    2015-06-01

    MXenes, a new family of two-dimensional materials, are terminated by O, OH and F groups. The existence of the oxygen-containing functional groups indicates a potential application in supercapacitor based on a redox mechanism. However, the irreversible stacking of MXenes will lead to an insufficient utilization of these functional groups and thus a decrease in the supercapacitive performance. To solve the problem, we synthesized a composite material comprised of carbon nanotube (CNT) and Ti3C2 sheets (d-Ti3C2) delaminated from MXenes by ultrasonic stirring. The FTIR result suggests that the ultrasonication has no significant effect on the oxygen-containing functional groups. The resultant composites exhibit significantly higher volumetric capacitance and better capacitance retention (during 5-100 mv s-1) than d-Ti3C2. A highest volumetric capacitance of 393 F cm-3 at 5 mv s-1 in KOH electrolyte can be obtained when the weight ratio of d-Ti3C2 to CNT is 2:1. In addition, the volumetric capacitance has no significant degradation even after 10000 cycles in cycling stability test, showing an excellent cycling stability compared with metal oxides. These enhanced electrochemical performances can be ascribed to the introduction of CNTs, which impede the stacking of Ti3C2, enlarge the distance between Ti3C2 sheets and improve the electrical conductivity.

  10. Physical Activity is Associated with Percent Body Fat and Body Composition but not Body Mass Index in White and Black College Students.

    PubMed

    Zanovec, Michael; Lakkakula, Anantha P; Johnson, Lisa G; Turri, Georgianna

    The objective of this study was to examine the association of self-reported physical activity (PA) with body composition in 290 college students (49% male, 60% White) 18-25 years of age. Outcome measures included: self-reported PA levels calculated in MET-hrs·wk(-1) from the International Physical Activity Questionnaire (IPAQ); body mass index (BMI; in kg·m(-2)); and body composition variables estimated by dual-energy X-ray absorptiometry (DXA). Mean activity levels of the sample were 39.8 ± 23.8 MET-hrs·wk(-1). Participants were divided into quartiles of PA levels: ≥0 to <24.0, ≥24.0 to <34.0, ≥34.0 to <51.25, and ≥51.25 MET-hrs ·wk(-1) and body composition variables were compared by group. Chi-square analyses revealed a significant difference for gender by PA quartile [χ(2) (3, N=290) = 32.42, p < 0.0001], and for gender by race by PA quartile [χ(2) (9, N=290) = 37.82, p < 0.0001]. MET-hrs·wk(-1) was inversely correlated with %BF (r = -0.40, p < 0.0001) but not BMI (r = 0.05, p = 0.43). When comparing body composition variables across PA quartiles, no significant differences were observed for BMI; however, subjects in the highest quartile of PA had a lower percent body fat (%BF) and fat mass (FM), and a higher lean-tissue mass (LTM) compared to subjects in the other three groups. In this cohort of young adults, participants in the highest activity group had a more fit body composition profile (e.g., lower %BF, lower FM, and higher LTM) which was not reflected in BMI and was independent of gender and race.

  11. HEAT-RESISTANT MATERIAL WITH SILICON CARBIDE AS A BASE,

    DTIC Science & Technology

    A new high-temperature material, termed SG-60, is a silicon carbide -graphite composite in which the graphite is the thermostability carrier since it...is more heat-conducting and softer (heat conductivity of graphite is 0.57 cal/g-cm-sec compared with 0.02 cal/g-cm-sec for silicon carbide ) while... silicon carbide is the carrier of high-temperature strength and hardness. The high covalent bonding strength of the atoms of silicon carbide (283 kcal

  12. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, R.A.; Virkar, A.V.; Hurford, A.C.

    1989-05-09

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.

  13. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.

    1989-01-01

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.

  14. Method of making a composite refractory material

    DOEpatents

    Morrow, M.S.; Holcombe, C.E.

    1995-09-26

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

  15. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  16. Supplementation with a fish protein hydrolysate (Micromesistius poutassou): effects on body weight, body composition, and CCK/GLP-1 secretion

    PubMed Central

    Nobile, Vincenzo; Duclos, Elisa; Michelotti, Angela; Bizzaro, Gioia; Negro, Massimo; Soisson, Florian

    2016-01-01

    Background Fish protein hydrolysates (FPHs) have been reported as a suitable source of proteins for human nutrition because of their balanced amino acid composition and positive effect on gastrointestinal absorption. Objective Here, we investigated the effect of a FPH, Slimpro®, obtained from blue whiting (Micromesistius poutassou) muscle by enzymatic hydrolysis, on body composition and on stimulating cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) secretion. Design A randomized clinical study was carried out on 120, slightly overweight (25 kg/m2 ≤ BMI<30 kg/m2), male (25%) and female (75%) subjects. FPH was tested in a food supplement at two doses (1.4 and 2.8 g) to establish if a dose–effect relationship exists. Product use was associated with a mild hypocaloric diet (−300 kcal/day). Body composition (body weight; fat mass; extracellular water; and circumference of waist, thighs, and hips) and CCK/GLP-1 blood levels were measured at the beginning of the study and after 45 and 90 days of product use. CCK/GLP-1 levels were measured since they are involved in controlling food intake. Results Treated subjects reported an improvement of body weight composition and an increased blood concentration of both CCK and GLP-1. No differences were found between the 1.4 and 2.8 g FPH doses, indicating a plateau effect starting from 1.4 g FPH. Conclusions Both 1.4 and 2.8 g of FPH were effective in improving body composition and in increasing CCK and GLP-1 blood levels. PMID:26829186

  17. The Official Positions of the International Society for Clinical Densitometry: body composition analysis reporting.

    PubMed

    Petak, Steven; Barbu, Carmen G; Yu, Elaine W; Fielding, Roger; Mulligan, Kathleen; Sabowitz, Brian; Wu, Chih-Hsing; Shepherd, John A

    2013-01-01

    Dual-energy x-ray absorptiometry (DXA) measurements of body composition increasingly are used in the evaluation of clinical disorders, but there has been little guidance on how to effectively report these measures. Uniformity in reporting of body composition measures will aid in the diagnosis of clinical disorders such as obesity, sarcopenia, and lipodystrophy. At the 2013 International Society for Clinical Densitometry Position Development Conference on body composition, the reporting section recommended that all DXA body composition reports should contain parameters of body mass index, bone mineral density, BMC, total mass, total lean mass, total fat mass, and percent fat mass. The inclusion of additional measures of adiposity and lean mass are optional, including visceral adipose tissue, appendicular lean mass index, android/gynoid percent fat ratio, trunk to leg fat mass ratio, lean mass index, and fat mass index. Within the United States, we recommend the use of the National Health and Nutrition Examination Survey 1999-2004 body composition dataset as an age-, gender-, and race-specific reference and to calibrate BMC in 4-compartment models. Z-scores and percentiles of body composition measures may be useful for clinical interpretation if methods are used to adjust for non-normality. In particular, DXA body composition measures may be useful for risk-stratification of obese and sarcopenic patients, but there needs to be validation of thresholds to define obesity and sarcopenia. To summarize, these guidelines provide evidence-based standards for the reporting and clinical application of DXA-based measures of body composition.

  18. Processing, Microstructure and Mechanical Behavior of Ultrasonic Assisted Cast Magnesium 1wt% Silicon Carbide Nano-Composites

    NASA Astrophysics Data System (ADS)

    Erman, Ari

    The goal of this dissertation is to establish an understanding of processing -- microstructure -- mechanical behavior relationship in Mg-1wt% SiC metal matrix nano-composites fabricated via an ultrasonic assisted casting process, with the emphasis on the effect of the distribution of nanoparticles on this relationship. Ultrasonic assisted casting has been proved as an effective technique to distribute nanoparticles in Mg metal matrix nano-composites (MMNCs). Mg MMNCs reinforced with 1 wt% SiC nanoparticles, were cast by ultrasonic cavitation-based dispersion methods. Microstructural analyses of as cast specimens were conducted to characterize the grain size, shape and distribution, SiC nanoparticle size and distribution, and nanoparticle-matrix interface. Average grain size for the ultrasonic assisted cast composite specimens was 72 mum compared to 181 mum for pure Mg samples prepared by the same method. The average measured SiC nanoparticle size was 66 nm. TEM studies showed good local dispersion of SiC nanoparticles, with only a few small, widely spaced clusters. HRTEM showed a clean interface between SiC nanoparticles and the Mg matrix, with no evidence of secondary phases. The yield strength of Mg-1 wt% SiC nanocomposites was 67 MPa, which showed improvement from 47 MPa for the pure Mg samples. This extra strengthening is due to Orowan and Hall-Petch effects. Fatigue experiments were conducted to characterize the cyclic stress-strain response of pure Mg and Mg-1wt% SiC samples at 0.2%, 0.4% and 0.6% plastic strain amplitudes. The analyses of the cyclic stress response curves and hysteresis loops, combined with post failure TEM analyses provided an understanding of the role of twinning, and twin-particle interactions on the cyclic deformation behavior of Mg MMNCs. Tensile twinning and basal slip are the main forms of deformation mechanisms under compression, followed by detwinning and basal slip in subsequent tension. Fatigue lives of Mg MMNCs are comparable to

  19. Body composition among Sri Lankan infants by 18*O dilution method and the validity of anthropometric equations to predict body fat against 18*O dilution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Body composition indicators provide a better guidance for growth and nutritional status of the infants. This study was designed to (1) measure the body composition of the Sri Lankan infants using a reference method, the 18*O dilution method; (2) calculate the body fat content of the infants using pu...

  20. Exercise, weight loss, and changes in body composition in mice: phenotypic relationships and genetic architecture.

    PubMed

    Kelly, Scott A; Nehrenberg, Derrick L; Hua, Kunjie; Garland, Theodore; Pomp, Daniel

    2011-02-24

    The regulation of body weight and composition is complex, simultaneously affected by genetic architecture, the environment, and their interactions. We sought to analyze the complex phenotypic relationships between voluntary exercise, food consumption, and changes in body weight and composition and simultaneously localize quantitative trait loci (QTL) controlling these traits. A large (n = 815) murine advanced intercross line (G(4)) was created from a reciprocal cross between a high-running line and the inbred strain C57BL/6J. Body weight and composition (% fat, % lean) were measured at 4, 6, and 8 wk of age. After measurements at 8 wk of age, mice were given access to running wheels, during which food consumption was quantified and after which body weight and composition were assessed to evaluate exercise-induced changes. Phenotypic correlations indicated that the relationship between exercise and overall change in weight and adiposity depended on body composition before the initiation of exercise. Interval mapping revealed QTL for body weight, % fat, and % lean at 4, 6, and 8 wk of age. Furthermore, QTL were observed for food consumption and changes in weight, % fat, and % lean in response to short-term exercise. Here we provide some clarity for the relationship between weight loss, reduction in adiposity, food consumption, and exercise. Simultaneously, we reinforce the genetic basis for body weight and composition with some independent loci controlling growth at different ages. Finally, we present unique QTL providing insight regarding variation in weight loss and reduction in adiposity in response to exercise.

  1. The influence of photoperiod on body weight gain, body composition, nutrient intake and hormone secretion.

    PubMed

    Tucker, H A; Petitclerc, D; Zinn, S A

    1984-12-01

    Increasing daily light exposure from 8 to 16 h increases average daily body weight gains of sheep and Holstein cattle but reduces gains of white-tailed doe fawns. Some of these effects on average daily gain in sheep are the result of increased gut fill and pelt weight. Increasing daily exposure to light increases feed intake when sheep or cattle are fed ad libitum. However, increased feed intake is not a prerequisite for the anabolic effects of long duration exposures to light because increased growth occurs in the animals given 16 h light:8 h dark (16L:8D) even when feed intake is restricted. The anabolic effects of increased duration photoperiods in sheep are independent of the gonads, whereas in cattle they are dependent on the gonads. Consistent increases in average daily gains of cattle in response to longer duration photoperiods have not always been achieved. The lack of consistency may be associated with sexual maturity or rate of fattening of the animal. For example, the stimulatory effects of 16L:8D photoperiods on live weight gain are not readily manifested in immature prepubertal heifers, but occur primarily during the peripubertal period. Short days are conducive to deposition of fat, which may account for the stimulatory effects of short days on live weight gain of white-tailed doe fawns and excessively fattened Holsteins. In contrast, long duration photoperiods stimulate protein accretion in cattle. The hormonal signals that mediate the anabolic effects of increasing exposure to light are not associated with change in insulin, thyroxine or growth hormone concentrations in the blood. Glucocorticoid concentrations in serum decrease with longer duration photoperiods which is consistent with an anabolic effect. Increasing daily light exposure to 16 h/d hastens the increase in concentrations of progesterone and testosterone in sera of peripubertal heifers and prepubertal bulls, respectively. Thus, change in secretion of reproductive hormones in the

  2. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  3. A comparison of methods of assessment of body composition including neutron activation analysis of total body nitrogen.

    PubMed

    Lukaski, H C; Mendez, J; Buskirk, E R; Cohn, S H

    1981-08-01

    Fourteen healthy men underwent determinations of total body nitrogen (TBN) by prompt gamma neutron activation analysis and total body potassium (TBK) by whole body counting to estimate the muscle and nonmuscle components of the fat-free body mass (FFBM) and their protein contents. Comparison of FFBM estimated from TBN and TBK (60.6 +/- 6.9 kg, mean +/- SD), densitometry (62.3 +/- 7.1 kg), TBK alone (62.2 +/- 8.0 kg) and TBW (63.9 +/- 7.8 kg) showed no differences among the techniques. Similarly, there were neither differences in fat mass nor percent body fat among the methods. Analysis of the chemical composition of FFBM of this group showed TBK/FFBM = 62.6 +/- 2.3 mEq/kg, TBW/FFBM = 74.6 +/- 0.2%, TBN/FFBM = 32.74 +/- 1.09 g/kg, protein/FFBM = 20.5+/- 0.7%. The calculated mineral content of the FFBM was 6.4%. These values are strikingly similar to the values calculated by direct chemical analysis. It was concluded that the combined TBN-TBK method is a valid technique for estimating body composition in man.

  4. Structure and composition of zirconium carbide thin-film grown by ion beam sputtering for optical applications

    NASA Astrophysics Data System (ADS)

    Singh, Amol; Modi, Mohammed H.; Dhawan, Rajnish; Lodha, G. S.

    2014-04-01

    Thin film of compound material ZrC was deposited on Si (100) wafer using ion beam sputtering method. The deposition was carried out at room temperature and at base pressure of 3×10-5 Pa. X-ray photoelectron spectroscopy (XPS) measurements were performed for determining the surface chemical compositions. Grazing incidence x-ray reflectivity (GIXRR) measurements were performed to study the film thickness, roughness and density. From GIXRR curve roughness value of the film was found less than 1 nm indicating smooth surface morphology. Films density was found 6.51 g/cm3, which is close to bulk density. Atomic force microscopy (AFM) measurements were performed to check the surface morphology. AFM investigation showed that the film surface is smooth, which corroborate the GIXRR data. Figure 2 of the original article PDF file, as supplied to AIP Publishing, contained a PDF processing error. This article was updated on 12 May 2014 to correct that error.

  5. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  6. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  7. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  8. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  9. Dynamics of body protein deposition and changes in body composition after sudden changes in amino acid intake: I. Barrows.

    PubMed

    Martínez-Ramírez, H R; Jeaurond, E A; de Lange, C F M

    2008-09-01

    A study was conducted to evaluate the extent and dynamics of whole body protein deposition and changes in chemical and physical body composition after a period of AA intake restriction in growing barrows with medium lean tissue growth potentials. Forty Yorkshire barrows (initial BW 14.4 +/- 1.6 kg) were scale-fed at 75% of estimated voluntary daily DE intake up to 35 kg of BW and assigned to 1 of 2 diets: AA adequate (AA+; 20% above requirements; NRC, 1998) and AA deficient (AA-; 40% below requirements; restriction phase). Thereafter (re-alimentation phase), pigs from both dietary AA levels were scale-fed or fed ad libitum diets that were not limiting in AA. Body weight gain and body composition, based on serial slaughter, were monitored during the 34-d re-alimentation phase. During the restriction phase AA intake restriction reduced BW gains (556 vs. 410 g/d; P < 0.001; AA+ and AA-, respectively). At 35 kg of BW, AA intake restriction increased whole body lipid content (11.1 vs. 17.5% of empty BW; P < 0.05) and the whole body lipid to body protein ratio (0.65 vs. 1.20; P < 0.01) and reduced body protein content (17.1 vs. 14.6% of empty BW; P < 0.01) and body water content (68.2 vs. 63.9%; P < 0.05). The relationships between body protein vs. body water and body protein vs. body ash content were not altered by previous AA intake restriction or by feeding level during the re-alimentation phase (P > 0.10). Throughout the re-alimentation phase, there were no interactive effects of time, feeding level, and previous AA intake level on growth performance, body protein, and body lipid content (P > 0.10). During the re-alimentation phase, body protein deposition, derived from the linear regression analysis of body protein content vs. time, was not affected by feeding level and previous AA intake level (P > 0.10; 156 g/d for AA- vs. 157 g/d for AA+). Based on BW and body protein content, it can be concluded that no compensatory body protein deposition occurred in barrows

  10. Body image and correlation with body composition and attrition rate in the TIGER study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Body image can be a very important part of determining an individual's outlook and behavior. Previous research has shown that the degree of satisfaction women have with their bodies may vary across race and may have a significant impact on an individual's motivation and commitment to a regular exer...

  11. The Evaluation of a Circumference-based Prediction Equation to Assess Body Composition Changes in Men.

    PubMed

    Schuna, John M; Hilgers, Sarah J; Manikowske, Trista L; Tucker, Jared M; Liguori, Gary

    This study evaluated the validity of the current U.S. Department of Defense (DOD) circumference-based prediction equation for males to detect body composition changes in comparison to air-displacement plethysmography (ADP). Body composition was assessed using ADP and the DOD equation at the beginning and end of an academic school year among 21 male (18-29 years-old) Army ROTC cadets. Body mass significantly increased (+1.8 Kg) after 9 months. Significant method by time interactions for percent body fat (percent body fat), fat mass (FM), and fat-free mass were found (p = 0.022, p = 0.023, p = 0.023, respectively) as body composition changes were not tracked equally by the two methods. Regression and Bland-Altman analyses indicated a lack of agreement between methods as the DOD equation underestimated percent body fat and FM changes in comparison to ADP. Results suggest the DOD equation for males cannot adequately detect body composition changes following a small body mass gain.

  12. Effects on body size and composition of chronic exposure to altered gravity. [centrifuging stress in mammals

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1977-01-01

    The effects of chronic centrifugation on body composition and growth of rats, mice, monkeys, and man are studied. The benefits of exercise and restraint during acceleration are investigated. Physiological regulation and energy balance are also discussed.

  13. Validation of bioelectrical-impedance analysis as a measurement of change in body composition in obesity

    SciTech Connect

    Kushner, R.F.; Kunigk, A.; Alspaugh, M.; Andronis, P.T.; Leitch, C.A.; Schoeller, D.A. )

    1990-08-01

    The bioelectrical-impedance-analysis (BIA) method accurately measures body composition in weight-stable subjects. This study validates the use of BIA to measure change in body composition. Twelve obese females underwent weight loss at a mean rate of 1.16 kg/wk. Body composition was measured by deuterium oxide dilution (D2O), BIA, and skinfold anthropometry (SFA) at baseline and at 5% decrements in weight. Highly significant correlations were obtained between D2O and BIA (r = 0.971) and between D2O and SFA (r = 0.932). Overall, BIA predicted change in fat-free mass with greater accuracy (to 0.4 kg) and precision (+/- 1.28 kg) than did anthropometry (to 0.8 kg and +/- 2.58 kg, respectively). We conclude that BIA is a useful clinical method for measuring change in body composition.

  14. International symposium on in vivo body composition studies: Program and abstracts

    SciTech Connect

    Not Available

    1986-01-01

    This booklet contains the program and individual abstracts for papers presented at the International symposium on in vivo body composition studies. The presentations were divided into five sessions. Individual abstracts were indexed for the Energy Data Base. (DT)

  15. [Anorexia nervosa: bioelectrical impedance analysis in body composition measurement during hospitalization].

    PubMed

    Van Leer, M; Leistedt, S J; Linkowski, P; Simon, Y

    2013-01-01

    Monitoring parameters for anorexia nervosa include clinical, biological and psychological factors. Many research groups are currently trying to identify parameters more likely to predict the severity or the evolution of the illness. Body composition has been proposed as one of those parameters. The aim of the present study is to demonstrate that measures of body composition are more accurate and efficient than the use of body composition index (BMI). We also aim to show that body composition could be used as a prognostic factor in the long-term evolution of patients with anorexia nervosa. It's a retrospective study investigating body composition and BMI in 44 patients treated in a specialized unit for eating disorder. Measures of body composition and BMI were gathered at the time of admission and again 3 months after refeeding onset. Data was correlated to the EDI-2 questionnaire scores. BMI and %FM where found to be increased (P < 0.05) between admission and after 3 months refeeding. The double objective of reaching a BMI value > or = 20 kg/m2 and a %FM value > or = 2% was achieved by 22% of patients. No significant correlation was found between EDI-2 scores and measures of BMI and %FM either on admission or after the 3 months refeeding period. In conclusion, results of our study don't allow concluding for a prognostic superiority of %FM. Nonetheless, BMI currently used as a reference for the monitoring of eating disorders patients seems to lack sensitivity where measures of body composition seem more informative regarding nutritional status. Furthermore, fat mass plays an important role in other clinical manifestations. In addition, measures of body composition should allow more individualised therapeutic support.

  16. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    PubMed

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults.

  17. Body Composition in Individuals with Asymptomatic Osteoarthritis of the Knee.

    PubMed

    Ho-Pham, Lan T; Lai, Thai Q; Mai, Linh D; Doan, Minh C; Nguyen, Tuan V

    2016-02-01

    Greater body mass index (BMI) is associated with a greater risk of osteoarthritis (OA). This study sought to investigate whether the association is mediated by fat mass or lean mass. The study involved 170 men and 488 women aged between 20 and 90 (average age: 55) who were randomly recruited from Ho Chi Minh City, Vietnam. The presence of knee OA was radiographically diagnosed based on the Kellgren-Lawrence criteria. Lean mass (LM) and fat mass (FM) were obtained from the DXA whole body scan (Hologic QDR-4500). The relationship between OA, LM, and FM was analyzed by a series of multiple linear regression models which take into account the effects of gender and age. As expected, men and women with knee OA were older than those without OA (65 vs 51 year in men, and 64 vs 52 year in women). After adjusting for age, OA was associated with greater FM and percent body fat (PBF), but the association was only observed in women, not in men. There was no statistically significant difference in LM between OA and non-OA individuals. Moreover, after adjusting for age and BMI or PBF, bone density in OA patients was not significantly different from non-OA individuals. Women with OA of the knee have greater fat mass than non-OA individuals, and that there is no significant difference in bone density between OA and non-OA individuals. Thus, the association between body mass index and OA is mainly mediated by fat mass.

  18. A population-based twin study on sleep duration and body composition.

    PubMed

    Liu, Rong; Liu, Xin; Arguelles, Lester M; Patwari, Pallavi P; Zee, Phyllis C; Chervin, Ronald D; Ouyang, Fengxiu; Christoffel, Katherine K; Zhang, Shanchun; Hong, Xiumei; Wang, Guoying; Xu, Xiping; Wang, Xiaobin

    2012-01-01

    The aim of this study is to investigate the relationship between sleep duration and body composition and to estimate the genetic contribution of sleep duration and body composition in a Chinese twin population. This cross-sectional analysis included 738 men and 511 women aged 21-72 year. Anthropometric and dual-energy X-ray absorptiometry (DXA) measures of body composition were used. Sleep duration was obtained from a standard sleep questionnaire. Multiple regression models were used to examine the association between sleep duration and body composition measures. Structural equation modeling was used to assess the heritability of sleep duration and body composition. Compared with individuals in the 2nd and 3rd age-specific quartiles of sleep duration (reference group), shorter (1st quartile) sleep duration among women but not men was associated with higher z-scores (0.248-0.317) for all adiposity measures--BMI, fat mass index (FMI), percent body fat mass (%BF), and percent trunk fat mass (%TF), P < 0.05 for each--and with 0.306 lower z-scores for percent body lean mass (%LM) and 0.353 lower lean/fat mass ratio (LFR), P < 0.01 for each. The heritability of sleep duration was 0.27 in men and 0.29 in women, while the heritability of body composition was as high as 0.56-0.73 after adjustment for age in both genders. Short sleep duration was associated with increased body fat and decreased lean body mass in women but not in men. Sleep duration was largely influenced by environmental factors while adiposity measures were mainly influenced by genetic factors.

  19. Body composition assessment for the definition of cardiometabolic risk.

    PubMed

    Amato, M C; Guarnotta, V; Giordano, C

    2013-01-01

    Obesity is associated with a major prevalence of cardiovascular risk factors and high risk of cardiovascular events and contributes to the increase in cardiovascular morbidity and mortality worldwide. Beyond the fat mass per se, the pattern of fat distribution has a profound influence on cardiometabolic risk. The increase in abdominal adipose tissue confers an independent risk, while the amount of gluteofemoral body fat is thought to be protective. Changes in the capacity of different depots to store and release fatty acids and to produce adipocytokines are important determinants of fat distribution and its metabolic consequences. Because of the complexity of the assessment of body fat with imaging techniques, great attention has been paid to other measures of adiposity, such as waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR), which provide information on body fat distribution, although body mass index (BMI) is the established clinical measure to estimate the cardiovascular risk disease associated with excessive body weight. Abdominal obesity is a main predictive factor of the metabolic syndrome, so it is certain that it represents a better marker of cardiovascular risk than BMI. Visceral adiposity index (VAI) has recently proven to be a marker of visceral adipose distribution and function, associated with insulin sensitivity in patients at metabolic risk; however, the evidence needs to be further confirmed. In summary, BMI, WC, WHR, WHtR, and VAI are all useful tools for assessing adiposity/ obesity in clinical practice, and should be evaluated along with other cardiometabolic risk factors to define cardiovascular risk stratification.

  20. Somatotype, size and body composition of competitive female volleyball players.

    PubMed

    Malousaris, Grigoris G; Bergeles, Nikolaos K; Barzouka, Karolina G; Bayios, Ioannis A; Nassis, George P; Koskolou, Maria D

    2008-06-01

    The aim of this study was to describe the morphological characteristics of competitive female volleyball players. For this purpose, body weight and height, breadths and girths as well as skinfold thickness at various body sites were assessed in 163 elite female volleyball players (age: 23.8+/-4.7 years, years of playing: 11.5+/-4.2, hours of training per week: 11.9+/-2.9, means+/-S.D.). Seventy-nine of these players were from the A1 division and the rest from the A2 division of the Greek National League. Two-way ANOVA was used to compare the differences in these characteristics between competition level and playing position. Body height ranged from 161cm to 194cm, and the mean value (177.1+/-6.5cm) was not inferior to that of international players of similar calibre. Adiposity of these players (sum of 5 skinfolds: 51.8+/-10.2mm, percent body fat: 23.4+/-2.8) was higher than that reported in other studies in which, however, different methodology was used. Volleyball athletes of this study were mainly balanced endomorphs (3.4-2.7-2.9). The A1 division players were taller and slightly leaner with greater fat-free mass than their A2 counterparts. Significant differences were found among athletes of different playing positions which are interpreted by their varying roles and physical demands during a volleyball game. The volleyball players who play as opposites were the only subgroup of players differing between divisions; the A2 opposites had more body fat than A1 opposites. These data could be added in the international literature related to the anthropometric characteristics of competitive female volleyball players.

  1. Body composition and bone mineral status in patients with Turner syndrome

    PubMed Central

    Shi, Kun; Liu, Li; He, Yao-Juan; Li, Duan; Yuan, Lian-Xiong; Lash, Gendie E.; Li, Li

    2016-01-01

    Turner syndrome (TS) is associated with decreased bone mineral density and increased fracture rate. However, the developmental trajectory of bone density or body composition in patients with TS is still unclear. The present study tested the hypothesis that different karyotypes and/or age contributes to abnormal body composition and decreased bone mineral status parameters in patients with TS. This study included 24 girls with TS, in which 13 girls exhibited X0 karyotype and 11 had mosaicism. Quantitative ultrasound (QUS) assessed the bone mineral status of the calcaneus, including bone mineral density (BMD), amplitude-dependent speed of sound (AD-SOS), broadband ultrasound attenuation (BUA) and InBody 770 assessed body composition. Pearson’s test was performed to correlate measured parameters with patient age. The body composition and bone mineral status parameters were not significantly influenced by patient karyotype. There was a correlation between patient age and AD-SOS (r = −0.61, P = 0.002) and BUA (r = 0.50, P = 0.013) but not BMD (r = −0.19, P = 0.379). In conclusion, there was no effect of karyotype on body composition or body mineral status. Bone mineral status, as evidenced by changes in AD-SOS and BUA, alters with age regardless of karyotype. The developmental trajectory demonstrated in the current study warrants further validation in a longitudinal study. PMID:27901060

  2. Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects.

    PubMed

    Nana, Alisa; Slater, Gary J; Hopkins, Will G; Burke, Louise M

    2012-10-01

    Dual-energy X-ray absorptiometry (DXA) is becoming a popular tool to measure body composition, owing to its ease of operation and comprehensive analysis. However, some people, especially athletes, are taller and/or broader than the active scanning area of the DXA bed and must be scanned in sections. The aim of this study was to investigate the reliability of DXA measures of whole-body composition summed from 2 or 3 partial scans. Physically active young adults (15 women, 15 men) underwent 1 whole-body and 4 partial DXA scans in a single testing session under standardized conditions. The partial scanning areas were head, whole body from the bottom of the chin down, and right and left sides of the body. Body-composition estimates from whole body were compared with estimates from summed partial scans to simulate different techniques to accommodate tall and/or broad subjects relative to the whole-body scan. Magnitudes of differences in the estimates were assessed by standardization. In simulating tall subjects, summation of partial scans that included the head scan overestimated whole-body composition by ~3 kg of lean mass and ~1 kg of fat mass, with substantial technical error of measurement. In simulating broad subjects, summation of right and left body scans produced no substantial differences in body composition than those of the whole-body scan. Summing partial DXA scans provides accurate body-composition estimates for broad subjects, but other strategies are needed to accommodate tall subjects.

  3. Inadequacy of Body Weight-Based Recommendations for Individual Protein Intake-Lessons from Body Composition Analysis.

    PubMed

    Geisler, Corinna; Prado, Carla M; Müller, Manfred J

    2016-12-31

    Current body weight-based protein recommendations are ignoring the large variability in body composition, particularly lean mass (LM), which drives protein requirements. We explored and highlighted the inter-individual variability of weight versus body composition-adjusted protein intakes by secondary analysis in three cohorts of (1) 574 healthy adults (mean ± SD age: 41.4 ± 15.2 years); (2) 403 cirrhotic patients (age: 44.7 ± 12.3 years) and (3) 547 patients with lung cancer (age: 61.3 ± 8.2 years). LM was assessed using different devices (magnetic resonance imaging, dual-energy X-ray absorptiometry, computer tomography, total body potassium and bioelectrical impedance), body weight-based protein intake, its ratio (per kg LM) and mean protein requirement were calculated. Variability in protein intake in all cohorts ranged from 0.83 to 1.77 g protein per kg LM per day using (theoretical protein intake of 60 g protein per day). Calculated mean protein requirement was 1.63 g protein per kg LM per day; consequently, 95.3% of healthy subjects, 100% of cirrhotic and 97.4% of cancer patients would present with a low protein intake per kg LM. Weight-adjusted recommendations are inadequate to address the LM specific differences in protein needs of healthy subjects or clinical populations. Absolute protein intake seems to be more relevant compared to the relative proportion of protein, which in turn changes with different energy needs.

  4. Inadequacy of Body Weight-Based Recommendations for Individual Protein Intake—Lessons from Body Composition Analysis

    PubMed Central

    Geisler, Corinna; Prado, Carla M.; Müller, Manfred J.

    2016-01-01

    Current body weight-based protein recommendations are ignoring the large variability in body composition, particularly lean mass (LM), which drives protein requirements. We explored and highlighted the inter-individual variability of weight versus body composition-adjusted protein intakes by secondary analysis in three cohorts of (1) 574 healthy adults (mean ± SD age: 41.4 ± 15.2 years); (2) 403 cirrhotic patients (age: 44.7 ± 12.3 years) and (3) 547 patients with lung cancer (age: 61.3 ± 8.2 years). LM was assessed using different devices (magnetic resonance imaging, dual-energy X-ray absorptiometry, computer tomography, total body potassium and bioelectrical impedance), body weight-based protein intake, its ratio (per kg LM) and mean protein requirement were calculated. Variability in protein intake in all cohorts ranged from 0.83 to 1.77 g protein per kg LM per day using (theoretical protein intake of 60 g protein per day). Calculated mean protein requirement was 1.63 g protein per kg LM per day; consequently, 95.3% of healthy subjects, 100% of cirrhotic and 97.4% of cancer patients would present with a low protein intake per kg LM. Weight-adjusted recommendations are inadequate to address the LM specific differences in protein needs of healthy subjects or clinical populations. Absolute protein intake seems to be more relevant compared to the relative proportion of protein, which in turn changes with different energy needs. PMID:28042853

  5. Body composition and phase angle in Russian children in remission from acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Tseytlin, G. Ja; Khomyakova, I. A.; Nikolaev, D. V.; Konovalova, M. V.; Vashura, A. Yu; Tretyak, A. V.; Godina, E. Z.; Rudnev, S. G.

    2010-04-01

    Elevated degree of body fatness and changes in other body composition parameters are known to be common effects of treatment for acute lymphoblastic leukemia (ALL) in children. In order to study peculiarities of somatic growth and development in ALL survivors, we describe the results of BIA body composition analysis of 112 boys and 108 girls aged 5-18 years in remission from ALL (remission time range 1-13 years) compared to data from the same number of age- and sex-matched healthy controls (n=220). Detrimental effect on height in ALL boys was observed, whereas girls experienced additional weight gain compared to healthy subjects. In ALL patients, resistance, body fat, and percent body fat were significantly increased. The reactance, phase angle, absolute and relative values of skeletal muscle and body cell mass were significantly decreased. Principal component analysis revealed an early prevalence of adiposity traits in the somatic growth and development of ALL girls compared to healthy controls.

  6. Body Composition and Bone Mineral Density in Patients With Heart Failure.

    PubMed

    Abshire, Demetrius A; Moser, Debra K; Clasey, Jody L; Chung, Misook L; Pressler, Susan J; Dunbar, Sandra B; Heo, Seongkum; Lennie, Terry A

    2016-07-10

    The purpose of this study was to examine associations among bone mineral density, osteopenia/osteoporosis, body mass index (BMI), and body composition in patients with heart failure (HF). A total of 119 patients (age = 61 ± 12 years, 65% male) underwent dual-energy X-ray absorptiometry scans to determine bone mineral density and body composition. In multivariable linear regressions, BMI, relative skeletal muscle index (RSMI), and mineral-free lean mass were positively associated with total body bone mineral density. Mineral-free lean mass was most strongly associated with bone mineral density (β = .398). In multivariable logistic regressions, higher BMI, RSMI, and mineral-free lean mass were associated with lower odds for osteopenia/osteoporosis. Fat mass was not associated with total body bone mineral density or osteopenia/osteoporosis. These results suggest that muscle mass may be the important component of body mass associated with bone mineral density in patients with HF.

  7. Effects of change in body composition on gene expression in the uterine endometrium of beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the impact of change of body composition on gene expression in the uterine endometrium of beef cows. Mature, non-lactating Angus cows (body condition score [BCS] = 5.07 ± 0.1) were fed a similar diet for 30 d prior to the initiation of the study. Follow...

  8. Body composition of active persons with spinal cord injury and with poliomyelitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  9. The Relationship between Selected Body Composition Variables and Muscular Endurance in Women

    ERIC Educational Resources Information Center

    Esco, Michael R.; Olson, Michele S.; Williford, Henry N.

    2010-01-01

    The primary purpose of this study was to determine if muscular endurance is affected by referenced waist circumference groupings, independent of body mass and subcutaneous abdominal fat, in women. This study also explored whether selected body composition measures were associated with muscular endurance. Eighty-four women were measured for height,…

  10. Body Composition and Aerobic Requirements of Male and Female Marathon Runners.

    ERIC Educational Resources Information Center

    Wells, Christine L.; And Others

    This study investigates the physical characteristics, body composition, cardiovascular and pulmonary functions, and aerobic capabilities of male and female long distance runners. Eleven runners volunteered to take tests to determine background information, body fat, oxygen uptake, and running time and pace. Conclusions made from this study…

  11. Effects of a Rebound Exercise Training Program on Aerobic Capacity and Body Composition.

    ERIC Educational Resources Information Center

    Tomassoni, Teresa L.; And Others

    1985-01-01

    This study was designed to determine if aerobic dancing on rebound exercise equipment (minitrampolines) is an effective way to improve aerobic capacity and body composition. Although aerobic capacity improved, percent body fat did not change. Results were similar to those produced by conventional aerobic dance programs of like intensity. (MT)

  12. Quantitative nuclear magnetic resonance to measure body composition in infants and children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative Nuclear Magnetic Resonance (QMR) is being used in human adults to obtain measures of total body fat (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH™). Body composition of 113 infants and...

  13. Testosterone and growth hormone improve body composition and muscle performance in older men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CONTEXT: Impairments in the pituitary-gonadal axis with aging are associated with loss of muscle mass and function and accumulation of upper body fat. OBJECTIVES: We tested the hypothesis that physiological supplementation with testosterone and GH together improves body composition and muscle perfor...

  14. Psychosocial Variables Associated with Body Composition and Cardiorespiratory Fitness in Middle School Students

    ERIC Educational Resources Information Center

    Greenleaf, Christy A.; Petrie, Trent A.; Martin, Scott B.

    2010-01-01

    This study examined the associations among self-esteem, depression, physical self-concept, and body satisfaction among 1,022 middle school students who were in the FITNESSGRAM[R] Healthy Fitness Zone[TM] (HFZ) compared to those in the Needs Improvement Zone (NIZ) for body composition and cardiorespiratory fitness. After controlling for…

  15. Longitudinal changes in body composition associated with healthy ageing: men, aged 20-96 years.

    PubMed

    Jackson, Andrew S; Janssen, Ian; Sui, Xuemei; Church, Timothy S; Blair, Steven N

    2012-04-01

    Obesity and sarcopenia are health problems associated with ageing. The present study modelled the longitudinal changes in body composition of healthy men, aged from 20 to 96 years, and evaluated the fidelity of BMI to identify age-dependent changes in fat mass and fat-free mass. The data from 7265 men with multiple body composition determinations (total observations 38,328) were used to model the age-related changes in body mass, fat mass, fat-free mass, BMI and percentage of body fat. Changes in fat mass and fat-free mass were used to evaluate the fidelity of BMI and to detect body composition changes with ageing. Linear mixed regression models showed that all trajectories of body composition with healthy ageing were quadratic. Fat mass, BMI and percentage of body fat increased from age 20 years and levelled off at approximately 80 years. Fat-free mass increased slightly from age 20 to 47 years and then declined at a non-linear rate with ageing. Levels of aerobic exercise had a positive influence on fat mass and a slight negative effect on fat-free mass. BMI and percentage of body fat were sensitive in detecting the increase in fat mass that occurred with healthy ageing, but failed to identify the loss of fat-free mass that started at age 47 years.

  16. Holistic processing of human body postures: evidence from the composite effect

    PubMed Central

    Willems, Sam; Vrancken, Leia; Germeys, Filip; Verfaillie, Karl

    2014-01-01

    The perception of socially relevant stimuli (e.g., faces and bodies) has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception). In the present study, we investigated whether there is also a composite effect for the perception of body postures: are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1) and a vertical composite effect (i.e., left-right body halves; Experiment 2) were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically. PMID:24999337

  17. Barium isotopic composition of mainstream silicon carbides from Murchison: Constraints for s-process nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio; Gyngard, Frank; Willingham, David G.; Pignatari, Marco; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.

  18. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  19. Relationships between body composition, muscular strength, and bone mineral density in estrogen-deficient postmenopausal women.

    PubMed

    Sherk, Vanessa D; Palmer, Ian J; Bemben, Michael G; Bemben, Debra A

    2009-01-01

    The purpose of this study was to examine relationships between muscular strength, body composition, and bone mineral density (BMD) in untrained postmenopausal women who are not on hormone replacement therapy (HRT). Fifty-five women (age: 63.3+/-0.6yr) completed menstrual history, physical activity, and calcium intake questionnaires. Total and regional body composition and total body, anteroposterior lumbar spine, nondominant forearm, and right proximal femur BMD were measured using dual-energy X-ray absorptiometry (DXA) (GE Lunar Prodigy, Prodigy enCORE software version 10.50.086, Madison, WI). Participants performed strength tests for 3 upper body and 5 lower body resistance exercises. Women with a relative skeletal muscle mass index (RSMI) value less than 5.45 kg/m(2) were defined as a sarcopenia group (SAR). SAR had significantly (p < 0.05) lower total body and forearm BMD compared with those who were not sarcopenic. BMD sites were significantly correlated with upper body strength (UBS) and lower body strength (LBS) (r = 0.28-0.50, p < 0.01), with the strength of relationship being site specific. Strength and fat mass (FM) significantly predicted total body BMD (R(2) = 0.232-0.241, p < 0.05), FM variables predicted spine BMD (R(2) = 0.109-0.140, p < 0.05), and LBS and RSMI predicted hip BMD sites (R(2) = 0.073-0.237, p < 0.05). Body composition variables failed to significantly predict LBS. In conclusion, the contribution of body composition and strength variables to BMD varied by site as FM was more important for total body, forearm and spine BMD, and LBS exerted greater influence on the hip sites.

  20. Age-Related Changes in Body Composition of Bovine Growth Hormone Transgenic Mice

    PubMed Central

    Palmer, Amanda J.; Chung, Min-Yu; List, Edward O.; Walker, Jennifer; Okada, Shigeru; Kopchick, John J.; Berryman, Darlene E.

    2009-01-01

    GH has a significant impact on body composition due to distinct anabolic and catabolic effects on lean and fat mass, respectively. Several studies have assessed body composition in mice expressing a GH transgene. Whereas all studies report enhanced growth of transgenic mice as compared with littermate controls, there are inconsistencies in terms of the relative proportion of lean mass to fat mass in these animals. The purpose of this study was to characterize the accumulation of adipose and lean mass with age and according to gender in a bovine (b) GH transgenic mouse line. Weight and body composition measurements were assessed in male and female bGH mice with corresponding littermate controls in the C57BL/6J genetic background. Body composition measurements began at 6 wk and continued through 1 yr of age. At the conclusion of the study, tissue weights were determined and triglyceride content was quantified in liver and kidney. Although body weights for bGH mice were significantly greater than their corresponding littermate controls at all time points, body composition measurements revealed an unexpected transition midway through analyses. That is, younger bGH mice had relatively more fat mass than nontransgenic littermates, whereas bGH mice became significantly leaner than controls by 4 months in males and 6 months in females. These results reveal the importance in timing and gender when conducting studies related to body composition or lean and fat tissue in GH transgenic mice or in other genetically manipulated mouse strains in which body composition may be impacted. PMID:18948397

  1. Do Canadian collegiate hockey players accurately perceive body composition changes after unmonitored training and diet?

    PubMed

    Prokop, Neal W; Duncan, Lindsay R; Andersen, Ross E

    2015-10-01

    Collegiate athletes often use nutritional programs and supplements to elicit body composition changes in muscle or fat. It is unknown if athletes can accurately perceive their fluctuations in body composition, yet their understanding may help them make more accurate interpretations regarding the success of potential nutrition or exercise regimens. The purpose of this study was to investigate if collegiate hockey players could accurately perceive a change in body composition during a 3-month period within their regular season, in which no predetermined nutritional or exercise program was provided. Twenty-four male Canadian collegiate hockey players completed preseason and midseason body composition assessments using dual-energy X-ray absorptiometry. Immediately before the midseason scan, players attempted to accurately match their perceived fluctuation in composition, with predetermined categorical ranges of relative body composition and strength. Two-thirds of players and one-half of players accurately perceived changes in arm-lean and arm-fat tissue, respectively. Approximately two-thirds of players did not accurately perceive gains or losses of lean or fat tissue within their leg and overall body. Although some athletes partially detected changes in the lean and fat tissue of particular regions, the vast majority of players cannot detect the type, or amount of tissue gained and lost across the overall body. Body composition assessments, rather than an athlete's perceptions, should be used to help interpret the success of a sport nutrition or exercise program. Athletes should be aware that physiologic adaptations might take place unnoticed, which could affect the acceptance and adherence of nutrition or exercise interventions.

  2. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  3. Silicon Carbide Photoconductive Switches

    DTIC Science & Technology

    1994-09-01

    The optoelectronic properties of p-type 6-H silicon carbide (6H-SiC) have been investigated in an experiment that used lateral and vertical...and the bandgap was determined to be approximately 3.1 eV. 6H-SiC, Photoconductive, Photovoltaic, Absorption coefficient, Switch, Silicon carbide

  4. SILICON CARBIDE DATA SHEETS

    DTIC Science & Technology

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  5. Processing of boron carbide

    NASA Astrophysics Data System (ADS)

    Cho, Namtae

    The processing of boron carbide powder including sintering optimization, green body optimization and sintering behavior of nano-sized boron carbide was investigated for the development of complex shaped body armor. Pressureless sintered B4C relative densities as high as 96.7% were obtained by optimizing the soak temperature, and holding at that temperature for the minimum time required to reach terminal density. Although the relative densities of pressureless sintered specimens were lower than that of commercially produced hot-pressed B4C, their (Vickers) hardness values were comparable. For 4.45 cm dia. 1.35 cm height disk-shaped specimens, pressureless sintered to at least 93.0% relative density, post-hot isostatic pressing resulted in vast increases in relative densities (e.g. 100.0%) and hardness values significantly greater than that of commercially produced hot-pressed B 4C. The densification behavior of 20-40nm graphite-coated B4C nano-particles was studied using dilatometry, x-ray diffraction and electron microscopy. The higher than expected sintering onset from a nano-scale powder (˜1500°C) was caused by remnant B2O3 not removed by methanol washing, keeping particles separated until volatilization, and the carbon coatings, which imposed particle to particle contact of a substance more refractory than B4C. Solid state sintering (1500-1850°C) was followed by an arrest in contraction attributed to formation of eutectic liquid droplets of size more than 10X the original nano-particles. These droplets, induced to form well below known B4C-graphite eutectic temperatures by the high surface energy of nanoparticles, are interpreted to have quickly solidified to form a vast number of voids in particle packing, which in turn, impeded continued solid state sintering. Starting at 2200°C, a permanent liquid phase formed which facilitated a rapid measured contraction by liquid phase sintering and/or compact slumping.

  6. Methodology for estimation of total body composition in laboratory mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1979-01-01

    A standardized dissection and chemical analysis procedure was developed for individual animals of several species in the size range mouse to monkey (15 g to 15 kg). The standardized procedure permits rigorous comparisons to be made both interspecifically and intraspecifically of organ weights and gross chemical composition in mammalian species series, and was applied successfully to laboratory mice, hamsters, rats, guinea pigs, and rabbits, as well as to macaque monkeys. The procedure is described in detail.

  7. Association between bone mineralization, body composition, and cardiorespiratory fitness level in young Australian men.

    PubMed

    Liberato, Selma Coelho; Maple-Brown, Louise; Bressan, Josefina

    2015-01-01

    The critical age for attainment of peak bone mineralization is however 20-30 yr, but few studies have investigated bone mineralization and its association with body composition and cardiorespiratory fitness level in young men. This study aimed to investigate relationships between age, bone mineral measurements, body composition measurements, and cardiorespiratory fitness level in a group of young healthy Australian men. Thirty-five healthy men aged 18-25 yr had anthropometric measures, body composition, and cardiorespiratory fitness level assessed. Bone mineral content was significantly associated with height, body mass and lean mass, and bone mineral density positively correlated with lean mass and body mass. Bone mineral measurements did not correlate with fat mass, percentage of fat mass, or cardiorespiratory fitness level. Age was directly correlated with total body mass, body fat, and percentage of fat mass. Body mineral measurements correlated with lean mass but not with fat mass or with cardiorespiratory fitness in this group of young healthy men. Positive association between body fat and age in such young group suggests that more studies with young men are warranted and may help inform strategies to optimize increase in bone mineral measurements.

  8. How Accurate Are the Anthropometry Equations in in Iranian Military Men in Predicting Body Composition?

    PubMed Central

    Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza

    2015-01-01

    Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964

  9. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    PubMed

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed.

  10. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  11. State-of-the-art measurements in human body composition: A moving frontier of clinical importance.

    PubMed

    Gallagher, D; Shaheen, I; Zafar, K

    2008-01-01

    The measurement of human body composition allows for the estimation of body tissues, organs, and their distributions in living persons without inflicting harm. From a nutritional perspective, the interest in body composition has increased multi-fold with the global increase in the prevalence of obesity and its complications. The latter has driven in part the need for improved measurement methods with greater sensitivity and precision. There is no single gold standard for body-composition measurements in-vivo. All methods incorporate assumptions that do not apply in all individuals and the more accurate models are derived by using a combination of measurements, thereby reducing the importance of each assumption. This review will discuss why the measurement of body composition or human phenotyping is important; discuss new areas where the measurement of body composition (human phenotyping) is recognized as having important application; and will summarize recent advances made in new methodology. Reference will also be made to areas we cannot yet measure due to the lack of appropriate measurement methodologies, most especially measurements methods that provide information on kinetic states (not just static state) and metabolic function.

  12. Body composition in elderly people: effect of criterion estimates on predictive equations

    SciTech Connect

    Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.; Wang, J.; Pierson, R.N. Jr. )

    1991-06-01

    The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (P less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.

  13. Relationship between endogenous 3-methylhistidine excretion and body composition.

    PubMed

    Lukaski, H C; Mendez, J; Buskirk, E R; Cohn, S H

    1981-03-01

    Fourteen healthy men (aged 20-30 yr) consumed two isocaloric, isonitrogenous diets in the sequence of a 4-day meat diet (MD) followed by a 7-day meal-free diet (MFD). Urinary 3-methylhistidine (3MH) excretion during the MD (513 +/- 21 mumol . day-1, mean +/- SE) was significantly higher (P less than 0.01) than day 3 of the MFD (230 +/- 10 mumol . day-1), after which the mean daily 3MH output was constant with a mean coefficient of variation of 4.5%. There was no change in fat-free body mass (FFBM) determined by densitometry at the start (62.3 +/- 1.8 kg) and the end (62.2 +/- 1.9 kg) of the 11-day dietary period. Mean muscle mass (MM) calculated from measurements of total-body potassium and nitrogen was 23.4 +/- 1.3 kg. Endogenous 3MH excretion was related more closely to MM (r = 0.91, P less than 0.001) than to FFBM measured by densitometry (r = 0.81, P less than 0.001). Only a low correlation coefficient (r = 0.33, P less than 0.05) was observed between 3MH and the nonmuscle component of FFBM. Urinary creatinine output also was correlated significantly with 3MH (r = 0.87; P less than 0.001) and MM (r = 0.79; P less than 0.01). It is concluded that because endogenous 3MH is significantly related to MM in man, it can be used as a marker to study in vivo total-body muscle protein degradation provided that the necessary dietary restrictions are observed.

  14. Voluntary exercise and its effects on body composition depend on genetic selection history.

    PubMed

    Nehrenberg, Derrick L; Hua, Kunjie; Estrada-Smith, Daria; Garland, Theodore; Pomp, Daniel

    2009-07-01

    Little is known about how genetic variation affects the capacity for exercise to change body composition. We examined the extent to which voluntary exercise alters body composition in several lines of selectively bred mice compared to controls. Lines studied included high runner (HR) (selected for high wheel running), M16 (selected for rapid weight gain), Institute of Cancer Research (ICR) (randomly bred as control for M16), M16i (an inbred line derived from M16), HE (selected for high percentage of body fat while holding body weight constant), LF (selected for low percentage of body fat), C57BL/6J (common inbred line), and the F1 between HR and C57BL/6J. Body weight and body fat were recorded before and after 6 days of free access to running wheels in males and females that were individually caged. Total food intake was measured during this 6-day period. All pre- and postexercise measures showed significant strain effects. While HR mice predictably exercised at higher levels, all other selection lines had decreased levels of wheel running relative to ICR. The HR x B6 F1 ran at similar levels to HR demonstrating complete dominance for voluntary exercise. Also, all strains lost body fat after exercise, but the relationships between exercise and changes in percent body were not uniform across genotypes. These results indicate that there is significant genetic variation for voluntary exercise and its effects on body composition. It is important to carefully consider genetic background and/or selection history when using mice to model effects of exercise on body composition, and perhaps, other complex traits as well.

  15. Body Composition, Sarcopenia, and Suicidal Ideation in Elderly Koreans: Hallym Aging Study.

    PubMed

    Kim, Jeong-Hyeon; Kim, Dong-Hyun; Park, Yong Soon

    2016-04-01

    This study was conducted to assess the relationship between body composition and suicidal ideation among the Korean elderly population (n = 302; ≥ 65 years) who participated in the Hallym Aging Study in 2010. Body composition was measured using dual-energy X-ray absorptiometry, and obesity was measured by the indices of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and body fat percentage. Sarcopenia was defined as presence of both low muscle mass and low muscle function. Suicidal ideation was assessed using the Beck Scale for Suicide Ideation. We found no differences in body composition measures between subjects with suicidal ideation and those without. In the logistic regression analyses, there were no significant relationships for suicidal ideation according to body composition measures, including BMI, WC, WHR, WHtR, and body fat percentage in both sexes. After adjusting for age, smoking status, alcohol drinking, regular exercise, medical comorbidities, monthly income, education level, and presence of depressive symptoms, the odds ratio (OR) of suicidal ideation was higher in elderly men with sarcopenia compared to those without, whereas no significant relationships were observed in elderly women (OR 8.28, 95% confidence interval [CI] 1.20-61.34 in men; OR 0.79, 95% CI 0.07-8.43 in women). Sarcopenia is closely associated with an increased risk of suicidal ideation in elderly men.

  16. Functional Body Composition and Related Aspects in Research on Obesity and Cachexia

    PubMed Central

    Müller, M.J.; Baracos, V.; Bosy-Westphal, A.; Dulloo, A.; Eckel, J.; Fearon, K.C.H.; Hall, K.D.; Pietrobelli, A.; Sørensen, T.I.A.; Speakman, J.; Trayhurn, P.; Visser, M.; Heymsfield, S.B.

    2014-01-01

    The 12th Stock Conference addressed body composition and related functions in two extreme situations, obesity and cancer cachexia. The concept of “functional body composition” integrates body components into regulatory systems relating the mass of organs and tissues to corresponding in vivo functions and metabolic processes. This concept adds to an understanding of organ/tissue mass and function in the context of metabolic adaptations to weight change and disease. During weight gain and loss there are associated changes in individual body components while the relationships between organ and tissue mass are fixed. Thus, an understanding of weight regulation involves an examination of organ-tissue regulation rather than of individual organ mass. The between organ/tissue mass relationships are associated with and explained by cross-talk between organs and tissues mediated by cytokines, hormones, and metabolites that are coupled with changes in body weight, composition, and function as observed in obesity and cancer cachexia. In addition to established roles in intermediary metabolism, cell function and inflammation, organ-tissue cross-talk mediators are determinants of body composition and its’ change with weight gain and loss. The 12th Stock Conference supported Michael Stocks’ concept of gaining new insights by integrating research ideas from obesity and cancer cachexia. The conference presentations provide an in-depth understanding of body composition and metabolism. PMID:24835453

  17. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  18. Detecting meaningful body composition changes in athletes using dual-energy x-ray absorptiometry.

    PubMed

    Colyer, Steffi L; Roberts, Simon P; Robinson, Jonathan B; Thompson, Dylan; Stokes, Keith A; Bilzon, James L J; Salo, Aki I T

    2016-04-01

    Dual-energy x-ray absorptiometry (DXA) imaging is considered to provide a valid and reliable estimation of body composition when stringent scanning protocols are adopted. However, applied practitioners are not always able to achieve this level of control and the subsequent impact on measurement precision is not always taken into account when evaluating longitudinal body composition changes. The primary aim of this study was to establish the reliability of DXA in an applied elite sport setting to investigate whether real body composition changes can be detected. Additionally, the performance implications of these changes during the training year were investigated. Forty-eight well-trained athletes (from four diverse sports) underwent two DXA scans using a 'real-world' approach (with limited pre-scan controls), typically within 48 h, to quantify typical error of measurement (TEM). Twenty-five athletes underwent further scans, before and after specific training and competition blocks. 'True' body composition changes were evaluated using 2  ×  TEM thresholds. Twelve bob skeleton athletes also performed countermovement jump and leg press tests at each time point. Many 'true' body composition changes were detected and coincided with the primary training emphases (e.g. lean mass gains during hypertrophy-based training). Clear relationships (r  ±  90% CI) were observed between performance changes (countermovement jump and leg press) and changes in lean mass (0.53  ±  0.26 and 0.35  ±  0.28, respectively) and fat mass (-0.44  ±  0.27 and  -0.37  ±  0.28, respectively). DXA was able to detect real body composition changes without the use of stringent scanning controls. Associations between changes in body composition and performance demonstrated the potential influence of these changes on strength and power indices.

  19. Resistivity coefficients for body composition analysis using bioimpedance spectroscopy: effects of body dominance and mixture theory algorithm.

    PubMed

    Ward, L C; Isenring, E; Dyer, J M; Kagawa, M; Essex, T

    2015-07-01

    Body composition is commonly predicted from bioelectrical impedance spectroscopy using mixture theory algorithms. Mixture theory algorithms require the input of values for the resistivities of intra-and extracellular water of body tissues. Various derivations of these algorithms have been published, individually requiring resistivity values specific for each algorithm. This study determined apparent resistivity values in 85 healthy males and 66 healthy females for each of the four published mixture theory algorithms. The resistivity coefficients determined here are compared to published values and the inter-individual (biological) variation discussed with particular reference to consequential error in prediction of body fluid volumes. In addition, the relationships between the four algorithmic approaches are derived and methods for the inter-conversion of coefficients between algorithms presented.

  20. [Energy balance, body composition and the female athlete triad syndrome].

    PubMed

    Weinstein, Yitzhak; Weinstein, Ayelet

    2012-02-01

    With the rising participation of women in sports events, the prevalence of eating disorders and the female athlete triad (FTS), a syndrome of disordered eating, amenorrhea, and osteoporosis, have also increased in recent years. FTS is often seen in sports that emphasize thinness (e.g. gymnastics, figure skating and dancing) and also in endurance events. Elements of the FTS are pathophysiologically linked, leading to several disease risks and even to mortality. In spite of the considerable knowledge about sports nutrition, there is no consensus as to the correct nutrition regime for the female athlete. There is consensus that minimizing fluctuations in 'target-body-weight' is an indication of a long-term energy balance. Female athletes (e.g. in endurance events and gymnastics) are less likely to achieve the recommended carbohydrates (CHO) and fat consumption due to chronic or episodic constraints of total energy intake while struggling to achieve or maintain low levels of body fat. It is recommended that dietary CHO and fat content be increased to preserve fat-free mass thus enhancing health and performance. Energy balance should also be maintained during recesses. Furthermore, within-day episodes of energy deficits/surplus (measured by the frequency and/or magnitude of the episodes) should be monitored and treated closest to the time of the incidents.

  1. [EFFECTS OF WHOLE-BODY VIBRATION TRAINING ON BODY COMPOSITION AND PHYSICAL FITNESS IN RECREATIONALLY ACTIVE YOUNG ADULTS].

    PubMed

    Martínez-Pardo, Esmeraldo; Martínez-Ruiz, Enrique; Alcaraz, Pedro E; Rubio-Arias, Jacobo A

    2015-11-01

    In the last decade, it has been suggested that whole- body vibration training (WBV) may increase neuromuscular performance and consequently affect the muscular improvement as either acute response to vibration or chronic adaptation training. Vibrating platforms generate frequencies from 5-45 Hz and vertical oscillations of 1-11 mm peak to peak, affecting more or less intensity acceleration changing by combining frequency and amplitude. Vibration training, in a session as various offers different results in regard to changes in body composition and in increasing the vertical jump, sprint, and the different manifestations of force development. These promising results await further research to establish parameters (duration, frequency and amplitude) with vibration stimulation in young active subjects. This literature review provides an update on the scientific evidence on the body vibrations in order to answer the question whether WBV, meaning the exercise by increasing the gravitational load collection, is a treatment option if the aim is to improve neuromuscular function, flexibility, balance, agility, coordination and body composition.

  2. Shuttle-food consumption, body composition and body weight in women

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Frye, Sherrie; Kloeris, Vickie; Rice, Barbara; Siconolfi, Steven F.; Spector, Elisabeth; Gretebeck, Randall J.

    1992-01-01

    An experiment is conducted to determine whether the NASA Space Shuttle food system can provide the food and fluid required to mitigate weight loss and physical decomposition in 12 female subjects for 28 days. Subjects receive only foods from the Space Shuttle system for four weeks within an 11-wk monitoring period. Dual-energy X-ray absorptiometry is employed throughout the trial period to study lean body mass, percent body fat, and energy-intake levels with attention given to differences the experimental diet and the subjects' typical diet. Percent body fat is found to change significantly with losses of less than 0.05 percent, whereas energy intake based on autonomous diet choices by the participants does not vary significantly. Lean body mass remains unchanged throughout the study in which the subjects receive a relatively low-fat and low-protein menu. The 100 items on the space shuttle list of approved food items are shown to provide a palatable dietary framework for maintaining the health of female astronauts.

  3. No association between body composition and cognition in ambulatory persons with multiple sclerosis: A brief report.

    PubMed

    Sandroff, Brian M; Hubbard, Elizabeth A; Pilutti, Lara A; Motl, Robert W

    2015-01-01

    There is evidence that body fat is inversely associated with cognitive functioning in adults from the general population, and this has been associated with systemic inflammation. The association between body fat and cognition might further be augmented in the presence of an immune-mediated, inflammatory disease such as multiple sclerosis (MS). This cross-sectional study investigated the associations between objective measures of body composition and cognitive function in 60 persons with MS. Participants underwent a neurological examination for generating Expanded Disability Status Scale scores, followed by the Brief International Cognitive Assessment in Multiple Sclerosis neuropsychological battery for measurement of cognitive processing speed, verbal learning and memory, and visual learning and memory. Whole-body fat mass, percent body fat, lean body mass, and bone mineral density were measured using dual-energy X-ray absorptiometry. Whole-body fat mass and percent body fat were not associated with any cognitive outcome (all p > 0.41). However, lean body mass was associated with cognitive processing speed (p < 0.03), and bone mineral density was associated with cognitive processing speed and verbal learning and memory. Those associations were attenuated and nonsignificant after controlling for age and Expanded Disability Status Scale scores (p > 0.13). Body composition might not represent a target of interventions for improving cognitive processing speed or learning and memory in MS.

  4. Seasonal changes in body composition of Ctenomys talarum (Rodentia: Octodontidae): an herbivore subterranean rodent.

    PubMed

    del Valle, Juana C; López Mañanes, Alejandra A; Busch, Cristina

    2006-09-01

    Ctenomys talarum is a subterranean herbivorous rodent whose burrow systems exhibit particular characteristics, distinct from other subterranean environments. We studied seasonal variation in body composition of C. talarum in relation to energetic requirements. Body lipid content seasonally changed in C. talarum, related to reproductive cycle and thermorregulatory mechanisms. A decrease in protein body content was found only in spring. Ash content of females was lowest when most of them are in post partum estro. Observed variations in water body content could be associated with plant water content and/or metabolic regulation. Our results show the occurrence of seasonal variations in body composition in C. talarum, which could be related to the high cost of reproduction and the subterranean life style of this species.

  5. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    SciTech Connect

    Hu, Sujuan; Shi, Binbin; Yao, Guoxing; Li, Guohua; Ma, Chunan

    2011-10-15

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide and titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.

  6. Childhood cognitive ability and body composition in adulthood

    PubMed Central

    Kumpulainen, S M; Heinonen, K; Salonen, M K; Andersson, S; Wolke, D; Kajantie, E; Eriksson, J G; Raikkonen, K

    2016-01-01

    Background: Childhood cognitive ability has been identified as a novel risk factor for adulthood overweight and obesity as assessed by adult body mass index (BMI). BMI does not, however, distinguish fat-free and metabolically harmful fat tissue. Hence, we examined the associations between childhood cognitive abilities and body fat percentage (BF%) in young adulthood. Methods: Participants of the Arvo Ylppö Longitudinal Study (n=816) underwent tests of general reasoning, visuomotor integration, verbal competence and language comprehension (M=100; s.d.=15) at the age of 56 months. At the age of 25 years, they underwent a clinical examination, including measurements of BF% by the InBody 3.0 eight-polar tactile electrode system, weight and height from which BMI (kg m−2) was calculated and waist circumference (cm). Results: After adjustments for sex, age and BMI-for-age s.d. score at 56 months, lower general reasoning and visuomotor integration in childhood predicted higher BMI (kg m−2) increase per s.d. unit decrease in cognitive ability (−0.32, 95% confidence interval −0.60,−0.05; −0.45, −0.75,−0.14, respectively) and waist circumference (cm) increase per s.d. unit decrease in cognitive ability (−0.84, −1.56,−0.11; −1.07,−1.88,−0.26, respectively) in adulthood. In addition, lower visuomotor integration predicted higher BF% per s.d. unit decrease in cognitive ability (−0.62,−1.14,−0.09). Associations between general reasoning and BMI/waist were attenuated when adjusted for smoking, alcohol consumption, intake of fruits and vegetables and physical activity in adulthood, and all associations, except for visuomotor integration and BMI, were attenuated when adjusted for parental and/or own attained education and/or birth weight. Conclusions: Of the measured childhood cognitive abilities, only lower visuomotor integration was associated with BF% in adulthood. This challenges the view that cognitive ability, at least when measured in

  7. Body composition in an employee health improvement program.

    PubMed

    Wittmann, A

    1998-12-01

    We checked the change in health status of employees of an Austrian company over a period of one year. In June 1995 medical and anthropometric tests were carried out. From the results of the tests, we made individual recommendations for training and nutrition. Lectures, demonstration sessions and regular sessions in gymnastics were held during the year. In June 1996 a re-test was carried out. In 1995, 95 men and 27 women, in 1996, 62 men and 27 women participated in the investigation. A comparative statistical analysis was carried out for the group of men. Body fat tissue decreased and fat free mass increased highly significantly (p = 0.000), systolic blood pressure decreased about 10 mmHg on average (p = 0.000), exhalation volume as well as the relative physical work capacity increased very high significantly (p = 0.000 for both parameters). There were no significant changes of diastolic blood pressure, glucose, cholesterol and triglyceride levels.

  8. Dietary Protein Source Influence on Body Size and Composition in Growing Zebrafish

    PubMed Central

    Barry, R. Jeff; Powell, Mickie L.; Nagy, Tim R.; D'Abramo, L.R.; Watts, Stephen A.

    2013-01-01

    Abstract The importance of nutritional components on growth and body composition outcomes has been demonstrated in multiple model organisms. Although zebrafish (Danio rerio) have an established role in research laboratories for its utility in understanding developmental biology and genetics, the influence of diet composition on basic growth outcomes is less well demonstrated. In the current study, four protein sources were tested in isolation using isonitrogenous diets or combined using a defined lab diet. Fish (n≈60/group) were group housed (n≤10 fish/1.8 L tank) and fed ad libitum three times daily for 12 weeks. Fish were assessed for effects on length, body weight, and body composition (lean and fat mass). Individuals fed wheat gluten protein were significantly shorter in length, with significantly lower body weight and lean mass in both male and female fish, although percent body fat was high compared with other diets. Casein-fed fish similarly had significantly reduced body length, body weight, and lean and fat mass in both male and female fish, with a low percent body fat compared with other diets (leanest). Fish protein hydrolysate-fed fish had significantly lower lean mass and a high percent body fat, whereas soy protein isolate diet performed similarly to a mixed-protein control diet for all measured outcomes. These results suggest that the protein source, with accompanying amino acid ratios or additional protein source differences, has a significant impact on growth and body composition outcomes in zebrafish when fed in a semipurified, defined diet background. PMID:23656299

  9. Lipid metabolism and body composition in Gclm(-/-) mice

    SciTech Connect

    Kendig, Eric L.; Chen, Ying; Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N.; Genter, Mary Beth; Nebert, Daniel W.; Shertzer, Howard G.

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  10. Preparation of silicon carbide fibers

    DOEpatents

    Wei, G.C.

    1983-10-12

    Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

  11. Relationship between cardiorespiratory fitness and blood pressure in young adults: a mediation analysis of body composition.

    PubMed

    Díez-Fernández, Ana; Sánchez-López, Mairena; Nieto, José Antonio; González-García, Alberto; Miota-Ibarra, José; Ortiz-Galeano, Ignacio; Martínez-Vizcaíno, Vicente

    2017-01-12

    High blood pressure levels are among the most important cardiovascular disease risk factors and are influenced by physical fitness and body composition. However, the degree to which obesity may attenuate or modify the beneficial effects of physical fitness on blood pressure levels in young adults is uncertain. Thus, the aim of this study was to analyze whether body composition is a mediator between cardiorespiratory fitness (CRF) and blood pressure levels in young adults. This work was a cross-sectional study involving first-year college students (n=386) at the University Campus of Cuenca (Spain). We measured weight, height, waist circumference, fat mass percentage (by densitometry), systolic and diastolic blood pressure and CRF levels (by a 20 m shuttle run test). Partial correlation coefficients were estimated to examine the relationships among adiposity variables, CRF and blood pressure variables, controlling for age and sex. ANCOVA models were conducted to explore differences in blood pressure levels across adiposity and CRF categories. Hayes's PROCESS macro was used for the simple mediation analysis. The indirect effect and Sobel test were significant (P<0.001), confirming that all body composition variables mediate between CRF and all of the included blood pressure variables. All body composition variables acted as mediators between CRF and blood pressure. These results highlight the importance of maintaining a healthy body composition to prevent hypertension in young adults.Hypertension Research advance online publication, 12 January 2017; doi:10.1038/hr.2016.177.

  12. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease.

    PubMed

    Seabolt, Lynn A; Welch, E Brian; Silver, Heidi J

    2015-09-01

    Advances in the technological qualities of imaging modalities for assessing human body composition have been stimulated by accumulating evidence that individual components of body composition have significant influences on chronic disease onset, disease progression, treatment response, and health outcomes. Importantly, imaging modalities have provided a systematic method for differentiating phenotypes of body composition that diverge from what is considered normal, that is, having low bone mass (osteopenia/osteoporosis), low muscle mass (sarcopenia), high fat mass (obesity), or high fat with low muscle mass (sarcopenic obesity). Moreover, advances over the past three decades in the sensitivity and quality of imaging not just to discern the amount and distribution of adipose and lean tissue but also to differentiate layers or depots within tissues and cells is enhancing our understanding of distinct mechanistic, metabolic, and functional roles of body composition within human phenotypes. In this review, we focus on advances in imaging technologies that show great promise for future investigation of human body composition and how they are being used to address the pandemic of obesity, metabolic syndrome, and diabetes.

  13. Indicators of Walking Speed in Rheumatoid Arthritis: Relative Influence of Articular, Psychosocial, and Body Composition Characteristics

    PubMed Central

    Lusa, Amanda L; Amigues, Isabelle; Kramer, Henry R; Dam, Thuy-Tien; Giles, Jon T

    2014-01-01

    Objective To explore the contributions from and interactions between articular swelling and damage, psychosocial factors, and body composition characteristics on walking speed in rheumatoid arthritis (RA). Methods RA patients underwent the timed 400 meter long-corridor walk. Demographics, self-reported levels of depressive symptoms and fatigue, RA characteristics, and body composition [using whole-body dual-energy X-ray absorptiometry (DXA), and abdominal and thigh computed tomography (CT)] were assessed and their associations with walking speed explored. Results A total of 132 RA patients had data for the 400 meter walk, among whom 107 (81%) completed the full 400 meters. Significant multivariable indicators of slower walking speed were older age, higher depression scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher cumulative prednisone exposure, non-treatment with disease-modifying anti-rheumatic drugs (DMARDs), and worse body composition. These features accounted for 60% of the modeled variability in walking speed. Among specific articular features, slower walking speed was primarily correlated with large/medium lower-extremity joint involvement. However, these articular features accounted for only 21% of the explainable variability in walking speed. Having any relevant articular characteristics was associated with a 20% lower walking speed among those with worse body composition (p<0.001) compared with only a 6% lower speed among those with better body composition (p-value for interaction=0.010). Conclusions Psychosocial factors and body composition are potentially reversible contributors to walking speed in RA. Relative to articular disease activity and damage, non-articular indicators were collectively more potent indicators of an individual's mobility limitations. PMID:25155859

  14. Weight and Body Composition Compartments do Not Predict Therapeutic Thiopurine Metabolite Levels in Inflammatory Bowel Disease

    PubMed Central

    Holt, Darcy Q; Strauss, Boyd JG; Moore, Gregory T

    2016-01-01

    OBJECTIVES: Thiopurine drugs are the most commonly used steroid-sparing therapies in moderate-to-severe inflammatory bowel disease (IBD). Their complex metabolism and their narrow therapeutic windows means that optimal dosing is difficult. However, weight-based dosing is the norm. Similar antimetabolites are dosed by body composition parameters. In IBD, treatment response and toxicity has been shown to correlate with thiopurine metabolite levels. We sought to determine whether weight or body composition parameters predicted therapeutic 6-thioguanine nucleotide (6TGN) or toxic 6-methylmercaptopurine (6MMP) levels. METHODS: This single-center retrospective cohort study identified 66 IBD patients who had body composition analysis and thiopurine metabolite levels tested. Statistical analysis was performed using Spearman correlation, Kruskal–Wallis, Mann–Whitney, and unpaired t tests and receiver-operator operating characteristic curves. A P value of <0.05 was considered significant. RESULTS: No correlation was identified between 6TGN and any body composition parameters, absolute drug dose or drug dose/kg of fat mass, fat-free mass (FFM), subcutaneous adipose tissue area, or visceral adipose tissue area. However, 6MMP correlated with azathioprine dose, thiopurine dose/kg of body weight, and with several body composition parameters. CONCLUSIONS: No relationship was found between therapeutic metabolite levels and weight or body composition compartments. Higher thiopurine doses, especially in relation to FFM, are associated with higher levels of potentially hepatotoxic 6MMP and shunting toward this metabolite. Conventional weight-based dosing to attain therapeutic metabolite levels appears unreliable and may be replaced by metabolite level testing. PMID:27787512

  15. Controlling parental feeding practices and child body composition in ethnically and economically diverse preschool children.

    PubMed

    Wehrly, Sarah E; Bonilla, Chantal; Perez, Marisol; Liew, Jeffrey

    2014-02-01

    Controlling parental feeding practices may be associated with childhood overweight, because coercive or intrusive feeding practices may negatively impact children's development of self-regulation of eating. This study examined pressuring or forcing a child (healthy or unhealthy foods) and restricting child from unhealthy or snack foods as two types of controlling feeding practices that explain unique variances in measures of child body composition (BMI, percent body fat, and parental perception of child weight). In an ethnically and economically diverse sample of 243 children aged 4-6years old and their biological parents (89% biological mothers, 8% biological fathers, and 3% step or grand-parent), descriptive statistics indicate ethnic and family income differences in measures of feeding practices and child body composition. Additionally, the two "objective" indices of body composition (BMI and percent body fat) were related to low pressure to eat, whereas the "subjective" index (perceived child weight) was related to restriction. Regression analyses accounting for ethnic and family income influences indicate that pressure to eat and restriction both explained unique variances in the two "objective" indices of body composition, whereas only restriction explained variance in perceived child weight. Findings have implications for helping parents learn about feeding practices that promote children's self-regulation of eating that simultaneously serves as an obesity prevention strategy.

  16. Administration of saccharin to neonatal mice influences body composition of adult males and reduces body weight of females.

    PubMed

    Parlee, Sebastian D; Simon, Becky R; Scheller, Erica L; Alejandro, Emilyn U; Learman, Brian S; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto; MacDougald, Ormond A

    2014-04-01

    Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice.

  17. Administration of Saccharin to Neonatal Mice Influences Body Composition of Adult Males and Reduces Body Weight of Females

    PubMed Central

    Parlee, Sebastian D.; Simon, Becky R.; Scheller, Erica L.; Alejandro, Emilyn U.; Learman, Brian S.; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto

    2014-01-01

    Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice. PMID:24456165

  18. Use of a novel pediatric body composition technique for assessing body fatness and its changes during the first 6 month of life

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Clinical assessment of infant growth and nutritional status is enhanced by accurate measurement of body composition and its changes over time. OBJECTIVE: To evaluate the accuracy of an air-displacement plethysmograph, the PEA POD (Registered Trademark) Infant Body Composition System (Lif...

  19. Height and Body Composition Determine Arm Propulsive Force in Youth Swimmers Independent of a Maturation Stage

    PubMed Central

    Moura, Tatiane; Costa, Manoel; Oliveira, Saulo; Júnior, Marcos Barbosa; Ritti-Dias, Raphael; Santos, Marcos

    2014-01-01

    The aim of this study was to examine the relationship between anthropometric variables, body composition and propulsive force in swimmers aged 9–17 years. Anthropometric characteristics (body height and mass, sitting height, arm span, arm muscle area and body composition) and the propulsive force of the arm (tethered swimming test) were evaluated in 56 competitive male swimmers. Tanner’s stages of genital maturation (P1–5) were used. The data analysis included correlations and multiple linear regression. The propulsive force of the arm was correlated with body height (r = 0.34; p =0.013), arm span (r = 0.29; p =0.042), sitting height (r = 0.36; p =0.009), % body fat (r = 0.33; p =0.016), lean body mass (r = 0.34; p =0.015) and arm muscle area (r = 0.31; p =0.026). Using multiple linear regression models, the percent body fat and height were identified as significant predictors of the propulsive force of the arm after controlling for the maturation stage. This model explained 22% (R2 = 0.22) of associations. In conclusion, the propulsive force of swimmers was related to body height and percent body fat. PMID:25414760

  20. Association between Indices of Body Composition and Abnormal Metabolic Phenotype in Normal-Weight Chinese Adults.

    PubMed

    Xia, Lili; Dong, Fen; Gong, Haiying; Xu, Guodong; Wang, Ke; Liu, Fen; Pan, Li; Zhang, Ling; Yan, Yuxiang; Gaisano, Herbert; He, Yan; Shan, Guangliang

    2017-04-07

    We aimed to determine the association of indices of body composition with abnormal metabolic phenotype, and to examine whether the strength of association was differentially distributed in different age groups in normal-weight Chinese adults. A total of 3015 normal-weight adults from a survey of Chinese people encompassing health and basic physiological parameters was included in this cross-sectional study. We investigated the association of body composition measured by bioelectrical impedance analysis and conventional body indices with metabolically unhealthy normal-weight (MUHNW) adults, divided by age groups and gender. Associations were assessed by multiple logistic regression analysis. We found abnormal metabolism in lean Chinese adults to be associated with higher adiposity indices (body mass index, BMI), waist circumference, and percentage body fat), lower skeletal muscle %, and body water %. Body composition was differentially distributed in age groups within the metabolically healthy normal weight (MHNW)/MUHNW groups. The impact of factors related to MUHNW shows a decreasing trend with advancing age in females and disparities of factors (BMI, body fat %, skeletal muscle %, and body water %) associated with the MUHNW phenotype in the elderly was noticed. Those factors remained unchanged in males throughout the age range, while the association of BMI, body fat %, skeletal muscle %, and body water % to MUHNW attenuated and grip strength emerged as a protective factor in elderly females. These results suggest that increased adiposity and decreased skeletal muscle mass are associated with unfavorable metabolic traits in normal-weight Chinese adults, and that MUHNW is independent of BMI, while increased waist circumference appears to be indicative of an abnormal metabolic phenotype in elderly females.

  1. Thermal conductivity behavior of boron carbides

    NASA Technical Reports Server (NTRS)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  2. Association of maternal smoking with body composition of the newborn.

    PubMed

    Harrison, G G; Branson, R S; Vaucher, Y E

    1983-11-01

    The relationship of maternal cigarette smoking to anthropometric measurements of the newborn was investigated in 285 full-term Caucasian infants. Mothers were classified as "smokers" if they reported smoking both before and during the pregnancy (n = 109) and "nonsmokers" (n = 176). Infants of smoking mothers were significantly lighter, shorter, and had smaller head circumferences, and arm circumferences than those of nonsmokers, consistent with previous findings of other investigators. Ponderal index was not different in the two groups. There was no difference between the two groups in any of the skinfold measurements or in calculated cross-sectional fat area of the upper arm. Multiple regression analyses revealed independent effects of smoking on weight, length, and arm circumference, but no independent effect of smoking on any index of subcutaneous fat. These data suggest that the reduction in birth weight in infants whose mothers who smoke is primarily due to reduction in lean body mass of the newborn while deposition of subcutaneous fat is relatively unaffected.

  3. Crossfit-based high-intensity power training improves maximal aerobic fitness and body composition.

    PubMed

    Smith, Michael M; Sommer, Allan J; Starkoff, Brooke E; Devor, Steven T

    2013-11-01

    The purpose of this study was to examine the effects of a crossfit-based high-intensity power training (HIPT) program on aerobic fitness and body composition. Healthy subjects of both genders (23 men, 20 women) spanning all levels of aerobic fitness and body composition completed 10 weeks of HIPT consisting of lifts such as the squat, deadlift, clean, snatch, and overhead press performed as quickly as possible. Additionally, this crossfit-based HIPT program included skill work for the improvement of traditional Olympic lifts and selected gymnastic exercises. Body fat percentage was estimated using whole-body plethysmography, and maximal aerobic capacity (VO2max) was measured by analyzing expired gasses during a Bruce protocol maximal graded treadmill test. These variables were measured again after 10 weeks of training and compared for significant changes using a paired t-test. Results showed significant (p < 0.05) improvements of VO2max in men (43.10 ± 1.40 to 48.96 ± 1.42 ml · kg · min) and women (35.98 ± 1.60 to 40.22 ± 1.62 ml · kg · min) and decreased body fat percentage in men (22.2 ± 1.3 to 18.0 ± 1.3) and women (26.6 ± 2.0 to 23.2 ± 2.0). These improvements were significant across all levels of initial fitness. Significant correlations between absolute oxygen consumption and oxygen consumption relative to body weight was found in both men (r = 0.83, p < 0.001) and women (r = 0.94, p < 0.001), indicating that HIPT improved VO2max scaled to body weight independent of changes to body composition. Our data show that HIPT significantly improves VO2max and body composition in subjects of both genders across all levels of fitness.

  4. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  5. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training.

    PubMed

    Kreider, R B; Klesges, R; Harmon, K; Grindstaff, P; Ramsey, L; Bullen, D; Wood, L; Li, Y; Almada, A

    1996-09-01

    This study examined the effects of ingesting nutritional supplements designed to promote lean tissue accretion on body composition alterations during resistance training. Twenty-eight resistance-trained males blindly supplemented their diets with maltodextrin (M), Gainers Fuel 1000 (GF), or Phosphagain (P). No significant differences were observed in absolute or relative total body water among groups. Energy intake and body weight significantly increased in all groups combined throughout the study with no group or interaction differences observed. Dual energy x-ray absorptiometry-determined body mass significantly increased in each group throughout the study with significantly greater gains observed in the GF and P groups. Lean tissue mass (excluding bone) gain was significantly greater in the P group, while fat mass and percent body fat were significantly increased in the GF group. Results indicate that total body weight significantly increased in each group and that P supplementation resulted in significantly greater gains in lean tissue mass during resistance training.

  6. Effects of hydroxyurea administration on the body weight, body composition and exercise performance of patients with sickle-cell anaemia.

    PubMed

    Hackney, A C; Hezier, W; Gulledge, T P; Jones, S; Strayhorn, D; Busby, M; Hoffman, E; Orringer, E P

    1997-05-01

    1. As an ancillary study carried out during the recently completed Multicenter Study of Hydroxyurea, we examined the effect of hydroxyurea on the body weight, body composition and exercise capacity of adult patients with sickle-cell anaemia. 2. The subjects received either hydroxyurea (six males and four females) or placebo (eight males and six females). Data for each subject were generated during four separate 24 h admissions to the General Clinical Research Center. These admissions occurred at baseline and then at 6, 12 and 18 months after the start of study drug (hydroxyurea or placebo) administration. During each admission, body composition was measured by using a dual X-ray absorptiometer, and exercise testing was performed by cycle ergometry. Anaerobic performance was assessed according to a 'Wingate' protocol (20 s at maximal intensity against a cycling resistance of 7.5% body weight). Aerobic performance was examined using a steady state submaximal exercise protocol (10 min cycling time). 3. At baseline, no significant difference in any parameter was found between the hydroxyurea- and placebo-treated groups. At 18 months, the hydroxyurea-treated subjects exhibited an average weight gain of 3.16 kg. The mean weight gain in the placebo-treated subjects was 1.82 kg. Body composition analysis showed that the additional weight in both groups involved both lean and fat body mass components. In anaerobic performance, the subjects given hydroxyurea showed an increase in peak muscle power of 104.9 W. The placebo group also showed an increase, but theirs was a more modest gain of 57.7 W. The most marked improvement in anaerobic performance was observed in the hydroxyurea-treated men (P < 0.05). In aerobic performance, the hydroxyurea-treated subjects exhibited a decrease in peak heart rate response to a standardized workload of 15.2 beats/min, as compared with a decrease of only 4.3 beats/min in the placebo-treated patients. 4. Taken together, the overall weight gain

  7. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    SciTech Connect

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  8. Comparison of body composition, heart rate variability, aerobic and anaerobic performance between competitive cyclists and triathletes

    PubMed Central

    Arslan, Erşan; Aras, Dicle

    2016-01-01

    [Purpose] The aim of this study was to compare the body composition, heart rate variability, and aerobic and anaerobic performance between competitive cyclists and triathletes. [Subjects] Six cyclists and eight triathletes with experience in competitions voluntarily participated in this study. [Methods] The subjects’ body composition was measured with an anthropometric tape and skinfold caliper. Maximal oxygen consumption and maximum heart rate were determined using the incremental treadmill test. Heart rate variability was measured by 7 min electrocardiographic recording. The Wingate test was conducted to determine anaerobic physical performance. [Results] There were significant differences in minimum power and relative minimum power between the triathletes and cyclists. Anthropometric characteristics and heart rate variability responses were similar among the triathletes and cyclists. However, triathletes had higher maximal oxygen consumption and lower resting heart rates. This study demonstrated that athletes in both sports have similar body composition and aerobic performance characteristics. PMID:27190476

  9. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  10. In vivo body composition estimation in nongravid and reproducing first-litter sows with deuterium oxide

    SciTech Connect

    Shields, R.G. Jr.; Mahan, D.C.; Byers, F.M.

    1984-11-01

    An experiment was conducted with 64 first-litter sows to evaluate the efficacy of a D/sub 2/O dilution procedure for measuring in vivo body composition during the reproduction cycle. Eight gilts were each infused at breeding, 57 and 105 d postcoitum and at 5 and 25 d postpartum, with equivalent numbers of nongravid controls infused at corresponding periods except at 5 d postpartum. Results from D/sub 2/O dilution were compared with body water estimates obtained from chemical analysis. An early-equilibrating D/sub 2/O pool (before 15 min) was similar quantitatively to empty body (ingesta free) water in nongravid and lactating animals, but not in pregnant sows. Because of inconsistent D/sub 2/O equilibration patterns in gravid sows, the early pool was considered to have equilibrated with part but not all of the water in the conceptus products. Total body D/sub 2/O space measurement obtained from data following equilibration of D/sub 2/O in the entire body (1 to 2 h) overestimated total body water (including gastrointestinal water) by approximately 19%. Coefficients of determination for equations relating total body D/sub 2/O space to empty body and maternal body water were .96 and .88, respectively, in gestating sows and .67 and .74, respectively, for lactating sows, while coefficients of variation were below 6% in all cases. Prediction equations were developed to estimate empty and maternal body components (protein, fat and ash) from body weight and D/sub 2/O space. Accuracy of protein and ash weight prediction is lowest with this procedure because it involves the composite error of estimation of the other body components.

  11. Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Compare estimates of body composition using segmental, multiple frequency bioelectrical impedance analysis (MF-BIA) with dual x-ray absorptiometry (DXA) in healthy adults across a range of body mass index (BMI). Methods: Percent body fat (%BF), fat-mass (FM), and fat-free mass (FFM) asses...

  12. Treatment-Associated Changes in Body Composition, Health Behaviors, and Mood as Predictors of Change in Body Satisfaction in Obese Women: Effects of Age and Race/Ethnicity

    ERIC Educational Resources Information Center

    Annesi, James J.; Tennant, Gisèle A.; Mareno, Nicole

    2014-01-01

    A lack of satisfaction with one's body is common among women with obesity, often prompting unhealthy "dieting." Beyond typically slow improvements in weight and body composition, behavioral factors might also affect change in body satisfaction. Age and race/ethnicity (African American vs. White) might moderate such change. Obese women (N…

  13. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution.

    PubMed

    Zihlman, Adrienne L; Bolter, Debra R

    2015-06-16

    The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition.

  14. Effects of creatine supplementation on the performance and body composition of competitive swimmers.

    PubMed

    Mendes, Renata Rebello; Pires, Ivanir; Oliveira, Althair; Tirapegui, Julio

    2004-08-01

    The objective of this study was to determine the effect of creatine supplementation on performance and body composition of swimmers. Eighteen swimmers were evaluated in terms of post-performance lactate accumulation, body composition, creatine and creatinine excretion, and serum creatinine concentrations before and after creatine or placebo supplementation. No significant differences were observed in the marks obtained in swimming tests after supplementation, although lactate concentrations were higher in placebo group during this period. In the creatine-supplemented group, urinary creatine, creatinine, and body mass, lean mass and body water were significantly increased, but no significant difference in muscle or bone mass was observed. These results suggest that creatine supplementation cannot be considered to be an ergogenic supplement ensuring improved performance and muscle mass gain in swimmers.

  15. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution

    PubMed Central

    Zihlman, Adrienne L.; Bolter, Debra R.

    2015-01-01

    The human body has been shaped by natural selection during the past 4–5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition. PMID:26034269

  16. Body Composition and Muscle Characteristics of Division I Track and Field Athletes.

    PubMed

    Hirsch, Katie R; Smith-Ryan, Abbie E; Trexler, Eric T; Roelofs, Erica J

    2016-05-01

    The purpose of this study was to evaluate event-specific body composition and muscle characteristics of track and field athletes and to assess body composition changes after 1 year. Sixty collegiate track and field athletes (mean ± SD; age = 19.2 ± 1.4 years, height = 174.6 ± 9.0 cm, and weight = 71.5 ± 12.5 kg) were stratified into 6 event groups. Total and regional body composition measurements were assessed using dual-energy x-ray absorptiometry. A panoramic scan of the vastus lateralis was taken with B-mode ultrasound to determine muscle cross-sectional area and echo intensity (EI). Body composition measurements were repeated a year later in a subset of returning athletes (n = 33). Throwers had significantly more absolute fat mass (FM; 21.6 ± 11.0 kg), total body mass (89.7 ± 17.4 kg), percent fat (23.6 ± 7.8), and trunk fat (9.4 ± 5.8 kg) than all other event groups (p ≤ 0.05). Throwers had the most absolute lean mass (LM; 64.2 ± 11.7 kg; p > 0.05), but relative to body mass had relatively less LM (0.72 ± 0.08 kg; p ≤ 0.05). Despite high FM, throwers had lower EI (63.4 ± 5.2 a.u). After 1 year, relative armLM increased slightly in all event groups (p ≤ 0.05). Evaluation of muscle characteristics in addition to total and regional body composition may be valuable for improving performance, injury prevention, and assessing health risks. With appropriate training, track and field athletes may be able to minimize losses in LM and gains in FM between seasons.

  17. Noni-based nutritional supplementation and exercise interventions influence body composition

    PubMed Central

    Palu, Afa K.; West, Brett J.; Jensen, Jarakae

    2011-01-01

    Background: The prevalence of obesity and overweight in the Unites States has reached unprecedented levels, and so has the need for effective exercise and nutritional programs for prevention of unhealthy weight gain or safe weight loss. Aims: The present study was conducted in overweight men and women to assess the impact of noni-based nutritional supplementation and exercise interventions on body composition. Materials and Methods: Twenty two participants (16 women and 6 men), ages 18-65, were enrolled in a 12-week, open-label trial of a weight-loss program involving noni-based dietary supplements, gender-specific daily calorie restriction, and exercise interventions. Weight, percent body fat, and body mass index were measured before and after the trial. Results: All participants experienced weight loss. The average decrease in fat mass was highly significant (P < 0.0001), as were decreases in percent body fat and body mass index. Individual weight and fat mass losses were 17.55 ± 9.73 and 21.78 ± 8.34 lbs., respectively, and individual percent body fat and body mass index decreases were 8.91 ± 3.58 % and 2.6 ± 1.32, respectively. Conclusion: The nutritional and exercise interventions significantly influenced body composition among participants. PMID:22363077

  18. The association between body composition and cystatin C in South Asians: results from the MASALA study.

    PubMed

    Shah, Arti D; Schmidt, Heidi; Sen, Saunak; Shlipak, Michael G; Kanaya, Alka M

    2015-01-01

    While South Asians have high rates of obesity and kidney disease, little is known about the effect of regional body composition on kidney function. We investigated the association between body composition measures and cystatin C-based estimated glomerular filtration rate (eGFRcysC) in 150 immigrant South Asians. The inverse association between overall adiposity and eGFRcysC was attenuated by C-reactive protein (CRP), while the association of ectopic fat was completely attenuated by metabolic covariates and CRP. In immigrant South Asians, the associations between overall adiposity and ectopic fat with decreased kidney function are largely explained by metabolic alterations and inflammation.

  19. Influence of Body Composition on Lung Function and Respiratory Muscle Strength in Children With Obesity

    PubMed Central

    Costa Junior, Dirceu; Peixoto-Souza, Fabiana S.; Araujo, Poliane N.; Barbalho-Moulin, Marcela C.; Alves, Viviane C.; Gomes, Evelim L. F. D.; Costa, Dirceu

    2016-01-01

    Background Obesity affects lung function and respiratory muscle strength. The aim of the present study was to assess lung function and respiratory muscle strength in children with obesity and determine the influence of body composition on these variables. Methods A cross-sectional study was conducted involving 75 children (40 with obesity and 35 within the ideal weight range) aged 6 - 10 years. Body mass index, z score, waist circumference, body composition (tetrapolar bioimpedance), respiratory muscle strength and lung function (spirometry) were evaluated. Results Children with obesity exhibited larger quantities of both lean and fat mass in comparison to those in the ideal weight range. No significant differences were found between groups regarding the respective reference values for respiratory muscle strength. Male children with obesity demonstrated significantly lower lung function values (forced expiratory volume in the first second % (FEV1%) and FEV1/forced vital capacity % (FVC%) : 93.76 ± 9.78 and 92.29 ± 3.8, respectively) in comparison to males in the ideal weight range (99.87 ± 9.72 and 96.31 ± 4.82, respectively). The regression models demonstrated that the spirometric variables were influenced by all body composition variables. Conclusion Children with obesity demonstrated a reduction in lung volume and capacity. Thus, anthropometric and body composition characteristics may be predictive factors for altered lung function. PMID:26767078

  20. Measurement of body composition in cats using computed tomography and dual energy X-ray absorptiometry.

    PubMed

    Buelund, Lene E; Nielsen, Dorte H; McEvoy, Fintan J; Svalastoga, Eiliv L; Bjornvad, Charlotte R

    2011-01-01

    Dual energy X-ray absorptiometry (DEXA) is a reference method for assessing body composition but is seldom `accessible in veterinary settings. Computed tomography (CT) can provide similar body composition estimates and we propose that it can be used in body composition studies in animals. We compared CT and DEXA data from 73 healthy adult neutered domestic cats. Three approaches for measuring adipose tissue percentage from full-body CT scans were explored. By examining the frequency distribution of voxels by Hounsfield unit (HU) value, it is possible to calculate a fat index (Fat%) that is in close agreement with the fat percentages obtained from DEXA scans. Fat% values obtained by the best of the methods had a mean difference of 0.96% (95% confidence interval 0.33-1.59%) from the DEXA results. Fat% obtained by the other two methods were characterized by good correlation but poor agreement and in one of the methods, the difference between the values from the two modalities was proportional to their mean. By using CT, it is possible to obtain body composition estimates that are in close agreement with those available using DEXA. While the significance of individual Fat% measurements obtained from CT can be difficult to interpret and to compare between centers, CT can contribute to research studies concerned either with nutrition or with obesity-related disorders.